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ABSTRACT 

 

 Through a series of three manuscripts, this dissertation explores how STEM-

related hands-on instructional activities can be use to support students’ understanding of 

algebra and geometry. For the first manuscript, fifth-grade students participated in a 

digital-fabrication augmented surface area unit in which they fabricated their own 

rectangular prisms using computer-aided design software. Digital fabrication provided 

students with the opportunity to develop a conceptual understanding of surface area, as 

well as two problem solving strategies (Keeping Track and Seeing What’s Not Visible). 

For the second and third manuscripts, students experimentally derived Ampere’s Law, 

which relates three independent variables (number of wraps of wire, length, and electric 

current) to a single dependent variable (magnetic field strength generated by a solenoid). 

Rising eighth-grade students participated in a four-part version of the Deriving Ampere’s 

Law activity in which they developed intermediate models analyzing each independent 

variable separately before developing the final model. Pre-service mathematics teachers 

and pre-service science teachers participated in a holistic version of the Deriving 

Ampere’s Law activity in which they were asked to only derive the final model. Both the 

rising eighth-grade students and the pre-service teachers were able to successfully derive 

Ampere’s Law and their participation in the activity revealed different modeling 

strategies and applications of prior knowledge. 
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CHAPTER 1 

Exploring the Use of STEM-Related Hands-On Instructional Activities to Support 

Students’ Understanding of Algebra and Geometry 

 

In their review of the literature regarding the educational effectiveness of 

animations and simulations, Plass, Homer, and Hayward (2009) suggest eleven 

principles, classified as either visual design principles or interaction design principles, to 

improve the design of dynamic visualizations to support student learning. While these 

principles were suggested specific to multimedia learning, their applications can be 

extended to the design and integration of manipulatives in the teaching and learning of 

mathematics, specifically the principles of task appropriateness (alignment between the 

use of manipulatives and the specified learning goals), learner control of pacing, and 

manipulation of content. This dissertation explores the effectiveness of using hands-on 

instructional activities to support students’ understanding of mathematics. The 

instructional activities presented in these three manuscripts are aligned with the above 

principles and each of the papers discusses the learning of mathematics in a STEM-

related (science, technology, engineering, mathematics) environment where students 

manipulated artifacts to develop deeper understandings of algebra and geometry. 

The first paper explored the implementation of a digital fabrication-augmented 

unit to support fifth-grade students’ understanding of surface area. Digital fabrication is 

defined as “the process of translating a digital design developed on a computer into a 
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physical object” (Berry et al., 2010, p. 168). Students regularly used multiple 

technologies (i.e., computer-aided design software, die cutters) to fabricate prisms. 

Having access to both virtual and physical manipulatives not only supported students’ 

development of a conceptual understanding of surface area, but it also facilitated 

students’ development of two important problem solving strategies when solving surface 

area tasks (Keeping Track and Seeing What’s Not Visible). 

The second and third papers explored students’ strategies when developing a 

mathematical model relating three independent variables to a single dependent variable. 

Students were asked to experimentally derive Ampere’s Law, which relates the magnetic 

field strength generated by a solenoid to the number of wraps of wire, solenoid length, 

and electric current. The number of wraps of wire and electric current is directly related 

to magnetic field strength, while the solenoid length is inversely related to magnetic field 

strength. The solenoid is an integral component in a number of historic and modern-day 

inventions and technologies (e.g., speaker, telephone, electric guitar pickups). 

There are two versions of the Deriving Ampere’s Law activity. For the second 

paper, rising eighth-grade students completed a four-part version of the activity where 

they were asked to develop models relating each independent variable to the dependent 

variable prior to developing the final model. These students were able to apply their prior 

knowledge from their algebra coursework to develop their models. For the third paper, 

pre-service mathematics teachers and pre-service science teachers completed a more 

holistic version of the activity where the only direction given was to develop the final 

model. While there were similarities in the pre-service teachers’ modeling strategies, 
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their difficulties with the activity were influenced by their beliefs about the nature of 

science and mathematics in schools. 

Designing Hands-On Instructional Activities 

All three papers involved the use of manipulatives to support students’ 

understanding of mathematics. In the first paper, students had access to physical and 

virtual manipulatives through the design and construction of rectangular prisms using 

computer-aided design software and die cutters. In the second and third papers, students 

were provided with a set of solenoids, a variable power supply, and a magnetic field 

sensor. While a solenoid does not necessarily align with the traditional definition of 

mathematical manipulatives, students needed to measure the different parameters of the 

solenoids in order to complete the Deriving Ampere’s Law activity. Instead of using 

traditional measurement tools (e.g., ruler, protractor), students used a magnetic field 

sensor to measure the strength of the different magnetic fields. The use of manipulatives 

was task appropriate because they were purposefully selected to support students’ 

learning of mathematics concepts (i.e., surface area, direct/inverse variation, 

mathematical modeling). The structure of the instructional activities allowed for learner 

control of pacing and manipulation of content because the students were given control of 

the use of the manipulatives (e.g., constructing their own prisms, deciding how to manage 

data collection) and the manipulatives provided them with the opportunity to interact with 

the content (e.g., varying parameters when fabricating prisms, manipulating independent 

variables to identify relationships). 

The instructional activities developed for this dissertation are also consistent with 

the findings in National Research Council’s How People Learn (Donovan, Bransford, & 
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Pellegrino, 1999). These findings recommend three practices to support and facilitate 

student learning. First, students’ prior knowledge and preconceptions need to be engaged. 

Second, students need to develop both a foundation of factual knowledge and a 

conceptual framework to understand how facts and ideas are related within a given 

subject area and have the ability to organize their knowledge so that it can be retrieved 

and applied. Third, students need to be provided with opportunities to develop the 

necessary metacognitive strategies to allow them to define their own learning goals and 

monitor their own progress. These insights about how students learn should be used to 

inform teaching practices. The three instructional activities developed for this dissertation 

attended to students’ prior knowledge (e.g., relating two-dimensional area measurement 

to surface area, recognizing slope and linearity when analyzing data, applying their 

understanding of direct and inverse variation when developing complex mathematical 

models) and how this knowledge could be applied to solve new problems. The 

instructional activities also required students to regularly monitor their own progress. 

Learning Mathematics in a STEM-Related Environment 

The National Council of Teachers of Mathematics (NCTM) has advocated in 

favor of the importance of helping students make connections between mathematics and 

other disciplines. In its Principles and Standards for School Mathematics (2002), NCTM 

recommends “school mathematics experiences at all levels should include opportunities 

to learn about mathematics by working on problems arising in contexts outside of 

mathematics” (pp. 65-66). And while there are applications of mathematics in a variety of 

subject areas, the NCTM Connections Standard specifies the value of connecting 

mathematics and science since “the link between mathematics and science is not only 
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through content but also through process” (p. 66). The scientific process “can inspire an 

approach to solving problems that applies to the study of mathematics” (p. 66). NCTM 

(2002) also recommends six principles for school mathematics; one of these six 

principles is the Technology Principle. According to this principle, “Technology is 

essential in teaching and learning mathematics; it influences the mathematics that is 

taught and enhances students’ learning” (p. 24). Exploring how science, engineering, and 

technology tasks can be utilized to support students’ understanding of mathematics 

closely aligns with the recommendations outlined by NCTM. 

The three papers in this dissertation provide examples of learning mathematics in 

a STEM-related environment. In the first paper, the primary goal was to support students’ 

understanding of surface area. The secondary goal of the unit was to introduce students to 

manufacturing and design. Throughout the unit, students used several technologies (e.g., 

computer-aided design software, die cutters) that are often used in engineering design and 

manufacturing. In the second and third papers, students participated in a truly integrated 

STEM activity. The Deriving Ampere’s Law activity incorporates both science 

(electromagnetism) and mathematics (direct and inverse variation, modeling) content. In 

order to measure the magnetic field strength of the different solenoids, students use a 

variety of technologies (variable power supply, sensors, data collection software). The 

final model they develop can then be used when designing and manufacturing solenoids 

to achieve a specified goal (engineering). 

While the benefit of using manipulatives to support students’ understanding of 

mathematics has been well documented, this dissertation provides empirical evidence of 

how to utilize Plass et al.’s (2009) principles for effective design of visualizations when 
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developing hands-on instructional activities to support students’ learning of algebra and 

geometry. This dissertation also provides examples of how STEM-related activities can 

be used to support mathematics instruction. In their Principles to Action (2014), the 

National Council of Teachers of Mathematics outlined several challenges to improve 

mathematics achievement for all students in the United States. One of these challenges is 

to “increase the number of high school graduates, especially those from traditionally 

underrepresented groups, who are interested in, and prepared for, STEM careers” (p. 2). 

And while the use of STEM as an acronym implies an integration of its four component 

content areas, the nature of K-12 classrooms makes this integration nearly impossible. 

The instructional activities presented in this dissertation provide examples of how 

mathematics instruction can be situated within a STEM-related environment. 
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CHAPTER 2 

Learning about Surface Area through a Digital Fabrication-Augmented Unit1 

 

 Surface area and volume are consistently identified as curriculum standards for K-

12 students by both national and state education boards. The National Council of 

Teachers of Mathematics’ Principles and Standards for School Mathematics (NCTM, 

2000) specifies that students beginning in upper elementary and extending through 12th 

grade should understand surface area and volume. The Common Core State Standards 

(2012) indicate that students should not only be able to use formulas to compute surface 

area and volume measurements, but should also be able to explain the derivation of the 

formulas. State boards expect students to calculate the surface area and volume for 

regular polyhedral (e.g. Virginia Department of Education, 2010; NYS Board of Regents, 

2005). In particular, the Virginia Standards of Learning lists surface area and volume as 

grade level standards for 5th grade, 8th grade, and geometry. Even though surface area and 

volume regularly appear in content standards and also on national and international 

assessments, there continues to be a lack of empirical research on the learning of these 

topics. The few relevant studies that exist indicate that students struggle with related 

topics (see below). The growing use of digital fabrication, defined as “the process of 

translating a digital design developed on a computer into a physical object,” (Berry et al., 

                                                
1 Corum, K., & Garofalo, J. (2016) Learning about surface area through a digital fabrication 
augmented unit. Journal of Computers in Mathematics and Science Teaching, 35, 33-59. 
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2010, p. 168), in classrooms raises the question of whether or not this technology can be 

used to improve students’ understanding of surface area and volume.  

Relevant Literature 

 While there is not much research focusing on students’ understanding of surface 

area and volume, there is research on students’ performance on perimeter and area tasks. 

After analyzing National Assessment of Educational Progress (NAEP) results from 1990 

to 2000, Strutchens, Martin, and Kenny (2003) concluded that length measurement, 

perimeter, and area continue to be areas of difficulty, arguing that “students have basic 

knowledge of measuring length, but that their knowledge tends to be superficial” (p. 

197). The 2013 NAEP results further indicate students’ difficulty with measurement 

tasks. There were four separate tasks on the 4th grade exam where students had to 

measure length, and the percentage correct on these tasks ranged from 12% to 38%. 

While 64% of 4th graders tested were able to determine the perimeter of a rectangle, only 

23% were able to correctly identify which rectangle had the greatest area. Even though 

81% of 8th grade students correctly measured the length of a line segment, many 

struggled with area; less than half of the students were able to determine the area of a 

rectangle given one side length and the perimeter of the figure (National Center for 

Educational Statistics, 2013). Strutchens et al. (2003) warn that prematurely introducing 

students to area formulas can hinder their conceptual understandings. This warning 

extends to measuring surface area and volume. An overemphasis of formulas can result in 

conceptual misunderstandings, such as using formulas when they are inappropriate or 

inefficient, or believing that irregular plane figures do not have area because there is not a 

corresponding formula (Zacharos, 2006). 
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 One approach, long advocated by many, to helping students develop conceptual 

understanding of mathematics includes the use of manipulatives. Sowell’s (1989) meta-

analysis of the effectiveness of manipulatives in mathematics instruction across grade 

levels revealed that the incorporation of manipulatives significantly improved student 

achievement if there was long-term (at least one full school year) use of manipulatives. In 

a subsequent meta-analysis of the effect of mathematics instruction using concrete 

manipulatives, Carbonneau, Marley, and Selig (2012) found that overall, “using 

manipulatives in mathematics instruction produces a small- to medium-sized effect on 

student learning when compared with instruction that uses abstract symbols alone” (p. 

396). They also found that concrete manipulatives had a larger effect on students who 

were coded as “concrete operational” or students between ages 7-11. However, these two 

meta-analyses are inconsistent with each other in regard to the impact of the length of 

instruction with concrete manipulatives on achievement, and more importantly, they do 

not identify the conditions under which instruction using manipulatives is most effective. 

Unfortunately, there is not a research base on the effectiveness of concrete 

manipulatives on students’ understanding of surface area. However, Hwang and Hu 

(2013) examined the effectiveness of virtual manipulatives on 5th grade students learning 

of surface area and volume. Virtual manipulatives are defined as “an interactive, Web-

based visual representation of a dynamic object that presents opportunities for 

constructing mathematical knowledge” (Moyer, Bolyard, & Spikell, 2002, p. 373). 

Students in the experimental group had access to a virtual platform that allowed them to 

construct and manipulate virtual solids, and collaborate with their peers. Students in the 

control group were provided traditional pen and paper materials, where three-dimensional 
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solids were represented in two dimensions. The experimental group performed 

significantly better on the posttest than the control group. Hwang and Hu found that 

“Interaction among multiple representations, including manipulation of the 3-D shapes 

and literacy on the white board, encourages students to interpret mathematical meanings 

from different viewpoints” (p. 317). Their findings indicate that the virtual “hands-on” 

learning experience combined with the opportunity for peer collaboration had the greatest 

effect (Hwang & Hu, 2013). 

The positive effect of students working with multiple representations is consistent 

with several learning frameworks, such as the notion of concept image (Tall & Vinner, 

1981), and Mayer’s (2009) theory of multimedia learning. A student’s concept image 

refers to “the total cognitive structure that is associated with the concept, which includes 

all the mental pictures and associated properties and processes” (Tall & Vinner, 1981, p. 

152). Mental pictures include “any kind of representation-picture, symbolic form, 

diagram, graph, etc.” (Vinner & Dreyfus, 1989, p. 356). Mayer’s (2009) theory specifies 

that learning involves building connections among pieces of verbal knowledge to create a 

coherent verbal model, and building connections among elements of pictorial knowledge 

to create a coherent pictorial model. A crucial step “involves a change from having two 

separate representations – a pictorial model and a verbal model – to having an integrated 

model in which corresponding elements and relations from one model are mapped onto 

the other” (2009, p. 74). Working with manipulatives can enhance and connect the mental 

representations students construct and thus can lead to improved concept images.  

 The above literature suggests that there may be a benefit to using either concrete 

or virtual manipulatives when teaching surface area. Digital fabrication provides students 
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with both virtual and concrete manipulatives, by building concrete manipulatives from 

their virtual representations. Personal computers can be transformed into personal 

fabrication systems through the use of 3D design software programs along with die 

cutters or 3D printers, making digital fabrication accessible in many classrooms (Berry et 

al., 2010, Bull & Garofalo, 2009). 

The curriculum unit on which this paper is based was designed to provide 

students with opportunities to develop conceptual understandings of surface area and 

volume, using digital fabrication, prior to being introduced to formulas. The specific 

question we explore in this paper is: How did participation in a digital fabrication-

augmented surface area unit affect 5th grade students’ ability to solve surface area tasks?   

Methodology 

 This effort was undertaken to gain insight into the effectiveness of digital 

fabrication-augmented units addressing surface area and volume. Fifth-grade students 

used FabLab ModelMaker (Aspex Software) and Silhouette die cutters to create three-

dimensional cubes and rectangular prisms from cardstock, which were then used during 

classroom instruction to help students develop conceptual understanding of surface area 

and volume to aid in solving non-contextual and contextual tasks. Students were assessed 

with a project-made pretest and a posttest consisting of open-ended tasks. The posttest 

was given at the conclusion of both units (see the results section for specific examples). 

This paper focuses on students’ performance on the surface area tasks. 

School Setting 

 The units were taught in an elementary school located in central Virginia which 

serves about 325 students. The school is 20 miles outside of a state university and as a 
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result, the geographic area can be categorized as partially suburban/partially rural. As of 

the 2012-2013 school year, the student body was 86% White, 4% African American, 4% 

Hispanic, 1% Asian, and 5% Multi-Racial, with approximately 20% of the students 

receiving free or reduced lunch. 

 The school received an overall pass rate of 90% on the 2011-2012 Virginia 

Standards of Learning (SOL) exams, which was adjusted to account for transfer students 

and ELLs at the school, meaning the school is fully accredited. On the Math SOL exams, 

the pass rates were 58%, 65%, and 74%, for grades 3, 4, and 5 respectively, with less 

than 10% of students in grades 3, 4, and 5 passing at an advanced level.  

Students 

 Students in two separate 5th grade mathematics classes, both taught by the same 

teacher, participated in the digital fabrication-augmented surface unit during the 2011-

2012 school year. Both classes were taught in the morning. In terms of academic 

achievement, there was a slight difference between the two groups; one class was 

classified by the school as students of average ability, while the other class had a mix of 

students of average and slightly above average ability. Students who were classified as 

high ability were placed with a gifted resource teacher. As a result, there were 14 students 

in the average ability class and 16 students in the average/above average class. 

Digital Fabrication-Augmented Unit 

 The surface area unit consisted of five 50-minute class periods over the course of 

a month. Due to disruptions from daily SOL review sessions and school assemblies, as 

well as several issues with the digital fabrication technology, classroom instruction 

during these five periods actually ranged from 30 minutes to 50 minutes. There was also 
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a class period that was used to introduce volume prior to the completion of the surface 

area activities. A premade sequence of lessons loosely guided classroom instruction, 

which included teacher-led discussions, teacher-led demonstrations of the digital 

fabrication software, and a series of student hands-on tasks, including the use of the 

digital fabrication software to construct cubes and rectangular prisms. Both sections 

followed the same instructional sequence and the specific instructional activities that 

occurred on each day of the treatment are outlined below. 

   Day 1 (October 19th). Students were introduced to surface area by looking at 

plastic three-dimensional shapes that were provided by the classroom teacher. The 

teacher opened the classroom discussion by asking students about the number of faces, 

edges, and vertices of each shape and what information they would need to know to 

determine how to “cover” the shapes. There was no discussion of square units or a formal 

discussion of area, but students recalled what they learned in fourth grade about area and 

perimeter measurement and some students suggested (length x width) or (length + width).  

Day 2 (November 2nd). The teacher demonstrated both the ModelMaker software 

and the Silhouette die cutter. ModelMaker was used to create a printable net (see Figure 

1) and the die cutter was used to score the printed nets. Students used the technology to 

create their own 1-inch cardstock cubes. Prior to working with ModelMaker, the teacher 

reminded students of the purpose by asking, “What are we trying to figure out?” to which 

students responded “perimeter,” “height,” “area,” and “surface area.” The majority of the 

period was dedicated to the use of the software and hardware. At the end of the class 

period, the teacher collected the students’ 1-inch cubes. 
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Figure 1. Screenshot of creating a cube using the ModelMaker software. 

 Day 3 (November 3rd). The teacher asked students, “What is surface area?  How 

would you define it for a fourth grader?” Student responses varied, depending on whether 

or not they had their cubes (see the vignette under Findings for details). Following this 

discussion in both classes, the teacher provided the students with the formal definition of 

surface area: “the sum of the areas of all the faces of a solid.” At the end of the period, 

the teacher also demonstrated how to use ModelMaker to find the perimeter and area of a 

1-inch cube, which are defined as parameters in the software. 

