




Abstract

Learning is a predominant theme for any intelligent system, humans, or machines. Moving beyond the classical
paradigm of learning from past experiences, e.g., offline supervised learning from given labels, an intelligent
learner needs to actively collect human feedback to learn from the unknowns, i.e., learning through exploration.
The growing need for interactive intelligent systems in practice, such as recommender systems, smart homes,
conversational systems and self-driving cars, urges the research in the learning by exploration paradigm.
The thesis focuses on this key ingredient in interactive online learning problems, with the goal of designing
algorithms that efficiently interact with and learn from human feedback in real-world environments.

There are several challenges in realizing this goal, including 1) huge exploration space, which is due to
the large number of candidate actions and agents (users) and is typical in a practical recommender system;
2)missing information, where informative information regarding the actions, users and the environments may
be unavailable to the intelligent system; and 3) privacy and security concerns, which requires a trade-off
between the intelligent system’s efficiency and its privacy and security guarantee. The key insight to overcome
the challenges is that the information advantage, i.e., leveraging additional information regarding the structure
of the problem such as social connectivity and context structure, offers a unique opportunity to develop
advanced intelligent systems.

Based on this insight, we develop efficient and trustful interactive online learning systems in this thesis
from three perspectives: 1) sample efficient online learning with explicit structural information; 2) efficient
exploration in implicitly structured environments; and 3) privacy and security in online learning. Our study
provides a deep and thorough understanding of the benefit of leveraging structural information as an advantage
and extend the application of bandit learning algorithms to practical scenarios. Rigorous theoretical analysis
and extensive empirical evaluation validated the approaches’ applicability in various contexts and applications.
By harnessing the power of information in exploration, the proposed research has been applied to high-impact
real-world problems such as interactive recommendation [1,2], search result ranking [3,4], and social influence
maximization [5].
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Chapter 1

Introduction

Satisfying users with various personalized needs is one of the core missions of many intelligent systems.
Machine learning methods are increasingly being used to help with the decision-making process involved in
this mission of intelligent systems, such as recommender systems, smart homes, conversational systems and
self-driving cars. Currently, most of the machine learning methods used in intelligent systems work by first
collecting data and then training a fixed model for future predictions. They can provide meaningful predictions
by leveraging information demonstrated in the observed data. Moving beyond the classical paradigm of
learning from past experiences, an intelligent learner needs to actively collect human feedback to learn from
the unknowns, i.e., learning through exploration. The growing needs of interactive intelligent systems urge the
research in the learning by exploration paradigm.

The learning by exploration paradigm is the key ingredient in many interactive online learning problems,
including the multi-armed bandits and reinforcement learning problems. Multi-armed bandit (MAB) algorithms
[6–9] provide a principled solution for handling the explore-exploit dilemma. Intuitively, multi-armed bandit
algorithms consider different decisions as arms and their main design principle is to designate a small amount
of traffic to collect feedback from the environment while improving their estimation qualities on different arms
in real time. With the available side information about users or items to be presented, contextual bandits have
become a reference solution [10–13]. Specifically, contextual bandits assume the expected payoff is determined
by a conjecture of unknown bandit parameters and given context, which is represented as a set of features
extracted from both users and recommendation candidates. Such algorithms are especially advantageous when
the space of recommendation is large but the payoffs are interrelated. They have been successfully applied in
many important applications, e.g., content recommendation [12, 14] and display advertising [15, 16].

There are many challenges in developing efficient interactive online learning systems with human feedback.
For an intelligent system that interacts with humans, huge exploration space and missing information are
two challenges as the system needs to adapt to users’ idiosyncratic intentions quickly. In the meanwhile,
such systems are also required to ensure privacy, security and robustness, as they collect information from
humans and aid decision making for humans. The key insight and motivation in this dissertation are to leverage
structural information underlying the learning environment to advance the algorithm design, which requires a
fundamental understanding of the role of information in the learning by exploration paradigm. In sophisticated
yet structured real-world environments, explicit and implicit structural information are the key to designing
interactive systems. To tackle the aforementioned challenged, we leverage information advantage to develop
efficient and trustful contextual bandit algorithms from the following aspects: 1) sample efficient exploration
with explicit structural information; 2) efficient online learning in implicitly structured environments; and 3)
privacy and security concerns of bandit learning.

1



1.1 Contribution 2

1.1 Contribution

1.1.1 Efficient Online Learning with Explicit Structural Information
Real-world environments are often complex yet highly structured. For example, social connections reveal
potential similarity and dependency between connected users in a recommender system, and the network
structure reveals assortativity information among users in social influence maximization problems. From
an optimization perspective, the structure of the gradient space allows the optimizer to regularize its path to
quickly achieve the optimal result. Such structural information creates unique opportunities for us to develop
new online learning algorithms with reduced sample complexity, and failing to recognize them will inevitably
lead to a suboptimal solution.

Efficient exploration in collaborative environments. Leveraging the information sharing structure among
learning agents offers the opportunity to reduce uncertainty during exploration and expedite the convergence of
online learning. Based on this insight, We propose collaborative contextual bandit learning solutions [1, 2] for
online recommendation, which utilize the information about users’ social connections for collaborative learning.
Built on a theoretical understanding of this collaborative structure, the propose solutions improve sample
efficiency of every online learning agent in this environment. Our theoretical analysis shows that in a learning
system (e.g., a recommender system) with N users, after T rounds of interactions, the propose algorithm
reduces regret, e.g., makes less mistakes in recommendation, up to the order of O(

√
T logN). This theoretical

improvement is also validated in extensive empirical evaluations: our algorithm improves 6% click-through
rate over 45 millions user visits when applied to the Yahoo front-page news recommendation.

Efficient exploration in gradient space with structural information. Ranking system is a fundamental
component in information retrieval applications such as search engines. To quickly capture users’ information
need and avoid expensive labeling as required in offline supervised learning, online learning to rank directly
learns from implicit user feedback, such as clicks. Formulated as an optimization problem named dueling
bandit gradient descent, conventional solutions all followed a uniform sampling strategy to explore the high-
dimensional gradient space. Such exploration is obviously slow and suffers from a high variance: the regret
is linear to the number of ranking features, which could be tens of thousands in a real-world search engine.
As dueling bandit gradient descent explores in the gradient space, We propose to leverage problem-specific
structures in gradient estimation with user feedback to design new variance reduction techniques for online
exploration [3,4]. The key insight of [4] is that the gradient of a ranking problem belongs to the space spanned
by the feature vectors of users’ examined documents, which is in a much lower dimensional space than the
original feature space. We propose to project the exploratory gradient onto this spanned document space to
reduce variance, and proved it enjoys a significant regret reduction: the regret is now linear to the number
of documents user examined under a single query, which is typically only a couple. This solution can be
generally applied to all existing dueling bandit gradient descent based solutions. We propose to reduce the
exploration space to only the null space of recently poorly performed gradients, to avoid repeatedly exploring
less promising directions in [3], which further accelerates the convergence of online ranker estimation.

1.1.2 Efficient Online Learning in Implicitly Structured Environments
While real-world environments are highly structured, such structural information may not be explicitly available
to the learners in practice. The challenge of learning by exploration in implicitly structured environments
requires new algorithms that can infer necessary information during the online learning process.

Online learning with implicit collaboration structure via factorization. Collaboration structure can be
implicit and unavailable to learning agents in many applications. However, domain knowledge, such as low-
rank structure and network assortativity, in different application scenarios could be leveraged to help regularize
the collaborative effect or structural information in a learning environment. This insight inspires me to design
matrix factorization based bandit algorithms to estimate latent factors and capture the implicit collaborative
effect in a problem-specific low-rank structure. The proposed solutions reduce the sample complexity in
different applications, such as online recommendation [2, 17] and social influence maximization [5].

Incentivized exploration under information gap. The traditional multi-armed bandit [7] research studies the
single-party setting, where the system has a full control over which arm to pull and can trade off exploitation
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and exploration for long-term optimality. However, in many real-world applications, such as recommender
systems and e-commerce platforms, one often faces a two-party game between the system and its users, and
the two parties have different interests. We consider the problem of incentivizing exploration for myopic users
in linear bandits, where the users tend to exploit arm with the highest predicted reward instead of exploring. In
order to maximize the long-term reward, the system offers compensation to incentivize the users to pull the
exploratory arms, with the goal of balancing the trade-off among exploitation, exploration and compensation.
We proposed a new and practically motivated setting where the context features observed by the user are more
informative than those used by the system, e.g., features based on users’ private information are not accessible
by the system. We developed a new compensation strategy under such information gap, and proved that the
method achieves both sublinear regret and sublinear compensation. We theoretical and empirically analyze the
added compensation due to the information gap, compared with the case that the system has access to the same
context features as the user, i.e., without information gap. We also studied the compensation lower bound of
our problem to fully characterize the price of information gap.

1.1.3 Privacy and Security in Bandit Learning
The involvement of humans in such an interactive learning process brings in both new challenges and
opportunities in privacy and security perspectives. It is a prominent requirement for intelligent systems to
be not only supportive, but also secure and protect the privacy when interacting with humans. We utilize the
structural information to balance privacy and utility and understand the security and robustness of the linear
bandit algorithms, aiming to develop interactive systems that are trustworthy to humans.

Improving privacy-utility trade-off in structured environments. Privacy concerns have been repeatedly raised
as a critical issue on machine learning algorithms. Real-world privacy breaches have been reported in Amazon’s
and Facebook’s recommender systems [18, 19], where an adversary extracts private information about a user
solely based on the system’s recommendation sequence. We propose a framework for private collaborative
contextual bandit algorithms [20] under the notion of global and local differential privacy: users’ feedback
cannot be differentiated by an adversary from observing the interaction history. The standard approach to
achieve differential privacy is by injecting noise in each individual’s model to obfuscate the result, at the cost
of poor recommendation quality. Our main idea is to have the system utilize the information advantage, i.e.,
the user-user collaboration structure, to preserve more utilities. Our solution achieves a better privacy-utility
trade-off in the collaborative environment: when the users are more closely related, more utility is preserved.
This research sheds light on the study of understanding the optimal balance between privacy and utility in an
interactive recommender system given structural information.

Data poisoning attack on linear bandits. Are bandit algorithms vulnerable to data poisoning attacks? Recent
research [21, 22] provide an affirmative answer showing that an adversary can force a non-contextual bandit
algorithm to pull a target (suboptimal) arm linear times only using logarithmic costs. However, it is unclear
whether linear stochastic bandits is attackable in general. Our study shows that the attackability of linear
bandits is determined by the structure of the context features. Based on this insight, we proposed an efficient
data poisoning attack method to manipulate the behaviour of a linear bandit algorithm when the environment
is vulnerable, and showed that the difficulty in attacking a linear bandit algorithm is related to the geometry of
the context. Understanding the attackability of bandit algorithms offers insights to design more robust online
learning methods, and is an important step toward trustworthy interactive systems.

1.2 Dissertation Structure
The rest of this thesis is organized as follows. In Chapter 2, we describe the solutions of leveraging explicit
structural information for sample efficient exploration. We propose collaborative linear bandits which utilize
social influence in recommender systems and document space projection for online learning to rank in the
chapter. In Chapter 3, we study learning by exploration in implicitly structured environments. We propose
methods that recover latent factors in a low-rank environment and discuss how to incentivize myopic users to
explore with less information. In Chapter 4, we consider privacy and security aspects of bandit learning. We
equip our collaborative linear bandit algorithms with global and local differential privacy guarantees. We also
show the potential vulnerability of linear bandits to data poisoning attacks. In Chapter 5, we conclude this
dissertation and discuss future research directions.



Chapter 2

Sample Efficient Exploration with
Explicit Structural Information

Real-world environments are often complex yet highly structured. For example, social connections reveal
potential similarity and dependency between connected users in a recommender system. From an optimization
perspective, the structure of the gradient space allows the optimizer to regularize its path to quickly achieve the
optimal result. Such structural information creates unique opportunities for us to develop new online learning
algorithms with reduced sample complexity. In this chapter, we first present our work on collaborative linear
bandits for recommender system which leverage user dependency structure observed from social networks.
The sample complexity is reduced according to the structure of the user connectivity. We then introduce
document space projection for dueling bandit based online learning to rank, where we identify the low-rank
gradient space of the ranking problem and design efficient algorithms that only explore in the reduced gradient
space.

2.1 Exploration in Collaborative Environments
In this work, we develop a collaborative contextual bandit algorithm that explicitly models the underlying
dependency among users. In our solution, a weighted adjacency graph is constructed, where each node
represents a contextual bandit deployed for a single user and the weight on each edge indicates the influence
between a pair of users. Based on this dependency structure, the observed payoffs on each user are assumed to
be determined by a mixture of neighboring users in the graph. We then estimate the bandit parameters over all
the users in a collaborative manner: both context and received payoffs from one user are propagated across
the whole graph in the process of online updating. The proposed collaborative bandit algorithm establishes a
bridge to share information among heterogeneous users and thus reduce the sample complexity of preference
learning. We rigorously prove that our collaborative bandit algorithm achieves a remarkable reduction of upper
regret bound with high probability, comparing to the linear regret with respect to the number of users if one
simply runs independent bandits on them. Extensive experiment results on both simulations and large-scale
real-world datasets verified the improvement of the proposed algorithm compared with several state-of-the-art
contextual bandit algorithms. In particular, our algorithm greatly alleviates the cold-start challenge, in which
encouraging performance improvement is achieved on new users and new items.

2.1.1 Related Work
The idea of modeling dependency among bandits has been explored in prior research [11, 23–26]. Studies
in [27, 28] explore contextual bandits with assumptions about metric or probabilistic dependencies on the
product space of context and actions. Hybrid-LinUCB [12] is such an instance, which uses a hybrid linear
model to share observations across users. Social network structures are explored in bandit algorithms for
introducing possible dependencies [24, 25]. In [23], parallel context-free K-armed bandits are coupled by the
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2.1 Exploration in Collaborative Environments 5

social network structure among the users, where the observed payoffs from neighboring nodes are shared as
side-observations to help estimate individual bandits. Besides utilizing existing social networks for modeling
relatedness among bandits, there is also work automatically estimates the bandit parameters together with the
dependency relation among them, such as clustering the bandits via the learned model parameters during online
updating [25]. Some recent work incorporates collaboration among bandits via matrix factorization based
collaborative filtering techniques: Kawale et al. preformed online matrix factorization based recommendation
via Thompson sampling [29], and Zhao et al. studied interactive collaborative filtering via probabilistic matrix
factorization [30]. GOB.Lin [11] requires connected users in a network to have similar bandit parameters via
a graph Laplacian based model regularization. As a result, GOB.Lin explicitly requires the learned bandit
parameters across related users to be close to each other.

2.1.2 Problem Formulation
In a multi-armed bandit problem, a learner takes turns to interact with the environment with a goal of
maximizing its accumulated reward collected from the environment over time T . At round t, the learner makes
a choice at among a finite, but possibly large, number of arms, i.e., at ∈ A = {a1, a2, . . . , aK}, and gets
the corresponding reward rat . In the contextual bandit setting, each arm a is associated with a feature vector
xa ∈ Rd (‖xa‖2 ≤ 1 without loss of generality) summarizing the side-information about it at a particular time
point. The reward of each arm is usually assumed to be governed by a conjecture of unknown bandit parameter
θ ∈ Rd (‖θ‖2 ≤ 1 without loss of generality), which characterizes the environment. This can be specified
by a reward mapping function, say fθ: rat = fθ(xat). The learner’s goal of maximizing the accumulated
reward can also be equivalently considered as minimizing the accumulated regret with respect to the oracle
arm selection strategy. In particular, the accumulated T -trial regret is defined formally as,

R(T ) =

T∑
t=1

Rt =

T∑
t=1

(E[ra∗t ]− E[rat ]) (2.1)

where a∗t = arg maxa E[ra,t] is the best arm to display at trial t according to the oracle strategy, ra∗t is the
corresponding optimal reward, and Rt := E[ra∗t ]− E[rat ] is the regret at trial t.

In standard linear contextual bandit problems, the payoffs of each arm with respect to different users are
assumed to be governed by a noisy version of an unknown linear function of the context vectors [10, 12].
Specifically, each user ui is assumed to associate with an unknown parameter θi ∈ Rd (with ‖θi‖ ≤ 1), which
determines the payoff of at by rat,i = xT

at,i
θi + εt, where the random variable εt is drawn from a Guassian

distribution N(0, σ2). θs are independently estimated based on the observations from each individual user.
However, due to the existence of mutual influence among users, an isolated bandit can hardly explain all the
observed payoffs even for a single user. For example, the context vectors fail to encode such dependency.
To capitalize on the additional information embedded in the dependency structure among users (i.e., θ for
different users), we propose to study contextual bandit problems in a collaborative setting.

In this collaborative environment, we place the bandit algorithms on a weighted graph G = (V,E), which
encodes the affinity relationship among users. Specifically, each node vi ∈ {V1, ..., VN} in G hosts a bandit
parameterized by θi for user i; and the edges in E represent the affinity relation over pairs of users. This
graph can be described as an N ×N stochastic matrix W. In this matrix, each element wij is nonnegative and
proportional to the influence that user i has on user j in determining the payoffs of different arms. wij = 0 if
and only if user i has no influence on user j. W is normalized such that

∑N
i=1 wij = 1 for j ∈ {1, ...., N}

(the sum of each column is 1). In this work, we assume W is time-invariant and known to the learner
beforehand.

Based on the graph G, collaboration among bandits happens when determining the payoff of a particular
arm with respect to a given user. To denote this, we define a d×N matrix Θ, which consists of parameters
from all the bandits in the graph: Θ = (θ1, . . . ,θN ). Accordingly, we define a context feature matrix
Xt = (xat,1 , . . . ,xat,N ), where the ith column is the context vector xat,i for arm a at trial t selected for user
i. The collaboration among bandits characterized by the influence matrix W results in a new bandit parameter
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Algorithm 1 Collaborative li2010contextual

1: Inputs: α ∈ R+,λ ∈ [0, 1], W ∈ RN×N
2: Initialize: A1 ← λI, b1 ← 0, ϑ̂1 ← A−1

1 b1,C1 ← (WT ⊗ I)A−1
1 (W ⊗ I),

3: for t = 1 to T do
4: Receive user ut
5: Observe context vectors, xat,ut

∈ Rd for ∀a ∈ A
6: Take action at = arg maxa∈A X̊T

at,ut
Vec(Θ̂tW) + α

√
X̊T
at,ut

CtX̊at,ut

7: Observe payoff rat,ut

8: At+1 ← At + Vec(X̊at,ut
WT)Vec(X̊at,ut

WT)T

9: bt+1 ← bt + Vec(X̊at,ut
WT)rat,ut

10: Ct+1 ← (WT ⊗ I)A−1
t+1(W ⊗ I)

11: ϑ̂t+1 ← A−1
t+1bt+1

matrix Θ̄ = ΘW, which determines the payoff rat,ut
of arm at for user ut at trial t by,

rat,ut
− diagt(XT

t ΘW) ∼ N(0, σ2) (2.2)

where diagt(X) is the operation returning the t-th element in the diagonal of matrix X.

Eq (2.2) postulates our additive assumption about reward generation in this collaborative environment: the
reward rat,ut

is not only determined by user ut’s own preference on the arm at (i.e., wutut
xT
at,ut

θut
), but also

by the judgements from the neighbors who have influence on ut (i.e.,
∑
j 6=ut

wutjx
T
at,jθj). This enables us to

distinguish a user’s intrinsic preference of the recommended content from his/her neighbors’ influence, i.e.,
personalization. In addition, the linear payoff assumption in our model is to simplify the discussion in this
work; and it can be relaxed via a generalized linear model [13] to deal with nonlinear rewards.

We should note that our model assumption about the collaborative bandits is different from that specified in the
GOB.Lin model [11]. In GOB.Lin, connected users in the graph are required to have similar underlying bandit
parameters, i.e., via graph Laplacian regularization over the learned bandit parameters. And their assumption
about reward generation follows conventional contextual bandit settings, i.e., rewards are independent across
users. In our setting, neighboring users do not have to share similar bandit parameters, but they will generate
influence on their neighbors’ decisions. This assumption is arguably more general, and it leads to an improved
upper regret bound and practical performance. Theoretical comparison between these two algorithms will be
rigorously discussed in Section 3.1.3.

2.1.3 Collaborative Linear Bandit Algorithm
To simplify the notations in our following discussions, we define two long context feature vectors and
a long bandit parameter vector based on the vectorize operation Vec(·). We define Xat = Vec(Xat) =
(xT
at,1 , . . . ,x

T
at,N )T, which is a concatenation of context feature vectors of the chosen arm at at trial t for

all the users. And we define X̊at,ut
= Vec(X̊at,ut

) , in which X̊at,ut
is a special case of Xat : only the

column corresponding to the user ut at time t is set to xT
at,ut

, and all the other columns are set to zero. This
corresponds to the situation that at trial t the learner only needs to interact with one user. Correspondingly, we
define ϑ = Vec(Θ) = (θT1 ,θ

T
2 , ...,θ

T
N )T ∈ RdN as the concatenation of bandit parameter vectors over all the

users.

With the collaborative assumption about the expected payoffs defined in Eq (2.2), we appeal to ridge regression
for estimating the unknown bandit parameter θ for each user. In particular, we simultaneously estimate the
global bandit parameter matrix Θ for all the users as follows,

Θ̂ = arg min
Θ

1

2

T∑
t=1

(X̊T
at,ut

Vec(ΘtW)− rat,ut
)2 +

λ

2
tr(ΘTΘ) (2.3)
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where λ ∈ [0, 1] is a trade-off parameter of L2 regularization in ridge regression.

Since the objective function defined in Eq (2.3) is quadratic with respect to Θ, we have a closed-form
estimation of Θ as ϑ̂t = A−1

t bt, in which ϑ̂ = Vec(Θ̂) and At and bt are computed as,

At =λI +

t∑
t′=1

Vec(X̊at′ ,ut′W
T)Vec(X̊at′ ,ut′W

T)T (2.4)

bt =

t∑
t′=1

Vec(X̊at′ ,ut′W
T)rat′ ,ut′ (2.5)

where I is a dN × dN identity matrix.

The effect of collaboration among bandits is clearly depicted in the above estimation of Θ. Matrix At and
vector bt store global information shared among all the bandits in the graph. More specifically, the context
vector xat,ut

and payoff rat,ut
observed in user ut at trial t are propagated through the whole graph via the

relational matrix W. To understand this, note that Vec(X̊at,ut
WT) is a dense vector with projected context

vectors on every user, while the original X̊at,ut is a sparse vector with observations only at active users ut.
Because of this information sharing, at certain trial t, although some users might generate any observation yet
(i.e., cold-start), they can already start from a non-random initialization of their bandit parameters θi. It is easy
to verify that when W is an identity matrix, i.e., users have no influence among each other, the estimation of
Θ degenerates to independently computing N different θs (since Vec(X̊at,ut

WT) = X̊at,ut
). And the mutual

influence will be maximized when W is a uniform matrix, i.e., all the users have equivalent influence to each
other. We have to emphasize that the benefit of this collaborative estimation of Θ is not to just simply compute
the θs in an integrated manner; but because of the collaboration among users, the estimation uncertainty of all
θs can be quickly reduced comparing to simply running N independent bandit algorithms. This in turn leads
to an improved regret bound. We will elaborate the effect of collaboration in online bandit learning with more
theoretical justifications in Section 3.1.3.

The estimated bandit parameters Θ̂ predict the expected payoff of a particular arm for each user according
to the observed context feature matrix Xt. To complete an adaptive bandit algorithm, we need to design the
exploration strategy for each user. Our collaborative assumption in Eq (2.2) implies that rat,ut

across users are
independent given Xt and W. As a result, for any σ, i.e., the standard deviation of Gaussian noise in Eq (2.2),
the following inequality holds with probability at least 1− δ,

|ra∗t ,ut
− rat,ut

| ≤ αt
√

Vec(X̊ut
WT)TA−1

t Vec(X̊ut
WT) (2.6)

where αt is a parameter in our algorithm defined in Lemma 1 of Section 3.1.3 and δ is embedded in the
computation of αt. The proof of this inequality can be found in the Appendix.

The inequality in Eq (2.6) gives us a reasonably tight upper confidence bound (UCB) for the expected payoff
of a particular arm over all users in the graph G, from which a UCB-style action-selection strategy can be
derived. In particular, at trial t, we choose an arm for user ut by,

at,ut = arg max
a∈A

(
X̊T
at,ut

Vec(Θ̂tW) + αt

√
Vec(X̊utW

T)TA−1
t Vec(X̊utW

T)
)

(2.7)

We name this resulting algorithm as Collaborative Linear Bandit, or CoLin in short. The detailed description
of CoLin is illustrated in Algorithm 1, where we use the property that Vec(X̊utW

T) = (W ⊗ I)Vec(X̊ut)

= (W ⊗ I)X̊t to simplify Eq (2.7).

Another evidence of the benefit from collaboration among users is demonstrated in Algorithm 1. When
estimating the confidence interval of the expected payoff for action at in user ut at trial t, CoLin not only
considers the prediction confidence from bandit ut, but also that from its neighboring bandits (as described by
the Kronecker product between W and I). When W is an identity matrix, such effect disappears. Clearly, this
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collaborative confidence interval estimation will help the algorithm quickly reduce estimation uncertainty, and
thus leads to the optimal solution more rapidly.

One potential issue with CoLin is its computational complexity: matrix inverse has to be performed on At at
every trial. First, because of the rank one update of matrix At (8th step in Algorithm 1), quadratic computation
complexity is possible via applying the Sherman-Morrison formula. Second, we may compute A−1

t in a
mini-batch manner to further reduce computation with some extra penalty in regret. We will leave this as our
future research.

2.1.4 Regret Analysis
In this section, we provide detailed regret analysis of our proposed CoLin algorithm. We first prove that the
estimation error of bandit parameters Θ̂ is upper bounded in Lemma 1.

Lemma 1. For any δ > 0, with probability at least 1− δ, the estimation error of bandit parameters in CoLin
is bounded by,

‖ϑ̂t − ϑ∗‖At
≤

√
dN ln

(
1+

∑t
t′=1

∑N
j=1 w

2
ut′ j

λdN

)
−2 ln(δ) +

√
λ‖ϑ∗‖

in which ‖ϑ̂t−ϑ∗‖At
=

√
(ϑ̂t − ϑ∗)TAt(ϑ̂t − ϑ∗), i.e., the matrix norm induced by the positive semidefinite

matrix At.

Based on Lemma 1, we have the following theorem about the regret upper bound of the CoLin algo-
rithm.

Theorem 1. With probability at least 1− δ, the accumulated regret of CoLin algorithm satisfies,

R(T ) ≤ 2αT

√
2dNT ln

(
1 +

∑T
t=1

∑N
j=1 w

2
utj

λdN

)
(2.8)

in which αT is the upper bound of ‖ϑ̂T − ϑ∗‖AT
and it can be explicitly calculated based on Lemma 1.

The detailed proof of this theorem is provided in the Appendix.

As shown in Theorem 1, the graph structure plays an important role in the upper regret bound of our CoLin
algorithm. Consider two extreme cases. First, when W is an identity matrix, i.e., no influence among users,
the upper regret bound degenerates to O(N

√
T ln T

N ). Second, when the graph is fully connected and uniform,
i.e., ∀i, j, wij = 1

N , such that users have homogeneous influence among each other, and the upper regret
bound of CoLin decreases to O(N

√
T ln T

N2 ). That means via collaboration, CoLin achieves an O(
√
T lnN)

regret reduction for every single user in the graph comparing to the independent case.

Note that the our regret analysis in Theorem 1 is in a very general form, in which we did not make any
assumption about the order or frequency that each user will be served. To illustrate the relationship between
the proposed collaborative bandit algorithm and conventional independent bandit algorithms in a more
intuitive way, we can make a very specific assumption about how a sequential learner interacts with a set of
users. Assuming all the users are evenly served by CoLin, i.e., each user interacts with the learner T̄ = T

N
times. When W is an identity matrix, the regret bound of CoLin degenerates to the case of running N
independent li2010contextual, whose upper regret bound is O(N

√
T̄ ln T̄ ). When W is uniform, the regret

bound reduces to O(N
√
T̄ ln T̄

N ), where we achieves an O(
√
T̄ lnN) regret reduction comparing to running

N independent li2010contextuals on each single user. The proof of regret bound in this special case is given in
the Appendix.

It is necessary to compare the derived upper regret bound of CoLin with that in the GOB.Lin algorithm [11],
which also exploits the relatedness among a set of users. In GOB.Lin, the divergence among every pair of
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bandits (if connected in the graph) is measured by Euclidean distance between the learned bandit parameters.
In its upper regret bound, such divergence is accumulated throughout the iterations. In extreme case where
users are all connected but associate with totally distinct bandit parameters, GOB.Lin’s upper regret bound
could be much worse than running N independent bandits, due to this additive pairwise divergence. While
in our algorithm, such divergence is controlled by the multiplicative factor

∑T
t=1

∑
j w

2
utj
≤ T . We can

rigorously prove the following inequalities between the upper regret bound of CoLin (RC(T )) and GOB.Lin
(RG(T )) always holds,

0 ≤ R2
G(T )−R2

C(T ) ≤ 16TN ln(1 +
2T

dN2
)
∑

(i,j)∈E

‖θ∗i − θ∗j ‖2

It is clear to notice that if there is no influence between the users in the collection, i.e., no edge in G, these two
algorithms’ regret bound touches (both degenerate to N independent contextual bandits). Otherwise, GOB.Lin
will always lead to a worse and faster growing regret bound than our CoLin algorithm.

