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Abstract 

Relative to singletons, twins are at an elevated risk to be born prematurely and at low birth weight. 

Consequently, twins are small relative to population norms on anthropomorphic measurements in 

infancy and score about a standard deviation below the population mean on early cognitive 

assessments. However, by middle childhood twins are average physically and cognitively. 

Although twins make gains toward the population mean physically and cognitively over the first 

years of life, the recovery process is not well understood. The goal of this dissertation is to explore 

the process of physical and cognitive recovery using prospective data from a community sample 

of twins followed from infancy to adolescence. To that end, I fit a series of growth models to age-

standardized measurements of height, weight, head circumference, and cognitive ability to identify 

typical trajectories of physical and cognitive recovery in twins. Leveraging the genetically 

informative portion of the data, I conducted biometric analyses to determine the proportion of the 

variance of recovery associated with genetic and environmental factors. I then tested associations 

between aspects of the environment (e.g., gestational age, family socioeconomic status) and 

patterns of recovery. Finally, I explored the co-development of physical size and cognitive ability 

using models of parallel development and dynamic development.  

 

Recovery of height, weight, and head circumference was most rapid in the first year of life whereas 

cognitive recovery accelerated in toddlerhood. Shared environmental factors explained the 

majority of the variance in early physical size and cognitive ability. The rate, shape, and magnitude 

of physical and cognitive recovery was related to a combination of genetic and environmental 

factors. Associations between physical and cognitive development were moderate to strong in 

infancy, but nonsignificant by adolescence. There was some evidence of a dynamic relationship 

between physical recovery and cognitive development in infancy with larger height and head 

circumference measurements leading to increases in the rate of cognitive growth. Although the 

present study focuses on twins, twins can serve as a model for singleton development. Findings 

from this dissertation inform our understanding of typical patterns of physical and cognitive 

recovery following exposure to early bioenvironmental adversity, which can be used to identify 

children displaying atypical development. 
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Overview and Study Aims 
Relative to singletons, twins are exposed to elevated rates of perinatal stressors including 

premature birth, low birth weight, and neonatal diseases (Giuffrè et al., 2012; Martin et al., 2021). 

According to the National Vital Statistics Report of 2019 births (Martin et al., 2021), 61% of twins 

were born prematurely (defined as less than 37 weeks gestation) and 56% were born at low birth 

weight (defined as less than 2,500 grams). Relative to singletons, rates of premature birth and low 

birth weight in twins were 7.2 and 8.3 times higher, respectively (Martin et al., 2021). 

Consequently, in infancy twins tend to fall about one standard deviation below the population 

mean in terms of height, weight, head circumference, and standardized cognitive ability 

(Estourgie-van Burk et al., 2010; Koeppen-Schomerus et al., 2000; Price et al., 2000; Wilson, 

1979). Throughout childhood twins make rapid progress toward the population mean in physical 

size and cognitive ability and tend to be average physically and cognitively by middle childhood 

(Estourgie-van Burk et al., 2009; Estourgie-van Burk et al., 2010; Wilson, 1974; Wilson, 1979).  

 

In a series of studies using prospective data from the Louisville Twin Study, Ronald Wilson 

documented early deficits in cognitive ability and physical size in twins as well as subsequent 

recovery to the population mean (Wilson, 1972; Wilson, 1974; Wilson, 1974b; Wilson, 1975; 

Wilson, 1979). Although it is well understood that twins fall below population norms physically 

and cognitively in infancy and are average physically and cognitively by middle childhood, little 

is known about the process by which twins recover. Specifically, the rate and shape of recovery of 

physical size and cognitive ability have not been documented in previous research. Thus, it is 

unclear how quickly twins recover and if there are developmental periods where the rate of 

recovery is more rapid. Additionally, the relative contribution of genetic and environmental factors 

to the recovery of physical size and cognitive ability are currently unknown. Finally, it is unclear 

the extent to which recovery in physical size is related to the recovery of cognitive ability. 

Although previous research generally suggests that physical and cognitive recovery occurs within 

the first five years of life (Estourgie-van Burk et al., 2009; Estourgie-van Burk et al., 2010; Wilson, 

1974; Wilson, 1979), it is unclear if physical and cognitive recovery are strongly associated or 

largely independent processes.  

 

Understanding the processes of physical and cognitive recovery in twins is important for several 

reasons. Both physical size and cognitive ability are strong predictors of numerous indicators of 

wellbeing (Calvin et al., 2007; Ceci & Williams, 1997; Roh et al., 2014). Physically undersized 

infants have an increased likelihood of premature mortality and are at risk to display deficits in 

early motor development and cognitive tasks (Belanger & Caron, 2018; Luke & Keith, 1992). 

Moreover, adults who are clinically underweight are at an increased risk for premature mortality 

and other health complications (Roh et al., 2014). Likewise, performance on intelligence tests in 

adolescence and adulthood is positively associated with educational attainment, employment, and 

physical health in adulthood and negatively associated with delinquency and risk for premature 

mortality (Batty et al., 2007; Calvin et al., 2007; Ceci & Williams, 1997; Farrington, 2005). From 

a developmental psychopathology perspective (Rutter & Sroufe, 2000), understanding typical 

patterns of recovery among children displaying early physical and cognitive deficits can inform 

our understanding of atypical development, or children not on track to catch up physically or 

cognitively. Knowing the typical magnitude of initial deficits as well as when and how quickly 

recovery occurs can be used to identify infants who are at a greater initial risk or who are not 

recovering as expected. This information can then be used to guide placement in intervention 
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services (e.g., nutrition supplementation to promote physical growth, Early Intervention to foster 

cognitive development).  

 

Using prospective data from the Louisville Twin Study (Davis et al., 2019; Wilson, 1983) I aim to 

address gaps in the literature related to physical and cognitive recovery in twins across childhood. 

Since the publication of Wilson’s seminal papers documenting physical and cognitive recovery in 

the Louisville Twins, the sample size of the Louisville Twin Study has nearly doubled and 

standardized cognitive data and physical growth data have been collected to age 15 years (Davis 

et al., 2019), and are currently being collected in midlife (Beam et al., 2020). My dissertation can 

be broken down into three aims, which are described in detail below. I aim to extend early 

Louisville Twin Study research and more broadly shed light on the process by which twins recover 

physically and cognitively across childhood. Moreover, as twins can serve as a model for singleton 

development, findings may provide insight into the process of recovery of cognitive ability and 

physical size for singletons born at bio-environmental risk (e.g., anoxic, prematurely, at low birth 

weight). 

 

Aim 1: Model the Recovery of Height, Weight, and Head Circumference in Twins Across 

Childhood  

Observations of average height and weight in twin samples at different developmental periods 

suggest that the mean height and weight of twins falls significantly below the population mean in 

infancy, but that twins generally catch up to the population mean by early childhood (Estourgie-

van Burk, 2010; Wilson, 1979). However, that I am aware of, there has been no published work 

using growth models to describe the recovery of physical size in twins across childhood. Growth 

curve models can provide information on the average rate of growth over time as well as 

acceleration or deceleration in the average rate of growth over time, information that cannot be 

obtained from examining mean differences across study waves. Thus, the first aim of the 
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dissertation seeks to describe the typical rate and shape of “recovery” of height-for-age and weight 

for-age z-scores in twins from birth to 15 years. In modeling the growth in height and weight, I 

considered nonlinear exponential and sigmoid-shaped (S-shaped) asymptotic growth models 

(Grimm & Ram, 2009; Grimm et al., 2013). I then leveraged the genetically informative portion 

of the study to decompose the variance of the growth parameters into additive genetic (A) variance, 

shared environmental (C) variance, and nonshared environmental (E) variance. Additive genetic 

variance refers to the sum of genetic contributions, the shared environment refers to features of the 

rearing environment that increase twin similarity (e.g., shared parenting experiences), and the 

nonshared environment refers to features of the rearing environment that reduce twin similarity 

including measurement error (e.g., having different teachers). As monozygotic (identical) twins 

share 100% of the same genes and dizygotic (fraternal) twins share 50% of the same genes, the 

variance in any phenotype can be decomposed into additive genetic, shared environmental, and 

nonshared environmental components through structural equation modeling (see Figure 1 for a 

generic ACE factor model). Finally, I examined measured shared and nonshared biological and 

environmental correlates of the recovery of height and weight, including socioeconomic status 

(SES), gestational age, and maternal age. 

 

Aim 2: Model the Recovery in Cognitive Ability in Twins from Infancy to Adolescence 

Similar to Aim 1, the second aim of the proposed dissertation focuses on the recovery of cognitive 

ability in twins across childhood. I focused on general cognitive ability as participants in the study 

sample completed a variety of age-appropriate standardized cognitive assessments over the course 

of the study (see Davis et al., 2019), all of which include a comparable general cognitive ability 

score. As with models of physical growth, I considered nonlinear exponential and sigmoid-shaped 

(S-shaped) asymptotic growth models. Once the best-fitting growth model for cognitive ability is 

established, I conducted biometric analyses to decompose the variance of the growth parameters 

into additive genetic, shared environmental, and nonshared environmental terms. Finally, I 

examined measured shared and nonshared environmental correlates to the recovery of cognitive 

ability across childhood including socioeconomic status (SES), gestational age, birth weight, and 

maternal age.  

 

Aim 3: Examine the Co-Development of Physical Size and Cognitive Ability in Twins from 

Infancy to Adolescence 

Previous research has established associations between physical size and cognitive ability across 

childhood. Children born at low birth weight or small stature tend to display poorer cognitive 

ability in infancy and childhood (Koeppen-Schomerus et al., 2000; Kohlhauser et al., 2000; 

Shenkin et al., 2004; Swamy et al., 2018). However, catch-up growth in height and weight across 

childhood has been associated with better performance on standardized cognitive assessments in 

adolescence and adulthood among samples born at low birth weight or small stature (Antoniou et 

al., 2013; Varella & Moss, 2015). Although associations between physical size and cognitive 

ability have been established in the literature, there has been no research that has examined the 

parallel growth in physical size and cognitive ability across multiple developmental stages in 

childhood.  

 

The third aim of the proposed dissertation is to examine associations between the parallel recovery 

in physical size and recovery in cognitive ability across childhood by incorporating the best-fitting 

growth curve models observed in aims 1 and 2 into the same model and calculating phenotypic, 
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additive genetic, shared environmental, and nonshared environmental correlations between the 

growth parameters. To examine transactional associations between recovery in physical size and 

cognitive ability, I fit a bivariate dual change score model, which links changes in cognitive ability 

to previous values of physical size and vice versa. Such an approach elucidates the extent to which 

a child’s physical size at time t is predictive of the amount of change in their rate of growth of 

cognitive ability between time t and time t+1.  
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Recovery of Physical Size in Twins Across Childhood: Genetic and Environmental 

Correlates 
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As early as 24 weeks gestation, twins display a dampened rate of prenatal physical growth relative 

to singletons (Hiersch et al., 2020). Researchers have hypothesized that discrepancies in prenatal 

growth rates are due to constraints of the uterine size (Blickstein, 2004) or increased nutrition 

requirements of two fetuses in the third trimester (Liao et al., 2012). Consequently, at birth twins 

have been observed to have marked deficits on measurements of physical growth including height, 

weight, and head circumference (Estourgie-van Burk et al., 2010; van Dommelen et al., 2008; 

Wilson, 1979; Wilson, 1974b). For example, in a large sample of Dutch infants, birth lengths in 

twins were 0.42 SD below the population mean and birth weights were 0.87 SD below the 

population mean whereas average birth lengths and weights for their singleton siblings were within 

0.01 SD of the population mean (Estourgie-van Burk et al., 2010). Likewise, using data from the 

Louisville Twin Study, Wilson (1979) observed that twins were 17% shorter and 30% lighter at 

birth relative to singleton siblings. Deficits in birth length and weight in twins were observed across 

percentiles (i.e., twins in the 10th percentile were substantially smaller than singletons in the 10th 

percentile, and twins in the 90th percentile were smaller than singletons in the 90th percentile). 

However, deficits were more pronounced at lower height and weight percentiles (Wilson, 1979). 

Additionally, accounting for gestational age, Wilson (1974b) found that twins born at the 50th 

percentile in terms of head circumference were comparable to singletons at the 10th percentile. 

 

Deficits in physical size at birth are linked to a myriad of negative developmental outcomes 

including delays in early cognitive and gross and fine motor development (Kuklina et al., 2006; 

Scharf et al., 2016; Scharf et al., 2018; Upadhyay et al., 2019). Sustained deficits in physical size 

increases the risk for poor neurodevelopment and other serious health concerns across the lifespan. 

For example, length, weight, and head circumference measurements greater than 2 SD below the 

population mean in infancy are risk factors for poor neurodevelopment including receiving a 

diagnosis of global developmental delay or intellectual disability (Bélanger & Carone, 2015). 

Likewise, being clinically underweight in adulthood (BMI < 18.5 kg/m2) is a risk factor for all-

cause mortality (Flegal et al., 2005; Roh et al., 2014). Therefore, identifying the typical rate and 

shape of catch-up growth in height, weight, and head circumference is important to identify 

children that are at risk for abnormal physical development and subsequent neurodevelopmental 

and health outcomes. Likewise, identifying environmental correlates of physical recovery in 

children exposed to early bio-environmental adversity is a useful first step in informing 

interventions to promote healthy physical development.  

 

Catch-Up Growth in Height, Weight, and Head Circumference 

In singletons born small for gestational age, most catch-up growth in height occurs in the first 12 

months, suggesting that rapid recovery in physical size may begin in infancy (Brandt et al., 2003; 

Itabashi et al., 2007). Accordingly, twins make rapid gains toward singleton norms across infancy, 

but deficits in both height, weight, and head circumference remain apparent in toddlerhood 

(Buckler & Green, 2004; Schulte et al., 2016; van Dommelen et al., 2008; Wilson, 1979). By late 

childhood, most samples of twins suggest there are minimal to no discrepancies in physical size 

between twins and singletons (Estourgie-van Burk et al., 2010; Wilson, 1979). For example, 

despite early deficits in physical size, twins in the Louisville Twin Study were observed to be 

within 5% of singleton norms for height and weight by 5 years and exhibited no differences relative 

to singleton norms by 8 years (Wilson, 1979). As with length and weight at birth, recovery of 

height and weight was consistent across percentiles (i.e., twins in the 10th percentile at birth were 

at the 10th percentile singleton norms by age 8; Wilson, 1979). Although Wilson (1979) did not fit 
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growth models to the physical growth data, plots of sample means over time appear exponential 

with rapid recovery occurring in the first months and leveling off around the singleton means by 

early childhood, consistent with observations in small for gestational age singletons (Itabashi et 

al., 2007).  

 

Studies examining associations between intra-pair discrepancies in birth weight and physical 

development outcomes can yield important information about physical growth outcomes of infants 

born at small weight and stature while holding constant shared prenatal and postnatal experiences. 

Across childhood, the smaller twin typically catches up to the larger twin in terms of height, 

weight, and head circumference (Buckler & Green, 2011, Morag et al., 2018; Ross et al., 2012; 

Schulte et al., 2016; Swamy et al., 2018), although some research suggests that slight discrepancies 

may persist into adulthood (Koziel, 1998). Using a small sample of monozygotic twins from the 

Louisville Twin Study born at discrepant birthweights (>= 750 grams), Wilson (1979) observed 

no differences in height in early childhood, but the smaller twin at birth was significantly lighter. 

In a longitudinal study of premature twins born at discordant birth weight (>15% discrepancy in 

birth weight), there were no intra-pair differences in height or weight at 3 years, indicating 

significant catch-up in the smaller twin within a discordant pair (Ross et al., 2012). Although all 

twins in the study were low birth weight, height and weight for age z-scores were within the normal 

range by age 3 years (Ross et al., 2012). In a study of birth weight discordant (>20% discrepancy 

in birth weight) monochorionic twins1, the smaller twins were on average within 8% of the larger 

twin in terms of weight and within 2% in terms of height by early childhood (Swamy et al., 2018). 

Both the lighter and heavier twin were within the normal weight-for-age range in early childhood 

(Swamy et al., 2018). Thus, after accounting for shared prenatal and postnatal experiences as well 

as shared genetics, discrepancies in physical size tend to dissipate across the first few years of 

childhood. Moreover, results provide additional evidence that twins catch up to the population 

mean physically by early childhood (Ross et al., 2012; Swamy et al., 2018).  

 

In later developmental stages, twins typically maintain gains in height, weight, and head 

circumference relative to the population mean (Estourgie-van Burk et al., 2010; Wilson, 1979). 

For example, Estourgie-van Burk and colleagues (2010) observed age-standardized heights and 

weights of Dutch twins to be at the population mean at age 18. Similarly, using data from 

Norwegian military conscripts, Sundet and colleagues (2005) found that twins were slightly shorter 

than nontwins in adulthood, although the effect size was extremely small (Cohen’s d = .07). Thus, 

the typical recovery pattern of height and weight appears to be asymptotic with gains in height and 

weight stabilizing around the population mean in middle childhood and sustaining into adulthood. 

  

Biometric Analyses of Height, Weight, and Head Circumference  

Biometric twin studies that decompose the variance of a phenotype into genetic and environmental 

components generally suggests that additive genetic factors account for an increasing proportion 

of the variance in height, weight, and head circumference across the lifespan (Dommelen et al., 

2004; Estourgie-van Burk et al., 2006; Mook-Kanamori et al., 2012; Silventoinen et al., 2003; Smit 

et al., 2010). The heritability of birth weight, length, and head circumference tends to be relatively 

low (Antoniou et al., 2013; Mook-Kanamori et al., 2012; Smit et al., 2010), which may be due to 

competition for nutrients between MZ twins (Van Baal & Boomsma, 1998). Using data from the 

Netherlands Twin Register, Mook-Kanamori and colleagues (2012) found additive genetics to 

 
1 Monochronic twins are twins that develop in a single fetus and are monozygotic by definition.  
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account for approximately 27% of the variance in birth length and 29% of the variance in birth 

weight whereas the shared environment accounted for 46% and 22% of the variance in birth length 

and weight, respectively. By 36 months, additive genetics accounted for 72% of the variance in 

height and 71% of the variance in weight and the shared environment accounted for 17% and 14% 

of the respective variance in height and weight at 36 months (Mook-Kanamori et al., 2012). 

Similarly, in a cohort study of Chinese children, genetic factors accounted for 12% of the variance 

in height for children 0-2 years old and 87% of the variance for children 15-17 years old (Liu et 

al., 2015). Alternatively, shared environmental factors accounted for 83% of the variance in height 

for children 0-2 years and 11% of the variance for children 15-17 years old (Liu et al., 2015). 

Analysis of four samples of twins from the Netherlands and Australia found the shared 

environment to contribute to between 71% and 82% of the variance in head circumference among 

infants younger than four months and additive genetics to contribute to between 84% and 92% of 

the variance in head circumference for infants between 5 and 13 months (Smit et al., 2010). Studies 

of adult samples have found height and weight to be highly heritable with heritability estimates 

for height, weight, and head circumference ranging from .68 to .90 (Silventoinen et al., 2000; 

Silventoinen et al., 2003; Smit et al., 2010; Yang et al., 2007).  

 

Although numerous studies have conducted biometric analyses on height and weight in twins at 

specific developmental periods, biometric analyses of the change in height or weight over time are 

relatively uncommon and no studies have conducted biometric analyses on the latent growth of 

head circumference. In a prospective study of over 2,000 British twins, the total change in weight-

for-age z-scores between birth and six months was primarily accounted for by additive genetic 

factors (57%) whereas shared and nonshared environmental contributions were marginal (22% and 

21%, respectively) (Johnson et al., 2011). However, in a prospective study of physical growth in 

Israeli twins between birth and 12 months, shared environmental factors accounted for most of the 

variance in the velocity of growth in height and weight (56.4% and 49.5%, respectively) (Livshits 

et al., 2000). Additive genetics did not account for a significant proportion of the variance of 

velocity of height or weight growth (Livshits et al., 2000). Studies extending into later 

developmental stages consistently find additive genetics to explain most of the variance in the rate 

and shape of growth in height and weight over time (Demerath et al., 2007; Dommelen et al., 2004; 

Hauspie et al., 1994; Hjelmborg et al., 2008; Johnson et al., 2011). 

 

Previous biometric analyses of physical development in twins have several limitations which are 

addressed in the present dissertation. First, as growth of head circumference is an important 

indicator of healthy child development, understanding the relative genetic and environmental 

contributions to the development of head circumference is important for our understanding of early 

human development. Understanding the recovery process of head circumference in high-risk 

samples (e.g., twins) is especially important provided the established association between poor 

head circumference growth and cognitive functioning and neurodevelopmental disorders 

(Bélanger & Carone, 2015; Scharf et al., 2018). A second limitation of previous research is that 

previous studies of physical development in twins have focused on a limited developmental period. 

That I am aware of, no studies have examined growth trends from infancy to adolescence, limiting 

our understanding of the role of genetics and environmental influences in long-term growth of 

height and weight in twins. Third, previous research has focused on change in raw measures of 

height or weight (Dommelen et al., 2004; Hauspie et al., 1994; Johnson et al., 2011). Such a focus 

does not provide insight into rates of growth relative to the population mean which is of interest 
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when considering typical and atypical patterns of physical development among children exposed 

to early bio-environmental adversity (e.g., premature birth, low birth weight, etc.). Thus, the 

relative genetic and environmental contributions to the recovery of physical size in twins are 

currently unknown.  

 

Specific Environmental Contributions to Physical Recovery  

Exposure to prenatal stressors may reflect one aspect of the shared environment that contributes 

to the extent to which twins catch up to the population mean in terms of physical size. Gestational 

age and birth weight represent crude but useful indicators of exposure to prenatal insults (Kline et 

al., 1989). In Israeli twins, gestational age accounted for approximately 40% of the total variance 

in birth weight and length as well as growth in height and weight over the first year, highlighting 

the importance of prenatal experiences in early physical development (Livshits et al., 2000). In a 

sample of singletons born small for gestational age, 90% of the full-term infants caught up to the 

population mean for height by 5 years, whereas 74% of the preterm infants caught up by 5 years 

(Itabashi et al., 2007), suggesting that premature birth may amplify the likelihood that small infants 

will fail to catch up to age-appropriate size.   

 

Socioeconomic status, which may reflect access to higher-quality nutrition and medical care, is an 

aspect of the postnatal environment that has been associated with physical development (Ashworth 

et al., 1997; Batista et al., 2012; Jelenkovic et al., 2020). For example, among Brazilian singletons 

born prematurely, community-level SES, but not family-level SES positively predicted catch-up 

growth2 in height between birth and school entry (Batista et al., 2012). However, among children 

living in poor communities, low family SES was associated with a greater likelihood of catch-

down growth3 (Batista et al., 2012). Results from a large aggregation of twin samples from 15 

countries revealed a modest, positive correlation between height and parental education 

(Jelenkovic et al., 2020). Among Brazilian singletons born at low birthweight, family SES 

explained 21.4% of the variance in catch-up weight gain over the first year and 24.4% of the 

variance in catch-up height, accounting for maternal height, maternal smoking, and prenatal illness 

(Ashworth et al., 1997). In Western cultures, some research suggests an inverse relationship 

between SES and early weight gain such that infants in poorer households gain weight more 

rapidly than infants in wealthier families (Wijlaars et al., 2011). Thus, in the process of recovering 

to the population mean in terms of weight, twins in poorer homes may demonstrate a steeper 

recovery in weight and ultimately overshoot the population mean, ending up overweight in early 

childhood.  

 

The Present Study 

The present study seeks to describe the process by which twins recover to the population mean in 

terms of height, weight, and head circumference. Specifically, I fit nonlinear growth models 

(Grimm & Ram, 2009) to height for age, weight for age, and head circumference for age z-scores 

from birth to 15 years (birth to three years for head circumference) to model the magnitude, rate, 

and shape of the recovery of physical size in twins. I then conducted biometric analyses on the 

best-fitting growth models to determine relative additive genetic, shared environmental, and 

nonshared environmental contributions to physical recovery. Finally, I examined measured 

 
2 Catch-up growth refers to a change height-for-age z-score ≥ 0.67 standard deviations.  
3 Catch-down growth refers to a change height-for-age z-score ≥ -0.67 standard deviations. 
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prenatal and postnatal correlates to the recovery of physical size and cognitive ability across 

childhood. The study design and hypotheses were preregistered (https://osf.io/dsyac/).  

 

Methods 

Participants 

Participants were 1,210 individual twins recruited as a part of the Louisville Twin Study, an 

ongoing longitudinal study of temperament and intellectual development in twins (Davis et al., 

2019; Wilson, 1983). All twins were recruited from the Louisville, Kentucky metropolitan area. 

Participants were primarily White (89.3%) and were recruited to represent the socioeconomic 

composition of the Louisville metropolitan area. Twin zygosity was determined by blood serum 

analysis. 

 

Over the 36-year course of the Louisville Twin Study, there were 1,770 individuals (885 pairs) 

listed as participating at least once. Twins missing zygosity information will not be included in 

analyses (n = 120). Of those remaining, 1,637 had at least one physical measurement. As is typical 

in twin studies, I restricted analyses to monozygotic and same-sex dizygotic twins (n = 1,287). 

Finally, provided my focus on typical physical development, I removed all individuals with a 

physical measurement greater than 4 SD above or below the population mean (n = 77). Thus, the 

final sample is 1,210 (52.3% female). 

 

Procedure 

Data were collected between 1957 and 1993. Cognitive testing and physical measurements were 

completed by trained examiners during laboratory visits at the University of Louisville at 16 time 

points between 3 months and 15 years (0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 12, and 15 

years). Twins were typically assessed within one week of their birthdays and the testing schedule 

was arranged such that examiners did not administer cognitive assessments to the same individuals 

at consecutive assessments. Most individuals in the study did not have data at all 16 points, but 

89.0% had four or more physical assessments and 79.3% had four or more cognitive assessments 

(see Table 1).  

 

Table 1 

Number of Assessments Available 

Number of 

Measurements Weight Height 

Head 

Circumference 

1 74 78 90 

2 85 83 62 

3 34 34 57 

4 46 58 109 

5 43 40 151 

6 57 45 281 

7 47 55 329 

8 53 65 407 

9 112 100 108 

10 80 92  

11 85 103  

12 98 95  

https://osf.io/dsyac/
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13 132 132  

14 189 204  

15 291 245  

16 130 121  

17 80 69  

Median 12 12  

Note. Head circumference z-scores are only available until 36 

months. Therefore, there were only 9 possible measurements for 

head circumference.  

 

Measures 

Physical development. Physical measurement procedures are described in detail elsewhere 

(Wilson, 1974b, Wilson, 1979). Birth length, weight, and head circumference measurements were 

obtained from birth certificates. All subsequent physical measurements were taken during 

assessments conducted at the University of Louisville. Infant weights between 3 and 24 months 

were taken with the infant lying undressed on a balance scale. After 24 months, infants were 

weighed wearing a light garment using a platform scale calibrated in four-ounce increments. All 

weights were recorded to the nearest ounce and were subsequently converted to kilograms. Height 

was measured to the nearest millimeter. Recumbent length was used as a proxy for height between 

3 and 24 months. After 24 months, standing height was measured using a wall-mounted metric 

scale. Head circumference was measured to the nearest eighth of an inch and converted to metric 

measurements for analyses (Wilson, 1974b). Raw height, weight, and head circumference 

measurements were converted into age-standardized z-scores using Center for Disease Control 

(CDC) growth charts based on 2000 norms (Kuczmarski, 2000). Z-scores are calculated separately 

for males and females and, therefore, are also standardized by sex. The 2000 CDC growth charts 

were based on United States population surveys conducted between 1963 and 1994 (see 

Kuczmarski 2000 for further details), which overlaps with the timeline of data collection in the 

Louisville Twin Study.  

 

Covariates. Baseline household SES was measured based on the Hollingshead Four Factor Index 

of Socioeconomic Status, which is based on parental occupation, education, sex, and income 

(Hollingshead, 1975). Hollingshead scores are based on a continuous zero to 100-point scale. 

Gestational age (in weeks) was calculated based on maternal report of last menses. Maternal age 

(in years) at birth was also included as a study covariate. Child sex was also included as a covariate 

in growth models. Continuous covariates were standardized to have a mean of 0 and SD of 1, and 

sex was centered. A quadratic SES term was created by squaring the standardized SES term. I then 

centered the quadratic SES term to ensure it had a mean of 0, which is a requirement to ensure that 

the predicted means of the latent growth terms are 0 (Grimm, personal communication, February 

18, 2021).  

 

Proposed Analyses 

Descriptive Statistics. Data preparation, descriptive statistics, and the calculation of 

intercorrelations between study variables will be conducted using the Base package in R (R Core 

Team, 2020). 
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Nonlinear growth modeling. In modeling the recovery of height, weight, and head circumference 

in twins, I considered polynomial (linear, quadratic, and cubic), exponential, sigmoid (Logistic, 

Gompertz, Richards), Weibull, and Morgan-Mercer-Flodin growth models. I discuss the Weibull 

and Morgan-Mercer-Flodin models in more detail below as these models fit the physical growth 

data best.  

 

Weibull Growth Model. The Weibull growth model is commonly used in the biological sciences 

and has been found to describe the vertical growth of trees (Mahanta & Borah, 2014), the weight 

of birds (Wen et al., 2019), and the growth of brain volume in children (Peterson et al., 2018). The 

Weibull growth model is an extension of the Weibull distribution and can be defined by the 

following equation (Ratkowsky, 1983).  

 

𝑌it = b1i  −  (b1i  −  b0i) ∙ exp(−b2i ∙ t
b3i) + e𝑖𝑡 

 

In the Weibull model, b0 is often described as the “biological constant” and is analogous to the 

intercept (measurement when time equals zero). b1 represents the upper asymptote, and b2 

represents the average rate of change. b3 is a shaping parameter that controls the overall shape of 

the curve. Values of b3 less than 1 describe a model that follows an exponential shape whereas 

values greater than 1 describe a sigmoid shape. In the case that b3 equals 1, the Weibull curve 

simplifies to a traditional exponential curve.  

 

Morgan-Mercer-Flodin Model. The Morgan-Mercer-Flodin growth model is also frequently used 

in the biological sciences to describe the growth of organisms (Tariq et al., 2013). The Morgan-

Mercer-Flodin model can be expressed using the following equation (Morgan et al., 1975).  

 

𝑌𝑖𝑗 = 𝑏1𝑖  −  
𝑏1𝑖  −  𝑏0𝑖

(1 + (𝑏2 ∙  t)𝑏3𝑖)
+ e𝑖𝑡 

 

In the Morgan-Mercer-Flodin model, b0 corresponds to the intercept, b1 is the upper asymptote, 

b2 is the average rate of growth. The inflection point scaling parameter (b3) can be used to 

calculate the age at which growth is the fastest using the following equation: 

Age of Inflection = [
𝑏3 − 1

𝑏3 + 1
]

1
𝑏3

 

  

All growth models were fit within a structural equation modeling framework using Mplus version 

8.4 (Muthén & Muthén, 2017). As described by Grimm and colleagues (2013) nonlinear growth 

functions can be approximated in a structural equation modeling by using a Taylor Series 

expansion to generate a linear function of the target function (e.g., Weibull curve). This can be 

done by fixing the loadings for each growth factor to the partial derivative of each term in the 

target function.  

 

As models comparing different growth functions were not nested, the best-fitting model was 

determined using the Root Mean Square Error of Approximation (RMSEA), Tucker-Lewis Index 

(TLI), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). Because 

individual twins are nested within families, the genetically-informative portion of the analysis was 

conducted using a two-level model, which requires the estimation of growth models at the child 
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level (within-pair) and family level (between-pair). Variances within and between MZ and DZ 

twins were then transformed into the genetic and environmental variances of the classical twin 

model. All models were fit using maximum likelihood estimation with robust standard errors.  

 

Genetic analyses. Once the best fitting growth model was identified, the growth parameters were 

decomposed into additive genetic (A), shared environmental (C), and nonshared environmental 

effects plus measurement error (E) following a standard multilevel approach (McArdle & Prescott, 

2005). The ACE decomposition takes advantage of the fact that MZ twins share 100% of their 

DNA sequence, whereas DZ twins share, on average, 50% of their segregating genes. The 

between- and within-pair variances can be decomposed into environmental and genetic 

components following. 

MZwithin = E   

MZbetween = A + C   

DZwithin = 0.5*A + E   

DZbetween = 0.5*A + C   

 

See Figure 2 for a sample path diagram of the multilevel ACE decomposition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

Generic ACE Decomposition of a Multilevel Growth Model  
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Environmental correlates to physical and cognitive recovery. I then regressed the growth 

parameters onto covariates to identify environmental correlates to the recovery of height, weight, 

and head circumference in twins. All study covariates were constant across twins within a family 

(i.e., SES, gestational age, and maternal age) and were included at the between-pair level of the 

model. To aid model convergence, I standardized all covariates prior to inclusion.  

 

Missing Data 

Due to the longitudinal nature of the Louisville Twin Study, there were missing data on all 

measures. Rates of missingness for each study variable are presented in Table 2.  

