
Site Reliability Engineering: Improving Performance Transparency in a Trading Platform

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Khushi Chawla

Fall, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Brianna Morrison, Department of Computer Science

Abstract

A global New York-based financial software

company’s trading system’s data platform

lacked the performance transparency

necessary to inform decisions on resource

allocation and outage response. The data

platform is comprised of multiple

components, called domains or services, each

of which supports data storage functionality.

To increase transparency, I logged and

aggregated metrics from each domain in the

system where our engineering users manage

their domains. I published metrics to an

internal telemetry management system, upon

which I created a dashboard that queried the

storage and displayed the quantity, type,

time, and frequency of requests. I then

incorporated the dashboard in a client-facing

web portal to inform them of their domains’

performance. I also integrated this process

into the system’s automation pipeline to

automatically configure the dependencies

when a new domain is created. The solution

shed light on spikes in response time and

potential causes. It also increased confidence

in a newly created domain that the portfolio

and risk team was rolling out to customers.

Future work involves creating alarms to alert

the domain user teams when a domain has

breached performance goals and publishing

end-to-end performance data (distributed

trace) to the metrics management portal.

1. Introduction

Imagine getting a call at 3am from an

Asian client, furious that they lost millions of

dollars on a trade that took too long to

execute. You are the software engineer on

call and upon further investigation, you find

out that because there were so many trades

happening at the same time, the service

handling the trades significantly slowed

down. In the world of stock markets, such

delays can make a huge difference. This is the

problem that my project attempted to solve:

add more metrics to track domain

performance to inform teams in case of

service failures and/or to automatically scale

up resources to reduce delays and outages.

2. Related Works

In order to comply with industry

accepted best practices, I researched the

standard for site reliability engineering

(SRE). Created by Google, SRE is an

approach to software engineering to create

highly reliable and scalable systems.

According to Red Hat (2020), SRE helps

system administrators and developers

manage large systems through code.

Following such a framework could allow me

to achieve my goals of adding more

transparency to the growing data platform.

Incorporating Site Reliability

Engineering (SRE) guidelines, which state

that services should perform above an

established threshold (Hall, 2021), requires

publishing metrics to evaluate how well the

domains are achieving goals. These

thresholds are called Service Level

Objectives, or SLOs and are associated with

performance goals specified by the client,

called Service Level Agreements, or SLAs

(Beyer et al., 2016).

According to Beyer, et al. (2016), a

variety of classes of objectives that fall under

the umbrella of SRE, the biggest three being

speed, load, and accuracy. Ensuring that the

associated Service Level Metrics, or SLMs,

of latency, throughput and error rate of

requests are performing better than our

thresholds is vital in keeping a system

running efficiently. To achieve this, I would

need to create a pipeline to publish latency,

throughput, and error rate metrics to a

telemetry management system.

The other crucial element of SRE is

making clients aware of how well metrics are

achieving goals so they can take action to

adjust resources and allocation accordingly

(Hall, 2021). To follow these guidelines, I

would need to display the metrics in a client-

facing platform.

3. Process Design

First, the existing system architecture will

be discussed my functionality will be built

upon it. Next, the I will establish the design

requirements that the system will need to

fulfill. Lastly, I will outline the design and

implementation of the system I created to

satisfy the requirements.

3.1 Review of System Architecture

 The system that I worked with was

created to maintain consistency across all

elements of a trade using a data platform to

standardize data storage and formatting for

teams that utilize business logic. Rather than

other teams individually handling data

storage for their business logic and having to

constantly communicate with each other to

ensure that data is the same across different

functionalities, they send their data to my

team’s data platform via the functionality’s

specified domain. The data platform then

persists the data in such a way that when

another team queries it for different

functionality, they have the most recent

updates from other domains. Additionally,

because teams expand their functionality to

create new domains, the domain creation

pipeline needs to be automated. This ensures

that the end-to-end process of creating a

domain is standardized for all newly created

domains and pre-existing domains.

3.2 Design Requirements

One of the issues with this system is

that if a domain is slow or goes down, it

affects the data retrieval and storage across

the trading platform. Because of this, my

team and the teams we support needed a way

to see how long requests to the services are

and how many requests are resulting in

errors.

3.3 System Design and Implementation

Due to non-disclosure agreements, I

cannot discuss some elements of the design

and implementation of the system as it is built

on internal software. However, the

architecture designed and implemented was

derived from work done by other teams and

coding best practices. The metric tracking

system was first implemented in two domains

as a proof of concept, or POC, then

incorporated into the platform’s automation

pipeline to get automatically configured

when a new domain is made.

In order for our client teams to make

resource allocation decisions to achieve their

SLAs, they needed transparency regarding

the speed, load and accuracy of our system.

