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Abstract

In today’s digital era, vast amounts of data, such as hospital health records and

individual device usage data, are stored in diverse locations. These distributed

datasets, while essential for preserving individual privacy and managing data sizes,

present unique challenges for comprehensive data analysis under the constraints

arising from data sharing and aggregation. In this thesis, we investigate statistical

modeling in a distributed data system along with some information transmission

structures. In Chapter 2, we study a penalization-based model integration problem

with a network constraint. We propose a network sparsification method that signif-

icantly reduces communication across data sites. This method is computationally

more e�cient while preserving estimation e�ciency. In Chapter 3, we develop a

Decentralized Federated Learning framework without sharing or aggregating data.

We explore di↵erent knowledge-sharing mechanisms between sites, with the goal of

building predictive models for each individual site without a central server. At the

same time, we examine how di↵erent transmission topologies a↵ect the e�ciency of

communication.
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Chapter 1

Introduction

Data is omnipresent and omnipotent in our daily lives, with countless amounts being

collected every second in various forms. As a result, big data is gradually becoming

a hot topic in data analysis and Machine Learning. Many services rely on large

amounts of user data to make inferences, such as e-health, advertising, and smart

cities. With this data, Deep Learning algorithms are able to provide better and

more advanced services in voice-based personal assistants, self-driving cars, image

processing, and more.

Traditionally, vast amounts of data are collected into a centralized cloud server,

and Machine Learning models import data from the server during the training pro-

cess. However, the rapid development of the online industry and advertising have

fueled the need to store personal data where it is collected. For example, Internet of

Things (IoT) devices, mobile phones, and medical data are stored in distributed re-

sources. The distributed nature of these data sources presents several challenges for

traditional storage and analysis methods, including privacy concerns, data security,

and logistical di�culties, such as transferring large volumes of data to a centralized

location for processing.

1
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Zerka et al. (2020) discuss the potential of distributed learning as a solution

in healthcare to maintain the privacy of patient data. Their work highlights the

promise of distributed algorithms in enabling learning from isolated datasets with-

out the need to share the data itself. Xu et al. (2018) propose a game-theoretical ap-

proach to study how users choose their privacy budget to achieve a balance between

the accuracy of a classifier and preserved privacy. Based on di↵erential privacy, they

propose a Distributed Di↵erential Privacy protocol for private data aggregation,

which generates di↵erentially private aggregate results from distributed databases.

Jena et al. (2013) aim to find frequent itemsets in a distributed database without

revealing data to others. They propose a data mining privacy by decomposition

method that uses a genetic algorithm to search for the optimal feature set.

1.1 Distributed Data

Distributed data involves the placement of data across various locations to optimize

processing and storage e�ciencies. Compared to centralized systems, distributed

systems leverage multiple locations to manage and process data, which not only

enhances data accessibility and processing speed but also improves the system’s ro-

bustness against failures and data loss. Distributed data architectures have become

a cornerstone of modern data management strategies. By storing and processing

data closer to its source, these architectures minimize latency, enabling more re-

sponsive and scalable systems (Mart́ınez Beltrán et al., 2022; El-Sayed et al., 2023;

Panigrahi et al., 2023).

The main benefit of distributed data is that it protects user privacy by keep-

ing data locally. In current literature, cryptographic computations are common

privacy-preserving algorithms for distributed data. For instance, Jha et al. (2005)
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presents homomorphic encryption protocols for the privacy-preserving computation

of cluster means. Cho et al. (2018) introduce a protocol for large-scale genome-wide

analysis that aids in quality control while preserving the confidentiality of under-

lying genotypes and phenotypes, allowing individuals to contribute their genomes

without compromising privacy. Gilad-Bachrach et al. (2016) proposes CryptoNets,

neural networks that can be applied to encrypted data. This method not only allows

data to be sent in encrypted form but also ensures that predictions are returned to

owners privately. Additionally, Gentry (2009) proposes a homomorphic encryption

scheme, which allows people to evaluate encrypted data without needing to decrypt

it.

Another way of preserving privacy is through randomization, also known as

di↵erential privacy. Dwork (2006) explains the concept of di↵erential privacy and

how it has developed over time. Abadi et al. (2016) develops an algorithm for Deep

Learning within the framework of di↵erential privacy, which maintains a decent

privacy budget without sacrificing model quality and training e�ciency. Dwork

et al. (2006) prove that privacy can be preserved by adding noise to the data, where

the standard deviation of the noise is correlated to the sensitivity of the function.

(a) Wearable technology data (b) Hospital data

Figure 1.1: Distributed data examples.
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1.2 Centralized and Decentralized Schemes

There are two schemes to analyze distributed data: centralized analysis and decen-

tralized analysis. The debate between centralized and decentralized data analysis

approaches is driven by the trade-o↵s between data governance, performance, and

privacy protection. Centralized systems are simpler in data management; essentially,

all the data is sent to a central server, which is potentially more powerful in compu-

tational resources. Centralized analysis uses all available data points from the entire

dataset to estimate parameters, o↵ering a comprehensive overview of the parameter

behavior across all data. It is preferable when we wish to have a broad picture of

parameter behavior across all data. Centralized analysis is the traditional approach

for Machine Learning in many di↵erent areas. For instance, Zhao et al. (2008) pro-

vides a comprehensive analysis of sensor data analysis, which involves gathering data

from di↵erent sensors and analyzing it using various regression methods. Manglik

et al. (2023) provides an overview of Machine Learning-based road safety predic-

tion techniques. They show that most traditional analyses on road tra�c, vehicle

hindrances estimation, and vehicle safety measure prediction are centralized, but

more concerns have arisen in recent years regarding data storage and privacy. In

agriculture, Liakos et al. (2018) demonstrate the wide application of traditional Ma-

chine Learning algorithms such as regression and classification in crop management,

stock management, water management, and soil management. All these problems

involve sending sensor data to a central location and analyzing them together. In

healthcare, body sensors track a person’s activity, send it to remote cloud storage,

and then process it to check if a medical emergency is required (Pandey et al.,

2022). In transportation, researchers use Machine Learning to analyze tra�c data

collected from multiple sources such as GPS or road sensors to improve tra�c flow
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forecasting, incident processing, and autonomous driving (Nguyen et al., 2018).

A common problem pointed out by these papers is the privacy concern. It is hard

to protect user privacy as all the information is shared across sites. This concern is

supported by works published previously. Baruh et al. (2017) explores the privacy

concerns of online services and social network sites from information sharing and

proposes corresponding privacy measures. Tsarenko and Tojib (2009) explore public

concerns about privacy in financial institutions and examine the driving factors.

Turn et al. (1976) compare the privacy threats of centralized and decentralized

databank systems and concludes that a properly designed centralized system can

better protect privacy. At the same time, centralized analysis is susceptible to

single points of failure. If one element of the system malfunctions for some reason,

the entire system can be disrupted or shut down. For instance, Baladi and Hendrix

(2011) shows that a single point of failure of equipment at the Department of Energy

Savannah River site can cause unacceptable schedule delays. Sun (2009) compares

centralized and decentralized management in software systems and concludes that

centralized management is more vulnerable, despite slightly lower costs.

Decentralized analysis, on the other hand, leverages distributed data without the

need for aggregation, thus preserving privacy and reducing the risk of data failures.

At the same time, in scenarios where localized patterns are crucial, decentralized

learning models are preferred due to their sensitivity to local nuances (Ferrag et al.,

2021; Liu et al., 2023; Schumann et al., 2023). However, it is harder to aggregate

information across di↵erent sites, and local models can be biased if local data is

not representative of the population. The decentralized approach outperforms the

centralized one in many cases. For example, Allende-Cid et al. (2016) compare a cen-

tralized approach and two distributed approaches for various distributed regression

tasks on synthetic and real data. The results indicate that distributed approaches
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perform better in most cases. Xin et al. (2020) review decentralized stochastic

first-order methods on large-scale Machine Learning tasks. They present a uni-

fied framework that combines variance reduction with gradient tracking to achieve

better performance and convergence. Aketi et al. (2023) propose a Decentralized

Federated Learning algorithm called Global Update Tracking (GUT), which aims to

reduce the impact of heterogeneous data in decentralized learning without introduc-

ing any communication overhead. Talistu et al. (2015) propose a distributed data

analysis method that uses hierarchical clustering for local online summaries. At the

same time, they utilize a gossip protocol for the summaries and spectral clustering

for o✏ine analysis. Compared to centralized analysis, the resulting solution sig-

nificantly reduces communication overhead and is computationally less expensive.

Figure 1.2: Centralized vs. Decentralized analysis.

1.3 Outline

This thesis aims to explore the centralized and decentralized approaches to dis-

tributed data in depth. For the first project, we study a penalization-based model



7

integration problem with a network constraint. Specifically, we explore di↵erent

ways to generate sparsified graphs based on the original network. These sparsi-

fied graphs have far fewer edges, but can solve the regression problem much more

e�ciently without sacrificing too much prediction accuracy. The second project fo-

cuses on a Decentralized Federated Learning problem. Instead of viewing the entire

network as a whole, we take the analysis to each site. Given that each site has

its own data, we explore various ways to transmit knowledge to other sites while

protecting the privacy of each individual site. Additionally, we investigate the e↵ect

of di↵erent network mechanisms on knowledge sharing e�ciency. Assuming that all

sites are interconnected, constructing the communication network di↵erently will

significantly a↵ect the communication speed.



Chapter 2

Model Aggregation Under

Network-Subjected Constraint

2.1 Introduction

In distributed data learning problems with multiple sites, local models often suf-

fer from limited data size. Training a Machine Learning model on a dataset that

is inherently small or limited significantly impacts its ability to learn and general-

ize. Each individual dataset may exhibit very low bias, but the small sample size

introduces a high variance issue. In simpler terms, our model might perform ex-

ceptionally well on the training data but fail to generalize to new data. Ideally,

we would want our models to have both low bias and low variance, meaning they

accurately predict unseen data and perform consistently across di↵erent data sam-

ples. However, achieving this balance in practice is challenging. High bias can lead

to underfitting, where the model is too simplistic, and high variance can lead to

overfitting, where the model captures noise in the training data as if it were a real

pattern. Our proposed solution to this dilemma is model aggregation. By aggregat-

8
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ing models trained on ”similar” data sites, we can significantly reduce variance while

introducing some bias. This approach is particularly e↵ective when local data are

considered IID (Independently and Identically Distributed), meaning each dataset

is a random, equally representative sample from the overall population. The new

question then arises: how do we determine which of the sites are similar to each

other? This is where network structure comes into play.

In some problems, we have a network structure as well as observed values on each

node. If the goal is to learn global signals, one common assumption is to assume

signal similarities and aggregate some of the models together. Solving a statistical

estimation problem on a graph is a popular problem. Specifically, we want to esti-

mate the signals on the graph using observed values and graph information. Under

the regression framework, a series of penalized regression models have been devel-

oped and incorporated into graph problems. Methods including the Least Absolute

Shrinkage and Selection Operator (LASSO)(Tibshriani, 1996), Smoothly Clipped

Absolute Deviation (SCAD)(Fan and Li, 2001), Fused LASSO (Tibshirani et al.,

2005), and Elastic Net (Zou and Hastie, 2005) have been adapted to solve graph

learning problems after being proposed. For instance, Li and Li (2008) proposed

solving a regression problem on genomics data using a network-constrained `2 regu-

larization. Sun and Li (2010) proposed a Bayesian approach to a graph-constrained

regression problem.

One motivating example of this paper comes from a New York City taxi trip

problem in Wang et al. (2016b). The goal is to detect events based on abnormalities

in the number of taxi trips at di↵erent locations in New York City. Each junction

is a node, and junctions are connected if there exists a road. In this example,

there are 3874 nodes (junctions) and 7070 edges (sections of roads that connect two

junctions). The observed value is the di↵erence between the counts observed during
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the Gay Pride parade in a two-hour window on June 26, 2011, and the seasonal

averages. Figure 2.1 shows the true parade route and unfiltered signal. The goal is

to recover the true signal using the noisy graph. From the result, we can see that

Sparse trend filtering recovers the signal better than Laplacian smoothing, as it can

better localize the estimate when there are strong spikes in the measurement.

However, when the graph is dense, computation becomes an issue as the compu-

tational cost increases exponentially with the dimension. In previous literature, im-

provements have been made on the regression side. Specifically, for Fused LASSO,

numerous algorithms have been proposed to speed up the computation process.

Davies and Kovac (2001) derive a taut-string multi-resolution method that solves

the 1D Fused LASSO problem, which is later extended by Condat (2012) and Bar-

bero and Sra (2014). Johnson (2013) propose a new approach for the Fused LASSO

based on dynamic programming. The taut-string and dynamic programming algo-

rithms are very fast and practical in use. Subsequently, these methods have been

applied to graph-based problems. Kolmogorov et al. (2016) extend the dynamic

programming approach of Johnson (2013) to solve the Fused LASSO problem on a

tree. Barbero and Sra (2014) extend the fast 1D Fused LASSO optimizer to work

over grid graphs, using operator splitting techniques like Douglas Rachford splitting.

Hoefling (2010) and Tibshirani and Taylor (2011) propose solution path algorithms;

Tansey and Scott (2015) leverage fast 1D Fused LASSO solvers in an ADMM de-

composition over trails of the graph; Landrieu and Obozinski (2015) derive a new

method based on graph cuts. The problem with these techniques is that although

they are lightning-fast on specific types of graphs, they are still not so e�cient for

arbitrary graphs.

Therefore, this leads to the idea of simplifying the problem on the graph side.

Specifically, we can sparsify the graphs so that there are fewer edges, which reduces
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Figure 2.1: A graph-constrained problem and its estimated signals.

the dimension of the incidence matrix, and therefore increases the computation

speed. Currently, there is very little literature on this topic. The motivation for this
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paper came from Sadhanala et al. (2016). In this paper, the authors proposed several

methods to solve an `2 penalization problem on a dense graph. Specifically, since the

result of `2 penalization is separable, there is an explicit solution for the true signal.

A natural question to ask is: what if we have `1 penalization? By nature, `1 penalized

regression does not have an explicit solution and therefore cannot be estimated

explicitly. In this paper, we aim to solve a Fused LASSO problem on a dense

graph e�ciently and accurately by sparsifying the graph using various methods.

After sparsification, computation time significantly decreases, without sacrificing

too much accuracy. We proposed some new sparsification methods including K

Nearest-neighbor (KN) based sparsifier and Random Walk (RW) sparsifier. The

results of our study show that KN has the best performance in almost all scenarios.

Also, we are able to adjust the number of edges for three methods by constructing

the trees in parallel or sequentially, which adds flexibility to the algorithm.

2.2 Network-Induced Optimization

2.2.1 Background and Notation

Suppose there are distributed data sources with data collections (y1, x1), (y2, x2), . . . , (yn, xn).

At each data site, consider a learning function f(yi, xi; �i). Then the objective func-

tion is

argmin
�

nX

i=1

f(yi, xi; �i) + �p(�), (2.1)

where f(yi, xi; �i) can be any loss function at each node, � = (�1, �2, . . . , �n)T , p(�)

is a network-induced penalization to encourage information sharing across di↵erent

sites, and � is a tuning parameter.

