
Streamlining Help Request Workflow with Slack Automation Tools

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Sam Gallettta

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Streamlining Help Request Workflow with Slack Automation Tools

CS4991 Capstone Report, 2023

Sam Galletta

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

sjg7egt@virginia.edu

ABSTRACT

A Northern Virginia based event-

management software company needed to

replace its inefficient and unorganized

process for handling internal login help

requests. To streamline the process and make

it more intuitive, our development team

implemented some of Slack’s built-in

automation tools and integrated a Slack Bot

supported by AWS services. Slack offers a

suite of automation tools through Workflow

Builder which allowed us to add forms and

automated messages to our help request

workflow. We also used a Slack Bot to

streamline the workflow by adding a

functionality enabling users to retrieve

general information about our service

through slash commands. The bot was

supported by AWS resources including

Lambda, API Gateway, and DynamoDB and

the whole stack was deployed using

CloudFormation. There was almost instant

impact from the addition of these tools to our

help request Slack channel as the developers

on my team were able to handle requests at a

faster rate and in a more organized manner.

In addition, people asking for help about

another service were deflected to the proper

teams through the automated messages. In

the future, we want to expand the

functionality of the Slack Bot, creating a

larger suite of slash commands. We also want

more integration with our other tools like our

Jira ticketing system and API logs.

1. INTRODUCTION

Fixing problems in a timely manner is

an essential part of running any business, but

especially in the fast-paced event

management industry. Our company had no

standard help request workflow, as each team

had their own Slack channel to field help

requests. Our team owned the company’s

login service, which includes both internal

logins from employees and logins from our

customers using our products. With such a

high volume of users, there is nearly a

constant stream of problems that they may

run into, and we fielded those help requests

through our Slack channel.

Our help request channel was a free-

for-all when people needed to submit a

request. Users could only submit requests

through free form messages, which often led

to unnecessarily wordy help requests, making

problems even more confusing. The lack of

forms in our workflow left the amount of

information in the help request up to the

user’s discretion. This often led to users

omitting necessary information, which made

a simple problem take dozens of messages to

figure out. Additionally, users often came

into our channel asking for help about

another service. Deflecting them in the right

direction was another task added onto the

plate of our already very busy developers. We

knew that we needed some sort of automation

integrated into our help request workflow, as

there was always the need for human

intervention in our process.

To put it simply, our help request

system was wasting the time of both our

mailto:sjg7egt@virginia.edu

engineers and users. Developers would get

stuck in long message threads to solve trivial

issues with our service. Our users would get

frustrated when they learned how simple the

answer to their question was and how long it

took them to get there. We knew that changes

had to be made which is why we undertook

this project of integrating Slack automation

tools.

2. RELATED WORKS

 Slack blog posts were some of the

first resources we looked at when trying to

find inspiration for our project. We landed on

a post by Haughey (2019) which was almost

exactly what we were looking for. In his post,

he introduces a problem nearly identical to

ours along with how Slack automation tools

can be a solution. According to a study cited

by Haughey, after surveying hundreds of help

desks, they found that when given the option,

70% of employees would rather submit their

help requests through Slack. This gave us

peace of mind that our users would still be

satisfied with keeping our help request

system on Slack, we just needed to improve

the process. One of the Slack tools that

Haughey introduces in his post is the slash

command. The slash command is message

that starts with a / followed by the actual

command. When sent in a Slack channel, it

will perform some action. We this was

something we would want to adopt in our

new workflow due to its simplicity and wide

range of uses.

 A Medium blog post by Pilvelis

(2020) was another inspiration behind our

project. This post was a tutorial on how to

stand up a Slack Bot backed by AWS

resources. His post helped us realize the

simplicity of the set-up process. Almost all

our company’s microservices were backed by

AWS so our development team was already

very familiar with similar processes. Pilvelis

offered a very simplified version of what we

were going to need to do as he was

developing his bot for personal use, and we

needed to develop one for corporate use. This

meant that we would need to take further

steps in ensuring the security of our bot as

well as abiding by company development

standards. We would ultimately have to end

up making quite a few tweaks to the process

that Pilvelis lays out, but his post was a

necessary kick starter for our project.

3. PROCESS DESIGN

 This section will detail the design,

implementation, and challenges of the

project.

3.1 Requirements

 To begin improving our help request

system, our team brainstormed what features

we would need to have in our new system.

First, we wanted to include forms to provide

a structured way to field information from

users and ensure that we were receiving all

necessary information in their help request.

Second, we wanted to be able to send users

automated messages for multiple reasons,

including reminding users to use the new

features and redirecting users to other teams

when we could not resolve their issues.

We also knew the implementation of

a bot would be key in achieving a lot of the

features we would need in our initial iteration

and in future iterations. The main

functionality of the bot we focused on for the

MVP was the ability to support slash

commands. We wanted these slash

commands to act as a sort of search bar for

our service so users could quickly retrieve

information about the login service without

having to sift through our documentation.

3.2 Design

 Some of the features of our new help

request workflow would require minimal

programming as they could be implemented

through Slack’s Workflow Builder.