 

Table 2 

Proportion of Missingness for Each Study Variable 

Age % Missing 

Height 

% Missing 

Weight 

% Missing Head 

Circumference 

Birth 20.8% 0.3% 56.5% 

3 months 46.7% 46.4% 44.7% 

6 months 31.2% 31.3% 31.4% 

9 months 31.9% 32.0% 32.1% 

12 months 17.4% 17.4% 17.9% 

18 months 20.2% 20.4% 21.3% 

24 months 20.5% 20.5% 21.8% 

30 months 46.9% 46.7% 47.1% 

36 months 21.8% 21.6% 22.3% 

4 years 26.6% 26.4%  

5 years 28.0% 28.0%  

6 years 29.9% 29.9%  

7 years 41.2% 41.2%  

8 years 42.2% 42.2%  

9 years 46.2% 46.2%  

12 years 83.1% 83.1%  

15 years 57.1% 57.1%  

Average 36.0% 34.7% 33.0% 

Note. CDC charts to calculate Z-scores for head circumference after 36 

months were not available. Therefore, head circumference is only 

measured to 36 months.  

 

Rubin (1976) describes three patterns that may describe missing data: missing completely at 

random (MCAR), missing at random (MAR), and missing not at random (MNAR). Data are 

MCAR when missingness is unrelated to any observed variables (e.g., other variables in the study) 

or unobserved variables (e.g., the missing value). In the present study, data would be MCAR if 

missingness on weight measurements was unrelated to study covariates (e.g., SES), previous 

weights, and the would-be weight from the missing timepoint. MAR occurs when missingness is 

related to other observed variables, but not the missing value itself. For example, if children from 

lower SES households are more likely to be missing weight measurements and heavier children 

are not more likely to be missing, data are considered MAR. When missingness is related to the 

value of the missing variable (e.g., if extremely light children did not participate at a particular 
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wave due to health concerns), data would be considered MNAR. There are a variety of strategies 

to handle missing data when data are MCAR or MAR, however, parameter estimates are likely to 

be biased in cases where data are MNAR (Enders, 2011a).  

 

There is no statistical test to definitively determine if data are MCAR or MAR as both of these 

data patterns require knowledge of an unknown variable (i.e., the value of the missing data point). 

Several strategies have been derived to approximate the missing data pattern. Little’s MCAR test 

tests the null hypothesis that missingness is unrelated to observed values on all other variables in 

a dataset (Little, 1988). Little’s MCAR test was significant for height (X2 = 12,429 df = 6,894, p < 

.001), weight (X2 = 11,563 df = 6,402, p < .001), and head circumference (X2 = 5,411 df = 2,368, p < 

.001). Therefore, none of the physical growth parameters were MCAR as missingness was 

predicted by at least one variable in the dataset.  

 

To further explore missing data patterns, I fit a series of logistic regression models with 

missingness of each physical growth indicator (height, weight, and head circumference) at each 

age predicted by the study covariates as well as zygosity. Additionally, as study procedures 

changed throughout the course of the Louisville Twin Study, birth year was included as a predictor 

of missingness to determine if there were systematic differences in missingness by cohort (e.g., 

were later-born cohorts less likely to be assessed at certain ages). Finally, the observed measure at 

the previous assessment was included in the logistic regression models (i.e., weight at 3 months 

predicting missing weight at 6 months). To the extent that concurrent physical measurements 

across childhood are stable, I was able to approximate whether or not missingness is related to the 

missing value (i.e., are heavier children more likely to be missing at 6 months). 

 

In general birth year was positively associated with missingness on the physical growth measures, 

indicating that children born later (and enrolled in the study later) were less likely to have height, 

weight, and head circumference measurements. Socioeconomic status was positively related to 

missing head circumference at birth, but negatively related to missingness at 12 months. Children 

with longer gestation were less likely to be missing weight measurements at 8 years. In four 

instances, a physical measurement was significantly predicted by the previous measurement. A 

larger head circumference at 24 months predicted a greater likelihood of missingness at 30 months 

(B = 0.05, SE = 0.02, p = .004). Children who were taller at 6 years were more likely to be missing 

height measurements at 7 years (B = 0.05, SE = 0.02, p < .001). Finally, shorter children at 12 

years were more likely to be missing height measurements at 15 years (B = -0.10, SE = 0.03, p = 

.002), and lighter children at 12 years were more likely to be missing weight measurements at 15 

years (B = 0.11, SE = 0.03, p < .001).  

 

Although there are a few occasions where physical size at time t predicts missingness at time t + 

1, these associations do not appear to be systematic. That is, observed measurements are not biased 

by consistently larger or smaller children. Birth year does appear to be an important indicator of 

missingness, and likely reflects changes in study protocols over the years. This suggests that 

physical growth data in the LTS are generally MAR. I used full information maximum likelihood 

estimation (FIML) in Mplus to handle missing data. FIML is appropriate for handling data under 

MAR conditions and performs comparably to other strategies of handling missingness (e.g., 

multiple imputation) and is computationally simpler (Enders, 2013). When using FIML to handle 

missingness, it is important to include predictors of missingness in the model to avoid generating 
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biased parameter estimates (Graham, 2001; Enders, 2013). As birth year was the only consistent 

predictor of missingness, I include birth year as a predictor of measured height, weight, and head 

circumference at each age in all growth curve models.  

 

Results 

Descriptive Statistics and Intercorrelations 

Hollingshead SES scores indicated that, overall, the sample was of average SES with families 

approximately evenly distributed across SES quintiles (22.2%, 20.1%, 18.8%, 25.7%, and 13.1% 

in the first through fifth quintiles, respectively). The mean gestational age (37.4 weeks SD 2.3) 

suggests that the average twin pair was born on the cusp of prematurity. The majority of twins 

(69.3%) were born at typical gestation (greater than 37 weeks), but 28.4% of the twins were born 

prematurely (32-37 weeks gestation) and 2.3% were born very prematurely (less than 32 weeks 

gestation). Correlations among study covariates were generally weak suggesting that they 

represent independent aspects of the shared environment. Family SES was moderately correlated 

with maternal age, and birth weight was moderately correlated with gestational age. See Table 3 

for descriptive information and intercorrelations between study covariates.  

 

Descriptive Statistics Physical Size 

The average birth weight for the study sample was 5.6 pounds (5.5 pounds is the cutoff for low 

birth weight). Most twins were born at typical birth weight (55.9%), but 41.4% of twins were born 

at low birth weight (3.3 to 5.5 pounds) and 2.7% were born at very low birth weight (less than 3.3 

pounds). Although premature birth and low birth weight were common in the study sample, 

relatively few twins were born very prematurely or at very low birth weight. Therefore, the study 

sample largely reflects children born at relatively moderate risk in terms of birth weight and 

gestational age.  

 

Average weight, height, and head circumference z-scores at each age are presented in Tables 4, 5, 

and 6, respectively. Mean birth weights, lengths, and head circumferences were between 1.52 

standard deviations below the mean (for weight) to 0.77 standard deviations below the mean (for 

length). Between birth and 15 years (3 years for head circumference), mean scores reflected a 

pattern of early deficits and recovery to the mean (see Figures 3, 4, and 5 for spaghetti plots of 

trajectories of change in weight, height, and head circumference across time).  

 

Underweight is a medical term used to describe children more than 2 standard deviations below 

the population mean in terms of weight, and stunting refers to children more than two standard 

deviations below the population mean in terms of height. At birth, 27.0% of the twins were 

underweight and 11.7% were stunted. However, the proportion of twins that were underweight or 

stunted decreased dramatically over time, and by 15 years only 0.4% were underweight and 0.7% 

were stunted. See Figure 6 for a plot of the proportion of children underweight or stunted at each 

age. 

 

Twin correlations and rough estimates of the heritability of weight, height, and head circumference 

at each age are presented in Tables 4-6, respectively. Heritability estimates of weight, height, and 

head circumference at birth were remarkably low (0.02 – 0.10), which likely reflects the strong 

effects of the early prenatal environment on early physical size. However, heritability estimates of 

all of the physical growth parameters rapidly increased over time. Thus, more genetically similar 



17 

 

individuals (i.e., identical twins) became more similar physically than less genetically related 

individuals (i.e., fraternal twins) at later developmental stages.  

Table 3 

Descriptive Statistics for Study Covariates 

      Correlations 

Variable n Mean (SD) Range Skew Kurtosis SES Chaos Gestational Age 

Family SES 1,388 47.83 (26.60) 1-96 0.00 -1.18    

Household Chaos 438 5.28 (2.75) 0.39-13.00 0.45 -0.32 -.09   

Gestational Age (weeks) 1,109 37.39 (2.35) 29-45 -0.75 0.90 .00 -.05  

Mom Age (years) 1,375 27.59 (5.48) 14-42 0.23 -0.43 .35* .01 -.05 

Note. The n reflects the number of individual twins each covariate is available for. * denotes p < .05. 



18 

 

 

Table 4 

Descriptive Statistics of Weight 

 

Age n (MZ) n (DZ) Mean (SD) Range r MZ r DZ h2 

Birth 729 477 -1.53 (0.78) -3.97 – 1.29 .63 .60 0.06 

3 months 379 269 -1.03 (0.95) -3.95 – 2.03 .79 .49 0.60 

6 months 505 326 -0.75 (0.98) -3.64 – 2.40 .81 .54 0.54 

9 months 511 312 -0.73 (1.00) -3.77 – 2.08 .83 .50 0.66 

12 months 619 381 -0.69 (1.02) -3.59 – 2.42 .87 .56 0.62 

18 months 601 362 -0.69 (1.03) -3.97 – 2.39 .86 .53 0.66 

24 months 605 357 -0.57 (1.03) -3.95 – 2.28 .88 .53 0.66 

30 months 392 253 -0.31 (1.00) -3.51 – 2.14 .86 .54 0.64 

36 months 586 363 -0.24 (0.97) -3.31 – 3.11 .88 .54 0.64 

4 years 555 336 -0.23 (0.93) -3.05 – 3.15 .87 .54 0.64 

5 years 534 323 -0.26 (0.94) -3.13 – 3.54 .88 .54 0.64 

6 years 534 314 -0.24 (0.97) -3.46 – 2.93 .88 .59 0.58 

7 years 450 262 -0.20 (0.99) -3.05 – 2.97 .88 .56 0.64 

8 years 440 259 -0.09 (1.00) -2.89 – 2.91 .90 .57 0.66 

9 years 415 236 -0.05 (1.03) -2.65 – 2.86 .90 .62 0.56 

12 years 127 77 0.20 (1.18) -2.49 – 2.68 .96 .58 0.76 

15 years 328 191 0.20 (0.95) -3.48 – 3.45 .88 .64 0.48 

Note. MZ indicated monozygotic and DZ indicates dizygotic. Heritability (h2) was 

estimated by multiplying the difference between the MZ and DZ correlations by 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

Individual trajectories of weight z-scores from birth to 180 months. The sample mean is 

represented by the solid black line. The dashed black line represents the population mean of 0. 
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Table 5 

Descriptive Statistics of Height 

Age n (MZ) n (DZ) Mean (SD) Range r MZ r DZ h2 

Birth 598 360 -0.77 (1.17) -3.97 – 2.70 .67 .65 0.04 

3 months 377 268 -1.32 (1.03) -3.98 – 1.19 .77 .63 0.28 

6 months 505 327 -0.74 (0.93) -3.32 – 1.78 .78 .62 0.32 

9 months 5011 313 -0.63 (0.90) -3.47 – 1.99 .82 .58 0.48 

12 months 619 380 -0.45 (0.90) -3.59 – 2.48 .84 .65 0.38 

18 months 602 363 -0.34 (0.89) -3.94 – 2.13 .88 .66 0.44 

24 months 605 357 -0.33 (0.88) -3.00 – 2.24 .89 .57 0.64 

30 months 389 254 -0.33 (0.87) -3.38 – 2.20 .92 .57 0.70 

36 months 585 361 -0.32 (0.92) -3.46 – 2.22 .93 .57 0.72 

4 years 553 335 -0.20 (0.94) -3.04 – 2.38 .94 .60 0.68 

5 years 585 323 -0.10 (0.92) -2.85 – 2.49 .94 .56 0.76 

6 years 534 314 -0.11 (0.93) -2.68 – 2.46 .94 .55 0.78 

7 years 450 262 -0.21 (0.93) -2.97 – 2.36 .94 .52 0.84 

8 years 440 259 -0.19 (0.95) -2.93 – 2.50 .95 .51 0.88 

9 years 415 236 -0.11 (0.97) -2.80 – 3.57 .94 .54 0.80 

12 years 127 77 0.01 (1.04) -2.21 – 3.74 .96 .50 0.92 

15 years 328 191 0.03 (0.97) -2.67 – 2.98 .94 .39 1.10* 

Note. MZ indicated monozygotic and DZ indicates dizygotic. Heritability (h2) was 

calculated by multiplying the difference between the MZ and DZ correlations by 2. *At 

15 years, the MZ twin correlation was more than twice the DZ correlation, resulting in a 

heritability estimate greater than one.   

Figure 4 

Individual trajectories of height z-scores from birth to 180 months. The sample mean is represented 

by the solid black line. The dashed black line represents the population mean of 0. 
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Table 6 

Descriptive Statistics of Head Circumference 

Age n (MZ) n (DZ) Mean (SD) Range r MZ r DZ h2 

Birth 332 194 -1.29 (0.86) -3.86 – 1.20 .63 .57 0.12 

3 months 378 267 -1.13 (0.90) -3.87 – 3.30 .83 .44 0.78 

6 months 504 326 -0.44 (0.91) -3.28 – 2.04 .84 .40 0.88 

9 months 509 311 -0.06 (0.96) -3.79 – 3.21 .87 .43 0.88 

12 months 616 377 0.25 (0.97) -2.82 – 3.59 .83 .41 0.84 

18 months 595 357 0.31 (1.01) -2.48 – 3.40 .90 .45 0.90 

24 months 592 354 0.35 (0.94) -2.25 – 3.37 .89 .44 0.90 

30 months 389 251 0.41 (0.89) -2.08 – 3.49 .90 .49 0.82 

36 months 579 361 0.44 (0.88) -1.93 – 3.55 .89 .47 0.84 

Note. MZ indicated monozygotic and DZ indicates dizygotic. Heritability (h2) was 

calculated by multiplying the difference between the MZ and DZ correlations by 2.  

Figure 5 

Individual trajectories of head circumference z-scores from birth to 36 months. The sample mean is 

represented by the solid black line. The dashed black line represents the population mean of 0.  
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Intercorrelations 

Longitudinal intercorrelations between weights, heights, head circumferences, and cognitive 

scores are presented in Figures 7-9, respectively. Intercorrelations between consecutive weights, 

heights, and head circumferences were strong, indicating stability in physical size across relatively 

brief periods from infancy to adolescence. Birth weight was weakly to moderately correlated with 

weight after the first year (r’s = .15-.35). Likewise, length at birth was weakly to moderately 

correlated with length (height) after the first year (r’s = .17-.35). Head circumference at birth was 

moderately correlated with head circumference measurements within the first three years (r’s = 

.35-.47). Measurements of head circumference after birth were highly intercorrelated (r’s = .69-

.96).

Figure 6 

Proportion of the study sample that are underweight, stunted, or microcephalic at each age.  
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Figure 7 

Longitudinal Intercorrelations between Weight Z-Scores 

 

Figure 8 

Longitudinal Intercorrelations between Height Z-Scores 
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Study Aim 1a: Model the Recovery of Weight 

Model Identification: Recovery of Weight. Model fit information for the growth curve models 

fit to weight can be found in Table 7. The cubic, logistic, and Richard’s growth curve models did 

not converge, and fit statistics were not estimated. Based on the BIC values, the Weibull growth 

model fit the data best. Although the Weibull model fit the data best relative to the other growth 

models, the RMSEA value (.10) and TLI value (.88) indicate that the Weibull model did not fit the 

data well.  

 

Table 7 

Model Fit Statistics - Weight 

Fit 

Statistic Linear Quadratic Cubic Exponential Weibull 

Morgan-

Mercer-

Flodin Logistic Gompertz Richards 

X2/df 4,739/149 3,849/145  2,540 /145 1,800/141 1,836/140  2,206/140  

TLI .66 .72  .82 .87 .87  .84  

RMSEA .16 .15  .12 .10 .10  .11  

AIC 24,795 23,361  21,245 20,075 20,129  20,633  

BIC 24,968 23,586  21,469 20,319 20,379  20,882  

 

Growth models were initially fit using a traditional approach of omitting correlations between the 

residuals. Although omitted residual correlations is the most common approach used in empirical 

research (Marcoulides, 2019), assuming that residuals are uncorrelated is often an unrealistic 

Figure 9 

Longitudinal Intercorrelations between Height Z-Scores 
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assumption, and miss-specifying the residual structure in a growth model can lead to bias in the 

standard error estimates (Kwok et al., 2007). Adding autocorrelations between residuals in a 

growth curve model can also lead to an improvement in model fit (Grimm & Widaman, 2010).  

 

I used a banded structure (Wolfinger, 1993) to model the residual structure of the Weibull growth 

model. This approach strikes a balance between parsimony and maximizing model fit. A simplified 

matrix of the banded structure model used is depicted below. Specifically, residual variances for 

each measured variable are freely estimated and covariances between sequential residuals (e.g., 

between 3 and 6 months) are freely estimated. However, all other residuals remain uncorrelated 

(e.g., 3 months and 15 years).  

 

[
 
 
 
 
σ1

2

σ5 σ2
2

σ6 σ3
2

σ7 σ4
2]
 
 
 
 

 

 

The model including structured autocorrelations fit significantly better than the model without (X2 

= 829.8, df = 17, p < .001). The final Weibull growth model fit the data acceptably (X2 = 970.4, df 

= 124, p < .001; RMSEA = .08; TLI = .92). Parameter estimates for the final Weibull model are 

presented in Table 8. The average twin had an intercept of -1.50, indicating that at birth the average 

twin was able 1.5 standard deviations lighter than the population mean. The upper asymptote was 

-0.09, indicating that the average twin recovered to within a tenth of a standard deviation of the 

population mean (see Figure 10).  

 

 

 

Table 8 

Parameter Estimates of the Recovery of Weight 

Parameter 

Mean 

[95% C.I.] 

Variance  

[95% C.I.] 

Correlation Coefficient [95% C.I.] 

Intercept (b0) 

Upper 

Asymptote (b1) 

Rate of 

Growth (b2) 

Intercept (b0) -1.50 

[-1.56, -1.44] 

0.56 

[0.25, 0.88] 

   

Upper Asymptote (b1) -0.09 

[-0.17, -0.02] 

1.11 

[0.95, 1.28] 

.18 

[.07, .29] 

  

Rate of Growth (b2) 0.85 

[0.72, 0.97] 

3.38 

[1.42, 5.35] 

-.01 

[-.21, .19] 

-.33 

[-.45, -.21] 

 

Shaping Parameter (b3) 0.73 

[0.66, 0.81] 

1.06 

[0.81, 1.31] 

.15 

[-.03, .33] 

-.36 

[-.45, -.26] 

.27 

[.12, .41] 

Note. Estimates that are significantly different from 0 at p < .05 are presented in bold.   
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Biometric analysis of the recovery of weight. Unstandardized and standardized biometric 

components are presented in Table 9. Shared environmental influences (C) contributed to the 

majority of the variance in the lower asymptote (68%) and did not contribute significantly to the 

upper asymptote. On the other hand, additive genetics did not contribute significantly to the lower 

asymptote of weight but accounted for the majority of the variance in the upper asymptote (76%). 

Additive genetics and shared environmental factors accounted for a significant portion of the 

variance in the rate of growth and inflection point. A Wald test revealed that the proportion of the 

variance in the rate of growth and inflection point attributed to additive genetics is not significantly 

different from the proportion of variance due to shared environmental factors (X2 = 3.76, df = 2, p 

= .153). Finally, nonshared environmental factors made relatively small but significant 

contributions to all of the growth parameters. 

Table 9 

Variance in Weight Growth Parameters Due to Genetic and Environmental Components 

Parameter 

Additive 

Genetic (A) 

[95% C.I.]  

Shared 

Environment (C) 

[95% C.I.] 

Nonshared 

Environment (E) 

[95% C.I.] 

Proportion 

A 

Proportion 

C 

Proportion 

E 

Intercept (b0) 0.03 

[-0.26, 0.32] 

0.35 

[0.06, 0.64] 

0.13  

[0.07, 0.20] 

.06 .68 .26 

Upper Asymptote (b1) 0.84  

[0.58, 1.09] 

 0.17  

[-0.07, 0.42] 

0.09  

[0.07, 0.11] 

.76 .16 .08 

Rate of Change (b2) 1.67  

[0.76, 2.59] 

0.70 

[0.04, 1.35]  

0.11  

[0.04 – 0.18] 

.67 .28 .05 

Inflection Point (b3) 0.66 

[0.31, 0.95] 

0.39 

[0.04 – 0.73] 

0.07 

[0.03 – 0.11] 

.58 .36 .06 

Note. Proportions that are significant at the p < .05 level are highlighted in bold.  

Figure 10 

Predicted Weight Recovery Based on the Weibull Function 

Note. The dashed line represents the population mean of 0. The shaded area represents 

the 95% confidence interval of the growth curve.  



26 

 

Environmental correlates of weight recovery. The growth parameters for weight recovery were 

regressed on gestational age, SES, the residual of SES squared, sex, and maternal age at birth. All 

parameter estimates are resented in Table 10. Males had a significantly higher intercept than 

females, suggesting that male twins are born closer to the population mean. However, males and 

females were statistically indistinguishable at the upper asymptote, indicating that they recovered 

consistently relative to the population mean. Females had a faster rate of recovery and an earlier 

inflection point than males. Figure 17a depicts the predicted trajectory of weight recovery by sex. 

Maternal age was positively associated with the inflection point of weight recovery; children born 

to older mothers had a later inflection point (see Figure 17b). Gestational age was significantly 

associated with the intercept of weight; children born later were closer to the population mean in 

terms of weight. However, twins born full term still had lower birth weights compared to the 

population mean, suggesting that prematurity does not entirely account for early deficits in weight 

among twins (see Figure 17c). Twins born at a lower gestational age had a quicker rate of growth, 

and there was no association between gestational age and the upper asymptote of weight. Thus, 

any effects of gestational age on weight appear to dissipate across infancy and are negligible by 

toddlerhood. 

 

 

 

 

Table 10 

Correlates of Weight Recovery 

Between-Pair Effects 

Predictor Variable 

Intercept (b0) 

B [95% C.I.] 

Upper Asymptote (b1)  

B [95% C.I.] 

Rate of Change (b2) 

B [95% C.I.] 

Inflection Point 

(b3) 

B [95% C.I.] 

Sex 0.16 [0.07, 0.25] 0.04 [-0.14, 0.22] -0.37 [-0.67, -0.08] 0.24 [0.04, 0.45] 

Family SES 0.04 [-0.02, 0.09] -0.08 [-0.18, 0.02] 0.04 [-0.12, 0.19] 0.05 [-0.06, 0.15] 

Family SES2* 0.08 [0.02, 0.13] 0.11 [0.01, 0.22] -0.07 [-0.23, 0.10] 0.03 [-0.15, 0.09] 

Gestational Age 0.43 [0.38, 0.47]  0.05 [-0.04, 0.15] -0.21 [-0.36, -0.06] 0.01 [-0.11, 0.13] 

Maternal Age 0.05 [-0.00, 0.10] -0.00 [-0.09, 0.09] 0.10 [-0.05, 0.24] 0.12 [0.02, 0.23] 

Note. Coefficients that are significant at the p < .05 level are highlighted in bold. *Family SES2 is the residual of 

family SES squared regressed onto family SES.  
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Figure 11 

Correlates of Weight Recovery 

Note. The dashed line represents the population mean of 0. The shaded area around each trajectory represents the standard error.  
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The quadratic, but not the linear SES term was associated with the intercept and upper asymptote 

of weight recovery. This suggests that the associated between SES and weight recovery becomes 

greatest at the extremes (high and low) of SES. Figure 12 depicts the predicted trajectories of 

weight recovery by SES across the first year, which highlights differences in the intercept by SES. 

At birth, children in very low (-2 SDs) or very high (+2 SDs) SES are born the heaviest.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By adolescence, children at very low and very high SES have the highest upper asymptotes (see 

Figure 13). Notably, children at very low SES have the highest weight Z-scores and are still 

approaching their upper asymptote of weight relative to the population mean in late adolescence. 

The discrepancy between children born at very low SES and other children become more extreme 

if the predicted trajectories are extended to middle adulthood (see Figure 14) and suggest a 

relationship between poverty and unhealthy weight gain across the lifespan.  

 

Figure 12 

Predicted Weight Recovery by SES across the First Year 

Note. The dashed line represents the population mean of 0. 
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Figure 14 

Predicted Weight Recovery by SES from Birth to Middle Adulthood 

Note. The dashed line represents the population mean of 0. Estimates beyond 15 years 

are predicted based on the parameter estimates of the model fit to 15 years and do not 

reflect actual measured weight.  

Figure 13 

Predicted Weight Recovery by SES from Birth to Adolescence 

Note. The dashed line represents the population mean of 0. 
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As an approximation of effect size, I calculated the proportion of the shared environmental (C) 

variance explained by measured shared environmental constructs (i.e., family SES, gestational age, 

etc.). This was calculated by subtracting the unstandardized shared environment (C) variance in 

the constrained model from the C variance in the unconstrained model and dividing the difference 

by the C variance in the unconstrained model (Singer et al., 2003). The study covariates accounted 

for 48% of the variance in C for the intercept, 20% of the variance in the upper asymptote, 17% of 

the variance in the rate of growth, and 8% of the variance in the inflection point.  

 

Study Aim 1b: Model the Recovery of Height 

Model Identification: Recovery of Height. The growth curve models for height yielded a similar 

story to the growth curve models for weight. The Weibull growth model fit the data better than the 

other growth models according to the BIC, but the TLI and RMSEA values indicate that the fit to 

the data was poor (see Table 11). As with the model of weight recovery, adding the banded 

structure autocorrelations to the residuals of the Weibull growth model improved the model fit to 

an acceptable level (X2 = 1,095.1, df = 123, p < .001; RMSEA = .08; TLI = .91). The average twin 

was 0.92 SD below the population mean in terms of height at birth and recovered to within 0.13 

SD of the population mean. Growth parameter estimates are presented in Table 12. The mean 

trajectory of height recovery is depicted in Figure 15.  

 

 

 

Table 11 

Model Fit Statistics - Height 

Fit 

Statistic Linear Quadratic Cubic Exponential Weibull 

Morgan-

Mercer-

Flodin Logistic Gompertz Richards 

X2/df 3,599/148 2,699/144  1,841/144 1,565/139 1,773/139 1,571/139 1,666/139  

TLI .74 .80  .87 .88 .87 .88 .88  

RMSEA .13 .12  .10 .09 .10 .09 .10  

AIC 18,689 17,283  15,838 15,357 15,530 15,363 15,432  

BIC 18,803 17,418  15,973 15,517 15,690 15,523 15,592  

Table 12 

Parameter Estimates from the Recovery of Height 

Parameter 

Mean 

[95% C.I.] 

Variance  

[95% C.I.] 

Correlation Coefficient [95% C.I.] 

Intercept  (b0) 

Upper 

Asymptote (b1) 

Rate of 

Growth (b2) 

Intercept (b0) -0.93  

[-1.02, -0.84] 

0.75 

[0.55, 0.95] 

   

Upper Asymptote (b1) -0.13 

[-0.21, -0.06] 

0.92 

[0.83, 1.01] 

.41 

[.30, .53] 

  

Rate of Growth (b2) 0.61 

[0.50, 0.72] 

1.01 

[0.49, 1.53] 

-.20 

[-.36, -.03] 

-.17 

[-.28, -.06] 

 

Inflection Point Scaling 

Parameter (b3) 

1.01 

[0.91, 1.10] 

2.45 

[1.43, 3.47] 

.24 

[.04, .43] 

-.19 

[-.31, -.06] 

-.13 

[-.33, .07] 

Note. Estimates that are significantly different from 0 at p < .05 are presented in bold.   
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ACE decomposition for height. Biometric analyses of the growth parameters for the recovery of 

height indicate that the shared environment accounts for the majority of the variance in the 

intercept whereas additive genetics account for the majority of the variance in the upper asymptote. 

Additive genetics and the shared environment account for relatively comparable proportions of the 

rate of recovery and inflection point. A Wald test revealed that the proportion of the variance in 

the rate of growth and inflection point attributed to additive genetics is not significantly different 

from the proportion of variance due to shared environmental factors (X2 = 0.86, df = 2, p = .650). 

See Table 13 for the unstandardized and standardized ACE estimates.  

Table 13 

Variance in Height Growth Parameters Due to Genetic and Environmental Components 

Parameter 

Additive 

Genetic (A) 

[95% C.I.]  

Shared 

Environment 

(C) [95% C.I.] 

Nonshared 

Environment 

(E) [95% C.I.] 

Proportion 

A 

Proportion 

C 

Proportion 

E 

Intercept (b0) 0.19 

[-0.20, 0.57] 

0.72 

[0.31, 1.13] 

0.13 

[0.05, 0.21] 

.18 .70 .13 

Upper Asymptote 

(b1) 

0.82 

[0.63, 1.01] 

0.08 

[-0.12, 0.27] 

0.05  

[0.04, 0.06] 

.87 .08 .05 

Average Rate of 

Change (b2) 

0.80 

[0.25, 1.34] 

0.70 

[0.11, 1.29] 

0.06 

[-0.01, 0.14] 

.51 .44 04 

Inflection Point 

(b3) 

0.90 

[-0.09, 1.88] 

1.68  

[0.58 – 2.78] 

0.11  

[-0.04 – 0.25] 

.33 .63 .04 

Note. Proportions that are significant at the p < .05 level are highlighted in bold. Spaces shaded black indicate 

ACE parameters that had to be constrained to 0. Proportions that do not add up to 1 are due to rounding. 

Figure 15 

Predicted Height Recovery Based on the Weibull Function 

Note. The dashed line represents the population mean of 0. The shaded area represents 

the 95% confidence interval of the growth curve.  
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Environmental correlates of height recovery. Maternal age was not significantly related to any 

of the height recovery parameters. Females had a faster rate of recovery than males, but there were 

no differences in the intercept or upper asymptote by sex (see Figure 16a). Gestational age was a 

strong correlate of height recovery. Children born at full term were within a quarter standard 

deviation of the population mean at birth and gradually grew toward the population mean. On the 

other hand, premature children were substantially below the population mean at birth and 

recovered rapidly toward the population mean. By early childhood, premature and full-term 

children were statistically indistinguishable in terms of height (see Figure 16b). As with weight, 

linear SES was not significantly associated with recovery of height. However, there was a 

significant quadratic relationship between SES and the upper asymptote of height, indicating that 

children in both very wealthy and very poor homes were taller relative to the population mean in 

adolescence (see Figure 16c).  

 

 

 

 

 

 

 

 

 

Table 14 

Correlates of Height Recovery 

Between-Pair Effects 

Predictor Variable 

Intercept (b0) 

B [95% C.I.] 

Upper Asymptote (b1)  

B [95% C.I.] 

Rate of Change (b2) 

B [95% C.I.] 

Inflection Point 

(b3) 

B [95% C.I.] 

Sex -0.02 [-0.18, 0.14] 0.07 [-0.09, 0.22] -0.43 [-0.67, -0.18] -0.14 [-0.49, 0.21] 

Family SES 0.07 [-0.02, 0.16] -0.02 [-0.11, 0.07] -0.05 [-0.17, 0.08] 0.15 [-0.05, 0.34] 

Family SES2* 0.06 [-0.04, 0.14] 0.12 [0.03, 0.20] -0.10 [-0.23, 0.03] 0.01 [-0.19, 0.22] 

Gestational Age 0.65 [0.56, 0.73]  0.07 [-0.02, 0.16] -0.39 [-0.53, -0.26] 0.43 [0.22, 0.64] 

Maternal Age 0.08 [-0.00, 0.17] -0.04 [-0.04, 0.12] 0.08 [-0.04, 0.20] 0.11 [-0.08, 0.30] 

Note. Coefficients that are significant at the p < .05 level are highlighted in bold. *Family SES2 is the residual of 

family SES squared regressed onto family SES.  
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Figure 16 

Correlates of Height Recovery 

Note. The dashed line represents the population mean of 0. The shaded area 

around each trajectory represents the standard error.  
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Study Aim 1c: Model the Recovery of Head Circumference 

Model Identification: Recovery of Head Circumference. Fit indices for the growth curve 

models fit to head circumference are presented in Table 15. The Morgan-Mercer-Flodin growth 

curve provided the best fit to the data. Moreover, the Morgan-Mercer-Flodin model provided an 

acceptable fit to the data based on the RMSEA value (.07) and TLI value (.96). I compared the 

Morgan-Mercer-Flodin model without residual autocorrelations to a model with residual 

autocorrelations. Correlations between birth and 3 months and between 3 and 6 months were 

initially estimated to be greater than 1 and had to be constrained to 0. Even with these constraints, 

the model with residual autocorrelations fit significantly better than the model without the 

constraints (X2 = 54.5, df = 6, p < .001). Therefore, residuals were allowed to correlate with a 

banded structure. Parameter estimates from the Morgan-Mercer-Flodin model are presented in 

Table 16.  