In addition, limited by the use of graph Laplacian, GOB.Lin can only capture the binary connectivity relation
among users. CoLin differentiates the strength of connections with a stochastic relational graph. This makes
CoLin more general when modeling the relatedness among bandits and provides a tighter upper regret bound.
This effect is also empirically verified by our experiments on both synthetic and real-world datasets.

2.1.5 Experiments
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Figure 2.1: Analysis of regret, bandit parameter estimation and parameter tuning.

We performed empirical evaluations of our CoLin algorithm against several state-of-the-art contextual bandit
algorithms, including N independent li2010contextual [12], hybrid li2010contextual with user features [12],
GOB.Lin [11], and online cluster of Bandits (CLUB) [25]. Among these algorithms, hybrid li2010contextual
exploits user dependency via a set of hybrid linear models over user features, GOB.Lin encodes the user
dependency via graph-based regularization over the learned bandit parameters, and CLUB clusters users
during online learning to enable model sharing. In addition, we also compared with several popularly used
context-free bandit algorithms, including EXP3 [9], auer2002finite [8] and ε-greedy [8]. But their performance
is much worse than the contextual bandits, and thus we do not include their performance in the following
discussions.

We tested all the algorithms on a synthetic dataset via simulations, a large collection of click stream from
Yahoo! Today Module dataset [12], and two real-world dataset extracted from the social bookmarking web
service Delicious and music streaming service LastFM [11]. Extensive experiment comparisons confirmed
the advantage of our proposed CoLin algorithm against all the baselines. More importantly, comparing to
the baselines that also exploit user dependencies, CoLin performs significantly better in identifying users’
preference on less popular items (items that are only observed among a small group of users). This validates
that with the proposed collaborative learning among users, CoLin better alleviates the cold-start challenge
comparing to the baselines.

Experiments on synthetic dataset

In this experiment, we compare the bandit algorithms based on simulations and use the accumulated regret and
bandit parameter estimation accuracy as the performance metrics.
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Simulation Setting. In simulation, we generate N users, each of which is associated with a d-dimensional
parameter vector θ∗, i.e., Θ∗ = (θ∗1 , . . . ,θ

∗
N ). Each dimension of θ∗i is drawn from a uniform distribution

U(0, 1) and normalized to ‖θ∗i ‖ = 1. Θ∗ is treated as the ground-truth bandit parameters for reward generation,
and they are unknown to bandit algorithms. We then construct the golden relational stochastic matrix W for
the graph of users by defining wij ∝ 〈θ∗i ,θ∗j 〉, and normalize each column of W by its L1 norm. The resulting
W is disclosed to the bandit algorithms. In the end, we generate a size-K action pool A. Each action a in A is
associated with a d-dimensional feature vector xa, each dimension of which is drawn from U(0, 1). We also
normalize xa by its L1 norm. To construct user features for hybrid li2010contextual algorithm, we perform
Principle Component Analysis (PCA) on the relational matrix W, and use the first 5 principle components to
construct the user features.

To simulate the collaborative reward generation process among users, we first compute Θ̄∗ = Θ∗W and then
compute the payoff of action a for user i at trial t as rat,i = diagi(X

T
t Θ̄∗) + εt, where εt ∼ N(0, σ2). To

increase the learning complexity, at each trial t, our simulator only discloses a subset of actions in A to the
learning algorithms for selection, e.g., randomly select 10 actions from A without replacement. In simulation,
based on the known bandit parameters Θ̄∗, the optimal action a∗t,i and the corresponding payoff ra∗t,i for each
bandit i at trial t can be explicitly computed.

Under this simulation setting, we compared hybrid li2010contextual, N independent li2010contextual,
GOB.Lin, CLUB and our CoLin algorithm. In particular, at each trial t, the same set of actions are pre-
sented to all the algorithms; and the Gaussian noise εt is fixed for all those actions at trial t. In our experiments,
we fixed the feature dimension d to 5, article pool size K to 1000, and set the trade-off parameter λ for L2
regularization to 0.2 in all the algorithms. We compared the regret of different bandit algorithms during
adaptive learning. Furthermore, since we have the ground-truth bandit parameters available in the simulator,
we also compared the quality of learned parameters in each contextual bandit algorithms. This unveils the
nature of each bandit algorithm, e.g., how accurately they can recover a user’s true preference.

Results & Analysis. We first set the user size N to 100 and fix the standard deviation σ to 0.1 in the Gaussian
noise for reward generation. All the contextual bandit algorithms are executed up to 300 iterations per user
in this experiment. We report the accumulated regret as defined in Eq (2.1) and the Euclidean distance
between the learnt bandit parameters from different algorithms and the ground-truth in Figure 2.1. To reduce
randomness in simulation-based evaluation, we reported the mean and standard deviation of final regret from
different algorithms after 30,000 iterations over 5 independent runs for results in all following experiments. To
increase visibility, we did not plot error bars in Figure 2.1 (a) and (b).

As we can find in Figure 2.1 (a), simply running N independent li2010contextual algorithm gives us the worst
regret, which is expected. Hybrid li2010contextual, which exploits user dependency via a set of hybrid linear
models over user features performed better than li2010contextual, but still much worse than CoLin. Although
GOB.Lin also exploits the graph structure when estimating the bandit parameters, its assumption about the
dependency among bandits is too restrictive to well capture the information embedded in the interaction with
users. We should note that in our simulation, by multiplying the relational matrix W with the ground-truth
bandit parameter matrix Θ∗, the resulting bandit parameters Θ̄∗ align with GOB.Lin’s assumption, i.e.,
neighboring bandits are similar. And Θ̄∗ is used in reward generation. Therefore, our simulation does not
produce any bias against GOB.Lin. In Figure 2.1 (a) we did not include CLUB, whose regret grew linearly.
After looking into the selected arms from CLUB, we found because of the aggregated decisions from users
in the automatically constructed user clusters, CLUB always chose suboptimal arms, which led to a linearly
increasing regret.

In Figure 2.1 (b), we compared accuracy of the learnt bandit parameters from different algorithms. Because of
their distinct modeling assumptions, li2010contextual, hybrid li2010contextual, CLUB and GOB.Lin cannot
directly estimate Θ∗, i.e., the true bandit parameters for each user. Instead, they can only estimate Θ̄∗, which
directly governs the generation of observed payoffs. Only CoLin can estimate both Θ̄∗ and Θ∗. As we can find
in the results, CoLin gave the most accurate estimation of Θ̄∗, which partially explains its superior performance
in regret. We also find that li2010contextual actually achieved a more accurate estimation of Θ̄∗ than GOB.Lin,
but its regret is much worse. To understand this, we looked into the actual execution of li2010contextual
and GOB.Lin, and found that because of the graph Laplacian regularization in GOB.Lin, it better controlled
exploration in arm selection and therefore picked the optimal arm more often than li2010contextual. Hyrbid
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Table 2.1: Accumulated regret with different bandit size (σ=0.1).

Bandit Size (N ) 40 80 100 200
li2010contextual 75.31±5.11 168.42±9.90 191.53±6.18 355.56±7.23

Hybridli2010contextual 59.12±2.11 150.09±5.29 164.11±9.19 311.43±11.59
GOB.Lin 58.49±5.04 143.42±5.28 141.96±6.36 275.32±10.51

CoLin 21.78± 12.84 47.73±4.31 49.83±6.55 77.38±20.59
Table 2.2: Accumulated regret with different noise level (N=100).

Noise (σ) 0.01 0.05 0.1 0.3
li2010contextual 92.72±2.56 116.53±3.07 191.53 ±6.18 830.47±69.48

Hybridli2010contextual 69.47±2.12 91.48±1.94 164.11±9.19 759.93±39.15
GOB.Lin 58.85±6.25 82.33±1.53 141.96±6.36 708.13±43.73

CoLin 41.69±6.95 40.95±4.43 49.83±6.55 83.98±8.57
Table 2.3: Accumulated regret with different noise level on matrix W (N=100).

matrix noise (δ) 0 0.01 0.03 0.05
Hybridli2010contextual 164.11±9.19 171.74±7.67 171.51±13.31 163.93±9.19

GOB.Lin 141.96±6.36 163.28±5.63 164.36±6.66 169.87±11.89
CoLin 49.83±6.55 54.42±2.45 101.39±6.01 239.88±13.86

Table 2.4: Accumulated regret with different matrix sparsity level.

Sparsity (M/N ) 20/100 40/100 60/100 80/100
Hybridli2010contextual 135.98±5.11 141.15±4.82 150.49±4.58 160.12±7.55

GOB.Lin 133.30±3.98 126.13±5.59 143.29±6.49 143.42±5.82
CoLin 39.74±8.80 30.76±3.66 37.29±3.55 49.56±8.88

li2010contextual’s estimation of Θ̄∗ is the worst, but it is expected: hybird li2010contextual uses a shared
model and a personalized model to fit the observations. Comparing to CoLin’s estimation quality of Θ̄∗, its
estimation of Θ∗ is much worse. The main reason is that CoLin has to decipher Θ from the estimated Θ̄
based on W, where noise is accumulated to prevent accurate estimation. Nevertheless, this result demonstrates
the possibility of discovering each individual user’s true preference from their compound feedback. This is
meaningful for many practical applications, such as user modeling and social influence analysis. We also
notice that although CLUB’s estimated Θ̄∗ is almost as good as li2010contextual’s (as shown in Figure 2.1 (b)),
its regret is the worst. As we described earlier, CLUB’s aggregated decision at user cluster level constantly
forced the algorithm to choose sub-optimal arms; but the reward generation for each arm in our simulator
follows that defined in Eq (2.2), which still provides validate information for CLUB to estimate Θ̄∗ with
reasonable accuracy.

In Figure 2.1 (c), we investigated the effect of exploration parameter αt’s setting in different algorithms. The
last column indexed by αt represented the theoretical values of α computed from the algorithms’ corresponding
regret analysis. As shown in the results, the empirically tuned α yields comparable performance to the
theoretical values, and makes online computation more efficient. As a result, in all our following experiments
we will use a fixed α instead of a computed αt.

To further investigate the convergence property of different bandit algorithms, we examined the following
four scenarios: 1) various user sizes N , 2) different noise level σ, 3) a corrupted affinity matrix W, and 4)
a sparse affinity matrix W, in reward generation. We report the results in Table 2.1 to 2.4. Because of its
poor performance, we did not include CLUB in those tables. Firstly, in Table 2.1, we fixed the noise level
σ to 0.1 and varied the user size N from 40 to 200. We should note in this experiment the total number of
iterations varies as every user will interact with the bandit learner 300 times. The regret in li2010contextual
goes linearly with respect to the number of users, since no information is shared across them. Via model
sharing, hybrid li2010contextual achieved some regret reduction compared with li2010contextual; but its
regret still increases linearly with the number of users. Compared with the independent bandits, we can clearly
observe the regret reduction in CoLin with increasing number of users. As we discussed in Section 3.1.3,
although GOB.Lin exploits the dependency among users, its regret might be even worse than running N
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independent li2010contextuals, especially when the divergence between users is large. Secondly, in Table 2.2,
we fixed N to 100 and varied the noise level σ from 0.01 to 0.3. We can notice that CoLin is more robust to
noise in the feedback: its regret grows much slower than all baselines. Our current regret analysis does not
consider the effect of noise in reward, as long as it has a zero mean and finite variance. It would be interesting
to incorporate this factor in regret analysis to provide more insight of collaborative bandit algorithms.

Thirdly, in CoLin, we have assumed the adjacency matrix W is known to the algorithm beforehand. However,
in reality one might not precisely recover this matrix from noisy observations, e.g., via social network analysis.
It is thus important to investigate the robustness of collaborative bandit algorithms to a noisy W. We fixed the
user size N to 100 and corrupted the ground-truth adjacency matrix W: add Gaussian noise N(0, δ) to wij
and normalize the resulting matrix. We refer to this noisy adjacency matrix as W0. The simulator still uses the
true adjacency matrix W to compute the reward of each action for a given user; while the noisy matrix W0

will be provided to the bandit algorithms, i.e., CoLin and GOB.Lin. This newly introduced Gaussian noise is
different from the noise in generating the rewards as described in Eq (2.2).

From the accumulated regret shown in Table 2.3, we can find that under moderate noise level, CoLin performed
much better than GOB.Lin; but CoLin is more sensitive to noise in W than GOB.Lin. Because CoLin utilizes a
weighted adjacency graph to capture the dependency among users, it becomes more sensitive to the estimation
error in W. While in GOB.Lin, because only the graph connectivity is used and the random noise is very
unlikely to change the graph connectivity, its performance is more stable. Further theoretical analysis of
how an inaccurate estimation of W would affect the resulting regret will be an interesting future work yet to
explore.
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Figure 2.2: Normalized reward on three real-world datasets
Finally, the regret analysis of CoLin shows that its upper regret bound is related to the graph structure through
the term

∑T
t=1

∑N
j=1 w

2
utj

and GOB.Lin’s regret bound is related to the graph connectivity [11]. We designed
another set of simulation experiments to verify the effect of graph structure on CoLin and GOB.Lin. In this
experiment, we set the user size N to 100 and controlled the graph sparsity as follows: for each user in graph
G, we only included the edges from his/her top M most influential neighbors (measured by the edge weight in
W) in the adjacency matrix, and normalized the resulting adjacency matrix to a stochastic matrix. No noise is
added to W in this experiment (i.e., δ = 0).

As shown in Table 2.4, the regret of all bandit algorithms increases as W becomes sparser, i.e., less information
can be shared across users. We can observe that the regret of CoLin increases faster than that in GOB.Lin,
since more information becomes unavailable to CoLin. The results empirically verified that CoLin’s regret
bound is directly related to the graph structure described by the term

∑T
t=1

∑N
j=1 w

2
utj

and GOB.Lin’s regret
bound is only related to the graph connectivity.

Experiments on Yahoo! Today Module

In this experiment, we compared our CoLin algorithm with li2010contextual, hybrid li2010contextual,
GOB.Lin and CLUB on a large collection of ten days’ real traffic data from Yahoo! Today Module [12] using
the unbiased offline evaluation protocol proposed in [31].

The dataset contains 45,811,883 user visits to the Today Module in a ten-day period in May 2009. For
each logged event, both the user and each of the 10 candidate articles are associated with a feature vector
of six dimensions (including a constant bias feature), which is constructed by a conjoint analysis with a
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Figure 2.3: Item-based analysis on Delicious and LastFM datasets

bilinear model [12]. However, this dataset does not contain any user identity. This forbids us to associate the
observations with individual users. To address this limitation, we first clustered all users into user groups by
applying K-means algorithm on the given user features. Each observation is assigned to its closest user group.
The weight in the adjacency matrix W is estimated by the dot product between the centroids from K-means’
output, i.e., wij ∝ 〈ui, uj〉. The CoLin and GOB.Lin algorithms are then executed over those identified
user groups. For the li2010contextual baseline, we tested two variants: one is individual li2010contextuals
running over the identified user groups and it is denoted as M-li2010contextual; another one is a uniform
li2010contextual shared by all the users, i.e., it does not distinguish individual users, and thus it is denoted as
Uniform-li2010contextual.

In this experiment, click-through-rate (CTR) was used to evaluate the performance of all bandit algorithms.
An algorithm’s CTR is defined as the number of clicks its recommendations receive divided by the number of
items it recommends, and this is just one way to approximate reward. Average CTR is computed in every 2000
observations (not the accumulated CTR) for each algorithm based on the unbiased offline evaluation protocol
proposed in [12, 31]. Following the same evaluation principle used in [12], we normalized the resulting
CTR from different bandit algorithms by the corresponding logged random strategy’s CTR. We report the
normalized CTR results from different contextual bandit algorithms over 160 derived user groups in Figure
2.2 (a).

CoLin outperformed all baselines on this real-world dataset, except CLUB on the first day. Results from other
user cluster sizes (40 and 80) showed consistent improvement as demonstrated in Figure 2.2 (a) with 160 user
clusters; but due to space limit, we did not include those results. As we can find CLUB achieved the best CTR
on the first day; but as some popular news articles became out-of-date, CLUB cannot correctly recognize their
decreased popularity, and thus provided degenerated recommendations. But in CoLin, because of collaborative
preference learning, it better controlled the exploration-exploitation trade-off and thus timely recognized the
change of items’ popularity. However, one potential limitation of CoLin is its computational complexity:
because the dimension of global statistic matrix At defined in Eq (2.4) is dN ×dN , the running time of CoLin
scales quadratically with the number of users. It makes CoLin less attractive in practical applications where
the size of users is large. One potential solution is to enforce sparsity in the estimated W matrix such that
distributed model update is possible, i.e., only share information within the connected users. The simulation
study in Table 2.4 confirms the feasibility of this direction and we will explore it in our future work.

Experiments on LastFM & Delicious

The LastFM dataset is extracted from the music streaming service Last.fm, and the Delicious dataset is
extracted the social bookmark sharing service website Delicious. These two datasets were generated by the
Information Retrieval group at Universidad Autonomade Madrid for the HetRec 2011 workshop with the goal
of investigating the usage of heterogeneous information in recommendation system1. The LastFM dataset
contains 1,892 users and 17,632 items (artists). We used the information of “listened artists” of each user to
create payoffs for bandit algorithms: if a user listened to an artist at least once, the payoff is 1, otherwise 0.
The Delicious dataset contains 1,861 users and 69,226 items (URLs). We generated the payoffs using the
information about the bookmarked URLs for each user: the payoff is 1 is the user bookmarked a particular

1Datasets and their full description is available at http://grouplens.org/datasets/hetrec-2011
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URL, otherwise 0. Both of these two datasets contain the users’ social network graph, which makes them a
perfect real-world testbed for collaborative bandits.

Following the same settings in [11], we pre-processed these two datasets in order to fit them into the contextual
bandit setting. We first used all tags associated with a single item to create a TF-IDF feature vector, which
uniquely represents the item. Then we used PCA to reduce the dimensionality. In both datasets, we only
retained the first 25 principle components to construct the context vectors, i.e., the feature dimension d = 25.
We generated the candidate arm pool as follows: we fixed the size of candidate arm pool to be K = 25; for
a particular user u, we picked one item from those nonzero payoff items for user u according to the whole
observations in the dataset, and randomly picked the other 24 from those zero-payoff items for user u.

User relation graph is extracted from the social network provided by the datasets. In order to make the graph
denser and make the algorithms computationally feasible, we performed graph-cut to cluster users into M
clusters. Users in the same cluster are assumed to share the same bandit parameters. In our experiments, M
was set to be 50, 100, and 200. Our reported results are from the setting of M = 200, and similar results were
achieved in other settings of M . After user clustering, a weighted graph can be generated: the nodes are the
clusters of nodes in the original graph; and the edges between different clusters are weighted by the number
of inter-cluster edges in the original graph. In CoLin, we also need the diagonal elements in W, which is
undefined in a graph-cut based clustering algorithm. We computed the diagonal elements based on the derived
regret bound of CoLin. Specifically, we first set wij ∝ c(i, j), where c(i, j) is the number of edges between
cluster i and j; then we optimized {wii}Ni=1 which minimizes the term

∑N
i

∑N
j w

2
ij .

We included three variants of li2010contextual, hybrid li2010contextual, GOB.Lin and CLUB as baselines. The
three variants of li2010contextual include: (1) li2010contextual that runs independently on each user, denoted
as N-li2010contextual; (2) li2010contextual that is shared in each user cluster, denoted as M-li2010contextual
(M is the number of clusters); (3) li2010contextual that is shared by all the users, denoted as Uniform-
li2010contextual. Following the setting in [11], GOB.Lin also operates at the user cluster level and it takes the
connectivity among clusters as input. We normalized the accumulated reward in each algorithm by a random
strategy’s accumulated reward, and compute the average accumulated normalized reward in every 50 iterations.
Note that user features required by hybrid li2010contextual are not given in these two datasets. We applied the
same strategy as we used in simulation to generate the user features.

From the results shown in Figure 2.2 (b) and (c), we can find that CoLin outperforms all the baselines on both
Delicious and LastFM datasets. It is worth noting that these two datasets are structurally different, as shown in
Figure 2.3 (a), the popularity of items on these two datasets differs significantly: on LastFM dataset, there are
a lot more popular artists whom everybody listens to than the popular websites which everyone bookmarks on
Delicious dataset. Thus the highly skewed distribution of item popularity makes recommendation on Delicious
dataset much more challenging. Because most of items are only bookmarked by a handful of users, exploiting
the relatedness among users to propagate feedback become vital. While on LastFM since there are much more
popular items that most users would like, most algorithms can easily recognize the quality of items. In order to
better understand this difference, we performed detailed item-level analysis to examine the effectiveness of
different algorithms on items with varied popularity. Specifically, we first ranked all the items in these two
datasets in a descending order of item popularity and then examined the item-based recommendation precision
from all the bandit algorithms, e.g., percentage of item recommendations that are accepted by the users. In
order to better visualize the results, we grouped the ranked items into different batches and report the average
recommendation precision over each batch in Figure 2.3 (b) and Figure 2.3 (c).

From the results about the item-based recommendation precision, we can clearly find that on the LastFM
dataset, CoLin achieved improved performance against all the baselines in every category of items, given the
popularity of items in this dataset is more balanced. On Delicious dataset, CoLin achieved better performance
on the top-ranked items; however, because of the skewness of item popularity, less popular items are still
challenging for all the bandit algorithms to correctly recognize on this dataset.

This analysis motivates us to further analyze the user-level recommendation performance of different bandit
algorithms, especially to understand the effectiveness of collaboration among users in alleviating the cold-start
problem. To quantitatively evaluate this, we first ranked the user clusters in a descending order with respect
to the number of observations in it. We then selected top 50 clusters as group 1. From the bottom 100 user
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Figure 2.4: Effectiveness of collaboration and User-based analysis

clusters, we select 50 of them who are mostly connected to the users in group 1, and refer to them as group 2.
The first group of users is called “learning bucket” and the second group is called “testing bucket.” Based on
this separation of user clusters, we performed two experiments: one is warm-start, and another is cold-start. In
the warm-start setting, we first run all the algorithms on the learning bucket to estimate parameters for both
group of users, such as At and bt in CoLin. However, because users in the second group do not have any
observation in the learning bucket, their model parameters can only be updated via the collaboration among
bandits, i.e., in CoLin and GOBLin. Then with the model parameters estimated from the learning bucket, we
evaluate different algorithms on the deployment bucket. Correspondingly, in the cold-start setting, we directly
run and evaluate the bandit algorithms on the deployment bucket. It is obvious that since li2010contextual
assumes users are independent and there is no information shared among users, li2010contextual’s performance
will not change under warm-start and cold start settings. While in CoLin, GOB.Lin and CLUB, because of the
collaboration among users, information is propagated among users. In this case, user preference information
learned from the learning bucket can be propagated to the deployment bucket.

We reported the performance on the first 10% observations in the deployment bucket instead of the whole
observations, in order to better simulate the cold-start situation (i.e., all the algorithms do not have sufficient
observations to confidently estimate model parameters). In Figure 2.4 (a) and (b), we reported the gap of
accumulated rewards from CoLin GOB.Lin, and CLUB between warm-start and cold-start, normalized by
rewards obtained from li2010contextual. From Figure 2.4(a) we can notice that on Delicious dataset, although
at the very beginning of the warm-start setting both GOBLin and CoLin performed worse than the cold-start
setting, both algorithms in warm-start quickly improved and outperformed the cold-start setting. One possible
explanation is that the algorithms might take the first several iterations to adapt the models propagated from the
first user group to the second. In particular, from Figure 2.4 (a), it is clear that once both algorithms are adapted,
the improvement between warm-start and cold-start on CoLin is larger than that on GOB.Lin. This verified
CoLin’s effectiveness in address the cold-start challenge. From Figure 2.4 (b), we can find that warm-start
helps both algorithms immediately at the first several iterations on LastFM dataset. This might be caused by the
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flat distribution of item popularity in this dataset: users in the second group also prefer the items liked by users
in the first group. We should note that the larger gap from GOB.Lin than that from CoLin between warm-start
and cold-start settings does not mean CoLin is worse than GOB.Lin; but it indicates the cold-start CoLin
learned faster than the cold-start GOB.Lin on this dataset. And the final performance of both cold-start and
warm-start CoLin was better than GOB.Lin in the corresponding settings. We can also notice that cold-start
CLUB performed very similarly as warm-start CLUB. It means the user clusters automatically constructed in
CLUB does not help collaborative learning. This experiment confirms that appropriate observation sharing
among users is vital to address the cold-start problem in recommendation.

Furthermore, we performed a user-based analysis to examine how many users will benefit from collaborative
bandits. We define an improved user as the user who is served with improved recommendations from a
collaborative bandit algorithm (i.e. CoLin, GOB.Lin and CLUB) than those from isolated li2010contextuals.
We reported the percentage of improved users in the first 1%, 2%, 3%, 5%, and 10% observations during
online learning. Figure 2.4 (c) and (d) demonstrate that in all collaborative bandit algorithms, the warm-start
setting benefits much more users than cold-start setting. This further supports our motivation in developing
bandit algorithms in a collaborative environment, which helps alleviate the cold-start challenge.

2.2 Exploration in Gradient Space with Structural Information
Online Learning to Rank (OL2R) [32] is a family of online learning solutions, which exploit implicit feedback
from users to directly optimize parameterized rankers on the fly. It has drawn increasing attention in research
community in recent years due to its advantages over classical offline learning to rank algorithms [33]. First, it
avoids the expensive and time consuming process of offline result relevance annotation. Second, as it directly
learns from user feedback, it optimizes the ranking results to best reflect current user preferences [34]. Third,
because the model is updated on the fly, there is no need to store user click history offline, which alleviates
many privacy concerns [17].

One strain of OL2R algorithms, represented by Dueling Bandit Gradient Descent (DBGD) [35], optimize a
linear scoring function by exploring the parameter space via interleaved test. Algorithms of this type first
propose an exploratory direction as a tentative model update direction, and then update the current ranker if
the proposed direction provides better ranking utility. In practice, result utility is usually inferred from user
clicks on an interleaved list of ranking results from each ranker [36]. The key technical insight of DBGD-type
algorithms is that the expectation of selected directions is an unbiased estimate of true gradient of the unknown
loss function for ranking [37]. As a result, DBGD is essentially a stochastic online gradient descent algorithm.
However, because the exploration directions are uniformly sampled from the entire parameter space, when the
dimensionality of the space is high (which is usually the case in practice), the variance in gradient estimation
becomes large. This directly slows down the learning convergence of the algorithm and inevitably increases
sample complexity.

Recently, several follow-up works have realized this deficiency of gradient exploration in DBGD, and propose
various types of solutions to improve its learning efficiency. One type of studies explore multiple random
directions in each iteration of model update. Unbiased estimate of gradient is maintained in this type of
revisions of DBGD, as the directions are still uniformly sampled. Model estimation variance is expected
to be reduced by testing more exploratory directions; but, in practice, as the users would only examine a
finite number of documents under each query (e.g., due to position bias [38]), the sensitivity of interleaved
test drops as a result of more exploratory rankers having to be tested at once. This unfortunately introduces
additional variance in model estimation. Another type of research constrains the sampling space for gradient
exploration [3, 39, 40]. However, this line of solutions cannot guarantee the estimated gradient remains
unbiased, and thus face high risk of converging towards a sub-optimal solution.

Although empirically effective, previous OL2R solutions neglect an important property of click-based result
utility evaluation: users only perceive utility from the documents that they actually examine. As a result, the
true gradient is only revealed by features playing an essential role in ranking those examined documents under
this query. Here we define essential features in ranking a particular set of documents as those features with
non-zero variance among the documents. Assume in an interleaved test, one ranking feature takes a constant
value in all examined documents under this query, such that it has no effect in differentiating the quality
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of those documents. Then, the proposed exploratory direction’s contribution to the ranker update on this
particular dimension cannot be justified by this test result. Random gradient exploration hence introduces an
arbitrary update on this dimension, which inevitably leads to high estimation variance over time. This example
can be generalized to situations where multiple (even correlated) features have no effect in differentiating
the utility of examined documents in the result of an interleaved test. Because in practice users usually only
examine a handful of documents under each query [38, 41], but each document consists of hundreds or even
thousands of ranking features, the variance introduced by random exploration on those non-essential features
could be considerably large.

The above analysis suggests that an interleaved test only reveals the projection of true gradient in the spanned
space of examined documents under a test query (termed the “document space” in this work). With this as
our motivation, we decide to project the winning direction back into the document space so as to reduce
the variance introduced by random gradient exploration. We construct the document space from inferred
users’ result examinations [41], which are not observable in the user response but can be statistically modeled.
Because this projection is independent from how the proposal directions are created, this solution can be
directly applied to any DBGD-type OL2R algorithm. We theoretically prove that the projected direction is still
an unbiased estimate of the true gradient, i.e., model convergence is guaranteed, and also prove the reduced
variance directly leads to considerable regret reduction in online model update. We compare the proposed
method with several best-performing DBGD-type OL2R algorithms on a collection of large-scale learning to
rank datasets and confirmed the effectiveness of our proposed solution.

2.2.1 Related Work
One key family of OL2R methods root in Dueling Bandit Gradient Descent (DBGD) [35], which uses online
gradient descent to solve a bandit convex optimization problem [37]. In each iteration, DBGD uniformly
samples a random direction from the entire parameter space to create an exploratory ranker, and uses an
interleaved test [34] to compare the current ranker with the exploratory one. If the exploratory ranker is
preferred, the proposed direction is used as the gradient to update the model. This procedure yields an unbiased
estimate of true gradient [42]. However, the variance of DBGD’s gradient estimation is high due to the nature
of uniform exploration of the entire parameter space, which limits its learning efficiency.