There are two common methods for penalization on network-constrained prob-
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lems: Trend Filtering (Wang et al., 2016a) or Laplacian Smoothing (Smola and

Kondor, 2003). The idea is to penalize the pairwise di↵erence between the mag-

nitudes of coe�cients. Trend Filtering penalizes the absolute di↵erence between

coe�cients, and Laplacian Smoothing penalizes the square of the di↵erence.

Let G = (V ,E) be an undirected graph with vertex set V = {1, 2, . . . , n}, and

edge set E ✓ {(i, j) : i, j 2 V } of size m = |E|. Let � = {�i : i 2 V } be a signal

whose components are associated with the vertices of G. Our goal is to estimate

� on the basis of noisy observations y. In general, the overall complexity of the

problem has two distinct parts: local complexity and communication cost. Since

our study focuses on global optimization with respect to network constraints, which

is independent of local model complexity, without loss of generality, we consider a

simple case for illustration, which is an intercept model yi = �i + ✏i.

The `2 fusion method is one of the most common ones. The idea is to penalize

the square of the di↵erence between coe�cients and force them to shrink together.

Given observations y = (y1, . . . , yn) 2 Y
n over nodes of G and for weights wij,

(i, j) 2 E, the objective function is

min
�2Rn

nX

i=1

f(yi, �i) + ��TL� = min
�2Rn

nX

i=1

f(yi, �i) + �

X

(i,j)2E

wij(�i � �j)
2
,

where
Pn

i=1 f(yi, �i) =
Pn

i=1 ||yi � �i||22. Recall that the Laplacian L 2 Rn⇥n of G

is

Lij =

8
>><

>>:

P
(i,l)2E wil if i = j

�wij if i 6= j

, i, j 2 V .

Therefore, the solution can be written in explicit form:

�̂ = (I + �L)�1y.
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However, there are two potential problems with this approach. First of all, the

solution involves a large matrix inverse, which can be computationally expensive

when the dimension is high. Also, since `2 fusion penalizes the squared di↵erence

among the coe�cients, which is similar to Ridge regression, the procedure does not

separate a sparse solution in terms of a large number of pairwise di↵erences. To

better identify the pattern of distributed signals under the connecting structure,

an alternative choice is to employ an `1 penalization for fusion on the piece-wise

di↵erence, instead of `2 penalization. However, `1 penalization is computationally

more challenging since there is no explicit solution.

2.2.2 Fusion with `1

The idea of `1 fusion comes from Fused LASSO (Tibshirani et al., 2005). The aim

is to penalize the absolute di↵erence between coe�cients and force them to be the

same, for coe�cients with similar values. For `1 fusion, the objective function is

�̂ = min
�2Rn

nX

i=1

f(yi, �i) + �

X

(i,j)2E

wij|�i � �j|, (2.2)

where
Pn

i=1 f(yi, �i) =
Pn

i=1 kyi � �ik22.

If for each edge e 2 E, we arbitrarily select one of the two joined vertices to be

the head, denoted e
+, and the other to be the tail, denoted e

�. Then, we define a

row (rG)e of rG, corresponding to the edge e, by

(rG)e,e+ = 1, (rG)e,e� = �1, (rG)e,v = 0 for all v 6= e
+
, e

�
, (2.3)

for each e 2 E. For an unweighted graph, we can write the objective function in
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Equation 2.2 as

�̂ = min
�2Rn

nX

i=1

f(yi, �i) + �krG�k1. (2.4)

For an arbitrary �, we have

krG�k1 =
X

e2E

|�e+ � �e� |.

Therefore, the objective function becomes:

�̂ = min
�2Rn

nX

i=1

f(yi, �i) + �

X

e2E

|�e+ � �e� |.

However, there is no explicit solution for this problem due to the nature of `1 pe-

nalization.

2.2.3 Sparsified Network Constraint

When solving a Network-induced Fused LASSO problem, the number of edges grows

quadratically with respect to the number of nodes, as shown in Figure 2.2. This

implies that when the network is large and dense, solving the estimation problem

becomes computationally expensive. Our proposed solution involves sparsification

on the graph side. We aim to simplify the graph so that it contains the same number

of nodes, but with far fewer edges. Ideally, the edges in the sparsified graph should

capture all of the true relationships between the nodes, with very little noise being

captured. In this way, we can ensure that we maintain the graph structure while

minimizing the computation required.

Recall thatG = (V ,E) is an undirected graph with vertex set V = {1, 2, . . . , n},

and edge set E ✓ {(i, j) : i, j 2 V }. Let G̃ = (V , Ẽ) be a sparsified graph of G
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Figure 2.2: Computational time for Network-induced Fused LASSO problems.

with |Ẽ| < |E|. Then the corresponding objective function is

�̃ = min
�2Rn

nX

i=1

f(yi, �i) + �krG̃�k1.

Overall, our goal is to ease the computational burden while maintaining overall

accuracy when solving the optimization problem. There are di↵erent factors that

we want to explore in this paper. First of all, we explore several di↵erent kinds of

sparsifiers. Additionally, for a sparsifier, we want to explore the di↵erent possible

ways to construct it, including both weighted and unweighted methods. We also

explore how the density of the sparsified graph a↵ects the estimation result. We

test the sparsifiers on di↵erent kinds of graphs, which have various grouping struc-

tures and densities. Lastly, we compare the sparsifiers with Community Detection

algorithms. We show that the sparsifiers can outperform Community Detection

algorithms under certain graph structures and conditions.
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2.3 Commonly Adopted Algorithms

2.3.1 Subgradient Descent

Subgradient Descent is designed based on the traditional Gradient Descent algo-

rithm with a slight modification in the updating step. It is intended to handle non-

di↵erentiable functions and is particularly useful for optimizing convex functions

that are not di↵erentiable everywhere. Instead of the gradient, Subgradient Descent

uses a subgradient, which is a generalization of the gradient for non-di↵erentiable

points. This method allows the optimization process to proceed even without a

well-defined slope, and a well-known example is the derivative of the absolute value,

which is not di↵erentiable at 0. Similarly, Subgradient Descent is a powerful tool

for solving optimization problems involving hinge loss and other piece-wise linear

functions. These loss functions are common in Machine Learning, especially in

classification tasks and regularization techniques.

The update rule for Subgradient Descent at iteration k can be written as:

�(k+1) = �(k) � ↵
(k)g(k)

,

where �(k) is the parameter vector at iteration k, ↵(k) is the step size at that iteration,

and g(k) is a subgradient of the function f at �(k). Here, g(k) 2 @f(�(k)), with

@f(�(k)) representing the subdi↵erential of f at �(k). The subdi↵erential is defined

as the set of vectors g that satisfy the following condition for all vectors �:

f(�) � f(�(k)) + gT (� � �(k)).

This ensures that g points in a direction where the function f does not decrease,
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providing a way to generalize the concept of direction of ascent or descent for non-

di↵erentiable functions. Algorithm 1 shows the pseudo code for Subgradient De-

scent.

Algorithm 1 Subgradient Descent

1: procedure SubgradientDescent(f,↵)
2: Input: Objective function f , learning rate ↵

3: Output: Optimized parameters �
4: Initialize parameters �
5: while convergence criteria not met do
6: Compute a subgradient g at �, where g 2 @f(�)
7: Update �: �  � � ↵ · g
8: end while

9: return �
10: end procedure

2.3.2 Coordinate Descent

Coordinate Descent is a common optimization algorithm in Machine Learning lit-

erature. The basic idea of it is to convert a high-dimensional problem into one-

dimensional, by optimizing along one direction while fixing others at each iteration

step. This algorithm picks a direction to optimize, and runs iteratively until conver-

gence. This approach is particularly e↵ective for high-dimensional problems where

optimization with respect to one coordinate can be performed more e�ciently than

in the full-dimensional space. Coordinate Descent has been proved successful in

various areas of Machine Learning, including sparse modeling and high-dimensional

data analysis. Its simplicity and e�ciency make it one of the go-to algorithms when

dealing with large-scale optimization problems.

Given a function f(�) where � = (�1, �2, . . . , �n) 2 Rn, the update for the i-th

coordinate in the k-th iteration can be written as:



19

�
(k+1)
i = argmin

y
f(�(k+1)

1 , . . . , �
(k+1)
i�1 , y, �

(k)
i+1, . . . , �

(k)
n ),

where �
(k)
i is the value of the i-th coordinate at the k-th iteration. Algorithm 2

shows the pseudo code for Coordinate Descent.

Algorithm 2 Coordinate Descent

1: procedure CoordinateDescent(f,�)
2: Input: Objective function f , initial parameters � = (�1, �2, . . . , �n)
3: Output: Optimized parameters �
4: Initialize parameters �
5: while convergence criteria not met do
6: for i = 1 to n do

7: Define g(�i) = f(�1, . . . , �i�1, �i, �i+1, . . . , �n)
8: �i  argminy g(y) where y replaces �i in g

9: Update �i to the value that minimizes g(y)
10: end for

11: end while

12: return �
13: end procedure

2.3.3 Alternating Direction Method of Multipliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM) is an optimization algo-

rithm that e↵ectively solves a wide range of problems in Machine Learning. This

method was first proposed by Boyd (2010) and quickly gained popularity in Ma-

chine Learning literature. The idea is to decompose the problem into smaller, more

tractable subproblems, which are easier to optimize. Using augmented Lagrangian

methods and dual decomposition, ADMM iteratively updates guesses for the solu-

tion for the subproblems and eventually leads to the goal of optimizing the desired

variables.

An important part of the ADMM algorithm is its parameters and variables, which
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include the convex functions f(�) and g(z) for minimization. The matrices A and

B connect the variables � and z to the constraint equation defined by the vector c.

The penalty parameter ⇢ is a tuning parameter that controls the convergence rate.

The dual variable u is the Lagrange multiplier that enforces the constraint.

Here are the three updating steps for ADMM: The update for � aims to minimize

the objective f(�) with a quadratic penalty. This term penalizes any deviation from

the specified constraint, which shrinks � toward compliance. Similarly, the z update

optimizes the objective g(z), pushing z toward the latest � values with a penalty

term associated with constraint violation. The dual variable u is updated to show

the current level of discrepancy from the constraint. At the same time, this update

directs subsequent iterations towards meeting the constraints. Below are the updates

in equation form:

�k+1  argmin
�

⇣
f(�) +

⇢

2
kA� +Bzk � c+ ukk22

⌘
,

zk+1  argmin
z

⇣
g(z) +

⇢

2
kA�k+1 +Bz � c+ ukk22

⌘
,

uk+1  uk +A�k+1 +Bzk+1 � c.

Algorithm 3 shows the pseudo code for ADMM.
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Algorithm 3 Alternating Direction Method of Multipliers (ADMM)

1: procedure ADMM(f, g,A,B, c, ⇢)
2: Input: Convex functions f and g, matrices A and B, vector c, scalar ⇢
3: Output: Optimized variables �, z, and dual variable u
4: Initialize �0, z0, u0

5: Set iteration counter k  0
6: repeat

7: �k+1  argmin�

�
f(�) + ⇢

2kA� +Bzk � c+ ukk22
�

8: zk+1  argminz

�
g(z) + ⇢

2kA�k+1 +Bz � c+ ukk22
�

9: uk+1  uk +A�k+1 +Bzk+1 � c

10: k  k + 1
11: until convergence criteria are met
12: return �, z, u
13: end procedure

2.4 Network Sparsification

2.4.1 Naive Sparsifiers

Uniform Sparsifiers

Suppose we want q edges for the sparsified graph. For Uniform sparsifiers, if it is a

weighted graph, we sample q edges fromE without replacement, with the probability

P (e) of selecting an edge e given by

P (e) =
w(e)P

e02E w(e0)
.

For unweighted graphs, we sample q edges at random from E without replacement,

where each edge e has an equal probability:

P (e) =
1

|E| .
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The advantage of this sparsifier is that it is very simple to construct and easy to

understand, and it does not create excessive edges. Figure 2.3 is an illustration of a

uniform sparsifier.

Figure 2.3: Illustration of Uniform sparsifiers.

Chain Sparsifiers

Chain sparsifiers are defined as a Depth First Search (DFS) on the original graph

from a random starting point, also known as Spanning Tree 1. Nodes are connected

in the order they are visited by DFS. Note that Chain sparsifiers will create edges

that are not in G. For instance, if i and j are two successive nodes visited by DFS,

there may not be an edge that directly connects i and j in G. However, there will

be a path that travels from i to j through some other nodes in G. Mathematically,

suppose we initiate DFS from a random vertex v 2 V . Let ⇡ denote the sequence

of vertices DFS visited: ⇡ = [v1, v2, . . . , vn] where v1 = v is the starting vertex. We

construct the edge set Ê for the sparsifier Ĝ by connecting each pair of consecutively

visited vertices. Formally,

Ê = {(vi, vi+1) | 1  i < n}.
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Figure 2.4 is an illustration of Chain sparsifiers.

Figure 2.4: Illustration of Chain Sparsifiers.

Spanning Tree Sparsifiers

For Spanning Trees, we make variations on the number of leaves connected to the

parents, which is parameterized by n. We begin by randomly selecting a node u 2 V

to start the sparsification process. Set V 0 = {u} and Ê = ;. For the current node

u, find all adjacent nodes {v 2 V | (u, v) 2 E} that are not yet included in V 0.

Sample n of these nodes to connect to u if there are at least n available. If fewer

than n nodes are available, connect u to all of them. Add these nodes to V 0 and the

corresponding edges to Ê. Recursively apply this process to each newly added node,

treating each as u and repeating the expansion. Mathematically, for each node u in
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V 0 (starting with the initial node), perform:

Au = {v 2 V \ V 0 | (u, v) 2 E},

Bu = Sample min(n, |Au|) nodes from Au,

Ê  Ê [ {(u, v) | v 2 Bu},

V 0  V 0 [Bu.

If all nodes in V 0 are exhausted (all possible connections made), but V 0 6= V ,

meaning not all vertices are included, then identify a node ũ 2 V 0 such that there

exists an edge e = (ũ, s̃) 2 E with s̃ /2 V 0. Add e to Ê and s̃ to V 0. Continue the

expansion process from s̃. Specifically, the backtracking process goes like:

While |V 0| < |V | :

Find ũ 2 V 0 such that 9(ũ, s̃) 2 E with s̃ /2 V 0
,

Ê  Ê [ {(ũ, s̃)},

V 0  V 0 [ {s̃},

Continue expansion from s̃.

Figure 2.5 is an illustration of Spanning Tree sparsifiers.

Minimum Spanning Tree

We perform Minimum Spanning Tree (MST) using the mst function from R. For

a weighted graph, this algorithm searches for a path that connects all nodes with

the least total weight. Specifically, let w : E ! R+ define positive weights for each

edge. The goal is to construct a Minimum Spanning Tree Ĝ = (V , Ê) that connects

all vertices with the minimum total weight. Start with an empty set of edges Ê = ;
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Figure 2.5: Illustration of Spanning Tree Sparsifiers.

and select an arbitrary vertex v 2 V to begin the MST. Initialize the MST vertex

set V 0 = {v}. At each step, select the edge e = (u, v) with the minimum weight

w(e) that connects a vertex in the partial MST Ĝ to a vertex not yet in Ĝ:

e = argmin{w(e0) | e0 2 E and e
0 connects v 2 V 0 to u 2 V \ V 0}.