Given the scope of the project, I focused on

publishing speed and load metrics from the

methods associated with requests in the two

POC domains. Using a Java annotation built

into the framework that the domains were

built upon, every time a request was made to

a POC domain, the min, median, 75

percentile, 90 percentile, 95 percentile, 99

percentile and max response times and a

request tally were published for a metrics

collector to pick up. I used tags in the

annotations to allow for filtering during the

metrics collection and monitoring phases.

The runtime metrics collector was

configured to automatically pick up messages

with response time and request count from

the domains when a request was made. Using

the tags associated with a metric it could be

aggregated and stored to a namespace

associated with the domain from which it

came. These metrics could now be retrieved

by querying the metric store for

visualizations and statistic generation.

Grafana is an open-source monitoring

and visualization platform used to view

graphs of the SLMs over time and for the

different domains. I created a generic

dashboard which allowed the user to select a

domain and view associated response time

and throughput information by auto

populating the graphs with templated

requests to the metric store. Due to the nature

of Grafana and the fact that metrics were

retrieved using queries, the user could see

live updates of averages and time-series plots

when new requests were made. Additionally,

I added filtering using the tags associated

with metrics to allow the user to see

information relating to specific use cases,

times, resources, and end users.

For clients to be able to see these

visualizations and statistics, I embedded the

Grafana dashboard in our client web

application, where clients can manage

everything relating to their domains and

make developer requests for changes and/or

new domains. I also directly queried the

metric store from the web-app to display high

level metrics to give a snapshot of the overall

health of the system. This allows clients to

monitor the system in an easily readable and

digestible manner, then navigate to the

Grafana dashboard to see more detailed

breakdowns.

After the proof-of-concept

implementation was approved, this system

needed to be integrated into the automation

pipeline. To do so, metrics publication

functionality was added to the code

generation scripts that are run when a new

domain is created to ensure that all new

domains supported the SLO monitoring

functionality. Additionally, new databases

were created and updated to store

configurations relating to domains and their

metrics. The Grafana dashboard and web-app

were dynamically updated to display metrics

only for domains that were publishing them.

4. Outcomes

 The system is still in the process of

being implemented and used, so the full scale

of its results is difficult to evaluate. However,

some of the more immediate results have also

shown themselves to be promising. We were

able to see consistent spikes for one of the

domains in response time in the middle of the

night through the time-series graphs on the

Grafana dashboard when developers were not

actively monitoring systems. This indicated

that it was likely being heavily used

internationally, as their markets are open at

different times, indicating the need to

dynamically allocate more resources for that

timeframe.

Additionally, we were able to

confidently roll out a newer domain for

public use with the performance information

we collected about internal use through the

metric monitoring system. This boosted our

confidence and allowed us to make

performance promises to our external clients.

Some anticipated outcomes include

seeing a decrease in downtime and shorter

outages. We also anticipate seeing more

teams adopt our platform as we can now

concretely demonstrate whether it can satisfy

their performance goals.

5. Conclusion

The purpose of this project was to

prevent outages in a heavily trafficked

internal data managing system in a financial

service platform, which could save thousands

to millions of dollars in lost revenue. Using

concepts from Site Reliability Engineering, I

designed a flexible solution that tracks

metrics relating to request throughput,

response time and error rate which indicate

how well the system is performing. This

information was then displayed to internal

clients to improve performance transparency

between the system and its users. The

underlying design of this solution can be

extended to be used in other systems to

increase performance tracking and improve

reliability.

6. Future Work

Some future work for this system

includes tracking more metrics and traces of

sub-processes to provide more detailed

information about domain performance. This

includes implementing distributed trace and

expanding the SLOs used to load, memory

usage, etc. Another improvement would

include alarms for when SLOs are breached

to immediately alert domain owners of

performance failures. This allows for faster

responses that could prevent outages and

downtime.

7. Acknowledgments

I would like to acknowledge my

mentor, manager and team for their continual

support and help through this project.

References

Beyer, B., Jones, C., Murphy, N. R. and

Petoff, J. (2016). Site reliability

engineering. O’Reilly Media, Inc.

Retrieved on June 16, 2022, from

https://sre.google/sre-book/table-of-

contents/

Hall, J. (2021). SRE principles: The 7

fundamental rules. Dotcom Monitor.

Retrieved on June 17, 2022, from

https://www.dotcom-

monitor.com/blog/2021/11/16/sre-

principles-the-7-fundamental-rules/

Red Hat. What is SRE? (2020). Retrieved on

June 17, 2022 from

https://www.redhat.com/en/topics/de

vops/what-is-sre

https://www.redhat.com/en/topics/devops/what-is-sre
https://www.redhat.com/en/topics/devops/what-is-sre