Recently, attempts have been made to improve the learning efficiency of DBGD-type algorithms. Schuth et
al. [43] proposed a Multileave Gradient Descent (MGD) algorithm to explore multiple stochastic directions in
each iteration with multi-interleaving comparison [44]. Zhao and King [45] developed a Dual-Point Dueling
Bandit Gradient Descent algorithm to sample two stochastic vectors with opposite directions as the candidate
gradients. The basic idea of this line of solutions is to test more exploratory directions at once so as to obtain
the true gradient estimate sooner. However, their gradient exploration is still within the entire feature space.
As users often only examine a small number of documents under each query, the sensitivity of interleaved
test drops due to more exploratory rankers need to be tested. In a different direction of solutions, researchers
proposed to constrain the sampling space for gradient exploration. Hofmann et al. chose to filter the stochastic
directions by historical comparisons before an interleaved test [39]. Oosterhuis et. al [40] proposed to explore
gradients in a subspace constructed by a set of pre-selected reference documents from an offline training corpus.
Wang et al. [3] proposed to use historical interactions to avoid repeatedly exploring less promising directions,
which also reduces gradient exploration to a subspace. However, the variance of gradient exploration is reduced
at a cost of introducing bias into gradient approximation, so that such algorithms have a risk of converging to
sub-optimal results.

There are also other parallel lines of OL2R algorithms that do not explore the gradient space the way DBGD-
type algorithms do, but directly optimize the ranking model from click feedback. Kveton et al. [46] proposed
Cascading Bandits to learn from users’ click behaviour, where skipped documents are assumed to be less
attractive than later clicked ones. This model is then extended to the dependent click model [47] to support
multiple clicks in one query, and further studied for general stochastic click models [48]. However, these
algorithms estimate a separate model for each query and do not share estimation across queries, which lead
to slow convergence. Oosterhuis et al. [49] proposed a Pairwise Differentiable Gradient Descent (PDGD)
algorithm that constructs gradients from pairwise result comparisons to update the model, and can be used to
optimize neural network models. We should note that our solution is not compatible nor directly comparable
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with these non-DBGD algorithms, as there is no gradient exploration in these algorithms and our proposed
gradient projection does not apply.

2.2.2 Document Space Projection for Online Learning to Rank
In this section we describe our proposed document space gradient projection method for online learning to rank.
We first describe the problem setup in Section 2.2.2. Then we present Document Space Projected Dueling
Bandit Gradient Descent (DBGD-DSP) algorithm as an example of our proposed general solution in Section
2.2.2. Our gradient projection method is independent from how the exploratory gradient is proposed, and
thus can be directly applied to any existing DBGD-type OL2R algorithm 2 to reduce its variance of gradient
estimation. We rigorously prove the unbiasedness of our gradient estimation in Section 2.2.2 and analyze the
regret of DBGD-DSP in Section 2.2.2. The same procedure and conclusions can be applied to any DBGD-type
algorithm of interest.

Problem Setup

The estimation of OL2R models can be formalized as a dueling bandit problem [35]. In iteration t, an OL2R
algorithm receives a query and associated candidate documents, which are represented as a set of d-dimensional
query-document pair feature vectors Xt = {x1, x2, ..., xs}. The algorithm takes two actions: first, it proposes
two rankers, whose parameters are denoted as w,w′; second, it ranks the given documents with these two
rankers accordingly. An oracle (i.e., user) compares (duels) the two rankers’ results and provides feedback. In
practice, an interleaving method [34] is applied to merge the ranking lists of the two rankers and display the
resulting ranked list to the user. User preference is inferred from the click feedback. Thus, the ranker that
contributes more clicked documents is preferred. We denote w � w′ for the event that w is preferred over w′.
The comparison between two individual rankers is determined independently of other comparisons performed
before with a probability P (w � w′|Xt), such that P (w � w′|Xt) = Pt (w � w′) = ft(w,w

′). ft(w,w′)
can be viewed as the distinguishability of the two rankers w and w′ by an interleave comparison under query
Xt.

We quantify the performance of an online learning algorithm using cumulative regret defined as follows:

R(T ) =

T∑
t=1

ft(w
∗, wt) + ft(w

∗, w′t), (2.9)

where wt and w′t are rankers compared at time t, and w∗ is the best ranker in ground-truth. As a result,
the distinguishability measure ft(w∗, w) indicates the loss of proposing a sub-optimal ranker w. We denote
ft(wt, w) as ft(w) for simplicity. The goal of an OL2R algorithm is to optimize its parameter towards w∗
according to loss ft(w). A desired OL2R algorithm should have a sublinear regret in a finitie time horizon T ,
so that the one-step regret is quickly decreasing to zero over time.

In this work, we make the following assumptions similar to [35]. We assume an unknown utility function vt(w)
that quantifies the quality of a ranker w over query Xt. The utility function vt is assumed to be differentiable,
strongly concave and Lv-Lipschitz, which means |vt(x)− vt(y)| ≤ Lv|x− y|.

A link function σ describes the probabilistic comparison of utilities of two rankers as,

Pt (w � w′) = ft(w,w
′) = σ (vt(w)− vt(w′)) .

The link function should be rotation-symmetric, which means σ(x) = 1−σ(−x). We assume the link function
is Lσ-Lipschitz and second order L2-Lipschitz. The link function behaves like a cumulative probability
distribution function. For example, a common choice of link function is the standard logistic function
σ(x) = 1

1+exp(−x) , which satisfies all the assumptions.
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Algorithm 2 Document Space Projected Dueling Bandit Gradient Descent (DBGD-DSP)

1: Inputs: δ, α
2: Initiate w1 = sample_unit_vector()
3: for t = 1 to T do
4: Receive query Xt = {x1, x2, ..., xs}
5: ut = sample_unit_vector()
6: w′t = wt + δut
7: Generate ranked lists l(Xt, wt), l(Xt, w

′
t)

8: Set Lt = Interleave
(
{l(Xt, wt), l(Xt, w

′
t)}
)
, and present Lt to user

9: Receive click positions Ct on Lt, and infer click credits {ct, c′t}
10: if ct ≥ c′t then
11: wt+1 = wt
12: else
13: Based on Ct, infer user examined top mt documents in Lt.
14: Solve the orthogonal projection matrix At for document space St =

span({xLt,1, xLt,2, ..., xLt,mt
}).

15: Project ut onto St by gt = Atut
16: wt+1 = wt + αgt
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Figure 2.5: Illustration of model update for DBGD-DSP in a three dimensional space. Dashed lines represent the trajectory of DBGD
following different update directions. ut is the selected direction by DBGD, which is in the 3-d space. Red bases present the document
space St on a 2-d plane. ut is projected onto St to become gt for model update.

Document Space Projected Dueling Bandit Gradient Descent

We describe our proposed Document Space Projected Dueling Bandit Gradient Descent (DBGD-DSP) in
Algorithm 2. We should note it fits all DBGD-type OL2R algorithm settings. At the beginning of iteration t,
user initiates a query Xt. We denote wt as the parameter of the current ranker. DBGD-DSP first uniformly
samples a vector ut from d dimensional unit sphere Sd−1 (i.e., |ut|2 = 1) as an exploratory direction, and
proposes a candidate ranker w′t = wt + δut, where δ is the step size of exploration. The algorithm then uses
the two rankers (wt and w′t) to generate ranking lists l(Xt, wt) and l(Xt, w

′
t) accordingly, and combines them

with an interleaving method, such as Team Draft Interleaving [34] or Probabilistic Interleaving [50]. The user
examines the result list and provides implicit click feedback to indicate their relevance evaluation of the results.
The interleaving method uses this implicit feedback to infer which ranker is preferred by the user. If the
exploratory ranker is preferred (i.e., wins the duel), previous DBGD-style algorithms update the current ranker
by wt+1 = wt + αut, where α is the learning rate; otherwise the current ranker stays intact. This gradient
exploration strategy yields an unbiased estimate of the true gradient [37], in terms of expectation.

However, since the exploratory gradient ut is required to be uniformly sampled from the entire d dimensional
unit sphere Sd−1, the model update suffers from high variance in its gradient estimation, especially when
d is large, as in practice. Various improvements to this issue have been proposed in the past, but they
still introduce other difficulties, such as variance and bias trade-off [3, 39, 40], and test sensitivity and
efficiency [44, 45].

2In the following discussions, we will use "DBGD-type OL2R algorithm" and "OL2R algorithm" interchangeably, as the focus of this
work is improving the efficiency of DBGD-type OL2R algorithms.
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Unlike previous works that reduce the sampling space of gradient exploration before the interleaved test
[3,39,40], we change the winning direction after the test. The key insight is that only the projected true gradient
in the spanned space of examined documents under query Xt (denoted as document space St) can be revealed
by an interleaved test. For example, as shown in Figure 2.5, a DBGD-style algorithm is comparing the current
ranker wt and w′t = wt + δut with a uniformly sampled exploration direction ut. The user examines top m
documents, e.g., {x1, ..xm}, of the interleaved ranking list (of course m is unknown to the algorithm) and w′t
wins the duel. The estimated gradient ut can therefore be separated into two components, one component gt
that belongs to the document space St = span{x1, ..xm} and the other component ut − gt that is orthogonal
to document space St. The orthogonal component ut − gt does not affect the ranking among the examined
documents, i.e. (wt + δut)

Txi = (wt + δgt)
Txi, and thus does not contribute to the loss function and true

gradient estimation. Intuitively, ut − gt is not supported by the observed interleaved test, as anything sampled
from the complement of St cannot be verified by the examined documents. As a result, it is safe to exclude
the direction ut − gt from model update, which we later prove maintains the unbiasedness of the original
DBGD-type gradient estimation, and reduces the variance. As illustrated in Figure 2.5, although ut will
eventually lead to the same model estimation, as it is unbiased, this guarantee is only obtained in expectation.
The variance could potentially be large: for example, the blue and purple updating traces slow down model
convergence, when the number of observations is finite.

As shown in line 14 to 16 of Algorithm 2, we solve for the orthogonal projection matrix At of document space
St, and project the selected direction ut onto the document space St after each interleaved test. We leave the
detailed design of constructing document space and solving projection matrix At in Section 2.2.2. Before
that, we first rigorously prove the projection maintains an unbiased estimate of true gradient in Section 2.2.2.
Since the document space is constructed only by the examined documents, the rank of document space is
expected to be smaller than the entire parameter space. This directly leads to lower variance and faster model
convergence. We show that our document space projection reduces the variance of gradient estimation from d
to Rank(At) in Section 2.2.2, and then analyze its benefit for regret reduction from a low-variance gradient
estimation.

Unbiasedness of Gradient Estimation

We now prove that our document space projected gradient is an unbiased estimate of true gradient in the sense
of expectation [35]. We define Zt(w) as the event of w winning the duel with wt,

Zt(w) =

{
1 w.p. 1− Pt(wt � w)
0 w.p. Pt(wt � w)

Then the gradient used for model update in DBGD-DSP (as described in Algorithm 2) can be described
as,

ht = −Zt(wt + δut)gt. (2.10)

Note that by adding a negative sign we view our model update as online gradient descent wt+1 = wt −
αgt.

We now show in the following theorem that this is an unbiased gradient estimation of true gradient. By defining
a smoothed version of ft as f̂t(w) = Eu∈B[ft(w + δu)], we have:

Theorem 2. The projected gradient gt in DBGD-DSP is an unbiased estimate of true gradient, i.e.,

E[ht] =
δ

d
∇f̂t(w) (2.11)

over random unit vector ut.

Proof. Based on the Lemma 1 of [35], we have

E [ht] = E [−Zt(wt + δut)Atut] = Eut∈Sd−1 [ft(w + δAtut)ut]
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Define Ft(w) = ft(Atw), we have

E[ht] = Eut∈Sd−1 [ft(wt + δAtut)ut]

= Eut∈Sd−1 [Ft(A
−1
t wt + δut)ut]

=
δ

d
∇Eut∈Bd [Ft(A

−1
t wt + δut)]

=
δ

d
∇F̂t(A−1

t wt)

=
δ

d
At∇f̂t(wt)

=
δ

d
∇f̂t(wt)

where the third equality is based on Stokes’ Theorem. The last equality holds because gradient ∇f̂t(wt)
belongs to document space St, and thus projecting it by At maps back to itself.

The guarantee of unbiased gradient estimation is a major advantage of our proposed document space gradient
projection method, compared with previous attempts to reduce the gradient exploration space, such as
Oosterhuis et. al [40] and Wang et al. [3]. Our method enjoys reduced variance of gradient estimate (which
will be proved next), without the risk of converging towards a sub-optimal solution. We should note that
the above is independent from the mechanism of how the proposal directions are generated, as shown in the
first four steps of proof above. As a result, if the input direction to our projection procedure is unbiased, the
resulting update direction is also unbiased. This enables our solution’s generalization to other types of DBGD
algorithms.

Regret Analysis of DBGD-DSP

We now analyze the regret of our proposed DBGD-DSP algorithm, starting with its variance of gradient
update.

Lemma 2. The variance of gradient update in DBGD-DSP is bounded by

E[|ht|2] = Eut∈Sd−1

[
| − Zt(wt + δut)Atut|2

]
≤ Rank(At)

d
.

Proof.

E[|ht|2] = Eut

[
| − Zt(wt + δut)Atut|2

]
≤ Eut

[
|Atut|2

]
= Eut

[
(Atut)

>(Atut)
]

= tr
(
Eut

[
Atutu

>
t A>t

])
//apply the trace trick

= tr
(
AtEut

[
utu
>
t

]
A>t
)

= tr

(
At

1

d
IA>t

)
=

1

d
tr
(
AtA

>
t

)
=

1

d
tr (At) //a projection matrix is idempotent

=
Rank(At)

d
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where tr(·) denotes the matrix trace operation. The sixth equality holds because ut is uniformly sampled from
a unit sphere, and its covariance matrix Eut

[
utu
>
t

]
is 1
dI . Since At is an orthogonal projection matrix, the

eighth equality holds for AtA
>
t = At.

Remark 1. The variance of gradient update in DBGD [35] is bounded by Eut

[
| − Zt(wt + δut)ut|2

]
≤ 1.

Comparing the variance of gradient update in DBGD-DSP with DBGD, our method reduces the variance
from 1 to Rank(At)

d . Since the dimension of projection matrix At is d-by-d, we have Rank(At) ≤ d, which
guarantees the reduction of variance in DBGD-DSP comparing to that in DBGD. The rank of At is also
bounded by the number of examined documents mt, since document space St is constructed by these mt

examined documents. In practice, users would only examine a handful of documents [38, 41], while the
ranking feature dimension is expected to be much larger. We argue that mt � d, such that our document
space projection achieves considerable variance reduction.

The significance of this variance reduction can be intuitively understood from Figure 2.5: though different
traces of model update would eventually lead to the same converged model, if one has a sufficiently large
amount of interactions with users, the one with lower variance would always require less observations. A faster
converging algorithm leads to user satisfaction earlier. Next, we verify this benefit by proving the reduction of
regret introduced by the reduced variance in gradient estimation.

Theorem 3. By setting

m = max
t
mt, δ =

√
2Rm√

13LT 1/4
, α =

Rm√
Tδ

,

the expected regret of DBGD-DSP as defined in Eq (2.9) is upper bounded by,

E[Reg] ≤ 2λTT
3/4
√

26RmL, (2.12)

where

λT =
Lσ
√

13LT 1/4

Lσ
√

13LT 1/4 − LvL2

√
2Rm

The proof is obtained by extending Theorem 2 in [35]. We omit the details due to space limit, and emphasize
that the key difference is introduced by replacing variance of gradient estimation from Eut

[
| − Zt(wt + δut)ut|2

]
to Eut

[
| − Zt(wt + δut)Atut|2

]
. Since the variance of gradient estimation is reduced from 1 to Rank(At)

d ,
the regret of DBGD can be reduced from O(

√
dT 3/4) to O(

√
mT 3/4), where m is the maximum number of

documents included in a document space under a single query. Again, as the number of included ranking
features is oftentimes much larger than the number of documents a user would examine under a single query,
the reduction of regret is considerable. Moreover, as the reduction of variance from our project-based method
is independent from the way about how the proposal directions are generated, our method can be generally
applied to most existing DBGD-type OL2R algorithms to improve their learning convergence.

Practical Treatments of Document Space Projection

Now we discuss several practical treatments of our proposed Document Space Projection method, including
the construction of document space and orthogonal projection matrix.

In our theoretical analysis, we have assumed the knowledge of users’ examined documents and corresponding
projection matrix. However, in practice, a user’s result examination is unobserved. A rich body of research has
been developed to perform statistical inference of it, collectively known as click modeling [41, 51]. Any of
these existing click models can be plugged into our solution framework, i.e., line 13 of Algorithm 2. In this
work, we simply follow [38] to infer user examination by the last clicked position: given the click position list
Ct, we use the last clicked position cl,t to approximate the last examined position Mt by setting Mt = cl,t + k,
where k is a hyper-parameter. Based on sequential examination hypothesis of click modeling, every document
before the last clicked position is examined, and we use k to approximate the number of positions following
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the last clicked position that were still examined. We leave more comprehensive study of click modeling in
our solution as future work.

The above treatment provides a reasonable inference of examined documents. However, it requires a careful
choice of k for each query (preferably). If k is set too large, the variance of gradient estimate will increase (as
proved in Lemma 2). If k is too small, the document space may not include all examined documents, and it is
at risk of introducing bias in gradient projection. To avoid bias in constructing the document space, we also
consider adding historically examined documents to the current query’s document space. Specifically, we add
r recently examined documents to the current document space St to compensate the potentially overlooked
examined documents in the current query.

In line 14 of Algorithm 2, we solve the orthogonal projection matrix At of document space St. At could be
computed by several methods. Denote Dt as a d-by-mt matrix where each column is the feature vector for an
examined document. One can use QR decomposition or Singular Value Decomposition (SVD) to solve for its
orthonormal basis Vt, and the projection matrix can then be constructed by At = VtV

T
t . In our experiments,

we chose SVD for constructing the basis of document space, because of its widely available and efficient
large-scale implementations. But the choice for the construction of this project matrix does not affect the
convergence nor unbiasedness of our proposed solution.

2.2.3 Experiments
To demonstrate our proposed Document Space Projection method’s empirical efficacy, we compare the
performance of several best-performing DBGD-type OL2R algorithms on five public learning to rank datasets,
with and without our document space projection method applied.

Experiment Setup

• Datasets. We tested our algorithms and the baselines on five benchmark datasets: including MQ2007,
NP2003 [52], MSLR-WEB10K [53], and the Yahoo! Learning to Rank Challenge dataset [54]. In each
of the five datasets, each query-document pair is encoded as a vector of ranking features. These features
include PageRank, TF.IDF, Okapi-BM25, URL length, language model score, and many more varied by
dataset.

The MQ2007 dataset is collected from the 2007 Million Query track at TREC [55]. MQ2007 contains
about 1700 queries, which represent a mix of informational and navigational search intents. They both have
46-dimensional feature vectors to represent query-document pairs, and the document relevance are labeled in
three grades: 0 (not relevant), 1 (relevant), and 2 (most relevant).

The NP2003 dataset also comes from the TREC Web track, consisting of queries crawled from the .gov domain.
It is comprised of about 150 navigational-focused queries, with over 1000 document relevance assessments
per query. It uses 64 ranking features, and the document relevance labels are binary (0 and 1 only).

The MSLR-WEB10K dataset was released by Microsoft in 2010, and consists of 10,000 queries with relevance
assessments coming from a labeling set from the Microsoft Bing search engine. It has 136 ranking features,
and the relevance judgments range from 0 (not relevant) to 4 (most relevant).

The Yahoo! Learning to Rank Challenge dataset was also released in 2010, as an effort on part of Yahoo! to
promote the dataset as well as research into better learning to rank algorithms. The dataset contains about
36,000 queries, 883,000 assessed documents, and 700 ranking features. Again, the relevance judgments range
from 0 (not relevant) to 4 (most relevant)

This diversity in the structure of the datasets that we chose to test on helps us to evaluate our algorithms more
holistically. While small, the MQ2007 sets have been around for a long time and have a good mix of query
types. NP2003 gives us insight into how the algorithms perform on navigational search intents specifically,
which are markedly different in nature from informational search intents. MSLR-WEB10K and the Yahoo!
dataset are large-scale datasets used by actual commercial search engines, which give us a better understanding
of how the algorithms perform in practice. Since each dataset was split into training, testing, and validation



2.2 Exploration in Gradient Space with Structural Information 24

Table 2.5: Configurations of simulation click models.

Click Probability Stop Probability
R 0 1 2 3 4 0 1 2 3 4

Per 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0
Nav 0.05 0.3 0.5 0.7 0.95 0.2 0.3 0.5 0.7 0.9
Inf 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

subsets, we used the training sets for online experiments to measure cumulative performance, and used the
testing sets for evaluating offline performance.

• Simulated User Interactions. Based on an online learning to rank framework proposed in [49], we use
the standard setup to simulate user interactions. Within this framework, we used the Cascade Click Model to
simulate user click behavior. This model assumes that a user interacts with a set of search results by linearly
scanning the list from top and making a decision for each document as to whether or not to click. In the model,
the probability of a click for a given document is conditioned on the relevance label of that document, as a
user is expected to be more likely to click on relevant documents. After evaluating each document, the user
must decide whether or not to continue perusing the list. This decision’s probability distribution is again
conditioned on the relevance of the examined document, as a user is more likely to stop looking through the
results if he/she has already satisfied their information need. These aforementioned probabilities can be altered
to simulate different types of users and interactions.
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Figure 2.6: Offline NDCG@10 on Yahoo! dataset.

As illustrated in Table 2.5, we use three different click model probability configurations to represent three
different types of users. First, we have the perfect user, who clicks on all relevant documents and does not
stop browsing until they have visited all of the documents. This type of users contribute the least noise, as
they make no mistakes and the feedback is entirely accurate. Second, we have the navigational user, who is
very likely to click on the first highly relevant document that he/she sees and stops there. Third, we have the
informational user, who, in his/her search for information, sometimes clicks on irrelevant documents, and as
such contributes a significant amount of noise in click feedback.

• Evaluation Metrics. As set forth in [56], cumulative (online) Normalized Discounted Cumulative Gain
(NDCG) and offline NDCG are commonly used metrics for evaluating OL2R algorithms. Cumulative NDCG
is calculated by summing NDCG scores from successive iterations with a discount factor γ set to 0.995.
We assess our model’s estimation convergence via cosine similarity between the current weight vector and
a reference weight vector (considered to be the optimal vector) as estimated by an offline learning-to-rank
algorithm trained with the complete true relevance judgment labels. Due to its superior empirical performance,
we used LambdaRank [57] with no hidden layer in our experiments to estimate this reference weight vector.
In each experiment, the number of iterations T was set to 10,000, and the current query Xt was randomly
sampled from the dataset in each iteration. We execute all the experiments 15 times with different random
seeds, and report and compare the average performance in all experiments.

• Evaluation Questions. To better understand the advantages of our proposed algorithms, we aim to answer
the following evaluation questions through the course of our experiments.

Q1: Can our proposed Document Space Projection method consistently improve the performance of best-
performing DBGD-type OL2R algorithms?
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Q2: Do gradients rectified by our document space projection explore the gradient space more efficiently?

Q3: How do different hyper-parameter settings alter the performance of our document space projection?

• Baseline Algorithms. We choose the following three best-performing DBGD-type OL2R algorithms as our
baselines for comparison:

- DBGD [35]: A single direction uniformly sampled from the whole parameter space is explored.

- MGD [43]: Multiple directions are explored in one iteration to reduce the gradient estimation variance.
Multileaving is used to compare multiple rankers. The model updates towards the mean of all rankers
that beat the current model.

- NSGD [3]: Multiple directions are sampled from the null space of previously poorly performing
gradients. Ties are broken by evaluating the tied candidate rankers on a recent set of difficult queries.

We apply our proposed Document Space Projection to the baseline algorithms, and compare them with
DBGD-DSP, MGD-DSP and NSGD-DSP, respectively.

Table 2.6: Online NDCG@10, standard deviation and relative improvement of document space projection of each algorithm after 10,000
queries.

Click Model Algorithm MQ2007 MSLR-WEB10K NP2003 Yahoo

Perfect

DBGD 679.3 (21.6) 532.2 (15.3) 1130.2 (43.3) 1165.5 (22.6)

DBGD-DSP 689.1 (19.5)(+1.44%) 553.6 (13.1)(+4.02%) 1198.8 (40.0) (+6.07%) 1198.8 (33.5)(+2.86%)
MGD 689.1 (14.6) 558.3 (7.0) 1192.9 (44.6) 1201.9 (16.3)

MGD-DSP 757.3 (16.2)(+9.90%) 626.4 (9.6)(+12.20%) 1335.3 (39.1)(+11.94%) 1309.4 (10.6) (+8.94%)
NSGD 684.4 (20.5) 589.5 (14.2) 1274.9 (47.4) 1162.3 (12.9)

NSGD-DSP 732.5 (20.0)(+7.03%) 635.6 (12.8)(+7.82%) 1368.5 (41.1)(+7.34%) 1270.1 (2.5)(+9.27%)

Navigational

DBGD 646.1 (23.4) 517.5 (20.9) 1062.3 (55.4) 1133.3 (40.8)

DBGD-DSP 664.9 (26.9)(+2.91%) 543.1 (14.8)(+4.95%) 1140.1 (52.5)(+7.32%) 1199.4 (34.6)(+5.83%)
MGD 632.7 (15.5) 538.2 (7.2) 1115.4 (44.6) 1171.3 (20.4)

MGD-DSP 694.5 (15.7)(+9.77%) 586.9 (9.5)(+9.05%) 1300.9 (39.6)(+16.63%) 1290.2 (15.3) (+10.15%)
NSGD 660.1 (24.5) 562.1 (18.8) 1211.1 (66.5) 1186.2 (16.8)

NSGD-DSP 724.6 (24.5)(+9.77%) 608.3 (12.1) (+8.22%) 1296.2 (24.3) (+7.03%) 1283.4 (7.2)(+8.19%)

Informational

DBGD 583.4 (46.0) 472.4 (34.6) 849.8 (144.5) 1107.3 (46.6)

DBGD-DSP 620.1 (40.8)(+6.29%) 522.1 (18.6) (+10.52%) 992.5 (81.1)(+16.79%) 1158.5 (22.0)(+4.62%)
MGD 621.2 (18.2) 538.3 (10.8) 1107.9 (46.2) 1146.6 (37.5)

MGD-DSP 671.4 (18.9)(+8.08%) 580.5 (10.4)(+7.84%) 1274.5 (42.9)(+15.04%) 1268.1 (16.4)(+10.60%)
NSGD 629.7 (25.3) 532.9 (15.2) 1123.5 (59.8) 1110.5 (10.9)

NSGD-DSP 703.6 (29.2)(+11.74%) 597.9 (14.1)(+12.20%) 1222.8 (43.8)(+9.03%) 1204.7 (9.6)(+8.48%)

Performance of Document Space Projection

We begin our experimental analysis by answering our first evaluation question. We compared all algorithms
over 3 click models and 5 datasets. We set the hyper-parameters of DBGD, MGD and NSGD according to
their original papers. Following [35,43], we set the exploration step size δ to 1 and learning rate α to 0.1. Both
MGD and NSGD explore 9 proposal directions in one iteration. For our document space projection method,
we consider k = 3 documents following the last clicked position as examined documents, and add r = 10
recently examined documents into document space St. We use SVD to solve for orthonormal basis Vt of the
document space St, and compute the projection matrix by At = VtV

>
t .

We reported the offline NDCG@10 and online cumulative NDCG @10 after 10,000 iterations in Table 2.6 and
Table 2.7. Due to space limit, we only reported the offline performance during the 10,000 iterations over 3
click models on Yahoo dataset, a large-scale real-world L2R dataset with 700 ranking features, in Figure 2.6.
MGD improves the online performance over DBGD by exploring multiple rankers simultaneously, and NSGD
further improves over MGD by exploring gradients in a constrained subspace, as shown in Table 2.6. We
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Table 2.7: Offline NDCG@10, standard deviation and relative improvement of document space projection of each algorithm after 10,000
queries.