The process repeats until all vertices are included in V 0.

For an unweighted graph, the procedure is the same as finding a spanning tree.

The easiest way would be applying Breadth First Search (BFS) on the original

network. Select an arbitrary starting vertex v 2 V . Initialize Ĝ = (V 0
, Ê) where

V 0 = {v} and Ê = ;. Use a queue Q with v as the initial element. While Q 6= ;:

Dequeue the first vertex u from Q. Then for each adjacent vertex w of u where
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(u, w) 2 E and w 62 V 0:

Enqueue w into Q, V 0  V 0 [ {w}, Ê  Ê [ {(u, w)}.

The process repeats until all vertices are included in V 0. Figure 2.6 is an illustration

of the Minimum Spanning Tree sparsifier.

Figure 2.6: Illustration of Minimum Spanning Tree sparsifiers.

Star Sparsifiers

Star sparsification is performed by connecting all the nodes to the one with the

highest degrees. First, we identify the top three vertices Vtop with the highest

degrees:

Vtop = { v 2 V : deg(v) is among the three highest }

and randomly select one vertex v
⇤ from Vtop. Construct Ĝ = (V , Ê) with:

Ê = {(v⇤, v) : v 2 V \ {v⇤}}.
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Let G = (V ,E) be a graph with vertices V and edges E. The objective is to create

a Star sparsifier Ĝ centered on a node with one of the highest degrees. Figure 2.7

is an illustration of the Star sparsifier.

Figure 2.7: Illustration of Star sparsifiers.

2.4.2 Proposed Sparsifiers

KN-based Sparsifiers

For KN-based sparsifiers, the idea is to visit each node exactly once and connect each

node with k of its neighbors. For weighted graphs, suppose we have a weight function

w : E ! R+. For each vertex u 2 V , we calculate du = |{v 2 V : (u, v) 2 E}|

and Wu =
P

v2N(u) wu,v. If du  k, include all edges (u, v) for v 2 N(u) in Ê with

weights wu,v

2 . If du > k, sample k edges from N(u) with probabilities

Puv =
wu,v

Wu
,

with replacement. Add these edges to Ê with weight Wu
2k each. Construct Ĝ =

(V , Ê, ŵ) where ŵ is adjusted based on the above criteria. For the unweighted

sparsifier, the di↵erence lies in the edge selection step. If du  k, all incident edges
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of vertex u are included in the sparsified graph:

Ê  Ê [ {(u, v) : v 2 N(u)}.

If du > k, sample k edges uniformly from the set of all edges incident to u:

Ê  Ê [ Samplek({(u, v) : v 2 N(u)}).

The advantage of KN is that edges are sampled with probability adjusted to the de-

gree of nodes. However, it takes a relatively long time to implement. An unweighted

version of the KN algorithm is shown in Algorithm 4. Figure 2.8 is an illustration

of KN sparsifiers.

Figure 2.8: Illustration of KN sparsifiers.
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Algorithm 4 KN Sparsifiers for Unweighted Graphs

1: procedure KN-Unweighted(G, k)
2: Input: Graph G = (V ,E), integer k
3: Output: Sparsified graph Ĝ = (V , Ê)
4: Initialize Ê  ;
5: for each vertex u 2 V do

6: Calculate du = |{v 2 V : (u, v) 2 E}|
7: if du  k then

8: for each v 2 N(u) do
9: Ê  Ê [ {(u, v)}

10: end for

11: else

12: Sample set S(u) of k edges uniformly from N(u)
13: for each (u, v) 2 S(u) do
14: Ê  Ê [ {(u, v)}
15: end for

16: end if

17: end for

18: end procedure

Figure 2.9: Illustration of random walk sparsifiers.

Random Walk Sparsifiers

For random walk sparsifiers, the parameter n defines how many nodes each node

connects to. A node u is randomly selected from V to start the sparsification process.

For node u, we identify neighbors N(u) not yet in Ĝ and calculate du = |N(u)|.



30

There are two possible cases:

If du  n, Ê  Ê [ {(u, v) : v 2 N(u)},

and if du > n, Ê  Ê [ {(u, vi) : vi is sampled from N(u)}.

Then we move on to its child nodes and repeat this process. If we go through all

the nodes in the sparsifier and V 6= V̂ , we restart with a new node from V \ V̂ .

The detailed algorithm is shown in Algorithm 5. Figure 2.9 is an illustration of the

Random Walk sparsifier.

In Figure 2.10, we demonstrate an illustration of a full graph and its correspond-

ing sparsified graphs. The full graph is a DCSBM (Degree-Corrected Stochastic

Block Model) graph with two clusters, and we plot the sparsified graph using seven

di↵erent methods. Notice that the solid black lines represent edges that exist in the

original graph, whereas yellow lines represent edges that did not exist in the original

graph.

2.4.3 Weighted Sparsifiers

Recall that G = (V ,E) is an undirected graph with vertex set V = {1, 2, . . . , n},

and edge set E ✓ {(i, j) : i, j 2 V }. Define G̃ = (V , Ẽ) as a sparsified graph of G

with Ẽ ✓ E.

Given a node i, 8k such that (i, jk) 2 E, k = 1, 2, . . . , K, unweighted sparsifiers

will connect two nodes such that

P ((i, jk) 2 Ẽ) =
1

K
8k.
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Algorithm 5 Random Walk Sparsifiers

1: procedure RandomWalk(G, n)
2: Input: Graph G = (V ,E), integer n
3: Output: Sparsified graph Ĝ = (V̂ , Ê)
4: Initialize V̂  ;, Ê  ;
5: Choose a random node u from V
6: Initialize visited {u}, stack [u]
7: while stack 6= ; do
8: u stack.pop()
9: Add u to V̂

10: Identify N(u) \ V̂ (neighbors not yet in Ĝ)
11: Calculate du = |N(u) \ V̂ |
12: if du  n then

13: for each v 2 N(u) \ V̂ do

14: Ê  Ê [ {(u, v)}
15: if v /2 visited then

16: stack.push(v)
17: visited.add(v)
18: end if

19: end for

20: else

21: Sample n nodes {vi} uniformly from N(u) \ V̂
22: for each vi in sampled nodes do
23: Ê  Ê [ {(u, vi)}
24: if vi /2 visited then

25: stack.push(vi)
26: visited.add(vi)
27: end if

28: end for

29: end if

30: if |V̂ | < |V | and stack = ; then
31: Sample a node ũ from V \ visited
32: stack.push(ũ)
33: visited.add(ũ)
34: end if

35: end while

36: end procedure
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Figure 2.10: Illustration of sparsifiers.
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For weighted sparsifiers,

P ((i, jk) 2 Ẽ) / 1

|yi � yjk |
.

Essentially, we define the weighted sparsifiers in a way that nodes with similar

observed values are more likely to be connected.

2.5 Simulations

2.5.1 Evaluation Metric

Define �true as the true underlying signal, �̂G as the estimation using the full graph,

and �̂G̃ as the estimation using the sparsified graph.

We have the following metrics to evaluate performances:

• k�̂G̃ � �truek2: `2 norm of the di↵erence between the estimation and the true

signal. This is also known as the Root Sum of Squares (RSS).

• k�̂G̃� �̂Gk2: `2 norm of the di↵erence between the estimation using the spar-

sified graph and the solution from the full graph. This measures the RSS with

respect to the full graph.

• Sparsity: Number of unique �i (Degree of Freedom).

• Computation Time: Number of seconds it takes to solve the optimization

problem.
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2.5.2 Comparison on Di↵erent Graphs

We study the performance of di↵erent sparsifiers at a fixed number of edges. Each

experiment is implemented over 5 replications, and the plots show the mean of

the replications. For all experiments other than the Simple Random graph, we let

C = {C1, . . . , C10} be the set of clusters. We set �i = k for all i 2 Ck; yi = �i + ✏i,

where ✏i ⇠ N(0, 0.5). For the evaluation metric, we choose to use k�̂G̃ � �truek2

and k�̂G̃� �̂Gk2, which compare the estimated coe�cients with both the true signal

and the signal from the full graph. Additionally, for sparsification, we choose to use

sparsifiers with 2000 edges for all sparsifiers.

Simple Random Graph

For the Simple Random graph, edges are randomly distributed among the nodes.

There is only one cluster, which means there is no grouping structure within the net-

work. For the first experiment, we define a simple graph with 1000 nodes and 20000

edges. From Figure 2.11 panel (a), we can see that the overall trend is decreasing

for every sparsifier. This means that as � increases, the estimated coe�cients get

closer and closer to the true value. In panel (b), the dotted line represents the �

where the estimation from the full graph is the closest to the true coe�cient. Among

these sparsifiers, the Minimum Spanning Tree has the best performance among all

of them, both when comparing with �true and �̂G. The Uniform sparsifier has the

worst estimation.

Degree Corrected Stochastic Block Model (DCSBM) Graph

The Degree Corrected Stochastic Block Model (DCSBM) is an extension of the

Stochastic Block Model, a common model for network data. The stochastic block
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(a) ||�̂G̃ � �true||2 vs. � (b) ||�̂G̃ � �G||2 vs. �

Figure 2.11: RSS based on Simple Random graph.

model partitions nodes into blocks. Within each block, the likelihood of connecting

any two nodes is identical. This model is widely used in various domains such as

social networks, biological networks, and information networks to help understand

community structures. However, the biggest problem of the Stochastic Block Model

is the assumption of homogeneity within blocks. In each community, the distribution

of node degrees is almost uniform, which is not representative of real-world scenarios.

A simple example is a social network, where influencers have far more connections

than the rest of the people, even if they belong to the same social circle.

To overcome this limitation, a degree-correction term is introduced to allow for

variability in node degrees within the same community. Specifically, each node

has an expected degree to form connections, which allows the Degree-Corrected

Stochastic Block Model to model degree heterogeneity within communities.

For a graph G, the nodes are partitioned into K blocks, and each node i belongs

to a block denoted by gi. Each node i is also assigned a degree parameter ✓i, which

influences its degree. The probability of an edge between nodes i and j depends

on their block memberships (gi and gj) and their degree parameters (✓i and ✓j),
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typically modeled as

P (i, j) = ✓i✓j⌘gi,gj ,

where ⌘gi,gj is a parameter that depends on the communities of the nodes and rep-

resents the baseline a�nity between blocks.

There are a few parameters for this model. The variable � controls the out-in

ratio: the ratio of between-block edges over within-block edges. The parameter ⇢

is the proportion of small degrees within each community if the degrees are from a

two-point mass distribution. ⇢ > 0 gives a degree corrected block model.

For this experiment, we use a DCSBM graph with 10 clusters. The graph has

1000 nodes and roughly 50000 edges. The proportion of small degrees within each

community is 0.1. The ratio of between-block edges over within-block edges is fixed

at 0.1.

From Figure 2.12, Uniform, KN and MST have similar estimation with respect

to �true and are more accurate than other sparsifiers. When comparing with �̂G,

these three sparsifiers have very similar performances and are better than the rest.

The Star sparsifier has the worst performance. This is reasonable since the Star

is a very centralized structure and it ignores the grouping structure in the original

graph.

Cluster Graph

We construct a Cluster graph with 1000 nodes and 50000 edges. There are three

variables in this graph: cluster size, the number of edges within each cluster, and the

number of edges between each pair of clusters. Within each cluster, all the edges

are randomly connected. For this experiment, each cluster has a random cluster

size that ranges between 50 and 250, and the density within each cluster also varies.
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(a) ||�̂G̃ � �true||2 vs. � (b) ||�̂G̃ � �̂G||2 vs. �

Figure 2.12: RSS based on DCSBM graph.

The graph is fully connected, with the lowest degree being 7 and the highest degree

being 236. The di↵erence between the Cluster graph and DCSBM is that we can

control the cluster size and density for each cluster. Also, within each cluster, the

distribution of node degree is almost uniform.

From Figure 2.13, Uniform, MST, and KN have the best estimation with respect

to �true. When comparing with �̂G, Uniform and KN are the optimal ones. It is

also worth noting that the Star sparsifier has the worst estimation in both cases,

since it totally disregards the original grouping structure within the network data.

This result is very similar to the conclusion we derived from the last experiment.

(a) ||�̂G̃ � �true||2 vs. � (b) ||�̂G̃ � �̂G||2 vs. �

Figure 2.13: RSS based on Cluster graph.
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Preferential Attachment (PA) Graph

The Preferential Attachment Model is a foundational model in network theory. Cen-

tral to this model are two parameters: m0, representing the initial number of nodes

in the network, and m, indicating the number of connections a new node forms when

entering into the network. The parameter m0 establishes the initial network struc-

ture, and m governs how fast the network expands by determining the connectivity

degree each new node achieves with existing nodes.

As the network grows, each new node preferentially attaches to existing nodes

with a higher degree of connectivity with a probability ⇧(ki) = kiP
j kj

, where ki is

the degree of a particular node i, and the summation is over all nodes currently in

the network. This ensures that nodes with greater connectivity are more likely to

receive new links.

The degree distribution adheres to a power law, P (k) ⇠ k
��, where P (k) denotes

the probability of randomly selecting a node with degree k, and � is a constant typi-

cally within the range of 2 to 3 for real-world networks. Because of this distribution,

the network always has a few highly connected hubs among a vast majority of low-

degree nodes, resulting in a heterogeneous network topology. Due to its robustness

against random failures and susceptibility to targeted attacks on significant nodes,

the Preferential Attachment model serves as a pivotal tool in the examination and

construction of networks across various fields, from technology to biology.

For this experiment, we have a PA graph with 10 clusters. The graph has 1000

nodes and approximately 30000 edges. Each cluster has 100 nodes, with power being

3 within each cluster. This means that each cluster has a very similar structure,

with the same degree distribution among all the nodes.

From Figure 2.14, again, Uniform, MST and KN have the best estimation with
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respect to �true and �̂G. The three of them have very similar estimation, and the

Star sparsifier is still the worst among all of them. This result is consistent with

the previous setups, as they all have a clear grouping structure embedded in the

network.

(a) ||�̂G̃ � �true||2 vs. � (b) ||�̂G̃ � �̂G||2 vs. �

Figure 2.14: RSS based on PA graph.

Sparsity

In a Fused LASSO problem, sparsity of the solution is defined by the number of

unique coe�cients in �̂. Theoretically, for a fully connected graph, when � is large

enough, the number of unique coe�cients will become 1, as all the values converge

to the mean of y.

The sparsity of the solution depends on the sparsifiers, the number of edges,

as well as the centrality of graphs. Usually, if the sparsified graph is not fully

connected, some nodes will not be penalized due to the nature of the penalty term.

By increasing �, the coe�cients of those isolated nodes will converge to the mean

of the subsetted y.

We plot the sparsity of each graph by counting the number of unique �̂ elements

at each � value. The dotted line indicates the correct degree of freedom for each
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setup. Theoretically speaking, when � is large enough, as long as the sparsified

graph is fully connected, it can always converge to the true degree of freedom.