 Day 4 (November 4th). To explore the relationship between a two-dimensional 

net and a three-dimensional shape, the teacher utilized the ModelMaker software to guide 

students to identify the relationship between their nets and folded cubes. Using the 

software, the teacher was able to rotate the cube to show students the visible and non-

visible faces and edges, as well as fold and unfold the net. The teacher asked students, “If 

we need to find the surface area of the cube, could we use the net to do that?” and one 
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student responded that you “just need the faces.” The teacher asked students to begin 

thinking about formulas for surface area. Some students hypothesized different formulas, 

such as “six times the edges,”  “1 + 1 + 1 + 1 + 1 + 1,” and “six times the area of each 

face.” These hypothesized formulas were an application of the definition of surface area 

that the students had created the day before. Given the unique properties of a 1-inch cube, 

the teacher asked students to construct a 1-inch by 2-inches by 3-inches rectangular prism 

using the digital fabrication technology. Once students had physical models, the teacher 

asked students again to think of a formula for surface area. This influenced some students 

to ask about the surface areas of other solids, such as cones, pyramids, and spheres.  

 Day 5 (November 18th). The teacher reviewed the definition of surface area. 

Using ModelMaker, the teacher projected a 1-inch by 2-inches by 4-inches prism and its 

corresponding net and asked a student to pick a face (2-in. by 4-in.) and color for that 

face (red). She had students calculate the area of that face. A student commented that the 

opposite face ‘is the same thing, the same area…do it again or times two…16” and the 

teacher colored it red. This process was repeated for the other faces, with opposite faces 

being colored the same as each other (i.e., red, blue, green). As the teacher and the 

students continued coloring the remaining faces, the teacher suggested keeping a running 

total of face areas on the side of the figure, which was a strategy she modeled to help 

students keep track of their work.  Following this review of surface area, students 

attempted to solve a series of surface area tasks from the premade lesson sequence, such 

as finding the surface area of irregular solids. Note that between Days 4 and 5 the teacher 

introduced students to volume, asking students what is volume and providing students 

with the formula for volume.  
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Data Collection 

 Prior to the unit, students were given a project-designed pretest that not only 

aligned with the Virginia SOL content standards for surface area and volume, but also 

extended beyond them. All of the tasks on the pretest were open-ended and included 

tasks on calculating area, surface area, volume, identifying the number of faces, edges, 

and vertices on both a cube and an L-shaped prism, and identifying a rectangular prism 

based on its net. During the unit, field notes were recorded daily by the second author. At 

the conclusion of the unit, students were assessed with a posttest that included the same 

or similar tasks as the pretest as well as two multiple-choice questions taken from a prior 

Virginia 7th Grade Mathematics SOL exam (to provide some comparison information). 

The posttest was administered at the conclusion of both the surface area and volume 

units; thus students were not tested immediately following the surface area portion. We 

were only concerned with performance on the individual tasks and did not calculate any 

overall test scores.  

Data Analysis  

Our primary intent was to see how participation in the digital fabrication-

augmented unit affected students’ strategies. For this paper, four tasks were selected to 

analyze. The three open-ended surface area tasks were asked on both the pretest and the 

posttest and included contextual and non-contextual tasks; an SOL item was asked only 

on the posttest to give some comparison to state-wide student performance.  

First we analyzed student performance on the open-ended tasks, using the rubric 

below, to get an overall sense of change in student performance. The open-ended tasks 

were scored independently by two doctoral students in mathematics education, using a 



 

 17 

weighted six-point rubric that prioritized the conceptual knowledge required for solving 

surface area tasks. One of those students is the first author. Neither scorer was part of the 

data collection and instruction. Initial inter-scorer agreement was 94%, but after 

discussing their scores, the two scorers came to agreement on all point allocations.  

Table 1 

Rubric for Scoring Surface Area Tasks 

Category Point Value Description 

Recognition 3 Recognized the need to find the area of the six 
faces in order to determine the surface area. 

Set Up 1 Set up appropriate calculations needed to correctly 
determine the surface area. 

Computations 1 Correctly carried appropriate computations. 
Units 1 Used appropriate units. 

 
More importantly, we analyzed student written work on each of these tasks to 

identify strategies that they may have used in order to solve them. The first author, with 

the rubric in mind, made notes on each student’s solution to each task. Then she revisited 

her notes to find common strategies and solution methods. After that, the second author 

reviewed students’ work and the first author’s notes and strategy interpretations. For the 

most part, it was not difficult for the two authors to reach the same interpretations, largely 

because of the clearness of the student work. However, there was one solution not 

immediately interpretable, but both authors ultimately reached a consensus on an 

interpretation. Unfortunately, there was one solution that neither author could fully 

interpret.   

Findings 

 Of the 30 students who participated in the unit, there were 28 students who 

completed both the pretest and the posttest. Their pretest and posttest performance on the 
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four surface area tasks is described below, followed by a vignette from Day 3 of the 

instruction which gives a glimpse of how students responded to having three-dimensional 

prisms. 

Task 1: Calculating Surface Area 

 For this task (see Figure 2), students were given a diagram of a rectangular prism 

and were asked to find the surface area: 

 

Figure 2. Non-contextual surface area task from pretest/posttest assessment. 

 Scores. Not one of the students in either class received a full score for this task on 

the pretest. When considering the individual components of the task, none of the students 

recognized the need to calculate the area of the six faces or which dimensions were 

required to calculate surface area on the pretest. The mean score for this task on the 

pretest was 0.04 (out of 6 possible points) and ten of the students left the problem blank. 

In contrast, on the posttest, 21 students recognized the need to determine the areas of the 

six faces and of these, 15 students received a full score and four just left out units. The 

mean score on this problem was 4.3 points and none of the students left the problem 

blank. Table 2 summarizes the scores on this task. 
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Table 2 

Distribution of Students’ Scores on Task 1 

 0 – 1 Points 4 – 4.5 Points 5 – 6 Points 
Pretest 28 0 0 
Posttest 7 2 19 

 
 Strategies. There were three common incorrect strategies students used for this 

task on the pretest. Of the 18 students who attempted to complete the task on the pretest, 

five calculated the volume and two calculated the area for only one of the faces. The third 

common incorrect strategy was to double, quadruple, or square the dimensions and then 

find the sum. Figure 3 is an example of this incorrect strategy, where Isaac approached 

the task by computing 2W + 2L + 4H. 

 

Figure 3. Isaac’s pretest solution for Task 1. 

A total of nine students attempted some variation of this procedure. It appears that many 

students tried to synthesize formulas for area and perimeter in an attempt to calculate 

surface area. 

 Student performance on this task was substantially better on the posttest. Of the 

19 students who successfully completed the task on the posttest (received a score of 5 or 

6), there were two common correct strategies. The first common strategy was computing 

the sum of the areas of all six faces (visible and not visible). Twelve students employed 
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this first strategy and kept track of their work by either labeling the faces on the diagram 

or listing the areas of each face. Isaac, whose pretest solution was presented in Figure 3, 

solved this task on the posttest using a listing strategy (Figure 4). The second common 

strategy was doubling the areas of the visible faces. Six students employed this strategy, 

an example of which can be seen in Figure 5. The incorrect strategies from the pretest 

appeared again, with five students manipulating the dimensions prior to finding the sum 

and two students calculating volume. 

 

Figure 4. Isaac’s posttest solution for Task 1 (listing areas of each face). 

 

Figure 5. Evelyn’s posttest solution for Task 1 (doubling areas of each face). 

Task 2: Wrapping a Box 

 For this contextualized task (Figure 6) students were provided with a diagram of a 

rectangular prism but instead of being asked to find the surface area, they were asked to 

find the minimum amount of wrapping paper needed to wrap a pencil box. 
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Figure 6. Contextual surface area task from pretest/posttest assessment (wrapping a 
box). 
 
 Scores. On the pretest, students performed worse on this task than on the previous 

surface area task. Similar to the first task, not one of the students received a full score and 

none of the students recognized the need to calculate the area of the six faces or which 

dimensions were required to calculate surface area. The mean score was 0 and twelve 

students left the problem blank. Students again made substantial gains when assessed 

with this task on the posttest.  Twenty of the students recognized the need to determine 

the area of the six faces. Of these 20 students, 12 students received a full score and seven 

either left out units or made a minor computation error. The mean score was 4.2 points 

(out of 6) and none of the students left the problem blank. Table 3 summarizes student 

scores on this task. 

Table 3 

Distribution of Students’ Scores on Task 2 

 0 – 1 Points 4.75 Points 5 – 6 Points 
Pretest 28 0 0 
Posttest 8 1 19 

  
Strategies. There were two common incorrect strategies for this task on the 

pretest. Of those 16 students who attempted a solution on the pretest, seven calculated 
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volume. Another common incorrect strategy for the wrapping task on the pretest was 

doubling or quadrupling the dimensions and then finding their sum, similar to the strategy 

used for the surface area task on the pretest. Nine students attempted this strategy, 

including Evan, whose solution is presented in Figure 7. Evan’s solution shows that he 

attempted to compute the minimum amount of wrapping paper needed by calculating 2L 

+ 2W + 4H. Again, it appears Evan’s solution is an attempt to apply the formula for 

perimeter of a rectangle to calculate surface area. 

 

Figure 7. Evan’s pretest solution for Task 2. 

 Students were much more successful with completing this task on the posttest. 

The common correct strategies for this task on the posttest were similar to the strategies 

used on the posttest for Task 1 – students kept track of their work by either listing the 

areas of all six faces (Figure 8) or doubling the area of the three visible faces prior to 

computing the sum (Figure 9).  These strategies that were used for both the surface area 

task (Task 1) and the wrapping task (Task 2) were similar to the coloring strategy that the 

students explored using the ModelMaker software, which allowed them to keep track of 
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which faces they had already computed the areas of and allowed them to see faces in 

pairs by assigning corresponding faces the same color.  

 

Figure 8. Evan’s posttest solution for Task 2 (listing areas of each face). 

 

Figure 9. Leah’s posttest solution for Task 2 (doubling areas of visible faces). 

 Six students employed the common incorrect strategies from the pretest on the 

posttest – three students manipulated the dimensions prior to finding the sum and the 

other three calculated volume. Of the remaining three students who incorrectly completed 

this task on the posttest, one student’s solution was indiscernible, another correctly found 

the sum of the areas of the six faces, but used the wrong dimensions, and the third student 

halved the sum of the visible faces. 
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Task 3: Wrapping Stacked Boxes 

 For the third surface area task, students were asked to determine the minimum 

amount of wrapping paper needed to wrap two stacked pencil boxes (Figure 10).  The 

pencil boxes in this task had the same dimensions as the pencil box in Task 2. 

 

Figure 10. Contextual surface area task from pretest/posttest assessment (wrapping 
stacked boxes). 
 
 Scores.  As with the first wrapping task, not one of the students received a full 

score on the pretest and none of the students recognized the need to calculate the area of 

the six faces or which dimensions were required to calculate surface area.  The mean 

score was 0 and ten students left the problem blank. On the posttest, 17 students 

recognized the need to determine the area of the six faces, with six of these students 

receiving a full score and ten either left out units or made a minor computation error. The 

mean score was 3.6 points (out of 6) and none of the students left the problem blank. A 

summary of student scores on this task is presented in Table 4. 
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Table 4 

Distribution of Students’ Scores on Task 3 

 0 – 1 Points 4.75 Points 5 – 6 Points 
Pretest 28 0 0 
Posttest 11 1 16 

 
Strategies. There were two common incorrect strategies for this task on the 

pretest. Of the 18 students who attempted a solution to this task on the pretest, seven 

calculated volume. The other common incorrect strategy was doubling or quadrupling the 

dimensions and then finding the sum. An example of this strategy is shown in Figure 11. 

Bridget attempted to solve this task on the pretest by computing 4L + 4W + 4H. Nine 

students, including Bridget, employed some format of this incorrect strategy on the 

pretest. Slightly more than half of the students who did not leave the problem blank 

recognized that the height of the stacked boxes was 4 inches. 

 

Figure 11. Bridget’s pretest solution for Task 3. 

 Again, students were much more successful with completing this task on the 

posttest.  Similar to the first two surface area tasks, there were two common correct 

strategies – listing the areas of all six faces (Figure 12) or doubling the area of the three 

visible faces prior to computing the sum (Figure 13). Bridget’s posttest solution (Figure 

12) is an example of listing the areas of each individual face as a means of keeping track, 
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whereas Ellie’s solution (Figure 13) is an example of thinking of the faces in pairs as a 

means of keeping track. 

 

Figure 12. Bridget’s posttest solution for Task 3 (listing areas of each face). 

 

Figure 13. Ellie’s posttest solution for Task 3 (doubling areas of visible faces). 

Four students attempted to solve this task by using their solutions from the first wrapping 

task.  Based on her numerical values, it appears that Lily doubled the amount of wrapping 

paper she calculated for Task 2 (Figure 14) and then subtracted 60 square inches of 

wrapping paper to account for the bottom of the first box and the top of the second box 

since those would not require wrapping paper (Figure 15). While her solutions were 

incorrect, Lily’s work demonstrates her understanding of the relationship between Task 2 

and Task 3. 
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Figure 14. Lily’s posttest solution for Task 2. 

 

Figure 15. Lily’s posttest solution for Task 3. 

 Of the students who did not successfully complete this task on the posttest, four 

students manipulated the dimensions prior to finding the sum and one student calculated 

volume, both of which were common incorrect strategies from the pretest. Three students 

doubled their solution from Task 2 and two students’ solution was indiscernible. Similar 

to the posttest solutions for Task 2, one student correctly found the sum of the areas of 

the six faces, but used the wrong dimensions and another student halved the sum of the 

visible faces. 

Task 4: 7th Grade Virginia SOL Item 

 The posttest included a paper-covering task (Figure 16) that was taken from the 

Virginia Department of Education Standards of Learning Grade 7 Mathematics 
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Examination. Students were asked to determine the minimum amount of paper needed to 

wrap a rectangular prism. 

 

Figure 16. Contextual surface area task from 7th Grade Standards of Learning task 
(wrapping a rectangular prism). 
 
This task was a multiple-choice question and included distracters, such as the volume of 

the rectangular prism (72 cm3) or the sum of the areas of the three unique faces (54 cm2). 

 Scores. Eighteen students correctly chose J as their answer on the posttest, while 

seven students chose H, which is the volume of the rectangular prism. Only two students 

left the problem blank. This 64% success rate for these 5th graders compares favorably to 

the 53% statewide success rate for 7th graders, who were prepped for the test. 

 Strategies.  Students employed the same common strategies in correctly solving 

this task as they did with the other surface area tasks.  Students’ track keeping strategies 

included listing the areas of all six faces (Figure 17) or doubling the area of the three 

visible faces (Figure 18). 
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Figure 17. Caroline’s solution for the 7th Grade SOL task (listing areas of each face). 

 

Figure 18. Alaina’s solution for the 7th Grade SOL task (doubling areas of visible faces). 

Vignette: Discussions during Day 3 

The pretest-posttest differences in strategies for the tasks above show that 

students developed an understanding of surface area over the course of the unit. The 

vignette below (as documented in the field notes) illustrates the usefulness of students 

exploring physical prisms. Recall that on Day 3, the teacher asked students, “What is 

surface area?  How would you define it for a fourth grader?” This question was initially 

posed to the first class without providing the students with the 1-inch cubes they had 

constructed prior. Student responses to these questions included, “length,” “amount of 

how many squares,” “area of the surface of something,” and “area of the face of the 
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cube.” At this point, the teacher distributed the 1-inch cubes the students made the 

previous day and instructed them to play with their cubes and think about how they would 

show someone surface area. After manipulating their cubes, students provided accurate 

explanations of surface area, describing the process of calculating surface area by 

referencing the sum of the areas of the faces. Some student definitions of surface area 

after having access to their cubes were, “one of the faces…you can add or times it by 

how many faces…add it all up,” and “find the area and add all the faces together.” Prior 

to holding their manipulatives, the students struggled with defining surface area; their 

initial confusion was immediately resolved once the teacher provided students with their 

cubes. 

 The sequence of events varied for the second class that same day; the teacher 

began by first distributing the students’ cubes and giving students time to play with their 

cubes before asking them how they would define surface area to a fourth-grader. Without 

hesitation, students began describing surface area in terms of the sum of the areas of each 

face. Student responses included, “add the area of each face, get the dimensions of it,” 

and “the added up area of every face of the cube.” Unlike the first class, students in the 

second class initially had access to their cubes, and thus were able to immediately 

describe a process for finding surface area. 

Near the end of the second class that day, a student posed another more 

challenging task; “a hard problem would be to find the surface area of a cone… You have 

to find the area of the bottom and with the vertex, it’s hard to know how many edges.”  

With access to physical models and the opportunity to explore properties of cubes 
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students were encouraged to hypothesize about properties of different three-dimensional 

figures. 

Discussion 

 Students showed marked improvements in their ability to complete surface area 

tasks following participation in the digital fabrication-augmented unit. Recall that none of 

the 28 students were able to correctly solve any of the three open-ended tasks on the 

pretest whereas 19 students, 19 students, and 16 students earned full or nearly full credit 

on Task 1, Task 2, and Task 3, respectively, on the posttest. Additionally, there was a 

64% success rate on the SOL task, compared to the 53% success rate of 7th grade students 

who were prepped for the exam. The unit provided students with opportunities to develop 

effective strategies that allowed them to recognize qualities of three-dimensional figures 

that cannot be seen in a two-dimensional representation (“Seeing What’s Not Visible”) 

and to effectively carry out multi-step processes (“Keeping Track”). These strategies, 

discussed below, enabled students to be more successful with completing surface area 

tasks on the posttest. 

Seeing What’s Not Visible 

 Finding surface area when viewing two-dimensional representations of three-

dimensional figures requires students to visualize faces that are not observable in a 

diagram.  Students are only able to see the top face, front face, and a side face of a 

rectangular prism.  In order to determine the surface area of a rectangular prism, students 

must be able to recognize that there is a corresponding face to each of the visible faces. 

The strategies students used when successfully completing the four surface area tasks on 

the posttest show that they were aware of the faces that were not visible from the 
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diagram.  By listing the areas they calculated for each of the six faces, students were 

thinking about all of the faces (both visible and not visible), or when listing the areas of 

the three visible faces and then doubling them, students were first addressing what can be 

seen in the diagram and then are accounting for the faces that were not visible. 

There were three activities in the surface area unit that gave students experiences 

with non-visible faces. First, the teacher and students used the software to rotate two-

dimensional representations of prisms to make the initially invisible faces visible. 

Second, the software showed two-dimensional representations of solids, along with their 

corresponding nets, which displayed all of the faces (see Figure 1). These two activities 

were carried out as part of the fabrication process. Finally, students physically explored 

their three-dimensional fabricated prisms daily. The noted difference in the students’ 

ability to define and discuss surface area based on their interaction with their 1-inch 

cubes (as described in the analytic vignette) further highlights the benefit of the three-

dimensional fabricated prisms. 

The consideration of all faces shows that students had developed appropriate 

mental models for these prisms; their concept images for cubes and prisms included the 

invisible faces. As Vinner and Dreyfus (1989) argue, “the student’s image is a result of 

his or her experience with examples and nonexamples of the concept” (p. 356).   

Keeping Track 

 Those successful students who were able to consider invisible faces when solving 

surface area tasks also used strategies to keep track of their work. These strategies 

included listing the areas of each of the six faces (e.g., Figure 8) or listing the areas of the 

three visible faces (e.g., Figure 5), labeling faces with letters to make sure each was 
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accounted for (e.g., Figure 12), and annotating faces with calculated areas (e.g., Figure 

4).   