Click Model Algorithm MQ2007 MSLR-WEB10K NP2003 Yahoo

Perfect

DBGD 0.484 (0.023) 0.331 (0.009) 0.737 (0.056) 0.688 (0.011)

DBGD-DSP 0.480 (0.020) (-0.83%) 0.333 (0.011) (+0.6%) 0.738 (0.059) (+0.14%) 0.681 (0.013) (-1.02%)
MGD 0.495 (0.022) 0.334 (0.003) 0.746 (0.048) 0.715 (0.002)

MGD-DSP 0.501 (0.021)(+1.21%) 0.409 (0.006)(+22.46%) 0.748 (0.055)(+0.27%) 0.725 (0.003)(+1.40%)
NSGD 0.488 (0.019) 0.397 (0.012) 0.743 (0.050) 0.691 (0.005)

NSGD-DSP 0.491 (0.022)(+0.61%) 0.398 (0.008) (+0.25%) 0.750 (0.042) (+0.94%) 0.717 (0.004)(+3.76%)

Navigational

DBGD 0.463 (0.028) 0.320 (0.012) 0.728 (0.054) 0.663 (0.020)

DBGD-DSP 0.465 (0.024)(+0.43%) 0.327 (0.011)(+2.19%) 0.734 (0.052)(+0.82%) 0.656 (0.013)(-1.06%)
MGD 0.426 (0.019) 0.321 (0.003) 0.740 (0.048) 0.703 (0.010)

MGD-DSP 0.467 (0.021)(+9.62%) 0.331 (0.005)(+3.12%) 0.744 (0.053)(+0.54%) 0.714 (0.006)(+1.56%)
NSGD 0.473 (0.022) 0.389 (0.013) 0.732 (0.053) 0.686 (0.008)

NSGD-DSP 0.478 (0.020)(+1.06%) 0.376 (0.014)(-3.34%) 0.788 (0.006)(+7.65%) 0.711 (0.001)(+3.64%)

Informational

DBGD 0.410 (0.034) 0.294 (0.022) 0.699 (0.063) 0.623 (0.037)

DBGD-DSP 0.427 (0.027)(+4.15%) 0.309 (0.011)(+32.65%) 0.692 (0.062)(-1.00%) 0.63 (0.030)(1.12%)
MGD 0.406 (0.020) 0.317 (0.003) 0.726 (0.050) 0.668 (0.044)

MGD-DSP 0.444 (0.025)(+0.44%) 0.325 (0.004)(+0.33%) 0.738 (0.054)(+0.74%) 0.701 (0.005)(+4.94%)
NSGD 0.469 (0.018) 0.360 (0.013) 0.733 (0.056) 0.663 (0.015)

NSGD-DSP 0.466 (0.019)(-0.64%) 0.340 (0.018)(-5.56%) 0.789 (0.013)(+7.64%) 0.685 (0.004)(+3.32%)

observe that our proposed document space projection method consistently improves the online performance of
all baseline algorithms. Recall that in Section 2.2.2 our theoretical analysis suggested that document space
projection reduces both the gradient estimation variance and the regret (online performance) with respect
to the ratio between the rank of document space and feature dimension. Correspondingly, we observe that
indeed we improved the OL2R models’ ranking performance significantly over MSLR-WEB10K and Yahoo
datasets, which are collected from real-world commerical search engines and have much higher feature
dimensions (130 and 700 respectively). This result demonstrates the potential of document space projection to
improve large-scale real-world DBGD-type OL2R applications with high-dimensional ranking features, as our
algorithm attains satisfactory performance earlier than other baseline OL2R algorithms measured by online
NDCG@10. We also notice that the standard deviation of those models’ ranking performance is reduced when
applying document space projection, which confirms our analysis of variance reduction in Lemma 2.

From Figure 2.6 and Table 2.7 we notice that document space projection mostly improves offline performance
over baseline algorithms. Figure 2.6 shows that document space projection significantly accelerates the
convergence rate over the baseline algorithms, because of the reduced variance in gradient estimation. We
also observe that applying document space projection under the perfect click model may lead to degraded
performance, for example DBGD on MQ2007 and Yahoo dataset. This is because document space projection
guarantees an unbiased gradient estimation under the assumption of known result examinations, as discussed
in Section 2.2.2. However, since in practice a user’s result examination is unobserved, we approximated the
examined documents by including all documents before the last clicked position and k additional documents
after the last clicked position. The perfect click model is an ideal case that users’ stop probability is set to 0.0
(see Table 2.5) and every document is examined. Here, the document space needs to include all displayed
documents to guarantee the unbiasedness, which requires a significantly larger k compared to the k used for
navigational and informational click models. We argue that in practice since users only examine a handful
of documents, we could well-approximate the examined documents with a reasonable choice of k. More
sophisticated click models can also be introduced. We will analyze the effect of k in Section 2.2.3. In addition,
we also observe that under informational click model the performance of NSGD-DSP is slightly decreased
compared with original NSGD over three datasets. Note that since NSGD does not guarantee its gradient
exploration is unbiased, further projecting its gradient may also lead to a biased gradient update and thus a
sub-optimal model.
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Analysis of Document Space Projection

To answer the second evaluation question, we design two experiments to show the effectiveness of document
space projected gradient. In the first experiment, we study the utility of document space projected gradient. We
compare the ranking performance of linearly interpolating the unrectified direction ut and its document space
projected version gt, i.e., λgt + (1− λ)ut, based on the MGD algorithm on MSLR-WEB10K dataset. Similar
observations were obtained on other datasets, but due to space limit we have to omit those detailed results. We
report the offline performance by varying λ from 0 (which is equivalent to the original MGD algorithm) and 1
(which is MGD-DSP) in Figure 2.7 (a). We can clearly observe a trend of increasing online performance over
all three click models when we increase λ, i.e., trust more on the projected direction gt for model update. This
confirms the effectiveness of the projected direction gt within document space comparing with the unrectified
direction ut from the entire parameter space. The offline performance is generally robust to the setting of λ for
navigational and information click models. This is expected since both MGD and MGD-DSP are unbiased and
will eventually converge to similar offline performance after sufficiently large number of iterations (we had
10,000 iterations in our experiments).

In the second experiment, we trained an offline LambdaRank model [57] using the complete annotated
relevance labels in the large-scale MSLR-WEB10K dataset. Then given this w∗, we compared cosine
similarity between the online estimated model parameters with and without DSP in each iteration using MGD
as the baseline. We show the result of first 5,000 iterations. In Figure 2.7 (b) we can observe that MGD-DSP
converges faster and better to w∗ than MGD. This suggests the rectified gradient is more effective than the
original one. We also compared with an oracle algorithm that knows the ground-truth examined documents,
denoted as DSP-GT, to validate the effectiveness of our approximated document space. We show the result on
DBGD and MGD under the perfect click model in Figure 2.7(c). We notice that oracle algorithms performed
similarly as our proposed algorithm with an approximated document space, which confirms the effectiveness
of the approximation heuristics.

To answer the third evaluation question, we compare different hyper-parameters used for constructing the
document space on MSLR-WEB10K dataset. We vary k from 0 to 7 and report the result in Figure2.8 (a). We
notice that for navigational and informational click models, a relatively small k achieved the best performance,
i.e., k = 3. This corresponds to the observation that users do not continue to examine many documents after
their last click under these two click models. However, under the perfect click model, the models’ performance
increases with a larger k. This aligns with the conclusions from our discussion in Section 2.2.3 that under the
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perfect click model, we need to set a much larger k to accurately construct the document space and guarantee
an unbiased gradient estimate.

In Figure 2.8(b), we vary r. As we discussed in Section 2.2.2, we are motivated to add recently examined
documents to compensate for potentially overlooked examined documents in the current query. The effect
of different choices of r is more noticeable under the perfect click model. This echoes our analysis above
that under the perfect click model some examined documents may be overlooked when k is not large enough.
Thus correctly setting up r could reduce the bias in document space construction and compensate the final
performance. From the result figure, we notice that setting r = 20 provides the best result. Under navigational
and informational click models, the algorithm is generally robust to the choice of r. This is because the
approximations of examined documents are already accurate with a reasonable setting of k.



Chapter 3

Efficient Online Learning in Implicitly
Structured Environments

We have introduced our efforts on leveraging explicit structural information to reduce sample complexity
in Chapter 2. However, in practice such structural information may not be available to the learners. The
challenge of learning by exploration in implicitly structured environments requires new algorithms that
can infer necessary structural information during the online learning process. In this chapter, we present
our research on efficient bandit learning algorithms in implicitly structured environments. In a low-rank
collaborative environments, we develop factorization bandits that estimate latent factors on the fly. We also
study that when the users are myopic, how the system can incentivize users’ to explore without observing
context features on the user side, i.e., under information gap. We develop an efficient incentive strategy such
that the system can incentivize users to explore with such information disadvantage as long as the users’
contexts has a linear transformation relation to the contexts on the system side.

3.1 Factorization Bandits for Implicit Collaborative Environment
Matrix factorization based collaborative filtering has become a standard practice in recommender systems
[58–60]. The basic idea of such solutions is to characterize both recommendation items and users by vectors
of latent factors inferred from historical user-item preference patterns via low-rank matrix completion [61, 62],
with an assumption that only a few factors contribute to an individual’s taste [58]. Despite a few recent
advances in specific factorization techniques [63, 64], it is notoriously difficult to perform online interactive
recommendation, because the need to focus on items that raise users’ interest and, simultaneously, the need
to explore new items for improving users’ satisfaction in the long run create an explore-exploit dilemma.
Periodically repeat model estimation to update latent factors is inept to handle the interactions between
a system and its users on the fly, because not only does it overly exploit the learnt model that is biased
towards previously frequently recommended items, but it also is prohibitively expensive to afford in terms of
computational complexity.

Some preliminary attempts have been made to perform online matrix factorization for collaborative filtering.
Basically, multi-armed bandit algorithms [9, 10] are employed to control the exploration of currently less
promising recommendations for user feedback, and factorization is applied over the incrementally constructed
user-item matrix on the fly. However, these two components are integrated in an ad-hoc manner: both
contextual and context-free bandits have been explored on top of various factorization methods [29, 30, 65],
given they only provide an index of candidate items for feedback acquisition. As a result, little is known about
whether such combinations would lead to a converging recommendation performance nor would it ensure
long-term optimality in theory, i.e., regret bound analysis.

We address the aforementioned challenges by performing online interactive recommendation by placing a
factorization-based bandit algorithm on each user in the system. Low-rank matrix completion is performed

29
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over an incrementally constructed user-item preference matrix, where an upper confidence bound (UCB)
based item selection strategy is developed to balance the exploit/explore trade-off during online feedback
acquisition. To better conquer cold-start in recommendation, two special treatments are devised. First,
observable contextual features are integrated with the estimated latent factors during matrix factorization.
This improves recommendation when the number of candidate items is large, but the payoffs are interrelated,
i.e., context-aware. Second, the dependence among users (e.g., social influence) is introduced to our bandit
algorithm through a collaborative reward generation assumption [1]. It enables information sharing among the
neighboring users while online learning, so as to help reduce the overall regret.

More importantly, we rigorously prove that with high probability the developed algorithm achieves a sublinear
upper regret bound for interactive recommendation, i.e., the average number of suboptimal recommendations
made in our algorithm over time rapidly vanishes with high probability. And considerable regret reduction is
achieved on both user and item sides because of our explicit modeling of observable contextual features and
dependency among users. Extensive experimentations on both simulations and large-scale real-world datasets
confirmed the advantages of the proposed algorithm compared with several state-of-the-art bandit-based
factorization methods. Beyond recommender system, our factorization bandit solution is also extended to the
social influence maximization task [5].

3.1.1 Related Work
There are some recent developments that focus on online collaborative filtering with multi-armed bandit
algorithms, a reference solution for explore-exploit trade-off [9, 10, 12]. [30] studies interactive collabora-
tive filtering via probabilistic matrix factorization. Both context-free and contextual bandit algorithms are
introduced to perform online item selection based on the factorization results. [29] performs online low-rank
matrix completion, where the explore/exploit balance is achieved via Thompson sampling. [65] introduces
a UCB-like strategy to perform interactive collaborative filtering. The algorithm deterministically selects
feedback user-item pairs using an index which depends on the covariance matrices of the posterior distributions
of both latent user and item vectors. [66] performs co-clustering on users and items for collaborative filtering,
where confidence bound on reward estimation is used to decide the clustering structures. However, because
of the ad-hoc combinations of collaborative filtering methods and bandit methods in the aforementioned
studies, limited theoretical understanding is available in those solutions. In this work, we provide a rigorous
regret bound analysis of the developed factorization-based bandit algorithm, and demonstrate the algorithm’s
convergence property under different conditions. Moreover, our online factorization solution is general
enough to incorporate several recent advances in factorization techniques, such as feature-based latent factor
models [63, 64] and modeling mutual dependence among users [67, 68], which further improve the proposed
algorithm’s convergence rate during interactive online learning with users.

3.1.2 A Factorization Bandit Solution for Interactive Recommendation
Matrix factorization based collaborative filtering solutions map both users U = {u1, u2, ..., uN} and recom-
mendation items A = {a1, a2, ..., aM} to a joint latent factor space. The expected reward of an item with
respect to a given user is assumed to be an inner product of the latent item factor va ∈ Rl and the latent user
factor θu ∈ Rl. Hence, the reward generation process can be formalized as ra,u = vT

aθu + η, where the
random variable η is drawn from a Gaussian distribution N(0, σ2). Regularized quadratic loss over a given set
of user-item feedback pairs is usually employed to estimate the latent factors. Formally,

min
θu,va

1

2

∑
(a,u)∈K

(vT
aθu − ra,u)2+

λ1

2

∑
u∈U
‖θu‖2+

λ2

2

∑
a∈A
‖va‖2 (3.1)

where K is a set of user-item pairs with known reward (e.g., the offline training set), λ1 and λ2 are the trade-off
parameters. The key research challenge in interactive matrix factorization is how to select the next feedback
user-item pair for model update. Current practice exploits the trained model to collect user feedback, which
unfortunately reinforces the bias in a currently inaccurate model. Therefore, properly explore some currently
less promising items for model correction becomes necessary for long-term optimality.

Under the context of matrix factorization based collaborative filtering, the uncertainty of reward prediction
comes from two sources: 1) the estimation error of latent user factors at trial t, i.e., ‖θ̂u,t − θ∗u‖, where θ̂u,t
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is the current estimate of latent factors for user u, and θ∗u is the ground-truth factors; and 2) the estimation
error of latent item factors at trial t, i.e., ‖v̂a,t − v∗a‖. Because of the regularized quadratic loss employed in
Eq (3.1), the confidence sets of θu and va estimation can be analytically computed [69], and thus readily be
integrated to assemble a UCB-style bandit algorithm for interactive matrix factorization as follows,(

at, 〈θ̂u,t, v̂a,t〉
)

= arg max(
a,〈θu,va〉

)
∈Dt×Ct−1

θTuva (3.2)

where Dt is the set of candidate items for recommendation at trial t, and Ct−1 is the confidence set for latent
user and item factors 〈θu,va〉 constructed at last trial.

However, such a straightforward combination of bandit algorithm with matrix factorization cannot effectively
solve the cold-start problem, as the estimation uncertainty of the latent factors for new users and new items is
at the maximum. This inevitably requires more explorations on the new users and new items and hence leads to
a decreased convergence rate of online learning and reduced user satisfaction in practice. We propose to solve
these limitations by introducing observed contextual features [63, 70] and user dependence [1, 67] into online
factorization. Both of these two techniques have been proved to be effective in offline matrix factorization,
but little is known about their utility in an online setting. In particular, we explicitly incorporate these two
components into our bandit algorithm’s reward generation assumption, to make it a unified framework for
interactive matrix factorization.

First, to reduce the reward prediction uncertainty on new items, we introduce observable contextual features
into the estimation of latent item factors. Typical item-level contextual features include topic categories for
news recommendation [12, 63] and genre for music recommendation [11]. Formally, we denote the observed
contextual features for an item a as xa ∈ Rd and keep using va ∈ Rl for its latent part (with ‖(xa,va)‖2 ≤ L).
Accordingly, on the user side we redefine θu = (θx

u ,θ
v
u) ∈ Rd+l (with ‖θu‖2 ≤ S), in which θx

u ∈ Rd
corresponds to the context feature xa and θv

u ∈ Rl corresponds to the latent item factor va. These extended
user and item factors now determine the rewards in recommendation.

Second, we incorporate mutual influence among users to reduce the reward prediction uncertainty on new users.
Distinct from existing solutions, where the dependency among users (such as social network) is introduced as
graph-based regularization over the latent user factors [11, 67], we encode such dependency directly into our
reward generation assumptions for matrix factorization. We assume the observed reward from each user is
determined by a mixture of neighboring users [1]. Formally, instead of assuming N independent users for
factorization, we place them on a weighted graph G = (V,E), which encodes the affinity relation among users,
to perform the estimation across them simultaneously. Each node Vu in G is parameterized by the latent user
factor θu for user u; and each edge in E represents the influence across users in reward generation. We encode
this graph as an N × N stochastic matrix W, in which each element wij is nonnegative and proportional
to the influence that user j has on user i in determining the reward of different items. W is column-wise
normalized such that

∑N
j=1 wij = 1 for i ∈ {1, ...., N}, and we assume W is time-invariant and known to the

algorithm beforehand.

Based on the introduced contextual features and user relational graph G, we define a (d + l) × N matrix
Θ = (θ1, . . . ,θN ), which consists of latent user factors from all N users in graph G, and define Xat =
(xat,1, ...,xat,N ) and Vat = (vat,1, ...,vat,N ) for the observable contextual features and latent item factors of
the items to be presented to the N users respectively. To simplify the notations for discussion, we decompose
Θ into two sub-matrices, Θx = (θx

1 , . . . ,θ
x
N ) and Θv = (θv

1 , . . . ,θ
v
N ), corresponding to the observed

context features and latent factors for items. As a result, we enhance our reward generation assumption as
follows,

rat,u = (xat ,vat)
TΘwu + ηt = xT

atΘ
xwu + vT

atΘ
vwu + ηt (3.3)

Intuitively, in Eq (3.3) not only the observed contextual features, but also the estimated latent factors will be
propagated through the user graph to determine the expected reward of items across users.

We will prove such information sharing greatly reduces sample complexity in learning the latent factors
for both users and items. Plugging the enhanced reward generation assumption defined in Eq (3.3) into the
regularized quadratic loss function in Eq (3.1), we can easily derive the closed-form solutions for Θ and va
after trial t via the alternating least square (ALS) method as~̂Θt) = A−1

t bt and v̂a,t = C−1
a,tda,t, where the
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detailed computation of (At,bt,Ca,t,da,t) can be found in Algorithm 3. I1 and I2 are identity matrices with
dimensions of (d + l)N × (d + l)N and l × l respectively. We define X̊at as a special case of Xat : only
the column corresponding to user u is set to xat,u and all the other columns are zero; and the same notation

applies to ˚̂
Vat .

Under our enhanced reward generation assumption defined in Eq (3.3), the confidence set of 〈θu,va〉 estimation
can be analytically computed by the following lemma.

Lemma 3. With proper initialization of ALS, the Hessian matrix of Eq (3.1) is positive definite at the optimizer
Θ∗ and v∗a, such that for any ε1 > 0, ε2 > 0, and δ ∈ (0, 1), with probability at least 1− δ, the estimation
error of latent user and item factors satisfies,

‖~̂Θt)− ~Θ∗)‖At ≤
√

log
(det(At)

δλ1

)
+
√
λ1S +

2√
λ1

(q1 + ε1)(1− (q1 + ε1)t)

1− (q1 + ε1)
(3.4)

‖v̂a,t − v∗a‖Ca,t ≤
√

log
(det(Ca,t)

δλ2

)
+
√
λ2L+

2√
λ2

(q2 + ε2)(1− (q2 + ε2)t)

1− (q2 + ε2)
(3.5)

in which q1 ∈ (0, 1) and q2 ∈ (0, 1).

In Lemma 3, ε1 and ε2 are the precision parameters for ALS, and q1 and q2 can be explicitly estimated as
described in [71]. The key assumption behind this lemma is the noise distribution in reward generation defined
in Eq (3.3) is stationary. As a result, this lemma gives us a reasonable construction of the confidence sets for
Θ and va estimation, which can be easily transformed to the estimation uncertainty of payoff rat,u. The proof
sketch of this lemma can be found in the appendix.

Based on Lemma 3, we define αut and αat as the upper bound of ‖~̂Θt) − ~Θ∗)‖At
and ‖v̂a,t − v∗a‖Ca,t

respectively. By applying the UCB principle, the item selection strategy for our bandit algorithm can be
derived as step 9 in Algorithm 3. In particular, the first term in our item selection strategy is an online prediction
of the expected reward based on the current estimation of latent user factors and item factors. It reflects
the tendency for exploiting the current estimates. The second and third terms are related to the estimation
uncertainty of va and Θ. They reflect the tendency for exploring currently less promising but highly uncertain
items. It is easy to verify that the exploration terms shrink when more observations become available, such
that the exploit/explore trade-off is balanced dynamically. Later on we prove that because of the explicit
modeling of user dependency (i.e., Eq (3.3)), the exploration term also uniformly shrinks for new users and
new items, which lead to considerable regret reduction over all users. We name the resulting bandit algorithm
as FactorUCB, and illustrate the detailed procedure of it in Algorithm 3.

3.1.3 Regret Analysis
To quantify the performance of factorUCB, we consider the accumulated (pseudo) regret defined Eq (2.1).
Based on Lemma 3 and the developed item selection strategy, we have the following theorem about the upper
regret bound of FactorUCB algorithm.

Theorem 4. Under proper initialization of ALS in Algorithm 3, with probability at least 1−δ, the accumulated
regret of FactorUCB algorithm satisfies,

R(T ) ≤2αu
T

√
2(d+ l)NT log

(
1 +

L2
∑T

t=1

∑N
j w2

ut,j

δλ1(d+ l)N

)
+ 2αa

T

√
2lT log

(
1 +

S2
∑T

t=1

∑N
j w2

ut,j

δλ2l

)
(3.6)

+ 2αa
T

(q2 + ε2)
(
1− (q2 + ε2)T

)
1− (q2 + ε2)

in which q2 and ε2 are the same as those defined in Lemma 3, αuT and αaT are the upper bound of ‖~̂Θt)−~Θ∗)‖At

and ‖v̂a,t − v∗a‖Ca,t
over all t ∈ {1, . . . , T} respectively, and δ is also encoded in αuT and αaT as shown

in Eq (3.4) and (3.5). Though required by the theorem that λ1 and λ2 have to be sufficiently large, in our
empirical evaluations the algorithm’s performance is not sensitive to this setting. The specific form of αuT and
αaT and the proof sketch of this theorem are provided in the appendix.
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Algorithm 3 FactorUCB

1: Inputs: λ1, λ2 ∈ (0,+∞), l ∈ Z+

2: Initialize: A1 ← λ1I1, b1 ← 0(d+l)N ,~̂Θ1)← A−1
1 b1

3: for t = 1 to T do
4: Receive user ut

5: Observe feature vectors, xa ∈ Rd

6: if item a is new then
7: initialize Ca,t ← λ2I2, da,t ← 0l, v̂a,t ← 0l

8: Select item by at = arg maxa∈A

(
(xa, v̂a,t)

TΘ̂twut+α
u
t

√
vec
(
(X̊at ,

˚̂
Vat)W

T
)
A−1

t vec
(
(X̊at ,

˚̂
Vat)W

T
)T)

+

αa
t

√
(Θ̂twut)C

−1
a,t(Θ̂twut)

T

9: Observe reward rat,ut from user ut

10: At+1 ← At +~(X̊at ,
˚̂
Vat)W

T)~(X̊at ,
˚̂
Vat)W

T)T

11: bt+1 ← bt +~(X̊at ,
˚̂
Vat)W

T)rat,ut

12: ~̂Θt+1)← A−1
t+1bt+1

13: Cat,t+1 ← Cat,t + (Θ̂v
t wut)(Θ̂

v
t wut)

T

14: dat,t+1 ← dat,t + (Θ̂v
t wut)(rat,ut − xT

at
(Θ̂x

t wut))
15: v̂at,t+1 ← C−1

at,t+1dat,t+1

16: Project Θ̂t+1 and v̂at,t+1 with respect to the constraints ‖θu‖2 ≤ S and ‖(xa,va)‖2 ≤ L

As highlighted in the proof, because the confidence interval is shrinking via exploration, a sublinear regret
is achieved after T trials of interactions; otherwise without proper exploration, such as in the conventional
offline training and online testing paradigm of matrix factorization, a linear regret is inevitable. Moreover,
the resulting regret bound of factorUCB has the following important theoretical properties under different
conditions.

First, the dependency structure among users plays an important role in reducing the regret on both user
side and item side. Consider the following two extreme cases. In the first case, when W is an identity
matrix, i.e., no dependency among users, the first term of the upper regret bound in Eq (3.6) degenerates
to O

(
N(d + l)

√
T log T

N

)
, which roots in the reward prediction uncertainty from the estimated latent user

factors. And the second term degenerates to O
(
l
√
T log T

)
, which corresponds to the estimated latent item

factors. In the second case, when users are homogenous and have uniform influence among each other, i.e.,
∀i, j, wij = 1

N , the first term in the regret bound decreases toO
(
N(d+l)

√
T log T

N2

)
and the second decreases

toO
(
l
√
T log T

N

)
. As a result, via modeling user dependency, FactorUCB achieves anO

(
N(d+ l)

√
T logN

)
regret reduction on the user side and an O

(
l
√
T logN

)
regret reduction on the item side.

Second, as denoted in Eq (3.6), the user arrival sequence is recorded in the summation term of
∑T
t=1

∑N
j=1 w

2
ut,j

,
which is bounded by T from above, no matter how users arrive to the system (as wu is a stochastic vector).
Therefore, the upper regret bound of factorUCB stays in O

(
N(d+ l)

√
T log T

N

)
in the worse case scenario,

such as users arrive in an adversarial way – the least connected users come first and most often.

Third, following our enhanced reward generation assumption specified in Eq (3.3), the estimation quality
of latent user factors in factorUCB satisfies the following inequality (similar result applies to the estimation
quality of latent item factors as well),

‖~̂Θt)− ~Θ∗)‖At ≤
√

log
(det(At)

δλ1

)
+
√
λ1S +

2√
δλ1

t∑
t′=1

‖v∗at′ ,u
− v̂at′ ,u‖2 (3.7)

If the dimension of latent factors matches the ground-truth, based on the proved convergence property of
ALS in [71], the estimation of Θ and va is q-linearly convergent to the optimum (Θ∗,v∗a), which is the
conclusion in Lemma 3. But if the dimension is not correctly set and those latent factors are independent from
each other, the third term in Eq (3.7) will not converge. It makes αut linearly increase over time as αut is the
upper bound of ‖~̂Θt) − ~Θ∗)‖At

. This leads to a linear regret in factorUCB at the worst case. Admittedly,
determining the dimension of latent factors is always a bottleneck of factorization-based methods in practice.
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Figure 3.1: Analysis of regret, hidden feature dimension and parameter tuning.

But by introducing the observable contextual features, especially those strongly correlated with the expected
rewards, the reward prediction uncertainty can be reduced as the latent factors only need to fit the residual of
reward prediction from the observed features (as shown in the estimation of va in Algorithm 3). This leads to
reasonable performance of factorUCB in our empirical evaluations.

3.1.4 Experiments
We performed extensive empirical evaluations of our proposed factorUCB algorithm against several state-of-
the-art factorization-based and bandit-based collaborative filtering methods, including: 1) Alternating Least
Square (ALS) with ε-greedy [30], which applies context-free ε-greedy algorithm based on both observed
features and latent factors, but cannot utilize the user relational graph; 2) Particle Thompson Sampling for
matrix factorization (PTS) [29], which combines Thompson sampling with probabilistic matrix factorization
based on Rao-Blackwellized particle filter, and it cannot utilize observed features and user relational graph;
3) GOB.Lin [11], which models the dependency among a set of contextual bandits over users via a graph
Laplacian based model regularization, but cannot estimate the latent factors; 4) CLUB [25], which clusters
users during online learning to enable model sharing; but it only works with contextual features; 5) CoLin [1],
which imposes a similar collaborative reward generation assumption over the user relational graph as that in
our algorithm, but does not model latent factors; 6) factorUCB w/o W, which is factorUCB with an identity
W matrix, i.e., the dependency among users is not considered; it demonstrates of utility of modeling user
dependency in interactive recommendation.

Experiments on synthetic dataset

In simulation, we generated a size-K item poolA, in which each item a is associated with a (d+ l)-dimension
feature vector (xa,va). Each dimension is drawn from a set of zero-mean Gaussian distributions with variances
sampled from a uniform distribution U(0, 1). Principle Component Analysis (PCA) was performed to make all
the dimensions orthogonal to each other. To simulate the reward generation defined in Eq (3.3), we used all the
(d+ l)-dimension features to compute the true reward for each item, but only revealed the first d dimensions
(i.e., xa) to an algorithm. We simulatedN users, each of who is associated with a (d+ l)-dimension preference
vector θ∗u. Each dimension of θ∗u is drawn from a uniform distribution U(0, 1). θ∗u is treated as the ground-truth
latent user factor in reward generation, and is unknown to the algorithms. We then constructed the golden
relational stochastic matrix W for the dependency graph of users by defining wij ∝ 〈θ∗i ,θ∗j 〉, and normalize
each column of W by its L1 norm. The resulting W was disclosed to all the algorithms. To increase the
learning complexity, at each trial t, our simulator only disclosed a subset of items in A to the learners for
selection, e.g., randomly selected 10 items from A without replacement. At each trial t, the same set of items
were presented to all the algorithms; and the Gaussian noise ηt in Eq (3.3) was sampled once for all those
items at each trial. We fixed the dimension d of observable features to 20, the dimension l of latent item factors
to 5, user size N to 100, the standard derivation σ of Gaussian noise to 0.1, and the item pool size K to 1000
in our simulation.

Cumulated regret defined in Eq (2.1) was used to evaluate the performance of different algorithms in Figure
3.1 (a), where we set the dimension for latent factors in PTS to 10 (which gave us the best performance) and
5 in ALS ε-greedy and factorUCB. We observed that PTS took much longer time to converge, because PTS
cannot utilize the observed context features for reward prediction, so that it requires much more observations to
improve the accuracy of latent factor estimation. Instead, ALS ε-greedy and factorUCB leveraged the context
features to quickly reduce the reward prediction uncertainty (i.e., less exploration). Two contextual bandits, i.e.,
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Figure 3.2: Experimental comparisons on real-world datasets.

GOB.Lin and CoLin, suffered from linear regret, since they do not model the latent item factors. In addition,
factorUCB converged much faster than factorUCB w/o W, which confirmed our theoretical analysis about the
regret reduction from user dependency modeling.