From Figure 2.15, all the sparsifiers except Uniform can shrink to the true degree

of freedom for the Simple graph. For all other setups, MST and KN can always

achieve better sparsity compared to other sparsifiers. For the Cluster graph, the

sparsities of sparsifiers are even better than that of the full graph at the same �

value.

(a) Sparsity for Simple Random graph (b) Sparsity for DCSBM graph

(c) Sparsity for Cluster graph (d) Sparsity for PA graph

Figure 2.15: Sparsity of four di↵erent types of graphs.

2.5.3 Sparsifiers with Di↵erent Density

By increasing the number of edges, the likelihood of obtaining a fully connected

graph also increases. For instance, consider a fully random graph with 1000 nodes
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and 50000 edges. If we randomly select 1000 edges from the graph, on average only

860 unique nodes will be selected. Therefore, it is nearly impossible to get a fully

connected graph. If we increase the number of edges to 3000, then the probability

increases to 8%. By further increasing the number of edges to 5000, the probability

becomes over 95%.

In general, the number of edges in the sparsifier is directly related to the RSS

(Root Sum of Squares). In our simulation studies, we choose to experiment with

1000, 2000, and 3000 edges and compute the corresponding average RSS over a small

range of �.

Cluster Graph

For the first experiment, we present the average RSS obtained by performing spar-

sification on a Cluster graph. As shown in Figure 2.16, RSS is inversely related to

the number of edges for most of the sparsifiers. However, the decrement in RSS

from 2000 edges to 3000 edges is not as significant. When compared with �̂G, the

order of the sparsifiers remains unchanged.

Among all the sparsifiers, Uniform and KN are consistently the most accurate

ones. With 3000 edges, the estimations are nearly as accurate as those of the full

graph.

DCSBM Graph

We conduct the same experiment on a DCSBM graph with 10 clusters, with a fixed

between-ratio of 0.05. As illustrated in Figure 2.17, the trend closely resembles the

previous setup. With 1000 edges, the performances of di↵erent sparsifiers are quite

similar. However, as the number of edges increases, the di↵erences become more

pronounced.
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(a) ||�̂G̃ � �true||2 vs. � (1k edges) (b) ||�̂G̃ � �̂G||2 vs. � (1k edges)

(c) ||�̂G̃ � �true||2 vs. � (2k edges) (d) ||�̂G̃ � �̂G||2 vs. � (2k edges)

(e) ||�̂G̃ � �true||2 vs. � (3k edges) (f) ||�̂G̃ � �̂G||2 vs. � (3k edges)

Figure 2.16: RSS for Cluster graph with di↵erent number of edges.

Notably, Uniform, KN, Spanning Tree 2 and Random Walk 2 exhibit similar

results with 2000 or 3000 edges, and they outperform the other sparsifiers by a

significant margin.
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(a) ||�̂G̃ � �true||2 vs. � (1k edges) (b) ||�̂G̃ � �̂G||2 vs. � (1k edges)

(c) ||�̂G̃ � �true||2 vs. � (2k edges) (d) ||�̂G̃ � �̂G||2 vs. � (2k edges)

(e) ||�̂G̃ � �true||2 vs. � (3k edges) (f) ||�̂G̃ � �̂G||2 vs. � (3k edges)

Figure 2.17: RSS for DCSBM graph with di↵erent number of edges.

Sparsity

We present the sparsity for each graph at each sparsification level. As depicted

in Figure 2.18, as the number of edges increases, the degree of freedom generally

decreases. Similar to the estimation results, when the number of edges is 1000, the
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di↵erence in sparsity is not significant.

For the Cluster graph, KN exhibits the best sparsity at 2000 edges, and both

KN and MST show the best sparsity when the number of edges increases to 3000.

Conversely, for the DCSBM graph, MST demonstrates the best sparsity starting

from 2000 edges.

(a) Cluster graph (1k edges) (b) DCSBM graph (1k edges)

(c) Cluster graph (2k edges) (d) DCSBM graph (2k edges)

(e) Cluster graph (3k edges) (f) DCSBM graph (3k edges)

Figure 2.18: Sparsity for di↵erent sparsifier density.
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2.5.4 Centrality of Graphs

In general, the more centralized the graph is, the less sparse the solutions will be at

a particular � and edge sparsity level. When the graph is purely uniform, meaning

every node has an equal chance of connecting to every other node, there is a higher

chance that the graph is fully connected at some particular number of edges. This

is because no nodes are favored over others, and every node is equally likely to be

selected in the sparsifiers. As centrality of the graph increases, some nodes will be

selected more likely than others.

We compare the estimation and sparsity for graphs with di↵erent centralities in

the cluster graph. For low centrality, all the edges in each cluster are connected in

a purely random fashion. For high centrality, we randomly select 20 landmarks in

each cluster and connect each other node to the landmarks only.

Figure 2.19 and Figure 2.20 show the estimation results and sparsity for two

di↵erent centralities, respectively. In particular, Uniform and KN stand out when

centrality increases. Their estimations become significantly better than the rest

when centrality increases. Regarding sparsity, as centrality increases, the degree of

freedom is higher at the same penalty level. When centrality is low, MST and KN

have the lowest degree of freedom. When centrality becomes higher, KN has the

best sparsity.

2.5.5 Weighted vs. Unweighted Sparsifiers

We present the estimation results on a DCSBM graph with 10 clusters. From Figure

2.21, MST and KN have significantly better estimations when going from unweighted

to weighted sparsifiers. Their estimations are almost as good as that of the full graph.

When comparing with �̂G, the Uniform sparsifier has the best estimation. This is
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(a) ||�̂G̃ � �true||2 vs. � (Low Centrality) (b) ||�̂G̃ � �true||2 vs. � (High Centrality)

(c) ||�̂G̃ � �̂G||2 vs. � (Low Centrality) (d) ||�̂G̃ � �̂G||2 vs. � (High Centrality)

Figure 2.19: RSS for di↵erent centrality.

(a) Sparsity for low centrality (b) Sparsity for high centrality

Figure 2.20: Sparsity for di↵erent centrality.

reasonable since weighted MST and KN show very di↵erent trends when comparing

to the curve from the full graph. Regarding sparsity, from Figure 2.22, weighted

KN and weighted MST are the only algorithms with significantly improved degree
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of freedom. In the unweighted case, their sparsities are better than the rest of the

sparsifiers, but the di↵erence is not as big. After adding weights to the sparsifiers,

the tree methods show no significant change in degree of freedom, but KN and MST

benefit a lot from the weights.

(a) ||�̂G̃ � �true||2 vs. � (Unweighted) (b) ||�̂G̃ � �true||2 vs. � (Weighted)

(c) ||�̂G̃ � �̂G||2 vs. � (Unweighted) (d) ||�̂G̃ � �̂G||2 vs. � (Weighted)

Figure 2.21: RSS for weighted and unweighted sparsifiers.

2.5.6 Comparison with Community Detection

We compare our sparsifiers with some common Community Detection algorithms

on a DCSBM graph. We show that sparsifiers can solve for coe�cients in one step,

whereas Community Detection algorithms need to find communities first and then

compute averages over each cluster as estimated coe�cients. At the same time,

when the noise level is high or there are a large number of clusters, sparsifiers can
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(a) Sparsity for unweighted sparsifiers (b) Sparsity for weighted sparsifiers

Figure 2.22: Sparsity for weighted and unweighted sparsifiers.

outperform Community Detection algorithms significantly.

Table 2.1 and Table 2.2 show the estimation results for DCSBM graphs with

10 and 20 clusters, respectively. Each column represents a between/within ratio.

The larger the ratio, the noisier the graph is. From Table 2.1, we can see that the

Community Detection algorithm can capture the signal almost perfectly when the

noise level is at 0.1. Sparsifiers show their advantages when we increase it to 0.3.

When there are 20 clusters, weighted MST is the third best when the noise level is

at 0.1. However, as we increase the between/within ratio to 0.2, all of the top three

algorithms are sparsifiers. From this experiment, we can see that sparsifiers perform

better than Community Detection algorithms when the number of clusters is large

and the noise level is high.

There are several interesting findings from the simulation section. Firstly, weighted

KN, MST, and Uniform consistently outperform other sparsifiers in many cases.

However, di↵erent sparsifiers exhibit varying performances under di↵erent graph

structures. There is no sparsifier that is universally better than the others. Addi-

tionally, depending on the graph structure, results from sparsifiers could be superior

to those from the full graph, as sparsifiers can help eliminate noise from the original
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Methods
Between/Within Ratios

0.1 0.2 0.4
MST 33.95 33.9 40.41
KN 35.63 33.48 41.39
Unif 31.29 31.24 36.9

MST(w) 11.28 16.72 21.87

KN(w) 11.84 16.21 20.1

Louvein 9.81 9.77 86.97
Walktrap 0.84 2.09 82.56
Infomap 0.84 88.81 90.25
BHMC+SSP 0.84 2.09 90.26
HCD 8 13.67 89.95

Table 2.1: RSS with respect to true signal for di↵erent between/within ratios on a
DCSBM graph with 10 clusters.

Methods
Between/Within Ratios

0.1 0.2 0.4
MST 55.49 67.86 72.65
KN 55.96 63.4 66.3

Unif 56.04 67.14 70.88
MST(w) 13.53 20.19 25.05

KN(w) 13.96 16.96 20.86

Louvein 77.84 92.1 183.14
Walktrap 2.82 80.78 183.8
Infomap 185.54 180.37 185.51
BHMC+SSP 6.64 117.36 185.46
HCD 54 80.35 185.51

Table 2.2: RSS with respect to true signal for di↵erent between/within ratios on a
DCSBM graph with 20 clusters.
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graph structure. Centrality and the number of edges are strongly related to spar-

sifiers’ performances. Generally, as centrality increases, KN and Uniform perform

significantly better than the rest. Also, as the number of edges increases, sparsifiers

can provide more accurate estimation results. Furthermore, weighted sparsifiers sig-

nificantly outperform unweighted ones, as they leverage observed values of each node

in constructing the sparsifiers. It is also demonstrated that sparsifiers perform bet-

ter than Community Detection algorithms, especially when the number of clusters

is large. Lastly, solving fusion problems with sparsification methods is significantly

faster computationally.

2.6 Theoretical Results

In this section, we propose some theoretical results to better understand the esti-

mator’s e�ciency and accuracy. For the first theorem, we provide an expression for

the average squared error of the generalized LASSO estimate �̂ in reconstructing or

estimating the true signal �0, adapted from Wang et al. (2016a). If we let r denote

the incidence matrix defined in 2.3. Let r denote the number of rows for r and r†

denote the pseudo-inverse of r, then we can prove the following result:

Theorem 2.6.1. Let M denote the maximum `2 norm of the columns of r†. Then

for a tuning parameter value � = ⇥(M
p
log r), the generalized LASSO estimate �̂

has average squared error

k�̂ � �0k22
n

= OP

✓
nullity(r)

n
+

M
p
log r

n
kr�0k1

◆
.

Proof. Define y = �0 + ✏, where ✏ ⇠ N (0, �2I). Define R = row(r), which is the

row space of r. Define R? = nullity(r). Also, we define PR as the projection onto
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R and PR? as the projection onto R
?. Since

y = (PR + PR?)y = PRy + PR?y,

the original estimation problem

�̂ = arg min
�2Rn

1

2
ky � �k22 + �kr�k1

can be rewritten as

�̂ = PR?y + �̃,

where

�̃ = arg min
�2Rn

1

2
kPRy � �k22 + �kr�k1.

Now, denote kxkR = kPRxk2 and kxkR? = kPR?xk2, then

k�̂ � �0k22 = kPR?y + �̃ � �0k22

= kPR?�0 + PR?✏+ �̃ � �0k22

= kPR?✏+ �̃ � PR�0k22

= k✏k2R? + k�̃ � �0k2R.
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By optimality,

1

2
ky � �̃k2R + �kr�̃k1 

1

2
ky � �0k2R + �kr�0k1

ky � �̃k2R  ky � �0k2R + 2�kr�0k1 � 2�kr�̃k1

k�0 � �̃ + ✏k2R  k✏k2R + 2�kr�0k1 � 2�kr�̃k1

k�0 � �̃k2R + 2✏TPR(�0 � �̃) + k✏k2R  k✏k2R + 2�kr�0k1 � 2�kr�̃k1

k�0 � �̃k2R  2✏TPR(�̃ � �0) + 2�kr�0k1 � 2�kr�̃k1.

By definition of projection matrix, PR = r†r. Also, by Hölder’s inequality, for

p, q 2 [1,1), 1p +
1
q = 1,

nX

k=1

|akbk|  (
nX

k=1

|ak|p)
1
p (

nX

k=1

|bk|q)
1
q .

Therefore,

✏Tr†r(�̃ � �0)  k(r†
)
T ✏k1kr(�̃ � �0)k1.

If � � k(r†
)
T ✏k1,

k�̃ � �0k2R  2k(r†
)
T ✏k1kr(�̃ � �0)k1 + 2�kr�0k1 � 2�kr�̃k1

 2�kr�̃ �r�0k1 + 2�kr�0k1 � 2�kr�̃k1

 4�kr�0k1.

By a standard result on the maximum of Gaussian,

k(r†
)
T ✏k1 = Op(M

p
log r),

k�̃ � �0k2R = Op(M
p
log rkr�0k1).
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We move on to prove some results on M , which is the maximum `2 norm of

columns of r†. We aim to show that for di↵erent graph structures, we will have

di↵erent M values. The following two lemmas proves the value of M for Star and

Chain sparsifiers.

Lemma 2.6.2. For a star sparsifier with n nodes and n � 1 edges, M ! 1 in

probability when n!1.

Proof. Without loss of generality, assume the graph has n nodes and n � 1 edges

and the star sparsifier is centered around node 1. By definition, rs 2 R
(n�1)⇥n and

rs =

2

66666666664

1 �1 0 0 ... 0

1 0 �1 0 ... 0

1 0 0 �1 ... 0

... ... ... ... ... ...

1 0 0 0 ... �1

3

77777777775

.

Since rs is full rank, then by definition of pseudo inverse,

r†
s = rT

s (rsrT
s )

�1
.
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Therefore,

rsrT
s =

2

66666666664

2 1 1 1 ... 1

1 2 1 1 ... 1

1 1 2 1 ... 1

... ... ... ... ... ...

1 1 1 1 ... 2

3

77777777775

,

(rsrT
s )

�1 =

2

66666666664

n�1
n � 1

n � 1
n � 1

n ... � 1
n

� 1
n

n�1
n � 1

n � 1
n ... � 1

n

� 1
n � 1

n
n�1
n � 1

n ... � 1
n

... ... ... ... ... ...

� 1
n � 1

n � 1
n � 1

n ...
n�1
n

3

77777777775

,

r†
s = rT

s (rsrT
s )

�1

=

2

66666666664

1 1 1 1 ... 1

�1 0 0 0 ... 0

0 �1 0 0 ... 0

... ... ... ... ... ...

0 0 0 0 ... �1

3

77777777775

2

66666666664

n�1
n � 1

n � 1
n � 1

n ... � 1
n

� 1
n

n�1
n � 1

n � 1
n ... � 1

n

� 1
n � 1

n
n�1
n � 1

n ... � 1
n

... ... ... ... ... ...