 Some aspects of the digital fabrication software may have facilitated students’ 

keeping track strategies.  Students used the ModelMaker software to rotate 

representations and color opposite faces as they computed the areas of each face.  The 

teacher also encouraged students to keep track when she was demonstrating use of the 

software.  Students also kept track of faces when holding physical prisms. Some students 

used their fingers as calipers to hold and count opposite faces in pairs, and some labeled 

counted faces with a mark, letter, or area value. These experiences allowed students to 

develop strategies for keeping track, which were apparent in students’ solutions for the 

four surface area tasks on the posttest.   

 Keeping track of one’s work is an important aspect of mathematical problem 

solving. Shoenfeld (1992) points out that such self-regulation and metacognitive actions 

facilitate problem solving. Students were able to implement their “seeing what’s not 

visible” ability by “keeping track” of their work.  

 Transferring Seeing What’s Not Visible and Keeping Track to More Complex Tasks 

 Students were able to use both their “seeing what’s not visible” and “keeping 

track” strategies beyond simple prisms, providing further evidence that students 

developed meaningful strategies that they could apply to unfamiliar tasks. As part of the 

unit, students explored the number of faces, edges, and vertices of different prisms. While 

many students were able to determine the number of faces, edges, and vertices of a cube 

on both the pretest and posttest, all of the students struggled with completing the L-

shaped prism task below (Figure 19) on the pretest (only counting what they could see), 
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but many showed improvement on the posttest. Even though students did not work with 

L-shaped prisms during the surface area and volume units, some were still able to apply 

their “seeing what’s not visible” and “keeping track” strategies in order to determine the 

number of faces, edges, and vertices of this prism. 

One “seeing what’s not visible” strategy that some students used was to draw the 

edges and vertices that were not visible in the diagram to help them count (see Figure 

19). One “keeping track” strategy that students used to count the number of faces, edges, 

and vertices of the L-shaped prism was to number the faces or use hash marks to help aid 

their counting (see Figure 20).  Both of these strategies appear to be extensions of the 

track keeping strategies students used when coloring the faces of a rectangular prism 

using the ModelMaker software. 

 

Figure 19. Natalie’s method of “seeing what’s not visible” when counting the faces, 
edges, and vertices of an L-shaped prism. 
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Figure 20. Noah’s method of “keeping track” when counting the faces, edges, and 
vertices of an L-shaped prism. 
 
Reducing the “Volume Error” on Surface Area Tasks 

 There were some students who calculated the volume instead of surface area on 

either the pretest or posttest. This “volume error” could be attributed to either problem 

solving errors and/or conceptual errors. On the pretest, five students calculated the 

volume of the rectangular prisms for all three tasks. There were also two other students 

who calculated volume for Tasks 2 and 3. Of these seven students who committed a 

volume error on the pretest, five of them subsequently correctly solved all four tasks on 

the posttest. Another student correctly solved Task 1 (non-contextual), but incorrectly 

solved Tasks 2, 3, and 4 (contextual), without committing a volume error. The remaining 

student, who committed the volume error on every pretest task, only made a volume error 

on the multiple choice task on the posttest. Overall, the fabrication unit activities may 

have helped these seven students eliminate most or all volume errors.   

On the posttest, 24 of the 28 students did not commit a volume error on any of the 

first three tasks. However, seven students chose the volume of the rectangular prism as 

their solution to the multiple-choice SOL task (Task 4). These results suggest that for 
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some students, volume errors on the posttest may have been problem solving errors (e.g., 

reading), but for several students volume errors may have been conceptual.   

Limitations 

 There are several limitations to this exploration.  Data collection occurred in two 

classes taught by the same teacher within the same school and the data collected was 

limited to student work on project-developed tests.  No student interviews were 

conducted, making it difficult to fully understand the specific features of the unit 

activities that led to improvement and the reasons why some misconceptions remained 

for those students who were unable to successfully complete the surface area tasks on the 

posttest. Additionally, there was no control group, thereby making it impossible to 

compare the effectiveness of unit to other types of instruction on the topic. However, 

even with these limitations, there is ample suggestive evidence of the growth that resulted 

from participation in the unit.  

Conclusion 

 Students were introduced to surface area through the use of physical models that 

they created using digital fabrication software. It was during the third day of instruction 

that the definition of surface area, as the sum of the areas of all of the faces of a prism, 

was informally verbalized by students after exploring their prisms, and subsequently 

formalized by the teacher. On the fourth day students began calculating the surface areas 

of simple prisms, by adding the areas of all faces of a prism or doubling those of opposite 

faces then adding the results. Students did not ask for a formula. This understanding of 

surface area was applied to more complex prisms on the last day.  
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Despite the limitations listed above, the amount of growth students exhibited at 

the end of the digital fabrication-augmented unit is very promising. These results support 

and extend the findings reported in the research cited earlier (e.g. Carbonneau, Marley, 

and Selig, 2012; Hwang and Hu, 2013) that manipulation of three-dimensional shapes 

can lead to improved students’ performance on surface area tasks. Teachers incorporating 

concrete and virtual manipulatives into their instruction can facilitate their students’ 

development of conceptual understanding and problem solving strategies that can be 

applied to both non-routine tasks and traditional assessments. 
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CHAPTER 3 

Middle School Students’ Mathematical Modeling with Three Independent Variables: 

The Derivation of Ampere’s Law 

 

Algebra has consistently been identified as a gatekeeper subject because of the 

role success in algebra has on students’ ability to graduate from high school, their 

readiness for college-level mathematics, and their opportunities for employment 

(Loveless, 2013; Rech & Harrington, 2000). The importance of algebra has led to efforts 

to reform mathematics curriculum in schools across all grade levels so that algebraic 

reasoning is encouraged beginning in early elementary grades (e.g., NCTM, 2000; 

National Governors Association Center for Best Practices, 2010). 

In addition to developing students’ algebraic reasoning early, greater emphasis 

has been placed on the importance of mathematical modeling. The National Mathematics 

Advisory Panel (2008) identified “fitting simple mathematical models to data” (p. 16) as 

one of the major topics of school algebra. Mathematical modeling can be found in 

algebra curricula standards at both the national and local levels. For example, the 

National Council of Teachers of Mathematics (2000) specifies the importance of 

mathematical modeling in the Algebra Strand of its Principles and Standards for School 

Mathematics: “One of the most powerful uses of mathematics is the mathematical 

modeling of phenomena. Students at all levels should have opportunities to model a wide 

variety of phenomena mathematically in ways that are appropriate to their level,” (p. 39). 
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Similarly, one of the algebra standards in the Virginia Mathematics Standards of 

Learning (Virginia Department of Education, 2009) is that “given a real-world context, 

[the student] will analyze a relation to determine whether a direct or inverse variation 

exists, and represent a direct variation algebraically and graphically and an inverse 

variation algebraically” (p. 25).  

Relevant Literature 

Mathematical modeling is the process of representing real-world situations using 

mathematics as a way to understand and solve a specified problem (Daher & Shahbari, 

2015; Bliss & Libertini, 2016) and the model itself is the mathematical description of the 

real-world situation (Lesh & Lehrer, 2003). This definition is deceptively simple since 

mathematical modeling requires one to be able to move fluidly between the real world 

and the mathematized world. When creating a mathematical model, one needs to interpret 

the real-world problem, decide how it should be mathematized, and determine what 

information in the real-world problem is relevant to the model and which mathematical 

techniques are relevant (Crouch & Hanes, 2004).  

Mathematical proficiency is required in order to develop mathematical models. 

According to the National Research Council (2001), mathematical proficiency is 

comprised of five interwoven strands: conceptual understanding, procedural fluency, 

strategic competence, adaptive reasoning, and productive disposition. Students who have 

mastery of the five strands of mathematical proficiency (conceptual understanding, 

procedural fluency, strategic competence, adaptive reasoning, and productive disposition) 

are able to identify connections within their existing mathematical knowledge base and 

discern how their mathematical knowledge can be utilized to solve problems (National 
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Research Council, 2001). In order for students to develop mathematical proficiency, these 

strands cannot be addressed in isolation. 

However, national and international assessments consistently document that 

students’ mathematical proficiency is limited to procedural fluency. The results of the 

2012 Programme for International Student Assessment (PISA) indicated that only 8.8% 

of students in the United States tested at Level 5 or higher, which is the proficiency level 

at which students should be able to develop and engage with mathematical models 

(OECD, 2013). Moreover, student performance on both the PISA and the National 

Assessment of Educational Progress (NAEP) showed that students’ understanding of 

mathematics was limited. Only 33% of those students tested on the 2015 NAEP Exam 

scored at or above the Proficient level, where Proficient is defined as the ability to apply 

conceptual understanding and procedural fluency to solve complex problems across the 

five mathematics content areas (Kena et al., 2016). In fact, 29% of the eighth grade 

students tested scored below the Basic level, meaning these students lacked even partial 

mastery of the prerequisite knowledge and fundamental skills required of grade-level 

proficiency. The 2012 PISA results tell a similar tale. One in four students in the United 

States scored below the baseline for mathematics literacy (Level 2), indicating difficulty 

with applying basic mathematical procedures, interpreting situations that only require 

direct inference, and interpreting mathematical results (OECD, 2013). 

Given the disconnect between the emphasis on modeling in algebra curriculum 

standards and many students’ lack of mathematical proficiency, it is important to 

understand how students utilize their prior mathematics knowledge and which strategies 

they use when developing algebraic models to represent real-world phenomena.  
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Modeling Cycle 

Mathematical modeling is a cyclical process (see Figure 1). As mathematical 

models are developed, they are tested and revised and the initial real-world problem itself 

is revisited and reinterpreted as the model is amended (Delice & Kertil, 2015; Bliss & 

Libertini, 2016). 

 

Figure 1. Mathematical modeling cycle (Delice & Kertil, 2015). 

Kaiser and Sriraman (2006) proposed a way of classifying types of mathematical 

modeling based on the central aims of each different approach: realistic, contextual, 

educational, socio-critical, epistemological, and cognitive. Of these different modeling 

perspectives, contextual modeling, or solving subject-specific word problems, has 

historically been the most common in traditional classroom environments. However, the 

current push for the use of modeling as a way to solve real-world problems and to 

encourage cross-disciplinary studies is most closely aligned with realistic modeling, 

which emphasizes understanding the world through modeling (Kaiser & Sriraman, 2006). 

Students’ Difficulties 

 The National Mathematics Advisory Panel (2008) found that many middle and 

high school students are underprepared to study algebra, noting that lack of basic 

arithmetic fluency and difficulty with the structural nature of algebra are two of the most 
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common hindrances to students’ success. The transition to algebra in the early secondary 

grades is particularly difficult for students “because it introduces more abstract 

representations and more complex relationships between quantities” (Booth et al., 2014, 

p. 10). The middle school grades in particular are a critical time to prepare students for 

studying algebra, as this is the time when they are transitioning from concrete to abstract 

representations of mathematics (Bush & Karp, 2013).  

Making sense of mathematical symbols has often been cited as a major area of 

difficulty for students (e.g., Koedinger & Nathan, 2004; Kaput, Blanton, & Moreno, 

2008; Alibali, Stephens, Brown, Kao, & Nathan, 2014; Wagner, 1993). These symbols 

include mathematical operations (e.g., +, –, =) and the presence of letters in mathematics. 

Understanding how the use of mathematical symbols varies in algebra as compared to 

arithmetic can be especially demanding for students as they transition to more abstract 

representations (Koedinger & Nathan, 2004). Having facility with mathematical symbols 

requires students to be able to look at and look through symbols (Kaput et al., 2008). 

Looking at symbols is recognizing the symbols themselves, while looking through 

symbols is connecting the symbols with the mathematical concepts they are meant to 

represent. 

Conceptual gaps in students’ understanding of algebraic symbols could also 

hinder their ability to interpret equations and translate situations into equations (Alibali et 

al., 2014). In the classic “Students and Professors” problem, students are asked to write 

an equation that represents the statement, “There are six times as many students as 

professors at this university” (Clement, Lochhead, & Monk, 1981, p. 288). This was 

posed to a group of 150 calculus-level students and of the 37% of students who missed 
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the problem, the most common error was to write the equation 6S = P. Instead of thinking 

about the variables S and P as representing the number of students and the number of 

professors as quantities, S and P represented students and professors as concrete objects 

(Rosnick, 1981). The symbols for mathematical operations (i.e., 6S, =) were also 

misapplied in this incorrect translation. A lack of facility with mathematical symbols 

makes modeling even more challenging for students and can lead to literal translations 

rather than mathematical models. 

Model-Eliciting Activities 

Model-eliciting activity (MEA) is “a problem solving activity constructed using 

specific principles of instructional design in which students make sense of meaningful 

situations, and invent, extend, and refine their own mathematical constructs” (Kaiser & 

Sriraman, 2006, p. 306). Students are expected to develop a realistic model that describes 

a real-world situation (Delice & Kertil, 2015). The purpose of MEAs is the modeling 

process itself rather than the application of known procedures to produce a final solution. 

As a result, MEAs can accomplish several goals. By emphasizing the modeling process 

rather than applying known procedures, MEAs encourage students to think 

mathematically and provide students with the opportunity to showcase their mathematical 

understanding and capabilities (Daher & Shahbari, 2015). MEAs also provide students 

with multiple entry points to a problem because they encourage authentic problem 

solving. Problem solving is defined as “engaging in a task for which the solution method 

is not known in advance” (National Council of Teachers of Mathematics, 2000, p. 52). 

Because there is not a prescribed procedure for MEAs, mathematical modeling tasks are 

open-ended and the final models themselves can vary (Bliss & Libertini, 2016). 
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 When meaningfully incorporated into classroom instruction, MEAs can support 

students’ ability to transition between abstract representations in algebra and applications 

of algebraic reasoning to real-world problems. The model-eliciting activity on which this 

study is based was designed to provide students with the opportunity to develop a 

mathematical model that related three independent variables to a single dependent 

variable. The specific dependent variable in this context is magnetic field strength and the 

three independent variables are those connected with the attributes of a solenoid (further 

explained below). The research questions we explore in this paper are: (1) What 

conceptual and procedural knowledge did students who had already taken algebra utilize 

when developing mathematical models involving both direct and inverse variation? (2) 

What problem solving strategies do these students use when participating in model-

eliciting activities? 

Methodology 

 The realistic model-eliciting activity used in this study, Deriving Ampere’s Law, 

involved solenoids and magnetic fields. A solenoid is a coil of conductive wire; when 

electric current flows through the wire, the coil generates a magnetic field (Figure 2).  

 

Figure 2. Example of a solenoid 

The strength of the magnetic field produced by a solenoid (B) is dependent on the number 

of wraps of wire that comprise the solenoid (N), the length of the solenoid (L), and the 
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electrical current (I). This relationship is known as Ampere’s Law, 𝐵 = 𝜇 !∙!
!

, where 𝜇 

is some constant that is dependent on the magnetic constant, 𝜇! , and the relative 

permeability of the solenoid core. 

Setting 

 The Deriving Ampere’s Law activity took place in June 2016 during the Summer 

Engineering Academy, an annual enrichment program hosted at the K-12 Engineering 

Design Lab in the Curry School of Education at the University of Virginia. A total of 

twelve rising eighth-grade students from two different local middle schools were selected 

by their principals to participate in the two-week long academy. These students worked 

alongside their science and engineering teachers, Curry faculty, and doctoral students to 

build a solenoid, a generator, a motor, and a speaker in order to understand the science 

behind these historic inventions. The culminating activity of the Summer Engineering 

Academy was for students to exhibit their recreations at the Smithsonian Natural History 

Museum’s Draper Spark!Lab (Breen, 2016). 

Participants 

 Of the twelve rising eighth-grade students who participated in the 2016 Summer 

Engineering Academy, six students were purposefully selected to participate in the 

Deriving Ampere’s Law activity. These six students were recommended by their science 

and engineering teachers based on their prior experiences and interest in mathematics. 

The students were grouped based on the mathematics coursework they had completed 

during seventh grade and the groups included students from both of the two local middle 

schools. The three students in the first group had already completed algebra (algebra 

group) and the three students in the second group had not yet taken algebra (pre-algebra 
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group). The algebra group consisted of one male student (Brent) and two female students 

(Caitlin and Erin). The pre-algebra group consisted of two male students (Carter and 

Jamal) and one female student (Kayla). 

 The Deriving Ampere’s Law activity was scheduled for the last two days of the 

first week of the Summer Engineering Academy. Earlier in the week, students in the 

academy had explored electromagnetism by constructing their own solenoids. Those 

participating in the Deriving Ampere’s Law activity were pulled from the morning 

session of the academy to complete the activity. The algebra group completed the activity 

on the first scheduled day and the pre-algebra group completed the activity on the second 

scheduled day. Students spent approximately two-and-a-half hours on the activity, which 

included time spent debriefing the activity itself. While both groups of students 

successfully derived Ampere’s Law, this paper focuses on the strategies of the algebra 

group. 

Task Description 

The impetus for the Deriving Ampere’s Law activity was to explore how 

solenoids could be utilized as a hands-on manipulative in the teaching and learning of 

mathematics. The two authors2 met to research how different parameters affected the 

magnetic field strength of a solenoid, which inspired the question of whether or not 

Ampere’s Law could be derived experimentally. To test this theory, the authors decided 

to create a calibrated set of solenoids. Over the course of several months in early 2016, 

the first author developed multiple sets of solenoids and used a variety of different 

methods to measure magnetic field strength before the activity was finalized. 

                                                
2 J. Garofalo (second author) 
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To complete the Deriving Ampere’s Law activity, students were provided with a 

set of pre-made solenoids that vary in both the number of wraps of wire and the length of 

the solenoid tubes. Students were also provided with a variable DC power supply and a 

magnetic field sensor. In order to generate magnetic field measurements that would allow 

a wide range of students to be successful with this activity, the pre-wrapped solenoids 

were calibrated during task development (Table 1). The power supply used for this 

activity consistently and reliably held 3.16 A, which is why the solenoids were calibrated 

using this current value. 

Table 1 

Solenoid Data Collected under Laboratory Conditions 

Number of 
Wraps (N) 

Solenoid  
Length (L) 

Electric 
Current (I) 

Field Strength 
(B) Constant (μ) 

50 2 in 3.16 A 35.97 G 0.455 
100 2 in 3.16 A 71.87 G 0.455 
150 2 in 3.16 A 107.8 G 0.455 
50 1 in 3.16 A 71.87 G 0.455 
50 2 in 3.16 A 35.97 G 0.455 
50 3 in 3.16 A 24.20 G 0.459 
50 4 in 3.16 A 18.10 G 0.458 
50 2 in 0.79 A 9.0 G 0.456 
50 2 in 1.58 A 17.97 G 0.455 
50 2 in 3.16 A 35.97 G 0.455 

 
The task was presented as four separate open-ended investigations. In the first 

investigation, students were asked to relate the strength of the magnetic field produced by 

the solenoid to the number of wraps of wire, with the other independent variables held 

constant. Similarly, in the second investigation, students were asked to relate the 

magnetic field strength to the length of the solenoid. In the third investigation, students 
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were asked to relate the magnetic field strength to the electric current. For each of the 

first three investigations, students were asked to develop a model that could be used to 

predict magnetic field strength. Once students had developed separate models for each of 

the independent variables, the fourth investigation challenged students to create a new 

model that related magnetic field strength to the three independent variables. 