 

The average twin had a lower asymptote of -1.44 and grew to an upper asymptote of 0.48. Thus, 

the average twin’s head circumference grew approximately 1.92 standard deviations relative to the 

population mean. The age of inflection was calculated to be 0.63. Therefore, the average twin is 

Figure 17 

Height Recovery by SES 

Note. The dashed line represents the population mean of 0. The shaded area 

around each trajectory represents the standard error.  
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growing most rapidly at approximately 7.5 months of age. The average twin reached the population 

mean (i.e., had an estimated z-score of 0) by 6 months (95% C.I. 5.5, 7.0 months). Finally, the 

average twin reached their upper asymptote by approximately 20 months (95% C.I. 17, 24 

months). Therefore, most twins can be expected to recover their head circumference by 7 months, 

but catch-up growth may continue as late as 24 months albeit extremely gradually after 12 months 

(see Figure 18).  

 

 

 

 

Table 16 

Parameter Estimates from the Recovery of Head Circumference 

Parameter 

Mean 

[95% C.I.] 

Variance  

[95% C.I.] 

Correlation Coefficient [95% C.I.] 

Lower 

Asymptote (b0) 

Upper 

Asymptote (b1) 

Rate of 

Growth (b2) 

Lower Asymptote (b0) -1.45  

[-1.52, -1.37] 

0.82 

[0.71, 0.93] 

   

Upper Asymptote (b1) 0.44 

[0.38, 0.51] 

0.81 

[.72, 0.90] 

.38 

[.29, .47] 

  

Rate of Growth (b2) 2.27 

[2.15, 2.37] 

1.49 

[1.02, 1.96] 

-0.25 

[-.36, -.14] 

.23 

[.11, .34] 

 

Inflection Point Scaling 

Parameter (b3) 

2.19 

[2.01, 2.36] 

1.21 

[0.58, 1.84] 

.63 

[.45, .82] 

-.14 

[-.29, .02] 

-.45 

[-.65, -.25] 

Note. Estimates that are significantly different from 0 at p < .05 are presented in bold.   

 

 

 

 

Table 15 

Model Fit Statistics – Head Circumference 

Fit 

Statistic Linear Quadratic Cubic Exponential Weibull 

Morgan-

Mercer-

Flodin Logistic Gompertz Richards 

X2/df 2,041/40 1,141/36 313/31 410/36 279/33 230/32 343/39 337/31  

TLI .69 .81 .94 .94 .95 .96 .95 .95  

RMSEA .20 .15 .08 .09 .08 .07 .08 .08  

AIC 12,310 10,774 9,380 9,600 9,301 9,250 9,521 9,510  

BIC 12,382 10,867 9,498 9,542 9,414 9,364 9,598 9,587  
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Biometric analyses. To address convergence issues, a banded Topelitz structure had to be applied 

to autocorrelations between residuals (Wolfinger, 1993). A banded Topelitz structure involves 

constraining the residual variances to be equal over time and constraining the autocorrelations to 

be equal. This structure, which is presented below, is more parsimonious that the banded structure 

used in previous models. 

[
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The C component of the upper asymptote and the A component of the inflection point scaler were 

initially estimated to be negative, which violates the traditional ACE model. These components 

were constrained to be 0. Therefore, additive genetic factors are unrelated to variance in the 

inflection point of head circumference recovery, and shared environmental factors are unrelated to 

the upper asymptote of head circumference.  

 

Unstandardized and standardized biometric estimates are presented in Table 17. Variance in the 

lower asymptote was predominantly due to shared environmental factors, although nonshared 

environmental factors contributed significantly. Additive genetics accounted for almost all of the 

variance in the upper asymptote and rate of growth. Shared environmental factors accounted for 

the majority of the variance in the inflection point scaler.  

Figure 18 

Predicted Head Circumference Recovery Based on the Weibull Function 

Note. The dashed line represents the population mean of 0. The shaded area represents 

the 95% confidence interval of the growth curve.  
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Environmental correlates of the recovery of head circumference. The growth parameters for 

head circumference recovery were regressed on gestational age, SES, SES squared, sex, and 

maternal age at birth (see Table 18). Males had a higher lower asymptote than females, but females 

recovered at a faster rate. SES was linearly related to the lower and upper asymptotes. Specifically, 

individuals a standard deviation above the mean in SES had a 0.13 standard deviation advantage 

in their head circumference in infancy and a 0.11 standard deviation advantage in the upper 

asymptote. Thus, the early advantages of SES associated with head circumference appear to be 

retained into early childhood. Gestational age was strongly associated with the lower asymptote of 

head circumference; a standard deviation increase in gestational age is associated with about a half 

standard deviation increase in head circumference in infancy. However, gestational age is not 

associated with the upper asymptote. Children born earlier have a slower rate of recovery, but an 

earlier inflection point, suggestive of a longer period of recovery. Maternal age was not 

significantly associated with any of the cognitive recovery parameters. See Figure 24 for plots of 

head circumference recovery trajectories by sex, SES, and gestational age.  

Table 17 

Variance in Head Circumference Growth Parameters Due to Genetic and Environmental Components 

Parameter 

Additive 

Genetic (A) 

[95% C.I.]  

Shared 

Environment 

(C) [95% C.I.] 

Nonshared 

Environment 

(E) [95% C.I.] 

Proportion 

A 

Proportion 

C 

Proportion 

E 

Lower 

Asymptote (b0) 

0.16 

[-0.04, 0.35] 

0.48 

[0.27, 0.69] 

0.23 

[0.16, 0.29] 
.18 .56 .26 

Upper 

Asymptote (b1) 

0.77 

[0.68, 0.87] 
0 

0.05  

[0.03, 0.07] 
.94 0 .06 

Average Rate of 

Change (b2) 

1.06 

[0.43, 1.39] 

0.13 

[-0.49, 0.75] 

0.29 

[0.11, 0.48] 
.71 .09 .20 

Inflection Point 

Scaler (b3) 
0 

1.08 

[0.66 – 1.51] 

0.67 

[0.40 – 0.94] 
0 .62 .38 

Note. Proportions that are significant at the p < .05 level are highlighted in bold. Spaces shaded black 

indicate ACE parameters that had to be constrained to 0. Proportions that do not add up to 1 are due to 

rounding. 

Table 18 

Correlates of Recovery of Head Circumference 

Between-Pair Effects 

Predictor Variable 

Lower Asymptote (b0) 

B [95% C.I.] 

Upper Asymptote (b1)  

B [95% C.I.] 

Rate of Change (b2) 

B [95% C.I.] 

Inflection Point 

Scaler (b3) 

B [95% C.I.] 

Sex 0.32 [0.17, 0.46] 0.11 [-0.03, 0.25] -0.62 [-0.87, -0.36] 0.14 [-0.16, 0.43] 

Family SES 0.13 [0.04, 0.21] 0.12 [0.04, 0.20] -0.04 [-0.17, 0.10] 0.09 [0.08, 0.26] 

Family SES2 0.02 [-0.07, 0.11] 0.06 [-0.02, 0.14] 0.03 [-0.10, 0.17] -0.10 [-0.28, 0.07] 

Gestational Age 0.50 [0.41, 0.58]  -0.06 [-0.13, 0.02] -0.15 [-0.29, -0.01] 0.20 [0.03, 0.36] 

Maternal Age 0.04 [-0.05, 0.13] 0.03 [-0.04, 0.11] -0.02 [-0.11, 0.16] 0.06 [0.11, 0.23] 

Note. Coefficients that are significant at the p < .05 level are highlighted in bold  



38 

 Figure 19 

Correlates of Head Circumference Recovery 

Note. The dashed line represents the population mean of 0. The shaded area around each trajectory represents the standard error.  



39 

 

As shared environmental factors (C) accounted for a significant proportion of the variance in the 

lower asymptote (b0) and inflection point scaling parameter (b3), I was able to calculate the 

proportion of the C variance explained by measured shared environmental constructs (i.e., family 

SES, gestational age, and shared environmental factors associated with gender). This was 

calculated by subtracting the unstandardized shared environment (C) variance in the constrained 

model from the C variance in the unconstrained model and dividing the difference by the C 

variance in the unconstrained model (Singer et al., 2003). The study covariates accounted for 62% 

of the variance in C for the lower asymptote and about 1% of the variance in the inflection point 

scaling parameter.  

 

Discussion 

Nonlinear growth models fit to age-standardized measurements of height, weight, and head 

circumference from birth to adolescence revealed a pattern of development characterized by large 

deficits in physical size at birth and rapid physical recovery across infancy. At birth, deficits in 

physical size ranged from 1.5 SD below the population mean for weight to 0.9 SD below the 

population mean for height. These findings suggest slightly larger physical deficits at birth than 

have been reported elsewhere (Estourgie-van Burk et al., 2010; Johnson et al., 2011), but are 

comparable to observations in the Netherland Twin Register (van Dommelen et al., 2008). 

Although the upper asymptotes for height and weight were statistically different from 0, the 

average twin was within 0.1 SD of the mean at their upper asymptote, suggesting that the difference 

is not clinically meaningful. Additionally, the upper asymptote for head circumference was slightly 

above the population mean. Thus, on average twins fully recovered to age-typical heights, weights, 

and head circumference, which is consistent with findings from previous research (Estourgie-van 

Burk et al., 2010; Wilson, 1974b, Wilson, 1979).  

 

The rate of recovery for each growth metric was most rapid in infancy, highlighting the importance 

of recovery over the first few months of life. For example, the rate of head circumference recovery 

was most rapid at approximately 7.5 months, and on average twins had recovered half of their 

initial weight deficits by 12 months. Therefore, children born with significant deficits in their 

physical size would be expected to make rapid progress toward the population mean across the 

first year of life. Children who do not make progress toward the population mean over the first 

year of life may be at an increased risk for severe health problems related to physical size including 

stunting, wasting, microcephalia, or failure to thrive. Temporally, twins reached their upper 

asymptote of head circumference first (see Figure 20), suggesting that neurological recovery 

begins rapidly following birth and precedes recovery of other structures (i.e., bone structure, 

adipose) in infancy.  

  

 

 

 

 

 

 

 

 

 

Figure 20 

Early Trajectories of Height, Weight, and Head Circumference Recovery 

Note. The dashed line represents the population mean of 0.  
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Biometric Contributions to Recovery  

Biometric analyses of the recovery of height, weight, and head circumference revealed a consistent 

pattern across measurements. Aspects of the shared environment accounted for the majority of the 

variance in the intercept of physical size, additive genetics accounted for the majority of the 

variance in the upper asymptote, and the rate and shape of recovery were associated with a 

combination of additive genetic and shared environmental factors. The large association of shared 

environmental factors and nonsignificant association of genetic factors with variance in physical 

size at birth suggests that exposure to early bioenvironmental stress (e.g., premature birth) may 

override genetic contributions to early physical size. Interestingly, nonshared environmental 

factors explained a small but statistically significant portion of the variance in the intercepts of 

height, weight, and head circumference. Significant nonshared environmental contributions to 

early physical size may reflect differences in placental placement which lead to better nutritional 

access for one twin (Marceau et al., 2016) or in more extreme cases, twin-twin transfusion 

syndrome (Simpson et al., 2013).  

 

On the other hand, additive genetics accounted for the majority of the variance in the upper 

asymptotes of height, weight, and head circumference whereas shared environmental factors did 

not account for a significant portion of the variance. As children age and early environmental 

stressors (e.g., perinatal stressors) become more distal experiences, genetic influences on physical 

size may have more room to operate. Findings that additive genetics contribute to the majority of 

the variance in the upper asymptote of physical size are consistent with previous research that has 

found physical size to be highly heritable in samples above the age of 3 years (Liu et al., 2015; 

Silventoinen et al., 2000; Silventoinen et al., 2003; Smit et al., 2010; Yang et al., 2007). The 

nonsignificant contribution of shared environmental factors suggests that environmental 

differences between families (e.g., between-family differences in the types of food available at 

home) do not significantly contribute to differences in the upper asymptote of height, weight, or 

head circumference. However, the significant nonshared environmental contributions to the 

variance of the upper asymptote of physical size suggest that within-family differences (e.g., 

within-pair differences in diet) contribute to the variance in physical size.  

 

The present study made unique contributions to the literature by demonstrating that the variance 

in the latent rate and shape of physical recovery from early bioenvironmental adversity is 

attributable to a combination of genetic, shared environmental, and nonshared environmental 

factors. Additive genetics and shared environmental factors accounted for approximately equal 

proportions of the rate of recovery and inflection point of recovery. This pattern of findings is 

consistent with previous research which has found that the latent rate of growth of raw height and 

weight are due to both additive genetic and shared environmental factors (Demerath et al., 2007; 

Johnson et al., 2011; Livshits et al., 2000). Therefore, a combination of genetic factors (e.g., genes 

influencing the accumulation of body mass and bone growth) and shared environmental factors 

(e.g., feeding schedule, postnatal diet) are related to how quickly infant twins recover physically.  

 

Patterns of Recovery by Sex 

The intercepts of weight and head circumference were higher for males than females, suggesting 

that males may be more resilient to the perinatal stressors associated with twinning. However, 

females demonstrated a faster rate of growth in height, weight, and head circumference than males. 

The upper asymptotes for height, weight, and head circumference were statistically 



41 

 

indistinguishable between males and females. Therefore, early discrepancies in relative physical 

size between males and females do not persist into childhood, and early discrepancies are 

overcome by a faster rate of recovery among females. A similar pattern of height and weight 

recovery was observed among a sample of male and female singletons born at very low birth 

weight (< 1,500 grams) followed from birth to 20 years (Hack et al., 2003). At birth, males had 

higher weight-for-age and height-for-age Z-scores relative to females, but by young adulthood, 

females were indistinguishable from the population mean whereas males remained small (Hack et 

al., 2003). Previous research has found that females are less susceptible to neonatal complications 

compared to males, which may explain the faster rates of recovery in females (Stevenson et al., 

2000).  

 

Length of Gestation and Physical Recovery 

Consistent with hypotheses, gestational age emerged as an important environmental correlate of 

early height, weight, and head circumference. Previous research has concluded that much of the 

discrepancy in size between twins and singletons is due to shorter gestational periods for twins 

(Buckler & Green, 2004). However, gestational age did not explain all of the variance in early 

physical size. Children born at full gestation (40 weeks) were predicted to have initial weights and 

head circumferences nearly 1 SD below the population mean. Regarding birth length, full term 

infants were only slightly below the population mean (0.2 SD) whereas premature twins were 

nearly three-quarters of a SD below the population mean. Factors associated with birth length (e.g., 

skeletal growth) may benefit more from full gestation. However, measurements of length at birth 

are known to be unreliable (Laar et al., 2018) and may not have been performed on the unhealthiest 

neonates due to the medical risks associated with stretching a medically-fragile newborn on a table 

to measure length (Hark et al., 2003). Indeed, rates of missing birth length were relatively high 

(20%) and there was a decline in length relative to the population mean between birth and 3 months 

when smaller infants could be safely measured (see Figure 4).  

 

Across height, weight, and head circumference, gestational age was not associated with the upper 

asymptote, indicating that premature twins recovered early deficits in physical size both relative 

to their full-term twin peers and relative to the population mean. Gestational age does not appear 

to be a long-term predictor of physical size. Infants born earlier had a faster rate of height, weight, 

and head circumference growth, providing some insight into the process by which children recover 

physically following premature birth. That is, premature infants recover physically by growing 

more rapidly than full-term infants (as opposed to more slowly but for a longer period). A variety 

of prenatal stressors associated with premature birth are also associated with restricted prenatal 

growth (e.g., preeclampsia, gestational diabetes, uterine size restrictions) (Goldenberg et al., 2008). 

Once prenatal environmental stressors are removed following birth, biological mechanisms may 

take over and stimulate physical growth.  

 

Nonlinear Associations between SES and Physical Recovery 

In general, being from a higher-SES household is associated with better physical development 

from birth to adolescence. Accounting for gestational age, sex, and maternal age, children in 

wealthier families are born heavier, longer, and with larger heads, indicating more complete 

prenatal development. However, even children born in the highest-SES households displayed 

deficits in their early height, weight, and head circumference.  Interestingly, SES was quadratically 

associated with the intercept of height and weight such that children born in very wealthy and very 
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poor homes were closest to the population mean at birth. Families at the highest end of the SES 

spectrum are likely able to afford high-quality prenatal care and may have access to better nutrition 

to support healthy prenatal development. On the other hand, the implementation of social programs 

in the 1960s including Medicaid and the Women, Infant, and Children Nutritional Supplement 

Centers may provide the poorest families access to regular prenatal medical care and quality 

nutrition. Within families, participation in WIC during pregnancy has been associated with 

increased birth weight, suggesting that programs targeted at improving prenatal nutrition among 

low-income families are effective in improving birth outcomes (Kowaleski-Jones & Duncan, 

2002). Unfortunately, data on participation in WIC or other programs is unavailable in the 

Louisville Twin Study, prohibiting my ability to test associations between participation in WIC 

and birth outcomes.  

 

Family SES was also quadratically related to the upper asymptote of height and weight. 

Specifically, children in the poorest homes were about 0.4 SD above the population mean in terms 

of weight, and children in the wealthiest and poorest homes were about 0.2 SD above the 

population mean in terms of height. Family SES was unrelated to the rate of height or weight 

recovery, indicating that children in the poorest and wealthiest homes grew relative to the 

population mean at the same rate as their average SES peers, but grew for a longer period. In the 

case of weight, the extended weight growth may highlight the developmental course of child- or 

adolescent-onset obesity among low birthweight children reared in poverty (Lee et al., 2014; 

Klebanov et al., 2014). In the context of poverty, parents trying to encourage catch-up growth in 

their young children may rely on high-sugar, calorie-dense foods which tend to be cheaper and 

more widely available in poor neighborhoods (Drewnowski & Specter, 2004; Hails & Shaw, 

2019).  

 

Limitations and Future Directions 

Although there is socioeconomic variability in the Louisville Twin Study, it is an almost entirely 

White sample. Therefore, findings reflect the process of physical recovery in White twins born in 

the United States and do not necessarily generalize to populations outside of the United States or 

nonwhite populations within the United States. For example, rates of malnutrition are extremely 

low in the United States (United Nations Children’s Fund, 2021), and social programs such as 

WIC centers and the Supplemental Nutrition Assistance Program allow even extremely poor 

families to meet the basic nutritional needs of their children (Bitler et al., 2015; Kowaleski-Jones 

& Duncan, 2002). However, in developing countries where rates of malnutrition are higher and 

supplementary nutritional programs do not exist, shared environmental factors may explain a 

greater proportion of the variance in the upper asymptote of physical recovery. Moreover, as 

structural barriers have contributed to inequities in access to socioeconomic resources and medical 

care in the United States along racial lines for centuries (Bailey et al., 2017; Corcoran et al., 2008), 

the process of physical recovery in Black, Latinx, and Indigenous twins may be different than in 

White twins. Future research extending findings from the present study to racially diverse samples 

within the United States as well as to samples from developing countries is necessary to further 

our understanding of how children recover physically from early bio-environmental adversity.  

 

Findings also reflect typical patterns of physical recovery in a sample with relatively low rates of 

very premature birth and very low birth weight. In the study sample, only 2.3% of the twins were 

born very prematurely and 2.4% were born at very low birth weight. Very premature birth  
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reflects a more extreme degree of early biological disadvantage from which children have to 

recover. Although children born very prematurely or at very low birth weight demonstrate catch-

up growth relative to the population mean, differences in physical size may persist into adolescence 

(Ford et al., 2000). Moreover, very premature or very low birth weight infants may demonstrate a 

different pattern of recovery. For example, Niklasson and colleagues (2003) observed that very 

premature infants initially fell further behind the population mean in terms of weight and length 

over the first month of life before making slow, steady progress toward the population mean over 

the next seven years. More work is needed to understand the process of physical development in 

very premature and extremely premature infants. 

 

I was limited to broad measures of environmental factors associated with physical recovery, which 

prevented me from exploring more specific environmental correlates of physical recovery in twins. 

Gestational age was included in models as a crude indicator of prenatal health, and family SES at 

birth was included as a general indicator of the postnatal environment. Having data on more 

specific prenatal experiences such as exposure to substances or heavy metals, maternal health 

concerns (e.g., preeclampsia, gestational diabetes), or mental health concerns (e.g., maternal 

depression) would likely explain additional variance in physical size and birth and the subsequent 

pattern of recovery. Moreover, unmeasured postnatal experiences (e.g., diet, use of stimulant 

medications, neighborhood characteristics) are likely associated with patterns of physical recovery 

above and beyond family SES. As individual, family, and community (e.g., neighborhood) 

experiences all contribute to child development (Bronfenbrenner, 1989), having more detailed 

information on the child’s environment would be helpful for future research to more accurately 

explain how children recover from early bioenvironmental adversity and inform interventions.  

 

Relatedly, I was unable to test mechanisms by which exposure to broad environmental factors 

(e.g., SES) was associated with physical development. A potentially concerning finding is the 

quadratic association between family SES and weight where children in the poorest homes had the 

highest upper asymptote of weight. One of the hypothesized mechanisms by which family SES is 

associated with an elevated weight is through the consumption of more processed foods higher in 

fat and sugar content (Drewnowski & Specter, 2004). Community-level factors such as 

neighborhood dangerousness, available green space, and access to grocery stores that sell a variety 

of healthy foods may also mediate the association between poverty and increased weight gain in 

children (Lovasi et al., 2013). Unfortunately, data on the diets or neighborhood characteristics of 

children in the Louisville Twin Study are unavailable. Future research is warranted to test the 

specific mechanisms by which exposure to poverty in infancy is related to elevated weight gain 

across childhood among children born at low birth weight.  

 

A primary assumption of the present study is that physical recovery to the population mean is a 

positive indicator of physical health. Indeed, among children born at low birth weight, small birth 

length, or small head circumference, catch-up growth is associated with healthier physical and 

cognitive development (Jensen et al., 2015; Scharf et al., 2016). However, research suggests that 

rapid catch-up growth in weight is associated with a greater risk for obesity and cardiovascular 

problems in adulthood (Kelishadi et al., 2015; Martin et al., 2017). Future research should consider 

the process by which children recover physically (i.e., the rate of recovery and inflection point) as 

a predictor of physical health in adulthood. Such questions will be able to be answered following 
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the recent extension of the Louisville Twin Study into adulthood and a renewed focus on biological 

aging (Beam et al., 2020).  

 

Finally, I am unable to make any causal or quasi-causal claims regarding the “effects” of genetics 

or environmental factors on physical recovery in twins. Although the upper asymptotes of height, 

weight, and head circumference were highly heritable, it is not necessarily the case that one’s upper 

asymptote of physical size is caused by their genetics. Active or evocative gene-environment or 

phenotype-environment correlations may inflate the proportion of variance attributed to additive 

genetics (Beam & Turkheimer, 2013). For example, infant appetite, a highly heritable 

characteristic (Llewellyn et al., 2010), may contribute to one twin consuming more or requesting 

more frequent feeding. Genetic differences related to early appetite could contribute to within-pair 

differences in the rate of growth or upper asymptote of physical size for dizygotic twins.  

 

Conclusions 

Recovery of physical size in twins begins immediately after birth as evidenced by the preferred fit 

of exponential-shaped functions (e.g., Weibull, Morgan-Mercer-Flodin) over S-shaped functions 

(e.g., Gompertz). Temporally, recovery of head circumference occurred before the recovery of 

height and weight. However, on average, substantial recovery of all physical measures occurred 

within the first year of life. Consistent with previous research, gestational age was an important 

early environmental correlate of height, weight, and physical size. However, with the exception of 

birth length, twins born at full term continued to display substantial deficits in their physical size 

at birth. Therefore, additional prenatal factors associated with twinning (e.g., competition for 

nutrients) likely also contribute to the relatively small physical size of twins at birth. Importantly, 

there were no differences in childhood physical size between premature and full-term twins. 

Family SES also emerged as an important environmental correlate to physical recovery in twins. 

Children in the wealthiest and poorest homes were closer to the population mean at birth in terms 

of weight and length. However, children in the poorest homes grew to be both heavier and taller 

than the population mean by adolescence. The relatively larger estimated weight among very poor 

children in adolescence (z-score = 0.4) compared to the estimated height (z-score = 0.2) suggests 

a possible like between poverty and later obesity among children born at low birth weight through 

extended weight gain across childhood.  

 

Although the present study focused on a sample of twins, findings likely generalize to singletons 

who experience early bioenvironmental risk. As with twins, most singletons who are born at low 

birth weight, short birth length, or with a small head circumference at birth catch up to population 

norms (Lundgren et al., 2001), and substantial catch-up growth appears to occur across the first 

few months of life (Albertson-Wikland & Karlberg, 1997). Pediatricians and primary care 

physicians working with children who are born prematurely or physically small should expect to 

see rapid recovery in physical size across the first year. Children who are not making progress 

toward the population mean on age-standardized measurements over the first year may be at risk 

to remain physically small throughout their lives and may benefit from more rigorous intervention 

to encourage catch-up growth (e.g., nutritional supplementation). 
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Study 2: 

Genetic and Environmental Correlates of the Nonlinear Recovery of Cognitive Ability in 

Twins 
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Twins display a well-documented delay in cognitive ability during infancy and the toddler years, 

scoring nearly one standard deviation below the population mean on the Mental Development 

Index (MDI) of Bayley Scales of Infant Development (Datar & Jacknowitz, 2009; Koeppen-

Schomerus et al., 2000; Price et al., 2000; Wilson 1974). By early childhood, however, twins who 

previously exhibited deficiencies score at the population mean (Wilson, 1974). Although cognitive 

ability measured in infancy is generally a poor predictor of cognitive functioning in adolescence 

or adulthood (Bishop et al., 2003; Honzik et al., 1948; Schneider et al., 2014), infant cognitive 

ability is thought to set the stage for later cognitive development and correlates at least moderately 

with early language development (Siegel, 1981) and cognitive ability in early childhood (Bishop 

et al., 2003; Yu et al., 2018). Moreover, depressed cognitive functioning in infancy and toddler 

years is an early indicator of neurodevelopmental disorders (Johnson & Marlow, 2006). Thus, 

understanding typical and atypical patterns of early cognitive development in twins has 

implications for clinicians and educators seeking to differentiate children who are delayed at a 

level requiring intervention from those who have developmentally typical delays from which they 

are likely to recover.   

 

In a series of studies using prospective data from the Louisville Twin Study (LTS), Ronald Wilson 

documented the delay in early cognitive ability in twins (Wilson, 1972; Wilson, 1974; Wilson, 

1975) as well as the subsequent recovery to performance at the population mean, which was 

observed to occur by age 6 (Wilson, 1974; Wilson, 1975). Since the publication of Wilson’s 

seminal papers, the sample size of the LTS has nearly doubled and standardized cognitive data 

have been collected to age 15 years (Davis et al., 2019), and are currently being collected in midlife 

(Beam et al., 2020). The present study builds on early LTS research and applies contemporary 

nonlinear growth methods to quantify the magnitude and shape of recovery of twins’ standardized 

cognitive ability from 3 months to 15 years. I then leveraged the genetically informative portion 

of the study to decompose the variance in growth parameters into additive genetic (A) variance, 

shared environmental (C) variance, and nonshared environmental (E) variance. Additive genetic 

variance refers to the sum of genetic contributions, the shared environment refers to features of the 

rearing environment that increase twin similarity, and the nonshared environment refers to features 

of the rearing environment that reduce twin similarity including measurement error. Finally, I 

examine measured shared and nonshared biological and environmental correlates of the growth in 

standardized cognitive ability, including socioeconomic status (SES), household chaos, gestational 

age, birth weight, and maternal age.  

 

Infant Cognitive Ability in Twins: The Role of the Shared Environment 

The established delay in early cognitive ability among twin samples is frequently attributed to the 

fact that, relative to their singleton peers, twins are six times more likely to be born prematurely 

(defined as less than 37 weeks gestation) and, consequently, are frequently born at lower birth 

weights (Giuffrè et al., 2012). Adding credence to the hypothesis that prematurity and low birth 

weight contribute to lower cognitive scores in infancy, twin samples oversampled to be of typical 

gestational age and birth weight do not display the same deficits in Bayley MDI scores (Bishop et 

al., 2003; Cherny et al., 1994). However, as gestational age, prenatal stressors, and low birth weight 

are highly correlated (Wadhwa et al., 1993), it can be difficult to tease apart the effects of a single 

factor on early cognitive development. Using a within-pair study design, Datar and Jacknowitz 

(2009) observed a small effect of birth weight on Bayley MDI scores at 9 and 24 months for 

dizygotic (DZ) twins, and a nonsignificant effect of birthweight on Bayley scores for monozygotic 
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(MZ) twins. Thus, when shared prenatal environment (including length of gestation) and genetic 

effects are accounted for, birth weight appears to have a minimal impact on early cognitive ability, 

while gestational age and other shared environmental experiences appear to drive mean differences 

in infant cognitive scores for twins.  

 

Biometric studies that decompose the variance of early cognitive ability into genetic and 

environmental components also highlight the importance of the early shared environment in infant 

cognitive ability (Koeppen-Schomeerus et al., 2000; Price et al., 2000). For example, in a sample 

of nearly 2,000 24-month-old twins, Price and colleagues (2000) found shared environmental 

factors to contribute to 58% and 72% of the variance in nonverbal and verbal abilities, respectively. 

Similarly, using data from twins born prematurely, Koeppen-Schomeerus and colleagues (2000) 

found that the shared environment explained a larger proportion of variance in 24-month verbal 

abilities for twins born at less than 32 weeks gestation (84%) than for twins born at greater than 

33 weeks gestation (73%), indicating that prenatal complications may increase the proportion of 

early cognitive ability attributable to the shared environment.  

 

Aspects of the shared environment that contribute to cognitive ability in infancy are most likely 

transmitted through the prenatal environment (Devlin et al., 1997). Specifically, factors including 

gestational diabetes (He et al., 2021), exposure to heavy metals (Shah-Kulkarni et al., 2020), 

maternal drug and alcohol consumption (Messinger et al., 2004; Testa et al., 2003), or length of 

gestation (Giuffrè et al., 2012) reflect specific aspects of the shared prenatal environment that are 

known to contribute to early cognitive ability. Additionally, maternal age represents a shared 

environmental feature that may confer additional risk for prenatal complications as the risk for 

gestational diabetes, preeclampsia, and preterm birth increase substantially in mothers older than 

40 years (Luke & Brown, 2007). Although aspects of the postnatal environment become 

increasingly associated with cognitive abilities as children age, researchers have observed weak 

associations between the home environment and cognitive abilities within the first year of life 

(Bradley et al., 1989; Klebanov et al., 1998; Tucker-Drob et al., 2011). Thus, initial cognitive 

delays from which twins begin recovering to the population mean are most likely to be associated 

with features of the prenatal environment.  

 

Patterns of Cognitive Development: Early Childhood through Adolescence 

Although twins display significant deficits in early cognitive ability, it is also established that they 

catch up to the population mean by early childhood (Antoniou et al., 2013; Ross et al., 2012), 

making rapid gains in standardized cognitive scores across the toddler years (Wilson, 1974; 

Wilson, 1975). Wilson (1974) concluded that the recovery to the population mean was most 

pronounced between ages 4 and 6 years, observing mean Wechsler Preschool & Primary Scale of 

Intelligence (WPPSI) Full Scale Intelligence Quotient (FSIQ) scores of 92.6, 95.9, and 100.9 at 

ages 4, 5, and 6 years, respectively. From early childhood through adulthood, twins score 

commensurate with the population mean on standardized cognitive assessments (Giangrande et 

al., 2019; Webbink et al., 2008). For example, in a prospective population sample of Dutch twins, 

Webbink and colleagues (2008) observed that twins’ intelligence scores at ages 8, 10, 12, and 38 

years were within 3.5 points (0.23 SD) of the population mean. Likewise, in a recent publication 

using newly recovered data from the LTS, Giangrande and colleagues (2019) observed that mean 

FSIQ scores were within 2.82 points (0.19 SD) of the population mean for twins from ages 7 to 

15.  
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As twins are more likely to be born smaller than their singleton peers, a critical part of early 

development may involve catch-up growth in physical size (Estourgie-van Burk et al., 2010; 

Wilson, 1979). Early catch-up growth in height and weight among small-for-gestational-age 

singletons has been positively associated with higher cognitive ability scores in early childhood 

(Varella et al., 2015). Rapid gains toward singleton norms in terms of length and weight over the 

first few years of life (Wilson, 1979) may afford twins increased motor abilities to explore their 

environments (Jeng et al., 2000), which have been associated with subsequent cognitive 

development (Ghassabian et al., 2016). Therefore, cognitive recovery in twins may parallel or 

succeed recovery in physical size. 