� 1
n � 1

n � 1
n � 1

n ...
n�1
n

3

77777777775

=

2

66666666664

�n�1
n

1
n

1
n

1
n ...

1
n

1
n �n�1

n
1
n

1
n ...

1
n

1
n

1
n �n�1

n
1
n ...

1
n

... ... ... ... ... ...

1
n

1
n

1
n

1
n ... �n�1

n

3

77777777775

,
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M(r†
s) =

r
(n� 1)2

n2
+

1

n2
⇥ (n� 1)

=

r
n2 � 2n+ 1 + n� 1

n2

=

r
n� 1

n
.

When n!1, M(r†
s)! 1.

Lemma 2.6.3. For a Chain Sparsifier with n nodes and n � 1 edges, M =
p

n
4

when n is even and M = 1
2

q
n� 1

n when n is odd.

Proof. Without loss of generality, we can assume Chain Sparsifier starts at node 1

and e1 = {1, 2}, e2 = {2, 3},...,en�1 = {n� 1, n}.

By definition, rs 2 R
(n�1)⇥n and

rs =

2

66666666664

1 �1 0 0 ... 0

0 1 �1 0 ... 0

0 0 1 �1 ... 0

... ... ... ... ... ...

0 0 0 0 ... �1

3

77777777775

,

rsrT
s =

2

66666666664

2 �1 0 0 ... 0

�1 2 �1 0 ... 0

0 �1 2 �1 ... 0

... ... ... ... ... ...

0 0 0 0 ... �1

3

77777777775

,
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(rsrT
s )

�1 =

2

66666666664

n�1
n

n�2
n

n�3
n

n�4
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n

n�2
n

2(n�2)
n
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2(n�4)
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n
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n

3(n�4)
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3
n
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n

2
n

3
n

4
n ...

n�1
n

3

77777777775

,

Therefore,

r†
s = rT

s (rsrT
s )

�1

=
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When n is even

M(r†
s) =

r
1

4
⇥ n

=

r
n

4
.

When n is odd

M(r†
s) =

r
(
(n+ 1)/2

n
)2 ⇥ (n� 1)/2 + (

(n� 1)/2

n
)2 ⇥ (n+ 1)/2

=

r
(n+ 1)2/4⇥ (n� 1)/2

n2
+

(n� 1)2/4⇥ (n+ 1)/2

n2

=
1

2

r
n� 1

n
.

For MST sparsifiers, rs 2 R(n�1)⇥n and the proof is the same as the one for

Chain Sparsifier. Also, from observations, MUniform < MKNw < MKN .

2.7 Application on Email Data

For the real data application, the network was generated using email data from

a large European research institution. We have anonymous information about all

incoming and outgoing email between members of the research institution. There

is an edge (u, v) in the network if person u sent person v at least one email. The

emails only represent communication between institution members (the core), and

the dataset does not contain incoming messages from or outgoing messages to the

rest of the world.

The network contains 1005 nodes, 25000 edges, with 42 clusters embedded into
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Methods

Number of Edges

1k 2k 3k
Time (Seconds)

Spar. Comp. Spar. Comp. Spar. Comp.
Full 0 44.88 0 44.88 0 44.88
MST 0.397 4.512 0.789 5.542 1.244 7.241
Chain 0.002 4.235 0.026 4.811 0.003 5.502
RW2 0.321 4.089 0.620 5.171 0.979 6.640
RW5 0.316 5.105 0.644 6.706 0.973 7.823
Star 0.001 4.303 0.001 5.232 0.001 5.556
KN1 0.274 4.307 0.275 5.532 0.283 6.019
Unif 0.001 4.417 0.001 5.425 0.001 6.141
Span2 0.356 4.230 1.000 5.379 1.086 7.403
Span5 0.320 5.344 0.621 7.155 0.934 8.378

Table 2.3: Sparsification time(s) and computational time(s) for di↵erent edges.

it. We removed the duplicated edges and modified the self-loops. The original graph

is directed, but we changed it to an undirected one. We define the observed value

as yi = �i + ✏i, where �i 2 [1, 42] and ✏i ⇠ N(0, 0.5).

From Figure 2.23 and Figure 2.24, we show the estimation results from un-

weighted and weighted sparsifiers, as well as the sparsity. We can see that because

of the noise, estimation from many sparsifiers are actually better than estimation

from the full graph. This shows that the original graph is noisy and sparsifiers can

eliminate most of the noise from the graph. Also, weighted sparsifiers perform bet-

ter than unweighted ones. MST and KN have the best performances, followed by

Random Walk and Uniform. The sparsities of MST and KN are also better than

the rest of the sparsifiers. From Table 2.3, we can see that computational time has

been significantly reduced. For sparsifiers with 1000 edges, computational time is

reduced by nearly 90 percent.
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(a) ||�̂G̃ � �true||2 vs. � (Unweighted). (b) ||�̂G̃ � �true||2 vs. � (Weighted).

(a) ||�̂G̃ � �̂G||2 vs. � (Unweighted). (b) ||�̂G̃ � �̂G||2 vs. � (Weighted).

Figure 2.23: RSS of weighted and unweighted sparsifiers for email dataset.

(a) Sparsity for unweighted sparsifiers (b) Sparsity for weighted sparsifiers

Figure 2.24: Sparsity for weighted and unweighted sparsifiers.

2.8 Discussion

Solving a regression problem on a network structure is a popular problem. When

there is a grouping structure within the network, one way to solve it is to add
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a penalty term on the deviation of parameter values, making it a Fused LASSO

problem. The biggest challenge when solving this problem is the computational

burden. When the graph is dense, computational time grows quadratically with the

number of nodes. We propose a method of finding a sparsified graph based on the

original one, and solve the regression problem on the sparsified graph instead. We

show that under certain graph structures, working with a sparsified graph is just

as e↵ective as that of the original graph. In fact, there are cases where a sparsified

graph outperforms the original ones. We explore di↵erent factors that a↵ect the

performances, including types of graphs, sparsifiers, number of edges, weights, and

etc. We also show that a sparsified graph works better than Community Detection

algorithms, especially when there is large noise and more than 10 clusters in the

graph.



Chapter 3

Decentralized Federated Learning

and Knowledge Transfer

3.1 Introduction

Federated Learning is a novel approach that has gained popularity in recent years.

The concept of Federated Learning was first introduced in 2016. In this paper,

McMahan et al. (2017) introduced the learning of deep neural networks from de-

centralized data, which significantly improves communication e�ciency. The main

idea of Federated Learning is to allow models to train across di↵erent sites or lo-

cations without the need to share raw data with each other. This method focuses

on keeping data localized, protecting user’s privacy, and reducing the need for ex-

cessive data transmission to a centralized server. In Federated Learning, every site

performs computation on its own data and shares the model or model parameters

afterwards. Some examples include mobile phone data or hospital data, where each

site generates a local model, with model updates being sent to a central server.

The central server aggregates information from each site into a global model and

61
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then sends model updates back to each individual site. In this way, data privacy

is preserved, and network load is significantly reduced. Federated Learning has ap-

plications in many di↵erent areas. Hard et al. (2018) utilize Federated Learning

to make mobile keyboard predictions. The goal is to check whether people click

on the recommended links. Wang et al. (2022) introduce a mobility digital twin

(MDT) framework, which is a data-driven framework for mobility services based

on AI algorithms. This framework aims to integrate humans, vehicles, and traf-

fic signals together. In healthcare, Kaissis et al. (2020) leverage AI algorithms to

share medical imaging data while maintaining accuracy. In agriculture, Durrant

et al. (2022) develop a cross-silo Machine Learning algorithm that helps with data

sharing across the supply chain. In particular, the goal is to optimize soybean yield

prediction through Federated Learning by training models without sharing raw data.

Additionally, Saputra et al. (2019) introduce a federated energy demand learning

approach to predict energy demand for electric vehicle (EV) networks.

Figure 3.1: Federated learning example.

The biggest advantage of Federated Learning, as mentioned above, is its privacy

preservation. Since data remains on the original device, privacy risks are significantly
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lower. At the same time, since only model parameters or model updates are being

transmitted, communication overhead is also reduced.

Centralized Federated Learning is a hot topic in Machine Learning literature.

Over the past few years, many Centralized Federated Learning frameworks have

been proposed and proven e↵ective in many di↵erent fields. Li et al. (2020) propose

a framework where the central server learns to detect and remove malicious models

and lead to targeted defense. This framework has proven e↵ective in classification

and sentiment analysis tasks. Corinzia and Buhmann (2019) propose a VIRTUAL

algorithm that treats the network of the server and the clients as a star-shaped

Bayesian network, where the central server is the center of the star. Learning is

performed on the network using approximated variational inference, which has been

shown to be e↵ective on real-world federated datasets. Le et al. (2021) present a

Federated Continuous Learning scheme based on Broad Learning (FCL-BL) with

a central server to support e�cient and accurate Federated Continuous Learning

(FCL), which e↵ectively solves the problem of one-time learning without consider-

ation for continuous learning. Chen et al. (2019) present an Asynchronous Online

Federated Learning (ASO-Fed) framework, which updates the central model in an

asynchronous manner to deal with varying computational costs at heterogeneous

edge devices and devices that lag behind. Nilsson et al. (2018) compare central-

ized analysis with three Federated Learning algorithms on IID MNIST and non-IID

MNIST data. The result shows that they are equivalent on IID data, but the cen-

tralized approach outperforms FedAvg with non-IID data.

However, some potential problems still exist. First of all, managing communi-

cation between devices and the central server can be costly. Although Centralized

Federated Learning has significantly reduced communication costs compared to tra-

ditional methods by transferring only model parameters, when there are a large
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number of clients in parallel, communication resources can still be problematic. Nu-

merous methods have been proposed to cope with this problem. For instance, we can

either learn from a restricted space from a smaller number of variables or compress

the model so that model sizes become smaller when transmitting (Konečný et al.,

2016). Sattler et al. (2019) extend the existing compression methods by propos-

ing a Sparse Ternary Compression (STC) framework, which broadens the utility in

Federated Learning settings.

Computational and storage resources are another problem. In current Federated

Learning scenarios, the number of clients can be as large as one billion. The central

server needs to store and aggregate models from all clients, which can easily exceed

the capacity of it. One potential solution is to use lightweight models instead. This

can be done by either filtering features in some of the model layers (Sandler et al.,

2018) or scaling all dimensions of the models using e↵ective compound coe�cients

(Tan and Le, 2019).

In addition, fairness and trust are big issues in Centralized Federated Learning.

Questions have arisen on topics such as the performance and validity of the global

model, as well as the security and privacy of the central server. Many recent research

e↵orts focus on di↵erent questions. Bagdasaryan et al. (2020) show that anyone can

backdoor a Federated Learning algorithm and cause the global model to reach an

unrealistically high accuracy. Tolpegin et al. (2020) study the problem of data

poisoning attacks by malicious participants, among others.

Lastly, dealing with non-IID data is another issue. In Federated Learning, train-

ing a global model utilizing all clients’ data becomes significantly harder when

clients’ data is non-IID, which is caused by four di↵erent reasons. The first one

is covariate shift, which means the marginal distribution of X for each client is

di↵erent, even when the conditional distribution of y given X is the same. The
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second is prior probability shift, which means the marginal distribution of y is dif-

ferent, even when the conditional distribution of X given y is the same. The third

is concept drift, which means for each client, the conditional distribution of y given

X is di↵erent. The last one is unbalancedness, which means di↵erent clients hold

di↵erent numbers of data. To solve these problems, a number of algorithms have

been proposed. K.Tam et al. (2023) propose FedMix to deal with clients with mis-

labeled data; Wicaksana et al. (2022) introduces FedNCI for clients with di↵erent

noise distribution; Li et al. (2022) propose ARFL for clients with data corruption

of non-IID data; Xia et al. (2021) propose Auto-FedAvg for non-IID distribution of

data, among others.

Figure 3.2: Centralized vs. Decentralized Federated Learning.

Decentralized Federated Learning is another structure in which clients or sites

communicate with each other without the need for a central server. This concept

was initially proposed in 2019 by Lalitha et al. (2018). In this paper, the authors

introduce the concept of Decentralized Federated Learning and its potential ap-

plications in neural network algorithms. The biggest advantage of Decentralized

Federated Learning is that it removes the central server, which can result in huge

savings in communication costs and resources.

Current research on Decentralized Federated Learning has di↵erent focuses. In-
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formation exchange is one of the most important ones. Jiang and Hu (2020) in-

troduce the adaptive partial gradient aggregation method. This method employs

a partial gradient exchange mechanism coupled with an adaptive model updating

method, optimizing the convergence rate and significantly reducing training time

without compromising prediction accuracy. Li and Chen (2021) propose a decen-

tralized zeroth-order method based on biased stochastic zeroth-order updates, which

notably reduces the number of communication rounds needed for convergence. Ye

et al. (2021) propose the Soft-DSGD method, which updates model parameters with

partially received messages and optimizes mixing weights according to the link relia-

bility matrix, achieving convergence rates comparable to those with perfect commu-

nications. Wu et al. (2022) present a novel Gradient Descent algorithm focusing on

the impact of the learning rate and network structure on Decentralized Federated

Learning.

Communication protocol is another hot topic. Many studies focus on how peers

communicate with each other. One of the most common strategies is one-to-one

communication. The Gossip protocol is the most well-known algorithm that falls

into this category (Boyd et al., 2006). Essentially, at each iteration, each client

randomly finds another client to connect with and shares their model weights with

each other to update their own models. At the same time, there is a broadcast pro-

tocol, which lets the clients communicate in a one-to-many manner. This method

was initially proposed by Nedic (2010), and the asynchronous broadcast-based al-

gorithm is applied to networks subject to random link failures. Hybrid protocols

are developed by combining the two above. This means the communication can

be one-to-one or one-to-many, depending on the structure of the network. This

idea was proposed by Aysal et al. (2009) as a peer-to-neighbor approach, where the

client first communicates with its multiple neighbors before engaging in one-to-one
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communication.

Besides, how to aggregate model updates is a controversial topic. The traditional

paradigm is to let each client receive models from other clients and aggregate them

into their own local model by taking weighted averages. On the other hand, the

continual paradigm proposes that each client receives one model from a peer for every

iteration. Each client trains that model on their local data, and passes the model

to the next client. In this way, learning is highly accurate and personalized. As

examples, Assran et al. (2019) and Shi et al. (2021) adopt the aggregate paradigm.

Assran et al. (2019) compares the hybrid and broadcast protocols and Shi et al.

(2021) shows the convergence of hybrid protocols in a network. Sheller et al. (2019)

adopts the continual paradigm and shows how to output a model under decentralized

approaches.

Lastly, network topology is commonly seen in many Decentralized Federated

Learning papers. In essence, network topology defines how knowledge is dissemi-

nated among clients. Nedić et al. (2018) give a comprehensive review of di↵erent

network topologies, including line, ring, mesh, star, tree, and etc. Line and ring

imply that knowledge is transferred one by one in a certain order. Mesh means

the network is fully connected and anyone is allowed to communicate with any-

one. Star means there is a client that acts as the ”central server” and knowledge is

always transferred from the center to other clients, or from other clients to the cen-

ter. For instance, Pappas et al. (2021) propose an interplanetary file system (IPFS)

framework based on a star topology. Chen et al. (2022) adopt the mesh topology,

proposing a decentralized wireless Federated Learning algorithm called DWFL that

significantly reduces communication rounds.

