
1

E2-Chat: A Web-Based End-to-End Encrypted Messaging Service

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Ashwin Pathi
Fall, 2020

Technical Project Team Members
Saiteja Bevara
Phillip Phan

Rithik Yelisetty

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines
for Thesis-Related Assignments

Signature __ Date 12/04/2020

Ashwin Pathi

Approved __ Date __________

Yixin Sun, Department of Computer Science

Approved __ Date __________

Madhur Behl, Department of Computer Science

E2-Chat: A Web-Based End-to-End Encrypted Messaging Service

SAITEJA BEVARA, University of Virginia School of Engineering and Applied Science, USA
ASHWIN PATHI, University of Virginia School of Engineering and Applied Science, USA
PHILLIP PHAN, University of Virginia School of Engineering and Applied Science, USA
RITHIK YELISETTY, University of Virginia School of Engineering and Applied Science, USA

End-to-end encrypted (E2EE) messaging services currently require mobile
devices, since they are portable and do not require the cumbersome transfer
of keys around devices. Even current desktop E2EE messaging services such
as WhatsApp, interface through phones for their chat services. This project
aims to implement a new web-based E2EE messaging service based on
previous research of encryption protocols for public/private key exchange
using RSA, or Di�e-Hellman[11]. In areas with low smartphone usage such
as emerging economies like India, Nigeria, and Indonesia where more than
half the population do not own smartphones, but majority have access
to the internet, this service will enable users to have encrypted channels
of communication[10]. This can also be useful for businesses, who might
use an E2EE chat internally or with customers. The project supports one-
to-one chats, group chats, and sending various media such as images, all
without the use of an auxiliary mobile device. This project was developed
using technologies such as React.js, GraphQL, Node.js, and web browser
key generation libraries. Technical challenges for this project included the
pagination required for loading chats e�ciently and the encryption protocols
for group messages. Results showed the data in the database was fully
encrypted and contained no identi�able plain text messages. Since private
keys are not stored on the server, these encrypted messages cannot be
decoded by third parties. These two conditions were veri�ed by examining
the contents of the database after sending messages between two users.

ACM Reference Format:
Saiteja Bevara, Ashwin Pathi, Phillip Phan, and Rithik Yelisetty. 2020. E2-
Chat: A Web-Based End-to-End Encrypted Messaging Service . , (2020),
6 pages.

1 INTRODUCTION
Chat services allow parties to communicate in real-time via the In-
ternet. For popular chat services like Facebook Messenger and Slack,
messages are sent through an intermediary service and are stored
in a third-party database [6]. These messages are only encrypted
in-transit, which means the messaging service provider has access
to one’s messages. Other third parties can also view an individual’s
messages if, for example, a malicious actor illegally obtains access to
the database containing one’s messages or a law enforcement entity
has a subpoena to obtain an individual’s message records[9]. In the
United States, roughly eight in ten adults believe they have little or
no control over the data that companies and the government collect,
and a large majority believe that the risks of collection outweigh the
bene�ts [1]. These concerns illustrate the importance of a messaging

Authors’ addresses: Saiteja Bevara, University of Virginia School of Engineering and
Applied Science, , Charlottesville, USA, sb2xf@virginia.edu; Ashwin Pathi, University
of Virginia School of Engineering and Applied Science, , Charlottesville, USA, asp7pr@
virginia.edu; Phillip Phan, University of Virginia School of Engineering and Applied
Science, , Charlottesville, USA, pp5fb@virginia.edu; Rithik Yelisetty, University of
Virginia School of Engineering and Applied Science, , Charlottesville, USA, ry9bf@
virginia.edu.

service where only the sender and receiver of a message can see the
messages.