 

Biometric Contributions to Cognitive Development 

As children age, genetic factors account for an increasing proportion of variance in standardized 

cognitive scores, while shared environmental factors become less influential (Davis et al., 2009; 

Tucker-Drob & Briley, 2014). For example, in a prospective study of nearly 9,000 twin pairs, 

additive genetic variance accounted for 23% of the variance in early childhood (ages 2-4 years) 

cognitive ability, while shared environmental variance accounted for 74% of the variance (Davis 

et al., 2009). However, by middle childhood (ages 7-10), shared environmental variance accounted 

for 33% of the variance in cognitive ability, while additive genetic variance accounted for 62% of 

the variance (Davis et al., 2009). Likewise, in a meta-analysis of 21 studies and over 12,000 twin 

pairs, Tucker-Drob and Briley (2014) observed that the proportion of variance in the stability of 

cognitive scores attributable to additive genetic variance increased exponentially across childhood, 

reaching an asymptote around age 10. Correspondingly, the proportion of variance associated with 

shared environmental factors decreased exponentially across early childhood, reflecting the 

increasing role of genetics at later developmental stages. Finally, using LTS data, Finkel and 

colleagues (2015) observed that the contribution of additive genetics to cognitive abilities at the 

subtest level generally increases across early childhood and then stabilizes from middle childhood 

to adolescence.   

 

Despite the declining influence of the shared environment on cognitive ability throughout 

childhood, specific features of the shared environment may be associated with the development of 

cognitive ability across childhood. For example, a meta-analysis of 27 studies covering over 7,000 

children ranging in age from 3 to 16 years observed an 11.94-point difference in standardized 

intelligence scores for children born preterm compared to children born full term (Kerr-Wilson et 

al., 2012). Mangin and colleagues (2017) fit linear growth models to standardized cognitive data 

for singleton children born very prematurely (32 weeks or less gestation) and children born at term. 

Very premature children had a significantly lower intercept than full-term children, but prematurity 

status was not associated with interindividual rates of change (Mangin et al., 2017). Thus, 

associations between gestational age and cognitive ability in childhood appear to reflect stable 

effects on initial abilities rather than the rate of growth over time.  

 

Family SES is a robust predictor of cognitive ability in childhood (Kainz et al., 2012; Tucker-Drob 

et al., 2011; von Stumm & Plomin, 2015). In a prospective study of over 1,200 children, family 

income below 200% of the poverty line was associated with an 11-point deficit in WPPSI scores 

at 3 years relative to children at or above 200% of the poverty line (Kainz et al., 2012). Similarly, 

Tucker-Drob and colleagues (2011) observed that a standard deviation increase in family SES 

corresponded with a 0.33 standard deviation increase in the change in Bayley scores between 10 
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and 24 months. Finally, in a sample of 14,853 individual twins, children in high-SES homes at age 

2 (1 SD above the mean) exhibited an increase in standardized cognitive scores from age 2 to 16, 

while children in low-SES homes exhibited declines in standardized cognitive scores (von Stumm 

& Plomin, 2015).  

 

Household chaos, or noise, disorganization, and confusion in the home represents another aspect 

of the home environment (Matheny et al., 1995). High levels of household chaos may promote a 

strategy of filtering out unwanted environmental stimulation, which may contribute to a child 

inadvertently filtering out information pertinent to cognitive development (Dumas et al., 2005; 

Gärling & Evans, 1991). Household chaos has been negatively associated with cognitive ability in 

childhood, even after accounting for SES (Deater‐Deckard et al., 2009; Martin et al., 2012). For 

example, in a sample of 302 twin pairs, higher levels of household chaos were associated with 

lower Stanford Binet scores in kindergarten, accounting for parent IQ, parenting warmth, and poor 

housing conditions (Deater‐Deckard et al., 2009). Finally, a genetically informed study found 

chaos to account for 5% of the shared environmental variance in verbal and nonverbal abilities at 

ages 3 and 4 independent of the effects of SES (Petrill et al., 2004).  

 

Gaps in the Literature  

Few studies focus on understanding twins’ nonlinear recovery of cognitive ability from infancy 

through early childhood. Only one study has applied growth curve models to standardized 

cognitive ability across childhood in twins, in which fit quadratic growth models were fit to 

standardized cognitive scores from age 2 to 16 (von Stumm & Plomin, 2015). von Stumm and 

Plomin (2015) observed a positive slope and negative quadratic coefficient for boys and a negative 

slope and positive quadratic coefficient for girls, which yielded trajectories of cognitive ability that 

began to drift exponentially negatively for boys and exponentially positively for girls. Polynomial 

curves are well-known to have considerable difficulties in modeling the actual course of growth 

over age, especially at the extremes, because they, by definition, extend to positive or negative 

infinity in both directions (Grimm et al., 2011). Examining mean cognitive scores in twins from 

infancy to adulthood reveals a pattern of growth characterized by deficits in infancy (Datar & 

Jacknowitz, 2009; Koeppen-Schomerus et al., 2000), rapid recovery toward the population mean 

across the toddler and early childhood years (Wilson, 1974), and stabilization around the 

population mean from early childhood to adulthood (Webbink et al., 2008), suggesting that the 

growth in cognitive ability across childhood may be best captured by a nonlinear asymptotic 

model.  

 

Previous research suggests that additive genetic factors account for an increasing proportion of the 

variability in both general (Davis et al., 2009) and specific cognitive abilities (Finkel et al., 2015) 

as children age. However, it is unclear the extent to which genetic and environmental factors 

contribute to the rate and shape of growth in cognitive ability across childhood.  

 

No twin study has published findings on the genetic and environmental factors that contribute to 

twins’ recovery of cognitive ability. von Stumm and Plomin (2015) did not conduct biometric 

analyses on the intercept growth terms to determine additive genetic, shared environmental, and 

nonshared environmental contributions to the variance in the growth of cognitive ability over time. 

Finkel and colleagues (2015) conducted biometric analyses on the growth of heritability of specific 

cognitive abilities across childhood but did not examine the growth of general cognitive ability. 
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Thus, the heritability of growth of general cognitive ability, and in particular the developmentally 

typical recovery of cognitive ability in twins is currently unknown. Understanding biometric 

contributions to the rate and shape of cognitive recovery will yield insight into the relative 

contributions of genes and the environment and, therefore, the amenability of recovery to 

interventions in the environment.  

 

The Present Study 

The present study had three primary aims. First, I fit nonlinear growth models (Grimm & Ram, 

2009) to standardized cognitive ability scores for twins in the LTS from 3 months to 15 years to 

model the magnitude, rate, and shape of the recovery of cognitive ability in twins. By considering 

exponential and sigmoid (s-shaped) functions, I reveal the developmental timing of cognitive 

recovery in twins. Specifically, exponential growth would indicate immediate, rapid recovery of 

cognitive ability across infancy, whereas sigmoid growth would correspond to stable low scores 

in infancy and rapid recovery in early to middle childhood. Nonlinear growth models also provide 

estimates of parameters of interest to developmental scientists, including a lower asymptote (i.e., 

lowest cognitive score from which a twin begins recovering), the total amount of growth, and the 

average rate of growth (Grimm & Ram, 2009; Grimm et al., 2013). Second, I decomposed the 

variance in growth in cognitive ability across childhood into genetic and environmental 

components. Finally, I examined measured prenatal and postnatal correlates to cognitive deficits 

in infancy, and the rate and shape of recovery to the population mean.  

 

Methods 

Participants 

Participants were a subset of 1,153 individual twins (47.9% male) from 578 families recruited as 

a part of the Louisville Twin Study, a longitudinal study of temperament and intellectual 

development in twins (Davis et al., 2019; Wilson, 1983). Of the 1,153 twins included in the present 

study, 710 were MZ (43.8% male) and 443 were same-sex DZ (53.7% male). Zygosity was 

determined by blood serum analysis.  

 

All infants were from the Louisville, Kentucky, metropolitan area. Participants were primarily 

White (91.5%) and were recruited to represent the socioeconomic composition of the Louisville 

metropolitan area. Data on child cognitive ability were collected between 1957 and 1993. Twins 

were removed from the initial sample of 1,267 if they were missing information on zygosity (n = 

114), yielding the final sample size of 1,153.  

 

Procedure 

Cognitive testing was completed by trained examiners during laboratory visits at the University of 

Louisville at 16 time points between 3 months and 15 years (0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 

6, 7, 8, 9, 12, and 15 years). Most individuals in the study did not have data at all 16 points, but 

75% had 4 or more assessments (see Table 1). Twins were typically tested within one week of 

their birthdays and the testing schedule was arranged such that examiners did not assess the same 

individuals at consecutive assessments. Institutional review board (IRB) approval was attained 

from the University of Louisville (protocol number 19.0989) as a part of the Contribution of Child 

Development, Biological Aging, and Beta-Amyloid to Cognitive Function of the Louisville Twins 

at Midlife study. 
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Measures 

Cognitive Development. Over the course of the LTS, twins were administered a variety of age-

appropriate cognitive batteries. A breakdown of each measure including sample size and means is 

presented in Table 2. Twins were administered the Bayley Scales of Mental Development between 

ages 3 and 24 months, with the majority of twins completing the first edition (Bayley, 1969) and 

a handful of infants completing the second edition (Bayley, 1993). At 30 months, a minority of 

twins completed the Bayley. However, most twins at 30 months and all twins at 36 months 

completed the Stanford-Binet Intelligence Scale – Third Edition with norms based on the 1972 

restandardization (Freides, 1972). At 4 years, twins completed either the Stanford-Binet – Third 

Edition, the McCarthy Scales of Children’s Abilities (McCarthy, 1972), or the WPPSI (Wechsler, 

1967). At age 5, twins completed either the McCarthy, the WPPSI, or a revised version of the 

WPPSI (WPPSI-R; Wechsler, 1989). At age 6, twins completed either the WPPSI or WPPSI-R. 

At ages 7, 8, and 9, twins completed either the WISC (Wechsler & Kodama, 1949), the WISC 

revised (WISC-R; Wechsler, 1974), or the WISC – Third Edition (WISC-III; Wechsler, 1991). At 

ages 12 and 15 years, twins either completed the WISC-R or WISC-III.  

 

All of the cognitive scales administered over the course of the LTS have a mean of 100, which 

provides a common reference point for cognitive ability across measures and time. The Bayley 

and McCarthy Scales were standardized to have a standard deviation of 16; the Stanford-Binet and 

Wechsler scales were standardized to have a standard deviation of 15. To allow for a more direct 

comparison of scores across time, scores on the Bayley and McCarthy were rescaled to a mean of 

100 and a standard deviation of 15.  

 

Covariates. Baseline household SES was measured based on the Hollingshead Four Factor Index 

of Socioeconomic Status, which is based on parental occupation, education, sex, and income 

(Hollingshead, 1975). Hollingshead scores are based on a continuous zero to 100-point scale.  

 

Mothers and, when available, fathers completed the Confusion, Hubbub, and Order Scale 

(CHAOS), a 15-item measure of commotion and disorganization within the home (Matheny et al., 

1995). Participants responded True or False to each item (e.g., “it’s a real zoo in our home”), and 

the 15 items were summed to create a total chaos score with higher scores representing higher 

levels of chaos. The CHAOS scale has been found to have good psychometric properties (Matheny 

et al., 1995), with acceptable internal reliability among the items in the present study (α = .80 for 

mothers, .79 for fathers). Due to high rates of missing CHAOS scores over time, CHAOS scores 

were averaged within family from 3 months to 15 years to provide a broad indicator of family 

chaos across childhood. CHAOS scores were relatively stable over time; the median inter-wave 

correlation for CHAOS scores was .66 with a range of -.57 to .95 (it should be noted that the 

negative correlation was between 18 and 96 months and included data from only 3 families). 

Limiting inter-wave correlations to observations with at least 25 families yielded a median inter-

wave correlation of .72 with a range of .48 to .84.  

 

Information on child birth weight was gathered from birth certificates. Gestational age (in weeks) 

was calculated based on maternal-report of last menses. Maternal age (in years) at birth was also 

included as a study covariate. As is common practice in twin research, sex effects were regressed 

out of all cognitive measures before genetic analyses.  
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Data Analysis 

Descriptive Statistics. Descriptive statistics and intercorrelations between study variables were 

calculated using the Base package in R version 4.0.3 (R Core Team, 2020). 

 

Nonlinear Growth Modeling. To model the growth in cognitive scores of twins, I considered 

polynomial (linear, quadratic, and cubic), exponential, and sigmoid (logistic, Gompertz, and 

Richards) growth models. (For a comprehensive discussion of nonlinear growth models including 

empirical examples, see Cameron et al., 2015; Grimm & Ram, 2009; Grimm et al., 2013). All 

models were fit within a structural equation modeling framework using Mplus version 8.4 (Muthén 

& Muthén, 2017), which entailed specifying constraints on the factor loadings of the growth 

parameters to specify nonlinear growth for the exponential and sigmoid models.  

 

The Gompertz model was ultimately retained as the best-fitting growth model of cognitive ability 

across childhood, so the specific parameters of the Gompertz model are presented. The Gompertz 

function is defined by:  

Yit = b0i + b1i ∙[exp(-exp(-b2i(t – b3i)))]+eit  (1) 

 

In the Gompertz function, shaped as a sigmoid, b0 represents the lower asymptote, b1 represents 

the difference between the lower and upper asymptote, b2 represents the average rate of change in 

cognitive scores, and b3 represents the “inflection point” or age at which the rate of cognitive 

growth is the fastest. The asymptotes in a sigmoid function refer to an individual’s lowest and 

highest cognitive scores. Thus, b0 differs from an intercept parameter in a traditional growth model 

in that it is not necessarily the score when time is 0 (i.e., 3 months in the present study). Gompertz 

functions define asymmetrical growth such that approximately 37% of the growth in cognitive 

ability occurs before the inflection point (Grimm & Ram, 2009). Thus, the inflection point in the 

present study represents the age at which a child has completed 37% of the growth between their 

lower and upper asymptotes of cognitive ability.  

 

As models comparing different growth functions were not nested, the best-fitting model was 

identified using the Root Mean Square Error of Approximation (RMSEA), Tucker-Lewis Index 

(TLI), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). Because 

twins are nested within families, the genetically-informative portion of the data were modeled as 

a two-level model, which required the estimation of growth models at the child level (within-pair) 

and family level (between-pair). Variances within and between MZ and DZ twins were then 

transformed into the genetic and environmental variances of the classical twin model. All models 

were fit using maximum likelihood estimation with robust standard errors and missing data were 

handled using full information maximum likelihood estimation.  

 

Genetic Analyses. Once the best-fitting growth model was identified, the growth parameters were 

decomposed into additive genetic (A), shared environmental (C), and nonshared environmental 

effects plus measurement error (E) following a standard multilevel approach (McArdle & Prescott, 

2005). The ACE decomposition takes advantage of the fact that MZ twins share 100% of their 

DNA sequence, whereas DZ twins share, on average, 50% of their segregating genes. The 

between- and within-pair variances can be decomposed into environmental and genetic 

components following (2-5). 

MZwithin = E  (2) 
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MZbetween = A + C  (3) 

DZwithin = 0.5*A + E  (4) 

DZbetween = 0.5*A + C  (5) 

 

Environmental Predictors of Cognitive Growth. Growth parameters were regressed on 

covariates to identify environmental correlates to the growth in cognitive ability in twins. 

Covariates that were constant across twins within a family (i.e., SES, household chaos, gestational 

age, and maternal age) were included at the between-pair level of the model. Birth weight, which 

varied within twin pairs and between families, was included at both the within-pair and between-

pair levels of the model. To aid model convergence, all covariates were standardized before 

inclusion.  

 

Missing Data  

As denoted in Table 19, most children in the study did not have cognitive assessments at every 

wave. The number of assessments was not significantly correlated with SES or birth weight. The 

number of assessments was significantly but weakly correlated with gestational age (r = .06, p = 

.048), maternal age (r = .10, p < .001), and household chaos (r = -.14, p = .002). There were no 

significant differences in the number of assessments by child gender or by zygosity. 

 

Gestational age was generally negatively associated with missingness of early cognitive scores, 

suggesting that twins born earlier were more likely to be missing. Before 5 years, birth year was 

negatively associated with missing cognitive scores whereas after 5 years birth year was generally 

positively associated with missingness. That suggests that twins enrolled in the study later were 

more likely to complete the early cognitive testing, but less likely to complete testing in childhood 

and adolescence. At three study waves, cognitive scores at the previous wave were significantly 

associated with missingness at the next wave after adjusting for multiple tests. Specifically, higher 

scores at 6 months were less likely to be missing at 9 months (B = -.04, SE = .01, p < .001), higher 

scores at 12 months were less likely to be missing at 18 months (B = -.03, SE = .01, p < .001), and 

higher scores at 30 months were less likely to be missing at 36 months (B = -.04, SE = .01, p < 

.001). Therefore, there may be some bias in the observed infant and toddler cognitive scores toward 

higher cognitive performance. However, as cognitive scores are only modestly stable wave to wave 

in infancy (see Figure 14), a child’s score at wave t is not necessarily indicative of their score at 

time t + 1. Moreover, all observed cognitive scores would be incorporated in models assuming that 

data are MAR (e.g., full information maximum likelihood estimation, multiple imputation). 

Therefore, I proceeded to analyze the cognitive data under the assumption that data are MAR using 

full information maximum likelihood (FIML) estimation in Mplus (Muthén & Muthén, 2017). 
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Table 19 

Number of Cognitive 

Assessments Available 

Number of 

Assessments 

Number of 

(Individual) 

Twins 

1 87 

2 47 

3 104 

4 102 

5 66 

6 98 

7 77 

8 50 

9 43 

10 50 

11 61 

12 37 

13 74 

14 126 

15 68 

16 63 

 

Results 

Descriptive Statistics and Intercorrelations 

Descriptive statistics for the cognitive data are presented in Table 20 and descriptive statistics for 

study covariates are presented in Table 3 (Study 1). Consistent with previous observations of 

preliminary LTS data (Wilson, 1974), scores on the cognitive assessments in infancy and the 

toddler years fell significantly below the standardization mean of 100, but by age 5 years mean 

scores were within 3 points of the standardization mean.  
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Table 20 

Descriptive Statistics of Cognitive Measures 

Age Measure n (MZ) n (DZ) 

Unscaled 

Mean (SD) Range 

Rescaled  

Mean (SD)* n Missing r MZ  r DZ  

 

h2 

3 months Bayley 1st Ed. 202 144 87.67 (15.87) 50-142 88.44 (14.88) 813 .687 .700 -0.03* 

6 months Bayley 1st Ed. 

Bayley 2nd Ed. 

354 

6 

226 

7 

89.03 (14.96) 

79.85 (5.44) 

50-144 

70-87 

89.53 (13.95) 566 .774 .734 0.08 

9 months Bayley 1st Ed. 

Bayley 2nd Ed. 

335 

4 

175 

0 

88.81 (15.78) 

84.00 (6.27) 

50-136 

76-89 

89.47 (14.75) 647 .623 .661 -0.08* 

12 months Bayley 1st Ed. 

Bayley 2nd Ed. 

400 

18 

216 

10 

87.42 (15.87) 

81.89 (7.43) 

50-128 

60-93 

87.98 (14.66) 519 .696 .511 0.37 

18 months Bayley 1st Ed. 

Bayley 2nd Ed. 

396 

33 

234 

12 

90.82 (15.88) 

86.33 (13475) 

50-136 

57-125 

91.11 (14.78) 487 .698 .580 0.24 

24 months Bayley 1st Ed. 

Bayley 2nd Ed. 

388 

39 

231 

14 

93.27 (16.41) 

86.49 (12.46) 

50-145 

56-122 

93.18 (15.22) 486 .774 .737 0.07 

30 months Bayley 1st Ed. 

Bayley 2nd Ed. 

Stanford Binet 

72 

2 

347 

34 

4 

205 

76.07 (13.34) 

64.00 (8.46) 

91.42 (14.73) 

50-116 

53-75 

55-139 

89.71 (15.46) 546 .860 .685 0.35 

36 months Stanford Binet 465 270 91.87 (16.52) 45-139 91.87 (16.52) 422 .872 .767 0.21 

4 years Stanford Binet 

McCarthy 

WPPSI 

35 

308 

106 

25 

169 

66 

77.43 (11.45) 

92.74 (14.31) 

92.43 (13.90) 

52-106 

54-126 

63-135 

91.67 (14.05) 448 .803 .691 0.22 

5 years McCarthy 

WPPSI 

WPPSI-R 

44 

337 

52 

14 

208 

34 

93.00 (17.54) 

97.58 (13.42) 

97.41 (12.71) 

52-121 

56-134 

73-131 

97.21 (13.64) 468 .815 .596 0.44 

6 years WPPSI 

WPPSI-R 

391 

58 

232 

40 

100.86 (12.92) 

98.21 (13.00) 

59-144 

74-134 

100.50 (12.96) 436 .841 .595 0.49 

7 years WISC 

WISC-R 

WISC-III 

112 

269 

26 

100 

138 

18 

101.36 (11.06) 

97.08 (14.07) 

102.05 (13.61) 

71-126 

52-133 

71-127 

98.76 (13.32) 496 .842 .586 0.51 

8 years WISC 

WISC-R 

WISC-III 

174 

269 

24 

116 

150 

16 

104.80 (11.25) 

100.56 (14.28) 

102.00 (11.49) 

79-134 

56-141 

84-123 

102.30 (13.17) 418 .819 .608 0.42 

9 years WISC 

WISC-R 

WISC-III 

48 

256 

38 

28 

146 

12 

109.96 (11.04) 

101.97 (14.02) 

104.58 (11.63) 

82-137 

52-144 

84-130 

103.35 (13.73) 639 .844 .650 0.39 

12 years WISC-R 

WISC-III 

92 

14 

54 

12 

100.23 (14.38) 

101.81 (7.52) 

47-139 

86-117 

100.47 (13.56) 985 .832 .688 0.29 

15 years WISC-R 

WISC-III 

309 

32 

178 

16 

100.04 (13.79) 

101.62 (14.24) 

63-141 

44-125 

100.18 (13.82) 622 .880 .563 0.63 

Note. Unscaled scores represent the mean and standard deviation of the standardized score for a particular cognitive test at a particular age. 

All measures were standardized to have a mean of 100. *Because the Bayley and McCarthy Scales were standardized to have a standard 

deviation of 16, whereas the Stanford Binet and Wechsler scales were standardized to have a standard deviation of 15, Bayley and 

McCarthy scores were rescaled by subtracting 100 from individual scores, multiplying the residual by 15/16, and adding 100. Rescaled 

scores are an aggregation of scores across measures at a given age. Heritability (h2) was calculated by multiplying the difference between 

the MZ and DZ correlations by 2. *At 3 and 9 months, the DZ twin correlation was slightly larger than the MZ correlation, resulting in a 

heritability estimate less than zero.   
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Figure 21 depicts individual trajectories of cognitive scores for a randomly selected subset of 250 

participants. Although there is interindividual variability, individual trajectories appear to follow 

the same general pattern as trends in mean scores: deficits in infancy, improvement in scores across 

early childhood, and plateau around the population mean by late childhood.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Longitudinal intercorrelations between cognitive scores are presented in Figure 22. Correlations 

between consecutive cognitive assessments were modest in the first 24 months (rs = .49-.59) and 

were strong after 24 months (rs = .70-.91), indicating a general trend toward stabilizing cognitive 

ability across childhood. Cognitive ability in the first year was positively, but weakly correlated 

with cognitive ability in middle-childhood and adolescence.  

 

Figure 21 

Individual Trajectories of Cognitive Abilities 

Note. Trajectories are for a randomly selected subset of 250 study 

participants. The solid red line represents the population mean of 

100. The solid blue line is the mean score of the randomly selected 

subset of participants.  
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Figure 22 

Longitudinal Intercorrelations between Cognitive Measures 
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Model Identification: Growth of Cognitive Ability 

Model fit information can be found in Table 21. The polynomial and exponential models had TLI 

values below 0.9, high RMSEA values, and higher AIC and BIC statistics than the S-shaped 

functions, indicating that growth in cognitive ability in twins was best characterized by relatively 

slow early growth, a steep incline, and a rapid stabilization. Due to convergence issues with the 

Richards model, the variances of the lower asymptote, rate of growth, and inflection point scaling 

parameter had to be set to 0. Consequently, the Richards model demonstrated higher AIC and BIC 

scores than the logistic and Gompertz models, indicating worse fit. The Gompertz model had lower 

AIC and BIC values than the logistic model, and was ultimately retained as the best fitting model.  

 
Table 21 

Model Fit Statistics 

Fit Statistic Linear Quadratic Cubic Exponential Weibull Morgan-

Mercer-

Flodin 

Logistic Gompertz Richards 

X2/df 2,247/131 1,241/127 907/122 1,137/140 884/122 897/122 857/122 818/122 1103/128 

TLI .72 .85 .89 .88 .89 .89 .893 .899 .865 

RMSEA .12 .09 .08 .08 .07 .07 .072 .070 .081 

AIC 72,303 71,134 70,740 70,999 70,696 70,722 70,675 70,634 70,930 

BIC 77,408 71,260 70,891 71,059 70,847 70,873 70,827 70,786 71,051 

 

Parameter estimates for the final Gompertz model are presented in Table 22. The average twin had 

a lower asymptote equal to 86.5 points and grew an average of 17.0 points to an average upper 

asymptote of 103.5 points. The average rate of approach was 0.6 points per year, and the inflection 

point was at 3.3 years. There was significant between-pair variability on all of the growth 

parameters. Within pairs, MZ twins did not vary significantly on any of the growth parameters, 

and DZ twins varied only on their total change. The average growth in cognitive ability is depicted 

in Figure 23. 

 

Table 22 

Parameter Estimates from the Gompertz Model 

Parameter Mean 

[95% C.I.] 

MZ Variance 

(Within) 

[95% C.I.] 

MZ Variance 

(Between) 

[95% C.I.] 

DZ Variance 

(Within) 

[95% C.I.] 

DZ Variance 

(Between) 

[95% C.I.] 

Lower Asymptote 

(b0) 

86.47  

[85.38, 87.56] 

1.85 

[-2.15, 5.86] 

119.01 

[93.44, 140.48] 

8.45 

[-0.67, 17.58] 

112.41 

[85.96, 138.87] 

Growth from Lower 

Asymptote (b1) 

17.01  

[15.55, 18.47] 

5.35 

[-1.66, 12.36] 

245.95 

[191.17, 300.73] 

48.97 

[24.51, 73.43] 

202.33 

[145.65, 259.01] 

Average Rate of 

Change (b2) 

0.58 

[0.53, 0.63] 

0.04 

[-0.05, 0.09] 

0.52 

[0.35, 0.70] 

0.08 

[-0.02, 0.17] 

0.49 

[0.31, 0.68] 

Age at Steepest 

Growth (b3) 

3.26 

[3.12, 3.41] 

0.16 

[-0.23, 0.54] 

10.95 

[7.48, 14.42] 

0.83 

[-0.03, 1.68] 

10.28 

[6.84, 13.72] 

Note. MZ refers to MZ twins and DZ refers to DZ twins. Parameter means were constrained to be equal for MZ 

and DZ twins. Variances that are significantly different from 0 at p < .05 are presented in bold.   
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Biometric Analyses 

Unstandardized and standardized biometric components are presented in Table 23. Shared 

environmental influences (C) contributed to the majority of the variance in the lower asymptote 

(87.5%), total growth from the lower asymptote (63.2%), average rate of change (81.4%), and 

inflection point (86.5%). Additive genetic influences (A) significantly only contributed to the 

variance of the total growth from the lower asymptote (34.7%). The nonshared environment (E) 

did not contribute significantly to the variance of any growth parameters.  

 
Table 23 

Variance in Growth Parameters Due to Genetic and Environmental Components 

Parameter 

Additive 

Genetic (A) 

[95% C.I.]  

Shared 

Environment (C) 

[95% C.I.] 

Nonshared 

Environment (E) 

[95% C.I.] Proportion A Proportion C Proportion E 

Lower Asymptote 

(b0) 

13.20 

[-6.72, 33.11] 

105.48 

[75.10, 136.54] 

1.86  

[-2.15, 5.86] 

0.109 0.875 0.015 

Growth from Lower 

Asymptote (b1) 

87.24  

[31.41, 138.08] 

 158.71  

[90.03, 227.39] 

5.35  

[-1.66, 12.36] 

0.347 0.632 0.021 

Average Rate of 

Change (b2) 

0.06  

[-0.15, 0.27] 

0.46 

[0.22, 0.71]  

0.04  

[-0.01 – 0.09] 

0.108 0.814 0.078 

Age at Steepest 

Growth (b3) 

1.34  

[-0.52, 3.20] 

9.61  

[5.96 – 13.27] 

0.16  

[-0.23 – 0.54] 

0.121 0.865 0.014 

Note. Proportions that are significant at the p < .05 level are highlighted in bold.  

Figure 23 

Predicted Cognitive Scores based on the Gompertz Function 

Note. The dashed line at 100 corresponds to the standardized mean of the cognitive assessments included 

in the present study. The shaded area represents the 95% confidence interval.  
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Environmental Correlates of Cognitive Growth 

Parameter estimates for the environmental correlates of cognitive growth are presented in Table 

24. There were no between-pair associations between birth weight and growth parameters, but 

within-pair, the heavier twin exhibited a slightly higher lower asymptote. 

 

 

Children who had a gestational age 1 SD below the mean displayed a lower asymptote 5.26 points 

below the mean (95% C.I. 3.20, 7.32), but displayed a difference between the lower and upper 

asymptote of 7.38 points above the mean (95% C.I. 4.48, 10.28). Children with an earlier 

gestational age also displayed a slower average rate of growth and an earlier inflection point, 

indicating that, although initial cognitive ability fell substantially below the mean, cognitive 

recovery began earlier and was more consistent over time. See Figure 24a for a plot of predicted 

cognitive growth for a child born at normal gestational age (40 weeks) and premature (37 weeks). 

To further aid interpretation, Figure 25a depicts the difference in cognitive ability between a child 

born at 40 weeks and a child born at 37 weeks. As depicted, a child born at 37 weeks would be 

predicted to perform as well as a child born at 40 weeks by approximately 3.5 years of age. 

Maternal age was unrelated to the lower asymptote, upper asymptote, or average rate of change, 

but children with older mothers had a slightly earlier inflection point, which led to a slight 

advantage in cognitive ability in the toddler years (see Figures 24b and 25b).  

 

Children from homes at 1 SD above the SES mean had a lower asymptote, which was  1.31 points 

below the mean (95% C.I. -2.58, -0.05), but gained an additional 5.57 points (95% C.I. 3.78, 7.35) 

at their upper asymptote than children at mean SES. Thus, by the upper asymptote, children at 1 

SD above the SES mean displayed an 8.52-point advantage over children at 1 SD below the SES 

mean (see Figure 24c). SES was related to a lower average rate of growth, but an earlier inflection 

point. As depicted in Figure 24c, the cognitive ability of twins in high SES homes begin rising 

almost immediately with an average inflection point of 2.26 years, while abilities for twins in low 

Table 24 

Environmental Correlates of Cognitive Growth 

Between-Pair Effects 

Predictor Variable 

Lower Asymptote (b0) 

B [95% C.I.] 

Growth from Lower 

Asymptote (b1)  

B [95% C.I.] 

Average Rate of 

Change (b2) 

B [95% C.I.] 

Age at Steepest 

Growth (b3) 

B [95% C.I.] 

Birth Weight 1.77 [-0.90, 4.43] 2.37 [-1.39, 6.13] -0.16 [-0.37, 0.05] -0.71 [-1.58, 0.16] 

Gestational Age 5.26 [3.20, 7.32] -7.38 [-10.28, -4.48] 0.32 [0.16, 0.48] 1.17 [0.50, 1.84] 

Mom Age -0.51 [-1.75, 0.73] 1.20 [-0.54, 2.94] -0.06 [-0.16, 0.04] -0.49 [-0.89, -0.09] 

Family SES -1.31 [-2.58, -0.05]  5.57 [3.78, 7.35] -0.17 [-0.27, -0.07] -1.00 [-1.43, -0.58] 

Household Chaos 0.67 [-1.18, 2.53] -3.07 [-5.42, -0.73] 0.12 [-0.01, 0.26] 0.82 [0.10, 1.53] 

Within-Pair Effects 

Predictor Variable 

Lower Asymptote (b0) 

B [95% C.I.] 

Growth from Lower 

Asymptote (b1)  

B [95% C.I.] 

Average Rate of 

Change (b2) 

B [95% C.I.] 

Age at Steepest 

Growth (b3) 

B [95% C.I.] 

Birth Weight 1.25 [0.39, 2.06] 0.08 [-1.15, 1.31] 0.05 [-0.05, 0.14] 0.11 [-0.16, 0.38] 

Note. Coefficients that are significant at the p < .05 level are highlighted in bold.  
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SES homes remained stable through about 2.5 years before beginning to rise with an average 

inflection point at 4.26 years.  

 

Household chaos was associated with the total growth from the lower asymptote and inflection 

point above and beyond the effects of SES. Specifically, greater household chaos was significantly 

associated with a lower total growth from the lower asymptote and an older inflection point (see 

Figures 24d and 25d).  