In this section, we aim to discuss the following two problems: how do di↵erent

information exchange methods a↵ect prediction accuracy? How do di↵erent network
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topologies a↵ect training e�ciency?

3.2 Notations

In the context of Decentralized Federated Learning, N represents the total number

of sites engaged in the learning process, each indexed by j, where j ranges from 1

to N . At each site j, yj denotes the vector of target variables, and Xj signifies the

matrix of feature variables, with each row corresponding to an observation and each

column to a feature. The vector �j refers to the model parameters that are specific

to site j. The weight ↵j is assigned to the objective function of site j, reflecting

the relative size or importance of its dataset in the aggregated learning process.

The function f(yj,Xj,�j) represents the local objective function at site j, which

measures the loss or error of the model on the local dataset, contributing to the

formulation of the overall learning objective across the decentralized network.

The global objective function is defined as a weighted sum of the local objective

functions, aimed at minimizing the overall loss across all sites.

min
�1,�2,...,�N

 
NX

j=1

↵jf(yj ,Xj ,�j)

!
. (3.1)

The goal of the Decentralized Federated Learning process is to determine the

optimal set of model parameters for each site. This involves each site computing

updates to its local model parameters �j based on its data (yj ,Xj), followed by a

collaborative mechanism among parameters of neighboring sites. The process may

involve iterative communication and updates until convergence is achieved.
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3.3 Decentralized Federated Learning

3.3.1 Local Estimation

Local estimation methods are popular because they are simple in concept and imple-

mentation and can be set up quickly, making them a good starting point for many

problems. Specifically, for a specific node j:

�̂j = min
�j2Rd

f(yj,Xj,�j). (3.2)

From its name, local estimation focuses on analyzing data from their own individual

parts of a network or system. One big advantage is that each estimation is indepen-

dent of the rest. Therefore, if something goes wrong with the data in one part, it

doesn’t a↵ect the rest. Also, this method is very intuitive and easy to implement.

However, a significant downside is that local estimations do not take into account

how di↵erent parts of the system or network might be connected. This means they

might miss out on important information from other parts if data is heterogeneous

or if the distribution varies among parts. Additionally, if the individual data size is

small, local estimation can easily overfit or fit a model that is not representative of

the entire population.

In summary, although local estimation is simple and easy to set up, it is often

not the best method to use because of its inability to capture the full picture. When

connections between networks are important, local estimations cannot leverage in-

formation from neighbors, leading to weak model predictions.
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3.3.2 Data Aggregation

In the approach known as data aggregation, when looking at a specific part of a

system or network, we assume that it has the same parameters as its connected

parts or the rest of the system. For example, if we’re trying to solve for certain

parameter values for one part of the network, we assume these parameter values are

the same for its connected neighbors. Because of this assumption, to find the best

values for these parameters, we combine the data from all connected parts and look

for the ones that fit the best.

This implies that for a specific node j, we assume �j = �i, 8(i, j) 2 E. Given

(yi,Xi) for all i:

�̂j = min
�j2Rd

X

(i,j)2E

f(yi,Xi,�j). (3.3)

There are a lot of benefits to this method. Firstly, by pooling data together

from di↵erent parts, we significantly increase our data size. Therefore, the results

will be more robust and representative of the entire population. At the same time,

this method simplifies the problem by assuming that every site shares the same set

of parameters. With this assumption, the model complexity is very low, making it

very unlikely that the model will overfit.

However, the assumption of similarity is also the biggest drawback. We assume

that the data from all connected parts of the network are similar enough to be treated

as coming from the same source. This is often not true for many Federated Learning

problems, where each site has its own data source and they do not necessarily share

the same parameters. At the same time, data privacy is crucial for many problems.

The goal is to keep data local and not share it across the network. Data aggregation

goes against this principle by combining data from di↵erent parts.
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3.3.3 Sharing Gradient

In a Decentralized Federated Learning setting, when multiple sites within a network

share information with each other, one feasible method is to utilize gradients from

its own data as well as those from the neighbors. Specifically, for a given node at

iteration t, the parameter update is determined by the weighted sum of gradients

from the data of connected nodes.

For a specific node j, at the t-th iteration,

�̂(t)
j = �̂(t�1)

j + �

0

@ @

@�j
f(yj,Xj, �̂

(t�1)
j ) +

X

(i,j)2E

↵i
@

@�i
f(yi,Xi, �̂

(t�1)
i )

1

A . (3.4)

One of the main advantages of this method is its preservation of privacy. This

method does not involve sharing raw data or individual models across di↵erent sites.

Since gradients convey derivative information rather than the direct data, gradients

from other sites can contribute to the learning objective without disclosing sensitive

or privacy information. At the same time, since gradients point in the directions

of improvement, a combined gradient represents a unified direction of improvement

that is applicable across diverse datasets.

Nevertheless, this method holds the same challenges as sharing models. Deter-

mining the optimal weights for gradients from di↵erent nodes can be complicated.

Without much prior knowledge about each site, it can be hard to attain optimal

convergence speed and objective values.

For example, assume there are two sites only. Pseudo-code is shown in Algorithm

6.
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Algorithm 6 Sharing Gradient

1: procedure ShareGradients(�1, �2, T , �1, �2)
2: Input: Initial parameters �1, �2, total iterations T , learning rates �1, �2

3: Output: Updated parameters �1, �2

4: for t = 1 to T do

5: if t mod 2 6= 0 then

6: Compute gradient at �(t�1)
1 : rf1 = @

@�1
f(�(t�1)

1 )

7: Compute gradient at �(t�1)
2 : rf2 = @

@�2
f(�(t�1)

2 )

8: Update �(t)
1  �(t�1)

1 � �1(rf1 + �2rf2)
9: else

10: Compute gradient at �(t�1)
2 : rf2 = @

@�2
f(�(t�1)

2 )

11: Compute gradient at �(t�1)
1 : rf1 = @

@�1
f(�(t�1)

1 )

12: Update �(t)
2  �(t�1)

2 � �1(rf2 + �2rf1)
13: end if

14: end for

15: return �1, �2

16: end procedure

3.3.4 Model Fusion

For this particular method, we minimize the function that evaluates the model’s

fit to its own data (yj , Xj) while also integrating a regularization term. This

term imposes a penalty on the absolute value of the di↵erence between parameter

estimates of node j and those of its neighboring nodes, and sums them together.

The e↵ect of the penalty term is controlled by a coe�cient �, which determines how

significantly the deviations in parameter values a↵ect the overall objective function.

Specifically, for a specific node j,

�̂j = min
�j2Rd

f(yj,Xj,�j) + �

X

(i,j)2E

|�j � �̂i|. (3.5)

This method borrows ideas from Fused LASSO and Gossip averaging. Boyd

et al. (2005) introduces the concept of Gossip averaging, which involves how peers
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in a network can share information with each other without the need for a cen-

tral server. In this case, individual model parameters are shared with each other.

With information from other sites being aggregated, each site forms a fused LASSO

problem.

This method assumes similarity among peers that are connected to each other,

and works well when the network structure has strong relevance to the system being

analyzed, including social, sensor, or biological networks. However, the homogeneity

assumption can be potentially problematic as the assumption of similarity between

connected nodes may not always hold. When a network is dense or dynamically

changing, each node can have connections that are not necessarily informative.

For two sites, below is the pseudo code in Algorithm 7. Note that

r|�1 � �2| =

@|�1,i � �2,i|

@�1,i

�n

i=1

,

where

@|�1,i � �2,i|
@�1,i

=

8
>>>>>><

>>>>>>:

�1 if �2,i > �1,i,

1 if �2,i < �1,i,

[-1,1] if �2,i = �1,i.

3.3.5 Mutual Knowledge Transfer

This method is adapted from the paper ”Decentralized Federated Learning via Mu-

tual Knowledge Transfer”. Li et al. (2021) introduce a method to enhance Decen-

tralized Federated Learning in IoT systems. The idea is to share model parameters

between sites. At each iteration, we select random pairs of sites for communication.

Within each pair, one site is the sender and the other is the receiver. The sender
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Algorithm 7 Fusion in Federated Learning

1: procedure Fusion(�1, �2, T , �1, �2)
2: Input: Initial parameters �1, �2, total iterations T , learning rates �1, �2

3: Output: Updated parameters �1, �2

4: for t = 1 to T do

5: if t mod 2 6= 0 then

6: Compute the gradient for �(t�1)
1 : rf1 = @

@�1
f(�(t�1)

1 )

7: Compute the gradient of the penalty term: rP12 = r|�(t�1)
1 ��(t�1)

2 |
8: Update �(t)

1  �(t�1)
1 � �1(rf1 + �2rP12)

9: else

10: Compute the gradient for �(t�1)
2 : rf2 = @

@�2
f(�(t�1)

2 )

11: Compute the gradient of the penalty term: rP21 = r|�(t�1)
2 ��(t�1)

1 |
12: Update �(t)

2  �(t�1)
2 � �1(rf2 + �2rP21)

13: end if

14: end for

15: return �1, �2

16: end procedure

site takes its model to the receiver site, and gets prediction results using the receiver

site’s data. Both sites get their parameters updated through cross entropy loss and

the Kullback-Leibler (KL) divergence between the two predictions.

The novelty of this method comes from the incorporation of a KL divergence term

into the objective function. This term penalizes the discrepancies in predictions

between di↵erent sites. When combined with cross entropy loss, this algorithm

guides models towards better generalization across diverse datasets.

Suppose there are K clients in the network, and each possesses a private dataset

Dk = {(xk
i , y

k
i )}

Nk
i=1 where Nk is the number of data points for client k, k = 1, . . . , K,

x
k
i is the i-th data point of the k-th client, and y

k
i 2 {1, 2, . . . , C} is the corresponding

label. Now, at the beginning of the t-th round, S clients, with indices denoted as

IA
t = {k1

t , . . . , k
S
t }, are randomly selected to communicate with another S di↵erent

clients, indices denoted by IB
t = {kS+1

t , . . . , k
2S
t } in the dataset in a one-to-one

manner, with S being less than half the number of clients. Then, each of the clients
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in IA
t updates its local model �

kjt
t over its private data Dkjt

through Stochastic

Gradient Descent with local minibatch size B1 and learning rate ⌘0 by M passes:

�̃t
kjt = SGDB1,M(�

kjt
t ,Dkjt

), 8j = 1, . . . , S.

Then, each of the clients from IA
t transfers their updated model to the corre-

sponding client in IB
t . Namely, the k

j
t -th client transfers its model to the k

j+S
t -th

client, and the k
j+S
t -th client mixes both models and transfers knowledge to each

other. Specifically, the dataset Dkj+S
t

is split into L mini-batches of size B2 denoted

by Bl, l = 1, . . . , L. The k
j+S
t -th clients make predictions using their models �̃t

kjt

and �
kj+S
t

t . Because these two models are trained on di↵erent data, their prediction

results are di↵erent too. The loss function is defined in a way that combines the cross

entropy loss and KL divergence between the two model predictions. Specifically,

Loss1(�̃t
kjt
,Bl,P2,l) = LC(P1,l,Yl) +DKL(P2,l k P1,l), (3.6)

and

Loss2(�
kj+S
t

t ,Bl,P1,l) = LC(P2,l,Yl) +DKL(P1,l k P2,l), (3.7)

where

P1,l = {p1,l,z}B2
z=1 = model(Bl, �̃t

kjt ), 8l,

P2,l = {p2,l,z}B2
z=1 = model(Bl,�

kj+S
t

t ), 8l,

and

p1,l,z = [p11,l,z, p
2
1,l,z, ..., p

C
1,l,z],

p2,l,z = [p12,l,z, p
2
2,l,z, ..., p

C
2,l,z].
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In the loss function,

LC(P1,l) = �
B2X

z=1

h
T (ylz)logp1,l,z,

LC(P2,l) = �
B2X

z=1

h
T (ylz)logp2,l,z,

(3.8)

where h(y) is an one-hot vector with all zeros except the y-th elements being one.

Also,

DKL(P1,l||P2,l) =
B2X

z=1

CX

c=1

p
c
1,l,z log

p
c
1,l,z

pc2,l,z

,

DKL(P1,l||P2,l) =
B2X

z=1

CX

c=1

p
c
1,l,z log

p
c
1,l,z

pc2,l,z

,

(3.9)

which represents the KL divergence between the predictions.

One potential problem of this method is the privacy concern. This model is based

on the assumption that each site is willing to share its own model with others. At the

same time, each site is willing to o↵er feedback when other sites bring their models

in. To alleviate the privacy concerns and add more flexibility to the algorithms, we

can control the update directions. This can be either bidirectional, which means

both the sender and receiver get the updates, or unidirectional, which means either

the sender or the receiver gets the updates.

Below we present the algorithm in simplified version with two sites only. Pseudo

code is shown in Algorithm 8.

When dealing with a classification problem with two classes, assuming there are

two sites with parameters �t
1 and �t

2 at the t-th iteration. For a particular sample

z in minibatch l, if yz = 1:

LC(P1,l) = � log p11,l,z where p
1
1,l,z =

1

1 + exp(��tT
1 x)

.
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Algorithm 8 Mutual Knowledge Transfer

1: procedure MKT(�1, �2, T , M , N , D1, D2, �1, �2)
2: Input: Initial parameters �1, �2, total iterations T
3: Number of SGD passes M , number of minibatches N
4: Datasets D1 and D2, learning rates �1, �2

5: Output: Updated parameters �1, �2

6: for t in 1 : T do

7: if t mod 2 6= 0 then

8: �(t)
1 = SGDM(�(t�1)

1 , D1)
9: for i in 1 : N minibatches do

10: P1i = {p1,i,z}B2
z=1 = predict(D(i)

2 ,�(t)
1 )

11: P2i = {p2,i,z}B2
z=1 = predict(D(i)

2 ,�(t�1)
2 )

12: Compute L1, L2, D
KL
1 , D

KL
2

13: L1 = LC(P1,i) = �
PB2

z=1 h
T (yiz) logp1,i,z

14: L2 = LC(P2,i) = �
PB2

z=1 h
T (yiz) logp2,i,z

15: D
KL
1 = DKL(P2,i k P1,i) =

PB2

z=1

PC
c=1 p

c
2,i,z log

pc2,i,z
pc1,i,z

16: D
KL
2 = DKL(P1,i k P2,i) =

PB2

z=1

PC
c=1 p

c
1,i,z log

pc1,i,z
pc2,i,z

17: Loss1 = L1 +D
KL
1

18: Loss2 = L2 +D
KL
2

19: �(t)
1 = �(t)

1 � �1
@Loss1
@�

(t)
1

20: �(t)
2 = �(t�1)

2 � �2
@Loss2
@�

(t�1)
2

21: end for

22: else

23: �(t)
2 = SGDM(�(t�1)

2 , D2)
24: for i in 1 : N minibatches do
25: P1i = {p1,i,z}B2

z=1 = predict(D(i)
1 ,�(t�1)

1 )

26: P2i = {p2,i,z}B2
z=1 = predict(D(i)

1 ,�(t)
2 )

27: Compute L1, L2, D
KL
1 , D

KL
2

28: Loss1 = L1 +D
KL
1

29: Loss2 = L2 +D
KL
2

30: �(t)
1 = �(t)

1 � �1
@Loss1
@�

(t)
1

31: �(t)
2 = �(t�1)

2 � �2
@Loss2
@�

(t�1)
2

32: end for

33: end if

34: end for

35: return �1, �2

36: end procedure
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And if yz = 0:

LC(P1,l) = � log p01,l,z where p
0
1,l,z =

exp(��tT
1 x)

1 + exp(��tT
1 x)

.