 Investigation 1: Relating Wraps of Wire to Magnetic Field Strength. For this 

investigation, students were provided with a set of three solenoids. The length of the 

solenoid (2 inches) and the electric current (3.16 A) were held constant, but the solenoids 

varied in the number of wraps of wire (50 wraps, 100 wraps, and 150 wraps). There is a 

direct relationship between the number of wraps of wire of a solenoid and the strength of 

the magnetic field produced. When graphed, the data generates a straight line (Figure 3) 

and resulting equation is of the form 𝐵 = 𝑘!𝑁. Using the data collected under laboratory 

conditions (see Table 1), 𝑘! =
!"
!"

. 

 

Figure 3. Relationship between the number of wraps of wire of a solenoid and the 
strength of its magnetic field.  
 
 Investigation 2: Relating Solenoid Length to Magnetic Field Strength. For 

this investigation, students were provided with a set of four solenoids. The number of 

wraps of wire (50 wraps) and the electric current (3.16 A) were held constant, but the 
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solenoids varied in length (1 inch, 2 inches, 3 inches, 4 inches). There is an inverse 

relationship between solenoid length and the strength of the magnetic field produced. 

When graphed, the data generates a curved line (Figure 4) and the resulting equation is of 

the form 𝐵 = !!
!

. Using the data collected under laboratory conditions (see Table 1), 

𝑘! = 72. 

 

Figure 4. Relationship between the length of a solenoid and the strength of its magnetic 
field. 
 
 Investigation 3: Relating Electric Current to Magnetic Field Strength. For 

this investigation, students were provided with a variable power supply to measure the 

magnetic field strength of a single solenoid at varying levels of electric current. The other 

two independent variables (number of wraps of wire and solenoid length) were held 

constant. There is a direct relationship between electric current and the strength of the 

magnetic field produced. When graphed, the data generates a straight line (Figure 5) and 

the resulting equation is of the form 𝐵 = 𝑘!𝐼. Using the data collected under laboratory 

conditions, 𝑘! =
!""
!"

. 
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Figure 5. Relationship between electric current and the strength of a solenoid’s magnetic 
field. 
 
 Investigation 4: Developing a Final Model for Ampere’s Law. For this 

investigation, students were asked to review the models generated from the previous 

investigations. Using the structure of the previous models as their guide, students 

generated a final model that incorporates two direct variations and one inverse variation. 

They then calculated the constant based on their previously collected data. This final 

model related the three independent variables (number of wraps of wire, solenoid length, 

and electric current) to a single dependent variable (magnetic field strength). 

Data Collection 

 Students were video recorded while working on the Deriving Ampere’s Law 

activity and the audio was transcribed. Students’ written work was also collected for 

analysis. While students worked on the activity, they engaged in discussion with each 

other regarding their problem solving strategies. Both authors recorded field notes 

throughout the activity session to further capture students’ conversations and their written 

work. At certain points when it seemed like the students had lost sight of the task itself or 

were distracted by computational errors, the authors interjected reminders and posed 

questions to facilitate students’ progress. These interjections are described in more detail 
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in the Findings section. Upon completing the activity, the students participated in a 

debriefing interview to further explore their opinions about the activity and how this 

activity compared to their classroom experiences.  

Data Analysis 

 The primary goals of this project were to understand how students’ applied their 

prior conceptual and procedural knowledge when developing mathematical models and 

which problem solving strategies they utilized. Immediately following data collection, 

both authors met to discuss their observations and to explore commonalities between 

their recorded field notes and observational inferences. The first author then analyzed the 

transcript and students’ written work for each of the four investigations separately from 

the second author to better understand the students’ strategies. During preliminary data 

analysis, the first author attempted to code the transcripts based on students’ application 

of prior knowledge (e.g., slope, variables, direct variation, linear equations). However, 

differentiating among applications of prior knowledge is difficult when mathematical 

concepts are interconnected (e.g., slope and linear equations) and coding efforts resulted 

in the data becoming disjointed. The first author then analyzed the data more holistically 

by reading through the transcript multiple times, utilizing the mathematical modeling 

framework (see Figure 1) as a way to interpret students’ progression through the task, and 

connecting students’ problem solving strategies to their prior knowledge as indicated by 

the transcript and students’ written work. 

After completing the initial round of data analysis, the first author met with the 

second author to confirm her interpretation. The two authors reread parts of the transcript, 

reanalyzed students’ written work, and reviewed their separately collected field notes. 
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During this meeting, both authors regularly revisited their multiple data sources to ensure 

that their analysis and interpretations were warranted. The first author then prepared 

narrative descriptions of students’ work on the first investigation, making sure to note the 

different strategies, both productive and unproductive, that the students employed. The 

two authors met to triangulate the narrative description of the first investigation with the 

observational field notes, audio transcripts, and students’ written work. The authors came 

to a consensus that the narrative accurately captured what the students had done to 

complete the first investigation. This process continued for the remaining three 

investigations. 

Findings 

Brent, Caitlin, and Erin successfully developed mathematical models for all four 

investigations in the Deriving Ampere’s Law activity. Aside from a few computational 

errors, these students had little difficulty with developing separate models relating 

magnetic field strength to number of wraps of wire (Investigation 1) and solenoid length 

(Investigation 2). However, the students struggled with developing the model relating 

magnetic field strength to electric current (Investigation 3), partially due to an arithmetic 

error made early in the investigation that hindered their progress. Relating a single 

dependent variable to three independent variables (Investigation 4) was something that 

the students had never been asked to do prior to this activity. With scaffolding in the form 

of questions and reminders from the two authors, the students were able to successfully 

derive Ampere’s Law. 
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Investigation 1: Relating Wraps of Wire to Magnetic Field Strength 

 To begin this investigation, Brent suggested that they measure the strength of the 

magnetic field for each of the provided solenoids. He verified the attributes that were 

held constant for each set of solenoids. Erin confirmed with the group that the first 

solenoid they measured was two-inches in length and had 50 wraps of wire and that the 

resulting magnetic field strength was 36 G. They then measured the two-inch, 100-wrap 

solenoid and found that the rounded value of the resulting magnetic field strength was 72 

G. Erin recorded the collected data in a table (Figure 6). 

 

Figure 6. Erin’s data table for the first investigation. 

Based on the first two solenoids they measured, Erin predicted that the two-inch, 

150-wrap solenoid would produce a magnetic field strength of 108 G, which they 

confirmed by measuring the solenoid. At this point, Erin suggested that the incremental 

change of 36 G would be related to slope and Brent interjected that there was also another 

incremental change of 50 wraps of wire. Caitlin reminded the group that the 

measurements they collected were not exact and that they were working with rounded 

values and Brent reminded her that rounded measurements were acceptable. 

Brent verbalized the collected measurements once more, noting that the magnetic 

field strength increased by 36 each time. Erin asked if that meant the slope was 36 and 

Brent suggested that they graph the data. Caitlin began setting up the axes for the graph 

and the group discussed how they should scale the axes and which were the independent 
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and dependent variables. Brent offered (50, 36) as a possible coordinate pair for the 

graph, which led him to discuss with Erin which variable they should represent with x 

and which they should represent with y. Erin suggested that the number of wraps should 

be represented by x and the magnetic field strength should be represented by y. While 

Brent and Erin discussed the variables, Caitlin was still deciding how to scale the graph’s 

axes. Erin verbally repeated the x-coordinates for their collected data (i.e., 50, 100, and 

150) and suggested scaling the x-axis by five. Brent suggested scaling the x-axis by 50 

and then verbally repeated the y-coordinates (i.e., 36, 72, 108). Erin commented on the 

trend of the data, stating, “It’s going up, so we know it’s a positive –,” before returning 

her attention to Caitlin’s graph. Caitlin decided to start the graph over and while she was 

doing this, Erin sketched a quick graph of the group’s data (Figure 7). 

 

Figure 7. Erin’s graph of the data collected in the first investigation. 

 Brent suggested that the group’s next step should be to try writing an equation for 

their graph. His first step for writing the equation was to consider the slope of the graph: 

Caitlin: What’s the slope? The slope is, let me see [the graph.] Slope is going 
up 36. It’s going over 50. So, 36-50ths. 

 
Brent then asked his group for the simplified form of 36/50, which Caitlin incorrectly 

claimed was 12/25. Using this value for the slope and zero for the y-intercept, Brent 
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proposed that the equation should be 𝑦 = !"
!"
𝑥. Erin then applied this equation to their 

collected data: 

Erin: So, 12 over 25 times 50 and it would somehow have to add or 
subtract to 36 basically, right? 

 
Brent argued that, assuming their simplifying of the original fraction was correct, 

multiplying 50 by 12/25 should equal 36. Erin did not agree that this multiplication 

resulted in 36, so Brent asked his group to simplify 36/50 again. Caitlin incorrectly 

confirmed that the fraction simplified to 12/25, so Brent asserted that the equation must 

be 𝑦 = !"
!"
𝑥. Erin suggested that they double-check their equation with the two-inch, 100-

wrap solenoid. Brent wanted to check their equation against a solenoid whose wraps did 

not vary by 50 wraps, which was something the students did not have access to. As both 

Brent and Erin tested their equation against the solenoids that they had already measured, 

Erin interrupted Brent and questioned how they had simplified !"
!"

. 

 

Figure 8. Erin’s verification of their equation for the first investigation. 

 Erin initially wrote the leftmost equation as 𝑦 = !"
!"
𝑥 (Figure 8). Directly to the 

right of that equation, she set up the expression !"
!"
×100 to verify the strength of the 

magnetic field for a 100-wrap solenoid. She then noticed that it did not yield what they 
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had found experimentally (e.g., 72 G). She corrected the simplification of !"
!"

 to !"
!"

, as seen 

in the top center of the figure. Then, Erin changed the 12 to 18 in both the leftmost 

equation and the expression and verified the calculated strength with what was measured 

experimentally. Prompted by Brent, she then verified that the strength for a 150-wrap 

solenoid is 108 G. After this verification, all three students confidently settled on the 

equation 𝑦 = !"
!"
𝑥.  

The prior conceptual knowledge that students utilized for this investigation was 

their understanding of slope and determining a linear equation using slope. These 

students also recognized that the equation of the line through the scatterplot would be 

their mathematical model. Their problem solving strategies included testing their model 

using their collected data, which uncovered an arithmetical error, revising their model, 

and re-verifying. 

Investigation 2: Relating Length of Solenoid to Magnetic Field Strength 

 Brent, Caitlin, and Erin knew that they would also be asked to relate the length of 

the solenoid to the magnetic field strength, so they chose to measure the remaining 

solenoids in the given set before analyzing the data for the first investigation. After 

measuring the two-inch solenoids with varying wraps of wire, they then measured the 

one-inch, three-inch, and four-inch, 50-wrap solenoids. They found that these additional 

solenoids produced magnetic field strengths of 72 G, 24 G, and 18 G, respectively. Erin 

recorded the collected data sequentially based on solenoid length, as seen in Figure 9. 
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Figure 9. Erin’s data table for first two investigations. 

Having successfully completed the first investigation, the students returned to the 

data they collected for the second investigation. Brent reminded his group of the 

relationship between solenoid length and magnetic field strength that he observed during 

data collection, which was: 

Brent: So for these, first you subtract one-half, then you subtract one-third, 
then you subtract one-fourth from it…See what I’m saying? So for 
one, you’re subtracting from 72, and 36 is half of 72. Then you have 
36 and 24, and 24 is two-thirds of 36. You’re subtracting one-third. 
You subtract six, which is one-fourth of 24 to get that. 

 
He then proposed that the group approach this investigation in a similar fashion as the 

first investigation, suggesting they graph the data using the length of the solenoid as x and 

the magnetic field strength as y. While Caitlin worked on graphing the group’s data, 

Brent and Erin continued to discuss the relationships they observed in the data. 

 Brent and Erin tried to use the pattern he observed in the data to predict the 

magnetic field strength that would result from a five-inch, 50-wrap solenoid. Brent again 

noted that the change from the one-inch solenoid to the two-inch solenoid was 36 G and 

the change from the two-inch solenoid to the three-inch solenoid was 12 G. He also 

observed that 12 is one-third of 36. Similarly, he noted that the change from three-inch 

solenoid to the four-inch solenoid was 6 G and that 6 is one-half of 12. However, neither 

Brent nor Erin was sure of how to extend this pattern. Brent commented that being able 
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to measure a five-inch, 50-wrap solenoid would be beneficial to confirming the pattern he 

observed. Erin suggested that the field strength of the five-inch solenoid might decrease 

by 3 G, even though this did not match the pattern. 

 At this point, Caitlin finished graphing the data and she showed her scatterplot to 

Brent and Erin, who turned their attention to the graph (Figure 10). Caitlin commented 

that the relationship between solenoid length and magnetic field strength was “not direct 

variation.” 

 

Figure 10. Caitlin’s graph of data collected in the second investigation. 

Both Brent and Erin looked at Caitlin’s graph and they suggested drawing a line through 

the plotted points. Brent asked for a graphing calculator and explained that he had never 

been asked to develop an equation for non-linear data without using a calculator. Erin 

suggested that they could try to write an equation for the “general line” by finding the 

average of the slopes between successive data points. Caitlin disagreed with her 

reasoning of using a linear equation to fit non-linear data: 
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Caitlin: That might not work so well because if you look at [the graph], there’s 
a pretty big fluctuation between where the points are. If you’re just 
gonna draw a straight line, you’re gonna miss most of them entirely. 

 
 Brent used the graph to once again try to predict the magnetic field strength 

produced by a five-inch solenoid. He noted that the scale along the horizontal axes was 

two unit squares for every inch and he added a point to the curve at the five-inch mark 

and approximated this to be 15 G. He struggled with consolidating the magnetic field 

strength as predicted by the graph and the pattern he had previously observed. Erin 

explained that it looked like the graph would “even out.” Brent asked his group members 

whether or not they thought the graph might be a parabola, but Erin said that they could 

not know for sure without having other solenoids of greater lengths to measure. Caitlin 

later explained that a parabola would not fit the shape of the data because she did not 

believe it made sense for the magnetic field strength to begin to increase as the solenoid 

length increased. Erin also noted that the relationship between the solenoid length and the 

magnetic field strength was decreasing.  

 Caitlin and Erin continued to analyze the graph together while Brent began 

thinking out loud. While he initially thought that the graph’s curve resembled a parabola, 

he also recalled that indirect variations also resulted in a curved graph. Thinking out loud, 

he said: 

Brent: Is it an indirect variation? … It is an indirect variation because you 
increase this, this goes down. So you just have to figure out, wait so, 
indirect variation. That’s xy = a, I think. Is that the equation for indirect 
variation? 

 
At this point, Caitlin and Erin refocused their attention on Brent. Caitlin did not recall 

studying indirect variation in school and Erin recalled hearing the term in class. Brent 

continued to develop the equation for the second investigation: 
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Brent: K over x equals y, so that means x times y should equal…it was two 
times 36, 72, three times 24 is 72…four times 18 is 72. K is 72, so that 
means y = 72 over x. That’s the equation. 

 
After sharing his equation with the group, Erin verified the equation by checking to see if 

the magnetic field strengths predicted by the equation matched their collected data. After 

confirming Brent’s equation worked, all three students agreed on the equation 𝑦 = !"
!

. 

The prior conceptual knowledge that students utilized for this investigation was 

their ability to recognize and extend patterns, identify non-linear relationship, 

differentiate between direct and inverse variation. These students also recognized that 

their data could not be modeled with a quadratic function based on their understanding of 

parabolas. Their problem solving strategies included verifying and confirming their 

model using their collected data. 

Investigation 3: Relating Electric Current to Magnetic Field Strength 

 Having completed the first two investigations, Brent decided to consolidate the 

group’s data and the derived equations into a single table (Figure 11). 

 

Figure 11. Brent’s data and equations from the first two investigations. 
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Unlike the first two investigations that utilized pre-wrapped and calibrated solenoids, the 

students were required to manipulate the independent variable (i.e., electric current) 

themselves for this third investigation. The students chose the two-inch, 50-wraps 

solenoid for their data collection and Caitlin was tasked with adjusting the current on the 

variable power supply. The students collected their previous data at 3.16 A, which was 

the maximum current for these solenoids. Using this as their starting point, Caitlin then 

decreased the current at intervals of 0.5 A and the students collected the following data 

(which they rounded to the nearest whole number): 

Table 2 

Students’ First Round of Data Collection for the Third Investigation 

Current 3.16 A 2.66 A 2.16 A 1.66 A 1.16 A 0.66 A 
Field Strength 36 G 29 G 23 G 17 G 11 G 6 G 
 
 The students immediately observed that there was not an exact constant rate of 

change between these values for current and magnetic field strength. Even with a 

constant change in current of 0.5 A, the change in magnetic field strength fluctuated from 

7 G to 6 G to 5 G.  Brent suggested that the group should approximate the change in 

magnetic field strength to be 6 G and that they should change their readings at 3.16 A and 

0.66 A to 35 G and 5 G, respectively. With this change, Caitlin commented that the 

relationship between electric current and magnetic field strength was direct variation. 

Caitlin started graphing the group’s data, while Erin commented that while “a visual 

representation always helps,” they could determine the equation without using a graph. In 

her initial attempt to graph the data, Caitlin placed magnetic field strength along the x-

axis and electric current along the y-axis. 
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While Caitlin continued to work on the graph, Brent told his group that the slope 

was “0.5 over six” (which represented the !!
!!

 rather than !!
!!

). The students then tried to 

simplify this so that there was not a decimal value in the numerator. Brent first suggested 

incorrectly that !.!
!

 simplified to !
!

, but then second-guessed his work. Caitlin first 

suggested that !.!
!

 simplified to !
!"

, but would later change her calculation. Brent then 

suggested that the slope was !
!
 because there are “two 0.5’s in one,” but then realized he 

needed to perform the same operation on the denominator, which resulted in !
!"

. Erin 

asked the group several times to wait so that she could perform the simplification herself, 

but without pause, Caitlin disagreed with Brent’s simplification. She argued that to 

simplify !.!
!

, they would need to multiply the fraction by 2, which resulted in !.!
!
∙ !
!
= !

!
. 

Brent then responded, “How is point-five…whatever,” and both Brent and Erin accepted 

Caitlin’s simplification as correct. 

 Knowing that the relationship between electric current and magnetic field strength 

is direct variation and using !
!
 as their slope, Brent suggested that the equation for the 

third investigation should be 𝑦 = !
!
𝑥. Erin and Caitlin tried to verify Brent’s proposed 

equation, but they both realized this equation did not work with their collected data. 

Unfortunately, none of the students thought to revisit their initial slope calculation of !
!"

 

and instead tried to manipulate numbers to find a slope that would work. Neither Erin nor 

Caitlin used units while talking through their computations. For example: 

Erin: Wait, so does one-sixth times 35… 
Caitlin: Can I test it on your calculator? 
Erin: Yeah. 
Caitlin: Let’s do it with five and 0.16 



 

 63 

Brent: So, what’s x? 
Caitlin: x is five. Let’s start with five. 
Erin: Yeah, does it equal two-thirds? 
Caitlin: No. 
Erin: Oh, okay. Can you flip it then? No, the increments would get smaller. 

 
At this point, Brent interrupted them and asked them to clarify what five represents, to 

which Erin responded, “Five was the Gauss, or 0.66, right?” Instead of questioning their 

data analysis, Caitlin attempted to measure the magnetic field strength at 0.16 A again, 

but struggled to adjust the variable power supply. Erin asked her group members if this 

meant that they would need to recollect all of their data and Brent agreed. 