 

Figure 24 

Environmental Correlates of Cognitive Development 



62 

 

Figure 25 

Stabilization of Mean Differences in Cognitive Ability by Environmental Correlate 
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Of particular interest was the proportion of shared environmental variance in the growth 

parameters accounted for by the study covariates. The change in the proportion of shared 

environmental variance was calculated by subtracting the unstandardized shared environment (C) 

variance in the constrained model from the C variance in the unconstrained model and dividing 

the difference by the C variance in the unconstrained model (Singer et al., 2003). The proportion 

of change between the unstandardized shared environment variances for the unconstrained and 

constrained models are presented in Table 25. The study covariates accounted for 41% of the 

variance in C for the lower asymptote, 54% for the total change between the lower and upper 

asymptotes, 22% for the average rate of growth, and 22% for the inflection point.  

 

Table 25 

Proportion of Change in Shared Environmental Variance Due to Study Covariates 

Growth Parameter 

Unstandardized Shared 

Environment Variance 

Unconstrained Model 

Unstandardized Shared 

Environment Variance 

Constrained Model 

Proportion 

of Change 

Lower Asymptote 105.48 62.64 0.41 

Change from Lower to Upper Asymptote 158.71 73.47 0.54 

Average Rate of Change 0.46 0.36 0.22 

Inflection Point 9.61 7.51 0.22 

 

 

Discussion 

Nonlinear growth curve models fit to standardized cognitive test scores from infancy to 

adolescence in a community sample of twins identified a pattern of growth characterized by 

deficits in infancy, rapid recovery through early childhood, and stabilization around the population 

mean from middle childhood through adolescence. Findings extend early research that identified 

mean differences between early cognitive scores in twins and the population mean (Wilson, 1972, 

Wilson, 1974) and provide information on the typical shape and rate of recovery of cognitive 

ability in twins.  

 

The shape of cognitive recovery in twins was best captured by an S-shaped curve, which suggests 

that cognitive recovery to the population mean is minimal through infancy and increases steadily 

across the toddler years. The rate of growth was steepest at 3.26 years, highlighting the importance 

of toddlerhood in the development of cognitive ability in twins. Because cognitive tests are age-

standardized, scores at a given age reflect an individual’s performance relative to the population 

mean of individuals at that age, but do not necessarily capture the enormous gains in verbal and 

reasoning abilities that occur year to year across toddlerhood (O’Muircheartaigh et al., 2014). The 

rapid increase of the twins’ standardized cognitive test scores relative to the population mean 

across toddlerhood suggest that the typical cognitive developmental process in twins entails the 

acquisition of both developmentally typical cognitive ability as well as prerequisite abilities that 

were not observed at previous ages. The delay in the inflection point of cognitive recovery to 

toddlerhood may reflect the fact that twins are frequently born prematurely and at low birth weight 

(Giuffrè et al., 2012), and spend the first few years of life catching up physically to their singleton 

peers (Estourgie-van Burk et al., 2010; Wilson, 1979; and see Study 1). Recovery in physical size 

may set the stage for cognitive recovery through advances in motor abilities, which allow toddler 

twins to explore their environment more completely. Future research is necessary to further 
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understand the temporal relationship between physical development, motor development, and 

mental development in twins.  

 

Once reaching the population mean of 100 by approximately age 6 years, the predicted growth in 

cognitive ability, based on the Gompertz model, leveled off approaching an upper asymptote of 

103.5. In the only other study to model the growth of standardized cognitive scores in twins across 

childhood, von Stumm and Plomin (2015) observed patterns of cognitive development that 

approached positive and negative infinity over time based on quadratic growth models. Ongoing 

LTS work has observed moderate correlations between cognitive ability in childhood and 

cognitive functioning in midlife in pilot data (Beam et al., 2020), and a central goal of ongoing 

work is to extend childhood trends in the growth of cognitive ability across childhood to cognitive 

functioning in midlife. However, polynomial models have extremely limited utility in predicting 

later-life outcomes from childhood data (Grimm et al., 2011). Indeed, based on the parameter 

estimates of the best-fitting polynomial in the present study (the cubic model), the predicted 

standardized cognitive score for twins in the LTS at age 40 is -608.6, whereas the asymptotic 

Gompertz model predicts an average standardized cognitive score of 103.5 at age 40.  

 

Biometric analyses revealed that the majority of the variance of growth in cognitive ability across 

childhood was attributable to shared environmental experiences. Consistent with estimates from 

previous biometric analyses of cognitive scores in infants (Koeppen-Schomeerus et al., 2000; Price 

et al., 2000), I found that the shared environment accounted for 87.6% of the variance in the lower 

asymptote of cognitive ability. Shared environmental experiences also accounted for the majority 

of the variance in the total amount of growth, the average rate of growth, and the age of steepest 

growth. Of the four growth factors, additive genetics only accounted for a significant amount of 

the variance in the total growth from the lower asymptote, adding nuance to extant research that 

has found that the shared environment explains a decreasing proportion of the variance in cognitive 

ability at later developmental stages (Davis et al., 2009; Finkel et al., 2015). Specifically, additive 

genetics appear to become increasingly important in explaining the variance in cognitive ability at 

specific time points in late childhood and adolescence but account for a marginal portion of the 

variance in the developmental trajectory of cognitive ability across childhood.  

 

Nonshared environmental factors accounted for a nonsignificant portion of the variance in all of 

the growth parameters. Another interpretation of the nonshared environmental factor is that it 

represents the extent to which MZ twins are different from each other within pairs. Nonsignificant 

nonshared environment coefficients indicate that, statistically, individuals in an MZ twin pair 

would be expected to exhibit the same pattern of growth in cognitive ability from infancy to 

adolescence. Previous research has found nonshared environmental factors to contribute a 

marginal, but statistically significant, portion of the variance in cognitive ability at different 

developmental stages across childhood (Davis et al., 2009; Price et al., 2000). Nonshared 

environmental variance tends to reflect age-specific variance, which is more strongly captured in 

the residual variances in a growth model. Therefore, factors that contribute to within-pair 

differences in cognitive ability for MZ twins (including measurement error) may be more apparent 

in age-specific measurements of cognitive ability rather than trends in growth. As the present study 

is the first to apply biometric analyses to the growth in standardized cognitive scores across 

childhood, replication of the present findings in other samples is warranted before concluding that 

MZ twins do not differ within-pair in their trajectories of cognitive development across childhood.  
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Examining associations between specific features of the environment and cognitive development 

yielded distinct patterns for prenatal and postnatal environmental experiences. Specifically, 

aspects of the prenatal environment were most strongly associated with early cognitive ability, 

whereas associations between postnatal features of the environment became increasingly apparent 

at later ages. With regards to gestational age, children born at full term (40 weeks) exhibited 

approximately a 5-point advantage in their lower asymptote relative to children born at 37 weeks 

(the cutoff for prematurity). However, children born more prematurely exhibited greater total 

growth, a slower rate of approach to the asymptote, and an earlier inflection point. As depicted in 

Figures 5a and 5a, the predicted trajectories of cognitive ability for twins born at 37 and 40 weeks 

converged at approximately 3.5 years of age.  

 

Birth weight was not associated with any growth parameters at the between-pair level. Within-

pair, the heavier twin displayed a slight advantage in their lower asymptote, but there were no 

significant within-pair birth weight associations with cognitive growth. Thus, results are consistent 

with observations by Datar and Jacknowitz (2009), as they indicate that associations between birth 

weight and cognitive development may be confounded by other nonshared environmental factors, 

in particular, prenatal environmental factors (e.g., uterine position). In the present study, sex was 

regressed out of all cognitive scores before models were fit and, therefore, associations with birth 

weight and cognitive development are independent of sex.  

 

In the LTS, very few children were born very prematurely (defined as less than 32 weeks gestation; 

2.4% of the study sample) and a minority were born at very low birth weight (defined as less than 

3.31 pounds; 2.3% of the sample). Therefore, findings reflect developmental patterns for children 

born at typical gestation and/or birth weight or the lowest risk category of prematurity and/or low 

birth weight. Children born at very low birthweight or very prematurely demonstrate substantial 

deficits in cognitive ability which tend to persist across childhood and adolescence (Mangin et al., 

2017). Therefore, the observed patterns of premature infants catching up to their full-term peers 

by toddlerhood and nonsignificant associations between birth weight and cognitive development 

may not apply to populations at greater risk based on gestational age, birth weight, or 

complications associated with those conditions.  

 

Maternal age was only associated with the inflection point of cognitive ability. Children of older 

mothers hit their period of steepest growth earlier than children of younger mothers, contributing 

to a slight advantage in cognitive ability across toddlerhood for children born to older mothers. In 

the LTS, only a handful of mothers fell above age 40 at twin birth. Therefore, the majority of 

mothers in the present study fell within an age range in which I would not expect elevated rates of 

prenatal complications due to age (Luke & Brown, 2007). That greater maternal age was associated 

with an earlier inflection point may suggest that maternal age reflects aspects of the rearing 

environment not entirely captured by SES. For example, older maternal age has been associated 

with more proactive parenting practices, lower levels of household instability, and a more 

supportive learning environment (Fergusson & Woodward, 1999; Rodriguez & Tamis-LeMonda, 

2011), which may contribute to cognitive development above and beyond a family’s 

socioeconomic resources. 
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Consistent with previous research (Kainz et al., 2012; Tucker-Drob et al., 2011), higher family 

SES was associated with more positive cognitive developmental outcomes. Specifically, twins 

reared in higher-SES families exhibited an earlier inflection point and a slower average rate of 

growth, indicating that growth in cognitive ability relative to the population mean began at an 

earlier age and continued for a longer period of time. Children in families one SD above the sample 

SES mean were growing most rapidly at 2.26 years of age, whereas children in families one SD 

below the sample SES mean were growing most rapidly at 4.26 years of age. In other words, the 

period of most rapid cognitive growth for children in poorer homes appears to correspond with the 

beginning of public schooling, whereas children in more affluent homes develop most rapidly 

before entry into preschool. The SES-based divergence observed in early cognitive development 

trajectories appears to stabilize in early childhood at approximately an eight-point difference 

between children at one SD above and below the SES mean.  

 

Household chaos was also associated with the growth in cognitive ability across childhood such 

that children reared in more chaotic households displayed less total growth in their cognitive ability 

and exhibited a later inflection point. In the present study, all covariates were entered into the 

growth model simultaneously indicating that household chaos was associated with cognitive 

development after accounting for SES. Building on extant research (Deater‐Deckard et al., 2009; 

Martin et al., 2012), findings from the present study suggest that household organization, structure, 

and routine represent important aspects of a child’s learning environment distinct from SES in the 

growth of cognitive ability.  

 

Limitations  

The findings from the present study must be considered in light of several limitations. First, a 

variety of instruments were used to assess cognitive ability across the developmental span from 

infancy to adolescence. Additionally, within each age, different cognitive assessment versions 

were used throughout the duration of the LTS as new test versions became available (e.g., cognitive 

ability across childhood were assessed using the WISC, WISC-R, or WISC-III depending on the 

most recently published test). My approach to aggregate cognitive assessments across tests and 

versions within age and to measure the change in the aggregated scores across time relied on the 

assumption that the same “cognitive ability” construct was captured with each assessment. 

Different cognitive assessments are comprised of very different subtests prohibiting us from 

testing measurement invariance across test versions or test types. Different test versions are 

generally highly correlated (Bayley, 1993; Wechsler, 1989; Wechsler, 1991), and correlations 

between different measures over time are moderate to high (Bode et al., 2014; Ramey et al., 1973; 

Yule et al., 1982), supporting my decision to aggregate across test version and different measures. 

Additionally, I re-ran analyses restricting the assessments to the primary assessment used at each 

age (i.e., the Bayley 1st edition for 3-24 months, the Stanford Binet at 30 and 36 months, the WPPSI 

at 4-6 years, and the WISC-R at 7-15 years) to reduce assumptions made by aggregating across 

different tests or test versions at each age. Parameter estimates for the restricted model as well as 

associations between covariates and growth parameters were essentially unchanged, increasing 

confidence in my approach of aggregating across versions and measuring within age to maximize 

the sample size. 

 

Intercorrelations between the aggregated cognitive scores in the present study were moderate to 

strong with the exception of scores within the first year, which were modestly but positively 
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associated with cognitive ability in childhood and adolescence. Moreover, correlations between 

cognitive scores over time in the present study were stronger than those observed in previous 

longitudinal studies of cognitive development (Honzik et al., 1948; von Stumm & Plomin, 2015). 

Thus, there appears to be some meaningful overlap in the abilities assessed at each age. 

 

A second limitation of the present study was the limited racial diversity in the study sample. The 

LTS sample is predominantly White, limiting my ability to generalize findings to Black, Latinx, 

or Asian populations. Therefore, the extent to which similar patterns of cognitive recovery 

observed in White twins play out in other racial and ethnic groups is unclear. As the results from 

the present study highlight the importance of the shared environment in cognitive development in 

twins, racial inequities in access to healthcare, socioeconomic resources, and community resources 

may exacerbate initial delays in cognitive ability or slow the recovery process. Additionally, there 

has been little research to date on patterns of cognitive development in more affluent Black and 

Latinx families, highlighting a critical avenue for future research needed to understand the role of 

racism and poverty in cognitive development.  

 

Finally, due to the constructs available in the LTS, I had limited access to measures of specific 

features of the environment and, consequently, the environmental correlates in the present study 

represent broad generalizations about the child’s environment. For example, birth weight and 

gestational age were used as a proxy for prenatal environmental experiences. However, more 

specific measures, such as prenatal exposure to heavy metals, substances, or maternal medical 

complications may provide a finer-grained picture as to specific prenatal stressors associated with 

cognitive development. Relatedly, family SES and household chaos were included as time-

invariant covariates due to sporadic measurement of these constructs over time. Specifically, 

family SES was measured at birth and does not capture potential upward or downward 

socioeconomic mobility over time. Likewise, household chaos was measured by aggregating 

scores across all study waves as most families had at least one chaos score, but few families had 

multiple scores. Additionally, some twins may have been exposed to interventions designed to 

bolster neurodevelopment (e.g., Early Intervention), which could contribute to the recovery of 

cognitive ability. As the mean cognitive ability in the community-based Louisville Twin sample 

reached the average range by early childhood, the observed trend of deficits in infant cognitive 

ability and recovery to the population mean by early childhood likely reflects typical cognitive 

development in twins. However, without access to data indicating whether twins in the LTS 

received any cognitive intervention, it is impossible to definitively disentangle typical 

developmental processes from environmental experiences. As higher SES was associated with an 

earlier inflection point and greater overall cognitive recovery across childhood, it is likely that 

more targeted interventions designed to bolster cognitive development would be beneficial for 

cognitive recovery.  

 

The broad environmental constructs used in the present study likely represent an underestimation 

of the strength of the association between prenatal and postnatal environmental experiences. 

Replication of the study findings using more precise environmental measures is warranted. 

Specifically, environmental covariates may be best represented as time-varying to capture the 

dynamic nature of early family environments. Additionally, future research may consider other 

aspects of the environment, such as organization and learning stimulation in the home 
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environment, exposure to early neurodevelopmental interventions, and the quality of early 

childcare and educational placements. 

 

Conclusions 

Typical cognitive development in twins relative to the population mean followed an S-shaped 

curve characterized by substantial deficits in infancy, rapid recovery in abilities across 

toddlerhood, and stabilization of scores around the population mean in early childhood. Twins can 

serve as a model for singleton development and, therefore, the results from the present study may 

provide some insight into the nonlinear recovery of cognitive ability for singletons born at bio-

environmental risk (e.g., anoxic, prematurely, at low birth weight). The pattern of cognitive 

recovery observed in the present study has implications for clinicians conducting assessments of 

neurodevelopmental disorders in infant twins. Specifically, deficits that would typically be 

suggestive of a developmental delay in singletons (i.e., scores >2 SD below the population mean) 

may be more normative in infant twins relative to singletons. As twins were found to exhibit rapid 

recovery of abilities across the toddler years, a pattern of continued deficits below the population 

mean persisting into early childhood may be indicative of a neurodevelopmental disorder. 

Biometric analyses indicate that the majority of the variance in the growth of standardized 

cognitive scores is attributable to shared environmental factors. Specifically, length of gestation 

appears to be strongly associated with patterns of cognitive development across infancy, but 

associations were less apparent by early childhood. Alternatively, SES and household chaos were 

most strongly associated with cognitive development across early childhood.   
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Study 3: 

Co-Recovery of Physical Size and Cognitive Ability across Childhood: A Study of Twins 
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Relative to singletons, twins are at an elevated risk to be exposed to a host of stressors prenatally 

including competition for nutrients, uterine size constraints, and an increased risk for maternal 

health complications (Blickstein, 2004; Goldenberg et al., 2008; Van Baal & Boomsma, 1998). 

Twins are about six times more likely than singletons to be born prematurely (Giuffrè et al., 2012) 

and, consequently, are substantially undersized in infancy (Estourgie-van Burk et al., 2010; 

Wilson, 1974b) and perform poorly on tests of early cognitive development (Datar & Jacknowitz; 

2009; Wilson, 1972). Throughout infancy and toddlerhood, twins demonstrate substantial recovery 

in physical size (Wilson, 1979) and cognitive ability (Datar and Jacknowitz; 2009; Wilson, 1972). 

By early childhood, twins are average both physically (Wilson, 1979) and cognitively (Wilson, 

1974). Previous research has found physical recovery to follow a roughly exponential trajectory 

with twins making rapid gains in their physical size toward the population mean across the first 

year (see Study 1; Wilson, 1979). Cognitive recovery in twins follows an s-shaped trajectory 

characterized by limited gains in infancy, rapid development across toddlerhood, and an asymptote 

at the population mean in early childhood (Womack et al., 2022).   

 

Physical size in infancy, toddlerhood, and early childhood is generally considered to be an 

indicator of healthy development, and measurements of height, weight, and head circumference 

are aspects of routine well-child check-ups over the first years of life. Children who fall far behind 

population norms for height, weight, and head circumference are at risk for poor 

neurodevelopment including poor cognitive performance and gross and fine motor deficits (Cooke, 

2006). Among young children who are substantially below population norms for physical size, 

catch-up growth in height, weight, and head circumference is associated with gains in cognitive 

ability (Ghods et al., 2011; Scharf et al., 2016). However, no research has examined associations 

between the latent rate and shape of physical recovery and the latent rate and shape of cognitive 

recovery. Therefore, it is unclear the extent to which the processes of early physical and cognitive 

development are related to one another.  

 

Study three explored the relationship between physical and cognitive recovery. I considered two 

models which may describe the pattern of growth between physical and cognitive recovery: 

parallel process growth curve models and dual change score models. Parallel process growth curve 

models explore the extent to which aspects of physical recovery (e.g., rate of height recovery) are 

associated with aspects of cognitive recovery (e.g., rate of cognitive recovery). Dual change score 

models incorporate parallel growth as well as dynamic associations between physical and 

cognitive recovery. The dynamic associations in a dual change score framework allows for 

feedback between physical and cognitive recovery and can inform our understanding of how 

deviations from the mean trajectory of physical growth (e.g., growth spurts) relate to changes in 

the rate of cognitive recovery.  

 

Understanding the strength of the relationship between physical and cognitive recovery is relevant 

for clinical practice and may be informative to clinicians prescribing interventions for children 

exposed to early bioenvironmental adversity. For example, a strong relationship between early 

physical recovery and cognitive recovery may indicate that interventions designed to promote 

physical growth may also promote early cognitive development. On the other hand, findings that 

physical and cognitive recovery are unrelated would suggest that these processes are unrelated and 

separate interventions may be necessary to promote physical and cognitive recovery.  
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Associations between Birth Size and Cognitive Ability. Extant research on associations between 

birth weight and cognitive ability has yielded discrepant findings. Children born small relative to 

population norms generally display lower cognitive abilities in infancy (Kohlhauser et al., 2000; 

Scharf et al., 2016) and childhood (Antoniou et al., 2013; Edmonds et al., 2010; Ross et al., 2012). 

Additionally, among children born at typical birthweight (> 2500 grams) and gestational age (37-

40 weeks), there is a small, but positive association between birth weight and cognitive ability 

(Shenkin et al., 2004). However, some research on discordant birth weight monozygotic twins has 

found limited evidence of marked cognitive impairment in the smaller twin relative to their larger 

co-twin (Datar & Jacknowitz, 2009; Fujikura & Froehlich, 1974; Swamy et al., 2018; Wilson, 

1979). Null findings from discordant birth weight monozygotic twins may reflect the importance 

of examining physical size relative to the population mean; intra-pair differences in physical size 

may not necessarily correspond with differences in cognitive performance if both twins are 

significantly above or below the population mean for birth weight. Accordingly, results from two 

meta-analyses revealed that infants categorized as low birth weight scored approximately 5-6 

points lower than typical birth weight infants on standardized cognitive assessments in childhood 

(Aylward et al., 1989; Upadhyay et al., 2019). Thus, low birth weight appears to elevate the risk 

for slight reductions in cognitive performance in childhood, on average.  

 

Less work has focused on birth length and cognitive development despite research suggesting a 

modest correlation between height and cognitive ability at later developmental stages 

(Silventoinen et al., 2012; Sundet et al., 2005). Gale and colleagues (2004) found birth weight, but 

not birth length to significantly predict higher WISC scores at 9 years. However, in a sample of 

Singaporean children, Brokerman and colleagues (2009) observed a modest, but positive 

association between birth length and performance on the Raven’s Standard Progressive Matrices 

test in late childhood, accounting for gestational age, birth weight, and head circumference. 

Likewise, among infants from rural Guatemala, length for age z-scores at birth were positively 

associated with performance on the Bayley MDI at 6, 24, and 36 months (r’s = .17-.25) (Kuklina 

et al., 2006).   

 

Catch-Up Growth and Cognitive Development. As deficits in physical size at birth relative to 

population norms appear to be at least modestly associated with future cognitive outcomes, an 

important question concerns the association between catch-up growth (i.e., growth in physical size 

toward the population mean) and recovery of cognitive abilities. That is, among children who are 

born significantly below population norms (i.e., low birth weight), does recovery in physical size 

correspond with a commensurate increase in performance on cognitive assessments? Previous 

research has used various definitions for small physical size at birth (e.g., low birth weight, small 

for gestational age, stunting)4 and various definitions for catch-up growth. Findings generally 

suggest that children who demonstrate growth in physical size toward population norms perform 

better on cognitive assessments relative to children who do not catch up (Li et al., 2019; Sudfeld 

et al., 2015; Scharf et al., 2016). However, many questions remain unanswered. Notably, I have 

not been able to find a study examining associations between catch-up growth and cognitive ability 

in twins; all of the research reviewed in this section is based on samples of singletons.  

 
4 Low birth weight refers to a birth weight less than 2,500 grams and greater than 1,500 grams (less than 1,500 

grams is characterized as very low birth weight). Small for gestational age refers to infants born below the 10th 

percentile for their gestational age. Children are categorized as stunted if height-for-age z-scores 2 or more standard 

deviations below the World Health Organization Child Growth standards median.   



72 

 

 

A large body of research on the association between catch-up growth and cognitive development 

has focused on children reared in low- to middle-income countries where rates of low birth weight 

and stunting are higher than in high-income countries (Dicker et al., 2018). Findings from low- 

and middle-income countries provide evidence of a positive association between catch-up of 

physical size and improvement in standardized cognitive ability scores (Adair et al., 2013; Fink & 

Rockers, 2014; Horta et al., 2017; Pongcharoen et al., 2012; Poveda et al., 2021; Scharf, 2018). As 

change in height and weight are highly correlated, many studies use measures of conditional 

growth5 to disentangle the relative contribution of growth in height from growth in weight. Studies 

of conditional growth provide robust evidence that growth in height, particularly in the first four 

years of life, is positively associated with cognitive recovery (Adair et al., 2013; Horta et al., 2017; 

Pongcharoen et al., 2012; Poveda et al., 2021). For example, in a large prospective study of 

children from six low- and middle-income countries, conditional growth in height between birth 

and 2 years and between 2 and 4 years predicted completion from secondary school (Adair et al., 

2013) and IQ in adulthood (Poveda et al., 2021). Conditional growth in weight was not associated 

with years of schooling or cognitive ability in adulthood (Adair et al., 2013; Poveda et al., 2021). 

Likewise, in a prospective study of Thai singletons, conditional growth in height (but not weight) 

between 4 and 12 months was associated with higher Full Scale, Verbal, and Performance IQ 

scores on the WISC at age 9 years (Pongcharoen et al., 2012). 

 

Studies of associations between catch-up growth and cognitive ability in samples from high-

income countries reveal a similar pattern of findings (Fattal-Valevsk et al, 2009; Heinonen et al., 

2008; Scharf et al, 2016; Silventoinen et al., 2014). Among American children born at very low 

birth weight, children who were stunted (height for age z-score < -2) or waisted (weight for age z-

score < -2) at 9 months demonstrated lower MDI scores on the Bayley at 24 months, controlling 

for birth length and weight as well as 9-month Bayley MDI scores (Scharf et al., 2016). Likewise, 

in a sample of Israeli children born with intrauterine growth restriction, children who caught up in 

height and weight by age 2 (defined as height-for-age or weight-for-age z-score > -2) displayed 

higher IQs at ages 9 and 10 years than children who did not catch up (Fattal-Valevsk et al, 2009). 

Thus, among children born at high biological risk, failure to catch up in the first 24 months appears 

to elevate the risk for a poor cognitive trajectory.    

 

In addition to height and weight, other anthropomorphic measurements including head 

circumference are important physical indicators of early neurocognitive development (Cooke, 

2006; Ghods et al., 2011; Scharf et al., 2016). Head circumference is highly correlated with brain 

volume in young children and moderately correlated with brain volume beyond early childhood 

(Bartholomeusz et al., 2002). In a sample of infants born very prematurely, infants who 

demonstrated head circumference catch-up growth in the first year were more likely to have Bayley 

Mental Development Index scores in the normal range at 24 months compared to children who did 

not catch up (Ghods et al., 2002). Similarly, in a sample of nearly 1,000 infants born very low birth 

weight, Scharf and colleagues (2016) observed concurrent associations between head 

 
5 Conditional growth refers to the change in physical size across two or more developmental periods and is 

calculated by regressing out previous physical measurements. For example, conditional growth in height between 

birth and 2 years would be calculated by storing the residuals from a model where height at age 2 is regressed on 

height at birth. Thus, any associations between conditional height at age 2 and cognitive ability are independent of 

height at birth. 
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circumference and Bayley mental and motor scores at ages 9 and 24 months. Additionally, head 

circumference z-scores at 9 months positively predicted mental development scores at 24 months.  

 

In terms of developmental timing, earlier catch-up growth appears to be the strongest predictor of 

later cognitive ability. Among small for gestational age infants in the National Collaborative 

Perinatal Project, Varella and Moss (2015) observed a positive association between the rate of 

catch-up growth in the first 12 months and IQ scores at 4 years; children who displayed a steeper 

recovery performed better. Likewise, conditional growth in height in the first year, but not between 

1 and 9 years, was associated with higher Full Scale, Verbal, and Performance IQ scores at 9 years 

among a sample of Thai singletons (Pongcharoen et al., 2012). The most compelling evidence of 

the importance of early catch-up comes from a meta-analysis of 68 studies examining associations 

between linear growth and cognitive ability in childhood (Sudfeld et al., 2015). A one SD increase 

in height-for-age z-score before age 2 was associated with a 0.24 SD increase in cognitive ability 

whereas a one SD increase in height-for-age z-score after 2 years was associated with a 0.09 SD 

increase in cognitive ability (Sudfeld et al., 2015).  

 

Dampened physical recovery during the first 24 months may correspond with poor neurological 

development during a developmental period of expansive brain growth (Johnson, 2001). It is 

possible that early catch-up growth in physical size coincides with catch-up in neurological 

development (e.g., cortical thickening, increasing gray matter). However, the neurological 

processes underlying physical and cognitive development in children exposed to early bio-

environmental adversity remain unclear (Khan et al., 2017).  

 

Motor development represents another potential mechanism by which early recovery in physical 

size may relate to cognitive development (Jeng et al., 2000; Sudfeld et al., 2015). Results from a 

large meta-analysis indicate a moderate association between height-for-age z-score and 

performance on motor assessments (r = .24) and a greater likelihood of walking before age 2. In 

addition to having poorer motor abilities, undersized children have been observed to be less active 

than typically sized children (Gardner et al., 1990) suggesting that undersized children may be less 

able to use the motor abilities they have developed to explore their environments. Rapid gains 

toward population norms in terms of length and weight over the first two years of life may afford 

children increased opportunities to interact with others and explore their environments, increasing 

early cognitive stimulation.  

 

Biometric Contributions to the Association between Physical Size and Cognitive Ability. 

Phenotypically, height and IQ have been found to correlate modestly (r’s = .1 to .2; Keller et al., 

2013; Silventoinen et al., 2012; Sundet et al., 2005). Leveraging twin studies, phenotypic 

correlations can be decomposed into additive genetic, shared environmental, and nonshared 

components in a similar fashion as variances for a single variable (see Figure 26 for a sample path 

diagram). The handful of twin studies that have tested genetic and environmental correlations 

between height and cognitive ability have not come to a consensus on whether genetic or 

environmental factors account for the overlap between height and cognitive ability. Antoniou and 

colleagues (2013) found that non-shared environmental factors accounted for most of the 

covariance between birth weight and verbal and performance IQ (but not FSIQ) in late childhood. 

Alternatively, studies of adolescents have found additive genetics to account for the majority of 

the correlation between height and cognitive ability (Silventoinen et al., 2006; Silventoinen et al., 
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2012) and head circumference and cognitive ability (Silventoinen et al., 2012). In the only study 

to examine associations between change in height and cognitive ability, Silventoinen and 

colleagues (2006) found additive genetics to account for the correlation between change in height 

between 16 and 18 years and cognitive ability at 18 years among Dutch males.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other researchers have noted the relative importance of the shared environment in the association 

between height and cognitive ability. Shared environmental factors have been found to account for 

between 59% and 100% of the correlation between height and educational attainment whereas 

shared genetic factors did not account for a significant proportion of the association (Silventoinen 

et al., 2000a; Silventoinen et al., 2000b). Likewise, among adult Norwegian military conscripts, 

the shared environment accounted for most of the phenotypic correlation between height and 

cognitive ability (59%; Sundet et al., 2005). Genetic factors accounted for 35% of the correlation 

and nonshared environmental factors accounted for 6% of the correlation. Similarly, in a large 

sample of adult Swedish twins, shared environmental factors accounted for the majority of the 

phenotypic correlation between height and intelligence (59%) whereas additive genetics accounted 

for a modest proportion of the correlation (31%) (Beauchamp et al., 2011).  

 

Some researchers have raised concerns that the failure to account for assortative mating6 in classic 

twin models inflates shared environmental correlations between height and cognitive ability 

(Beauchamp et al., 2011; Keller et al., 2013). Once accounting for assortative mating in the 

association between height and cognitive ability, additive genetics explained the majority of the 

 
6 Assortative mating, which is assumed to be zero in the classic twin model, occurs when phenotypically similar 

individuals mate at a rate greater than chance (e.g., taller males mate with taller females or, by extension, taller 

males mate with more intelligent females). 

Figure 26. Path diagram for a bivariate correlated factors model where 

a, c, and e represent the loadings for the additive genetic, shared 

environmental, and nonshared environmental correlations, respectively. 

For simplicity, the diagram is shown for only one twin.  
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correlation whereas the shared and nonshared environmental correlations between height and 

cognitive ability were nonsignificant (Beauchamp et al., 2011; Keller et al., 2013).  

 

In sum, there is little consensus on the relative role of additive genetic, shared environmental, or 

nonshared environmental factors in the correlation between height and cognitive ability. Samples 

recruited before 1915 (e.g., Beauchamp et al., 2011; Sundet et al., 2005) generally suggest a greater 

influence of the shared environment on the association between height and cognitive ability 

whereas samples recruited at later historical periods often find a greater genetic influence 

(Silventoinen et al., 2006; Silventoinen et al., 2012). This discrepancy may reflect differences in 

access to nutrition at different historical periods. The historical timeline of the Louisville Twin 

Study (1957-1993) generally overlaps with that of studies that have found a stronger additive 

genetic correlation between height and weight than a shared environmental correlation. However, 

without previous research examining associations between the rate of change in physical size and 

the rate of change in cognitive ability, it is unclear the extent to which physical and cognitive 

growth overlap. Additionally, it is unclear how much additive genetics or environmental 

experiences contributes to the overlap between the rate and shape of physical and cognitive 

recovery.  

 

Gaps in the Literature on Associations between Physical Size and Cognitive Ability. Despite 

the large body of literature dedicated to examining associations between physical size and 

cognitive ability, major gaps exist. That I am aware of, no studies have examined associations 

between the rate of growth in physical size and the rate of growth in cognitive ability. Considering 

that twins typically develop from initial deficits in physical size (Wilson, 1979) and cognitive 

ability (Wilson, 1974a), it is important to understand the relationship between recovery of physical 

size and recovery of cognitive ability as physical size is often used by healthcare providers as a 

broad indicator of developmental health. The extent to which recovery of physical size and 

cognitive ability are associated across childhood can be informative of the utility of physical 

measurements as an indicator of future wellbeing more globally among children exposed to early 

bio-environmental adversity.  