Because factorUCB requires the dimension of latent factor as input, we test its sensitivity to the setting of
latent dimension l. To investigate the importance of correct setup of latent factor dimension in factorUCB, we
tested two different ways of latent factor construction in our simulator: 1) we chose the top 5 dimensions with
the largest eigenvalue from PCA’s result as latent item factors, i.e., we hid the top 5 most informative factors in
reward generation from the learners; 2) we hid the bottom 5 most informative factors. And on the algorithm
side, we varied the dimension of latent factors used in factorUCB from 1 to 7. From the results shown in
Figure 3.1 (b), we can reach three conclusions. First, when the latent factors were the most informative ones,
we obtained much worse regret than that in the case of the least informative factors were hidden. Second,
the large difference between the regret of a bandit algorithm that does not model the latent factors (such as
GOB.Lin) and the one that models latent factors (factorUCB, even with wrong dimensions) emphasizes the
necessity of latent factor learning in online recommendation. Third, although our theoretical analysis predicts
a linear regret if the latent factor dimension was not accurately set, the actual performance was much more
promising. One reason is that our theoretical analysis is for the worst case scenario (upper regret bound),
which does not preclude a sub-linear converging regret in practice.

In addition, we also investigated the effect of exploration parameter αut and αat in factorUCB, compared
with factorUCB w/o W. In Figure 3.1 (c), each column illustrates a combination of αut and αat used in
factorUCB and factorUCB w/o W. The last column indexed by (αut , α

a
t ) represents the theoretical values of

those two parameters computed from the algorithm’s corresponding regret analysis. As shown in the results,
the empirically tuned (αu, αa) yielded comparable performance to the theoretical values, and made online
computation more efficient. As a result, in all our following experiments we will use the manually set αut and
αat .
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Experiments on real-world datasets

Yahoo dataset: We reported the normalized CTR results from different algorithms over 160 derived user
groups in Figure 3.2 (a) (similar relative improvement was obtained with different number of derived user
groups). Both variants of FactorUCB outperformed conventional bandit algorithm (i.e., GOB.Lin, CoLin and
CLUB) and factorization method (i.e., ALS ε-greedy). And clearly via modeling user dependency during online
factorization, FactorUCB improves more rapidly than PTS when more observations become available.

LastFM dataset: We normalized the accumulated reward from different algorithms by that from a random
algorithm, and reported the results in Figure 3.2 (b). We can clearly notice that PTS performed the worst, while
two contextual bandits (i.e., GOB.Lin and CoLin) achieved much better performance than it. This indicates
the observed context features in this dataset were sufficiently informative for the algorithms to make accurate
recommendations. A purely factorization-based method got penalized by not utilizing such information. On
the other hand, we also noticed that factorUCB converged much faster than factorUCB w/o W, which again
demonstrates the utility of user dependency modeling for addressing cold-start in recommendation.

To further investigate the effect of modeling context features and user dependency in alleviating cold-start in
recommendation, we designed a set of controlled experiments. We first split users into two groups using a
max-cut algorithm on the constructed user relational graph to maximize the connectivity between these two
groups. Observations in the first user group are called “learning group” and those in the second group are called
“testing group.” To simulate cold-start, we only executed algorithms on the testing group. Correspondingly, we
simulated warm-start by first running algorithms on the learning group to pre-estimate the models, and then
continuing them on the testing group. Since users in the testing group were isolated from the learning group,
their model parameters could only be initialized by the propagated information via the user relational graph, if
an algorithm explicitly modeled that.

We measured the differences in average CTR on Yahoo and accumulated rewards on LastFM between warm-
start and cold-start in Figure 3.2 (c) and (d). On the Yahoo dataset, factorization-based algorithms (i.e.,
factorUCB, PTS and ALS ε-greedy) benefit the most from the collaboration in latent factor estimation: latent
item factors estimated in the learning group helped them better estimate user preferences in testing group.
On the LastFM dataset, considerable improvement was achieved in algorithms explicitly modeling user
dependency, i.e., factorUCB, GOB.Lin and CoLin.

3.2 Incentivize Exploration Under Information Gap
Classical bandit research studies the single-party setting, where the system has a full control over which arm
to pull. However, in many real-world applications, such as recommender systems and e-commerce platforms,
one often faces a two-party game between the system and its users, who have different interests and roles
in this game. Specifically, the system aims at maximizing long-term cumulative reward, which requires
exploration in the arm space. However, the decision about which arm to pull is made by the users, and the
system can only observe the rewards associated with the users’ decisions. The users often act as myopic agents,
who only seek to maximize their short-term utilities, i.e., exploit the arm with the currently best estimated
reward. This division leads to the problems of under-exploration and selection bias: the best arm may remain
unexplored forever if it appears sub-optimal initially. To align the two parties’ interest, the system has to offer
compensations to users so that they are motivated to try the exploratory arms, which in turn helps system
maximize long-term cumulative reward. This problem is known as incentivizied exploration [72–74].

The system’s goal in incentivized exploration is to minimize total compensation while maximizing cumulative
rewards [73, 75, 76]. Existing solutions assume both parties maintain the same reward estimation. This
assumption is necessary for the system to compute the compensation based on the users’ estimated reward
difference between the currently best arm and the exploratory arm. Under a context-free setting (aka Multi-
armed Bandit (MAB) [7, 8] in literature), this assumption naturally holds because both parties maintain the
same estimated mean reward on each pulled arm. And most existing incentivized exploration solutions work
under this setting. However, under the contextual bandit setting [10, 12, 69], the two parties may associate the
same observed rewards with different context features. For example, in a recommender system, the users could
access features related to their own private information (e.g., gender and age), which are not accessible by the
system. To obtain the same quality of reward estimation, the system has to resort to other behavior features
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that profile such private user features [77, 78]. This situation can be easily understood by an extreme case in a
finite arm setting: the system only observes the index of each arm, while the users employ informative features
of the arms. As a result, the system suffers from a much slower convergence rate in reward estimation than the
users. We refer to this representation asymmetry as the information gap between the two parties, which brings
in new challenges to incentivized exploration. For example, the system no longer knows which arm has the
best estimated reward on the user side.

In this work, we propose an algorithm that incentivizes the users to explore according to the Linear UCB
strategy [12, 69] under the information gap. Our key idea is that although the system suffers from an
information disadvantage and cannot compute the minimum compensation precisely, offering a larger amount
of compensation guarantees sufficiency for users to explore. And this added compensation should shrink
fast enough such that the total compensation is still sublinear. We prove that in T rounds of interaction our
algorithm achieves compensation and regret both in the order of O(dv

√
T log T ) with information gap and

O(dx
√
T log T ) without information gap, where dx and dv are the dimensions of context features used by

the users and the system, respectively. The results suggest that incentivized exploration is still possible with
information gap, and the added cost is realized by the extra compensation that is dominated by dv. We also
prove the compensation lower bound of incentivized exploration in linear contextual bandits, which generalizes
the result of compensation lower bound in MAB settings reported in [76]. Our simulation-based empirical
studies also validate the effectiveness and cost-efficiency of the proposed algorithm.

3.2.1 Related Work
The incentivized exploration problem in multi-armed bandits has been studied since [72, 73]. See [79] for
an overview. One line of the studies assume the system has information advantage on observing the full
arm-pulling history while users do not [72, 74, 80, 81]. The system leverages the information asymmetry to
recommend exploratory arms as long as the users do not have a better choice from their perspective. Another
line considered the setting where the arm-pulling history is publicly available to both system and users and the
system offers compensations to an arm for incentivized exploration [73,76,82]. Our setting follows this line of
research.

Incentivized learning with monetary payments was first studied in [73] in a Bayesian setting with discounted
regret and compensation. Chen et al. [82] studied a heterogeneous users setting, where user diversity led
to their solution with constant compensation. Agrawal et al. [83] considered heterogeneous contexts in a
contextual bandit setting. In [76], the authors analyzed the non-Bayesian and non-discounted reward case and
showed O(log T ) regret and compensation in a stochastic MAB setting. Liu et al. [84] considered the reward
feedback is biased because of the compensation. Kannan et al. [85] considered incentivized exploration for
fair recommendation. Our setting is mostly similar to [76], i.e., non-Bayesian and non-discounted reward, but
is studied under the linear contextual bandit setting. We should note all the aforementioned studies assume
the system and the users share the same information such as arm pulls, rewards and contexts, and the system
calculates the compensation based on the shared information. Our setting is strictly more challenging. The
information gap is caused by information asymmetry: the system cannot access the feature vectors employed
by the users. As a result, users’ reward estimation will be different from the system’ and the precise amount of
payment is harder to compute.

There are several recent works study low-rank bandits, which however are intrinsically different from ours. For
example, Lale et al. [86] consider the contexts are sampled from a low-dimensional subspace and propose a
PCA-based solution to reduce the dimensionality. Yang et al. [87] study multi-task linear bandits with a shared
low-rank structure. These methods assume the learning problem is generated from a low-rank structure but
presented in a high-dimensional space. But in our setting, the system’s observed contexts are already sampled
from a high-dimensional compact space, whose dimension cannot be further reduced. The information gap in
representation asymmetry is a unique problem in this two-party game setting.

3.2.2 Problem Definition
Notations and assumptions. We study the problem under a linear bandit setting, where a myopic user
sequentially interacts with the system for T rounds. At each round t, the user observes compensation offered
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by the system, and pulls an arm at from a given arm set At. Both the system and the user observe the resulting
reward rat,t and update their estimations accordingly.

In a contextual bandit setting, each arm a is associated with a context feature vector. In our problem, for
arm a ∈ At, the system observes a feature vector va from a dv-dimensional subspace and the users observe
a feature vector xa from a dx-dimensional subspace. Without loss of generality, we will assume xa ∈ Rdx
and va ∈ Rdv — if not, the standard PCA technique can be used to reduce the feature dimensions to dx and
dv [86]. Essentially we consider the features span the whole vector space respectively, which means there is
no feature without support on both sides and the dimensionality cannot be further reduced.

Assumption 1 (Information Gap). There exists a linear transformation P ∈ Rdx×dv (where dv ≥ dx) such
that for any arm a,

xa = Pva (3.8)

The assumption on dv ≥ dx, i.e., features used on the user side belong to a lower dimension space, is motivated
by many real-world scenarios: for example, users can construct features related to their private information
(e.g., age, gender, income or health), while the system has to employ a lot of behavioral features to resemble
such information [77,78]. To better illustrate the concept, we describe a few real-world examples below where
the gap exists and is inevitable.

Examples of information gap. A notable special case of linear bandits with information gap is a K-armed
contextual bandit problem, where the system knows nothing beyond the indices of arms. In this case,
the context vectors used by the system are the K-dimension one-hot vectors, while the user may employ
dx-dimension feature representations of the same arms. The information gap (K > dx) is encoded in
the transformation matrix P . Now let us consider a less extreme example. Some features could be the
combinations of both the user’s private information and item’s property, e.g., joint of user’s income and the
item’s price, or joint of user’s gender and the item’s category. This is a typical way to construct features in
practical recommender systems [12]. The users can employ these informative features and enjoy a faster
reward estimation convergence; but the system suffers when it cannot access users’ private information. In this
example, the transformation matrix P contains the private information hidden from the system.

Note that having more features is not equivalent to having a more informative representation. Another
practical example is that the context vectors used by the system may include many useless or redundant
features, such that the corresponding weights in the ground-truth model parameter θ∗v are zeros, i.e., a sparse
regression setting. In this example, the system’s features are clearly less informative, because of the useless
features.

The information gap between the two parties is characterized by matrix P . The linear transformation
assumption is to guarantee the two parties face a linear reward mapping, which we state below.

Reward mapping. Following a linear bandit setting, the expected reward of arm a is determined by the inner
product between the context features and unknown bandit model parameter. From the user’s perspective, we
have E[ra] = xT

aθ
∗
x where θ∗x is the unknown model parameter on the user side. From Assumption 1, we have

xT
aθ
∗
x = vT

aP
Tθ∗x, which suggests there always exists a parameter θ∗v = PTθ∗x on the system side satisfying

the same linear reward mapping. We summarize the reward mapping on the two sides as follow:

E[ra] = xT
aθ
∗
x = vT

aθ
∗
v

After the user pulls arm at, both sides observe the reward rat,t as

rat,t = E[rat ] + ηt (3.9)

where ηt is R-sub-Gaussian noise. Without loss of generality, we assume that the norm of the features and
parameters are bounded as ‖xa‖2 ≤ ‖va‖2 ≤ 1, ‖θ∗x‖2 ≤ 1, ‖θ∗v‖2 ≤ 1, which naturally bounds the expected
reward in the range of [−1, 1] and simplifies the analysis. Note that the assumption of ‖xa‖2 ≤ ‖va‖2 is
equivalent as assuming the largest singular value of P is upper bounded by 1. Intuitively, this means the linear
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Algorithm 4 Incentivized LinUCB under Information Gap

Inputs: λ, δ
Initialize: Ax = λIdx ,Av = λIdv ,bx = 0,bv = 0
for t = 1 to T do

System and user observe context vectors {va}a∈At and {xa}a∈At respectively
System calculates compensation ca,t for arm a according to Eq (3.13)
User pulls arm at = arg maxa∈A r̂x,a,t + ca,t
System and user observe reward rat
// Update on the system side:
Av,t+1 ← Av,t + vatv

T
at , bv,t+1 ← bv,t + vatrat

θ̂v,t+1 ← Av,t+1
−1bv,t+1

// Update on the user side:
Ax,t+1 ← Ax,t + xatx

T
at , bx,t+1 ← bx,t + xatrat

θ̂x,t+1 ← A−1
x,t+1bx,t+1

transformation does not amplify the magnitude of the features. One can always find the satisfying xa by
re-scaling θ∗x accordingly.

The system and the user estimate their own model parameters using ridge regression separately, denoted as
θ̂v,t and θ̂x,t, by the same observed rewards {rat,t} but different context features. As a result, the two parties
would predict different rewards for the same arm a, denoted as r̂x,a,t = xT

a θ̂x,t and r̂v,a,t = vT
a θ̂v,t.

Objective. The users and the system have different objectives in this sequential decision making problem:
the user aims to maximize his/her short-term instantaneous reward, while the system aims to maximize the
long-term cumulative reward. At each round t, without any incentive, a myopic user will exploit the arm
with the highest estimated reward, i.e., a = arg maxi∈At

r̂x,i,t. It is well known that such exploitation-only
decisions will lead to sub-optimal cumulative reward in the long term. In order to balance exploitation and
exploration, the system has to provide compensations to encourage the user to explore. Specifically, the system
offers compensation ca,t for pulling arm a. Given the incentives, the user maximizes the instantaneous utility
by pulling arm at = arg maxi∈At

r̂x,i,t + ci,t.

The system seeks to maximize the cumulative reward, or equivalently, minimize the cumulative regret while
also minimizing the total compensation in expectation. The system’s regret is defined as

R(T ) =

T∑
t=1

(
E[ra∗t ]− E[rat ]

)
(3.10)

where a∗t is the optimal arm with the highest expected reward at time t. The total compensation is defined
as

C(T ) =

T∑
t=1

E[cat,t] (3.11)

An effective incentivized exploration method should balance the trade-off among exploration, exploitation and
compensation to obtain sublinear cumulative regret and sublinear total compensation.

3.2.3 Incentivized Exploration in Linear Bandits
We present our solution on incentivized exploration under information gap when the system explores according
to the Linear UCB (LinUCB) strategy [12,69,88]. Then we show that the solution can be easily adopted to the
simpler problem setting of incentivized exploration without the information gap.



3.2 Incentivize Exploration Under Information Gap 40

Incentivized exploration under information gap

We present Algorithm 4 to show how the system incentivizes the myopic user to follow the desired exploration
strategy under information gap. At each round, the system and the user observe context features {va}a∈At

and {xa}a∈At respectively for the same arm set At. The system needs to motivate the user to explore arm
at according to LinUCB strategy based on its current parameter estimation θ̂v,t. To achieve so, the system
offers compensation cat,t to arm at according to Eq (3.13). Note that the system does not offer incentives to
the other arms and sets ci,t = 0,∀i 6= at. The myopic user pulls the arm that maximizes the sum of his/her
estimated reward r̂x,a,t and the compensation ca,t. In Lemma 5 we guarantee that the user will pull the system
desired arm at. Both the system and the user then observe reward feedback rat , and update their parameters
using ridge regression accordingly.

Denote CBx,t(xa) as the width of the user’s estimation confidence interval of arm a at time t, which is

computed as CBx,t(xa) = αx,t‖xa‖A−1
x,t

, where αx,t = R
√
dx log 1+t/λ

δ +
√
λ. αx,t is the upper bound

of the width of confidence ellipsoid and is set according to Theorem 2 of [69]. Similar to CBx,t(xa), we
denote the width of confidence interval on the system side as CBv,t(va) = αv,t‖va‖A−1

v,t
, where αv,t =

R
√
dv log 1+t/λ

δ +
√
λ.

The key challenge in incentivized exploration under information gap is that the system does not maintain
the same reward estimation as the user’s, because the two sides use different features to learn and predict
rewards. This prevents us from computing the minimum required compensation and makes the problem
non-trivial. We have to carefully determine the compensation: a larger amount of incentive is required to
guarantee that user will explore while we also need to keep the incentives small to maintain a sublinear total
compensation. We first use the following lemma to show that on the same arm, the confidence interval by
the system’s reward estimation is no smaller than the confidence interval by the user’s estimate. This lemma
guarantees in Algorithm 4 the system provides sufficient incentives to the user to pull its desired arms for
exploration.

Lemma 4. Consider two least square estimators (ridge regression) that estimate the model parameters with
the same reward observations but different features satisfying Assumption 1. For all t ≥ 0 and all arm a ∈ At,
we have

CBv,t(va) ≥ CBx,t(xa), (3.12)

i.e., the confidence interval maintained on the system side is no smaller than the user side estimation.

Proof Sketch. Since CBv,t(va) = αv,t‖va‖A−1
v,t

and CBx,t(xa) = αx,t‖xa‖A−1
x,t

, we can prove ‖va‖A−1
v,t
≥

‖xa‖A−1
x,t

and αvt ≥ αxt separately. It is obvious that αvt ≥ αxt because dv ≥ dx. Substitute xa = Pva and

we can prove that A−1
v,t − PT

(
PAv,tP

T
)−1

P is a positive semi-definite matrix, which leads to ‖va‖A−1
v,t
≥

‖xa‖A−1
x,t

.

Based on Lemma 4, we have the following lemma.

Lemma 5. For all t ≥ 0, with probability at least 1− 2δ, the users are incentivized to pull the desired arm
with compensation

cat,t = 4CBv,t(vat) (3.13)

to arm
at = arg max

a

(
vT
a θ̂v,t + 2CBv,t(va)

)
, (3.14)

i.e., the arm with the highest (relaxed) upper confidence bound according to the system’s estimate.

It is worth noting that the system follows a more optimistic arm selection strategy in Eq (3.14) using a
confidence interval twice larger than the classical LinUCB algorithm’s. We follow this relaxed upper confidence
bound because we need to consider the uncertainty on both parties as the first step of the derivation in Eq (3)
suggested (in the appendix). It is unclear whether we can incentivize the user to follow the classical LinUCB
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Algorithm 5 Incentivized LinUCB without Information Gap

Inputs: λ, δ
Initialize: Ax = λI,bx = 0
for t = 1 to T do

System and user observe context vectors {xa}a∈At

System calculate compensation ca,t for arm a according to Eq (3.15)
User pulls arm at = arg maxa∈A r̂x,a,t + ca,t
System and user observe reward rat
Ax,t+1 ← Ax,t + xatx

T
at , bx,t+1 ← bx,t + xatrat

θ̂x,t+1 ← A−1
x,t+1bx,t+1

algorithm. Intuitively, our exploration strategy results in a twice larger regret than the classical LinUCB’s,
which is still in the same order for T . We provide the regret and compensation upper bound of Algorithm 4 in
Section 3.2.4.

Incentivized exploration without information gap

Our solution can be easily adopted to solve the incentivized exploration problem of without information gap,
which has not been reported in any existing literature. In Algorithm 5, we show how the system incentivizes
the myopic user to follow the desired exploration strategy in this simpler setting.

Without information gap, the system and the user maintain the same parameter and reward estimations, and
the minimum required compensation to incentivize the user to explore according to LinUCB equals to the
difference of the estimated rewards between the currently best arm and the exploratory arm. The system thus
only needs to offer compensation by,

cat,t = max
i
r̂x,i,t − r̂x,at,t (3.15)

to arm at = arg maxa

(
xT
a θ̂x,t + CBx,t(xa)

)
. The user will pull the exploratory arm, because at =

arg maxi r̂x,i,t + ci,t, i.e., arm at can maximize user’s instantaneous utility. Since Algorithm 5 guaran-
tees that the user is incentivized to pull arms according to LinUCB, its regret is in the order of O(dx

√
T log T )

as LinUCB (see Theorem 3 of [69]). Its compensation upper bound is stated below.

Theorem 5 (Compensation upper bound without information gap). With probability at least 1− δ, the total
compensation provided in Algorithm 5 is upper bounded as

C(T ) ≤

(
R

√
dx log

1 + T/λ

δ
+
√
λ

)√
Tdx log(λ+

T

dx
)

Proof Sketch. First, with a high probability the compensation at round t is upper bounded by the confidence
interval, i.e., cat,t ≤ CBx,t(xat). The total compensation can then be upper bounded by

∑
t CBx,t(xat),

which can be bounded using Lemma 11 of [69].

Note that without information gap, both the regret and compensation upper bounds are in the order of
O(dx

√
T log T ), with a linear dependency on the feature dimension dx.

Discussion. Without information gap, i.e., the two parties have access to the same features and maintain the
same reward predictions, the system can offer the minimum required compensation as shown in Eq (3.15)
to incentivize exploration. With information gap, compensate by Eq (3.13) can still successfully incentivize
exploration in a high probability manner, but it is inevitably larger than the minimum amount. More specifically,
without information gap the required compensation can be computed deterministically in Eq (3.15); otherwise,
the system can only estimate the reward difference with a high probability (as shown in Lemma 5). We also
notice without information gap the system does not compensate if the greedy choice also has the largest upper
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confidence bound, which happens more often in the later rounds when the reward estimation converges. But
with information gap, our algorithm always compensates, because CBv,t(vat) > 0, i.e., the system does not
know if the user’s greedy choice is also preferred in terms of its UCB. We will show in the next section that
the total compensation is still sublinear under information gap.

3.2.4 Analysis
We first analyze the regret and compensation upper bound of Algorithm 4. We then discuss the compensation
lower bound of the problem.

Regret and compensation upper bound

Theorem 6. With probability at least 1− 3δ, the cumulative regret of Algorithm 4 is bounded by

R(T ) ≤

(
2R

√
dv log

1 + T/λ

δ
+
√
λ

)√
Tdv log(λ+

T

dv
)

Theorem 10 shows that the cumulative regret of Algorithm 4 is in the order of O(dv
√
T log T ). The proof

mostly follows the regret analysis of LinUCB, though we have to use a wider confidence interval for exploration.
Note that the resulting probability is 1− 3δ, because the users will follow the system’s exploration strategy
with probability at least 1− 2δ as shown in Lemma 5 and the confidence bound holds with probability at least
1− δ.

Theorem 7. With probability at least 1−2δ, the total compensation provided in Algorithm 4 is upper bounded
by

C(T ) ≤

(
4R

√
dv log

1 + T/λ

δ
+
√
λ

)√
Tdv log(λ+

T

dv
)

Theorem 7 shows that the total compensation of Algorithm 4 is in the order of O(dv
√
T log T ). Combining

Theorem 10 and 7, we show that our proposed algorithm can incentivize exploration under information
gap and achieve both sublinear regret and compensation. We notice that the two upper bounds linearly
depend on the system’s feature dimension dv . Comparing to the no information gap setting where we showed
both the regret and compensation is in the order of O(dx

√
T log T ), the added regret and compensation are

O
(
(dv−dx)

√
T log T

)
. And the corresponding high probability guarantee drops a little. These results suggest

that the complexity/difficulty of the problem is characterized by the dimensionality of the observed context
features, which is exactly where the information gap comes from.

Compensation lower bound

We now prove a gap-dependent asymptotic compensation lower bound of incentivized exploration in linear
bandits with finite arms, and show that our result recovers the lower bound of incentivized exploration reported
in non-contextual bandits in [76].

Let Gx,T = E
[∑T

t=1 xatx
T
at

]
. Without loss of generality assume arm 1 is the best arm and ∆a = E[r1]−

E[ra] = (x1 − xa)Tθ∗ is the reward gap between arm a and the best arm.

Theorem 8 (Compensation lower bound without information gap). Consider any consistent algorithm observ-
ing context features {xa}a∈A that guarantees an o(T p) regret upper bound for any T > 0 and 0 < p ≤ 1. In
order to incentivize a user with a least square estimator of rewards to follow the algorithm’s choice, the total
compensation C(T ) for sufficiently large T is

Ω (cx(A,θ∗) log(T )) ,



3.2 Incentivize Exploration Under Information Gap 43

where cx(A,θ∗) is the optimal value of the following optimization problem

cx(A,θ∗) = inf
α≥0

∑
xa

αxa

∆a

3

s.t. ‖xa‖2H−1
x,T

≤ ∆2
a

2
,∀xa with ∆a > 0

(3.16)

where Hx,T =
∑

xa
αxaxatx

T
at .

Our proof relies on the following lemmas:

Lemma 6 (Theorem 1 in [89]). Assume Gx,T is invertible for sufficiently large T . For all suboptimal a ∈ A
it holds that

lim sup
T→∞

log T‖xa − x1‖2G−1
x,T
≤ ∆2

a

2

Lemma 7 (Theorem 8 in [89]). For any δ ∈ [1/T, 1), T sufficiently large and t0 such that Gt0 is almost
surely non-singular,

P
(
∃t ≥ 0,xa : |r̂x,a,t − E[ra]| ≥

√
‖xa‖2G−1

x,t

fT,δ

)
≤ δ

where for some c > 0 universal constant

fT,δ = 2

(
1 +

1

log(T )

)
log(1/δ) + cdx log(dx log(T ))

Proof Sketch. Suppose an algorithm is consistent with regret o(T p), Lemma 6 suggests that the algorithm
must collect a sufficient number of samples such that the width of the confidence interval is small enough to
identify the suboptimal arms. Since the algorithm has o(T ) regret, we can find t1 such that the best arm is
pulled at least T/2 times; and because of the concentration result in Lemma 7, its confidence interval of the
best arm is smaller than ∆2/3 where ∆2 is the reward gap between the best arm and second best arm. This
means for t > t1 we have r̂x,1,t ≥ E[r1]−∆2/3 with a high probability.

For any other arm a, from Lemma 6 and the concentration bound we can show that it will also be pulled
enough times such that its confidence interval is smaller than ∆a/3 with a high probability after a fixed
round ta. Therefore, for t > ta we have r̂x,a,t ≤ E[ra] + ∆a/3. Combining the two inequalities, we know
that after a fixed time point, the minimum required compensation to incentivize the user to pull arm a is
r̂x,1,t− r̂x,a,t ≥ ∆a/3. We then solve the optimization problem in Eq (3.16) to obtain the compensation lower
bound, i.e., minimize the total compensation while satisfying the consistent constraints that the gaps of all
suboptimal arms are identified with high confidence.

Next, we construct an example to illustrate our lower bound analysis.

Example. When {xa = ea ∈ Rdx}a∈A are the basis vectors, the problem reduces to a non-contextual
K-armed bandit with K = dx. By setting ‖xa‖2H−1

x,T

= ∆2
a/2, we have αxa

= 2/∆2
a and cx(A,θ∗) =∑

a∈A,∆a>0
2

3∆a
. This gives us the compensation lower bound as follows,

C(T ) = Ω

 ∑
a∈A,∆a>0

log(T )

∆a


This result recovers the lower bound of incentivized exploration in non-contextual bandits in [76]. We also
notice that the result can be further bounded as

C(T ) = Ω

(
dx log(T )

maxa∈A∆a

)
,
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where we observe a linear dependency on dimension dx.

Note that our compensation lower bound has order Ω(log(T )), because it is gap-dependent. We leave the
question of whether one can obtain an Ω(

√
T ) gap-independent compensation lower bound for general infinite

arm setting, which will match our upper bound in Theorem 7, as an open problem.

Corollary 1 (Compensation lower bound under information gap). Consider any consistent algorithm observing
context features {va}a∈A that guarantees an o(T p) regret upper bound for any T > 0 and 0 < p ≤ 1. To
incentivize the user who observes context features {xa}a∈A satisfying Assumption 1 with a least square
estimator, the total compensation C(T ) for sufficiently large T is

Ω (cv(A,θ∗) log(T )) ,

where cv(A,θ∗) is the optimal value of the following optimisation problem

cv(A,θ∗) = inf
α≥0

∑
va

αva

∆a

3

s.t. ‖va‖2H−1
v,T

≤ ∆2
a

2
,∀va with ∆a > 0

where Hv,T =
∑

va
αva

vatv
T
at .

The proof of compensation lower bound under information gap mostly follows Theorem 8 by simply replacing
the user’s feature xa with the system’s feature va. The main difference is that when applying the concentration
bound in Lemma 7 to derive the minimum required compensation, we still use xa because the minimum
amount is based on the user’s estimated reward difference between the currently best arm and the exploratory
arm. However, we notice that xa or dx does not directly appear in this lower bound. The impact of xa being
in a lower-dimensional space is that we have a faster converging concentration bound to get the confidence
interval smaller than ∆a/3 at an earlier time point. Since we consider T →∞, this does not change the order
of the bound and the final result is dominated by va.

Considering a similar example of K-armed bandit setting where dv = K, we can obtain

C(T ) = Ω

(
dv log(T )

maxa∈A∆a

)
where we observe a linear dependency on dimension dv .