 In order to encourage the students to reanalyze their existing data rather than 

recollect, the first author interjected and asked the students to restate the variables in this 

investigation. Caitlin said that the variables were Gauss and current, which led the first 

author to ask a follow-up question regarding which variable was represented by x and 

which was represented by y. Brent replied that the current is x and the Gauss is y, which 

led Erin to tell her group that they needed to “reverse it,” referring to the slope. Caitlin 

asked her group to confirm that the equation for the third investigation was 𝑦 = !
!
𝑥 and 

Brent agreed, but Erin once again asked if their slope was incorrect. Brent said that the y 

variable was Gauss, which seemed to confuse Caitlin. Erin then suggested that the slope 

should be six, not one-sixth, but she then realized that also did not work with their 

collected data. Brent tried testing the equation again, but he was still using one-sixth as 

the slope. 

 The first author then asked the students how they arrived upon one-sixth to 

encourage the students to revisit their calculations. Erin said that it was from !.!
!

 and 

Caitlin explained that it was because they decreased the current by 0.5 A for each 



 

 64 

reading, at which point Brent asserted that the slope should be negative. Caitlin argued 

that the slope was in fact positive. Erin then asked if there would be a y-intercept for their 

equation. At this point, Brent suggested that they recollect all of their data and that they 

should graph the data. Caitlin had previously struggled with scaling her axes and had 

abandoned her initial attempt at graphing the group’s data from the initial round of data 

collection. 

 The students then collected their data for the second time. They again chose to 

change the current in increments of 0.5 A and they recorded their first measurement at 

0.16 A. Brent instructed Erin to record the data without rounding (Table 2) and he would 

record the data rounded to the nearest whole number. 

Table 3 

Students’ Second Round of Data Collection for the Third Investigation 

Current 0.16 A 0.66 A 1.16 A 1.66 A 2.16 A 2.66 A 3.15 A 
Field Strength 2.7 G 8.1 G 14 G 19.6 G 25.2 G 30.6 G 36 G 
 
Brent noticed that once again, there was not a constant change in magnetic field strength 

in their data. Caitlin suggested using an average to determine the change in magnetic 

field strength. Erin described this as finding the “general slope,” but Brent questioned this 

approach. Caitlin then suggested collecting their data again, but that they take their first 

measurement at 3.0 A rather than 0.16 A (Table 3). 

Table 4 

Students’ Third Round of Data Collection for the Third Investigation 

Current 3.0 A 2.5 A 2.0 A 1.5 A 1.0 A 0.5 A 
Field Strength 34 G 27.9 G 21.9 G 16.1 G 10 G 4.5 G 
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 Brent commented that with this set of data, the change in magnetic field strength 

was 6 G except from 1.0 A to 0.5 A, where the change was 5 G. He suggested that the 

group graph their data. Caitlin erased the scale from her first graph, but kept magnetic 

field strength as her x-axis and electric current as her y-axis. Erin then suggested another 

approach (see Figure 11): 

Erin: Couldn’t we just work it out exactly like a math problem for slope? So, 
it’s gonna be 6.1 over five-ish. Do you want to do increments of six as 
the general slope? 

 
Brent agreed with approximating the change in magnetic field strength as 6 G. Erin then 

set up her slope calculation as !
!!.!

= −12, but then questioned if she had accidentally 

flipped her fraction. Caitlin disagreed that the slope would be negative, noting that there 

was “a positive correlation” in the data. Caitlin returned to her graph and Erin checked 

her slope calculation and then asserted that the slope should be !
!"

 (Figure 12). 

 

Figure 12. Erin’s slope calculation using data from the third round of data collection. 

 Caitlin continued trying to graph the group’s most recently collected data, but 

struggled with scaling her axes. She attributed her difficulty to the fact that she needed a 

different scale for her x-axis and her y-axis.  The first author asked the group which 
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variable the students should assign to their x-axis. Brent initially said Gauss, which 

Caitlin agreed with, but he then asked why Gauss would be along the x-axis. Erin said 

that she thought Gauss was the dependent variable, but Caitlin argued that it was the 

independent variable. Brent disagreed and reasoned, “Gauss isn’t the thing we’re 

changing. It’s voltage [sic] that we’re changing.” Caitlin then changed her axes once 

again and finished the graph (Figure 13). 

 

Figure 13. Caitlin’s graph of the data collected in the third round of data collection. 

 Using Caitlin’s graph, the three students once again try to develop an equation to 

model the relationship between electric current and magnetic field strength. Erin noticed 

that the y-intercept was zero. Brent concluded that as long as they assumed the change in 
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magnetic field strength from 1.0 A to 0.5 A was 6 G, this was an example of direct 

variation. The three students again attempted to find the slope of the line. Brent and 

Caitlin’s approach to calculating slope was to use the graph to determine the change in y 

and the change in x; however, they read the scale along the axes differently. Caitlin 

believed that the slope was !.!
!

, but Brent argued that the slope was !
!.!

. Brent then 

corrected himself and divided the y-value by the x-value in their data set to arrive at a 

slope of !"
!

, which he approximated as 11.33. However, he noted he arrived at different 

values when using other data points. 

 Erin then proposed that they consider their data as ordered pairs and to calculate 

slope using !!!!!
!!!!!

. Caitlin noticed that she had miscounted the units along her graph and 

that the slope should have been !
!.!

, which Brent simplified as 12, but Caitlin simplified as 

three. Brent corrected her and Caitlin agreed that six divided by 0.5 equals 12. Brent 

questions whether or not 12 is the correct slope, referring back to !"
!

. At this point, the 

students had been working on the third investigation for approximately 40 minutes. The 

second author asked if !"
!

 was close to 12 and Brent agreed that the two values were close 

to each other. The second author then reminded students of the variation they observed 

during data collection and that using rounded values would be acceptable. 

At this point, all three students agreed that the slope was 12 and Brent proposed 

that the equation should be 𝑦 = 12𝑥. Erin proposed that, based on their collected data, 

the equation should be 𝑦 = 12𝑥 − 2. Caitlin and Erin test the equation 𝑦 = 12𝑥 − 2 

against their data and both confirm that this second equation fits better than 𝑦 = 12𝑥. 

Caitlin then proposes that they use their equation to predict the magnetic field strength at 
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a current value that they have not yet measured. Using x = 1.25 A, Brent calculates that 

the magnetic field strength should be 13 G. Caitlin then set the variable power supply to 

1.25 A and measured the magnetic field strength of the two-inch, 50-wrap solenoid and 

found that the field strength was 15 G. Erin suggested that Caitlin adjust the current until 

the field strength was 13 G so that they could see the associated current value. Brent 

noticed that at 1.05 A, the magnetic field strength was 13 G, but at 1.0 A, the magnetic 

field strength was 10 G. Given the variation they had observed in their data collection, all 

three students agreed that the equation 𝑦 = 12𝑥 − 2 fit their collected data. 

 The first author asked the students to connect their equation to the context of the 

investigation. Caitlin explained that the slope represents the relationship between current 

and Gauss. Erin explained that when they set the current to 0 A, the magnetic field sensor 

picked up a reading of –2.2 G, which is why the y-intercept is –2. The second author then 

asked what the y-intercept would be if there were not any ambient magnetic field in the 

room and Caitlin said 0. The students were encouraged to disregard the ambient field 

reading, at which point they settled on the equation 𝑦 = 12𝑥. 

The prior conceptual knowledge that students utilized for this investigation was 

their understanding of slope, linear equations, and direct variation. Their problem solving 

strategies included verifying their model using their collected data. However, an initial 

incorrect slope calculation (representing slope as !!
!!

 rather than !!
!!

) and arithmetic errors 

when simplifying their slope calculation was a significant hindrance to students’ ability to 

develop a model for this investigation. Students exhibited a lack of problem solving 

strategies when they recollected their data rather than revisiting their data analysis. 
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Investigation 4: Developing a Final Model 

 For this final investigation, the students were asked to develop a single equation 

that related wraps of wire, solenoid length, and electric current to magnetic field strength. 

Caitlin suggested that the group should either review their equations from the first three 

investigations or review their previously collected data. Brent proposed collecting more 

data, but when reminded of the time constraints, he agreed that reviewing the data they 

had already collected would be a good starting point. Brent summarized the relationships 

they observed in the first three investigations: 

Brent: Well, for the length, the longer the tube is, the less Gauss you’re 
gonna have. And then for the other thing [wraps of wire and electric 
current], the more of each thing you have, the more Gauss you’re 
gonna have. 

 
Caitlin commented that they would be unable to make a graph, so Erin suggested 

organizing their data into a single table. Erin began setting up the group’s data table when 

Caitlin realized that they would need to rename the variables in their previous equations 

because they could not represent all three independent variables with x. Caitlin proposed 

that they define the electric current as a, the solenoid length as b, and number of wraps of 

wire as c. 

 While Erin continued to organize the group’s data, Caitlin proposed that they 

could combine their previous equations, but would need to “average it out.” She 

explained that they could add their equations from the first three investigations and then 

divide the sum by three (see Figure 11). Brent suggested that they use the data from one 

of their previously measured solenoids to test Caitlin’s equation. Using the data collected 

from the one-inch, 50-wrap solenoid measured at 3.16 A, Caitlin set up her equation 

(Figure 14). 
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Figure 14. Caitlin’s first approach with developing a final model. 

Caitlin’s equation resulted in a magnetic field strength of 47.97 G, which did not match 

their measured field strength of 72 G. Erin noticed that dividing by two instead of three 

would result in a predicted field strength of 71.96 G. This revision to Caitlin’s equation 

can be seen in the second expression in Figure 7. Using the revised equation, 𝑦 =

!"!!! ! !"
! ! !"

!"!

!
, the students calculated the magnetic field strength for a two-inch, 50-

wrap solenoid measured at 3.16 A. The equation resulted in a magnetic field strength of 

53.96 A, which again did not match their measured field strength of 36 G. 

 At this point, the two authors provided the students with additional scaffolding for 

this investigation because this was the first time these students had been asked to develop 

a mathematical model that involved three independent variables. The students were 

motivated to complete the task, but were unsure of how to move forward. The scaffolding 

that was provided consisted of a suggestion, a few reminders, and some questioning. The 

first author suggested that the students revisit the types of variation they observed during 

each of the investigations. The students recalled that the relationships between the 

number of wraps and magnetic field strength and electric current and magnetic field 

strength were both direct variation, while the relationship between solenoid length and 

magnetic field strength was indirect variation. Caitlin suggested that instead of trying to 



 

 71 

combine all three equations at once, they should instead focus on first combining the 

direct variations and proposed that they subtract these two equations. 

The second author then asked the students how they would put the two direct 

variations together and Erin commented that there were only four ways to combine the 

equations, referring to the four basic mathematical operations. Brent recalled that in the 

third investigation, the group had agreed that the final equation should be 𝑦 = 12𝑥 

because subtracting two would no longer result in direct variation. The second author 

asked the students to restate the equation for a direct variation and Brent responded, “y 

equals k x.” The second author then asked a follow-up question, “If you had two 

variables that had a direct relationship, what do you think that [equation] would look 

like?” 

Brent asked if the equation would be “y equals 2K” and Erin followed with the 

equation “K squared and x squared.” [Joe] reminded them that K could be any number. 

Returning to the general form of a direct variation equation proposed by Brent (𝑦 = 𝐾𝑥), 

the second author asked the students where they would put the next variable that had a 

direct variation. Erin suggested “after,” but did not specify an operation. Caitlin 

suggested that they “add it to both sides.” Brent suggested that the equation would be “y 

equals K times the sum of W plus C,” where W represented the number of wraps of wire 

and C represented the electric current. The second author asked if this equation still 

represented direct variation and Erin replied that it did not and then stated that they would 

need to multiply the two variables and Caitlin agreed that it would still be direct 

variation. The second author then asked how they would include the variable that has an 
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indirect variation and Brent responded that they would need to divide. Brent then wrote 

the equation 𝑦 = 𝐾 !"
!

. 

Brent shared his equation with Caitlin and Erin. Erin asked, “What is x and what 

is y?” and Brent explained that W, C, and L represented the x variables from their 

previous equations. Caitlin asked what K represented and Brent said that K was a 

constant. The first author asked the students how they could figure out a numerical value 

for K. Erin asked if it would be the slope, since the constant in direct variation equations 

is the slope. Caitlin reminded Erin that they were unable to graph the data for this 

equation, so they would not be able to determine the slope. Brent suggested that they 

could multiply the constants from the previous three equations. This gave him a constant 

of 622, which he immediately questioned. The first author then reminded the students of 

a comment Caitlin had made during the first investigation. Caitlin explained that the 

equation they developed relating wraps of wire to magnetic field strength would only 

work for two-inch solenoids because all of their data was from a two-inch solenoid. The 

first author asked if they could use their previously derived constants to determine the 

constant for this new equation and Brent responded that there needed to be a new 

constant. 

Brent then suggested using the data for one of their solenoids to calculate the 

constant. Using the one-inch, 50-wrap solenoid measured at 3.16 A, Brent calculated a 

value of 158. The first author asked Brent what that represented in his equation and he 

said, “it’ll get us the constant.” Brent then restated the equation, 

Brent: The wraps and the currents divided by L times the constant would 
give you y. We don’t know what the constant is. 
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The second author then asked if they had values for y and Brent responded that they did 

and that they could use that to determine a value for K. Brent then returned to the 

equation 𝑦 = 𝐾 !"
!

 and the three students attempted to solve the equation for K. 

Caitlin: Would we need to complete the square to get rid of the curve, like you 
do for the quadratic proof? 

Erin: Complete the square? I don’t see the square in here. 
Caitlin: There might be one. No, that wouldn’t work. 
Erin: I think you’re overcomplicating it. 
Caitlin: I think you’re right. 
Brent: We just need to find K.  

 
At this point, Brent had divided both sides of the equation by K, but was then 

unsure of what to do next. He knew that he wanted to isolate K on one side of the 

equation. The first author asked the students if it would be helpful for them to use their 

data rather than working strictly with variables. Brent then set up the equation again 

using the one-inch, 50-wrap solenoid measured at 3.16 A. After working through the 

calculations, he was left with the equation 72 = 𝐾 ∙ 158, which he was able to solve for 

K (Figure 15). 

 

Figure 15. Brent’s method for determining the value of K. 

Using K = 0.46, Brent then tested his final equation using his data for the two-inch, 50-

wrap solenoid measured at 3.0 A and saw that the equation worked. Caitlin and Erin also 
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tested this equation using a calculator. After having tested the equation against at least 

three different sets of data, Brent, Caitlin, and Erin were all convinced that this equation 

worked and the three students agreed that the final equation was 𝑦 = 0.46 !"
!

, which 

was the correct model for their set of solenoids. 

The prior conceptual knowledge that students utilized for this investigation was 

their understanding of variables, knowledge of the structure of direct and inverse 

variations, and solving an equation for an unknown value. These students also recognized 

that this relationship could not be modeled graphically because their model incorporated 

three independent variables. Their problem solving strategies included verifying and 

confirming their model using their collected data. 

Discussion 

The research questions for this paper focus on the prior mathematical knowledge, 

both conceptual and procedural, students utilized when developing mathematical models 

and students’ problem solving strategies. While there was some application of prior 

knowledge and problem solving strategies that were common across all four 

investigations, there were also instances where the prior knowledge accessed and 

strategies used were unique to each investigation. There were also instances where 

misapplication of prior knowledge (e.g., reversing slope, confusing variables) and a lack 

of problem solving strategies (e.g., not verifying computations) delayed the students’ 

ability to develop their models. 

Prior Mathematical Knowledge 

For all four investigations, students relied on their knowledge of generating 

graphs from data tables and analyzing relationships between variables based on graphical 
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representations. The students also consistently utilized pattern recognition and extension 

to help them develop their models. The students’ prior knowledge of direct and inverse 

variation helped them recognize the models for the first three investigations and allowed 

them to develop their final model relating a single dependent variable to three 

independent variables.  

 Investigation 1. The prior mathematical knowledge Brent, Caitlin, and Erin 

utilized to complete the first investigation included identifying independent and 

dependent variables, graphing data, recognizing and extending linear patterns, and 

calculating slope. Immediately after measuring the two-inch, 50-wrap solenoid and the 

two-inch, 100-wrap solenoid, Erin recognized that the magnetic field strength increased 

by 36 G and she predicted that the two-inch, 150-wrap solenoid would produce a 

magnetic field strength of 108 G. Brent realized that the incremental change of 36 G 

corresponded with an incremental change of 50 wraps, resulting in the slope !"
!"

. When the 

students graphed their data, they discussed which variable was the independent variable 

and which was the dependent variable. They also recognized from their graph that the y-

intercept for their model should be zero, which resulted in 𝑦 = 𝑘𝑥 as the structure for 

their model. 

 Investigation 2. Brent, Caitlin, and Erin again utilized their prior mathematical 

knowledge to complete the second investigation. The students were able to eliminate 

different types of relationships based on their graph. For example, the students 

immediately recognized that the data was not linear and it was not direct variation. 

Caitlin also knew that the data was not quadratic because at no point would the graph 

turn. As soon as Brent recalled that the shape of an indirect variation graph was also 
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curved, he immediately recalled the definition of indirection variation and the equation’s 

structure. 

 Investigation 3. The prior knowledge Brent, Caitlin, and Erin recalled for the 

third investigation was similar to the first two investigations. They graphed data, 

calculated slope (using both the graph and the slope formula), and recognized direct 

variation. However, the third investigation was much more challenging for the students. 

Unlike the first two investigations, the students were required to manipulate the 

independent variable themselves by changing the current values using the variable power 

supply. The third investigation also highlighted gaps in the students’ prior knowledge. 

When they first attempted to determine the slope using their initially collected data, they 

calculated as !!
!!

 rather than !!
!!

, which resulted in !.!
!

. Inverting slope was an error that was 

also observed in previous pilot testing iterations of Deriving Ampere’s Law activity; two 

high school students who completed the activity also inverted their initial slope 

calculation.  

In addition to inverting the slope, Brent, Caitlin, and Erin also struggled with 

rewriting this fraction so that there was not a decimal value in the numerator, which 

indicated a lack of both conceptual and procedural knowledge. Caitlin first simplified !.!
!

 

as !
!
 without recognizing that !

!
 must be greater than !.!

!
. This initial arithmetic error 

proved to be catastrophic for the students and led students to recollect their data two more 

times. The students also misinterpreted the slope’s direction; because the magnetic field 

strength was decreasing, the students believed that the slope was negative without 

recognizing that they were also decreasing the electric current. It was not until Erin 
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recommended using the formula for slope that the students were able to correctly 

calculate slope and develop their model. 

 Investigation 4. Developing a model that related a single dependent variable to 

three independent variables was something that Brent, Caitlin, and Erin had never done 

prior to this activity. However, the students were able to utilize prior mathematical 

knowledge to help them make sense of this task. The students recognized the need to 

rename the variables in their final model. In the previous three investigations, they 

represented the independent variable with x and the dependent variable with y. Since the 

final model involved three independent variables, the students realized that they could not 

represent all three with the same letter. After renaming the variables, the students first 

attempt at writing their final model was to average the equations from the first three 

investigations. This approach was also observed during previous pilot testing iterations of 

the activity; both high school students and undergraduate mathematics majors who had 

completed the Deriving Ampere’s Law activity first tried to find the average of the first 

three models. After realizing that finding the average would not work, Brent, Caitlin, and 

Erin then returned to their understanding of the structure of direct and inverse variations 

to help them develop the general structure of their final model. They also used their 

knowledge of how to solve an equation for an unknown value in order to determine the 

constant for their final model. 

Problem Solving Strategies 

 The students used similar problem solving strategies for all four investigations. 

The two problem solving strategies that seemed to be the most valuable for students were 

developing and analyzing multiple representations of their data (i.e., tables, graphs, and 
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equations) and verifying the appropriateness of their model. Once a model was 

developed, the students consistently used their collected data to confirm their model 

worked. 