 

A related limitation of previous research on the association between physical size and cognitive 

ability has to do with temporal associations between growth in physical size and growth in 

cognitive ability. Studies of associations between catch-up growth and cognitive ability generally 

include measures of cognitive ability after measures of catch-up growth (e.g., Poveda et al., 2021; 

Sudfeld et al., 2015; Varella & Moss, 2015), suggesting a general hypothesis in the literature that 

physical catch-up precedes cognitive catch-up. However, it is possible that catch-up growth in 

physical size and cognitive ability occur in parallel or that cognitive recovery precedes physical 

recovery. Understanding the temporal relationship between the recovery of physical size and 

recovery of cognitive ability is the first step in better understanding the mechanisms that underly 

physical and cognitive recovery from perinatal stressors.  

 

To date, there has been no research dedicated to understanding the biometric associations between 

weight and cognitive ability. As recovery of weight from early deficits has been positively 

associated with cognitive outcomes (e.g., Scharf et al., 2016), understanding the relative genetic 

and environmental correlations between catch-up weight gain and cognitive development is a first 

step in understanding the etiology of the association between weight recovery gain and cognitive 
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ability. Likewise, there has been little research on biometric associations between head 

circumference in infancy and early cognitive development. In the only study approximating a 

biometric analysis of the association between infant head circumference and cognitive 

development, Fujisawa and colleagues (2012) observed a negative additive genetic correlation and 

a positive shared environmental correlation between the rate of head circumference growth in the 

first year and sociocognitive development at age 2, as measured by an autism screener.  

 

Additionally, no previous research has examined relative genetic and environmental contributions 

to the association between the growth in cognitive ability and growth in physical size. 

Understanding the genetic and environmental overlap between recovery in physical size and 

recovery of cognitive abilities will inform healthcare providers of the extent to which genetic or 

environmental factors are shared between the recovery of physical size and cognitive ability in 

twins.  

 

The Present Study 

To fit gaps in the literature on the co-recovery of physical size and cognitive ability, I fit two types 

of growth models to explore the association between physical recovery (i.e., height, weight, and 

head circumference) and cognitive recovery. I first fit parallel process growth curve models to 

examine associations between each physical recovery indicator (height, weight, and head 

circumference) and cognitive development. I then leveraged the twin-study design to examine 

additive genetic, shred environmental, and nonshared environmental contributions to the 

associations between physical and cognitive recovery. Second, I fit a series of bivariate dual 

change score models to explore dynamic associations between physical and cognitive recovery.  

 

The study design and hypotheses were preregistered (https://osf.io/g2vyx/). Given the dearth of 

literature examining prospective associations between physical and cognitive recovery in twins, 

analyses were generally exploratory in nature. As previous research suggests that individuals with 

a smaller physical size at birth perform more poorly on early cognitive assessments (Kohlhauser 

et al., 2000; Upadhyay et al., 2019), I expected the intercepts of the physical size variables to be 

positively correlated with the lower asymptote of cognitive ability. Additionally, as some research 

indicates a positive correlation between height and cognitive ability in adulthood (Keller et al., 

2013), I hypothesized that the upper asymptote of height would correlate positively with the upper 

asymptote of cognitive ability. Finally, as previous research suggests that a faster rate of catch-up 

growth from early physical deficits is positively associated with cognitive development in infancy 

and toddlerhood (Varella & Moss, 2015), I hypothesized that the rate of height, weight, and head 

circumference recovery would correlate positively with the rate of cognitive recovery.  

 

Findings from studies 1 and 2 suggest that shared environmental factors account for the majority 

of the variance in initial cognitive and physical recovery. Additionally, it has been hypothesized 

that the physical and cognitive deficits twins show in early life are attributable to prenatal 

experiences, which is an aspect of the shared environment (Buckler & Green, 2004; Datar & 

Jacknowitz, 2009). Indeed, in studies 1 and 2, I observed a positive association between gestational 

age and initial physical measurements and cognitive abilities. Therefore, I hypothesized that 

overlapping shared environmental experiences would account for initial physical size (i.e., 

intercept of height, weight, and head circumference) and initial cognitive abilities (i.e., lower 

asymptote). As additive genetics become increasingly important in explaining variance in physical 

https://osf.io/g2vyx/
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and cognitive recovery in later developmental periods, I hypothesized that the same genetic factors 

would account for the upper asymptotes of physical size and cognitive ability. I did not have 

hypotheses as to whether overlapping genetic factors, environmental factors, or a combination will 

account for one’s inflection point of physical recovery and cognitive recovery or one’s rate of 

physical recovery and cognitive recovery. These analyses were exploratory in nature.  

 

Methods 
Participants 

I used data from the Louisville Twin Study, a longitudinal study of temperament and cognitive 

development in twins (Davis et al., 2019; Wilson, 1983). All twins were recruited from the 

Louisville, Kentucky metropolitan area. Participants were primarily White (89.3%) and were 

recruited to represent the socioeconomic composition of the Louisville metropolitan area. Twin 

zygosity was determined by blood serum analysis. 

 

Over the 36-year course of the Louisville Twin Study, there were 1,770 individuals (885 pairs) 

listed as participating at least once. Twins missing zygosity information will not be included in 

analyses (n = 120). Of those remaining, 1,642 had at least one physical measurement or cognitive 

measurement. As is typical in twin studies of physical or cognitive development, I restricted 

analyses to monozygotic and same-sex dizygotic twins (n = 1,292). Finally, provided my interest 

in typical development, I removed individuals that had a physical measurement greater than four 

standard deviations above or below the population mean (n = 77). The final study sample was 

1,215 (52.0% female).  

 

Procedure 

Data were collected between 1957 and 1993. Cognitive testing and physical measurements were 

completed by trained examiners during laboratory visits at the University of Louisville at 16 time 

points between 3 months and 15 years (0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 12, and 15 

years). Twins were typically assessed within one week of their birthdays and the testing schedule 

was arranged such that examiners did not administer cognitive assessments to the same individuals 

at consecutive assessments.  

 

Measures 

Physical Development. Physical measurement procedures are described in detail in Wilson 

(1979). Birth length, weight, and head circumference measurements were obtained from birth 

certificates. Infant weights between 3 and 24 months were taken with the infant lying undressed 

on a balance scale. After 24 months, infants were weighed wearing a light garment using a platform 

scale calibrated in four-ounce increments. All weights were recorded to the nearest ounce and were 

subsequently converted to kilograms. Weights were then age-standardized using CDC growth 

charts based on 2000 norms (Kuczmarski, 2000). The 2000 CDC growth charts were based on 

United States population surveys conducted between 1963 and 1994 (see Kuczmarski 2000 for 

further details). Thus, the 2000 CDC norms overlap considerably with the historical timeline of 

data collection in the Louisville Twin Study.  

 

Height data, measured to the nearest millimeter, were collected during the same appointment as 

weight data. Recumbent length was used as a proxy for height between 3 and 24 months. After 24 

months, standing height was measured using a wall-mounted metric scale. As with weight data, 
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height data were converted into age-standardized z-scored based on 2000 CDC growth norms 

(Kuczmarski, 2000).  

 

Cognitive Development. Over the course of the Louisville Twin Study, twins were administered 

a variety of age-appropriate cognitive batteries. A breakdown of each measure including sample 

size and means is presented in Table 2. Twins were administered the Bayley Scales of Mental 

Development between ages 3 and 24 months, with the majority of twins completing the first edition 

(Bayley, 1969) and a handful of infants completing the second edition (Bayley, 1993). At 30 

months, a minority of twins completed the Bayley. However, most twins at 30 months and all 

twins at 36 months completed the Stanford-Binet Intelligence Scale – Third Edition with norms 

based on the 1972 restandardization (Freides, 1972). At 4 years, twins completed either the 

Stanford-Binet – Third Edition, the McCarthy Scales of Children’s Abilities (McCarthy, 1972), or 

the WPPSI (Wechsler, 1967). At age 5, twins completed either the McCarthy, the WPPSI, or a 

revised version of the WPPSI (WPPSI-R; Wechsler, 1989). At age 6, twins completed either the 

WPPSI or WPPSI-R. At ages 7, 8, and 9, twins completed either the WISC (Wechsler & Kodama, 

1949), the WISC revised (WISC-R; Wechsler, 1974), or the WISC – Third Edition (WISC-III; 

Wechsler, 1991). At ages 12 and 15 years, twins either completed the WISC-R or WISC-III.  

 

All of the cognitive scales administered over the course of the Louisville Twin Study have a mean 

of 100, which provides a common reference point for cognitive ability across measures and time. 

The Bayley and McCarthy Scales were standardized to have a standard deviation of 16; the 

Stanford-Binet and Wechsler scales were standardized to have a standard deviation of 15. 

Standardized cognitive scores were converted to z-scores so that they were on the same scale as 

the standardized physical growth measurements.  

 

Data Analyses 

Descriptive Statistics. Data preparation, descriptive statistics, and the calculation of 

intercorrelations between study variables were conducted using the Base package in R version 

4.1.2 (R Core Team, 2021).  

 

Parallel Growth in Physical and Cognitive Development. The parallel process growth curve 

models were guided based on the best-fitting models for height, weight, head circumference, and 

cognitive recovery from studies 1 and 2. Specifically, a Weibull model fit the data best for height 

and weight, a Morgan-Mercer-Flodin fit best for head circumference, and a Gompertz model fit 

best for cognitive ability. Parallel process models for each physical growth indicator (height, 

weight, and head circumference) and cognitive ability were fit separately. Parallel process growth 

curve models were fit in a multilevel framework with twins nested within families using the 

“twolevel” option in Mplus (Muthén & Muthén, 2017). This allowed me to calculate phenotypic 

correlations between the growth parameters at the within-pair and between-pair levels.  

 

To test biometric correlations between the growth factors, I decomposed the variance of the growth 

parameters into additive genetic, shared environmental, and nonshared environmental 

components. I then included covariance paths between the biometric components (see Figure 27 

for a simplified path diagram of the biometric correlations between the upper asymptote of 

cognitive ability and weight). Because nonshared environmental variance is only apparent within 

a pair, nonshared environmental covariances were included at the within-pair portion of the model. 
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Likewise, shared environmental covariances were included only at the between-pair portion of the 

model. For dizygotic twins, additive genetic covariances were included at the within-pair and 

between-pair portions of the model because dizygotic twins vary genetically within and between 

pairs. For monozygotic twins, additive genetic covariances were included at the between-pair level 

of the model. Additive genetic covariances for dizygotic twins were constrained to be equal across 

the within and between levels of the model and additive genetic covariances for monozygotic twins 

were constrained to be double the covariance of dizygotic twins. The covariance coefficients were 

standardized within Mplus and presented as correlation coefficients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Examining Temporal Relationships Between Cognitive and Physical Development. I 

leveraged latent-change score models (McArdle, 2001) to address study questions related to the 

temporal relationship between the recovery of physical size and cognitive recovery. Previous 

research has typically specified constant growth as a linear growth parameter, but additional 

parameters can be entered into the model to estimate nonlinear growth (Grimm et al., 2013; 

Hamagami & McArdle, 2019). Factor loadings for nonlinear growth parameters in a latent change 

framework were derived by taking the partial derivatives of the first derivative of the target 

function with respect to time (Grimm et al., 2013).  

 

A specific type of latent change score model is the dual change score model, which decomposes 

growth into stable, “constant” growth and proportional growth (McArdle, 2001). Proportional 

growth represents the deviation from constant growth over time. Positive proportional growth 

parameters serve to amplify the rate of growth over time whereas negative proportional growth 

parameters dampen the rate of growth over time. In linear dual change score models, proportional 

Figure 27  

Path Diagram of the Biometric Correlations between Physical and Cognitive Growth Parameters 

Note. ra(MZ) = 2*ra(DZ) 
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growth adds nonlinearity to the estimated growth curve. In nonlinear models, proportional growth 

moderates the acceleration of growth over time (Hamagami & McArdle, 2019).  

 

A bivariate dual change score model is a multivariate extension of the dual change score model 

which includes “coupling parameters” in addition to the constant and proportional growth 

parameters (McArdle, 2001). Coupling parameters reflect the extent to which variable X at time t 

predicts the change in growth in variable Y and time t+1. Applied to the current study, the coupling 

parameter between height and cognitive ability would reflect the extent to which a child’s height 

at 6 months is associated with a deviation from the constant rate of growth between 6 and 9 months. 

Figure 28 depicts a path diagram of a linear bivariate dual change score model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univariate dual change score models for each study variable (height, weight, head circumference, 

and cognitive ability) were fit following recommendations by Matusik and colleagues (2020). 

First, univariate dual change score models were fit for height, weight, head circumference, and 

cognitive ability. The structure of constant change was initially guided by the best-fitting growth 

models for each variable (i.e., Weibull for height and weight, Morgan-Mercer-Flodin for head 

circumference, and Gompertz for cognitive ability). However, the Weibull and Morgan-Mercer-

Flodin dual change score models fit to height, weight, and head circumference did not converge. I 

used an exponential dual change score model to model height, weight, and head circumference. 

Exponential models provided an acceptable fit to the data for each growth measurement. For each 

variable, four models were compared: (1) dual change (i.e., constant and proportional change 

estimated), (2) constant change only (i.e., proportional change constrained to 0), (3) intercept only 

(i.e., constant change and proportional change constrained to 0), (4) no change (i.e., constant and 

Figure 28. Generic path diagram of a linear bivariate dual change score model of height and 

cognitive ability. “P” refers to proportional parameters and “C” refers to coupling parameters. All 

solid lines are freely estimated, and dashed lines are constrained to 1.  
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proportional change constrained to 0). Because models were estimated using maximum likelihood 

estimation with robust standard errors, Satorra-Bentler chi-square difference tests (Satorra & 

Bentler, 2001) were conducted comparing models 2, 3, and 4 to model 1. In cases where the 

Satorra-Bentler chi-square difference test resulted in a negative chi-square statistic, I calculated 

the strictly positive Satorra-Bentler chi-square difference statistic (Satorra & Bentler, 2010). The 

most parsimonious model that did not result in a significant decrease in model fit was retained as 

the final univariate dual change score model. 

 

For each bivariate dual change score model four models were compared: (1) full coupling (i.e., 

coupling parameters from height to cognitive ability and cognitive ability to height estimated), (2) 

height → cognitive ability (i.e., coupling parameters from cognitive ability to height constrained 

to 0), (3) cognitive ability → height (i.e., coupling parameters from height to cognitive ability 

constrained to 0), (4) no coupling (all coupling parameters constrained to 0). Satorra-Bentler chi-

square difference tests were conducted comparing models 2-4 to model 1. The most parsimonious 

model that did result in a significant decrease in model fit was retained as the final model. 

 

One assumption of latent change score models is equal time intervals between measurement 

waves. However, in the Louisville Twin Study, waves were not equally spaced from infancy to 

adolescence. One strategy to deal with unequal measurement spacing in latent change score models 

is to include “phantom variables” to fill in waves without a measurement (Voelkle & Oud, 2014). 

Phantom variables are latent variables without an indicator (Rindskopf, 1984). In the Louisville 

Twin Study, the shortest increment of time between waves was three months. Therefore, phantom 

variables were included in the model to ensure constant three-month intervals between waves. 

Birth measurements were not included in the dual change score models to ensure that the first 

measurement of physical size and cognitive ability occurred at the same age (3 months).  

 

All change score models will be fit in a structural equation modeling framework using Mplus 

(Muthén & Muthén, 2017). 

 

Missing Data 

Due to the longitudinal nature of the Louisville Twin Study, there were missing data on all 

measures. Rates of missingness for each study variable are presented in Table 26.  

 

Table 26 

Proportion of Missingness for Each Study Variable 

Age % Missing 

Cognitive Ability 

% Missing 

Height 

% Missing 

Weight 

% Missing Head 

Circumference 

Birth  23.1% 0.0% 57.2% 

3 months 70.3% 45.1% 46.7% 45.1% 

6 months 48.9% 32.2% 31.4% 32.4% 

9 months 55.9% 34.3% 32.0% 34.7% 

12 months 44.9% 20.4% 16.9% 20.9% 

18 months 42.1% 24.6% 20.3% 25.6% 

24 months 42.0% 19.9% 19.9% 26.5% 

30 months 47.2% 46.6% 46.4% 50.4% 

36 months 36.5% 21.2% 20.9% 27.8% 
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4 years 38.7% 26.2% 25.9%  

5 years 40.5% 27.7% 27.7%  

6 years 37.7% 30.0% 30.0%  

7 years 42.9% 41.1% 41.1%  

8 years 36.1% 42.1% 42.1%  

9 years 55.2% 46.1% 46.1%  

12 years 85.1% 83.1% 83.1%  

15 years 53.8% 57.0% 57.0%  

Average 48.6% 35.8% 34.6% 35.6% 

 

Rubin (1976) describes three patterns that may describe missing data: missing completely at 

random (MCAR), missing at random (MAR), and missing not at random (MNAR). Data are 

MCAR when missingness is unrelated to any observed variables (e.g., other variables in the study) 

or unobserved variables (e.g., the missing value). In the present study, data would be MCAR if 

missingness on IQ scores was unrelated to study covariates (e.g., SES), IQ scores from previous 

assessments, and the would-be IQ score from the missing timepoint. MAR occurs when 

missingness is related to other observed variables, but not the missing value itself. For example, if 

children from lower SES households are more likely to be missing cognitive scores and lower IQs 

are not more likely to be missing, data are considered MAR. When missingness is related to the 

value of the missing variable (e.g., if children with low IQ scores did not take intelligence tests at 

a particular wave), data are considered MNAR. There are a variety of strategies to handle missing 

data when data are MCAR or MAR, however, parameter estimates are likely to be biased in cases 

where data are MNAR (Enders, 2011a).  

 

To explore patterns of missingness, I then fit a series of logistic regression models predicting 

missing cognitive scores from background variables including socioeconomic status, maternal age 

at birth, gestational age, sex, zygosity, and birth year, as well as cognitive scores, height, weight, 

and head circumference from the previous wave. Likewise, I fit a series of logistic regression 

models predicting the missingness of each physical growth parameter using the aforementioned 

background variables as well as measurements of height, weight, head circumference, and 

cognitive ability from the previous wave. Including previous cognitive measurements in predicting 

missingness of cognitive ability and physical measurements when predicting missingness of 

height, weight, and head circumference allowed me to approximate MNAR. Because consecutive 

measurements of physical size (and cognitive ability) are highly correlated, if a value at time t 

predicts missingness at time t + 1, missingness may be related to the missing value itself.  

 

Birth year significantly predicted missing cognitive scores at 9 out of 16 assessments, missing 

weights at 6 out of 16 assessments, missing heights at 7 out of 16 assessments, and missing head 

circumferences at 3 out of 8 assessments. In general birth year was positively associated with 

missingness on the physical growth measures, indicating that children born later (and enrolled in 

the study later) were more likely to have missing scores. Family socioeconomic status was 

positively associated with missing cognitive scores at 3, 7, and 9 years. Socioeconomic status was 

not related to missingness on any physical growth measurements. Gestational age was negatively 

associated with missing cognitive scores at 5 years and missing cognitive, height, and weight 

scores at 8 years.  
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There was little evidence that data were MNAR. At 3 out of 16 assessments (30 months, 9 years, 

and 12 years) missing cognitive scores were positively related to cognitive scores at the previous 

assessment. Thus, there may be a slight bias towards lower cognitively performing youth at a 

minority of the study waves. Missing weight at 24 months was positively related to weight at 18 

months, and missing weight at 12 years was negatively related to weight at 9 years. Missing height 

at 24 months was negatively related to height at 18 months and missing height at 7 years was 

positively related to height at 6 years. Missing head circumference scores were not predicted by 

head circumference at a previous age. I proceeded to handle missing data using full information 

maximum likelihood estimation (FIML), which assumes that data are MAR.  

 

Results 

Descriptive Statistics and Intercorrelations 

Detailed descriptive statics on physical size, cognitive ability scores, and study covariates are 

presented in studies 1 and 2.  

 

Concurrent correlations between physical growth indicators and cognitive ability are presented in 

Figure 29. Weight and height were strongly concurrently correlated from infancy to adolescence 

(r’s = .57-.79). Correlations between weight and head circumference (r = .75) and height and head 

circumference (r = .61) were strongest at birth and remained moderate through 36 months (the 

final age head circumference was measured). Cognitive ability was most strongly correlated with 

the physical growth constructs in infancy. After 48 months, correlations between cognitive ability 

and height and weight remained below .1. Surprisingly, correlations between head circumference 

and cognitive ability were relatively weak across infancy and toddlerhood (r’s = .10-.26).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parallel Process Growth Model – Phenotypic Correlations 

Figure 29 

Longitudinal Correlations between Physical and Cognitive Measures 
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Weight and cognitive recovery. The unconditional parallel process growth curve model between 

weight recovery and cognitive ability had an acceptable fit to the data (X2 = 3,922.5, df = 1,011, p 

< .001; TLI = .90; RMSEA = .05). Correlation coefficients between the growth parameters at the 

within- and between-pair level are presented in Table 27. Consistent with expectations, the 

intercept of weight was positively correlated with the lower asymptote of cognitive ability at both 

the within- and between-pair levels. Weight at birth was positively correlated with the inflection 

point of weight and cognitive growth, suggesting that heavier children at birth had a later inflection 

point. Within-pair, the rate of weight recovery was negatively correlated with the rate of cognitive 

recovery and positively associated with the total growth of cognitive ability. In other words, within 

a pair, the twin that had a faster weight recovery demonstrated a slower rate of cognitive recovery 

but ultimately demonstrated the largest gain in cognitive abilities.  

 

 

Table 27 

Phenotypic Correlations between Weight Recovery and Cognitive Recovery 

 

Intercept 

(Weight) 

Upper 

Asymptote 

(Weight) 

Rate 

(Weight) 

Inflection 

(Weight) 

Lower 

Asymptote 

(Cognitive) 

Total 

Growth 

(Cognitive) 

Rate 

(Cognitive) 

Inflection 

(Cognitive) 

Intercept 

(Weight) 

1 .41 

[.31, .51] 

-.01 

[-.13, .11] 

.16 

[.03, .28] 

.37 

[.05, .69] 

-.05 

[-.23, .13] 

.25 

[.01, .50] 

.23 

[-.08, .55] 

Upper 

Asymptote 

(Weight) 

.11 

[-.01, .22] 

1 -.17 

[-.30, -.04] 

-.37 

[-.50, -.24] 

-.29 

[-.04, .62] 

-.09 

[-.30, .13] 

.33 

[.07, .58] 

.09 

[-.22, .41] 

Rate 

(weight) 

-.07 

[-.20, .07] 

-.28 

[-.41, -.15] 

1 .11 

[-.04, .25] 

-.16 

[-.43, .11] 

.31 

[.08, .54] 

-.32 

[-.61, -.02] 

-.22 

[-.53, .09] 

Inflection 

(Weight) 

.19 

[.07, .32] 

-.33 

[-.44, -.22] 

.14 

[.01, .28] 

1 .01 

[-.30, .31] 

.14 

[-.08, .37] 

-.16 

[-.47, .14] 

-.02 

[-.37, .34] 

Lower 

Asymptote 

(Cognitive) 

.50 

[.38, .63] 

.15 

[.01, .29] 

-.17 

[-.31, -.04] 

-.15 

[-.30, .01] 

1 .14 

[-.32, .60] 

.22 

[-.38, .82] 

0 

Total 

Growth 

(Cognitive) 

-.19 

[-.32, -.05] 

-.10 

[-.24, .04] 

.07 

[-.06, .20] 

.17 

[.02, .32] 

-.64 

[-.78, -.50] 

1 -.34 

[-.69, .01] 

-.01 

[-.44, .41] 

Rate 

(Cognitive) 

.14 

[-.05, .33] 

.05 

[-.10, .20] 

-.15 

[-.31, .01] 

-.14 

[-.33, .06] 

.41 

[.16, .66] 

-.63 

[-.74, -.51] 

1 -.16 

[-.86, .53] 

Inflection 

(Cognitive) 

.13 

[.00, .27] 

-.02 

[-.14, .10] 

-.15 

[-.28, -.03] 

-.04 

[-.16, .08] 

.47 

[.27, .67] 

-.59 

[-.73, -.46] 

.62 

[.40, .84] 

1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are bolded for 

clarity.  

 

Height and cognitive recovery. The unconditional parallel process growth model between height 

and cognitive recovery had an acceptable fit to the data (X2 = 3,086.8, df = 1,011, p < .001; TLI = 

0.92, RMSEA = .04). Length at birth was positively correlated with the lower asymptote of 

cognitive abilities both within-and between-pair. The upper asymptote of height was not 

significantly correlated with the total change of cognitive abilities from the lower to upper 

asymptote. As with weight recovery, the rate of height recovery was significantly negatively 
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corelated with the rate of cognitive recovery within-pair. However, the confidence interval of the 

within-pair association between the rate of height and rate of cognitive recovery was extremely 

large and needs to be interpreted with caution. All correlation coefficients between height recovery 

and cognitive recovery are presented in Table 28.  

 

Table 28 

Phenotypic Correlations between Height Recovery and Cognitive Recovery 

 

Intercept 

(Height) 

Upper 

Asymptote 

(Height) 

Rate 

(Height) 

Inflection 

(Height) 

Lower 

Asymptote 

(Cognitive) 

Total 

Growth 

(Cognitive) 

Rate 

(Cognitive) 

Inflection 

(Cognitive) 

Intercept 

(Height) 

1 .53 

[.44, .62] 

-.25 

[-.39, -.12] 

.35 

[.21, .49] 

.51 

[.17, .85] 

-.04 

[-.25, .16] 

.32 

[-.03, .67] 

.35 

[-.01, .71] 

Upper 

Asymptote 

(Height) 

.50 

[.40, .59] 

1 -.10 

[-.23, .04] 

-.25 

[-.41, -.10] 

.10 

[-.27, .46] 

.08 

[-.17, .32] 

.11 

[-.22, .44] 

-.15 

[-.48, .17] 

Rate 

(Height) 

-.28 

[-.39, -.17] 

-.03 

[-.14, .09] 

1 -.21 

[-.42, .00] 

-.24 

[-.55, .06] 

.23 

[-.03, .50] 

-.52 

[-.99, -.02] 

-.01 

[-.37, .35] 

Inflection 

(Height) 

.41 

[.29, .52] 

-.18 

[-.30, -.07] 

-.32 

[-.45, -.20] 

1 .43 

[.02, .84] 

-.13 

[-.44, .18] 

.19 

[-.28, .66] 

.50 

[.06, .95] 

Lower 

Asymptote 

(Cognitive) 

.31 

[.17, .45] 

-.07 

[-.06, .20] 

-.11 

[-.28, .06] 

.22 

[.05, .38] 

1 .23 

[-.26, .74] 

.01 

[-.79, .81] 

0 

Total 

Growth 

(Cognitive) 

-.10 

[-.23, .03] 

.03 

[-.10, .216] 

.07 

[-.09, .22] 

-.18 

[-.34, -.03] 

-.59 

[-.72, -.46] 

1 -.29 

[-.72, .15] 

.04 

[-.41, .50] 

Rate 

(Cognitive) 

-.02 

[-.19, .15] 

-.11 

[-.26, .04] 

-.10 

[-.29, .09] 

.23 

[.02, .45] 

.33 

[.10, .55] 

-.60 

[-.72, -.49] 

1 -.33 

[-.99, .58] 

Inflection 

(Cognitive) 

-.07 

[-.21, .06] 

-.10 

[-.21, .03] 

-.06 

[-.20, .08] 

.04 

[-.11, .19] 

.37 

[.19,.55] 

-.53 

[-.65, -.40] 

.52 

[.28, .76] 

1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are bolded for 

clarity.  

 

Head circumference and cognitive recovery. As head circumference-for-age z-scores were only 

available from birth to 36 months, I first fit a series of growth models to determine the function 

that best described growth in cognitive ability between 3 and 36 months. None of the asymptotic 

models fit to cognitive data from 3 to 36 months converged, which is likely due to the relatively 

little change in cognitive ability scores over the first three years (see Figure 23, Study 2). The cubic 

model converged, but the variance of the cubic growth parameter as well as the covariances 

between the cubic growth parameter and other growth parameters had to be constrained to 0.  

Based on the BIC values, the quadratic growth model fit the data best (see Table 29). Moreover, 

chi-square difference tests revealed that the quadratic model fit better than the linear model (X2 = 

45, df = 4, p < .001) and the cubic model did not fit significantly better than the quadratic model 

(X2 = 1, df = 1, p = .317).  

 

 

Table 29 
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The parallel process growth model of head circumference and cognitive recovery fit the data well 

(X2 = 608.9, df = 232, p < .001; TLI = .96, RMSEA = .04). The intercepts of head circumference 

and cognitive ability were significantly positively correlated, in line with hypotheses. The slope 

and quadratic growth parameters of cognitive ability were not significantly correlated with any of 

the head circumference growth parameters. See Table 30 for all correlation coefficients.  

Table 30 

Phenotypic Correlations between Head Circumference Recovery and Cognitive Recovery 

 

Intercept 

(Head) 

Upper 

Asymptote 

(Head) 

Rate 

(Head) 

Inflection 

(Head) 

Intercept 

(Cognitive) 

Slope 

(Cognitive) 

Quadratic 

(Cognitive) 

Intercept 

(Head) 

1 .48 

[.34, .62] 

0 .85 

[.64, .99] 

.02 

[-.40, .43] 

-.15 

[-.64, .35] 

.20 

[.20, .60] 

Upper 

Asymptote 

(Head) 

.57 

[.40, .74] 

1 .30 

[.06, .55] 

-.10  

[-.31, .11] 

.19 

[-.11, .48] 

-.35 

[-.80, .10] 

.33 

[-.04, .70] 

Rate 

(Head) 

0 .05 

[-.14, .24] 

1 -.41 

[-.65, .-.17] 

.10 

[-.35, .54] 

-.38 

[-.99, .28] 

.31 

[-.20, .82] 

Inflection 

(Head) 

.26 

[.03, .50] 

-.06 

[-.17, .29] 

.05 

[-.23, .33] 

1 -.08 

[-.66, .50] 

.41 

[-.39, .99] 

-.23 

[-.84, .38] 

Intercept 

(Cognitive) 

.69 

[.49, .88] 

.04 

[-.11, .19] 

-.23 

[-.46, -.01] 

.10 

[-.17, .37] 

1 0 .16 

[-.22, .55] 

Slope 

(Cognitive) 

-.20 

[-.47, .06] 

.11 

[-.07, .29] 

.34 

[.08, .61] 

.10 

[-.21, .40] 

-.57 

[-.69, -.44] 

1 -.94 

[-.99, -.82] 

Quadratic 

(Cognitive) 

.23 

[-.06, .52] 

-.07 

[-.28, .14] 

-.41 

[-.72, -.11] 

-.10 

[-.44, .24] 

.45 

[.29, .63] 

-.90 

[-.94, -.86] 

1 

Note. Within-pair correlations are presented above the diagonal and between-pair correlations are presented 

below the diagonal. 95% confidence intervals are included below the correlation coefficients. Significant 

correlations are bolded for clarity.  

 

Parallel Process Growth Model – Biometric Correlations 

In estimating the biometric correlations between physical recovery and cognitive recovery, 

numerous correlations had to be constrained to 0. This happened in cases where the estimated 

variance was negative and had to be constrained to 0 (as was the case for the additive genetic 

variance for the lower asymptote of cognitive ability). Additionally, some correlations were 

estimated to be greater than 1 and statistically nonsignificant (as was the case for the additive 

genetic correlation between the rate and inflection point of cognitive recovery). These correlations 

were also constrained to be 0.  

Model Fit Statistics – Cognitive Ability 3 to 36 Months 

Fit Statistic No Change Linear Quadratic Cubic 

X2/df 680/34 160 /31 115 /27 116/26 

TLI .70 .93 .95 .95 

RMSEA .15 .07 .06 .06 

AIC 36,511 35,880 35,835 35,836 

BIC 36,559 35,942 35,916 35,922 



87 

 

Weight and cognitive recovery. There was a moderate shared environmental correlation between 

the intercept of weight and the lower asymptote of cognitive ability (rc = .54), which likely reflects 

the common influence of gestational age and other prenatal factors on early weight and cognitive 

ability. The upper asymptotes of weight and cognitive ability did not share common additive 

genetic or shared environmental factors. However, there were common nonshared environmental 

factors associated with the upper asymptotes of weight and cognitive ability. There was a 

significant negative shared environmental correlation between the rate of weight recovery and the 

rate of cognitive recovery. This may reflect differences in the association between gestational age 

and the rate of weight and cognitive recovery. That is, children born later displayed faster cognitive 

recovery, but slower weight recovery.  