3.2.5 Experiments
We use simulation-based experiments to verify the effectiveness of our proposed incentivized exploration
solution. In our simulations, we generate a size-K arm pool A, in which each arm a is associated with a
dv-dimension vector va as the system observed features and a dx-dimension vector xa as the user observed
features. Each dimension of va is drawn from a set of zero-mean Gaussian distributions with variances
sampled from a uniform distribution U(0, 1). Each va is then normalized to ‖va‖2 = 1. We then sample
the elements of the dx × dv transformation matrix P from N(0, 1) and normalize each row i by ‖Pi‖2 = 1.
Following Assumption 1, the user observed features xa are generated as xa = Pva. P guarantees that
‖xa‖2 ≤ ‖va‖2 = 1. User’s model parameter θ∗x is sampled from N(0, 1) and normalized to ‖θ∗x‖2 = 1.
System’s model parameter is set to θ∗v = Pθ∗x. At each round t, the same set of arms were presented to all
the algorithms, but the system and the user observe their different features respectively. After the user pulls
an arm at, both the user and the system observe its reward following Eq (3.9). We set dx to 5, dv to 100, the
standard derivation σ of Gaussian noise ηt to 0.1, and the arm pool size K to 100 in our simulations.

We compare the following algorithms: 1) ILinUCB-InfoGap: our Algorithm 4 where {va}a∈At is observed
by the system; 2) ILinUCB-NoGap: our Algorithm 5 where both the system and the user observe {xa}a∈A; 3)
NoCompensation: a baseline system that does not offer any compensation to the user. The myopic user always
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(a) Regret (b) Compensation (c) Varying dimension dv

(d) Regret (MAB setting) (e) Compensation (MAB setting)

Figure 3.3: (a)-(c) Simulation result on randomly sampled features with dx = 5 and dv = 100; (d)-(e) MAB setting where the system
only observes the indices of the arms.

pulls the current best arm. We set the probability δ = 0.01 and regularization coefficient λ = 0.1 for all the
algorithms.

We report the averaged results of 10 runs where in each run we sample a random model parameter θ∗x. In
Figure 3.3(a), we observe that without providing any compensation, the myopic user suffers a linear regret,
which emphasizes the importance of incentivized exploration. Both ILinUCB-InfoGap and ILinUCB-NoGap
enjoy sublinear regret and compensation. The added regret of ILinUCB-InfoGap shows the algorithm explores
slower in the large Rdv space because of the information gap.

We notice that the total compensation of ILinUCB-InfoGap in Figure 3.3(b) is sublinear and keeps increasing.
The algorithm has to always compensate due to the information gap as we discussed before. ILinUCB-NoGap,
however, rarely compensates in the later stage. This is because when system explored sufficiently, greedy
choice on the user side agrees with the UCB strategy on the system side, and thus no compensation is needed.
In Figure 3.3(c), we vary the dimension of system’s feature dv from 5 to 200 while fixing dx = 5. We
observe that both regret and compensation increases linearly with dv, which confirms our theoretical upper
bound.

In Figure 3.3(d) and Figure 3.3(e), we simulate a K-armed bandit setting where only the indices of the arms
are available to the system. The system sets va = ea ∈ RK . The rest of the settings are the same as described
above. In this setting, our ILinUCB-InfoGap explores almost equivalently to UCB1 [8] and can be viewed
as a more optimism version of the Incentivized UCB algorithm in [76] with a wider confidence interval in
consideration of the information gap. The system observes the least information in this setting. We notice that
its regret and compensation are much larger than the results in Figure 3.3 where {va}a∈A is more informative
about the rewards. This again confirms that the system inevitably suffers higher regret and compensation when
the features are less informative.



Chapter 4

Privacy and Security in Bandit
Learning

The involvement of humans in an interactive learning process brings in both new challenges and opportunities
in privacy and security perspectives. It is a prominent requirement for intelligent systems to be not only
supportive, but also protect the privacy when interacting with humans and be robust to the biased or even
adversarial feedback. In this chapter, we introduce our research on privacy and security aspects of bandit
learning, aiming to develop interactive systems that are trustworthy to humans. We first present the work on
utilizing the structural information to balance privacy and utility in a collaborative environment, and then
discuss our understanding of the relation between and the vulnerability of linear bandits to data poisoning
attack and the geometry of its context features.

4.1 Improving Privacy-utility Trade-off in Collaborative Environments
Personalized recommendation is a double-edged sword: the gained utility also comes with the risk of privacy
violation. Overly personalized recommendations could be a potential source of privacy vulnerability, for
adversaries to take advantage of, e.g., infer users’ sensitive information. Real-world privacy breaches have
been reported in Amazon’s recommendation system [18] and Facebook’s advertisement system [19], where an
adversary learns considerable amount of information about a user solely based on the systems’ recommendation
sequences. Comparing to the offline learnt models, online learning methods directly interact with sensitive user
data, e.g., user clicks or purchasing history, and timely update the models to adjust their output, which makes
privacy an even more serious concern [90–93]. Realizing its importance, private online learning has recently
attracted increasing attention in the research community, with a goal to prevent the algorithm’s sequential
output from revealing a user’s private information. While there is existing research on differentially private
online convex optimization [90,94] and contextual bandits [93,95], private collaborative bandits have not been
explored yet.

The challenges regarding the risk of privacy breach in a collaborative bandit based recommender system
are unique. In such a system, the algorithm recommends an item to a user, and the user provides feedback
(e.g., click) based on his/her true preference. The feedback (reward) is then used to update not only the
model’s reward estimation on this user, but also other on users via the imposed dependency among users. As a
result, any change in one user’s feedback promptly leads to changes in the algorithm’s output, e.g., different
sequences of recommended items, potentially for all users. This is originally designed to improve subsequent
recommendations collectively across all users. But a user’s private information could thus be inferred and
revealed simply by releasing the recommendation sequence, e.g., extraction attack, even if this user’s feedback
is kept private in the system.

In this work, we propose the first study to equip collaborative bandit algorithms with privacy guarantees, under
the notion of global differential privacy [96] and local differential privacy [97]. Under global differential
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privacy, a user is assumed to trust (or say he/she has to trust) the system and provide real engagement data to
the system, and the system outputs private recommendations; while under local differential privacy, each user
provides perturbed statistics to the system and is no longer required to trust the system or the communication
between him/her and system. As the very first study on private collaborative bandits, we focus on algorithms
that leverage known dependency (e.g., social connections) among users, such as [1, 11]. Specifically, these
algorithms propagate the reward collected from one user to update his/her peers’ bandit models, according to a
given and fixed user dependency structure.

One common practice to achieve privacy guarantee is to inject noise to perturb certain statistics derived from
private information in the learning process, either on the server side to achieve global differential privacy or on
the client side to achieve local differential privacy [96–98]. However, how to efficiently inject noise in the
collaborative bandit learning setting is non-trivial, because of the inherent information sharing mechanism.
Specifically, to preserve privacy in collaborative bandits, we apply the tree-based mechanism [99, 100] to add
Laplace noise to the models’ statistics to guarantee privacy on each user’s reward feedback (e.g., user clicks).
We conduct sensitivity analysis, to which the key is to calibrate the noise scale with respect to the structure
of collaboration defined by the user dependency graph. Our insight is that a careful sensitivity analysis over
the collaboration structure offers the opportunity to inject minimum amount of noise and better balance the
privacy and utility trade-off. In this work, we employ the collaborative bandit algorithm developed in this
dissertation, i.e., Collaborative LinUCB (CoLin) [1], as the baseline algorithm, which represent a classic types
of social network based collaboration structure. We develop its private versions to illustrate a general solution
framework for private collaborative bandit. We prove the private algorithms reduce the added regret caused by
privacy-preserving mechanism compared to its linear bandits counterparts, i.e., collaboration actually helps to
achieve stronger privacy with the same amount of injected noise. We also empirically evaluate the algorithms
on both synthetic and real-world public datasets to validate its effectiveness and show the improved trade-off
between utility and privacy from our proposed solution framework.

4.1.1 Related Work
Differential privacy [96] provides a formal notion to quantify the amount of information an adversary could
obtain by observing the algorithm’s output. The common practice is to add Laplace or Gaussian noise to
the output; and the scale of noise depends on privacy budget (often denoted as ε) and sensitivity, which is
the change of an algorithm’s output caused by the change of input. Prior work has studied the problem of
differential privacy for offline collaborative filtering methods [101–104].

Differential privacy was first extended to an online setting for stream data in [99, 100]. Differentially
private online learning methods have been studied for online convex optimization [90, 91, 105] and bandit
problems [92, 93, 95, 106]. The key technique of these solutions is the tree-based mechanism, which was
proposed in [99, 100] for privately releasing sum statistics in stream data with finite time horizon T . Its key
idea is to maintain a noisy binary tree where the T leaf nodes are the data points, and the internal nodes in
the tree stores the sum of all the leaves in its sub-tree. Each node (which represents a partial sum) in the tree
is protected with ε

log(T ) -differential privacy. Since each sum statistic can be rewritten into dlog(T )e partial
sums, composition theorem of differential privacy [101] guarantees the sequence of output sum statistics is
ε-differentially private.

Based on this tree-based mechanism, (globally) differentially private linear bandit was first studied in [95] with
guaranteed privacy in collected user reward feedback. However, it is non-trivial to extend the private linear
bandits to collaborative bandits setting, where one user’s reward feedback directly contributes to other users’
model update. In other words, the change of model’s input from one user can be measured by the model’s
output in (potentially) all users. This propagation of information has to be carefully reflected in sensitivity
analysis to avoid trivial solutions.

4.1.2 Differential Privacy
For a contextual bandit algorithm that interacts with users over time horizon T , denote S = {rt}Tt=1 as the
reward sequence, where rt is the reward feedback from user ut at time t. S′ is considered as an adjacent
neighboring sequence of S, if it only differs from S at one point of reward ri. The output of a bandit algorithm
O (which is observed by the adversary) is the sequence of its selected arms, i.e., {at}Tt=1.
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Definition 1 (Global Differential Privacy (DP) [96] ). A randomized mechanismM is ε-differentially private
if for any adjacent neighboring sequences {S, S′} and output, P (M(S) ∈ O) ≤ eεP (M(S′) ∈ O).

Global differential privacy ensures the adversary observes almost the same output from a private algorithm,
in a probabilistic sense, if only one input data point is changed. The difference between the corresponding
output is characterized by ε. Laplace or Gaussian noise is commonly introduced to disguise the output, where
the noise scale is related to the privacy budget ε and the sensitivity ofM. We formally define sensitivity
below.

Definition 2 (Sensitivity [96]). For any adjacent neighboring sequences {S, S′}, global sensitivity of a
function f(·) is defined as ∆f = maxS,S′ |f(S)− f(S′)|.

Global differential privacy protects sensitive user data from an adversary who has access to the algorithm’s
output. But it requires the user to send his/her authentic data to the server. Thus, the server and the
communication between user and server have to be trusted. To lift the trust needed from the user, local
differential privacy (LDP) is proposed [97]. The key idea is that the privacy mechanism needs to perturb the
sensitive statistics on the client side before sending it to the server for further computation. Local differential
privacy has been adopted in many real-world applications, such as the RAPPOR system developed by Google
to collect web browsing behaviour [107], and Apple provides this privacy protection when collecting users’
usage and typing history [108]. Note that the input and output of a local differential privacy mechanism
could be different from the global differential privacy mechanism, even for the same problem, as they impose
different privacy requirements. Let Si be the reward sequence of user ui such that

⋃
i Si = S. The formal

definition of local differential privacy is provided below, where a user perturbs his/her private statistics Si
using mechanism L locally, and then send the noisy statistics to the server.

Definition 3 (Local Differential Privacy (LDP) [97] ). A randomized mechanismM is ε-locally differentially
private if for any input {Si, S′i} and output O, P (M(Si) ∈ O) ≤ eεP (M(S′i) ∈ O)

The key difference between LDP and DP is that a DP mechanism takes all users’ data S as input and requires
the output to be indifferentiable, while LDP mechanism takes only one user’s data Si as input and generates
randomized responses per user (locally) for downstream tasks.

4.1.3 Global Differential Privacy for CoLin
In Collaborative LinUCB (CoLin [1]), contextual bandit models are placed on a weighted graph G = (V, E),
which encodes the affinity relationship among users. Specifically, each node vi ∈ V in G hosts a bandit model
parameterized by θi for user i; and the edges in E represent the affinity relation over pairs of users. This graph
is encoded as an N ×N stochastic matrix W, in which each element wij is nonnegative and proportional
to the influence that user i has on user j. W is normalized such that

∑N
i=1 wij = 1 for j ∈ {1, ...., N}, and

it is assumed to be time-invariant and known to the learner beforehand. Accordingly, CoLin postulates an
additive reward generation assumption: the expected reward E[rat,ut

] is not only determined by user ut’s
own preference on the arm at, but also by that from the neighbors who have influence on ut as E[rat,ut ] =∑N
j=1 wutjx

T
at,jθj ; or equivalently this can be described as,

rat,ut ∼ N
(
Vec(X̊at,utW

T)TVec(Θ), σ2
)

(4.1)

where Vec(·) is the matrix vectorization operation, Θ is a d×N matrix consisting of parameters from all the
bandits in the graph: Θ = (θ1, . . . ,θN ), and X̊at,ut

is a d×N matrix with only the column corresponding to
user ut at time t set to xT

at,ut
and all the other columns set to zero. By defining x̃at,ut

= Vec(X̊at,ut
WT) and

ϑ = Vec(Θ), Eq (4.1) can be re-written as rat,ut ∼ N(x̃T
at,ut

ϑ, σ2).

With such a collaborative reward generation assumption, CoLin appeals to ridge regression for estimating the
global bandit parameter matrix ϑt over all the users at time t. It has a closed-form solution ϑ̂t = A−1

t bt, in
which At = λIdN +

∑t−1
t′=1 x̃at′ ,ut′ x̃

T
at′ ,ut′

and bt =
∑t−1
t′=1 x̃at′ ,ut′ rat′ ,ut′ . IdN is an identity matrix and λ

is the trade-off parameter for the L2 regularization in ridge regression.
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Algorithm 6 Differentially Private CoLin (DP-CoLin)

1: Inputs: δ ∈ R+,λ ∈ [0, 1], W ∈ RN×N , ∆

2: Initialize: A1 ← λIdN×dN , b1 ← 0, ϑ̂p1 ← A−1
1 b1,

3: for t = 1 to T do
4: Receive user ut, observe context vectors, xat,ut

∈ Rd and construct x̃at,ut
= Vec(X̊at,ut

WT) for
∀a ∈ A

5: Take action at = arg maxa∈A x̃T
at,ut

ϑ̂pt + αt

√
x̃T
at,ut

A−1
t x̃at,ut

, where αt is given by Lemma 9.
6: Observe payoff rat,ut

7: At+1 ← At + x̃at,ut x̃
T
at,ut

, bt+1 ← bt + x̃at,utrat,ut

8: Sample noise ηt ∼ TreeMechanism(∆, ε), in which ∆ = maxi L‖Wi‖2
9: bpt+1 ← bt+1 + ηt, ϑ̂

p
t+1 ← A−1

t+1b
p
t+1

The required information sharing in CoLin brings unique challenges in protecting users’ reward feedback, i.e.,
the change in one user’s reward feedback can be effectively inferred from all users’ observed recommendation
sequences. The recommendation sequences for all users thus have to be perturbed to obtain differential
privacy. But instead of directly adding noise to the model’s output, i.e., its choice of arms, we choose to
add noise ηt to the sufficient statistics bt =

∑t−1
t′ x̃at′ rt′ in CoLin, where we sample ηt from a tree-based

mechanism [99,100]. Because differential privacy is immune to post-processing [109], this ensures differential
privacy on the algorithm’s output. We name this private derivation of CoLin as (Globally) Differentially Private
CoLin (DP-CoLin), and provide its details in Algorithm 6.

The key in DP-CoLin is to derive the sensitivity of CoLin. Analyzing sensitivity in a linear bandit is
straightforward [95], as the sensitivity on bt can be directly bounded by ‖xa‖2|ra − r′a| ≤ L, where the
reward difference is bounded by 1 and the norm of context vector is bounded by L. However, for collaborative
bandits, the context vectors encode user dependency and have a higher dimension x̃a,u ∈ RdN . A trivial
bound is ‖x̃a,u‖2|ra − r′a| ≤ NL; but we argue this is not tight enough and unnecessarily introduces large
noise. Below we analyze the privacy guarantee of DP-CoLin with a tighter sensitivity bound, which calibrates
the noise with respect to the structure of collaboration embedded in W.

Privacy Analysis of DP-CoLin.

Lemma 8 provides the sensitivity of model statistics bt in CoLin, based on which we develop the privacy
guarantee of DP-CoLin.

Lemma 8 (Sensitivity of bt in CoLin). Sensitivity of bt is ∆ = maxi L‖Wi‖2, where Wi is the i-th row of
user dependecy matrix W and L is the norm of context vector x.

The proof of this lemma is provided in Appendix. Note that the sensitivity ∆ of CoLin is related to the
structure of W; and we discuss two extreme cases of W to illustrate its effect on privacy protection. Consider
when W is an identity matrix, the resulting sensitivity by our Lemma 8 is L, which is the same as in linear
bandits, since there is no influence among users. When W is a uniform matrix, i.e., users have homogeneous
influence among each other and wij = 1

N , Lemma 8 shows the sensitivity is L√
N

. This result is significant:
stronger user dependency in CoLin not only leads to lower regret [1], but also smaller sensitivity of bt, which
directly reduces the level of required noise to guarantee privacy. This result is also intuitive: when every user
has uniform influence on each other, it becomes harder to tell whose action causes the observed change in the
algorithm’s output. Less perturbation is thus needed to protect a single user’s privacy. This improvement can
hardly be obtained by directly applying existing conclusions on linear bandits.

Based on the above sensitivity analysis, we prove privacy guarantee of DP-CoLin in the following.

Theorem 9 (Privacy of DP-CoLin). Algorithm 6 with global sensitivity ∆ defined in Lemma 8 is ε-differentially
private.
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Proof. By applying tree-based mechanism [99, 100] with privacy budget ε and sensitivity ∆ as shown in
line 9-11 of Algorithm 6, the perturbed statistics bpt is ε-differentially private. Since differential privacy is
immune to post-processing [109], this consequently makes the model parameter ϑ̂pt and the sequence of
recommendation {at : t ∈ [1..T ]} produced by ϑ̂pt also ε-differentially private.

Regret Analysis of DP-CoLin.

We first prove the corresponding confidence bound of parameter estimation in DP-CoLin, i.e., αt in line 5
of Algorithm 6, which governs its upper confidence bound based arm selection for online learning. In the
following discussion, we use ‖B‖A=

√
BTAB to denote the matrix norm of vector B.

Lemma 9 (Confidence Bound of DP-CoLin). For any δ > 0, with probability at least 1− δ, the estimation
error of bandit parameters in DP-CoLin is bounded by,

‖ϑ̂p
t − ϑ

∗‖At ≤

√
dN log

(
1+

∑t
t′=1

∑N
j=1 w

2
ut′ j

λdN

)
−2 log(δ) +

√
λ‖ϑ∗‖+

∆

ε
log T

√
log t log

1

δ

The proof is provided in Appendix. The right-hand side of the inequality in Lemma 9 gives us αt that is used
in line 5 of Algorithm 6 for arm selection. We notice that in order to maintain a private bandit model ϑ̂pt ,
the parameter estimation error of DP-CoLin suffers from an additional term ∆

ε log T
√

log t log 1
δ comparing

to that in CoLin due to the added noise ηt. Based on Lemma 9, we have the following theorem about the
upper regret bound of the DP-CoLin algorithm, which shows the trade-off between privacy budget ε and
regret.

Theorem 10 (Regret of DP-CoLin). With probability at least 1 − δ, the accumulated regret of DP-CoLin
algorithm satisfies,

R(T ) ≤ 2

√
2dNT log

(
1 +

∑T
t=1

∑N
j=1 w

2
utj

λdN

)(√
λ‖ϑ∗‖+

√
dN log

(
1+

∑t
t′=1

∑N
j=1 w

2
ut′ j

λdN

)
−2 log(δ) (4.2)

+
maxi L‖Wi‖2

ε
log1.5 T log

1

δ

)
Specifically, the added regret of DP-CoLin comparing to the CoLin is the last term, i.e.,

2 maxi L‖Wi‖2
ε

log1.5 T log
1

δ

√
2dNT log

(
1 +

∑T
t=1

∑N
j=1 w

2
utj

λdN

)

We illustrate the proof details in Appendix. From Theorem 10, we can find that the dependency structure plays
an important role in the added regret, and again we discuss those two extreme cases of W to explain its effect.

If W is an identity matrix, the added regret is in the order of O
(√

N
ε log1.5 T

√
log T

N

√
T log 1

δ

)
. And if W is

a uniform matrix, the added regret is in the order of O
(

1
ε log1.5 T

√
log T

N

√
T log 1

δ

)
. It is important to note

that the collaboration structure also helps reduce the added regret, by a factor of 1√
N

, required to achieve
privacy. In the meanwhile, the regret reduction from collaboration in the original CoLin is still preserved in
the first part of Eq (4.2) in DP-CoLin.

4.1.4 Local Differential Privacy for CoLin
Global differential privacy for CoLin requires each user to send true reward (e.g., clicks) to the server, which
then aggregates the data, injects noise, and publishes a privacy preserving output. Local differential privacy lifts
the trust on the server by asking each user to perturb his/her data locally, before any disclosure to non-trustful
server or the communication. Intuitively, this stronger privacy guarantee is at the cost of worse utility.

We present the Locally Differentially Private CoLin algorithm (LDP-CoLin) in Algorithm 7 in Appendix due to
the space limit. LDP-CoLin requires a different communication mechanism: instead of directly sending reward
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rat,ut to the server, each user u maintains bu,t =
∑tu−1
t′=1 x̃at′ ,urat′ ,u locally as shown in line 8 of Algorithm

7. Each user perturbs their own bu,t by a tree-based mechanism, where noise scales with per-user sensitivity
∆u (line 8-9), and then sends it to the server. The server aggregates the received statistics to get bpt as shown
in line 12, and uses it for model estimation and subsequent recommendations. Again in LDP-CoLin the key is
to analyze the sensitivity, which controls the minimum amount of noise needed for privacy protection.

Algorithm 7 Locally Differentially Private CoLin (LDP-CoLin)

1: Inputs: δ ∈ R+,λ ∈ [0, 1], W ∈ RN×N , ∆1:N

2: Initialize: A1 ← λIdN×dN , bu,1 ← 0 for ∀u, ϑ̂1 ← A−1
1 b1,

3: for t = 1 to T do
// Sever side:

4: Receive user ut, observe context vectors xat,ut ∈ Rd, and construct x̃at,ut = Vec(X̊at,utW
T) for

∀a ∈ A
5: Take action at = arg maxa∈A x̃T

at,ut
ϑ̂t + αt

√
x̃T
at,ut

Atx̃at,ut , where αt is given by Lemma 11.
// User side:

6: Observe rat,ut

7: Update locally but,tut+1 ← but,tut
+ x̃at,utrat,ut

8: Sample noise ηut,tut
∼ TreeMechanismut

(∆ut
, ε), in which ∆ut

= L‖Wut
‖2

9: Send perturbed statistics bput,tut+1 ← but,tut+1 + ηut,tut
to server

10: tut
← tut

+ 1
// Server side:

11: At+1 ← At + x̃at,ut x̃
T
at,ut

, bpt+1 ←
∑
u bpu,tut

, ϑ̂pt+1 ← A−1
t+1b

p
t+1

Privacy Analysis of LDP-CoLin

We first analyze the sensitivity ∆u of bu,t for each user u, and then show that Algorithm 7 is locally
differentially private using this per-user sensitivity.

Lemma 10 (Sensitivity of bu,t in CoLin). Sensitivity of bu,t for user u is ∆u = L‖Wu‖2.

The proof is similar to Lemma 8 and the details are provided in Appendix. The main difference is that
sensitivity ∆u is for a specific user u, which only relies on his/her dependent neighbors, i.e., Wu.

Theorem 11 (Privacy of DP-CoLin). Randomized response bpu,t in Algorithm 7 with sensitivity ∆u defined in
Lemma 10 is ε-locally differentially private.

The proof is similar to DP-CoLin but works in the local setting: as shown in line 8-9 of Algorithm 7, each
user u maintains his/her own tree-based mechanism with privacy level ε and sensitivity ∆u locally. The local
statistics bu,t are perturbed by the tree-based mechanism thus is ε-locally differentially private, and thus are
ϑ̂pt and the resulting recommendation sequence.

Regret Analysis of LDP-CoLin

Due to local noise injection, the server’s arm selection strategy has to be revised accordingly, which can be
guided by the following lemma.

Lemma 11 (Confidence Bound of LDP-CoLin). Let ti be the number of times where user i interacts with
the system up to time t, i.e.,

∑
i ti = t. For any δ > 0, with probability at least 1− δ, the estimation error of

bandit parameters in LDP-CoLin is bounded by,

‖ϑ̂p
t − ϑ

∗‖At ≤

√
dN log

(
1+

∑t
t′=1

∑N
j=1 w

2
ut′ j

λdN

)
−2 log(δ) +

√
λ‖ϑ∗‖+

1

ε
log

1

δ

√√√√ N∑
i=1

log ti(∆i log Ti)2
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The proof detail is shown in Appendix. Similarly, the right-hand side of the inequality gives us αt which is
used in line 5 of Algorithm 7. Based on it, we have the following theorem about the upper regret bound of
LDP-CoLin.

Theorem 12 (Regret of LDP-CoLin). With probability at least 1− δ, the accumulated regret of LDP-CoLin
algorithm (Algorithm 7) satisfies,

R(T ) ≤ 2

√
2dNT log

(
1 +

∑T
t=1

∑N
j=1 w

2
utj

λdN

)(√
λ‖ϑ∗‖+

√
dN log

(
1+

∑t
t′=1

∑N
j=1 w

2
ut′ j

λdN

)
−2 log(δ) (4.3)

+
1

ε
log

1

δ

√√√√ N∑
i=1

‖Wi‖2 log3 Ti

)

Specifically, the added regret of LDP-CoLin comparing to the non-private CoLin is the last term.

Due to space limit, we omit the details of this proof. Note that Theorem 12 is in a general form in which we do
not make any assumption about the users’ arriving frequency or order. To better illustrate the added regret, we
discuss a special case where the frequency of each user interacting with the system is the same, i.e., Ti = T

N .
The added regret can thus be simplified as,

2

ε
log1.5 T

N
log

1

δ

√√√√ N∑
i=1

‖Wi‖2

√
2dNT log

(
1 +

∑T
t=1

∑N
j=1 w

2
utj

λdN

)
.

Consider the best case scenario where W is a uniform matrix, e.g., maximum collaboration, the added
regret in LDP-CoLin is in the order of O

(√
N
ε log2 T

N2

√
T log 1

δ

)
, while DP-CoLin only has the added regret

of O
(

1
ε log1.5 T

√
log T

N2

√
T log 1

δ

)
. In fact, in both cases of the illustrative dependency structure, e.g., no

collaboration and uniform collaboration, the added regret of LDP-CoLin is roughly
√
N -times larger compared

with DP-CoLin’s, and increases when the number of users grows. This is the inevitable cost to protect privacy
in the local (user) level. We verified this relationship between the number of users and regret in our empirical
evaluations later as well.

4.1.5 Experiments
We performed empirical evaluations of our developed private collaborative bandit algorithms against several
baseline algorithms including the non-private collaborative bandit algorithms CoLin [1] and GOBLin [11],
non-private LinUCB [12] and private LinUCB [95]. The datasets include a synthetic dataset from simulation,
and two real-world datasets for music recommendation and bookmark recommendation. We compare models’
accumulated regret on the synthetic dataset and accumulated reward on real-world datasets.

Evaluation Datasets

• Synthetic dataset. To build a synthetic dataset, we follow the settings in [1, 11] to simulate a collaborative
online recommendation environment. Specifically, we generate N users, each of which is associated with a
d-dimensional parameter vector θ∗, i.e., Θ∗ = (θ∗1 , . . . ,θ

∗
N ). Each dimension of θ∗i is drawn from a uniform

distribution U(0, 1) and normalized to ‖θ∗i ‖2 = 1. Θ∗ is treated as the ground-truth bandit parameters for
reward generation, and they are withheld from bandit algorithms. We construct the golden relational stochastic
matrix W for the graph of users by defining wij ∝ 〈θ∗i ,θ∗j 〉. We delete the edges where wij is smaller than a
predefined threshold, and get the final user graph G by normalizing each column of W by its L1 norm. Note
that since wij is generated proportionally to the similarity between θ∗i and θ∗j , the resulting graph naturally
satisfies the collaborative assumption in GOBLin [11], i.e., connected users share similar θ∗. The resulting
user graph G represented by the relational matrix W are disclosed to the bandit algorithms. In the end, we
generate a size-K arm pool A. Each arm a in A is associated with a d-dimensional feature vector xa, each
dimension of which is also drawn from U(0, 1). We normalize xa by its L2 norm.
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To simulate the collaborative reward generation process among users, we compute the reward of arm a for user
i at time t as rat,i = Vec(X̊at,iW

T)TVec(Θ∗) + γt following Eq (4.1), where γt ∼ N(0, σ2). To increase
the learning complexity, at each time t, our simulator only discloses a subset of arms in A to the learning
algorithms, e.g., randomly select 10 arms from A without replacement. In simulation, based on the known
bandit parameters Θ∗, the optimal arm a∗t,i and the corresponding reward ra∗t,i for each user i at time t can be
explicitly computed. In our experiment, we set the number of users N = 10 and size of arm pool K = 1, 000.
We run T = 30, 000 iterations and interact with users evenly, which means we serve each user i in total
Ti = 3, 000 iterations.

• LastFM and Delicious datasets. These two datasets and the pre-processing of them are the same as that in
CoLin.