If yz = 1, and we let p1 = p
1
1,l,z then

@LC

@�t
1

= � 1

p1
p1(1� p1)x = �(1� p1)x.

If yz = 0, then
@LC

@�t
1

=
1

1� p1
p1(1� p1)x = p1x.

Also,

DKL(P2,l||P1,l) = p
0
2,l,z log

p
0
2,l,z

p01,l,z

+ p
1
2,l,z log

p
1
2,l,z

p11,l,z

,

and the derivative is
@DKL

@�t
1

= (p11,l,z � p
1
2,l,z)x.

Now, When there are multiple classes, we have parameters ⇥
t
1 and ⇥

t
2. For

batch l, the loss function is defined as

Loss1(⇥
t
1,Bl,P2,l) = LC(P1,l,Yl) +DKL(P2,l||P1,l),

where

P1,l = {p1,l,z}B2
z=1 = model(Bl,⇥

t
1),

p1,l,z = [p11,l,z, p
2
1,l,z, ..., p

C
1,l,z],

and

LC(P1,l) = �
B2X

z=1

h
T (ylz)logp1,l,z.
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For a particular data point z and minibatch l, suppose the jth element of yz is 1

and ✓j is the jth row of ⇥t
1, then

LC = � log pj1,l,z = � log
exp(zj)PC
k=1 exp(zk)

where zj = ✓
T
j x.

Therefore,
@LC

@✓j
= �(1� p

j
1,l,z)x.

@LC

@✓k
= p

k
1,l,zx.

For non-binary classification at a particular z and l,

DKL(P2,l||P1,l) =
MX

m=1

p
m
2,l,z log

p
m
2,l,z

pm1,l,z

,

and the derivative is
@DKL

@✓j
= (pj1,l,z � p

j
2,l,z)x.

3.4 Optimization Approaches

3.4.1 Gradient Descent

Gradient Descent is an optimization algorithm used across Machine Learning to

minimize the loss function associated with a particular model. The fundamental

principle behind Gradient Descent is to iteratively adjust the model’s parameters

to reduce the value of the loss function. By computing the gradient of the loss

function, a step is made in the opposite direction of the gradient. In this way,

Gradient Descent can find the set of parameters that minimizes the loss, e↵ectively

training the model. Specifically, to minimize a loss function L, the algorithm adjusts
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the parameter vector � iteratively to find the minimum of L. Starting with an initial

guess �0, the algorithm updates � at each iteration as follows:

�new = �old � ↵r�L(�old), (3.10)

where ↵ denotes the learning rate, a hyperparameter that controls the size of the

steps taken towards the minimum. This update step is repeated until convergence,

which is indicated by very small changes in � or L(�).

However, Gradient Descent relies on the entire dataset for each update, which

makes it computationally expensive for large datasets. The algorithm of Gradient

Descent is shown in Algorithm 9.

Algorithm 9 Gradient Descent

1: procedure GradientDescent(L,↵)
2: Input: Loss function L, learning rate ↵

3: Output: Optimized parameters �
4: Initialize parameters �
5: while convergence criteria not met do
6: Compute the gradient of L at �: g  r�L(�)
7: Update �: �  � � ↵ · g
8: end while

9: return �
10: end procedure

3.4.2 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a variant of the traditional Gradient Descent

algorithm designed to address the computational challenges posed by large datasets.

Instead of calculating the gradient based on the entire dataset at every step, SGD

updates the model’s parameters using only a small batch of samples at a time. This
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modification is described mathematically by the update rule:

�new = �old � ↵r�Lbatch(�old), (3.11)

where ↵ is the learning rate, andr�Lbatch represents the gradient of the loss function

L computed only over the current batch.

This approach significantly reduces the computational burden per iteration, lead-

ing to faster cycles. Although this method introduces more noise into the parameter

updates due to the variability of data in each batch, this randomness can be benefi-

cial. It helps the algorithm escape local minima and can lead to faster convergence in

practice, particularly in complex and high-dimensional loss landscapes. This makes

SGD especially suitable for large-scale and high-dimensional data applications. Al-

gorithm 10 shows the pseudo-code of Stochastic Gradient Descent.

Algorithm 10 Stochastic Gradient Descent

1: procedure StochasticGradientDescent(L,↵, D)
2: Input: Loss function L, learning rate ↵, dataset D
3: Output: Optimized parameters �
4: Initialize parameters �
5: while convergence criteria not met do
6: Shu✏e dataset D
7: for each batch (xbatch, ybatch) in D do

8: Compute gradient for batch: g  r�L(�; xbatch, ybatch)
9: Update �: �  � � ↵ · g

10: end for

11: end while

12: return �
13: end procedure
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3.4.3 Fixed and Decay Step Size

Fixed step size in the context of optimization refers to using a constant learning

rate throughout the entire training process. This approach simplifies the implemen-

tation of algorithms like Gradient Descent, as the learning rate parameter remains

unchanged across iterations. However, the biggest drawback of fixed step size is its

inflexibility. Although it can be very e↵ective for problems where the loss function

is relatively straightforward, it often runs into convergence problems when the loss

function is more complex in landscapes. It does not adapt to the changing gradients

or the topology of the loss function, which can lead to gradient overshoot, sub-

optimal convergence speeds, or convergence to sub-optimal points. The challenge

with a fixed step size is choosing a value that is neither too large nor too small,

which will either overshoot the gradient or lead to excessively slow convergence.

Decay step size, also known as learning rate decay, is an adaptive approach that

modifies the learning rate over time during the training of models. This method

normally starts with a higher learning rate, which helps to approach the vicinity of

the minimum at a faster speed. Later on, the learning rate is adjusted to lower rates

gradually, which helps to converge to the minimum more precisely. There are various

decay schemes in use, such as time-based decay and exponential decay, each with its

own strategy for reducing the learning rate according to a predefined schedule. For

time-based decay, the learning rate decreases linearly over time. Mathematically, it

can be represented by:

↵ =
↵0

1 + kt
,

where ↵0 is the initial learning rate, k is a decay rate, and t is the time. Exponential
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decay reduces the learning rate exponentially:

↵ = ↵0 · e�kt
,

where ↵0 is the initial learning rate, k is a decay constant, and t denotes the epoch

number. Among all the methods, some of them decay a lot faster than others, and

the need for decaying speed is case by case depending on the optimization problem.

This flexibility helps in solving the issues associated with a fixed step size, providing

a more dynamic way to adapt to the loss function’s landscape.

3.4.4 Adaptive Moment Estimation (ADAM) Optimization

Adaptive Moment Estimation (ADAM), first proposed by Kingma and Ba (2014), is

an advanced optimization algorithm that combines the concepts of momentum and

learning rate decay. This method o↵ers an adaptive learning rate for each parameter.

It calculates a moving average of the gradients and the squared gradients, and then

uses these moments to adjust the learning rates individually for each iteration.

Mathematically, the first step is to compute the gradient gt of the loss function with

respect to the parameters at time step t. Then we proceed with the following steps:

Update the biased first moment estimate:

mt = �1 ·mt�1 + (1� �1) · gt.

Update the biased second moment estimate:

vt = �2 · vt�1 + (1� �2) · g2t .
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Correct bias in the first moment:

m̂t =
mt

1� �t
1

.

Correct bias in the second moment:

v̂t =
vt

1� �t
2

.

Update the parameters:

�  � � ↵
m̂tp
v̂t + ✏

.

The parameters �1 and �2 control the decay rates of these moving averages. They

are typically set close to 1, such as 0.99 or 0.999, ↵ is the initial learning rate, and

✏ is a small constant added to improve numerical stability. Essentially, ADAM will

choose the most suitable step size for each iteration, which allows for larger updates

for infrequent parameters and smaller updates for frequent ones. Because of this

nature, convergence is stabilized under ADAM, making it robust to the choice of

initial step size and reducing the need to search for optimal parameters. As a result,

ADAM has gained popularity among Machine Learning problems with large datasets

and high-dimensional spaces. Its e�ciency and e↵ectiveness demonstrate strong

performance in both convergence speed and achieving lower loss values. Algorithm

11 shows the pseudo-code of ADAM.
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Algorithm 11 ADAM Optimization

1: procedure ADAM(L,↵, �1, �2, ✏)
2: Input: Loss function L, initial learning rate ↵

3: Decay rates �1 and �2, stabilizing term ✏

4: Output: Optimized parameters �
5: Initialize parameters �
6: Initialize first moment m0  0, second moment v0  0
7: Initialize timestep t 0
8: while convergence criteria not met do
9: t t+ 1

10: Compute gradient: gt  r�L(�)
11: Update first moment: mt  �1 ·mt�1 + (1� �1) · gt
12: Update second moment: vt  �2 · vt�1 + (1� �2) · g2t
13: Correct bias in first moment: m̂t  mt/(1� �

t
1)

14: Correct bias in second moment: v̂t  vt/(1� �
t
2)

15: Update parameters: �  � � ↵ · m̂t/(
p
v̂t + ✏)

16: end while

17: return �
18: end procedure

3.5 Transmission Topology

We study transmission topology to answer the question: How can knowledge dis-

semination be made more e�cient? There are di↵erent ways of constructing the

network, and sites will communicate based on the network structure.

3.5.1 Fully Connected Network

For a fully connected network, we assume every node is connected to every other

node in the network. At every iteration, any pair of nodes can transfer information

to each other. An example of a fully connected network is shown in Figure 3.3.

Regarding the communication algorithm, for each epoch, we randomly select n pairs

of sites to update, with one of them being the sender and the other being the receiver.

Knowledge gets transferred from sender to receiver. The detailed algorithm is shown
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in Algorithm 12.

Figure 3.3: Fully connected network illustration.

Algorithm 12 Random Update

1: procedure RandomUpdate(T , n sites, n, �)
2: Input: Total epochs T , number of sites n sites, number of pairs n
3: Parameter matrix � with vectors for each site
4: Output: Updated parameter matrix �
5: Initialize index list: ind list(range(n sites))
6: for t = 1 to T do

7: for i = 1 to n do

8: Shu✏e index list: random.shu✏e(ind)
9: Select the first two unique indices for model transfer

10: Call MKT for model transfer: MKT(�[ind[0]],�[ind[1]])
11: end for

12: end for

13: return �
14: end procedure

3.5.2 Chain Network

Chain means that we randomly select n sites and connect them into a chain. The

updating order is determined by the chain that is randomly generated in each iter-
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ation. For each epoch, information sharing always starts from the head of the chain

and gradually propagates to the tail of it. An illustration of this update is shown in

Figure 3.4. The detailed algorithm is shown in Algorithm 13.

Figure 3.4: Chain network illustration.

Algorithm 13 Chain Update

1: procedure ChainUpdate(T , n sites, n, �)
2: Input: Total epochs T , number of sites n sites, number of selected sites n
3: Parameter matrix � with vectors for each site
4: Output: Updated parameter matrix �
5: Initialize index list: ind list(range(n sites))
6: for t = 1 to T do

7: Shu✏e index list for random chain: random.shu✏e(ind)
8: for i = 1 to n� 1 do

9: Call MKT for model transfer between vectors: MKT(�[ind[i �
1]],�[ind[i]])

10: end for

11: end for

12: return �
13: end procedure

3.5.3 Star Network

Lastly, for Star, it is a centralized updating algorithm. Each epoch, there is a node

that acts as the center of all nodes. This node is always the sender of information,
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and other nodes act as receivers sequentially. For each iteration, the center node

receives information from one other node and updates its parameters. A plot of the

Star update is shown in 3.5. The detailed algorithm is shown in Algorithm 14.

Figure 3.5: Star network illustration.

Algorithm 14 Star Update

1: procedure StarUpdate(T , n sites, �)
2: Input: Total epochs T , number of sites n sites

3: Parameter matrix � with vectors for each site
4: Output: Updated parameter matrix �
5: for t = 1 to T do

6: Initialize index list: ind list(range(n sites))
7: Shu✏e index list to randomize central node: random.shu✏e(ind)
8: Set central node (sender): central  ind[0]
9: for i = 1 to n sites� 1 do

10: Receive updates from central node: MKT(�[central],�[ind[i]])
11: end for

12: end for

13: return �
14: end procedure
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3.6 Toy Example

In this simulation, we aim to see how each method performs when we have a re-

gression problem and each site gets partial information of the regression. For this

setup, the true model is a quadratic model y = �0 + �1x+ �2x
2 + ✏. We set �0 = 3,

�1 = �2, �2 = 4 and ✏ ⇠ N(0, 3). There are two sites, each with 30 rows: the X

value of site 1 is generated from Normal(0, 0.5); the X value of site 2 is generated

from Normal(3, 0.5).

Figure 3.6 shows the data for each site, as well as the fitted curves from Ordinary

Least Squares (OLS) and LASSO regression. From the plots, OLS fails to capture

the real trend in the dataset, whereas LASSO corrects it by some amount. The true

model is a quadratic curve that concaves up. For Site 1, both OLS and LASSO

predict a concave down pattern. For Site 2, OLS is concave down but LASSO

corrects the concavity.

From panel (a) of 3.7, Subgradient Descent (Fusion method) has the lowest

RMSE. MKT and Shared Gradient methods have similar performance, but still

significantly better than taking the average of the two OLS models. Moving on to

panel (b), almost all methods successfully predict the concavity of the curve except

for the simple average. At the same time, the curve of Subgradient Descent is the

closest to the true model.
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(a) Fitted curves for site 1 (b) Fitted curves for site 2

Figure 3.6: Data and fitted curves for each site.

(a) RMSE results (b) Fitted curves

Figure 3.7: RMSE and fitted curves for di↵erent methods.

3.7 Application on MNIST Data

The MNIST dataset, a cornerstone in Machine Learning, is a large database of

handwritten digits used extensively for training and testing image processing sys-

tems. It consists of 60000 training images and 10000 test images, each a 28 by 28

gray-scale depiction of digits 0 through 9. This dataset has become a benchmark

for evaluating Machine Learning algorithms, providing a straightforward challenge

for methods in image classification. For example, it is often the first dataset used

to demonstrate the e↵ectiveness of techniques ranging from simple linear classifiers
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to complex Deep Learning models. Its simplicity and comprehensive coverage of

variations in handwriting make it an ideal starting point for experimenting with

new algorithms and teaching Machine Learning concepts. In this section, MKT is

defined as updating the receiver only, unless specified otherwise.