End-to-end encrypted (E2EE) services allow for the encryption of
text, such that content is only readable by the communicating par-
ties and not any third-parties. End-to-end encrypted systems have
become some of the most popular communication methods in to-
day’s connected world, the most common services being WhatsApp
(owned by Facebook) and iMessage (owned by Apple). WhatsApp
has over two billion monthly active users and iMessage reaches
over one billion users monthly [8] [3]. However, most messaging
platforms that utilize E2EE, such as WhatsApp, interface explicitly
through smartphones to enable encryption [2]. Those without ac-
cess to smartphones or speci�c hardware are relegated to using
unencrypted mediums of communication. This is signi�cant par-
ticularly in emerging economies such as India and Brazil, where
more than 60% of adults use the internet but only 45% have access to
smartphones [10]. This lack of access to encrypted communication
for large populations motivates the need for a web-based end-to-end
encrypted messaging service. By being web-based, the chat service
is available to everyone with an internet-enabled device, allowing
users to overcome barriers in pursuit of data privacy.
The project resulted in E2-Chat, a fully web-based end-to-end

encrypted platform built to allow every internet user to have secure
means of communication. E2-Chat gives users the ability to interact
in one-on-one chats and group chats by sending text messages,
images and �les. E2-Chat is built using a variety of open-sourced
technologies including React.js, GraphQL and Node.js. End-to-end
encryption was veri�ed through checking the database and ensuring
that no content and private keys were stored in plain-text.

2 BACKGROUND
In this section, we will provide a brief overview of the key concepts
and components that were used in building E2-Chat. These include
the RSA andAES encryption schemes. They also include open source
technologies such as React, Node, GraphQL, and SQL.

2.1 RSA
Rivest-Shamir-Adelman (RSA) encryption is a public-key encryp-
tion scheme. Public key encryption schemes are processes used
for encryption and decryption of text. Among existing public-key
encryption schemes, the RSA system is both widely used and su�-
ciently secure. Categorized as an asymmetric scheme, it relies on
a pair of public and private keys to encrypt and decrypt messages,
and guarantees that key generation is e�cient for computation, it
is impossible to derive the private key from the public key, and it
is infeasible to obtain the decrypted text from only the encrypted
text and public key. This encryption system thus is an ideal �t for

2 • Saiteja Bevara, Ashwin Pathi, Phillip Phan, and Rithik Yelise�y

this project as it allows users to generate key pairs e�ciently upon
registration, which can be used securely to encrypt and decrypt
messages [7].

2.2 Advanced Encryption Standard and Symmetric Key
Encryption

Advanced Encryption Standard (AES) is a symmetric key encryp-
tion scheme. In this form of encryption, a single secret key both
encrypts and decrypts information. This key must be distributed to
communicating parties, and the key will then be used to convert
plaintext to ciphertext and vice versa for senders and recipients of
content. AES is also categorized as a block cipher, which operates
on �xed-length groups of bytes called blocks, and uses the �xed key
to encrypt these individual blocks.

2.3 Browser Local Storage
Local storage is space allocated in the browser for each domain
to store data that is relevant to an application. In most modern
browsers, local storage has a capacity of 5 megabytes and is stored
in key-value pairs. This format is comparable to the format of a
JSON �le.

2.4 React
React.js is an open-source frontend framework written in JavaScript.
React.js uses a component-based structure that allows developers to
create a component once and use it in multiple places across their
codebase. The framework dynamically converts code from JSX to
native HTML and vanilla JavaScript to allow applications to be run
natively in the browser.

2.5 Node
Node.js is a scalable server side scripting language built entirely on
native JavaScript. This server technology is primarily used in an
event driven model meaning that the server is only actively working
when a request is being made. Node.js also follows the asynchronous
model from vanilla JavaScript which helps code run in a much more
e�cient manner.

2.6 GraphQL
GraphQL is a querying language developed by Facebook that in-
teracts with both server side technologies and databases. GraphQL
acts as an alternative to the popular REST framework (which com-
pletes requests using a stateless model), and has the advantages
of �exibility with regards to data types and formats, and reduced
overhead by removing unwanted data in query results [4]. This
technology also comes integrated with pagination which ensures
that only data that needs to be used is sent from the server to the
end user. A GraphQL query is used to receive data from the server,
while a GraphQL mutation is used to send data from the client to
the server to update existing data. A GraphQL subscription is used
to stream a set of data from the server to the client.

2.7 Structured �ery Language
Structured Query Language (SQL), is the primary method of com-
munication between a backend server and a database system. SQL’s

main goal is to help set up the structure of the tables in the data-
base, add and remove data from the database and retrieve data from
the database based on �lter restrictions provided. There are many
�avors of SQL, the most common ones being MySQL, PostgreSQL,
SQLite and Microsoft SQL Server. The �rst three mentioned are all
similar, however, have di�erences in how memory is structured to
actually hold the data.