 

Genetic factors associated with the upper asymptote of weight were also associated with an earlier 

inflection point. In exponential models, an earlier inflection point reflects more rapid early gains.  

Therefore, additive genetic components associated with rapid early weight gain are also associated 

with greater total weight gain. There was a strong nonshared environmental correlation between 

the intercept and upper asymptote of weight. This correlation may reflect measurement error, 

which is also a part of the nonshared environmental correlation. That is, children with birth weights 

significantly below the estimated intercept may be more likely to have an upper asymptote below 

the estimated upper asymptote. Additive genetic, shared environmental, and nonshared 

environmental correlations between weight recovery and cognitive recovery are presented in 

Tables 31, 32, and 33, respectively. 
Table 31 

Additive Genetic Correlations between Weight Recovery and Cognitive Recovery 

 

Intercept 

(Weight) 

Upper 

Asymptote 

(Weight) 

Rate 

(Weight) 

Inflection 

(Weight) 

Lower 

Asymptote 

(Cognitive) 

Total 

Growth 

(Cognitive) 

Rate 

(Cognitive) 

Inflection 

(Cognitive) 

Intercept 

(Weight) 
1        

Upper 

Asymptote 

(Weight) 

.35 

[.02, .68] 
1       

Rate 

(weight) 
0 

-.23 

[-.49, .03] 
1      

Inflection 

(Weight) 

.47 

[.03, .90] 

-.23 

[-.43, -.04] 

-.11 

[-.46, .23] 
1     

Lower 

Asymptote 

(Cognitive) 

0 0 0 0 1    

Total 

Growth 

(Cognitive) 

.14 

[-.29, .56] 

.13 

[-.06, .31] 

.21 

[-.15, .56] 

.09 

[-.20, .37] 
0 1   

Rate 

(Cognitive) 
0 0 0 0 0 0 1  

Inflection 

(Cognitive) 

.71 

[.08, .99] 

-.20 

[-.49, .09] 

-.23 

[-.75, .28] 

.21 

[-.18, .60] 
0 

-.47 

[-.82, -.11] 
0 1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are bolded for clarity. 

Correlations with a value of 0 were constrained to be 0.  
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Table 32 

Shared Environmental Correlations between Weight Recovery and Cognitive Recovery 

 

Intercept 

(Weight) 

Upper 

Asymptote 

(Weight) 

Rate 

(Weight) 

Inflection 

(Weight) 

Lower 

Asymptote 

(Cognitive) 

Total 

Growth 

(Cognitive) 

Rate 

(Cognitive) 

Inflection 

(Cognitive) 

Intercept 

(Weight) 
1        

Upper 

Asymptote 

(Weight) 

.36 

[-.29, .99] 
1       

Rate 

(weight) 

-.52 

[-.71, -.32] 

.03 

[-.80, .85] 
1      

Inflection 

(Weight) 

.41 

[.12, .70] 

-.36 

[-.92, .20] 

-.29 

[-.65, .06] 
1     

Lower 

Asymptote 

(Cognitive) 

.53 

[.36, .71] 

.38 

[-.14, .90] 

-.34 

[-.59, -.10] 

.16 

[-.09, .41] 
1    

Total 

Growth 

(Cognitive) 

-.33 

[-.67, .01] 

-.42 

[-.99, .41] 

.14 

[-.26, .54] 

-.16 

[-.51, .20] 

-.76 

[-.91, -.60] 
1   

Rate 

(Cognitive) 

.12 

[-.11, .34] 

-.17 

[-.63, .30] 

-.35 

[-.64, -.06] 

-.35 

[-.64, -.06] 

.32 

[.04, .59] 

-.77 

[-.99, -.53] 
1  

Inflection 

(Cognitive) 

-.14 

[-.43, .15] 

.13 

[-.45, .70] 

-.19 

[-.53, .14] 

-.19 

[-.53, .15] 

.42 

[.20, .64] 

-.60 

[-.82, -.39] 

.57 

[.25, .90] 
1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are bolded for 

clarity.  
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Table 33 

Nonshared Environmental Correlations between Weight Recovery and Cognitive Recovery 

 

Intercept 

(Weight) 

Upper 

Asymptote 

(Weight) 

Rate 

(Weight) 

Inflection 

(Weight) 

Lower 

Asymptote 

(Cognitive) 

Total 

Growth 

(Cognitive) 

Rate 

(Cognitive) 

Inflection 

(Cognitive) 

Intercept 

(Weight) 
1        

Upper 

Asymptote 

(Weight) 

.75 

[.61, .89] 
1       

Rate 

(weight) 

-.62 

[-.77, -.47] 

-.62 

[-.78, -.47] 
1      

Inflection 

(Weight) 

-.20 

[-.81, .40] 

-.24 

[-.78, .30] 

.55 

[-.06, .99] 
1     

Lower 

Asymptote 

(Cognitive) 

.48 

[.09, .88] 

-.06 

[-.41, .30] 

.13 

[-.33, .59] 

.33 

[-.69, .99] 
1    

Total 

Growth 

(Cognitive) 

-.01 

[-.39, .38] 

.38 

[.06, .69] 

-.46 

[-.86, -.06] 

-.59 

[-.99, .26] 
0 1   

Rate 

(Cognitive) 
0 

-.25 

[-.99, .54] 

.54 

[-.82, .99] 
0 

-.13 

[-.99, .78] 
0 1  

Inflection 

(Cognitive) 

-.03 

[-.50, .44] 

-.13 

[-.52, .26] 

.46 

[-.11, .99] 

.43 

[-.66, .99] 

.61 

[.22, .99] 
0 0 1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are bolded for 

clarity.  
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Height and cognitive recovery. Consistent with correlations between weight and cognitive 

recovery, common shared environmental factors were associated with the correlation between the 

intercept of height and lower asymptote of cognitive ability. There were no significant additive 

genetic correlations between the recovery of height and cognitive ability. As with weight, there 

were significant negative additive genetic correlations between the upper asymptote of height and 

the rate and inflection point of recovery. In other words, genetic factors associated with slower, 

steadier height growth were associated with being taller. Common shared environmental factors 

were associated with the associations between the intercept of height and the rate and inflection 

point of recovery. Additive genetic, shared environmental, and nonshared environmental 

correlations between height and cognitive recovery are presented in Tables 34, 35, and 36, 

respectively.  

 

 

Table 34 

Additive Genetic Correlations between Height Recovery and Cognitive Recovery 

 

Intercept 

(Height) 

Upper 

Asymptote 

(Height) 

Rate 

(Height) 

Inflection 

(Height) 

Lower 

Asymptote 

(Cognitive) 

Total 

Growth 

(Cognitive) 

Rate 

(Cognitive) 

Inflection 

(Cognitive) 

Intercept 

(Height) 
1       

 

Upper 

Asymptote 

(Height) 

.35 

[.04, .67] 
1      

 

Rate 

(Height) 
0 

-.23 

[-.49, .02] 
1     

 

Inflection 

(Height) 

.48 

[.06, .90] 

-.23 

[-.42, -.03] 

-.12 

[-.46, .23] 
1    

 

Lower 

Asymptote 

(Cognitive) 

0 0 0 0 1   

 

Total 

Growth 

(Cognitive) 

.16 

[-.22, .53] 

.12 

[-.07, .32] 

.28 

[-.06, .63] 

-.01 

[-.21, .20] 
0 1  

 

Rate 

(Cognitive) 
0 

-.09 

[-.69, .52] 

-.72 

[-.99, .50] 

.84 

[-.99, .24] 
0 

-.60 

[-.99, -.05] 
1 

 

Inflection 

(Cognitive) 

.66 

[.05, .99] 

-.20 

[-.49, .10] 

-.13 

[-.39, .12] 

.16 

[-.69, .38] 
0 

-.43 

[-.80, -.06] 

-.02 

[-.84, .80] 

1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are bolded for 

clarity.  
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Table 35 

Shared Environmental Correlations between Height Recovery and Cognitive Recovery 

 

Intercept 

(Height) 

Upper 

Asymptote 

(Height) 

Rate 

(Height) 

Inflection 

(Height) 

Lower 

Asymptote 

(Cognitive) 

Total 

Growth 

(Cognitive) 

Rate 

(Cognitive) 

Inflection 

(Cognitive) 

Intercept 

(Height) 
1        

Upper 

Asymptote 

(Height) 

.37 

[-.29, .99] 
1       

Rate 

(Height) 

-.51 

[-.71, -.32] 

.02 

[-.81, .85] 
1      

Inflection 

(Height) 

.40 

[.11, .70] 

-.35 

[-.91, .21] 

-.30 

[-.65, .06] 
1     

Lower 

Asymptote 

(Cognitive) 

.53 

[.35, .71] 

-.38 

[-.99, .47] 

-.32 

[-.56, -.08] 

.16 

[-.09, .41] 
1    

Total 

Growth 

(Cognitive) 

-.25 

[.61, .10] 

-.29 

[-.99, .86] 

-.04 

[-.53, .45] 

-.13 

[-.51, .26] 

-.81 

[-.99, -.64] 
1   

Rate 

(Cognitive) 

-.18 

[-.68, .32] 

-.29 

[-.99, .86] 

.15 

[-.43, .73] 

-.08 

[-.64, .47] 

.38 

[-.03, .78] 

-.63 

[-.97, -.28] 
1  

Inflection 

(Cognitive) 

-.13 

[-.42, .15] 

.13 

[-.44, .70] 

-.22 

[-.55, .12] 

-.02 

[-.27, .23] 

.41 

[.19, .64] 

-.66 

[-.91, -.41] 

.74 

[.13, .99] 
1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are bolded for 

clarity.  
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 Table 36 

Nonshared Environmental Correlations between Height Recovery and Cognitive Recovery 

 

Intercept 

(Height) 

Upper 

Asymptote 

(Height) 

Rate 

(Height) 

Inflection 

(Height) 

Lower 

Asymptote 

(Cognitive) 

Total 

Growth 

(Cognitive) 

Rate 

(Cognitive) 

Inflection 

(Cognitive) 

Intercept 

(Height) 
1        

Upper 

Asymptote 

(Height) 

.75 

[.61, .89] 
1       

Rate 

(Height) 

-.62 

[-.77, -.47] 

-.63 

[-.78, -.47] 
1      

Inflection 

(Height) 

-.20 

[-.80, .39] 

-.25 

[-.78, .29] 

.57 

[-.04, .99] 
1     

Lower 

Asymptote 

(Cognitive) 

.60 

[.21, .99] 

.00 

[-.35, .35] 

.01 

[-.45, .46] 

.49 

[-.53, .99] 
1    

Total 

Growth 

(Cognitive) 

-.08 

[-.48, .32] 

.34 

[.02, .67] 

-.42 

[-.82, -.02] 

-.69 

[-.99, .14] 
0 1   

Rate 

(Cognitive) 
0 

.24 

[-.99, .52] 

.71 

[-.87, .99] 
0 

-.00 

[-.76, .76] 
0 1  

Inflection 

(Cognitive) 

.07 

[-.43, .57] 

-.10 

[-.51, .31] 

.37 

[-.23, .97] 

.61 

[-.56, .99] 

.58 

[.16, .99] 
0 0 1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are bolded for 

clarity.  
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Head circumference and cognitive recovery. There was a significant shared environmental 

correlation between the head circumference intercept and the intercept of cognitive ability. There 

were no significant additive genetic, shared environmental, or nonshared environmental 

correlations between the growth parameters for head circumference and the linear or quadratic 

growth of cognitive ability. Common additive genetic factors were associated with the rate of head 

circumference and the upper asymptote of head circumference. That is genetic factors related to 

quicker head circumference growth were related to larger head size. Additive genetic, shared 

environmental, and nonshared environmental correlations between head circumference recovery 

and cognitive recovery are presented in Tables 37, 38, and 39, respectively.  

 

 

Table 37 

Additive Genetic Correlations between Head Circumference Recovery and Cognitive Recovery 

 

Intercept 

(Head) 

Upper 

Asymptote 

(Head) 

Rate 

(Head) 

Inflection 

(Head) 

Intercept 

(Cognitive) 

Slope 

(Cognitive) 

Quadratic 

(Cognitive) 

Intercept 

(Head) 

1       

Upper 

Asymptote 

(Head) 

0 1      

Rate 

(Head) 

0 .36 

[.23, .50] 

1     

Inflection 

(Head) 

0 0 0 1    

Intercept 

(Cognitive) 

0 .07 

[-.06, .21] 

.11 

[-.06, .27] 

0 1   

Slope 

(Cognitive) 

0 0 0 0 0 1  

Quadratic 

(Cognitive) 

0 0 0 0 0 0 1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are 

bolded for clarity.  
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Table 38 

Shared Environmental Correlations between Head Circumference Recovery and Cognitive Recovery 

 

Intercept 

(Head) 

Upper 

Asymptote 

(Head) 

Rate 

(Head) 

Inflection 

(Head) 

Intercept 

(Cognitive) 

Slope 

(Cognitive) 

Quadratic 

(Cognitive) 

Intercept 

(Head) 

1       

Upper 

Asymptote 

(Head) 

0 1      

Rate 

(Head) 

0 0 1     

Inflection 

(Head) 

.37 

[.19, .56] 

0 0 1    

Intercept 

(Cognitive) 

.65 

[.47, .83] 

0 0 .05 

[-.19, .30] 

1   

Slope 

(Cognitive) 

-.04 

[-.22, .14] 

0 0 .11 

[-.09, .33] 

-.42 

[-.59, -.24] 

1  

Quadratic 

(Cognitive) 

0 0 0 0 0 0 1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are 

bolded for clarity.  

 

 

Table 39 

Nonshared Environmental Correlations between Head Circumference Recovery and Cognitive Recovery 

 

Intercept 

(Head) 

Upper 

Asymptote 

(Head) 

Rate 

(Head) 

Inflection 

(Head) 

Intercept 

(Cognitive) 

Slope 

(Cognitive) 

Quadratic 

(Cognitive) 

Intercept 

(Head) 
1       

Upper 

Asymptote 

(Head) 

.50 

[.33, .68] 
1      

Rate 

(Head) 

-.57 

[-.72, -.43] 

-.08 

[-.30, .14] 
1     

Inflection 

(Head) 

.41 

[.20, .62] 

-.28 

[-.56, .00] 
0 1    

Intercept 

(Cognitive) 
0 0 0 0 1   

Slope 

(Cognitive) 

-.10 

[-.63, .43] 
0 

-.20 

[-.99, .68] 
0 0 1  

Quadratic 

(Cognitive) 
0 0 0 0 0 0 1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are 

bolded for clarity.  
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Dynamic Growth: Weight and Cognitive Recovery 

Univariate dual change score. A univariate Gompertz dual change score model fit to the 

cognitive ability data from 3 months to 15 years fit the data acceptably (X2 = 586.8, df = 123, p < 

.001; TLI = .92; RMSEA = .06). The dual change model fit the data better than the constant change, 

proportional change, and no change models (see Table 40). The univariate exponential dual change 

score model fit to the weight data had a suboptimal fit (X2 = 1,773.9, df = 128, p = .001; TLI = .87; 

RMSEA = .10). However, the dual change score model fit the data better than the constant change, 

proportional change, and no change models (see Table 41). Model fit was substantially improved 

by adding covariances between consecutive residuals (X2 = 910.0, df = 113, p < .001; TLI = .93; 

RMSEA = .08).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bivariate dual change score. Fit statistics for the full coupling, weight to cognitive, cognitive to 

weight, and no coupling models are presented in Table 42. The no-coupling bivariate dual change 

score model did not fit significantly worse than the full coupling model. A no-coupling model is 

equivalent to the parallel process growth curve models fit previously and suggests that dynamic 

feedback between changes in weight and changes in cognitive ability are not important aspects of 

cognitive or weight recovery from infancy to adolescence. In other words, change in the rate of 

cognitive recovery from infancy to adolescence is not informed by changes in weight recovery, 

and vice versa. Parameter estimates for the no-coupling bivariate dual change score model between 

weight and cognitive recovery are presented in Table 43. The estimated trajectories of physical 

and cognitive recovery are depicted in Figure 30.  

 

 

 

 

 

Table 40 

Model Comparison – Univariate Dual Change Score Model: Cognitive Ability 

Model X2 df Satorra-Bentler  

X2 

Δ df p-value 

Dual Change Score 586.8 123 - - - 

Constant Growth 606.4 124 17.3 1 < .001 

Proportional Growth 3,243.8 135 3087.8 8 < .001 

No Growth 3181.9 136 2275.2 9 < .001 

Table 41 

Model Comparison – Univariate Dual Change Score Model: Weight 

Model X2 df Satorra-Bentler  

X2 

Δ df p-value 

Dual Change Score 1,773.9 128 - - - 

Constant Growth 1,780.7 129 10.5 1 .001 

Proportional Growth 7609.3 135 10,740.6 7 < .001 

No Growth 7.105.4 136 2691.1 8 < .001 
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Table 42 

Model Comparison – Bivariate Dual Change Score Model: Weight & 

Cognitive Ability 

Model X2 df Satorra-Bentler  

X2 

Δ df p-value 

Full Coupling 1928.0 476 - - - 

Weight → Cog 1930.6 477 3.0 1 .086 

Cog → Weight 1,927.1 477 0.0 1 .999 

No Coupling 1929.1 478 3.5 2 .175 

Table 43 

Parameter Estimates from the Bivariate Dual change Score 

Model between Weight and Cognitive Ability  

Parameter B  95% C.I. 

Constant Growth   

   Intercept Weight -0.89 [-0.98, -0.81] 

   Asymptote Weight 0.80 [0.68, 0.92] 

   Rate Weight 0.11 [0.10, 0.12] 

   Intercept Cog -0.73 [-0.80, -0.66] 

   Asymptote Cog 0.74 [0.62, 0.86] 

   Rate Cog 0.14 [0.13, 0.16] 

   Inflection Cog 13.0 [12.2, 13.9] 

Proportional Growth   

   Proportional Head -0.01 [-0.01, -0.00] 

   Proportional Cog -0.01 [-0.01, -0.00] 

Coupling Parameters   

   Head → Cog 0  

   Cog → Head 0  

Figure 30  

Predicted Trajectories of Weight and Cognitive Recovery 
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Correlations between the constant growth parameters in the no-coupling bivariate dual change 

score model are extremely similar to the correlations observed in the phenotypic parallel process 

growth model between weight and cognitive ability (see Table 44). The intercept of weight was 

significantly positively correlated with the intercept of cognitive ability. The rate of weight 

recovery was negatively correlated with the rate of cognitive recovery but positively correlated 

with the upper asymptote of cognitive recovery. That is, children who recovered more quickly in 

terms of weight had a slower rate of cognitive recovery but ultimately had higher cognitive scores.  

 

 

 

Dynamic Growth: Height and Cognitive Recovery 

Univariate dual change score. The exponential dual change score model fit the data significantly 

better than the constant growth model, proportional growth model, and no change model (see Table 

45). This indicates that the shape of height recovery was best described by an exponential curve 

with a negative feedback parameter, which served to dampen the rate of growth around the upper 

asymptote.  

 

Table 45 

Model Comparison – Univariate Dual Change Score Model: Height 

Model X2 df Satorra-Bentler  

X2 

Δ df p-value 

Dual Change Score 1,337.0 128 - - - 

Constant Growth 1,361.4 129 15.7 1 < .001 

Proportional Growth 4,988.7 135 934.1 7 < .001 

No Growth 4,912.7 136 933.2 8 < .001 

 

Table 44 

Correlations between Constant Growth Parameters: Weight and Cognitive Ability 

 Intercept  

Weight 

Asymptote  

Weight 

Rate  

Weight 

Intercept  

Cog 

Asymptote 

Cog 

Rate 

Cog 

Inflection  

Cog 

Intercept  

Weight 

1       

Asymptote  

Weight 

-.35 

[-.48, -.22] 

1      

Rate  

Weight 

-.10 

[-.20, -.01] 

-.19 

[-.35, -.04] 

1     

Intercept  

Cog 

.26 

[.15, .38] 

-.10 

[-.25, .05] 

-.22 

[-.35, -.08] 

1    

Asymptote 

Cog 

-.07 

[-.20, .07] 

-.03 

[-.17, .12] 

.20 

[.05, .34] 

-.35 

[-.50, -.21] 

1   

Rate 

Cog 

.03 

[-.12, .18] 

.05 

[-.11, .22] 

-.22 

[-.38, -.06] 

.19 

[.01, .37] 

-.69 

[-.80, -.58] 

1  

Inflection 

Cog 

-.07 

[-.19, .05] 

.05 

[-.09, .19] 

-.11 

[-.24, .01] 

.34 

[.19, .48] 

-.51 

[-.62, -.41] 

.57 

[.41, .73] 

1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are 

bolded for clarity.  
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Bivariate dual change score model. The no-coupling bivariate dual change score model of 

cognitive and height recovery did not fit significantly worse than the full coupling model (see 

Table 46). The no coupling model fit the data acceptably (X2 = 2,493.1, df = 493, p < .001; TLI = 

.91, RMSEA = .06). As with the dynamic associations between weight recovery and cognitive 

recovery, the no coupling model suggests that there is no reciprocal feedback between height 

recovery and cognitive recovery from infancy to adolescence. Table 47 contains the parameter 

estimates for the bivariate dual change score model of height and cognitive recovery. Predicted 

trajectories of height recovery and cognitive recovery are presented in Figure 31. Correlations 

between the constant growth parameters are presented in Table 48.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 46 

Model Comparison – Bivariate Dual Change Score Model 

Model X2 df Satorra-Bentler  

X2 

Δ df p-value 

Full Coupling 2,494.7 491 - - - 

Height → Cog 2,493.6 492 2.2 1 .140 

Cog →  Height 2,494.1 492 0.1 1 .999 

No Coupling 2,493.1 493 2.9 2 .233 

Table 47 

Parameter Estimates from the Bivariate Dual change Score 

Model between Height and Cognitive Ability  

Parameter B  95% C.I. 

Constant Growth   

   Intercept Weight -0.89 [-0.98, -0.81] 

   Asymptote Weight 0.80 [0.68, 0.92] 

   Rate Weight 0.11 [0.10, 0.12] 

   Intercept Cog -0.73 [-0.80, -0.66] 

   Asymptote Cog 0.74 [0.62, 0.86] 

   Rate Cog 0.14 [0.13, 0.16] 

   Inflection Cog 13.0 [12.2, 13.9] 

Proportional Growth   

   Proportional Head -0.01 [-0.01, -0.00] 

   Proportional Cog -0.01 [-0.01, -0.00] 

Coupling Parameters   

   Head → Cog 0  

   Cog → Head 0  
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Table 48 

Correlations between Constant Growth Parameters: Height and Cognitive Ability 

 Intercept  

Height 

Asymptote  

Height 

Rate  

Height 

Intercept  

Cog 

Asymptote 

Cog 

Rate 

Cog 

Inflection  

Cog 

Intercept  

Height 

1       

Asymptote  

Height 

-.31 

[-.44, -.18] 

1      

Rate  

Height 

-.40 

[-.49, -.30] 

-.01 

[-.14, .12] 

1     

Intercept  

Cog 

.28 

[.16, .40] 

-.14 

[-.27, -.01] 

-.11 

[-.25, .03] 

1    

Asymptote 

Cog 

.02 

[-.11, .16] 

.04 

[-.08, .16] 

.04 

[-.08, .17] 

-.35 

[-.49, -.21] 

1   

Rate 

Cog 

-.08 

[-.23, .07] 

-.04 

[-.19, .12] 

-.09 

[-.25, .07] 

.17 

[.00, .35] 

-.69 

[-.80, -.58] 

1  

Inflection 

Cog 

-.04 

[-.15, .08] 

-.07 

[-.18, .05] 

-.06 

[-.18, .07] 

.32 

[.17, .47] 

-.51 

[-.61, -.41] 

.57 

[.41, .73] 

1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant correlations are 

bolded for clarity.  

Figure 31 

Predicted Trajectories of Height and Cognitive Recovery 
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Dynamic Growth: Head Circumference and Cognitive Recovery 

Univariate dual change score model. A dual change score model fit to head circumference 

recovery fit the data acceptably (X2 = 247.4, df = 33, p< .001; TLI =  .96; RMSEA = .08). The dual 

change score model fit significantly better than the constant growth, proportional growth, and no 

growth models (see Table 49).  

 

Table 49 

Model Comparison – Univariate Dual Change Score Model: Head 

Circumference 

Model X2 df Satorra-Bentler  

X2 

Δ df p-value 

Dual Change Score 247.4 33 - - - 

Constant Growth 274.9 34 31.9 1 < .001 

Proportional Growth 4214.6 40 4,149.5 7 < .001 

No Growth 3893.9 41 2,667.6 8 < .001 

 

I tested a series of latent change scores models to determine which best described the growth of 

cognitive ability from 3 to 36 months. A quadratic dual change score model fit significantly worse 

than a linear dual change score model (X2 = 11.9, df=4, p .018). Due to the negative proportional 

change score parameters, the linear dual change score model describes cognitive ability that 

increases at a declining rate. The dual change score model fit to cognitive ability fit significantly 

better than constant change, proportional change, and no change models (see Table 50).   

 

 

 

 

 

 

 

 

 

 

 

 

Bivariate dual change score model. The bivariate dual change score model with full coupling fit 

the data well (X2 = 602.6, df = 128, p < .001; TLI = .95, RMSEA = .06). The full coupling model 

fit the data better than models containing only coupling parameters from head circumference to 

cognitive ability, only coupling parameters from cognitive ability to head circumference, and no 

coupling parameters (see Table 51). Parameter estimates from the model are presented in Table 52 

and correlations between the constant growth parameters are presented in Table 53. The negative 

proportional growth parameters for head circumference and cognitive ability suggests that the rate 

of recovery slows over time. The negative coupling parameter between head circumference and 

cognitive ability suggests that having a larger head circumference is related to a subsequent decline 

in the rate of growth of cognitive ability. Likewise, the negative coupling parameter between 

Table 50 

Model Comparison –Dual Change Score Model: Cognitive Ability (3-36 

months) 

Model X2 df Satorra-Bentler  

X2 

Δ df p-value 

Dual Change Score 241.1 37 - - - 

Constant Growth 269.1 38 28.0 1 < .001 

Proportional Growth 252.0 38 10.9 1 < .001 

No Growth 287.9 39 46.8 2 < .001 
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cognitive ability and head circumference suggests that higher cognitive scores are associated with 

a subsequent decline in the rate of growth of head circumference.  

 

Thinking about head circumference and cognitive ability as a dynamic system, children who are 

closer to their upper asymptote of head circumference are also slowing down in their cognitive 

recovery. Alternatively, children who are farther from their upper asymptote of head 

circumference growth have greater room to grow cognitively. Figure 32 depicts predicted 

trajectories of head circumference recovery and cognitive development from 3 to 36 months. It 

should be noted that there is relatively little recovery of cognitive ability during this time period, 

and cognitive recovery accelerates rapidly starting in toddlerhood (see Figure 23, study 2). 

 

Table 51 

Model Comparison – Bivariate Dual Change Score Model 

Model X2 df Satorra-Bentler  

X2 

Δ df p-value 

Full Coupling 602.6 128 - - - 

Head → Cog 623.1 129 4.0 1 .029 

Cog → Head 607.4 129 14.4 1 < .001 

No Coupling 627.0 130 19.3 2 < .001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 52 

Parameter Estimates from the Bivariate Dual change Score 

Model between Head Circumference and Cognitive Ability  

Parameter B  95% C.I. 

Constant Growth   

   Intercept Head -0.96 [-1.04, -0.85] 

   Total Growth Head 1.84 [1.22, 1.47] 

   Rate Head 0.62 [0.58, 0.67] 

   Intercept Cog -0.74 [-0.85, -0.63] 

   Slope Cog -0.06 [-0.10, -0.03] 

Proportional Growth   

   Proportional Head -0.02 [-0.03, -0.02] 

   Proportional Cog -0.13 [-0.18, -0.09] 

Coupling Parameters   

   Head → Cog -0.05 [-0.10, -0.00] 

   Cog → Head -0.02 [-0.02, -0.01] 



102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 53 

Correlations between Constant Growth Parameters: Head Circumference and Cognitive Ability 

 Intercept Head Asymptote Head Rate Head Intercept Cog Slope Cog 

Intercept Head 1     

Asymptote Head -.07 

[-.21, .07] 

1    

Rate Head -.08 

[-.23, .07] 

-.16 

[-.00, .33] 

1   

Intercept Cog .29 

[.20, .40] 

-.28 

[-.43, -.14] 

-.04 

[-.19, .11] 

1  

Slope Cog .39 

[.22, .57] 

.22 

[.06, .37] 

-.14 

[-.28, .01] 

-.04 

[-.18, .10] 

1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant 

correlations are bolded for clarity.  

Figure 32  

Predicted Trajectories of Head Circumference and Cognitive Recovery 
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Post-Hoc: Physical Recovery and Mental Development across the First Two Years of Life 

Dual change score models fit to height and cognitive recovery and weight and cognitive recovery 

revealed little in the way of dynamic relationships between physical and cognitive recovery. This 

may have been due to the long timespan of the models (infancy to adolescence) much of which 

was defined by an upper asymptote where there was little to no change. Additionally, in dual 

change score models, the proportional change parameters are constrained to be equal over time. 

The relatively small windows between waves (3-month intervals) in addition to long upper 

asymptotes may have obscured some of the dynamic relationship between physical and cognitive 

recovery during developmental periods with accelerated physical and cognitive development. That 

is, because the proportional change and coupling parameters are constrained to be equal over time 

in dual change score models (McArdle, 2001), small proportional growth or coupling at the upper 

asymptotes may have dampened proportional growth and coupling estimates.  

 

I conducted exploratory analyses by fitting dual change score models to physical recovery (i.e., 

height, weight, and head circumference) and mental development from 3 to 24 months as measured 

by raw Bayley scores. In contrast to standardized cognitive scores, which reflect performance 

relative to the population mean, raw cognitive scores reflect the number of items a child “passes” 

at each assessment. Because raw scores build upon “easier” items that a child would have passed 

at an earlier assessment, raw scores almost always increase rapidly over time (Bayley, 1969).  As 

raw scores are not comparable across test versions due to different items, I restricted the 

supplementary analyses to Bayley first edition scores, which is the version of the Bayley that the 

majority of the infants in the Louisville Twin Study completed. Tasks on the first edition of the 

Bayley include responding appropriately to environmental stimuli, manipulating basic objects, and 

basic language production.  

 

For height, weight, head circumference, and mental development, univariate quadratic dual change 

score models fit better than linear dual change score models. In all cases, a dual change score 

model fit better than constant change, proportional change, and no change models.  

 

Weight and mental development. A dual change score model with coupling parameters from 

mental development to weight did not fit the data significantly worse than a model with full 

coupling (see Table 54). This model had an acceptable fit to the data (X2 = 470.9, df = 58, p < .001; 

TLI = .90, RMSEA = .08). Contrary to expectations, the negative coupling parameter from mental 

development to weight suggests that higher mental development scores are related to a subsequent 

slowdown in the rate of weight gain. The intercept of weight was positively correlated with the 

intercept of mental development and the slopes of weight gain and mental development. In other 

words, heavier children at 3 months had higher mental development scores and initially had more 

rapid gains in their weight and mental development. Figure 33 depicts the trajectories of mental 

development for children 1 SD above and below the sample mean in terms of weight and 

trajectories of weight for children 1 SD above and below the sample mean in terms of Bayley 

scores. Heavier children at 3 months maintain a consistent advantage over lighter children. By 24 

months, there is about a 4-point difference in raw scores for children 1 SD above and below the 

weight mean, which translates to about 6 standardized points. The negative coupling relationship 

between mental development and weight recovery appears to reflect an initial decline in weight 

for children with the highest mental development scores, followed by a steeper increase. 



104 

 

Parameters estimated for the dual change score are presented in Table 55 and correlations between 

constant growth parameters are presented in Table 56.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 54 

Model Comparison – Bivariate Dual Change Score Model 

Model X2 df Satorra-Bentler  

X2 

Δ df p-value 

Full Coupling 475.5 57 - - - 

Weight → MD 549.2 58 38.6 1 < .001 

MD →  Weight 470.9 58 0.2 1 .689 

No Coupling 557.1 59 56.1 2 < .001 

Note. MD stands for mental development as measured by raw Bayley 

Mental Development scores.  

Table 55 

Parameter Estimates from the Bivariate Dual Change Score 

Model between Weight and Bayley Mental Development  

Parameter B  95% C.I. 