3.7.1 Binary Classification with Distribution Shift

We consider a binary classification problem. Specifically, we only selected 3s and 5s

from the MNIST dataset. We created two sites, with the first site containing 200

rows with 95 percent 3s and 5 percent 5s, and the other site containing 100 rows

with 2 percent 3s and 98 percent 5s.

For the testing dataset, we have perfectly balanced data with equally distributed

3s and 5s. The goal is to see how information sharing will a↵ect the testing perfor-

mance of individual models.

Figure 3.8 shows the change in accuracy for this simulation across di↵erent meth-

ods. From the plot, we can see that the average model produces an accuracy of

around 90 percent, which is already significantly higher than local estimation, which

is near 65 percent for each site. On the other hand, Gradient Sharing, Subgradient

Descent, and the MKT method outperform the simple average, with Subgradient

Descent achieving the highest accuracy among all methods.

3.7.2 Classification with Partial Information

For this simulation, we consider multiple digits from the dataset. Specifically, we

let the first dataset contain digits 0 and 4, while the second contains 0 and 8. The

reason for doing so is that we want to see whether information can be transferred

when part of the data is missing. In particular, site 1 has 200 rows, with 120 of 0s
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Figure 3.8: Accuracy for two sites with distribution shift.

and 80 of 4s, whereas site 2 has 100 rows, with 60 of 0s and 40 of 8s. The testing

dataset has around 3000 rows with a mixture of 0s, 4s, and 8s.

Figure 3.9 shows the change in accuracy for this simulation across di↵erent meth-

ods. For local estimation, each site has an accuracy of around 65 percent. This is

reasonable because the testing data is very balanced and each site by itself only

contains 2 out of the 3 digits. By simply taking the average of the models, pre-

dicting accuracy is not improved by a significant amount. However, MKT, Sharing

Gradient, and Subgradient Descent can all bump up the prediction accuracy, with

Subgradient Descent improving the accuracy to nearly 90 percent.
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Figure 3.9: Accuracy for two sites with partial information.

3.7.3 Classification with Multiple Sites

10 Sites

For this simulation, we have 10 sites in total. Each site has 100 rows of data, with

one of the digits being dominant. Precisely, the dominant digit has 82 rows, and

the rest of the digits have 2 rows each. For the 10 sites case, sites 1 to 9 have their

site number as the dominant digit, and site 10 has 0 as its dominant digit. For

testing data, the first case involves a balanced dataset of 5000 rows, with every digit

evenly distributed. This corresponds to consensus testing, which means each local

dataset contains part of the information in the testing data, and they learn from

each other to get the missing pieces. The second case involves testing data with

dominant 8s. However, 8 constitutes 60 percent of all the data, and the rest of the

digits are about 4 percent each. This corresponds to local testing, which means the

local data is representative of the population, but because of limited samples, we
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need to leverage information from other sites to adjust the local model.

For estimation with local data only, when the testing data is balanced, each site

has a prediction accuracy of less than 10 percent. Averaging the models from each

site does not really help with prediction accuracy. From Figure 3.10 panel (a), we

can see that all these methods can perform significantly better than simply taking

an average. Among these methods, Sharing Gradient and Fusion Method can boost

performance to nearly 40 percent, whereas MKT with receiver only can increase it

to 50 percent. When updating the sender at the same time, MKT can achieve an

accuracy as high as about 75 percent.

When the testing data has a local pattern, we only look at the testing accuracy

of the 8th site. The pattern of di↵erent methods is very similar, but the di↵erence

in accuracy is smaller than in the previous setup. Almost all methods can boost the

accuracy to over 70 percent, with MKT Both Directions being able to achieve an

accuracy of over 80 percent.

(a) Consensus testing data (b) Local testing data

Figure 3.10: Accuracy for 10 sites with dominant digit.
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100 Sites

For this simulation, we have 100 sites in total. Each site has 100 rows of data, with

one of the digits being dominant. Precisely, the dominant digit has 82 rows and

the rest of the digits have 2 rows each. For this case, sites 1 to 9 have their site

number as the dominant digit, and site 10 has 0 as its dominant digit. For sites

from 11 to 100, the remainder of dividing by 10 is the dominant digit. For testing

data, the first case is we have a balanced dataset of 5000 rows, and every digit is

evenly distributed. The second case is we have biased testing data with dominant

8s. Similar to the last experiment, 8 constitutes only 60 percent of all the data and

the rest of the digits are about 4 percent each.

For estimation with local data only, when the testing data is balanced, each site

has a prediction accuracy of less than 10 percent. Averaging the models from each

site does not really help with prediction accuracy. From Figure 3.11 panel (a), we

can see that all these methods can do significantly better than simply taking an

average. The major di↵erence between 100 sites and 10 sites is that convergence

becomes slower when there are more sites, as it takes more iterations for each site

to be updated.

When the testing data is the second case, which is dominated by 8s, we only

look at the testing accuracy of the 8th, 18th, 28th, ..., 98th sites. The pattern is

very similar to that of the 10 sites.

3.7.4 Network E�ciency

In this simulation study, we examine network e�ciency by monitoring convergence

speed under di↵erent scenarios. We focus on the MKT algorithm, with an assump-

tion of a fully connected network.
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(a) Consensus testing data (b) Local testing data

Figure 3.11: Accuracy for 100 sites with one dominant digit.

We explore three di↵erent ways of communication. The first one is Random

communication. For each epoch, we randomly select 9 pairs of sites to update, with

one of them being the sender and the other one being the receiver. The second

method is through a Chain. We randomly select 10 sites and connect them into a

Chain. The updating order is determined by the Chain that is randomly generated

in each iteration. For each epoch, information sharing always starts from the head

of the Chain and gradually propagates to the tail of it. The last one is Star. There

is a node that acts as the center of all nodes. This node is always the sender of

information, and other nodes act as receivers sequentially. For each iteration, the

center node receives information from one other node and updates its parameters.

We explore these three network structures on two di↵erent setups. One is up-

dating both senders and receivers, and the second is updating receivers only. From

Figure 3.12, from panel (a), we can see that Random connection has the best con-

vergence speed and accuracy, and Chain and Star are the next ones. From panel

(b), when updating receivers only, Random and Star have the same convergence

speed and accuracy, whereas Chain is slightly worse.



97

(a) MKT with bidirectional update (b) MKT with receiver update

Figure 3.12: Network e�ciency for 100 sites with one dominant digit.

3.8 Theoretical Results

Consider the setup with two sites, each site running a logistic regression problem.

Define �t
1 and �t

2 as the coe�cients of site 1 and site 2 at the t-th iteration. Consider

the loss function:

L(�t
1,B1,p2) = LC(p1,y2) +DKL(p2||p1), (3.12)

where:

p1 2 Rn
, {p1,i} = p(y1,i = 1|�t

1),

p2 2 Rn
, {p2,i} = p(y1,i = 1|�t

2),

LC(p1,y1) = �
nX

i=1

h(y1,i) · p1,i,

DKL(p2||p1) =
nX

i=1

✓
(1� p2,i) log

1� p2,i

1� p1,i
+ p2,i log

p2,i

p1,i

◆
.

Without loss of generality, we prove the convergence of �t
1 under the Mutual

Knowledge Transfer framework when site 1 is the receiver.



98

Lemma 3.8.1. Given data B1 = {X1,y1}, let L(�t
1) = L(�t

1,B1,p1), then kdL(�
t
1)

d�1
k2

is bounded.

Proof. Given y1,i 2 {0, 1} 8i:

p1,i =
1

1 + exp(��T
1 xi)

,

dL(�t
1)

d�t
1

= �[(y1 � p1) + (p1 � p2)
T ]X2

= (2p1 � p2 � y1)
TX1.

Since p1,i, p2,i 2 [0, 1] 8i,

2p1,i � p2,i � y1,i 2 [�2, 2] 8i.

Therefore,

kdL(�
t
1)

d�t
1

k2  4
X

i,j

x
2
ij.

Theorem 3.8.2. Let R,G > 0. Let T denotes number of iterations of Stochastic

Gradient Descent. Suppose �⇤
1 (optimum) exists. We use dL to denote dL((�t

1))
d�t

1

and d̃L to denote the direction of update for a random batch. Assume E(k�1
1 �

�⇤
1k2)  R

2, E(d̃L) = dL and E(kd̃Lk2)  G
2. Consider the iterates of the Mutual

Knowledge Transfer method:

�t+1
1 = �t

1 � ⌘d̃L. (3.13)
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The iterates satisfy

E

"
L

 
1

T

TX

t=1

�t
1

!
� L(�⇤

1)

#
 RGp

T
. (3.14)

Proof. Since LC(p1) is convex w.r.t. �1, DKL(p2||p1) is convex, then we can say

L(�1) = LC(p1) +DKL(p2||p1) is convex.

E
⇥
k�t+1

1 � �⇤
1k22 | �t

1

⇤
= E

h
k�t

1 � ⌘d̃L� �⇤
1k22 | �t

1

i

= E

h
k�t

1 � �⇤
1k22 � 2⌘d̃L

T �
�t
1 � �⇤

1

�
+ ⌘

2kd̃Lk22 | �t
1

i

 k�t
1 � �⇤

1k2 � 2⌘
⇥
L(�t

1)� L(�⇤
1)
⇤
+ ⌘

2
E

h
kd̃Lk22 | �t

1

i
.

By law of total expectation,

0  E
⇥
E
⇥
k�t+1

1 � �⇤
1k22 | �t

1

⇤⇤
= E

⇥
k�t+1

1 � �⇤
1k22
⇤

 E
⇥
k�t

1 � �⇤
1k2
⇤
� 2⌘

⇥
E
�
L(�t

1)
�
� L(�⇤

1)
⇤
+ ⌘

2
E

h
kd̃Lk22

i

 E
⇥
k�1

1 � �⇤
1k2
⇤
� 2⌘

TX

k=1

⇥
E
�
L(�k

1)
�
� L(�⇤

1)
⇤
+ ⌘

2
tG

2
.

Rearranging the terms:

2⌘
tX

k=1

⇥
E
�
L(�k

1)
�
� L(�⇤

1)
⇤
 E

⇥
k�1

1 � �⇤
1k2
⇤
+ T⌘

2
G

2
.
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Since E [k�1
1 � �⇤

1k2] = R
2, dividing both sides by 2⌘T we have

E

"
L

 
1

T

TX

k=1

�k
1

!
� L (�⇤

1)

#
 R

2

2⌘T
+

G
2
⌘

2
.

We want to minimize RHS w.r.t ⌘

d

d⌘

✓
R

2

2⌘T
+

G
2
⌘

2

◆
= � R

2

2⌘2T
+

G
2

2
.

Set derivative to 0 and solve for ⌘, we have

0 = � R
2

2⌘2T
+

G
2

2
R

2

2⌘2T
=

G
2

2

⌘
2 =

R
2

TG2

⌘̂ =
Rp
TG

.

Plug it back into the original solution:

E

"
L

 
1

T

TX

k=1

�k
1

!
� L (�⇤

1)

#
 R

2

2 Rp
TG

T
+

G
2 Rp

TG

2

=
R

2

2R
p
T

G

+
GR

2
p
T

=
GR

2
p
T

+
GR

2
p
T

=
GRp
T
.
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3.9 Discussion

Decentralized Federated Learning has gradually become a popular topic as privacy

issues become more prominent in Machine Learning. In Decentralized Federated

Learning problems, di↵erent sites transfer information to each other, without the

need for a central server. Two of the major questions are what to share and how

to share. In this project, we explore di↵erent ways of sharing information between

sites and compare their respective performances. Starting from local estimation

only, we explore the methods of data aggregation, sharing gradients, sharing model

parameters, and Mutual Knowledge Transfer. We explore the performances of each

method under di↵erent scenarios, such as distribution shifts, partial information, as

well as consensus testing and local testing cases. We conclude that sharing models

typically work the best, as the Fusion method and MKT normally outperform other

methods. Additionally, we explore di↵erent transmission methods including Ran-

dom, Chain, and Star. We show that using the same model, di↵erent transmission

topologies can lead to di↵erent e�ciencies.
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J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon.

Federated learning: Strategies for improving communication e�ciency, 2016.

K.Tam, L.Li, B.Han, C.Xu, and H.Fu. Federated noisy client learning. IEEE

Transactions on Neural Networks and Learning Systems, PP, 2023. doi: 10.1109/

TNNLS.2023.3336050. Epub ahead of print.

A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar. Fully decentralized federated

learning. In Third Workshop on Bayesian Deep Learning (NeurIPS), 2018.

L. Landrieu and G. Obozinski. Cut pursuit: fast algorithms to learn piecewise

constant functions on general weighted graphs. HAL preprint, 2015.

J. Le, X. Lei, N. Mu, H. Zhang, K. Zeng, and X. Liao. Federated continuous learning

with broad network architecture. IEEE Transactions on Cybernetics, 2021.



107

C. Li and H. Li. Network-constrained regularization and variable selection for

analysis of genomic data. Bioinformatics, 24(9):1175–1182, 2008. doi: doi:

10.1093/bioinformatics/btn081.

C. Li, G. Li, and P. K. Varshney. Decentralized federated learning via mutual knowl-

edge transfer. IEEE Internet of Things Journal, 2021. doi: 10.1109/JIOT.2021.

3078543. Accepted for publication, content may change prior to final publication.

S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen. Learning to detect malicious

clients for robust federated learning. ArXiv, 2020.

S. Li, E. Ngai, F. Ye, and T. Voigt. Auto-weighted robust federated learning with

corrupted data sources. ACM Transactions on Intelligent Systems and Technology,

13(5):1–20, June 2022. ISSN 2157-6912. doi: 10.1145/3517821. URL http:

//dx.doi.org/10.1145/3517821.

Z. Li and L. Chen. Communication-e�cient decentralized zeroth-order method on

heterogeneous data. In 2021 13th International Conference on Wireless Commu-

nications and Signal Processing (WCSP), pages 1–6, 2021.

K. G. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis. Machine learning

in agriculture: A review. Sensors (Basel, Switzerland), 18, 2018. doi: 10.3390/

s18082674.

F. Liu, M. Li, X. Liu, T. Xue, J. Ren, and C. Zhang. A review of federated meta-

learning and its application in cyberspace security. Electronics, 12(15):3295, 2023.

A. Manglik, J. Singh, and M. K. Tiwari. A comprehensive review of the literature on

machine learning-based road safety prediction techniques for internet of vehicles



108

(iov)-enabled vehicles. Tuijin Jishu/Journal of Propulsion Technology, 2023. doi:

10.52783/tjjpt.v44.i4.2030.

E. T. Mart́ınez Beltrán et al. Decentralized federated learning: Fundamentals, state

of the art, frameworks, trends, and challenges. IEEE Communications Surveys &

Tutorials, 25(1):2983–3013, 2022.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas. Communication-

e�cient learning of deep networks from decentralized data. In A. Singh and

J. Zhu, editors, Proceedings of the 20th International Conference on Artificial

Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Re-

search, pages 1273–1282. PMLR, 20–22 Apr 2017. URL http://proceedings.

mlr.press/v54/mcmahan17a.html.

A. Nedic. Asynchronous broadcast-based convex optimization over a network. IEEE

Transactions on Automatic Control, 56(6):1337–1351, Sep 2010.
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