3 RELATED WORK
Manymessaging services have amassed over a billionmonthly active
users, including Facebook Messenger and WeChat. However, many
of these messaging services are not end-to-end encrypted, meaning
that companies and governments have the ability to view private
message content. There are many end-to-end encrypted messaging
services available for consumers today including WhatsApp, Signal,
Telegram and iMessage. The two primary forms of communication
that will be focused on are WhatsApp (owned by Facebook) and
iMessage (owned by Apple). Whatsapp, at a high level, uses an
encryption protocol that is based on the Signal Protocol, which
generates key pairs for users upon registration and uses them to
create master secrets that de�ne encrypted messaging sessions for
each chat. According to their whitepaper, WhatsApp uses the “client-
side fan-out” method to distribute keys to every user that is within
a group and then uses the “server-side fan-out” idea to send every
message from there. This improves the overall e�ciency of the
service as each message is only encrypted one time [11]. WhatsApp,
aside from the base feature of having one-to-one chats, is capable of
serving group chats and media transfer. The primary disadvantage
of WhatsApp is that every account must be linked to a smartphone.
To use the service via a desktop, users must use the web client
and ensure that both the linked mobile phone and the laptop have
internet access. Messages from the laptop are then transmitted via
the phone, meaning that a network eavesdropper may be able to
decrypt messages during this transfer via a Wi-Fi network. Another
disadvantage of WhatsApp is that each user can only have one
account and cannot use the same WhatsApp account on multiple
devices.
The other major E2EE platform, iMessage, di�ers signi�cantly

from the Facebook owned app. iMessage uses the underlying Apple
hardware to generate keys and connects to their iCloud service
to encrypt and decrypt messages. This helps ensure that all of the
devices that are logged into the same account can see all of the
messages. The primary issue with iMessage’s approach is that every
message is encrypted several times, based on the number of devices
linked to the sender’s and recipient’s iMessage account [5]. This
Apple hardware requirement restricts people from using E2EE ser-
vices and further decreases their reach by only allowing their users
to communicate with other users that have these devices. From this,
it is evident that there is currently no application that serves as an
encrypted messaging platform that does not require smartphones.

4 SYSTEM DESIGN
E2-Chat uses a form of hybrid encryption to facilitate E2EE mes-
saging. AES encryption is used to encrypt message content within
group chats and RSA encryption is used for group key fan out. React

E2-Chat: A Web-Based End-to-End Encrypted Messaging Service • 3

Fig. 1. Data Flow of Encrypted Messages in a Group Chat

serves as the frontend framework, Node.js for the backend server,
Apollo GraphQL as the variant of GraphQL for sending data from
the backend to the frontend, and PostgreSQL for the database.

4.1 System Flow
When a user wants to creates new messaging group, an AES group
key is generated by the group creator. This AES key is encrypted
using the other group members’ public keys before being fanned
out to the other group chat members. The encrypted group AES
key is then decrypted using each user’s private key, which �nishes
the process for creating a group chat. When a user wants to send
a message to a group chat, a similar process occurs. However, the
AES group key is instead used to encrypt and decrypt messages that
are sent. Figure 1 illustrates the process of obtaining the encrypted
message content from the server and decrypting it using the AES
group key available to each user. Person A sends a message "Hello
Group 1" in its plaintext form. This message is encrypted using
the Group 1 Key (the AES key) and is transmitted and stored on
the server as encrypted text. Person B and Person C, who are also
members in Group 1, then will obtain this encrypted text from the
server when they load this group chat. The message content will
be decrypted using the same Group 1 AES key, and displayed in its
plaintext form. At all points in this process, only those with access
to the AES key (Group 1 Key) can view messages as plaintext.

4.2 Implementation
The following sections outlines the implementation details for E2-
Chat. An explanation on how GraphQL is used in E2-Chat is de-
scribed in Data Manipulations and Queries.