Experiment Results

• Regret comparison. On the synthetic dataset, accumulated regret is used to evaluate the performance of
the compared algorithms. In the real-world datasets, since we do not have an oracle policy, we instead use
each learning algorithm’s accumulated reward for evaluation. The accumulated regret (the lower the better)
on the synthetic dataset and accumulated reward (the higher the better) on real-world datasets are reported in
Figure 4.1 (a) and Figure 4.2 respectively. We set the privacy budget ε = 2 for all private algorithms in our
experiments by default.

In both synthetic and real-world datasets, the non-private collaborative bandits performed better than their
globally and locally private counterparts, which is surely expected. We also observe that compared with the
globally differentially private collaborative bandit algorithms, i.e., DP-CoLin and DP-GOBLin, the locally
differentially private algorithms have significantly worse regret (smaller accumulated reward). This is also
expected as local differential privacy is a stronger privacy definition on the user side, and more model pertur-
bation has to be introduced to achieve so. Specifically, as our analysis in Section 4.1.4 suggested, the added
regret of LDP collaborative bandit algorithms are roughly

√
N -times larger than their DP counterparts.

We also notice that DP-CoLin and DP-GOBLin performed better than DP-LinUCB in both synthetic and
real-world datasets. The improvement comes from two sources: 1) collaborative learning, which improves
the convergence rates of model parameter estimation as discussed in [1, 11]; and 2) privacy mechanism under
the collaborative environment, which adds less noise than DP-LinUCB when users are not all independent
or disconnected. Accordingly to Figure 4.1 (a), it is obvious that comparing to the regret difference between
LinUCB and GOBLin or CoLin, the regret difference between DP-LinUCB and DP-GOBLin or DP-CoLin
is much larger. This confirms that the main reason of regret reduction is the calibrated privacy mechanisms
developed in this work.

• Parameter estimation quality. To better illustrate the performance of different bandit algorithms, we also
studied their parameter estimation quality, which directly measures the algorithms’ online learning convergence.
Specifically, we reported the L2 difference between the estimated bandit parameter ϑ̂t and the ground-truth
parameter ϑ∗ in Figure 4.1 (b). We observe that private collaborative bandit algorithms have a slower model
convergence than their non-private counterparts. Moreover, local differential privacy clearly imposes a much
larger estimation error comparing to their counterparts with global differential privacy (note that the y-axis is
on a log-scale), which further confirms the required cost to guarantee privacy in the local setting.

Detailed Algorithm-level Analysis

To better understand the trade-off between privacy and utility in collaborative bandit learning, we varied the
privacy parameter ε and number of users in our evaluation.

• Effect of privacy budget ε. In Table 4.1, we reported the accumulated regret of the collaborative bandit
algorithms with global and local differential privacy under different privacy parameter ε. We vary ε from 0.5
to 10. We run each experiment for T = 10, 000 iterations and report the average regret of 5 repeated runs.
From the results, we notice a clear trade-off between the required privacy level ε and the resulting regret.
Stronger privacy requirement (i.e., a smaller ε) requires the privacy mechanism to introduce more noise, which
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Figure 4.1: Experimental results on synthetic dataset.
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Figure 4.2: Experimental results on real-world datasets.

directly inflates regret. This result also supports our theoretical analysis that the added regret of the private
collaborative bandit algorithms is in the order of O( 1

ε ).

• Effect of number of users N . In Figure 4.1 (c), we show the accumulated regret of the collaborative bandit
algorithms with global and local differential privacy under different number of users N . We run T = 10, 000
iterations and all users are evenly served for T

N times. We varyN from 5 to 50. From the result we observe that
the regret increases with the number of users. By looking at the difference between the regret of non-private
algorithms and their private versions, we can notice that the added regret increases with number of users N .
This also validates our theoretical analysis that the added regret for LDP collaborative bandit algorithms is
roughly

√
N times larger than their DP versions, which is the inevitable cost to protect privacy at the local

level.

4.2 Data Poisoning Attack on Linear Bandits
Since bandit algorithms adapt their behavior according to feedback from the environment, it makes such
algorithms susceptible to adversarial attacks, especially the data poisoning attacks. Under such an attack, a
malicious adversary observes the pulled arm and its reward feedback, and then modifies the reward to misguide
the bandit algorithm to pull a target arm, which is of the adversary’s interest. Due to the wide applicability
of bandit algorithms in practice, understanding the robustness of bandit algorithms under data poisoning
attacks becomes increasingly important [21, 22, 110]. However, most known results for data poisoning attacks
concentrate on supervised learning settings [111, 112]; so far, little is known about its impact on contextual
bandit learning. It is even unknown whether bandit algorithms are vulnerable to data poisoning attacks in
general contextual environments.

Recent studies on adversarial attacks in bandits have been focused mainly on context-free settings. Jun
et al. [21] and Liu et al. [22] showed that in a stochastic context-free multi-armed bandit environment, an
adversary can force any bandit algorithm to pull a target arm linear times only using a logarithmic cost.
Garcelon et al. [110] studied poisoning attacks on k-armed linear contextual bandits and showed that linear
contextual bandit algorithms can be attacked. Linear stochastic bandits lie in between context-free stochastic
bandits and linear contextual bandits. Interestingly, the analysis of its attacks turns out to be arguably more
difficult than both, due to arm correlations as we will elaborate later. To our knowledge, there is no unknown
result about the attack on linear stochastic bandits.



4.2 Data Poisoning Attack on Linear Bandits 55

Table 4.1: Cumulative regret across different bandit algorithm under different privacy level ε.

ε 0.5 1 2 5 10
DP-LinUCB 3082.90±82.69 2683.69±89.74 1504.14±30.40 910.97±20.83 496.11±14.72
DP-CoLin 2619.56±29.44 2450.70±50.51 1327.70±23.79 884.19±23.12 297.18±6.80

DP-GOBLin 2672.56±29.13 2550.22±19.67 964.63±13.61 685.65±6.47 246.92±9.70
LDP-CoLin 3310.53±51.85 3095.10±48.97 2389.05±61.24 1795.40±31.21 938.76±26.16

LDP-GOBLin 3268.70±65.61 3004.80±75.08 2334.62±63.78 1743.57±36.40 1060.53±28.99

In this work, we study adversarial data poisoning attacks on k-armed linear stochastic bandits, where an
adversary modifies the reward using a sublinear budget to misguide the bandit algorithm to pull a target arm
x̃ linear times. We answer the following two important research questions: 1) whether a linear stochastic
bandit environment is efficiently attackable1, and 2) if Yes, how can the adversary design an effective attack.
Regarding the attackability of an environment, we characterize its nature as the feasibility of a set of linear
constraints based on the target arm x̃, all non-target arms {xi}ki=1 \ x̃, and the underlying bandit parameter θ∗.
The key insight is that attackability is equivalent as finding a parameter vector θ̃, under which the rewards of
all non-target arms are smaller than the reward of target arm x̃ while the reward of x̃ remains the same as that
in the original environment specified by θ∗. We prove the feasibility of the constraints is both sufficient and
necessary for attacking a linear stochastic bandit environment. Intuitively, to effectively promote the target
arm x̃, an adversary needs to lower the rewards of non-target arms in the null space of x̃ by θ̃.

Inspired by the attackability analysis, we propose a two-stage attack framework against linear stochastic bandit
algorithms and demonstrate its application against LinUCB [12] and Robust Phase Elimination [113]: the
former is one of the most widely used linear contextual bandit algorithms, and the latter is a robust version
designed for settings with adversarial corruptions. In the first stage, our method collects a carefully calibrated
amount of rewards on the target arm to assess whether the given environment is attackable. The decision is
based on an “empirical” version of our feasibility characterization. If attackable, i.e., there exists a feasible
solution θ̃, in the second stage the method depresses the rewards the bandit algorithm receives on non-target
arms based on θ̃, in order to fool the bandit algorithm to recognize the target arm as optimal.

4.2.1 Preliminaries
Linear stochastic bandit. We study the problem of adversarial attacks on k-arm linear stochastic bandit, where
a bandit algorithm sequentially interacts with an environment for T rounds. In each round t, the algorithm
pulls an arm at from a set A = {xi}ki=1 with k arms, and receives reward rt from the environment. Each arm
a is associated with a d-dimension context feature vector xa ∈ Rd and we assume ‖xa‖2 ≤ 1. The expected
reward of arm a is assumed to be a linear function of both context feature and unknown bandit parameter θ∗,
i.e., E[ra] = xTaθ

∗, where θ∗ ∈ Rd and we assume ‖θ∗‖2 ≤ 1. After pulling arm at, the algorithm observes
reward feedback rat,t = xTatθ

∗ + ηt, where ηt is an R-sub-Gaussian noise term. The performance of a bandit
algorithm is evaluated by its pseudo-regret, which is defined as R(T ) =

∑T
t=1(xTa∗θ

∗ − xTatθ
∗), where a∗

is the best arm according to θ∗, i.e., xa∗ = arg maxx∈A[xTθ∗]. Due to the possible correlation among the
context vectors, manipulating the reward of an arm will also change the reward estimation of other correlated
arms. This is different from the k-arm linear contextual bandits setting considered in [110], where each arm
has an unknown bandit parameter and the reward estimation is independent among arms. Thus the reward
manipulation of an arm will not affect other arms.

LinUCB. LinUCB [12, 69] is a classical algorithm for linear stochastic bandit. It estimates a bandit model
parameter θ̂ using ridge regression, i.e., θ̂t = A−1

t

∑t
i=1 xairi, where At =

∑t
i=1 xaix

T
ai + λI and λ is the

coefficient of L2-regularization. We use ‖x‖A =
√
xTAx to denote the matrix norm of vector x. Confidence

bound about reward estimation on arm x is defined as CBt(x) = αt‖x‖A−1
t

, where αt is a high probability

bound of ‖θ∗ − θ̂t‖At
. In each round t, LinUCB pulls an arm with the highest upper confidence bound, i.e.,

1“Efficient attack” in this work means fooling bandit algorithm to pull the target arm for linear times with sublinear attack cost. We
use attackable and efficiently attackable interchangeable, as the adversary normally only has a limited budget and needs to design a
cost-efficient strategy.
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at = arg maxa[xTa θ̂t + CBt(xa)] to balance the explore-exploit trade-off. LinUCB algorithm achieves a
sublinear upper regret bound [69, 88], i.e., R(T ) = Õ(

√
T ) ignoring logarithmic term.

Threat model. The goal of an adversary is to fool the bandit algorithm to pull the target arm x̃ ∈ A for
T − o(T ) times. Like most recent works in this space [21, 22, 110, 114], we consider the data poisoning
attack on the rewards: after arm at is pulled by the bandit algorithm, the adversary modifies the original
reward rat from the environment by ∆rt to become r̃at , i.e., r̃at = rat + ∆rt, and provides the manipulated
reward r̃at to the algorithm. Naturally, the adversary should achieve its attack goal with minimum attack
cost C(T ) =

∑T
t=1 |E [∆rt] |. An attack strategy is considered efficient, if it achieves a sublinear cost, i.e.,

C(T ) = o(T ). Note that the expectation of reward manipulation ∆rt is taken with respect to only the
sub-Gaussian noise in the rewards.

4.2.2 The Attackability of Linear Stochastic Bandits
The main goal of this work is to study the attackability of a linear stochastic bandit environment. At a first
glance, one might wonder whether attackability should be a property of bandit algorithms rather than a
property of the environment, since if an algorithm can be attacked, we should have “blamed” the algorithm for
not being robust enough, rather than blaming the environment. A key insight of this work is that attackability
is also a property of the linear stochastic bandit environment.

Definition 4 (Attackability of a k-Arm Linear Stochastic Bandit Environment). A k-arm linear stochastic
bandit environment 〈A = {xi}ki=1,θ

∗〉 is attackable with respect to (w.r.t.) target arm x̃ ∈ A if for any
no-regret learning algorithm, there exists an attack method that uses o(T ) attacking budget but fools the
algorithm to pull arm x̃ at least T − o(T ) times for any T large enough.

Figure 4.3: Illustration of attackability.

It is worthwhile to further digest the above definition of attack-
ability. First, this definition is all about the bandit environment
〈A,θ∗〉 and the target arm x̃, but independent of any specific
bandit algorithms. Second, if an attack method can only fool a
bandit algorithm to pull the target arm x̃ under (only) a few dif-
ferent time horizons T , it does not count as a successful attack
— a successful attack has to succeed for infinitely many time
horizons. Third, by reversing the order of quantifiers, we obtain
an assertion that a bandit environment is not attackable w.r.t. the
target arm x̃ if there exists some no-regret learning algorithm
such that no attack method can use o(T ) attack budget to fool
the algorithm to pull arm x̃ at least T − o(T ) times for any T
large enough. The following simple yet insightful example illustrates that there are indeed linear stochastic
bandit setups in which some no-regret learning algorithm cannot be attacked.

Example 1 (An unattackable environment). Figure 4.3 shows a three-arm environment with A = {x1 =
(0, 1), x2 = (1, 2), x3 = (−1, 2)}. Suppose the target arm x̃ = x1 and the ground-truth bandit parameter
θ∗ = (1, 1). The expected true rewards of the arms are r∗1 = 1, r∗2 = 3, r∗3 = 1 and x2 is the best arm in this
environment. We give an intuitive argument here that this environment with target arm x̃ is not attackable,
while its formal proof is an instantiation of our Theorem 13. Specifically, we argue that LinUCB cannot be
attacked in the above environment (our argument shall generalize to any linear-regression based no-regret
algorithms). Suppose, for the sake of contradiction, that there exists an efficient attack which fools LinUCB to
pull x1 T − o(T ) times. Therefore, LinUCB must estimate θ∗ in the x1’s direction almost accurately as T
becomes large, since the Ω(T ) amount of true reward feedback in x1 direction will ultimately dominate the
o(T ) adversarial contamination. This suggests that the estimated parameter θ̂t will be close to→ (α, 1) for
some α. Since (α, 1)T(x2 + x3) = 4, implying that either x2 or x3 will have its estimated reward larger than
2 (i.e., strictly larger than x1’s reward) for any α. This shows that x1 cannot be the best arm in LinUCB’s
estimation, which causes a contradiction. therefore, we can safely conclude that this environment cannot be
attacked given o(T ) budget.

Note that when A = {x1, x2}, the environment becomes attackable: as shown in the figure, a feasible attack
strategy is to perturb reward according to θ̃ = (−2, 1). The key idea is that in the null space of x1, θ̃⊥ reduces
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the reward of x2 to make x1 the best arm but without changing the reward of x1 from the environment. The
presence of arm x3 prevents the existence of such θ̃⊥ and makes the environment unattackable.

The above example motivates us to study when a linear stochastic bandit environment is attackable. After all,
if we are facing an unattackable environment, we could safely design no-regret algorithms without any concern
of some particular type of adversarial attacks. As Example 1 shows, the attackability of a bandit algorithm
depends on the arm set A = {xi}ki=1, the target arm x̃, and the underlying bandit parameter θ∗.

We now proceed to give a complete characterization about what bandit environments are attackable. For clarity
of presentation, in this section, we shall always assume that the adversary knows exactly the ground-truth
bandit parameter θ∗ and thus the true expected reward of each arm. This is also called the oracle attack in
previous works [21, 22, 115]. However, in the next section, we will show that this assumption is not needed:
when the bandit environment is indeed attackable, we can design provably successful attacks even if the
adversary does not know the underlying bandit parameter θ∗.

We need the following convenient notation to state our result. Let

θ∗‖ =
x̃Tθ∗

‖x̃‖22
x̃ (4.4)

denote the projection of ground-truth bandit parameter θ∗ onto x̃ direction. Since the attackability depends on
the target arm x̃ as well, we shall include the target arm x̃ as part of the bandit environment. The following
theorem provides a clean characterization of attackability.

Theorem 13 (Characterization of Attackability). A bandit environment 〈A = {xa},θ∗, x̃〉 is attackable if and
only if the optimal objective ε∗ of the following linear program satisfies ε∗ > 0.

maximize ε

subject to x̃Tθ∗‖ ≥ ε+ xTa (θ∗‖ + θ̃⊥), for xa 6= x̃.

x̃Tθ̃⊥ = 0
ε ≤ 1

(4.5)

where ε ∈ R and θ̃⊥ ∈ Rd are variables.

Since LP (4.5) and its solutions will show up very often in our later discussions, we provide the following
definition for reference convenience.

Definition 5 (Attackability Index and Certificate). The optimal objective ε∗ of LP (4.5) is called the attacka-
bility index and the optimal solution θ̃⊥ to LP (4.5) is called the attackability certificate. 2

Notably, both the index ε∗ and certificate θ̃⊥ are intrinsic to the bandit environment 〈A = {xa},θ∗, x̃〉,
and are irrelevant to any bandit algorithms used. As we will see in the next section when designing attack
algorithms without the knowledge of θ∗, the attackability index ε∗ will determine how difficult it is to attack
the environment.

Proof of Theorem 13. Proof of sufficiency. Suppose the attackability index ε∗ > 0 and let θ̃⊥ be a certificate.
We design the oracle null space attack based on the knowledge of bandit parameter θ∗. Let θ̃ = θ∗‖ + θ̃⊥
where θ∗‖ is defined in Eq (4.4). The adversary perturbs the reward of any non-target arm xa 6= x̃ as

r̃a,t = xTa θ̃+ η̃t, whereas the reward of the target arm x̃ is not touched. In other words, the adversary misleads
the algorithm to believe that θ̃ is the ground-truth parameter. To make attack appear less “suspicious”, a
sub-Gaussian noise η̃t is added to the perturbed reward to make it stochastic. The key idea is that the attacker
does not need to perturb the reward of target arm because x̃Tθ̃ = x̃Tθ∗‖ = x̃Tθ∗, i.e., the original reward is the
same as perturbed reward in expectation. Instead, the attacker only perturbs the reward in the null space of
x̃ according to θ̃⊥, which guarantees the cost-efficiency of the attack. Details of the attack can be found in
appendix.

2We may omit “attackability” when it is clear from the context, and simply mention index and certificate.
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Since the perturbed rewards observed by the bandit algorithm are generated by θ̃, target arm x̃ is the optimal
arm in this environment due to the attackability index ε∗ being strictly positive. Any no-regret bandit algorithm
will only pull the other non-target arms o(T ) times and pull target arm T − o(T ) times. Thus the attack is
successful. Moreover, the cost of oracle attack is o(T ) because the attacker only perturbs rewards on the
non-target arms for o(T ) times, and the expected cost on each attack is bounded by a constant (because of the
finite norm of xa and θ∗).

Proof of necessity. We discuss the proof sketch here and leave the detailed proof in the appendix. Specifically,
we shall prove that if ε∗ ≤ 0, the bandit environment is not attackable. To prove this, we will need to identify
at least one no-regret bandit algorithm such that no attack strategy can succeed in attacking it. In particular, we
will show that LinUCB is robust to any attack strategy with o(T ) budget when ε∗ ≤ 0.

LinUCB maintains a model estimate θ̂t at round t using the attacked rewards {r̃1:t}. We decompose θ̂t =

θ̂t,‖ + θ̂t,⊥, where x̃ ⊥ θ̂t,⊥ and x̃ ‖ θ̂t,‖. Suppose, for the sake of contradiction, LinUCB is attackable
assuming ε∗ ≤ 0. According to Definition 4, the target arm x̃ will be pulled T − o(T ) times for infinitely
many different time horizons T . Note that the following inequalities hold when x̃ has the unique largest UCB
score (and thus is pulled with probability 1):

x̃Tθ̂t,‖ + CBt(x̃) > xTa θ̂t,‖ + xTa θ̂t,⊥ + CBt(xa),∀xa 6= x̃ (4.6)

By attackability, we know that the above inequality will hold for infinitely many t’s. As t → ∞, we have
CBt(x̃) → 0, and CBt(xa) is strictly positive. Moreover, the estimation of θ̂t,‖ will converge to θ∗‖ since
x̃ will be pulled for t − o(t) times. By letting t → ∞ in both sides of the above inequalities, we have the
following conclusion:

x̃Tθ∗‖ > xTaθ
∗
‖ + xTa θ̂t,⊥,∀xa 6= x̃ (4.7)

This implies that there must exist a θ̂t,⊥ that satisfies x̃ ⊥ θ̂t,⊥ and makes the objective of LP (4.5) strictly
above 0. Therefore, its optimal objective ε∗ must also be strictly positive. This however contradicts our
assumption ε∗ ≤ 0, implying that LinUCB is not attackable by any attack strategy.

We now provide an intuitive explanation about Theorem 13. LP (4.5) is to find a vector θ̃⊥ such that: 1) it is
orthogonal to x̃ (hence its subscript); and 2) it maximizes the gap ε between x̃Tθ∗‖ and the largest xTa (θ∗‖ + θ̃⊥)

among all xa 6= x̃. Theorem 13 states that the bandit environment is attackable if and only if such a gap (i.e.,
the attackability index) is strictly larger than 0, i.e., when the geometry of arm features allows the adversary to
lower non-target arms’ rewards by attacking in the null space of x̃. The constraint ε∗ ≤ 1 is to ensure the cost
of each attack is bounded by a constant.

Recent works have shown that any no-regret learning algorithm for the context-free k-armed setting (where
arm set A is orthonormal) can be attacked [22] — i.e., a stochastic bandit environment is attackable under our
definition. This finding turns out to be a corollary of Theorem 13.

Corollary 2. For standard stochastic bandit setting where arm set A is orthonormal, the environment
〈A = {xa},θ∗, x̃〉 is attackable for any target arm x̃.

Proof. Since arms are orthogonal to each other, it is easy to see that θ̃⊥ = −C[
∑
xa:xa 6=x̃ xa] achieves

objective value C − x̃Tθ∗‖ in LP (4.5). Letting C be a large enough positive constant such that the objective

value is positive gives us a feasible θ̃⊥ to LP (4.5), which yields the corollary.

The intuition behind this corollary is that arms in context-free stochastic bandits are independent, and an
adversary can lower the rewards of non-target arms to make the target arm optimal. This is also the attack
strategy in [21, 22]. Garcelon et al. [110] showed that similar idea works for k-arm linear contextual bandits,
where each arm is associated with an unknown bandit parameter and the reward estimations are independent
among different arms. Arguably, our setting is more challenging since arms are correlated and the simple
attack idea may not be successful as shown in our Example 1. Our analysis characterizes the attackability
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Algorithm 8 Two-stage Null Space Attack

1: Inputs: T, T1

2: Initialize:
3: Compute θ0 = arg max‖θ‖2≤1

[
x̃Tθ −maxxa 6=x̃ x

T
a θ
]

and let ε∗0 be its optimal objective
4: if ε∗0 ≤ 0 then . Initial attackability test
5: return Not attackable and stop.
6: for t = 1 to T1 do . Attack stage
7: Set r̃t = xTatθ0 + η̃t . Always attack as x̃ is the best
8: Bandit algorithm observes modified reward r̃t
9: Estimate θ̃‖ =

∑n(x̃)
i=1 ri(x̃)

n(x̃)‖x̃‖22
x̃

10: Solve LP (4.5) using θ̃‖ to obtain estimated attackability index ε̃∗ and certificate θ̃⊥
11: if ε̃∗ ≤ 0 then . Attackability test
12: return Not attackable, and stop
13: else . Attack stage
14: Set θ̃ = θ̄‖ + θ̃⊥
15: for t = T1 + 1 to T do
16: if xat = x̃ for the first time then . Compensate x̃
17: Set r̃t = n(x̃)× x̃T(θ̃ − θ0) + x̃Tθ̃ + η̃t
18: else
19: Set r̃t = xTat θ̃ + η̃t

20: Bandit algorithm observes modified reward r̃t

based on the geometry of arm features: when the geometry forbids an adversary from lowering the rewards of
non-target arms in the null space of the target arm, the environment is unattackable.

4.2.3 Effective Attacks Without Knowledge of True Model Parameters
In the previous section, we characterized the attackability of a linear stochastic bandit environment by assuming
the knowledge of ground-truth bandit parameter θ∗. We now show that such oracle knowledge is actually not
needed when designing executable attacks. Towards this end, we propose provably effective attacks against
two representative bandit algorithms, the most well-known LinUCB [69] and a state-of-the-art robust linear
stochastic bandit algorithm based on robust phase elimination [113]. Their different level of robustness turns
out to lead to different amount of required attack cost, which further illustrates that the attack analysis often
goes hand-in-hand with robustness analysis.

Two-stage Null Space Attack. Our proposed attack method is presented in Algorithm 8. The adversary
spends the first T1 rounds as the first stage to attack rewards on all the arms by imitating a bandit environment
θ0, in which x̃ is the best arm such that arm x̃ will be pulled most often by the bandit algorithm. This stage is
for the adversary to observe the rewards for x̃ from the environment, which helps it estimate the parameter
θ∗‖ . At round T1, the method uses the estimate of θ∗‖ , denoted as θ̃‖, to perform the “attackability test” by

solving LP (4.5) using θ̃‖ to obtain an estimated index ε̃∗ and certificate θ̃⊥. If ε̃∗ > 0, the method asserts
the environment is attackable and starts the second stage of attack. From T1 to T , the adversary perturbs
the reward by r̃ = xT(θ̃‖ + θ̃⊥) (just like the oracle attack but using the estimated θ̃‖). When the bandit
algorithm pulls the target arm x̃ for the first time in the second stage, the adversary will compensate the
reward as shown in line 19. n(x̃) is the number of times target arm is pulled before T1. The goal is to correct
the rewards on x̃ collected in the first stage to follow θ̃ instead of θ0. Note that a larger T1 brings in more
observations on x̃ to improve the estimate of θ∗‖; but it also means a larger attacking cost. The optimal choice
of T1 depends on certain “robustness” property of the bandit algorithm in use. Consequently, it also leads to
different amount of attack cost for different algorithms. For example, as we will show below, the attack to
Robust Phase Elimination will be more costly than the attack of LinUCB.
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Our attackability test might make both false positive and false negative assertions due to the estimation error in
θ̃‖. But as T become large, the estimate is more accurate and the assertion is correct with high probability
(see below). We note that an important step in our attack is that the adversary manipulates the rewards for
both the targeted arm and other arms in the second stage, as shown in line 21 of Algorithm 8. This is different
from the oracle attack where only the rewards of non-target arms are perturbed. This difference turns out to
be crucial because it guarantees that the rewards are (almost) always generated by θ̃, which is the key to the
attack’s success. Specifically, if the adversary does not perturb the rewards of the target arm x̃ and passes the
original rewards generated by θ∗ to the bandit algorithm, these rewards could be viewed as “corrupted” —
the corruption comes from the difference between θ̃‖ and θ∗‖ , which may accumulate to a large discrepancy
over T − o(T ) many rounds’ pull of the target arm. This discrepancy may harm our attempts on lowering
the bandit algorithm’s estimated rewards of non-target arms due to its correlation with the features of other
arms.3

Attack against LinUCB. We now show how LinUCB algorithm can be attacked by Algorithm 8.

Theorem 14. For large enough T , the attack strategy in Algorithm 8 will correctly assert the attackability
with probability at least 1− δ. Moreover, when the environment is attackable, with probability at least 1− 2δ
the attack strategy will fool LinUCB to pull non-target arms at most

O(d(
√

log(T/δ) +
√
T1 log (T1/δ))

√
T log(T/δ)/ε∗)

rounds and the adversary’s cost is at most

2T1 +O(T/
√
T1) +O(d(

√
log(T )/δ +

√
T1 log (T1/δ))

√
T log(T/δ)/ε∗),

where the last term is due to the manipulation whenever a non-target arm is pulled at the second stage.
Specifically, when T1 = T 1/2, the strategy gives the minimum attack cost in the order of Õ(T 3/4), and the
non-target arms are pulled at most Õ(T 3/4) rounds.

Proof Sketch. To prove the the assertion is correct with high probability, the idea is that estimated θ̃‖ is close
to the true parameter θ∗‖ . We first note that in the first stage, the bandit algorithm will pull the target arm
x̃ T1 − O(

√
T1) times, since x̃ is the best arm according to θ0. According to Hoeffding’s inequality, the

estimation error ‖θ̃‖ − θ∗‖‖2 ≤
√

2 log(2/δ)

T1−O(
√
T1)

. So with a large enough T1, the error of x̃’s reward estimation

is smaller than ε∗. Thus solving LP (4.5) with θ̃‖ and we could correctly assert attackability with positive
estimated index ε̃∗ when the environment is attackable with index ε∗.

To proving the success and the cost of the attack, the main challenge lies at analyzing the behavior of LinUCB
under the reward discrepancy between the two stages, i.e., corrupted rewards in the first stage. Our proof
crucially hinges on the following robustness property of LinUCB.

Lemma 12 (Robustness of ridge regression). Consider LinUCB with ridge regression for linear stochastic
bandits under poisoning attack. For any t = 1 . . . T , with probability at least 1− δ we have

‖θ − θ̂t‖At
= αt + St/

√
λ

where θ is true bandit parameter, St =
∑t
τ=1 |∆τ | is the total corruption until time t, andαt =

√
d log

(
1+t/λ
δ

)
+

√
λ. Consequently, the regret of LinUCB can be bounded by O(d(

√
log(T/δ) + St)

√
T log(T/δ)).

Based on this lemma, we can derive the regret R(T ) of LinUCB with θ̃ as the true parameter. The total
corruption is O(d

√
T1 log (T1/δ)) due to the rewards of non-target arms generated by θ0 in the first stage (the

3Previous works [21, 110, 116] do not attack the target arm since in their setting, the reward of target arm would not affect reward
estimate of non-target arms. Our problem is harder due to the correlation among arms.
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rewards of target arm are compensated in line 19). So the non-target arms are pulled at most R(T )/ε∗ rounds.
Substitute the total manipulation back and we have the bound.