 Investigation 1. Brent, Caitlin, and Erin effectively used several problem solving 

strategies to complete the first investigation, including using multiple representations 

(e.g., data table, graph), making predictions, and verifying their equation using the 

collected data. It is important to reiterate that the students were not instructed to graph 

their data; the students felt that making a graph would help them recognize the 

relationship between the independent and dependent variables and the fact that there was 

not an additive constant in their model. While they did not initially check the accuracy of 

their calculations, verifying their equation using the collected data helped the students 

uncover an arithmetic error they had made early in the investigation (incorrectly 

simplifying !"
!!

 as !"
!"

). 

 Investigation 2. The students used many of the same strategies as they did in the 

first investigation. They used multiple representations, looked for patterns, and made 

predictions. They also verified their equation using the collected data. Analyzing the 

graph of their data was a particularly useful strategy for this investigation. From the 

shape of the graph, the students were able to limit the types of relationships that could be 

used for their model. The most difficult aspect of the second investigation was generating 

an equation for non-linear data without using a calculator. 

 Investigation 3. Again, the problem solving strategies the students successfully 

used for this investigation included generating multiple representations and verifying 

their model using collected data. However, prior to developing their final model, there 
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was an apparent lack of strategy in the students’ problem solving approach. In particular, 

the students did not revisit their initial slope calculation to confirm that their 

computations were correct. Instead of checking their work, the students recollected their 

data. Even after collecting their data a third time, the students did not immediately revisit 

their slope calculations and continued to think of slope as !!
!!

. It was not until the students 

decided to abandon their calculations that they were able to correctly determine the slope. 

 Investigation 4. The students quickly realized that the relationship for the fourth 

investigation could not be modeled graphically, making one of their most used problem 

solving strategies not applicable. However, the students did make use of other problem 

solving strategies. The students organized their data from the first three investigations 

into a single table. The students also approached this task by analyzing a simpler problem 

(i.e., creating a model that only involved the two direct variation relationships). The 

students also verified their model by using their collected data to confirm their equation 

was correct. 

Implications 

 The Deriving Ampere’s Law activity attends to the five strands of mathematical 

proficiency: conceptual understanding, procedural fluency, strategic competence, 

adaptive reasoning, and productive disposition (National Research Council, 2001). As a 

result of completing the Deriving Ampere’s Law activity, the students developed a better 

understanding of direct and inverse variation. The activity provided students with 

opportunities to observe real-world examples of direct and inverse variation and to apply 

their prior mathematical knowledge of these concepts to develop their models. Brent, 

Caitlin, and Erin also learned how to model relationships that involved multiple 
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independent variables. After completing the fourth investigation, Brent asked if he would 

be able to combine even more independent variables using a similar structure (i.e., 

identifying the types of variation and using that to determine which variables are in the 

numerator and which are in the denominator). Throughout the entire activity session, the 

three students remained engaged and were determined to develop a correct model. As a 

model-eliciting activity, the Deriving Ampere’s Law activity provided the students with 

an opportunity to engage in the mathematical modeling process (see Figure 1); they had 

to regularly verify, revise, and adapt their models throughout each of the investigations. 

 The findings from this study reveal several implications for classroom instruction. 

First, the concept of slope should be taught alongside independent and dependent 

variables and it should be taught within some sort of real-world context. Brent, Caitlin, 

and Erin utilized their prior knowledge of slope in both the first and the third 

investigation. In the first investigation, their discussion of slope was rooted in the context 

of the task; the students spoke about slope as the incremental change in Gauss that results 

from an incremental change in wraps of wire. However, in the third investigation, the 

students regularly lost sight of the context and spoke about slope strictly in terms of 

numeric values. Second, application tasks need to be more authentic. For the first two 

investigations, the students measured a set of pre-wrapped solenoids that had been 

calibrated prior to the activity. In the third investigation, the students were asked to 

manipulate the independent variable themselves, which resulted in “messier” data. 

Analyzing the data from the third investigation was much more difficult for the students. 

Finally, problem solving strategies and control strategies need to be explicitly integrated 

into classroom instruction. The students’ lack of control strategies came to light during 



 

 81 

the third investigation. Instead of checking their work for computation errors, the students 

assumed the error was in the data they collected. Had they revisited their initial slope 

calculation, the students most likely would have realized that their errors were mainly 

computational. 

 The students’ affective responses also indicated their preference for activities such 

as this. They shared that they found the Deriving Ampere’s Law activity engaging and 

unlike what they had previously experienced in school. Erin explained that 

interdisciplinary work in school is rare: “Ever since elementary school, teachers would 

draw a really big distinction between math and science. It’s like there’s math and there’s 

science and there isn’t any correlation.” Caitlin appreciated the fact that there was not a 

prescribed procedure: “It was really interesting because we didn’t have a textbook and we 

didn’t have any experience with these equations. It was really cool to go in completely 

blind, not knowing what we’re doing, and come out with a proof of Ampere’s Law.” 

Brent enjoyed the ability to authentically engage in the scientific process: “We figured 

out an equation without really any help. We went through the same process that 

[Ampere] went through…and we’re seventh graders. That’s pretty cool.” 

Limitations 

There are three potential limitations to this research study. The first limitation is 

that researcher bias may have influenced data analysis. The first author developed the 

materials for the Deriving Ampere’s Law task, giving her an intimate understanding of 

the task, as well as her own modeling strategies. To mitigate how this may have 

influenced data analysis, both authors recorded field notes separately and they also 

triangulated their findings across multiple data sources. The second potential limitation is 
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that students’ problem solving strategies may have been influenced by the decision to 

have students work in groups of three. Having students work on the task independently or 

in groups of two may have uncovered different problem solving strategies. The third 

limitation is related to the generalizability of the findings. The students who participated 

in the activity had all taken an engineering course in seventh grade and had prior 

experience working with solenoids. The students who were the focus of this paper were 

also advanced in their mathematics coursework, having completed algebra. While these 

students are not representative of typical middle school students, their selection was 

purposeful. The primary goal of this study was to see if students could develop a realistic 

model and secondarily, to see how students utilized their conceptual and procedural 

knowledge of algebra. Given the nature of the research questions for this study, selecting 

students who had already taken algebra was beneficial. 

Conclusion 

Brent, Caitlin, and Erin were able to develop a mathematical model involving 

three independent variables, despite having not done this type of modeling prior to 

participating in the model-eliciting Deriving Ampere’s Law activity. This activity 

emphasized the modeling process itself rather than asking students to replicate known 

procedures. These students needed to apply their prior conceptual and procedural 

knowledge and utilize productive problem-solving strategies in order to develop their 

mathematical models. These students were excited by the challenge of the Deriving 

Ampere’s Law activity and remained engaged throughout the entire session. Despite the 

limitations noted above, the findings from this study are incredibly encouraging. The 

findings from this study and from other iterations of the Deriving Ampere’s Law activity 
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with different student groups show that challenging model-eliciting activities such as this 

are accessible and enjoyable for middle school students. 

For this paper, the Deriving Ampere’s Law activity was separated into four 

investigations. However, depending on the depth of participants’ prior knowledge, the 

task can be approached holistically. The immediate plan for future research is to have 

pre-service mathematics teachers and pre-service science teachers complete the Deriving 

Ampere’s Law activity as a single task rather than as separate investigations. Additional 

plans for future research include: (1) further unpacking students’ affective reactions and 

(2) reworking some design aspects of the Deriving Ampere’s Law activity. The data 

collected for this paper, particularly the data from the pre-algebra group, indicated that 

there were aspects of the Deriving Ampere’s Law activity that influenced students’ 

persistence and perseverance with the task. This data will be further analyzed to explore 

students’ affective responses. If possible, the students who participated in the activity will 

be interviewed again to further reflect on their experience and to what extent, if any, the 

experience influenced their thinking about mathematics and science during the school 

year. 

In addition to unpacking students’ affective responses, plans for future research 

also include reworking some design aspects of the activity itself. The original set of 

solenoids developed for the activity were calibrated using 3.16 A because of the 

limitations of the variable power supply used. A new set of solenoids, using a more 

reliable power supply, is under development to provide students with the ability to 

interact with current as a variable in a more meaningful way. With more reliable 

materials, a holistic version of the Deriving Ampere’s Law activity could be implemented 
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with middle school students to get a better understanding of how students might approach 

the activity with limited scaffolding. Finally, opportunities for commercialization of the 

activity are underway to be able to develop and mass-produce sets of pre-wound, 

calibrated solenoids. These efforts would allow the Deriving Ampere’s Law activity to be 

implemented in a classroom setting, such as a middle school mathematics or science 

class. 
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CHAPTER 4 

Pre-Service Mathematics and Science Teachers’ Modeling Strategies: 

The Derivation of Ampere’s Law 

 

Modeling is a key component of authentic science and mathematics practices. 

Scientific progress depends on the ability of scientists to develop models to “represent, 

replicate, observe, and test their ideas, hypotheses, and theories” (Atkan, 2016, p.7). 

Mathematical models are essential tools for finding solutions to real-world problems that 

exist outside of the domain of mathematics (Daher & Shahbari, 2015). Both the Next 

Generation Science Standards (National Research Council, 2012) and the Common Core 

State Standards (National Governors Association Center for Best Practices, 2010) 

emphasize modeling as an essential practice in their respective domains. The National 

Council for Teachers of Mathematics (2000) emphasizes the importance of students 

experiencing mathematics in context and encourages that students be given the 

opportunity to apply their understanding of mathematics to solve problems that exist 

outside of the realm of mathematics. 

Despite the emphasis placed on modeling in curricular standards, national and 

international assessments consistently document that students struggle with applying their 

understanding of science and mathematics to novel problems and contexts. The results 

from the 2011 Trends in International Mathematics and Science Study (TIMSS) indicated 

that 60% of eighth-grade students in the United States did not meet the high benchmark 
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in science and 70% did not meet the high benchmark in mathematics (Martin, Mullis, 

Foy, & Stanco, 2012; Mullis, Martin, Foy, & Arora, 2012). At the high level in science, 

“students demonstrate understanding of concepts related to science cycles, systems, and 

principles” (Martin, Mullis, Foy, & Stanco, 2012, p. 111). At the high level in 

mathematics, “students can apply their understanding and knowledge in a variety of 

relatively complex situations” (Mullis, Martin, Foy, & Arora, 2012, p. 113). Being able to 

communicate their understanding of science or model situations using mathematics is 

indicative of students performing at the advanced level, the highest achievement 

benchmark on the TIMSS scale.  Transitioning between real-world problems and models 

is particularly challenging for students, especially since formal education emphasizes 

abstraction (Crouch & Hanes, 2004). In order to better support students’ ability to 

develop and apply scientific and mathematical models, it is critical that the modeling 

process be incorporated into classroom instruction. 

Relevant Literature 

A model can be broadly defined as “a representation of an idea, an object, an 

event, a process or a system” (Gilbert & Bouter, 1998, p. 53). Models can be realized 

through a variety of different mediums, such as written descriptions, diagrams, verbal 

explanations, or physical object and they provide us with the opportunity to study 

concepts that might otherwise be inaccessible or invisible (Atkan, 2016). When modeling 

real-world situations, students must interpret and make sense of complex and imperfect 

information in order to create a meaningful representation of the given situation (Daher & 

Shahbari, 2015). Students are also engaged in several cognitive processes during 

modeling activities, including “interpreting, discussing, translating, [and] validating” 
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(Daher & Shahbari, 2015, p. 27). The translation between the real-world problem and the 

developed model is a defining characteristic of science and mathematics (Crouch & 

Hanes, 2004). Within each discipline, however, there is some variation in the way models 

are defined and used. 

Modeling in Science and Mathematics 

 In science, models act as a bridge between theory and reality, making models an 

integral part of the study and advancement of science (Gilbert, 2004). A scientific model 

can be defined as “an abstraction and simplification of a system that make its central 

features explicit and visible” (Kenyon, Davis, & Hug, 2011, p. 2). There are two basic 

types of scientific models, conceptual models and expressed models. A conceptual model 

is one’s internal representation, while an expressed model is an external representation of 

one’s conceptual model (Kenyon, Davis, & Hug, 2011). 

In mathematics, modeling is the process of representing real-world situations 

using mathematics as a way to understand and solve a specified problem (Daher & 

Shahbari, 2015) and the model itself is the mathematical description of the real-world 

situation (Lesh & Lehrer, 2003). Mathematical modeling requires one to be able to move 

fluidly between the real world and the mathematized world. Mathematical modeling is 

rooted in the “assumption that humans interpret their experiences using internal 

conceptual systems (or constructs) whose functions are to select, filter, organize, and 

transform information, or to infer patterns and regularities beneath the surface of things” 

(Lesh & Lehrer, 2003). 

 Both scientific modeling and mathematical modeling are cyclical processes (see 

Figures 1 and 2). The scientific modeling process includes four phases: constructing the 
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model, using the model, evaluating the model, and revising the model. The construction 

phase involves analyzing the system or phenomenon to be modeled, identifying the key 

features, and determining how these features are best represented. The next phase is using 

the model as a way to describe, analyze, and make predictions about the system or 

phenomenon. Based on the outcomes from the “using” phase, the model is then evaluated 

and revised (if necessary) to better accomplish the model’s intended purpose. 

 

Figure 1. Scientific modeling process (Kenyon, Davis, & Hug, 2011). 

When creating a mathematical model, one needs to first decide how a real-world 

problem should be mathematized and then interpret what information given in the real-

world problem is relevant and which mathematical techniques are appropriate in 

developing the model (Crouch & Hanes, 2004). As mathematical models are developed, 

they are tested and revised and the initial real-world problem itself is revisited and 

reinterpreted as the model is amended (Delice & Kertil, 2015). 

 

Figure 2. Mathematical modeling cycle (Delice & Kertil, 2015). 
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Incorporating Modeling into the Classroom 

 Modeling allows students to engage in authentic science and mathematics 

practices (Gilbert, 2004; Crouch & Hanes, 2004). There are several characteristics of 

authentic curricula, including replicating the work of professionals in the field, 

encouraging creative thought, exploring a small network of key ideas in depth, and 

working across disciplines to solve human problems (Gilbert, 2004). When engaged with 

authentic science and mathematics curriculum, students must be afforded the opportunity 

to develop and test their own models. However, there is evidence that this practice is not 

commonplace in schools. The empirical literature documents that students struggle with 

the modeling process. That being said, modeling can be taught. According to Gilbert 

(2004), there are four discrete steps to learning the modeling process: (1) using existing 

models, (2) revising existing models, (3) reconstructing existing models, and (4) 

constructing new models. In order for students to learn how to engage in scientific and 

mathematical modeling practices, teachers themselves need to be proficient in the 

modeling process. 

 The way in which one engages with models and the modeling process can be 

categorized based on the depth of use (Grosslight, Unger, & Jay, 1991; Harrison & 

Treagust, 2000). At the highest level, one recognizes that models are meant to explore 

concepts and that models can be manipulated based on what is needed to solve a given 

problem. This level of use describes the way in which modeling experts engage with the 

process. At the lowest level, one assumes that there is a one-to-one correspondence 

between the model and reality. At this level, one does not explore the model beyond its 

surface appearances. This level of use generally describes the way in which those with 
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limited modeling experience engage in the process. Some of the difficulties with 

modeling can be attributed to having a limited knowledge base and one’s ability to 

translate between different contexts. 

Pre-Service Teachers’ Proficiency with Modeling 

Facilitating modeling activities requires flexibility with pedagogical content 

knowledge, comfort with reform-teaching methods, and the ability to understand and 

interpret students’ thinking. Teachers often develop these skills through experience, 

making it particularly difficult for pre-service and early career teachers to incorporate 

modeling activities into their classroom instruction. 

 Pre-Service Science Teachers. The challenges that new science teachers face can 

be summarized into five major themes: understanding the content and the disciplines of 

science, understanding learners, understanding instruction, understanding the learning 

environment, and understanding professionalism (Davis, Petish, & Smithey, 2006). The 

first four of these themes can influence teachers’ ability to incorporate modeling activities 

into their own classrooms. Pre-service science teachers (PSSTs) recognize that active 

learning is more effective for promoting student learning, but are still hesitant towards 

incorporating this type of instruction in their own teaching (Doster, Jackson, & Smith, 

1997). Two main areas of concern for pre-service teachers are their depth of content and 

pedagogical knowledge and their unfamiliarity with the modeling process. 

Insufficient content knowledge and pedagogical knowledge are sources of anxiety 

for PSSTs (Doster, Jackson, & Smith, 1997). Many new science teachers lack adequate 

content knowledge (Davis, Petish, & Smithey, 2006). Science teachers, especially at the 

elementary and middle grades, are expected to posses a broad range of content 
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knowledge (e.g., earth science, life science, physical science) and this content knowledge 

needs to be of sufficient depth in order to be able to teach effectively. However, 

accumulating this level of content knowledge is challenging at the university level since 

courses are often taught modularly (Gilbert, 2004). Pedagogically, science instruction 

relies heavily on teacher-dominated methods, such as lecture and demonstrations, and 

many PSSTs have experienced some level of success in these types of classroom 

environments during their own K-12 careers (Doster, Jackson, & Smith, 1997). Given 

their anxiety regarding their own content knowledge, PSSTs may revert to teacher-

dominated pedagogical methods when given the opportunity to plan and implement their 

own instructional activities rather than incorporating modeling activities. 

Science curriculum is rooted in understanding the nature of models and being able 

to develop and use models, but engaging students in authentic modeling experiences is 

difficult for experienced teachers. It is even more challenging for PSSTs who may have 

limited modeling experiences themselves. In a case study of seven pre-service teachers, 

Atkan (2016) found that all of his participants recognized the importance of models in 

science teaching and learning, but were less enthusiastic about providing instructional 

opportunities for students to develop their own models, citing concerns of students’ prior 

knowledge and limited classroom time as being hindrances to the modeling process. 

Engaging students in modeling activities requires teachers to not only understand the 

scientific modeling process themselves, but to also be able to interpret students’ thinking 

and understanding (Davis, Petish, & Smithey, 2006). Atkan (2016) concluded that it was 

the pre-service teachers’ own limited experience with and understanding of scientific 
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modeling that made it difficult to incorporate modeling activities into their own 

instruction. 

 Pre-Service Mathematics Teachers. Lesh and Lehrer (2003) argue that the use 

of modeling perspectives in classroom instruction emphasizes the idea that “expertise in 

teaching is reflected not only in what teachers can ‘do,’ but also what they ‘see’ in 

teaching, learning, and problem-solving situations” (p. 111). Previous success with 

routine mathematics tasks does not imply proficiency with mathematical modeling. 

Garofalo and Trinter (2013) found that pre-service mathematics teachers (PSMTs) who 

were able to successfully complete textbook trigonometry exercises struggled with 

generating mathematical models to represent the projectile motion of a softball and the 

periodic motion of a pendulum. Mathematical modeling requires flexibility with multiple 

representations, making the modeling process difficult for both students and teachers. 

Engaging in mathematical modeling requires more than computational proficiency; it 

requires being able to interpret situations through a mathematical lens. Because of this, 

teachers have a tendency to avoid using modeling tasks in their own classrooms (Delice 

& Kertil, 2015). 

 Being able to represent a problem in multiple ways is an important skill for 

successful modeling. One representation that can be particularly helpful early in the 

modeling process is creating a pictorial representation of the situation. Delice and Kertil 

(2015) studied pre-service teachers’ ability to develop a mathematical model that 

described the change in radii of two rolls of cassette tape as the tape from one roll is 

transferred to the other roll. They found that most of the participants began the task by 

drawing a diagram, but noted that very few of the diagrams were correct representations 
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of the problem. They also observed that the drawn diagram played a significant role in 

scaffolding the next steps of the modeling process, which could be problematic 

considering the inaccuracies in many of the pre-service teachers’ diagrams. The pre-

service teachers’ inability to generate a correct pictorial representation hindered their 

ability to successfully develop a mathematical model. 