Integrating a bot into our channel was a much

more involved process so our team decided to

dedicate one of our weekly design meetings

to discuss how to approach this. Since some

of the developers on the team had some

previous experience deploying similar

applications, they provided some valuable

insight on how to structure the architecture of

this project.

To align with company-wide coding

standards, we decided our bot would be fully

backed by AWS resources. After multiple

iterations in the design process, we decided

on a simple structure, illustrated in Figure 1

below.

Figure 1: Diagram of Backend Architecture

(Thorn Tech Staff, 2017)

First the slash command is initialized

by the user in a Slack message. When that

message is sent, Slack sends a HTTP POST

request to our API Gateway. The API

Gateway triggers our Lambda handler when

it receives a POST request. The Lambda is

responsible for verifying and parsing the

request, and then pulling data from our

DynamoDB table which houses the

information we want to send back to the user.

Once that data is retrieved, the Lambda

buttons it up into a human-readable message

which is sent back to the user. We settled on

this simple architecture for the first iteration

of the bot as it allows us to easily make

changes in future iterations.

3.3 Implementation

 To aid in the simplicity of this

application, we decided it would be best to

deploy our bot using AWS Cloud

Development Kit (CDK), a way to specify

our AWS infrastructure as code and deploy it

with CloudFormation. My development team

provided a boilerplate CDK application to

begin the programming process. Then it was

just a matter of adding the right resources,

making sure everything was configured

correctly, and writing the code for the

Lambda handler function. During testing, we

deployed the bot to our company’s sandbox

AWS environment. This ensured that if

anything went awry in our application that it

would not affect the other services.

Currently, the bot lives in the alpha

environment, which is still a testing

environment but slightly more like the

configurations in the production

environment.

3.4 Challenges

 One of the biggest challenges of this

project was ensuring the security of the bot as

this was a new concept to me. Since the bot

had its own API endpoint, we needed to make

sure it was secure and we would only receive

requests from our Slack bot and nothing else.

Luckily, Slack signs its requests using a

secret that is unique to each bot. This made

the request verification process much more

stress-free. The process starts when a request

is sent by Slack. First, we want to manually

compute the signature by concatenating the

version number, timestamp on the request,

and the request body together and then

calculate the SHA256 hash of that string with

the unique secret as the key. Then we want to

compare the computed signature with the

signature contained in the request body. If

these signatures match, then we can carry on

with the rest of the process; otherwise, we

abort the process.

4. RESULTS

 The new help request workflow was

rolled out in pieces as they became

functional. The first parts of the new help

request workflow made public on our Slack

channel were the forms to field new help

requests. They had an almost immediate

impact, as all the developers on the team

praised how necessary information was fed

input at the inception of a request and there

was no need to hound users for more details.

The second part we decided to publicize was

the automated reminder messages. We

noticed that many people were not using the

new features in the channel because they

simply did not know the features existed.

These first two features came out

quickly and both users and developers were

very pleased with the outcome of their

addition to the channel. We noticed much

shorter message threads when help requests

were filed, fewer help requests in our channel

that were questions other teams handled, and

a Slack channel that was much more pleasing

to the eye. The beefier part of the help request

workflow overhaul was the bot, which took

quite a bit more time to roll out to our channel

because of its complexity. We were not able

to get a full version of the bot integrated into

the channel due to time constraints, but we

believe that the addition of the bot and its

ability to automate trivial tasks could only

add value.

5. CONCLUSION

 The process of streamlining our help

request system seemed like a daunting task

when we began the project, but we quickly

learned it was much simpler than we

expected. Slack’s expansive suite of

automation tools and AWS CDK were the

main actors in simplifying the development

process. The project was very personally

fulfilling as I walked away from a 10-week

internship feeling like I made a significant

difference for my team. Developing this

project also exposed me to a lot of new

techniques and technologies while also

reinforcing the skills I already have.

6. FUTURE WORK

 There are a few improvements that

could be made to our new help request system

that we weren’t able to accomplish. First, the

Slack bot should be deployed to the

production environment and made public on

our channel. We believe that the bot is the

most valuable part of the new system, and we

were only able to do some internal testing

within our development team so making it

public on our channel is our top priority.

Once deployed, we want to expand the

functionality of our bot by adding different

slash commands and integrating it with our

other development tools like Jira and

BitBucket. Another improvement that could

be made is how our bot retrieves information

for the slash command that is currently

implemented. Right now, our bot pulls

information statically stored in our

DynamoDB instance, but ideally it would

pull from a more dynamic source as the

information is constantly changing. This

would be a much more involved process and

we would likely need to restructure the

backend architecture of the bot.

REFERENCES

[1] Haughey, M. 2019. Build a self-serve IT

help desk in Slack. (July 2019). Retrieved

from

https://slack.com/blog/productivity/build-a-

self-serve-it-help-desk-in-slack

[2] Pilvelis, T. 2020. How to Create a Slack

Bot using AWS Lambda in < 1 Hour. (Jan

2020). Retrieved from

https://medium.com/glasswall-

engineering/how-to-create-a-slack-bot-

using-aws-lambda-in-1-hour-1dbc1b6f021c

[3] Thorn Tech Staff. 2017. How to Build a

Serverless Slack Chatbot. (Mar 2017).

Retrieved from

https://thorntech.com/serverless-slack-

chatbot