4.2.1 DataManipulation and�eries. In order to send data from the
server to the client, GraphQL queries were generated. An examples
of a GraphQL query that was created is:

groupsByUser(username: String!): [GroupOutWithPrivateKey]

This query expects the username as a string and will return an
object of type GroupOutWithPrivateKey. This type consists of the
following data (formatted in GraphQL):

type GroupOutWithPrivateKey {

id: Int!

users: [UserOut!]

name: String!

privateKey: String!

}

This query will return all of the groups that a user belongs to and
will only consist of following data: the group id, the users (formatted
as a JSON object with the username), the name of the group and the
AES key to decrypt messages.

In order to modify or change data, GraphQL mutations are used.
One such example is the createMessage mutation (shown below),
which accepts the encrypted content as a string, the group id, the
sender and the content type (text or �le).

createMessage(content: String! group: Int!, sender:

String!, cType: String!): Message

Once the resolver (the associated server-side code) executes, the
mutation will return a message object that consists of the encrypted
content, the group id, the sender’s username, the content type and
the time the message was created. To receive data streams, GraphQL
subscriptions were implemented. Subscriptions allow the data to be
received at any given time when someone publishes to the channel

4 • Saiteja Bevara, Ashwin Pathi, Phillip Phan, and Rithik Yelise�y

Fig. 2. Group Chat With Users @phillip, @charles and @yui.

that the subscriber is listening to. An example subscription is the
one that waits for new messages to be created, shown below:

newMessage(gid: Int!): Message

This subscription essentially subscribes the user to listen for all
new messages that are sent associated with the group id.

4.2.2 Registration. Registration requires the user to input a user-
name and password. An RSA key pair is then generated client side
using a built-in browser cryptography library. The username and
the public key, from the generated key pair, is sent to the server via
a GraphQL mutation. The private key, the hashed password, and
the username is stored in the browser local storage. Local storage is
chosen over cookies because it never expires, and the max size of
local storage is 5MB, whereas cookie max size is 4096 bytes. This
entire local storage content is encrypted and sent to the server as a
JSON, referred to as the “user �le”, storing all of the user’s relevant
keys, their username, and their hashed password. Sending this “user
�le” is also accomplished using a GraphQL mutation.

4.2.3 Login and Logout Process. Login requires the user to input
their username and password. A GraphQL query is executed using
the username to obtain the related “user �le” JSON. This encrypted
user information is decrypted using the hashed password, which is
entered during login, as the key for AES decryption. If the resulting
data is valid, the user login is validated and the “user �le” content is
loaded back into the browser local storage. Logging out will result
in the local storage being cleared.

4.2.4 Groups. When a new group is created, an AES group key is
generated by the group creator, and a GraphQL mutation initializes
the group on the server. The group AES key, which is encrypted by
each group member’s public key, is then fanned out to the members
of the group. The other users in the group receive the encrypted
group AES key though a GraphQL subscription, which monitors
when users are added to groups. Once a user receives the encrypted
AES key, it is decrypted using the user’s private key. The unen-
crypted AES key is then stored in browser local storage, and is used
to encrypt subsequent messages sent to the chat. Finally, the meta-
data for the user is updated with the newly encrypted contents and
pushed to the server.

4.2.5 Chat Feed. When a user opens a group, the last 50 messages
for the group are obtained using a GraphQL query. This query gets
a message object for each message that was sent, which includes
the encrypted message content and metadata such as the message
timestamp, the sender of the message, and the message content
type, such as text or media. Then, the encrypted message content is
decrypted on the frontend, using the AES key associated with this
group which was loaded into the browser local storage either on lo-
gin or group creation. This decrypted message content is ultimately
what is displayed on the screen as plaintext. If a user scrolls past
the currently loaded messages, a loading indicator appears. A new
GraphQL query is then executed which uses pagination to get the
next batch of 50 recent messages.

A GraphQL subscription is created that listens to new messages
for each group. When a new message is received from this subscrip-
tion, the content is decrypted and displayed at the bottom of the

E2-Chat: A Web-Based End-to-End Encrypted Messaging Service • 5

Fig. 3. Screenshot of Encrypted Content in SQL Database.

feed. If the chat feed already encompasses the allocated window, the
new message displayed causes the window to automatically scroll
to the bottom of the feed. Figure 2 shows the general view of the
Chat Feed with messages between three users. Technical challenges
for implementing the chat feed involved adding the pagination that
enabled loading chats more e�ciently.