 Successful mathematical modeling also requires the ability to critically analyze 

mathematical models. Zbiek (1998) found that PSMTs who relied too heavily on 

technological tools to generate mathematical models for different sets of data struggled 

with explaining the appropriateness of models in mathematical terms. Of the PSTMs who 

participated in a four-week unit on mathematical modeling, those who exclusively used 

curve-fitting software to generate a variety of different functions to model given sets of 

data tended to choose their models based on “goodness of fit” (i.e., r2 values) regardless 

of whether or not the model reflected the relationship visible in the data’s scatterplot. 

For some pre-service teachers, connecting mathematics with real-world situations 

is difficult when solving tasks that are even simpler than developing mathematical 

models. Verschaffel, de Corte, and Gorghart (1997) found that pre-service teachers 

tended to disregard the value of real-world knowledge when solving word problems. A 

group of pre-service teachers were tested on a series of word problems, with some of the 

problems worded in such a way that a correct answer required a realistic analysis of the 

given constraints of the problem (e.g., If a school bus seats 36 students, then how many 

school buses are needed to transport 450 students?). These same pre-service teachers 

were also tasked with grading students’ responses to the same word problems. Overall, 

the pre-service teachers tended to disregard the realistic context of each word problem 
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when generating their own solutions and they had a tendency to preference non-realistic 

student solutions as well. A lack of representational fluency and a tendency to disregard 

real-world knowledge are two major issues that pre-service teachers face that would 

make incorporating modeling activities into classroom instruction particularly difficult. 

 Providing pre-service teachers with authentic modeling experiences during their 

teacher preparation program can help uncover their proficiency with and attitudes 

towards incorporating modeling activities into their own classroom instruction. The 

modeling activity on which this study is based was designed to provide students with the 

opportunity to develop a mathematical model to describe a scientific phenomenon. Pre-

service teachers are asked to relate magnetic field strength to the different attributes of a 

solenoid (further explained below). The research question we explore in this paper is: 

What strategies do pre-service mathematics teachers and pre-service science teachers use 

when developing mathematical models and to what extent (if any) does their academic 

track influence their modeling strategies? 

Methodology 

 Ampere’s Law (𝐵 = 𝜇 !
!
𝐼) relates the strength of the magnetic field produced by 

a solenoid (B) to the number of coils of wire (N), the length of the solenoid (L), and the 

current passing through the wire (I). A solenoid is a coil of conductive wire; when 

electric current flows through the wire, the coil generates a magnetic field (see Figure 3). 

Ampere’s Law can be derived experimentally by systematically varying the different 

attributes of a solenoid. The number of wraps of wire and the current are directly related 

to magnetic field strength, while the length of the solenoid is inversely related to 

magnetic field strength. 
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Figure 3. Example of a solenoid. 

Setting 

 The setting for this study was a major public university located in central 

Virginia. Within this university is a self-contained college of education that offers both 

graduate and undergraduate programs of study, including a dual-degree teacher 

preparation program and a post-graduate teacher preparation program. The Deriving 

Ampere’s Law activity took place at this university during the fall semester of the 2016-

2017 school year. 

Participants 

 Four pre-service teachers participated in the Deriving Ampere’s Law activity. 

These pre-service teachers were purposefully selected based on their teacher certification 

program and their prior coursework. Of the four pre-service teachers, Anna and Emily 

were pre-service mathematics teachers (PSMTs) and Michael and Reid were pre-service 

science teachers (PSSTs). At the time of data collection, Anna, Emily, and Michael were 

in their fourth year of the five-year dual-degree program (bachelor’s degree in 

mathematics or science and master’s degree in teaching). Reid was in his first year of a 

two-year post-graduate teacher preparation program (master’s degree in teaching). Anna 

and Emily were enrolled in a yearlong secondary mathematics pedagogy course and were 

completing their undergraduate degree in mathematics. Both Michael and Reid were 
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enrolled in a yearlong secondary science pedagogy course and Michael was completing 

his undergraduate degree in biology, while Reid had already completed his undergraduate 

degree in physics. 

 The Deriving Ampere’s Law activity was scheduled for two separate sessions, 

ranging from two hours to two-and-half hours in length, which included a post-activity 

debriefing. The pre-service teachers were grouped based on their academic track. The 

two PSMTs completed the activity in November 2016 and spent approximately two hours 

on the activity. The two PSSTs completed the activity in December 2016 and spent 

approximately two-and-a-half hours on the activity. 

Task Description 

 The impetus for the Deriving Ampere’s Law activity was to explore how 

solenoids could be utilized as a hands-on manipulative in the teaching and learning of 

mathematics. The two authors3 met to research how different parameters affected the 

magnetic field strength of a solenoid, which inspired the question of whether or not 

Ampere’s Law could be derived experimentally. To test this theory, the authors decided 

to create a calibrated set of solenoids. Over the course of several months in early 2016, 

the first author developed multiple sets of solenoids and used a variety of different 

methods to measure magnetic field strength before the activity was finalized. 

To complete the Deriving Ampere’s Law activity, pre-service teachers were 

provided with a set of pre-made solenoids that vary in both the number of wraps of wire 

and solenoid length. Pre-service teachers were also provided with a variable DC power 

supply and a magnetic field sensor. In order to generate magnetic field measurements that 

                                                
3 J. Garofalo (second author) 
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would allow a wide range of participants to be successful with this activity, the pre-

wrapped solenoids were calibrated during task development (Table 1). The power supply 

used for this activity consistently and reliably held 3.16 A, which is why the solenoids 

were calibrated using this current value. 

Table 1 

Solenoid Data Collected under Laboratory Conditions 

Number of 
Wraps (N) 

Solenoid  
Length (L) 

Electric 
Current (I) 

Field Strength 
(B) Constant (µ) 

50 2 in 3.16 A 35.97 G 0.455 
100 2 in 3.16 A 71.87 G 0.455 
150 2 in 3.16 A 107.8 G 0.455 
50 1 in 3.16 A 71.87 G 0.455 
50 2 in 3.16 A 35.97 G 0.455 
50 3 in 3.16 A 24.20 G 0.459 
50 4 in 3.16 A 18.10 G 0.458 
50 2 in 0.79 A 9.0 G 0.456 
50 2 in 1.58 A 17.97 G 0.455 
50 2 in 3.16 A 35.97 G 0.455 

 
In previous iterations of the Deriving Ampere’s Law activity, the activity was 

divided into four separate investigations for use with several groups of middle school 

students (see Corum & Garofalo, 2017). For the first three investigations, students were 

asked to develop separate models for each of the independent variables and for the fourth 

investigation, the students were asked to look at their three separate models and use the 

structure of these models to help them develop a final model relating the three 

independent variables to a single dependent variable. All of the middle school students 

who completed this four-part version of the Deriving Ampere’s Law activity were able to 

derive the final model with varying degrees of scaffolding. Given the nature of the 
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research questions for this project, the Deriving Ampere’s Law activity was presented to 

the pre-service teachers more holistically. The pre-service teachers were given all of the 

solenoids upfront and were asked to develop a model that related number of wraps of 

wire, solenoid length, and electric current to magnetic field strength. 

Data Collection 

 Pre-service teachers were video recorded while working on the Deriving 

Ampere’s Law activity and the audio was transcribed. Pre-service teachers’ written work 

was also collected for analysis. While pre-service teachers worked on the activity, they 

engaged in discussions with their partner regarding their modeling strategies. Both 

authors recorded field notes throughout the activity session to further capture pre-service 

teachers’ conversations and their written work. Upon completing the activity, the pre-

service teachers participated in a debriefing interview to further explore their opinions 

about the activity and how this activity compared to their classroom experiences. 

Data Analysis 

The primary goals of this project were to understand how pre-service teachers’ 

prior experiences influenced how they approached a modeling activity and which 

strategies they utilized when developing their models. Data analysis began after both 

groups of pre-service teachers completed the Deriving Ampere’s Law activity. The first 

author analyzed the transcript and the written work for the PSMT group and prepared 

narrative descriptions of the PSMTs solution strategies. The first author then went 

through the same initial data analysis procedures for the PSST group. After completing 

the initial round of data analysis, the second author reviewed the narrative descriptions 

separately from the first author. 
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The two authors then met to confirm the first author’s interpretation. The two 

authors reread parts of the transcript, reanalyzed pre-service teachers’ written work, and 

reviewed their separately collected field notes. During this meeting, both authors 

regularly revisited their multiple data sources to ensure that their analysis and 

interpretations were warranted. The two authors triangulated the narrative descriptions of 

both groups with the observational field notes, audio transcripts, and pre-service teachers’ 

written work and both authors came to a consensus that the narrative accurately captured 

what the pre-service teachers had done to complete the Deriving Ampere’s Law activity. 

Findings 

Both groups of pre-service teachers were able to experimentally derive Ampere’s 

Law. The PSMTs and the PSSTs had little difficulty with recognizing the structure of 

their final model based on the nature of the relationships between the independent 

variables and the dependent variable (i.e., direct or inverse variation). Both groups 

established a strategy prior to collecting data and were systematic in their data collection 

and data analysis. Both groups also regularly tested and revised their model against their 

collected data. However, the groups differed in approach to determining the constant of 

proportionality and the extent to which they focused on the units of measurement.  

Pre-Service Mathematics Teachers 

Prior to starting the activity, the first author asked Anna and Emily if they were 

familiar with solenoids. After seeing the pre-wrapped solenoids, Emily recalled an 

activity from elementary school where she wrapped wire around a nail to create an 

electromagnet. This familiarity with solenoids was sufficient for completing the task, so 

the first author proceeded to demonstrate how to use the equipment to measure the 
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magnetic field strengths of the different solenoids. When demonstrating the equipment, 

the first author asked Anna and Emily to select one of the solenoids. After selecting a 

solenoid, the first author told them the length of the solenoid (two-inches) and the 

number of wraps (150). Both Anna and Emily wanted to record that information; Anna 

set up a data table, while Emily listed the information. 

After the equipment demonstration, Anna and Emily decided how they were 

going to proceed with the data collection. Anna asked if they should measure the “tiny 

one” (one-inch, 50-wraps) next, but Emily suggested that they establish a plan. She asked 

Anna, “We don’t want to vary a bunch of things at once, so do you want to look at same 

wraps, different length? Same length, different wraps? Same solenoid, different current?” 

Anna wanted to focus on the same length with different wraps of wire. Emily asked Anna 

if she wanted to change the current, but Anna explained that since they have already 

measured the two-inch, 150-wrap solenoid at 3.16 A, they should collect the rest of their 

data for the two-inch solenoids at 3.16 A. 

Data collection. They then measured the two-inch, 50-wrap solenoid (36 G) and 

the two-inch, 100-wrap solenoid (72 G). Emily described the relationship as, “Alright, so 

more wraps, more magnets.” Anna asked if Emily wanted to change the current next and 

Emily agreed. Because the maximum electrical current with the power supply was 3.16 

A, Anna suggested lowering the current to 3.0 A. They measured the two-inch, 100-wrap 

solenoid at 3.0 A (67 G) and the two-inch, 50-wrap solenoid at 3.0 A (33 G). Anna 

commented that there was a difference between the field strengths, but explained that she 

had not yet noticed much of a pattern. Emily predicted that the relationship would be a 

ratio because “addition is too easy.” 
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Next, they measured the two-inch, 150-wrap solenoid at 3.0 A (102 G). Emily and 

Anna noticed that the magnetic field strength generated by the two-inch, 100-wrap 

solenoid and the two-inch, 150-wrap solenoid at 3.0 A was 5 G less than the field 

strength generated at 3.16 A, but that the difference in the two-inch, 50-wrap solenoid 

was 3 G. They measured the two-inch, 50-wrap solenoid again and saw that their second 

reading was still 33 G. With the data collected, Emily checked to see if the ratio was the 

same between the change in number of wraps and the change in magnetic field strength. 

She noticed that 50 wraps multiplied by two equals 100 wraps and 36 G multiplied by 

two equals 72 G. Similarly, 100 wraps multiplied by 1.5 equals 150 wraps and 72 G 

multiplied by 1.5 approximately equals 108 G (Figure 4). 

 

Figure 4. Emily’s data table for solenoids of varying wraps of wire. 

Emily noticed that relationship she observed at 3.16 A also held true at 3.0 A. 

Anna asked if there was a relationship between the 50-wrap solenoid and the 150-wrap 

solenoid. Emily checked and confirmed that the magnetic field strength produced by the 

150-wrap solenoid (107 G) is approximately three times the field strength produced by 

the 50-wrap solenoid (36 G). She summarized this relationship as, “As the number of 

wraps increases by a factor of x, so does the magnet strength,” to which Anna responds, 

“We have a direct variation.” Both Anna and Emily shared that direct variation was a 

topic they had recently observed during their practicum placements. Having described the 
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relationship qualitatively, Anna recalled the ultimate goal of the task and asked how they 

would write the relationship as a formula. Emily noted that because the relationship 

between number of wraps of wire and magnetic field strength was direct variation, the 

formula should be in the form, “wraps over magnet is some factor” and that they needed 

to determine the factor. Emily divided the number of wraps of wire by magnetic field 

strength and found that this resulted in a different factor for readings taken at 3.16 A 

versus 3.0 A. 

Emily suggested that the relationship might be the number of wraps of wire 

divided by magnetic field strength equals one-half current (!"#$%
!"#$$

= !
!
𝑎𝑚𝑝𝑠) and that the 

difference they observed at 3.16 A could be attributed to measurement error. Anna 

suggested that they measure the two-inch solenoids at 2.0 A to see if the relationship held 

true. As they set up the equipment to collect more data, Emily reminded Anna that they 

still have not considered solenoid length, but realized that variable should not affect the 

relationship between number of wraps of wire and magnetic field strength because it was 

being held constant. Anna cautioned against varying too many things at once: 

Anna: …we have too many variables. 
Emily: We have too much going on. 
Anna: And the amps. 
Emily: That’s why we’re trying to vary just one thing. 
Anna: Exactly. 
Emily: Okay, do you want to do two amps and see what would happen for 

these three? 
Anna: Mmm hmm. 

After collecting data at 2.0 A, Anna again questioned the decision to vary the current 

while analyzing the relationship between number of wraps of wire and magnetic field 

strength. Anna commented, “We’re kind of varying two things at the same time…We’re 

keeping length constant, but we’re changing number of amps and wraps.” Emily 
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reassured Anna that they were “being systematic” and that they are limited in the extent 

to which they can change the number of wraps of wire. Emily wanted to confirm that the 

relationship between number of wraps of wire and magnetic field strength held at 

different current values, while Anna interpreted this as varying two independent variables 

at the same time. With the data collected at 2.0 A, Emily divided number of wraps of 

wire by magnetic field strength, which equaled approximately 2.17. While this did not fit 

Emily’s earlier hypothesized relationship (!"#$%
!"#$$

= !
!
𝑎𝑚𝑝𝑠 ), both Emily and Anna 

noticed that the direct variation they observed at 3.0 A also held true at 2.0 A. 

At this point, Emily abandoned her initial relationship of !"#$%
!"#$$

= !
!
𝑎𝑚𝑝𝑠, but 

confirmed that there was a direct variation between number of wraps of wire and 

magnetic field strength. She then suggested, “If we find out all the different ways they 

[the independent variables] vary, we can just kind of put it together.” Anna then 

suggested that they collect data at 1.0 A and calculate the constant (see Figure 5). Anna 

recommended discarding the data they collected at 3.16 A because the data collected in 

trials two, three, and four “increment at a nicer rate.” She then commented that they could 

take measurements at 0 A to be “really thorough,” but Emily objected, explaining “It’s all 

gonna be zero, it’s not gonna make a magnet!”  

 

Figure 5. Anna’s data table for solenoids of varying wraps of wire. 
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Anna then asked if Emily wanted to collect data for different lengths. Emily 

confirmed that they will be keeping the number of wraps constant and only varying the 

length. Both Anna and Emily set up tables before collecting data (Figure 6). Emily 

suggested collecting data at the same current values that they used previously, but 

disregard 3.16 A. Both Anna and Emily agreed that they should first collect their data at 

1.0 A because that was the current setting for the power supply. 

 

Figure 6. Anna’s (left) and Emily’s (right) data for solenoids of varying length. 

They first measured the one-inch, 50-wrap solenoid at 1.0 A, which generated a 

magnetic field strength of 23 G. Anna commented that she had seen 23 G previously. 

Looking back at her data tables, she saw that the two-inch, 100-wrap solenoid also 

generated a magnetic field strength of 23 G at 1.0 A. Emily then looked over her data and 

noticed that the two-inch, 50-wrap solenoid generated a field strength of 23 G at 2.0 A. 

They then set the power supply to 2.0 A and 3.0 A and saw that the one-inch, 50-wrap 

solenoid generated magnetic field strengths of 46 G and 69 G, respectively. Emily 

observed that the field strength at 2.0 A was double the field strength at 1.0 A and Anna 

observed that the set of data was identical to the data they collected for the two-inch 

solenoid of varying wraps at 2.0 A. Anna reminded Emily that they had already collected 

data for the two-inch, 50-wrap solenoid, so she suggested that they refer to their first data 

table. Looking at their previously collected data, Anna commented that the magnetic field 



 

 105 

strength was approximately increasing by 10 G as the current increased by 1.0 A. Emily 

noticed a different relationship. Multiplying 12 G (the magnetic field strength generated 

at 1.0 A) by two approximately equaled the magnetic field strength generated at 2.0 A. 

Multiplying 12 by three approximately equaled the magnetic field strength generated at 

3.0 A. This relationship was the same relationship she observed with the one-inch, 50-

wrap solenoid. 

It is important to note that while they were varying the length of the solenoids, 

they were analyzing how the magnetic field strength changed for each solenoid as the 

current changed. Emily described the relationship between current and magnetic field 

strength as another direct variation. They measured the three-inch, 50-wrap solenoid at 

1.0 A (8 G), 2.0 A (16 G), and 3.0 A (23 G) next and Anna noticed that one of their 

magnetic field strengths was again 23 G. They then measured the four-inch, 50-wrap 

solenoid at 1.0 A (6 G) and 2.0 A (12 G). Before changing the current to 3.0 A, Anna 

prompted Emily to make a prediction. Emily predicted that the field strength at 3.0 A 

would be 18 G, which they confirmed experimentally. Emily analyzed the data that they 

had collected so far and summarized the relationship between current and magnetic field 

strength. She explained, “There’s direct variation again…Current over Gauss equals x, so 

both the number of wraps and the current vary directly with the strength.” Emily also 

clarified that they still had not considered how length affects magnetic field strength, 

which seemed to confuse Anna, who commented, “But we were measuring length. Aren’t 

we supposed to be doing lengths?” 

Emily acknowledged that when they started this round of data collection, the 

intent was to explore the relationship between the length of the solenoid and the strength 
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of the magnetic field. However, they ended up identifying the relationship between 

electric current and magnetic field strength. Anna commented that because they varied 

electric current when looking at the relationship between number of wraps of wire and 

magnetic field strength, they had already identified the relationship between electric 

current and magnetic field strength. As Anna explained, 

The same thing happened, amp-wise, for these [solenoids] when we looked at 
wraps and strength…If we’re looking at amps and strength here [with solenoids 
of varying lengths], then this should be the same…We’re not looking at the length 
and the strength. We kind of lost what we were trying to measure. 