The attack cost has three sources: 1) attacks in the first stage bounded by 2T1; 2) attacks on target the arm in
the second stage; and 3) attacks on non-target arms in the second stage. The second term is in O(T/

√
T1)

because the cost per-round ‖x̃T(θ̃‖ − θ∗‖)‖2 is in O(1/
√
T1). The third term has the same order as the number

of rounds non-target arms are pulled by LinUCB. By setting T1 = T 1/2, the total cost achieves Õ(T 3/4).

Remark 2. Lemma 12 shows that LinUCB still enjoys sublinear regret for any corruption amount S = o(
√
T ).

This tolerance of o(
√
T ) attack turns out to be the same as the recently proposed robust linear contextual

bandit algorithm based on phase elimination in [113] (which we examine next). However, the regret term
S
√
T in LinUCB has a worse dependence on S within the S = o(

√
T ) regime compared to the O(S2) regret

dependence of the robust algorithm in [113].

Attack against Robust Phase Elimination. We now show that Robust Phase Elimination (RobustPhE)
can also be attacked by Algorithm 8. Comparing to attacking LinUCB, robustness of this algorithm brings
challenge to the first stage as attack cost is more sensitive to the length of this stage.

Corollary 3. For any large enough T , the attack strategy in Algorithm 8 will correctly assert the attackability
with high probability. Moreover, when the environment is attackable, with probability at least 1− δ the attack
strategy will fool RobustPhE to pull non-target arms at most

O((d
√
T log(T/δ) + T 2

1 )/ε∗)

rounds and the adversary spends cost at most

2T1 +O(T/
√
T1) +O((d

√
T log(T/δ) + T 2

1 )/ε∗)

where the last term is due to the manipulation whenever a non-target arm is pulled at the second stage.
Specifically, T1 = T 2/5 gives the minimum attack cost order Õ(T 4/5) and the non-target arms are pulled at
most Õ(T 4/5) rounds.

Robust Phase Elimination has an additional regret term O(S2) for total corruption S (assuming S is unknown
to the bandit algorithm). If we view the second stage attack model θ̃ as the underlying environment bandit
model, then rewards generated by θ0 in the first stage are corrupted rewards. The T1 amount of rewards
from the first stage mean T1 corruption, which leads to the additional T 2

1 term in the cost and the number of
non-target arm pulls compared with Theorem 14. Hence, the adversary can only run fewer iterations in the
first stage but spends more budget there. On the other hand, this also favors the design of attack such that line
18-19 in Algorithm 8 is not necessary: the corruption in the first stage can be handled by the robustness of
bandit algorithm. Our success of attacking RobustPhE does not violate the robustness claim in the original
paper [113]: RobustPhE could tolerate O(

√
T ) corruption and our attack cost is Õ(T 4/5).

4.2.4 Experiments
We use simulation-based experiments to validate the effectiveness and cost-efficiency of our proposed attack
methods. In our simulations, we generate a size-k arm poolA, in which each arm a is associated with a context
vector xa ∈ Rd. Each dimension of xa is drawn from a set of zero-mean Gaussian distributions with variances
sampled from a uniform distribution U(0, 1). Each va is then normalized to ‖xa‖2 = 1. The bandit model
parameter θ∗ is sampled from N(0, 1) and normalized to ‖θ∗‖2 = 1. We set d to 10, the standard derivation
σ of Gaussian noise ηt to 0.1, and the arm pool size k to 30 in our simulations. We run the experiment
for T = 10, 000 iterations. We will re-sample the environment 〈A,θ∗, x̃〉 until it is attackable, following
Theorem 13.

We compare the two proposed attack methods, oracle null space attack and two-stage null space attack,
against LinUCB [12] and Robust Phase Elimination (RobustPhE) [113]. We report average results of 10
runs where in each run we sample a random attackable environment. Both oracle attack and two-stage attack
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can effectively fool the two bandit algorithms to pull the target arm linear times and we report this result in
appendix. Figure 4.4 shows the total cost of the attack. We observe that both attack methods are cost-efficient
with sublinear total cost, while two-stage attack requires more attack budget. Specifically, we notice that the
adversary spends almost linear budget in the first stage. This is because in the first stage the adversary attacks
according to parameter θ0 which leads to a almost constant cost at every round. In the second stage, the cost is
much smaller: the adversary only spends O(1/

√
T1) cost when pulling the target arm. This also corresponds

to our theoretical analysis that total cost of two-stage attack is O(T 3/4) against LinUCB and O(T 4/5) against
RobustPhE. To attack the same bandit algorithm, the total cost of two-stage attack is larger than oracle attack.
The key reason is that when pulling target arm, the oracle attack does not perturb the reward. We see that cost
does not increase in oracle attack against LinUCB in the later stage, but the curve of two-stage attack against
LinUCB keeps increase over time. We also notice that for the same attack method, attacking RobustPhE
requires more budget and the target arm pull is also smaller comparing with attacking LinUCB, due to the
robustness of the algorithm.

Figure 4.4: Total cost of the attacks.



Chapter 5

Conclusion & Future Work

This thesis aims to understand the role of structural information in interactive online learning problems. Our
research solves several key challenges in the learning by exploration paradigm including the problem of huge
exploration space, missing information and privacy and security concerns. We provided a deep and thorough
understanding the benefit of leveraging structural information as an advantage and extend the application of
bandit learning algorithms to more complex practical scenarios. By combining the proposed techniques, an
advanced intelligent system can leverage the right information to serve and interact with humans in an efficient
and trustful manner. Rigorous theoretical analysis and extensive empirical evaluation validated the approaches’
applicability in various contexts and applications.

In Chapter 2, we introduced using explicit structural information to reduce the huge exploration space
and achieve sample efficient exploration. We developed collaborative linear bandit algorithm CoLin for
recommender system, which utilized social network for information sharing among the neighboring users
during online update and reduced sample complexity. We also developed Document Space Projection for
dueling bandit based online learning to rank, which identified the low-rank gradient space of the ranking
problem and explored more efficiently in the projected space. In Chapter 3, we considered the environment
with implicit (unobservable) structure. We presented factorization bandits to recover latent factors in a low-rank
environment. We also identified the problem of information gap in a two-party game between an interactive
system and the users. We showed that when the context information on the user side is unknown to the system,
the system can incentivize users to explore even with such information disadvantage as long as the users’
contexts follow the structure of linear transformation to the contexts on the system side. In Chapter 4, we
discussed privacy and security aspects of interactive online learning. We developed a framework to equipment
collaborative linear bandit algorithms such as CoLin with global and local differential privacy guarantee,
and showed the structural information helped to improve the privacy-utility trade-off. We also discussed
the potential vulnerability of the linear bandit algorithms to data poisoning attacks. We showed that the
attackability is determined by the geometric structure of the context features and presented attacking strategies
that can manipulate the behavior of a linear bandit algorithm.

Our research on learning by exploration with information advantage for interactive intelligent systems sheds
lights on important yet challenging future directions.

Multi-agent interactive learning with information gap

Real-world applications often involve interactions with multiple agents, while agents act in their own strategic
way. For example, in cyber-physical systems and self-driving cars, users/drivers and hundreds of sensors
and devices act as interactive agents that communicate and collaborate with others; in ads auctions, different
advertisers who compete with each other to purchase ads with a minimum cost. Each agent could generate
and receive a huge amount of information yet ignore or cannot access even larger amount of information.
The information gap among them, i.e., the known and unknown about other agents and the uncertainty in the
environment, plays an important role for an agent to realize its optimal action. Our research on collaborative
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bandit learning offered a preliminary understanding on a collaborative multi-agent bandit environment, and
incentivizing exploration under information gap research studied the price of information gap in a two-party
game. We believe it is important and promising to pursue a fundamental study on the role of information
in multi-agent interactive learning. Each agent’s action is a result of other agents’ actions; and in turn they
reveal information that affects other agents’ beliefs and decisions. The agents thus can take advantage of the
information gap for exploring the environment and finding the optimal action, e.g., take calibrated actions to
influence and persuade other agents. Understanding the agents’ behavior requires domain knowledge and is an
interdisciplinary research problem. With the collaboration with experts in different applications, we plan to
develop interactive online learning algorithms that leverage information from other agents in a collaborative
environment or exploit the information gap in a competitive environment to efficiently explore the problem
space.

Ethical and security considerations
While important and exciting to design advanced interactive systems for humans by exploiting the information
advantage, it is equally important, if not more, to develop trustworthy systems and use them for social good.
As intelligent learning systems are already pervasive in our daily lives, ethical and security considerations of
intelligent system are now more than a public opinion and become a legal requirement, e.g., European Union’s
GDPR1. We believe another promising direction is to develop interactive online learning systems the following
ethical and security aspects.

Privacy. Privacy is a critical concern for online learning algorithms that directly interact with humans. It
is important to consider the potential privacy breaches by an interactive learning system when personal
information is involved, e.g., personal preference in recommendation and ads display. Beyond our previous
studies in private recommender system, it is also important to investigate the interactive online learning
solutions with privacy guarantee for more challenging applications such as ranking systems, cyber-physical
systems and health care with problem-specific structure in consideration. Fairness. Fairness is another
important ethical constraint for online decision making. Understanding how to use the right information
to make a fair decision is critical: the decisions would have significant consequences on people’s lives in
applications like hiring and education. It is interesting to consider the trade-off between utility and fairness
guarantee under different fairness definitions. Robustness and Security. In many real-world scenarios, the
learning environment is not always benign. Various challenges exist in real-world situations such as feedback
bias and adversarial attacks. Our research on data poisoning attacks on linear bandits already showed the
potential vulnerability of an interactive online learning system. Thus it is necessary to consider the online
learning process in an adversarial setting with robustness guarantee. Safety. The performance of an interactive
online learning algorithm, such as multi-armed bandit and reinforcement learning, can vary drastically during
online learning. Due to safety concerns, intelligent systems for high-stake applications like self-driving cars
and healthcare are expected to have high-quality decision making with guarantees. Systems for high-stake
applications require new algorithms whose performance variance can be quantified and guaranteed during
online learning.

1https://gdpr-info.eu/
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Appendix

A Proofs of the Theorems of Section 2.1
Proof of Lemma 1. Consider the objective function of ridge regression defined in Eq (2.3). By taking the
gradient of L(Θ) with respect to Θ and applying our model assumption specified in Eq (2.2), we have,

At(ϑ̂t − ϑ∗) =

t∑
t′=1

vec(X̊at′ ,u
′
t
WT)εt′ − λϑ∗

in which εt′ is the Gaussian noise at time t′ in reward generation.

Define St =
∑t
t′=1 vec(X̊at′ ,u

′
t
WT)εt′ , we have,

ϑ̂t − ϑ∗ = A−1
t (St − λϑ∗)

Because St is a martingale, according to Theorem 1 and 2 in [69],

‖ϑ̂t − ϑ∗‖At ≤
√

2 ln(
det(At)1/2det(λI)−1

δ
) +
√
λ‖ϑ∗‖ (1)

Since ‖xat,i‖ ≤ 1, trace(At) ≤ λdN +
∑t
t′=1

∑N
j=1 w

2
u′tj

, we have det(At) ≤ ( trace(At)
dN )dN ≤ (λ +∑t

t′=1

∑N
j=1 w

2
u′tj

dN )dN . Similarly, we have det(λIdN ) ≤ λdN . Putting all these into Eq (1), we have,

‖ϑ̂t − ϑ∗‖At
≤

√
dN ln(1 +
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∑N
j=1 w

2
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λdN
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√
λ‖ϑ∗‖

Proof of Theorem 1:

Proof of Theorem 1. According to the definition of regret, the regret of CoLin at time t can be written as,

Rt = ra∗t ,ut − rat,ut

= vec(X̊∗ut
WT)Tϑ∗ − vec(X̊ut

WT)Tϑ∗

≤ vec(X̊ut
WT)Tϑ̂t−1 + αt‖vec(X̊ut

WT)‖A−1
t−1
− vec(X̊ut

WT)Tϑ∗

≤ ‖vec(X̊ut
WT)‖A−1

t−1
‖ϑ̂t−1 − ϑ∗‖At−1

+ αt‖vec(X̊ut
WT)‖A−1

t−1

≤ 2αt‖vec(X̊utW
T)‖A−1

t−1

where the first inequality is based on the following two inequalities,
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(1) Based on CoLin’s arm selection strategy, if arm Xt is chosen at time t, it must satisfy,

vec(X̊utW
T)Tϑ̂t−1 + αt‖vec(X̊utW

T)‖A−1
t−1

≥ vec(X̊∗ut
WT)Tϑ̂t−1 + αt‖vec(X̊∗ut

WT)‖A−1
t−1

(2) Based on Cauchy-Schwarz inequality, we have,
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and therefore, we have
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And according to Lemma 11 in [69], we have,
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Thus the accumulated regret at time T in CoLin can be bounded by,
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B Proofs of the Theorems of Section 3.1

C Proofs of the Theorems of Section 3.2
We first restate Theorem 2 in [69] regarding the confidence ellipsoid in the following Lemma.

Lemma 13 (Theorem 2 of [69]). With probability at least 1 − δ, the parameter θ∗x lies in the confidence
ellipsoid of θ̂x,t satisfying

‖θ̂x,t − θ∗x‖Ax,t
≤ αx,t,∀t ≥ 0

where αx,t = R
√
dx log 1+t/λ

δ +
√
λ.
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Proof of Lemma 4

Proof. According to the definition of confidence interval, CBv,t(va) = αv,t‖va‖A−1
v,t

and CBx,t(xa) =

αx,t‖xa‖A−1
x,t

. We first prove that ‖va‖A−1
v,t
≥ ‖xa‖A−1

x,t
. By Eq (3.8), we have Ax,t − λI =

∑t
i=1 xaix

T
ai =∑t

i=1 Pvaiv
T
aiP

T = P (Av,t − λI)PT and

‖xa‖A−1
x,t

=
√

xT
aA−1

x,txa

=

√
vT
aP

T ((P (Av,t − λI)PT) + λI)
−1
Pva.

We can prove
vT
aA−1

v,tva ≥ xT
aA−1

x,txa = vT
aP

T
((
P (Av,t − λI)PT

)
+ λI

)−1
Pva

by showing A−1
v,t−PT

((
P (Av,t − λI)PT

)
+ λI

)−1
P is a positive semi-definite matrix based on the property

of Schur complement.

Denote

M =

[
A−1
v,t PT

P
(
P (Av,t − λI)PT

)
+ λI

]
.

We have

M/A−1
v,t =

(
P (Av,t − λI)PT

)
+ λI−

(
PT
)T

Av,tP
T

= PAv,tP
T − λPPT + λI− PAv,tP

T

= λ
(
I− PPT

)
� 0

The last step holds because P ’s largest singular value is smaller than 1, the eigenvalues of PPT are smaller than
1 and I− PPT � 0. Because A−1

v,t � 0 and M/A−1
v,t � 0, according to the property of Schur complement we

haveM � 0. Because
(
P (Av,t − λI)PT

)
+λI = Ax,t � 0 andM � 0, applying the property again we have

M/
((
P (Av,t − λI)PT

)
+ λI

)
� 0, which gives us A−1

v,t−PT
((
P (Av,t − λI)PT

)
+ λI

)−1
P � 0. By the

definition of positive semi-definite matrix, we have vT
aA−1

v,tva−vT
aP

T
((
P (Av,t − λI)PT

)
+ λI

)−1
Pva ≥

0, which means ‖va‖A−1
v,t
≥ ‖xa‖A−1

x,t
.

According to Lemma 13, αvt = R
√
dv log 1+t/λ

δ +
√
λ and αxt = R

√
dx log 1+t/λ

δ +
√
λ. Since dv ≥ dx,

we have αvt ≥ αxt . Combining the two results finishes the proof of CBv,t(va) ≥ CBx,t(xa), which holds for
any arm a at any time t.

Proof of Lemma 5

Proof. In order to incentivize the user to pull arm at, the minimum required compensation is maxi r̂x,i,t −
r̂x,at,t. However, since the system cannot access the context features the user uses and thus maintains different
reward estimates, it has to provide compensation larger than the minimum required amount.

Denote the user’s greedy choice as g = arg maxi r̂x,i,t. To show that cat,t is sufficient, we need to prove
that the user prefers the exploratory arm at with compensation over his/her greedy choice, i.e., r̂x,g,t ≤
r̂x,at,t + cat,t.

Based on Lemma 13, for all t ≥ 0 with probability at least 1− δ, we have |r̂x,a,t − E[ra]| ≤ CBx,t(xa) and
|r̂v,a,t − E[ra]| ≤ CBv,t(va) hold for any arm a. Using the union bound, with probability at least 1− 2δ we
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have

|r̂x,a,t − r̂v,a,t| ≤ |r̂x,a,t − E[ra]|+ |E[ra]− r̂v,a,t|
≤ CBx,t(xa) + CBv,t(va) (2)

Then we can bound the user’s reward estimate from the system side as follows,

r̂x,g,t ≤ r̂v,g,t + CBx,t(xg) + CBv,t(vg)
≤ r̂v,g,t + 2CBv,t(vg)
≤ r̂v,at,t + 2CBv,t(vat)
≤ r̂x,at,t + CBx,t(vat) + CBv,t(vat) + 2CBv,t(vat)
≤ r̂x,at,t + 4CBv,t(vat) (3)

The first and fourth steps are based on Eq (2). The second and last steps are based on Lemma 4. The third
inequality is based on the UCB strategy in Eq (3.14).

Proof of Theorem 5

Proof. Following the definition of total compensation, we have

C(T ) =

T∑
t=1

E[cat,t]

=

T∑
t=1

(
max
i
r̂x,i,t − r̂x,at,t

)
≤

T∑
t=1

(
max
i

(r̂x,i,t + CBx,t(xi))− r̂x,at,t
)

=

T∑
t=1

(r̂x,at,t + CBx,t(xat)− r̂x,at,t)

=

T∑
t=1

CBx,t(xat)

where the third step holds with probability at least 1− δ and the fourth step is based on the UCB arm selection
strategy.
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So with probability at least 1− δ, we bound the total compensation as follows,

C(T ) ≤
T∑
t=1

CBx,t(xat)

≤

√√√√T

T∑
t=1

CB2
x,t(xat)

=

√√√√T

T∑
t=1

α2
x,t‖xa‖2A−1

x,t

≤

√√√√Tα2
x,T

T∑
t=1

‖xa‖2A−1
x,t

≤ αx,T

√√√√T

T∑
t=1

‖xa‖2A−1
x,t

According to Lemma 11 of [69],
∑T
t=1‖xa‖2Ax,t

−1 ≤ dx log(λ+T/dv). Combining withαx,t = R
√
dx log 1+t/λ

δ +
√
λ, we can complete the proof.

Proof of Theorem 10

Proof. We bound cumulative regret by

R(T ) =

T∑
t=1

(
E[ra∗t ]− E[rat ]

)
=

T∑
t=1

(
vT
a∗t
θ∗v − vT

atθ
∗
v

)
≤

T∑
t=1

(
vT
a∗t
θ̂v,t + 2CBv,t(va∗t )− vT

atθ
∗
v

)
≤

T∑
t=1

(
vT
at θ̂v,t + 2CBv,t(vat)− vT

atθ
∗
v

)
≤

T∑
t=1

2CBv,t(vat)

The third step holds with probability at least 1 − δ according to the definition of confidence interval. The
fourth step holds with probability at least 1− 2δ according to Lemma 5, where the users are incentivized to
pull arms according to UCB exploration strategy as shown in Eq (3.14). Taking a union bound, the above
inequality holds with probability at least 1− 3δ.
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We continue bounding the cumulative regret with probability at least 1− 3δ as follows,

R(T ) ≤ 2

√√√√T

T∑
t=1

CB2
v,t(vat)

= 2

√√√√T

T∑
t=1

α2
v,t‖va‖2A−1

v,t

≤ 2αv,T

√√√√T

T∑
t=1

‖va‖2A−1
v,t

≤

(
2R

√
dv log

1 + T/λ

δ
+
√
λ

)√
Tdv log(λ+

T

dv
)

where we finish the proof by combining
∑T
t=1‖va‖2A−1

v,t

≤ dv log(λ+ T/dv) and αv,t = R
√
dv log 1+t/λ

δ +
√
λ.

Proof of Theorem 7

Proof. With probability at least 1− 2δ, we have

C(T ) ≤
T∑
t=1

4CBv,t(vat)

≤ 4

√√√√T

T∑
t=1

CB2
v,t(vat)

= 4

√√√√T

T∑
t=1

α2
v,t‖va‖2A−1

v,t

≤ 4αv,T

√√√√T

T∑
t=1

‖va‖2A−1
v,t

≤

(
4R

√
dv log

1 + T/λ

δ
+
√
λ

)√
Tdv log(λ+

T

dv
)

Proof of Theorem 8

Proof. We first prove that after a fixed time point, with high probability pulling arm a once requires compensa-
tion at least ∆a/3. The proof idea is similar to the proof of Theorem 1 in [76]. We then derive the asymptotic
compensation lower bound.

Based on Lemma 6, we can obtain the following inequality for all sub-optimal arms:

lim sup
T→∞

log(T )‖xa‖2G−1
x,T

≤ ∆2
a

2
(4)

which is also stated in the Corollary 2 in [89].
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Let Na(T ) be the number of times arm a is pulled in T rounds. Since the algorithm has o(T ) regret, we can
find T ′1(δ) such that the best arm is pulled at least T/2 times with probability 1− δ/2. Using the concentration
bound we know there exists T ′′1 (δ) such that for t > T ′′1 (δ) with probability 1− δ/2 the confidence interval
of the best arm’s reward estimation is smaller than ∆2/3 where ∆2 is the reward gap between the best arm
and second best arm. Let T1(δ) = max(T ′1(δ), T ′′1 (δ)) and for all t > T1(δ), with probability 1− δ we have
r̂x,1,t ≥ E[r1]−∆2/3.

We argue a similar result for any suboptimal arm a. Based on Eq (4), there exists a Ta(δ) such that for any
t > Ta(δ), with probability 1− δ

‖xa‖2G−1
x,t
≤ ∆2

a

2 log(T )
≤ ∆2

a

9fT,δ

Combining with the concentration bound in Lemma 7, we have for any t > Ta(δ) with probability 1 − δ,
r̂x,a,t −E[ra] ≤ ∆a/3.

Let T (δ) = maxi Ti(δ) and we know that for any t > T (δ), the minimum required compensation to incentivize
the user to pull arm a is

max
i
r̂x,i,t − r̂x,a,t ≥ r̂x,1,t − r̂x,a,t ≥ E[r1]− ∆2

3
−E[ra]− ∆a

3
≥ ∆a

3
(5)

with probability at least 1− δ.

We then use the optimization problem in Eq (3.16) to obtain the compensation lower bound, where the
optimization minimizes the total compensation and satisfies the consistent constraints that the gaps of all
suboptimal arms are identified with high confidence. With probability at least 1− δ, for sufficiently large T
the total compensation is

C(T ) ≥
∑
a∈A

E[Na(T )]
∆a

3

αxa
= E[Na(T )]/ log(T ) is asymptotically feasible for large T because it satisfies

lim sup
T→∞

‖xa‖2H−1
x,T

= lim sup
T→∞

log(T )‖xa‖2G−1
x,T

≤ ∆2
a

2

where Gx,T = log(T )Hx,T . Thus for any ε > 0, ‖xa‖2H−1
x,T

≤ ∆2
a/2 + ε and

C(T ) ≥
∑
a∈A

E[Na(T )]
∆a

3
≥ cx,ε(A,θ∗) log(T ) (6)

where cx,ε(A,θ∗) is the the optimal value of the optimization problem in Eq (3.16) by replacing ∆2
a/2 with

∆2
a/2 + ε. Since infε>0 cx,ε(A,θ∗) = cx(A,θ∗) and T →∞ we have the total compensation as

Ω (cx(A,θ∗) log(T ))

Remark. There are recent works on asymptotic regret lower bound for linear bandits with changing arm
sets [279, 280]. It would be an interesting future work to build the asymptotic compensation lower bound with
changing arm sets based on such new technique. The difference would be to construct a corresponding version
of minimum required compensation (Eq (5)) for changing arm sets.
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Algorithm 9 Oracle Null Space Attack

1: Inputs: T,θ∗
2: Initialize:
3: if Optimal objective ε∗ of LP (4.5) > 0 then . Attackability Test
4: Find the optimal solution θ̃⊥
5: Set θ̃ = θ∗‖ + θ̃⊥
6: else
7: return Not attackable
8: for t = 1 to T do
9: Bandit algorithm pulls arm at

10: Attacker observes the corresponding reward rt = xTatθ
∗ + ηt from the environment

11: if xat 6= x̃ then
12: Set r̃t = xTat θ̃ + η̃t . Attack
13: else
14: Set r̃t = rt
15: Bandit algorithm observes modified reward r̃t

D Proofs of the Theorems of Section 4.1

E Proofs of the Theorems of Section 4.2
We illustrate the details of oracle null space attack in Algorithm 9, which is constructed for the sufficiency
proof of Theorem 13 in Section 4.2.2. We show the necessity proof of Theorem 13 below.

Necessity Proof of Theorem 13

. To prove its necessity, we will rely on the following results.

Claim 1. Suppose arm x is pulled n times till round t by LinUCB. Its confidence bound CBt(x) in LinUCB
satisfies

CBt(x) ≤ O

(√
log t/δ

n

)
. (7)

with probability at least 1− δ.

Proof. By definition CBt(x) = αt‖x‖A−1
t

. Denote A′t = n× xxT. Since At =
∑t
i=1 xaix

T
ai + λI, we have

At � A′t. We can thus bound ‖x‖A−1
t

by

‖x‖A−1
t
≤ ‖x‖A′t−1 ≤ L√

n
(8)

According to Theorem 2 in [69],

αt =

√
d log

(
1 + t/λ

δ

)
+
√
λS = O(

√
log t/δ).

Combining Eq (7) and (8) finishes the proof.

Claim 2. Suppose the non-target arms {xa 6= x̃} are pulled o(T ) times, the arm x̃ is pulled T − o(T ) times,
and the total manipulation is CT . With probability at least 1 − δ, reward estimation error by the attacker
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satisfies

|xTθ̂T,‖ − xTθ∗‖| ≤
CT

T − o(T )
+

αt√
T − o(T )

. (9)

Proof.

‖θ̂T,‖ − θ∗‖‖2 = ‖ x̃
T(θ̂T − θ∗)
‖x̃‖22

x̃‖2

=
1

‖x̃‖22
‖x̃TA−1

t

(
T∑
t=1

xt(r̃t(xt)− xTt θ∗) + λθ∗

)
x̃‖2

≤ 1

‖x̃‖22
‖x̃TA−1

t

(
T∑
t=1

xt∆t +

T∑
t=1

xtηt + λθ∗

)
x̃‖2

≤ 1

‖x̃‖22
‖x̃TA−1

t

T∑
t=1

xt∆tx̃‖2 +
1

‖x̃‖22
‖x̃TA−1/2

t αtx̃‖2

≤ CT
T − o(T )

+
αt√

T − o(T )

where the last step is because there are T − o(T ) of x̃x̃T in At. We finish the proof with the fact that
‖x̃‖2 ≤ 1.

Now we are ready to prove that the index ε∗ in LP (4.5) being positive is the necessary condition of an
attackable environment.

Proof. Now we are ready to prove that if ε∗ ≤ 0, the bandit environment is not attackable. To prove this, we
show that there exists some no-regret bandit algorithm (LinUCB in particular) such that no attacking strategy
can succeed. In particular, we will show that LinUCB is robust under any attacking strategy with o(T ) budget
when ε∗ ≤ 0. We prove it by contradiction: assume LinUCB is attackable with o(T ) budget when ε∗ ≤ 0.
According to Definition 4, the target arm x̃ will be pulled T − o(T ) times for infinitely many different time
horizons T , and the following inequalities hold when arm x̃ is pulled by LinUCB:

x̃Tθ̂T,‖ + CBT (x̃) > xTa θ̂T,‖ + xTa θ̂T,⊥ + CBT (xa),∀xa 6= x̃ (10)

where θ̂t is LinUCB’s estimated parameter at round t based on the attacked rewards. We decompose
θ̂T = θ̂T,‖ + θ̂T,⊥, where x̃ ⊥ θ̂t,⊥ and x̃ ‖ θ̂T,‖. We will now show that the above inequalities lead to

x̃Tθ∗‖ > xTaθ
∗
‖ + xTa θ̂T,⊥,∀xa 6= x̃

when T →∞.

By Claim 1 we have

CBT (x̃) ≤ O

(√
log T/δ

T − o(T )

)
We also have

CBT (xa) = αT ‖xa‖A−1
T
> 0
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By Claim 2 we have

xTa θ̂T,‖ ≥ xTaθ∗‖ −
CT

T − o(T )
− αT√

T − o(T )

x̃Tθ̂T,‖ ≤ x̃Tθ∗‖ +
CT

T − o(T )
+

αT√
T − o(T )

Substitute them back and we have that with probability at least 1− 3δ,

x̃Tθ∗‖ > xTaθ
∗
‖ + xTa θ̂T,⊥ + CBT (xa)−O

(√
log T/δ

T − o(T )

)
− 2CT
T − o(T )

− 2αT√
T − o(T )

,∀xa 6= x̃

Taking T →∞ and noticing that CT = o(T ), the last three terms on the right-hand side diminish to 0 and we
have,

x̃Tθ∗‖ > xTaθ
∗
‖ + xTa θ̂T,⊥,∀xa 6= x̃

This implies that there must exist a θ̂T,⊥ that satisfies x̃ ⊥ θ̂T,⊥ and makes the objective of LP (4.5) larger
than 0. Therefore, its optimal objective ε∗ must also be positive. This however contradicts our assumption
ε∗ ≤ 0, implying that LinUCB is not attackable by any attack strategy.
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