4.2.6 Chat Input. The chat input is the main way for a user to
interact with groups. Once the user �nishes typing their message
and sends the message to the group, the message is encrypted with
the group’s AES key, which is located in localstorage. A GraphQL
mutation is made with the encrypted message contents, which then
creates a new object in the database. Finally, the message contents
are published to the other subscribers of the group chat.

5 RESULTS
E2-Chat was successfully implemented using the described tech
stack. E2-Chat is available at this link (https://rithik.me/Capstone).
All individuals that are new to E2-Chat can register for an account.

In Figure 2, the user signed up for E2-Chat with the username
“Yui”. The user is then able to create a new chat room by inputting
the usernames of the people Yui wanted to message. Yui entered the
usernames of her friends, “Charles” and “Phillip” to be added to the
group chat. Yui sends a message to the group chat, and Phillip and
Charles reply back to the message. These capabilities demonstrate
that E2-Chat is a functional messaging service for many users.

5.1 Security
The encrypted messages in our database are shown by Figure 3,
presented above. The message content originally sent in plaintext
is only stored in the database in its encrypted form. All instances
of decryption keys are only located on each user’s physical de-
vice, meaning the server has no way of decrypting these messages
contained in the database. Furthermore, since all the connections
between the frontend and the server are also through TLS, the actual
message in transit is also encrypted on top of the actual content
encryption. Therefore, since plaintext messages are only visible on
each end user’s device, the service is E2EE. If an attacker were to be
part of an attack that tried intercept messages in transit between
users and the server, the attacker would only be able to obtain the
TLS-encrypted message object, which is further secured by the ad-
ditional AES encryption which we implemented. If an attacker were

to compromise our database or server, they would get access to the
AES-encrypted message content (shown in Figure 3).

5.2 Deployment
In order for this project to be available for users, E2-Chat was de-
ployed in two separate parts: the React.js frontend and the Node.js
backend. The React.js frontend is compiled using the built in react-
scripts library into a static website. It is then deployed on to GitHub
Pages where the project is viewable to the public. The Node.js back-
end is hosted on Heroku, where it can be accessed by the frontend.
The PostgreSQL database is also hosted on Heroku and is directly
linked to the backend via secrets that rotate continuously to ensure
that this sensitive data is not leaked.

5.3 User Interface
The primary user interface aspects include the login and registration
page, the group chat feed, the message feed and the chat input. The
login and registration page allows users to register for an account
by specifying a unique username and a password. They can reenter
this information to login and view their group chats and messages.
The group chat feed displays a list of group chats in which the user
is a member. Users have the option to create a new group chat,
which generates a pop-up where they can select a name for the
chat and specify usernames of users who they would like to include
as members. The message feed component showcases all of the
messages that have been sent in a particular group. Initially, the
message feed will load 50 messages and, as the user scrolls up to
view older messages, the feed will automatically update with these
newer messages. The chat input consists of simple text input �eld
that allows the users to type message content that they would like
to send to the group. Messages are only sent when the "enter" key is
pressed. All components were built using the open-source Bootstrap
framework to ensure consistency of design.

6 CONCLUSION
In this paper, the design and implementation for E2-Chat, a purely
web-based E2EE messaging service, was outlined. We veri�ed that
the messages sent through E2-Chat were E2EE, and that the basic
functionalities for a messaging service operated correctly. The E2EE
requirement for E2-Chat was validated by verifying that themessage
contents of a user’s messages are encrypted on the server, and

6 • Saiteja Bevara, Ashwin Pathi, Phillip Phan, and Rithik Yelise�y

that plaintext messages are only visible on each end user’s device.
The general messaging functionalities of E2-Chat were veri�ed
by having users sign up and message each other using E2-Chat.
Additionally, a smartphone was not needed to sign up and use
E2-Chat. The completion of this project showcases how a web-
based E2EE messaging service can be successfully designed and
implemented, which would enable individuals that do not own a
smartphone to be able to use an E2EE messaging service. Continued
technological innovations such as E2-Chat are needed to maintain
user privacy in a world where governments and third party actors
are constantly seeking ways to read one’s messages.