Constant Growth   

   Intercept  Weight -1.05 [-1.12, -0.97] 

   Slope  Weight 0.05 [-0.14, 0.23] 

   Quadratic  Weight 0.06 [0.04, 0.07] 

   Intercept MD 30.99 [-0.85, -0.63] 

   Slope MD 53.88 [52.15, 55.61] 

   Quadratic MD 3.97 [3.48, 4.09] 

Proportional Growth   

   Proportional  Weight -0.43 [-0.56, -0.29] 

   Proportional Cog -0.71 [-0.75, -0.67] 

Coupling Parameters   

   Weight → MD 0  

   MD → Weight -0.01 [-0.01, -0.01] 

Note. MD stands for mental development as measured by 

raw Bayley Mental Development scores. 
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Table 56 

Correlations between Constant Growth Parameters: Weight and Mental Development 

 Intercept  

Weight 

Slope  

Weight 

Quadratic  

Weight 

Intercept  

MD 

Slope  

MD 

Quadratic 

MD 

Intercept Weight 1      

Slope Weight .62 

[.49, .75] 

1     

Quadratic Weight -.22 

[-.34, -.10] 

-.54 

[-.64, -.44] 

1    

Intercept MD .38 

[.26, .51] 

-.12 

[-.03, .28] 

-.03 

[-.22, .16] 

1   

Slope MD .26 

[.11, .41] 

.18 

[.00, .35] 

-.18 

[-.37, .02] 

.68 

[.48, .88] 

1  

Quadratic MD .07 

[-.08, .22] 

.05 

[-.11, .21] 

.16 

[-.02, .34] 

-.11 

[-.30, .08] 

-.41 

[-.59, -.23] 

1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant 

correlations are bolded for clarity. MD stands for mental development as measured by raw Bayley 

Mental Development scores. 

Figure 33 

Predicted Trajectories of Mental Development and Weight Recovery 

Note. On the left, predicted Bayley Mental Development trajectories are presented for infants scoring 1 SD 

above and below the sample mean on weight at 3 months. On the right are predicted head circumference 

trajectories for infants scoring 1SD above and below the sample mean on the Bayley at 3 months.  
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Height and mental development. A model with coupling parameters from only height to mental 

development did not fit the data worse than a model with full coupling (see Table 57). This model 

fit the data well (X2 = 321.4, df = 58, p < .001; TLI = .94, RMSEA = .06). The positive coupling 

parameter between height and mental development suggests that taller heights are associated with 

an increase in the subsequent rate of mental development growth. The slope of height recovery 

was negatively correlated with the slope of mental development. Likewise, the quadratic growth 

of height recovery was negatively correlated with the quadratic growth of mental development. 

Thus, children who grew taller faster had a slower average rate of mental development but as 

children grew taller their rate of mental development increased. Parameter estimates for the dual 

change score are presented in Table 58 and correlations between constant growth parameters are 

presented in Table 59. The predicted trajectories of weight recovery and mental development from 

3 to 24 months are presented in Figure 34.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 57 

Parameter Estimates from the Bivariate Dual Change Score 

Model between Height and Bayley Mental Development  

Parameter B  95% C.I. 

Constant Growth   

   Intercept  Height -1.35 [-1.44, -1.26] 

   Slope  Height -0.22 [-0.34, -0.11] 

   Quadratic  Height 0.00 [-0.01, 0.01] 

   Intercept MD 31.04 [-0.85, -0.63] 

   Slope MD 88.08 [63.76, 112.41] 

   Quadratic MD 5.73 [4.49, 6.97] 

Proportional Growth   

   Proportional  Height -0.58 [-0.68, -0.48] 

   Proportional Cog -1.11 [-1.39, -0.84] 

Coupling Parameters   

   Height → MD 16.79 [4.31, 29.27] 

   MD → Height 0  

Note. MD stands for mental development as measured by 

raw Bayley Mental Development scores. 

Table 58 

Model Comparison – Bivariate Dual Change Score Model 

Model X2 df Satorra-Bentler  

X2 

Δ df p-value 

Full Coupling 347.1 57 - - - 

Height → MD 321.4 58 0.0 1 .948 

MD →  Height 470.9 58 9.0 1 .003 

No Coupling 363.2 59 13.1 2 .001 

Note. MD stands for mental development as measured by raw Bayley 

Mental Development scores.  
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Table 59 

Correlations between Constant Growth Parameters: Height and Mental Development 

 Intercept  

Height 

Slope  

Height 

Quadratic  

Height 

Intercept  

MD 

Slope  

MD 

Quadratic 

MD 

Intercept Height 1      

Slope Height .82 

[.72, .92] 

1     

Quadratic Height -.31 

[-.43, -.21] 

-.34 

[-.47, -.21] 

1    

Intercept MD .49 

[.37, .60] 

.18 

[.04, .32] 

-.17 

[-.35, .02] 

1   

Slope MD -.89 

[-.99, -.79] 

-.89 

[-.96, -.81] 

.40 

[.29, .50] 

-.18 

[-.35, -.01] 

1  

Quadratic MD .47 

[.36, .58] 

.17 

[.02, .31] 

-.54 

[-.79, -.30] 

.29 

[.08, .51] 

-.48 

[-.57, -.39] 

1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant 

correlations are bolded for clarity. MD stands for mental development as measured by raw Bayley 

Mental Development scores. 

Figure 34 

Predicted Trajectories of Mental Development and Height Recovery 

Note. On the left, predicted Bayley Mental Development trajectories are presented for infants scoring 1 SD 

above and below the sample mean at 3 months. On the right are predicted head circumference trajectories for 

infants scoring 1SD above and below the sample mean on the Bayley at 3 months.  
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Head circumference and mental development. A bivariate dual change score model with only 

coupling parameters from head circumference to mental development did not fit significantly 

worse than a model with full coupling (see Table 60). This model fit the data well (X2 = 288.3, df 

= 57, p < .001; TLI = .95, RMSEA = .06). The coupling parameter from head circumference to 

mental development was positive, which suggests that larger head circumference measurements 

were associated with a subsequent increase in the rate of growth of mental development. However, 

the constant slope of head circumference was strongly negatively correlated with the constant slope 

of mental development. In quadratic growth models, the slope refers to the instantaneous rate of 

growth when time equals 0. This may reflect the lagged relationship between growth in head 

circumference (and underlying neurological development) and growth in early cognitive abilities. 

That is, a steep instantaneous rate of head circumference growth may correspond with a relatively 

flat rate of initial cognitive growth as neurological gains take time to translate into observable 

cognitive abilities. All parameter estimates from the bivariate dual change score are presented in 

Table 61 and correlations between constant growth parameters are presented in Table 62. 

Estimated trajectories of head circumference recovery and mental development from 3 to 24 

months are presented in Figure 34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 60 

Model Comparison – Bivariate Dual Change Score Model 

Model X2 df Satorra-Bentler  

X2 

Δ df p-value 

Full Coupling 288.3 57 - - - 

Head → MD 289.0 58 2.3 1 .129 

MD → Head 403.8 58 15.2 1 < .001 

No Coupling 399.6 59 121.6 2 < .001 

Note. MD stands for mental development as measured by raw Bayley 

Mental Development scores.  

Table 61 

Parameter Estimates from the Bivariate Dual Change Score Model 

between Head Circumference and Bayley Mental Development  

Parameter B  95% C.I. 

Constant Growth   

   Intercept Head -1.03 [-1.11, -0.95] 

   Slope Head 0.24 [0.20, 0.29] 

   Quadratic Head -0.01 [-0.01, -0.01] 

   Intercept MD 30.89 [29.85, 31.93] 

   Slope MD 72.42 [65.55, 79.29] 

   Quadratic MD 5.06 [4.52, 5.60] 

Proportional Growth   

   Proportional Head -0.41 [-0.45, -0.367] 

   Proportional Cog -1.00 [-1.11, -0.89] 

Coupling Parameters   

   Head → MD 9.64 [6.09, 13.20] 

   MD → Head 0  

Note. MD stands for mental development as measured by raw 

Bayley Mental Development scores. 
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Table 62 

Correlations between Constant Growth Parameters: Head Circumference and Mental Development 

 Intercept  

Head 

Slope  

Head 

Quadratic  

Head 

Intercept  

MD 

Slope  

MD 

Quadratic 

MD 

Intercept Head 1      

Slope Head .75 

[.68, .81] 

1     

Quadratic Head -.15 

[-.33, .02] 

-.40 

[-.55, -.25] 

1    

Intercept MD .26 

[.10, .42] 

-.13 

[-.29, .04] 

.24 

[.04, .45] 

1   

Slope MD -.86 

[-.91, -.82] 

-.84 

[-.90, -.78] 

.33 

[.16, .50] 

.12 

[-.04, .28] 

1  

Quadratic MD .29 

[.18, .39] 

-.10 

[-.23, .03] 

-.20 

[-.43, .01] 

.11 

[-.07, .27] 

-.31 

[-.41, -.20] 

1 

Note. 95% confidence intervals are included below the correlation coefficients. Significant 

correlations are bolded for clarity. MD stands for mental development as measured by raw Bayley 

Mental Development scores. 

Figure 34 

Predicted Trajectories of Mental Development and Head Circumference Recovery 

Note. On the left, predicted Bayley Mental Development trajectories are presented for infants scoring 1 SD 

above and below the sample mean at 3 months. On the right are predicted head circumference trajectories for 

infants scoring 1SD above and below the sample mean on the Bayley at 3 months.  



110 

 

Discussion 

Using prospective data from the Louisville Twin Study spanning birth to adolescence, I tested a 

series of growth models to explore the longitudinal relationship between physical and cognitive 

recovery in twins. Previous research has found that twins display substantial deficits in physical 

size and cognitive ability in infancy, but recover to population norms by middle childhood 

(Wilson, 1974a; Wilson, 1974b; Wilson, 1979). Moreover, early deficits in physical size are a risk 

factor for poor neurocognitive development (Cooke, 2006; Upadhyay et al., 2019). I sought to fill 

gaps in extant research by exploring the process of co-recovery of physical size in a community 

sample of twins followed from infancy to adolescence using two models of co-development: 

parallel process growth and dynamic growth.   

 

In general, findings indicate a moderate to strong relationship between physical size and cognitive 

ability in infancy and toddlerhood. However, at later developmental stages, physical size was not 

indicative of cognitive performance. Therefore, physical size relative to the population mean 

appears to be an important indicator of cognitive wellbeing in infant and toddler twins. The 

relationship between growth in physical size and growth in cognitive abilities was inconsistent 

across physical growth measurements (height, weight, or head circumference) and depended on 

the type of model (parallel or dynamic) and developmental span considered.  

 

Parallel Development & Biometric Contributions  

Consistent with study hypotheses and previous research (Cheong et al., 2008; Kohlhauser et al., 

2000; Kuklina et al., 2006), the lower asymptote of cognitive recovery correlated positively with 

the intercepts of height, weight, and head circumference. Correlations between initial levels of 

height and weight and early cognitive abilities were significant at both with within- and between-

pair levels. Between-pair correlations indicate that across pairs, being longer, heavier, and having 

a larger head circumference at birth was associated with having a higher lower asymptote of 

cognitive abilities. Significant within-pair correlations indicate that, accounting for shared 

environmental experiences (e.g., prenatal experiences) and shared genetic factors, the longer and 

heavier twin at birth had higher early cognitive scores compared to their co-twin. The within-pair 

correlations provide robust evidence that weight and length at birth are important indicators of 

early cognitive development. Shared environmental factors accounted for the majority of the early 

association between physical size at birth and cognitive ability in infancy. This is likely due to the 

strong association between gestational age and early height, weight, head circumference, and 

cognitive ability (as observed in Studies 1 and 2). Interventions to improve gestational health and 

length of gestation for high-risk pregnancies (e.g., twins) may have downstream effects on infant 

wellness including healthier physical size and early cognitive development.   

 

Within-pair, individual differences in birth weight were positively associated with individual 

differences in the rate of cognitive recovery. A similar pattern was observed at a trend level 

between the intercept of height and rate of cognitive recovery. Thus, within a pair of twins, the 

larger twin at birth demonstrated a faster rate of cognitive recovery. Using data from the National 

Longitudinal Study of Youth 1979, Cheadle and Goosby (2010) observed a positive association 

between birth weight and the rate of academic achievement growth from 5 to 14 years. As the 

majority of physical and cognitive recovery in the Louisville Twin sample occurs before age 5 (see 

Studies 1 and 2), the present study extends associations between birth weight and cognitive 

development to earlier developmental stages. Feldman and Otto (1997) raised the idea that more 
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phenotypically similar twins elicit more similar environmental experiences from their parents. 

Therefore, infant twins (regardless of zygosity) who are highly discrepant in their physical size 

may elicit different parenting strategies, which could lead to differences in the rate of cognitive 

recovery. Additionally, the larger twin may have an initial advantage in terms of their ability to 

explore their environment, leading to differences in the rate of recovery (Flensborg-Madsen & 

Mortensen, 2017). 

 

Contrary to hypotheses, the rate of cognitive recovery was not significantly related to the rate of 

height or weight recovery between-pair. Moreover, within pair, the rate of cognitive recovery 

correlated negatively with the rate of both height and weight recovery. This suggests that the twin 

with the faster rate of height and weight recovery had a slower rate of cognitive recovery. It should 

be noted that the confidence intervals around the association between the rate of height recovery 

and cognitive recovery were extremely large and ranged in magnitude from .99 to .01. Therefore, 

the within-pair association between the rate of height and cognitive recovery should be interpreted 

with caution. Regarding weight, within-pair differences in the rate of weight recovery were 

positively associated with the upper asymptote of cognitive recovery. Children who recovered 

faster in terms of weight had a slower, steadier cognitive recovery, and ultimately ended up with 

higher cognitive scores.  

 

The biometric correlations between the rate of cognitive recovery and the rate of weight recovery 

were incongruent with the phenotypic correlations. That is, the phenotypic correlation between the 

rate of weight recovery and the rate of cognitive recovery was significant only at the within-pair 

level (the between-pair correlation was significant at a trend level). However, there was a 

significant shared environmental correlation between the rate of weight recovery and the rate of 

cognitive recovery. In the initial model, the additive genetic variance of the rate of cognitive 

recovery was negative and had to be constrained to 0. Constraining the additive genetic variance 

to 0 may have allowed for more shared environmental variance to be estimated, resulting in a 

significant shared environmental correlation. In Study 1, I found that gestational age was 

negatively related to the rate of weight recovery, and in Study 2 I found gestational age to be 

positively related to the rate of cognitive recovery. Therefore, the negative shared environmental 

correlation between the rate of weight recovery and the rate of cognitive recovery may reflect the 

differential associations between gestational age and weight and cognitive recovery.  

 

Phenotypically, the rate of head circumference recovery correlated positively with the slope of 

cognitive recovery but negatively with the quadratic growth of cognitive recovery, between pair. 

In other words, children who recovered more quickly in terms of head circumference had a steeper 

initial rate of cognitive recovery, but a slower overall rate of growth. The negative association 

between the rate of head circumference recovery and quadratic cognitive recovery may reflect a 

plateauing of cognitive abilities following early gains in head circumference. It is worth noting 

that the parallel process models of head circumference and cognitive recovery were restricted to 

36 months as the CDC does not provide tables to calculate standardized head circumference 

measurements beyond 36 months. In the study sample, there was relatively little cognitive recovery 

by 36 months, and therefore analyses are limited in their ability to elucidate associations between 

head circumference recovery and cognitive recovery into early childhood when cognitive recovery 

is most rapid. The biometric models did not yield much insight into the genetic or environmental 

contributions to the co-development of head circumference and cognitive ability as numerous 
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variances and covariances had to be constrained to 0. Within-pair, the variances of the intercept, 

slope, and quadratic growth parameters were not significant, which may have prohibited me from 

identifying significant nonshared environmental or additive genetic variance components.  

 

Associations between the upper asymptotes of height and cognitive recovery and weight and 

cognitive recovery were nonsignificant. Therefore, physical size in childhood does not appear to 

be an important indicator of childhood cognitive abilities. The null association between the upper 

asymptotes of height and cognitive ability stands in contrast to previous research that has found a 

positive association between height and cognitive ability in adults (Silventoinen et al., 2012; 

Sundet et al., 2005). Measurements of height and weight in the Louisville Twin Study are currently 

only available to 15 years. As humans continue growing well beyond age 15 (Kuczmarski, 2002), 

the estimated upper asymptotes are not based on the final heights or weights of the twins, which 

may account for the null associations between the upper asymptotes. In the present study, there 

were low rates of extreme deficits in physical size after toddlerhood (see Figure 6, Study 1). 

Therefore, the significant cognitive deficits associated with deficits in physical size may be only 

apparent in the minority of children who continue to be stunted or clinically underweight into 

childhood and adolescence. Typical variability in height or weight around the upper asymptote 

may not represent a significant enough deviation to correspond with deviations in cognitive scores.  

 

Dynamic Recovery of Physical Size and Cognitive Ability 

Dynamic models of the co-recovery of physical and cognitive recovery spanning infancy to 

adolescence suggest that there is not a dynamic relationship between physical recovery and 

cognitive recovery. All coupling parameters could be constrained to 0 without a loss of model fit, 

indicating that the more parsimonious parallel process growth model was adequate to describe 

physical and cognitive recovery from infancy to adolescence. The absence of a dynamic 

relationship between height and weight recovery and cognitive recovery may reflect the extended 

developmental period assessed as well as the small increments of time between measurements. As 

twins made most of their physical and cognitive recovery by early childhood, the majority of the 

developmental span included in the models was characterized by an upper asymptote where 

individuals exhibited relatively little proportional or constant growth. This may contribute to 

dampened estimates of coupling between the growth parameters as coupling parameter estimates 

are averaged over time.  

 

Models restricted to an earlier developmental period and shorter developmental span revealed 

evidence of a dynamic relationship between physical and cognitive recovery. For example, there 

was a bidirectional slowing down of the relationship between head circumference recovery and 

standardized cognitive development from 3 to 36 months. A dynamic slowing down relationship 

suggests that as twins approached their upper asymptote of head circumference, their rate of 

cognitive recovery also slowed. Likewise, as twins made gains in their early cognitive abilities, 

their head circumference recovery slowed down. This dynamic pattern reflects a system that is 

slowing down, which is consistent with expectations for a model of asymptotic growth. That is, 

early cognitive development would be expected to slow down as the rate of head circumference 

growth slows down around the upper asymptote. The bidirectional relationship between head 

circumference recovery and early cognitive development needs to be interpreted in light of the fact 

that twins displayed relatively little cognitive recovery over the first 36 months (see Table 20, 

Study 2). Therefore, the slowing down of cognitive recovery does not reflect twins approaching 
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their upper asymptote of cognitive ability, but rather a slowing down of modest cognitive gains 

across infancy and early toddlerhood. Extending the bidirectional relationship between head 

circumference recovery to later developmental stages may yield insight into the bidirectional 

relationship between head circumference recovery and cognitive recovery across a developmental 

span than encompasses larger gains in cognitive abilities. However, the CDC does not provide a 

means to calculate head circumference z-scores beyond 36 months. 

 

Across all physical size indicators, there appears to be a lag between the peak rate of physical 

recovery and the peak rate of cognitive recovery. In all cases, physical recovery asymptotes before 

cognitive recovery (see Figures 30, 31, and 32). Height, weight, and head circumference are all 

accelerating towards their upper asymptote during a time when there is little growth in cognitive 

abilities. Cognitive recovery begins in earnest after physical recovery begins to slow down. The 

timing difference in the growth patterns of physical and cognitive recovery may make it difficult 

to detect dynamic relationships between the two constructs if one construct is accelerating in 

growth while the other is decelerating. Rather than a direct, dynamic relationship between physical 

and cognitive recovery across childhood, physical recovery may lead to cognitive gains indirectly. 

For example, recovery of height and weight may more immediately afford twins a greater ability 

to explore their environments (Flensborg-Madsen & Mortensen, 2017). Through increased 

environmental exploration and interaction with people and objects, twins may then experience 

cognitive gains. Likewise, recovery of head circumference is thought to be related to cognitive 

recovery through increases in brain size and neural development (Bartholomeusz et al., 2002). 

However, it may take time for advances in neural development to translate into observable skills 

(Estrada et al., 2019). Thus, growth in physical size may provide infants with the anatomical 

framework necessary to make gains in their cognitive abilities.  

 

Post-hoc analyses conducted focusing on early physical recovery and raw mental development 

provided evidence of a unidirectional relationship between growth in head circumference and 

height and growth in early cognitive abilities. Growth of raw mental development describes the 

total accumulation of cognitive skills across the first years of life. Increases in head circumference 

were associated with increases in the subsequent rate of mental development. Likewise, increases 

in height recovery were associated with subsequent increases in the rate of mental development. 

For both height and head circumference, there was a divergence in the predicted trajectories for 

children who were larger at baseline relative to smaller children; larger children at 3 months 

exhibited a steeper rate of growth in early mental abilities. Thus, twins who are longer and have 

larger head circumferences in early infancy continue to build upon their early cognitive advantage 

relative to smaller infant twins across the first years of life.  

 

Contrary to expectations, there was a negative unidirectional relationship between cognitive ability 

to weight. That is, higher cognitive scores were associated with a decline in the rate of subsequent 

weight. In the weight and mental development model, the expected trajectories of weight are 

highly variable based on the initial cognitive score. Trajectories range from initial declines in 

weight relative to the population mean for children with high initial scores to rapid growth in 

weight for children with low mental development scores (see Figure 33). There is no reason to 

expect that having high mental development scores would lead to twins falling further behind the 

population mean in terms of weight. Among the constant growth parameters, there was a positive 

correlation between the intercepts of weight and mental development as well as the slopes of 
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weight and mental development. Therefore, twins who were born heavier had higher initial mental 

development scores, and twins who gained weight more rapidly demonstrated a more rapid 

increase in their early mental abilities. The negative coupling parameter may reflect a slowing 

down of weight recovery among children who were initially heavier and who made larger initial 

gains in both their weight and cognitive abilities. 

 

Limitations 

As outlined in studies 1 and 2, the Louisville Twin sample is a predominantly White, American 

sample. It is unclear the extent to which findings generalize to other racial and ethnic groups within 

the United States or to children developing in other countries. Rates of extreme deficits in height, 

weight, and head circumference were very low in the present sample; less than 5% of children in 

the Louisville Twin Study were stunted, microcephalic, or clinically underweight after age 2. 

Children born in developing countries with higher rates of malnutrition and infectious diseases 

may experience higher rates of stunting and wasting7, and microcephaly (Morris et al., 2021; 

Ssentongo et al., 2021). Higher rates of stunting, wasting, or microcephaly in childhood may lead 

to greater variability in the upper asymptotes of physical size and a stronger relationship between 

physical size and cognitive ability at later developmental stages.  

 

Over the duration of the Louisville Twin Study, a variety of cognitive assessments were used based 

on the age of the children and the release of new test versions. Therefore, different tests and test 

versions were given within wave and across waves. By fitting growth models to different cognitive 

tests within wave and across waves, I relied on the assumption that the same underlying cognitive 

ability was being measured with each assessment. Different tests and different test versions often 

have very different items and tasks, which prohibited me from testing measurement invariance 

across assessments. However, wave-to-wave correlations between different tests were generally 

high (see Figure 22, Study 2). Moreover, the use of standardized cognitive scores provided a 

common reference point to understand a child’s abilities relative to the population mean.  

 

Although bivariate dual-change score models provide important information regarding the 

development of a system, they cannot determine causal relationships between the variables in the 

system. Relatedly, bivariate dual change score models do not yield insight into how physical and 

cognitive development are related to one another over time. There may be several mechanisms by 

which increases in height and head circumference lead to increases in early mental development 

(e.g., increased ability to explore the environment). Future research is necessary to explore the 

mechanisms underlying the association between early height or head circumference and mental 

development. 

 

Finally, the reference group I used to generate standardized head circumference measurements 

limited the developmental span I was able to include in the growth models of head circumference. 

I selected CDC norms (Kuczmarski, 2000) based on the historical overlap with the Louisville Twin 

Study and overlap in the country of origin (CDC norms are based on an American sample). 

However, the CDC does not provide standardized growth charts for head circumference beyond 3 

years. Consequently, I was restricted to testing parallel and dynamic growth between head 

circumference and cognitive ability during a developmental period with relatively little cognitive 

growth. Using other reference groups (e.g., World Health Organization norms) would provide head 

 
7 Wasting indicates having a weight less than two standard deviations below the average person at your height.   
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circumference norms to 5 years, but norms would be based on a more diverse reference group 

which may not necessarily correspond to children in the Louisville Twin Study.  

 

Conclusion 

Findings suggest that there is a moderate to large association between physical size at birth and 

early cognitive abilities. Within-pair, the twin that was longer and heavier than their co-twin at 

birth had higher cognitive scores in infancy. Additionally, within pair, the heavier twin at birth had 

a faster rate of cognitive recovery. Together findings from study 3 highlight the importance of 

physical size at birth, and in particular birth weight, in early cognitive development. Height, 

weight, and head circumference at birth were related to cognitive abilities in infancy through 

shared environmental factors. The shared environmental association between physical size and 

birth and cognitive functioning in infancy is likely due to perinatal experiences, including 

gestational age. Therefore, interventions designed to promote complete gestation and healthy 

prenatal growth in mothers expecting twins may benefit physical size and birth and early cognitive 

development.  

 

However, prematurity appears to be relatively normative in twin pregnancies (Giuffrè et al., 2012), 

and it may not be possible to ensure full gestation in all twin pregnancies. In cases where twins are 

born prematurely or physically undersized, interventions designed to promote height, weight, and 

head circumference recovery postnatally may encourage early cognitive development. Within pair, 

a faster rate of weight recovery was associated with higher overall cognitive scores. Moreover, 

early gains in height and head circumference were associated with an acceleration of the rate of 

early mental development. Protein- and calcium-enriched nutritional interventions for premature, 

undersized infants have been found to promote lean body mass gain and healthy bone development 

(Rigo & Senterre, 2006). Such postnatal interventions may have downstream benefits for emerging 

cognitive development.  

 

General Discussion 

Findings from the three studies yield important insight into the process by which twins recover 

from early physical and cognitive deficits. This dissertation is the first study to leverage growth 

curve models to explore the latent rate and shape of physical and cognitive recovery in twins from 

infancy to adolescence. Although twins displayed deficits in early height, weight, head 

circumference, and cognitive ability ranging from 0.9 to 1.5 SD below the population mean, the 

average twin recovered to the population mean physically and cognitively by middle childhood. 

Therefore, although it is common for twins to be significantly undersized in infancy and perform 

poorly on early cognitive assessments, most twins recover completely from early physical and 

cognitive deficits. Although this dissertation focused on physical and cognitive recovery in a 

sample of twins, findings have implications for our understanding of physical and cognitive 

development in singletons exposed to perinatal stressors common in twin pregnancies (e.g., 

premature birth, nutrient deficiencies, maternal health complications).  

 

Physical and cognitive recovery in twins was best described using nonlinear, asymptotic growth 

models (as opposed to polynomial growth models), which suggests that twins sustain the physical 

and cognitive gains that they make towards the population mean. In other words, physical growth 

and the accumulation of early cognitive abilities are faster in twins relative to singletons in infancy 

and toddlerhood. Once physical and cognitive recovery in twins has reached an upper asymptote 
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in middle childhood, the rate of physical growth and cognitive development is similar in twins and 

singletons. Temporally, physical recovery preceded cognitive recovery, suggesting that the typical 

twin begins making advances toward the population mean physically before cognitive recovery 

accelerates. During the first year of life, twins made massive gains relative toward the population 

mean in terms of height, weight, and head circumference, but make minimal cognitive gains. 

Alternatively, in toddlerhood, cognitive recovery begins accelerating whereas physical recovery 

begins decelerating.  

 

Findings related to typical trajectories of physical and cognitive recovery in twins have relevance 

for pediatricians, clinicians, and other healthcare providers working with populations of children  

born prematurely or at low birth weight. Specifically, healthcare providers should focus on 

promoting healthy physical development over the first year. Physically undersized children not 

demonstrating substantial physical recovery over the first year may be at an elevated likelihood to 

remain undersized beyond infancy which may elevate the risk for poor early neurocognitive 

development (Ghods et al., 2011; Upadhyay et al., 2019). On the other hand, poor cognitive 

performance among twins or other children born prematurely appears to be relatively normative 

in infancy and early toddlerhood. Clinicians should account for typical deficits in early cognitive 

performance when assessing twins for early developmental delays (e.g., global developmental 

delay) or estimating the prognosis of a twin meeting the criteria for an early developmental delay. 

For example, provided the enormous cognitive gains observed in twins across toddlerhood and 

early childhood, being a twin may be an indicator of a positive prognosis among children 

diagnosed with an early developmental delay, such as global developmental delay.  

 

This dissertation makes additional contributions to the existing literature by exploring the nuances 

in the relationship between twinning, gestational age, and birth weight. Gestational age and birth 

weight are strongly correlated (Oken et al., 2003), and twin pregnancies are at an elevated risk for 

both prematurity and low birth weight (Giuffrè et al., 2012). Therefore, it is challenging to 

disentangle the relative contributions of gestational age, birth size, and twinning to developmental 

outcomes. Consistent with expectations and previous research (Livshits et al., 2000; Villar et al., 

2014), gestational age emerged as an important environmental correlate to early length, weight, 

and head circumference. However, full-term twins were still significantly below population norms 

in terms of early physical growth measurements. Likewise, gestational age was positively related 

to early cognitive abilities controlling for birth weight, which is consistent with previous research 

(Datar & Jacknowitz, 2009). Yet, full-term twins’ early cognitive abilities were still a half standard 

deviation below population norms. Thus, twin pregnancies appear to confer additional risk for 

deficits in early physical and cognitive development beyond the increased risk associated with low 

birth weight and premature birth. Although beyond the scope of the present dissertation, 

incorporating non-twin siblings into the twin analyses would provide a means to further 

disentangle the relationship between gestational age, birth weight, and twining.  

 

When working with children born prematurely, it is common practice to use growth norms or 

standardized cognitive norms that are corrected for gestational age (Aylward, 2020; Babson & 

Benda, 1976). Although correcting for gestational age may reduce some of the discrepancies 

between premature and full-term twins in terms of their early physical size and cognitive abilities, 

norms corrected for gestational age may still inflate estimates of physical and cognitive deficits in 

twins. Generating physical and cognitive development standards corrected for both gestational age 
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and twinning may be most helpful in determining which twins are at the greatest risk for poor 

physical and cognitive development. Importantly, gestational age was not significantly related to 

physical or cognitive development long-term, suggesting that the negative effects of prematurity 

on child development may be constrained to infancy and toddlerhood.   

 

Findings from Studies 1 and 2 also extend our understanding of how socioeconomic deprivation 

contributes to physical and cognitive development across childhood. Children reared in the poorest 

homes displayed a concerning pattern of weight gain characterized by a longer, steadier growth 

which led to them overshooting the population mean for weight in adolescence. Although children 

born into poverty were also taller than the population mean on average by adolescence, their 

estimated weight-for-age z-scores were higher than their height-for-age z-scores in adolescence, 

raising concerns about their risk for obesity. Additionally, children reared in low-SES homes were 

delayed in making cognitive gains until late toddlerhood and ultimately displayed lower cognitive 

scores than their more affluent peers. In the Louisville Twin Study, family SES was measured at 

birth. Therefore, findings from Studies 1 and 2 reflect the pervasive association between early 

environmental deprivation and long-term developmental outcomes.  

 

There was evidence of a moderate to strong association between early physical size and cognitive 

abilities, which was largely accounted for by common shared environmental factors. Gestational 

experiences, which reflect the earliest shared environmental experiences, likely account for the 

early association between physical size and cognitive abilities. Beyond infancy, there was little 

evidence that physical and cognitive development unfold as parallel processes. The strength of the 

associations between physical size and cognitive ability attenuated over time, and the upper 

asymptotes of height and weight were unrelated to the total cognitive growth. There was some 

evidence that faster physical recovery was associated with slower cognitive recovery, which may 

indicate a cost of early physical recovery. That is, quicker physical growth in infancy may consume 

energy that may otherwise be used to build foundational cognitive abilities. Alternatively, in S-

shaped growth models, a slower rate of recovery indicates a longer period of growth. As physical 

recovery was found to precede cognitive recovery, children who recover more rapidly physically 

may begin recovering earlier cognitively and have slower, steadier cognitive development.  

 

In infancy, there was evidence of a dynamic relationship between physical size and raw cognitive 

development. Larger heights and head circumference measurements (but not weights) were 

associated with an increase in the rate of raw cognitive growth. In previous work, early catch-up 

growth in height and head circumference have been stronger predictors of future cognitive ability 

than early weight catch-up (Adair et al., 2013; Poveda et al., 2021; Pongcharoen et al., 2012; Scharf 

et al., 2016). Findings from this study extend previous work by showing that children build off of 

early advantages in height and head circumference and further diverge from children who are 

physically smaller at birth across infancy.  

 

In sum, children are, on average, resilient following early biological disadvantage. Despite 

displaying substantial deficits in height, weight, head circumference, and cognitive ability in 

infancy, the average twin caught up to the population mean. Moreover, twins born prematurely 

also caught up physically and cognitively both to the population mean and their full-term twin 

peers. Exposure to early bioenvironmental adversity appears to impact early development globally 

as evidenced by the large initial physical and cognitive deficits as well as the moderate shared 
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environmental correlations between early physical size and cognitive ability. In most twin 

pregnancies, early environmental stressors are removed following birth and become distal 

experiences as twins age. As twins age, postnatal environmental experiences (e.g., the home 

environment) and genetics have increasing room to operate in explaining different developmental 

trajectories.  
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