7 FUTURE WORK
Future work on E2-Chat will include allowing for various �le trans-
fer, such as media including images, and other �les such as PDF and
text �les. To send �les via E2-Chat, �les will be converted into a
base64 string and uploaded to the web browser. The use of base64
strings will simulate the �le as a text message and will be trans-
mitted to the rest of the group members in the same manner as
normal text-based messages. When these messages are received
by the recipients in the group chat, the messages will be decoded
using the group’s key and then will be decoded from base64 into the
appropriate �le format. The decrypted �le can then be downloaded
by all of the users in the group to view.
Improvement can also be made to the user interface. Currently,

new messages which are received cause the window to refresh the
frame, �rst displaying the top of the feed and simulating the actual
scroll to the bottom to display the new message. However, this
can be inconvenient as every new message will cause this action,
and viewing older messages during new message retrieval will also
execute this action. During testing, feedbackwas also receivedwhich
indicated some preferred the dark theme of the interface, while
others indicated that they would have preferred a light mode theme.
Thus, future work will include a toggle feature to allow users to
seamlessly switch between these two themes.

ACKNOWLEDGMENTS
Thank you to our technical advisors, Professor Yixin Sun and Pro-
fessor Madhur Behl, for assistance throughout this project.

REFERENCES
[1] Brooke Auxier, Lee Rainie, Monica Anderson, Andrew Perrin, Madhu Kumar,

and Erica Turner. 2019. Americans and Privacy: Concerned, Confused and
Feeling Lack of Control Over Their Personal Information. Retrieved Nov. 8,
2020 from https://www.pewresearch.org/internet/2019/11/15/americans-and-
privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-
information/

[2] Andy Greenberg. 2020. Americans and Privacy: Concerned, Confused and Feeling
Lack of Control Over Their Personal Information. Retrieved Nov. 8, 2020 from https:
//www.wired.com/story/facebook-messenger-end-to-end-encryption-default/

[3] Business Insider. 2016. Apple is taking on Facebook with an iMessage app store.
Retrieved Nov. 8, 2020 from https://www.businessinsider.com/apple-is-taking-
on-facebook-with-an-imessage-app-store-2016-9

[4] Dong-Cheol Jeon, LIUHAOYANG, and Heejoung Hwang. 2019. Design of Hybrid
Application Based on GraphQL for E�cient Query for PHR. 2019 International
Conference on Information and Communication Technology Convergence 50, 1 (oct
2019). https://doi.org/10.1109/ICTC46691.2019.8940003

[5] Greg Kumparak. 2014. Apple Explains Exactly How Secure iMessage Really
Is. Retrieved Nov. 8, 2020 from https://social.techcrunch.com/2014/02/27/apple-
explains-exactly-how-secure-imessage-really-is/

[6] Kristina Libby. 2019. How SMS Works—and Why You Shouldn’t Use It Anymore.
Retrieved Nov. 8, 2020 from https://www.popularmechanics.com/technology/
security/a29789903/what-is-sms/

[7] Punita Meelu and Rajni Meelu. 2012. Implementation of Public Key Cryptographic
System: RSA. International Journal of Information Technology and Knowledge
Management 5, 2 (Dec. 2012), 239–242.

[8] Jon Porter. 2020. WhatsApp now has 2 billion users. Retrieved Nov. 8,
2020 from https://www.theverge.com/2020/2/12/21134652/whatsapp-2-billion-
monthly-active-users-encryption-facebook

[9] Rebecca J. Rosen. 2011. How Your Private Emails Can Be Used Against You in Court.
Retrieved Nov. 8, 2020 from https://www.theatlantic.com/technology/archive/
2011/07/how-your-private-emails-can-be-used-against-you-in-court/241505/

[10] Laura Silver. 2019. Smartphone Ownership Is Growing Rapidly Around
the World, but Not Always Equally. Retrieved Nov. 8, 2020 from
https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-
is-growing-rapidly-around-the-world-but-not-always-equally/

[11] WhatsApp. 2016. WhatsApp Encryption Overview. Retrieved Nov. 8, 2020 from
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