 
Because of the way they collected their second round of data, Emily thought that the most 

obvious relationship was the relationship between electric current and magnetic field 

strength. But with the data they had, they could also analyze the relationship between 

solenoid length and magnetic field strength. Emily observed that, “The length increases, 

the strength decreases. That makes sense because it’s [wraps of wire] not as close 

together.” Looking at the data they collected at 1.0 A, Anna observed that as you double 

the electric current, the magnetic field strength “decreases by two.” Emily initially 

disagreed with Anna’s observation, but then realized that Anna did not mean to subtract 2 

G when she said “decreases by two.” Emily restated Anna’s observation as, “As the 

length is times two, the strength is divided by two.” 

Structuring the model. Once Emily articulated the relationship between electric 

current and magnetic field strength in this way, she immediately recognized the 

relationship as inverse variation. She then confirmed this relationship with the data 

collected at 2.0 A and 3.0 A. Emily recalled that the an inverse relationship is represented 

by the equation, 𝑥𝑦 = 𝑘, and Anna recalled that in an inverse relationship, “as one goes 

up, the other goes down.” Anna then suggested another possibility, “It could technically 
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be direct almost, where that’s [the constant] is something smaller than one.” Anna 

quickly realized that this would not work, but this caused Emily to question whether or 

not the relationship they observed was inverse variation. They then decided to check the 

relationship using their collected data. 

Looking at their data, Emily and Anna multiplied the length of the solenoid (x) by 

the magnetic field strength (y) to determine whether or not this resulted in a constant 

(𝑥𝑦 = 𝑘). They did this for the data they collected at each of the different current values. 

They found that at 1.0 A, 𝑘 ≈ 24, at 2.0 A, 𝑘 ≈ 46, and at 3.0 A, 𝑘 ≈ 66 (see Figure 7). 

 

Figure 7. Anna’s verification that xy = k for data collected at different current values. 

Emily then questioned how they were verifying whether or not the relationship between 

electric current and magnetic field strength was inverse variation. Emily asked, “Wait. Is 

that how we want to find it? I’m confusing myself.” She then suggested that they review 

all of the relationships they had identified with the three independent variables. 

The relationships they observed were: (1) length increases, strength decreases, (2) 

amps increase, strength increases, and (3) wraps increase, strength increases. Emily 

assigned letters to represent their different variables and then recommended that they 

think about the relationships in terms of strength increasing and drew the following 

diagram on her paper (Figure 8). 
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Figure 8. Emily’s summary of the relationships between the variables. 

Anna then suggested that, using what they identified in terms of direct and inverse 

variations, they could set up the structure for their final equation. Anna explained, 

“Alright, so a and w, in some way or form, have to be on top because they increase when 

strength increases.” 

Anna wondered if the two variables in the numerator would be added or 

multiplied together. Emily hypothesized that the two variables would be multiplied 

because every relationship they have seen thus far has involved a ratio. Using that line of 

reasoning, they then decide that they would need to divide by the length of the solenoid. 

This resulted in the following structure for their final model: 𝑠 = !"
!

. 

Recognizing the need for a constant. From this model, Anna noticed that the 

magnetic field strength divided by the number of wraps ( !
!

) of wire should equal the 

current divided by the length (!
!
) and that this could be used to help them determine the 

constant for the equation. Emily then posed the question of whether the constant would 

be added or multiplied to their equation. Returning to the observation that all of the 

relationships involved ratios, Emily predicted that the constant would be multiplied. 

Anna agreed that the constant should be multiplied, but for a different reason. Anna 
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explained, “[In] science, every single time you add something [to an equation], it’s a 

variable of some kind. All of our variables are already taken up, so it can’t be that.” 

To determine the constant, both Anna and Emily agreed that they should use their 

collected data. Anna suggested using the data they collected for the two-inch, 50-wrap 

solenoid at 2.0 A. She used !
!
= !

!
 and set up the equation below (Figure 9). 

 

Figure 9. Anna’s initial attempt at determining the constant for their equation. 

Emily also calculated !
!

 and !
!
 and found that those two were not equal using their 

collected data. However, she noticed that the two expressions were approximately equal 

if they multiplied the denominator by two. Emily explained, “We need to find a 

relationship to make this true. Our strength needs to be multiplied by two, which means 

it’s this over 2𝐿. She then proposed the equation 𝑠 = !"
!!

 and used their collected data to 

see if that equation held true (Figure 10). 

 

Figure 10. Emily’s verification of their initial equation. 
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Emily saw that 𝑠 = !"
!!

 held true for some of their collected data, but not all of it, 

which led her to question whether or not their constant was correct. Emily said to Anna, 

“Our constant’s not quite two, I don’t think. Unless there’s just a lot of error.” Anna then 

recalled that during data collection, they had rounded their measurements for magnetic 

field strength. Anna and Emily continued to use their collected data to verify whether or 

not 𝑠 = !"
!!

 is the correct equation. After testing the equation using all of their collected 

data, both Anna and Emily acknowledged that the model is not entirely correct, but were 

unsure whether or not the discrepancy between the predicted values and their collected 

data could be attributed to measurement error. They discussed other possible factors that 

could have caused the discrepancy, including not collecting enough trials of data and 

rounding the magnetic field strengths during data collection. 

Testing and revising the model. Anna and Emily were confident that their 

model’s structure was correct, but questioned the accuracy of their constant, as 

demonstrated in the following exchange: 

Emily: Maybe it’s [the constant] not exactly two…We found the direct and 
inverse variations for all the different factors, so we know that our 
variables are in the right places, so the only thing we’re not 100% 
sure about is this constant. 

Anna: I’m wondering if it’s a little over two. 
Emily: Or what if it’s a decimal? Oh god, what are we gonna do? How are 

we gonna tell? 
 
Thinking that the constant might be a value greater than two, Anna recalled that the 

metric system is most commonly used in science and suggested that the constant in their 

equation might be the conversion factor between inches and centimeters. Emily 

acknowledged that their constant was not exactly correct, but then wondered if they were 

“reading into it too much” by considering the conversion between inches to centimeters. 
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Anna looked up the conversion factor (2.54) and Emily agreed that they could try to see 

if that worked better as the constant in their model. Using 𝑠 = !"
!.!"!

 as their new model, 

Emily used their data for the one-inch, 50-wrap solenoid at 1.0 A and saw that this newly 

proposed constant also did not work. 

Anna no longer believed that the constant was related to a conversion factor, but 

she still wanted to find a value for their constant that was more accurate. Emily 

disagreed, as evidenced in the exchange below: 

Anna: Well, it was a nice hunch. That’s how scientists did it in the old days, 
right? 

Emily: Yeah, they would just try stuff and see if it worked. 
Anna: So, let’s see. What else? 
Emily: I feel like this is pretty good, but I don’t know. I’m 90% confident in 

this response. 
 
Emily liked that the constant in the denominator was a “nice number” (an integer) 

because “that’s how a lot of science things look.” Anna, however, suggested that they 

rearrange their equation so that the constant was isolated, giving the “gravitational 

constant” as an analogy. Emily then solved 𝑠 = !"
!"

 for c, which resulted in 𝑐 = !"
!"

. 

With the equation 𝑐 = !"
!"

, Emily suggested that they calculate values for their 

constant using their collected data point. Both Anna and Emily worked together and 

found that the constant ranged from 2.08 to 2.27. Given their range of values, Emily 

asked Anna if she wanted to use 𝑐 = 2.2 instead of 𝑐 = 2 in their final equation. Emily 

suggested that if the constant was an irrational number, then they would never be able to 

calculate the constant exactly. Anna then suggested that the constant could be either pi 

(𝜋 ≈ 3.14) or e (e ≈ 2.72), but quickly realized that neither of those would work. 
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Anna and Emily now had 𝑠 = !"
!.!!

 as their equation. Emily suggested that the only 

way that they could get a more accurate constant would be if they collected more data. 

Yet, she was still hesitant to claim that they had their final model because she was 

“worried that we’re gonna say we’re done and then we’re going to be wrong.” Anna 

confirmed that they had accounted for all of their variables. Emily realized that they 

determined the value of their constant using the data they collected at 1.0 A, 2.0 A, and 

3.0 A, but that they still had the data they collected at 3.16 A. Using 𝑠 = !"
!.!!

, Emily 

confirmed that the magnetic field strength predicted by this equation matched the data 

they collected at 3.16 A. At this point, both Anna and Emily agreed that their final 

equation was 𝑠 = !"
!.!!

. 

Pre-Service Science Teachers 

Prior to demonstrating the materials, the first author asked Michael and Reid if 

they were familiar with solenoids. Michael said that a solenoid is “sort of an 

electromagnet.” The first author then demonstrated how to use the materials and 

identified the parameters of the different sets of solenoids. At this point, Reid suggested 

that they write down this information in a data table. The second author then summarized 

the goal of the task, which was to find a formula that related magnetic field strength to 

the three independent variables. Michael confirmed that the three independent variables 

were electric current, solenoid length, and number of wraps of wire. The variable power 

supply that Michael and Reid used had a safety feature that would hold either electric 

current or voltage constant. Since there was a possibility that the electric current would 

need to be manipulated using the knobs labeled “voltage,” Michael asked about the 

relationship between electric current and voltage. He acknowledged that his 
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understanding of electromagnetism was limited and wanted to affirm that voltage was not 

a variable they were considering, but that it was related to current. Reid clarified that 

while they may need to use the voltage knobs to adjust the current, they are only 

concerned with current as one of the independent variables. 

Initial data collection. Once the authors finished demonstrating the materials, 

Michael and Reid began their data collection process. Reid first suggested that they label 

their variables. He labeled current as I, magnetic field strength as B, solenoid length as L, 

and number of wraps of wire as N. Reid then recalled that he had memorized this 

relationship once before, but could no longer remember it. Michael asked if Reid wanted 

to measure the solenoids of varying lengths first. Reid agreed, but clarified that their 

strategy was to “figure out direct or indirect relationships.” Reid then outlined a very 

detailed plan for data collection and organization. He recommended that they first name 

the different solenoids using letters A through F. Then, he said that they should organize 

their data table based on the variables they will manipulate (Figure 11). He suggested that 

they represent length as multiples of one (the shortest solenoid length) and number of 

wraps of wire as multiples of 50 (the least number of wraps). 

 

Figure 11. Reid’s data table structure. 



 

 114 

Reid also recommended that they measure each solenoid at two current values to confirm 

that they “should see a stronger magnetic field with a higher current.” As Reid outlined 

their strategy, he mentioned that he had forgotten the definition of a Gauss, which was 

the unit they were using to measure magnetic field strength. 

Michael and Reid measured the two-inch, 50-wrap solenoid first. As Michael 

inserted the probe into the solenoid, Reid explained why the end of the solenoid where 

the probe was inserted was important. Reid referenced the “right hand rule” and 

explained that the direction of the magnetic field is based on the direction of the electric 

current. At 3.16 A, the two-inch, 50-wrap solenoid generated a magnetic field strength of 

approximately 35.2 G. Reid then suggested that they should take their next measurement 

at 1.58 A because that was half of the electric current from their first reading. At 1.58 A, 

the solenoid produced a magnetic field strength of 17.3 G, which Reid recognized was 

approximately half their previous reading. Reid recommended that they measure another 

solenoid at 1.58 A and 3.16 A to confirm the relationship between magnetic field strength 

and current. They measure the two-inch, 100-wrap solenoid next and see that they 

solenoid generated a magnetic field strength of 37.2 G and 73.7 G at 1.58 A and 3.16 A, 

respectively. Michael noticed that once again the magnetic field strength doubled as the 

current doubled. At this point, Reid said to Michael that they did not need to measure all 

of the solenoids and that they could just measure two solenoids of varying lengths. 

Reid clarified how they are representing the number of wraps of wire. Since the 

number of wraps of wire varied by multiples of 50, Reid felt that representing N as 

multiples of 50 would better “reveal the effect of [the wraps of wire] doubling or tripling” 

(Figure 12). 
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Figure 12. Redefining the number of wraps of wire. 

Returning to their collected data, Reid summarized what they had observed thus far. 

Looking at the data collected at 3.16 A, Reid explained that when 𝑁 = 1 (i.e., 50 wraps 

of wire), the magnetic field strength was 35.2 G and when 𝑁 = 2 (i.e., 100 wraps of 

wire), the magnetic field strength was 73.7 G, meaning that as the number of wraps of 

wire doubled, the magnetic field strength doubled. Michael described the relationship as, 

“it would be the proportion of N,” which Reid restated as, “B is directly proportionate 

with N.” 

Reid then looked at how electric current related to magnetic field strength. He 

explained, “We halved [electric current] and we essentially halved [magnetic field 

strength]…so, the current is directly proportional to the magnetic field too.” Knowing 

that both number of wraps of wire and electric current were directly proportional to 

magnetic field strength, Reid suggested that in their final equation, the number of wraps 

of wire (N) and electric current (I) would be in the numerator. At this point, Reid 

commented, “This is actually the first time I’ve ever done something like this…In 

physics class, all the time, we are just given these expressions. Somebody sat down and 

had to figure out the relationship, you know?” 

Michael suggested that they think about another relationship they already knew to 

help them think about how to better understand the relationship they were trying to model 

in this task. He referred to this as a “relatable expression” to help him “picture a type of 

expression that is similar to what we think this is.” Michael gave the example that density 
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was equal to mass over volume (𝐷 = !
!

). Using this example, Reid explained that if you 

doubled the volume, in order for the equation to still hold true, then you would also need 

to double the mass. Relating this back to magnetic field strength, Reid further explained 

that if they are observing that the magnetic field strength has doubled, then that means 

either the number of wraps of wire or the current has also doubled. Reid acknowledged 

that using density as a proxy to help them make sense of the relationship they were trying 

to figure out was a good suggestion. He then recommended that they look at the 

relationship between length and magnetic field strength. 

Data collection using a new sensor and structuring the model. At this point, 

Michael and Reid had left the power supply turned on for an extended period of time and 

the plastic tip of the magnetic field sensor had melted inside of the two-inch, 100-wrap 

solenoid. Neither of the authors knew whether or not the melted probe tip would 

significantly affect the sensor readings, so Michael and Reid continued to use this probe. 

Michael and Reid measured the one-inch, 50-wrap probe at 3.16 A and got a 

magnetic field strength of 81.7 G. They then lowered the electric current to 1.58 A and 

saw that the magnetic field strength was now 45.3 G. Reid suggested that they add 

another column to their data table that represents the length of the solenoid divided by 

one, which was the length of the shortest solenoid (see Figure 14). To see the relationship 

between solenoid length and magnetic field strength, Michael and Reid compared the 

magnetic field strengths generated by the two-inch, 50-wrap solenoid and the one-inch, 

50-wrap solenoid at 3.16 A, which were 35.2 G and 81.7 G, respectively. Reid said that 

the relationship was approximately double, but Michael said that based on their data, that 

was not exactly correctly. Reid suggested that they should measure the other solenoids of 
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different length to confirm the relationship. Michael predicted that, “as the [solenoid] 

length increases, the magnetic field decreases about proportionally.” Reid recalled from 

his prior knowledge of solenoids that, “the length of the solenoid, or the density of the 

wraps, is a factor…if you have the same number of wraps over a shorter length,” and 

added this to their list of observations (Figure 13), which Reid referred to as their “Things 

We Think” chart. 

 

Figure 13. Michael’s “Things We Think” chart. 

Michael and Reid then measured the three-inch, 50-wrap solenoid. Based on their 

belief that magnetic field strength was inversely proportion to solenoid length, the 

magnetic field strength of this solenoid should be one-third of the magnetic field strength 

generated by the one-inch, 50-wrap solenoid. The magnetic field strength of the three-

inch, 50-wrap solenoid was 24.1 G at 1.58 A and 35.9 G at 3.16 A, which did not match 

their predictions. At this point, Reid questioned whether or not the magnetic field sensor 

was producing accurate readings. They then measured the four-inch, 50-wrap solenoid at 

3.16 A and 1.58 A and got 30.5 G and 21.4 G, respectively. Reid asked the authors if they 

were getting “friendly readings” with the damaged probe and the first author questioned 

the accuracy of their data. She gave Michael and Reid a new probe to use and Reid 

suggested that they measure one of the solenoids that they had measured prior to the 

probe getting damaged. Michael clarified that they should measure the solenoid that was 
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already attached to the power supply (four-inch, 50-wrap solenoid) and compare whether 

or not the new probe gave the same reading as the first probe. 

Using the new probe, Michael and Reid measured the four-inch, 50-wrap solenoid 

at 1.58 A and saw that the magnetic field strength was 9.5 G. Reid asked the two authors 

which magnetic field strength (21.4 G with the original probe or 9.5 G with the new 

probe) was more aligned with the data other groups had collected. The first author 

confirmed that the original probe was not producing accurate readings. Reid noticed that 

the magnetic field strength for the four-inch, 50-wrap solenoid was changing the longer 

the solenoid remained connected to the power supply and attributed this to increased 

resistance as the solenoid was heating up. Michael noticed that the new probe was more 

sensitive to detecting an ambient magnetic field in the room compared with the original 

probe. Michael and Reid recognized that they needed to recollect their data because the 

original probe had been compromised during data collection. Both agreed that they 

should measure all of the solenoids again to standardize their data. Reid used the same 

table to record the data collected with the new probe, but wrote the new data in red ink 

(Figure 14). 

 

Figure 14. Reid’s data table with the data collected using the new probe. 
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As Michael and Reid collected their data using the new probe, Michael again 

commented that the probe was detecting a magnetic field even when power supply was 

not turned off and that this field ranged from -6.0 G to -3.0 G. Reid questioned whether 

or not that could be attributed to an ambient field in the room since it was so high. He 

then questioned how that might affect their ability to generate their final relationship. As 

Reid explained, 

That means we’re seeing that there’s an ambient [field]. I don’t know how to 
account for that. What do you do? I guess it’s all relative, except no, it’s not, 
because we’re trying to figure out a relationship, but this [probe] is five to ten 
[Gauss] off and it’s giving us an improper reading of how things are related. We’ll 
deal with it later. 

 
Reid’s solution to this issue was to just “keep in mind that we could be five or ten off” 

when they analyze their data. After Michael and Reid finished measuring all of the 

solenoids using the new probe, Reid suggested that they return to their “Things We 

Think” chart (see Figure 13) and confirm that the relationships they previously observed 

still hold true. Using their newly collected data, Michael and Reid both came to the 

conclusion that magnetic field strength was directly related to the number of wraps of 

wire and electric current and inversely related to the length of the solenoid. 

Testing the model and grappling with units. Reid summarized their model as 

𝐵 = !"
!

, but Michael explained to Reid that substituting values for N, I, and L did not 

result in a value for B that matched their collected data. Using the two-inch, 50-wrap 

solenoid at 3.16 A, Michael found that the magnetic field strength predicted by their 

equation was !×!.!"
!

= 1.58, whereas the magnetic field strength they measured was 34.5 

G. Reid reminded Michael that “N has a 50 tied up in it” because the values for N in their 

data table were actually the number of wraps of wire divided by 50. However, using 
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𝑁 = 50 in their equation still did not result in the correct value for magnetic field 

strength (!"×!.!"
!

= 79). Reid then suggested that there might be an issue with their units. 

He tried to recall the definition of a Gauss and how the unit related to magnetic field 

strength. Looking at their equation (𝐵 = !"
!

), Reid restated the units involved (i.e., 

number of wraps of wire was “unit-less”, electric current was measured in amps, solenoid 

length was measured in inches). Reid knew that Gauss was a metric unit, which led him 

to believe that the length of the solenoid needed to be converted from inches to meters. 

Reid recalled that one inch is equal to 0.0254 meters, which led him to ask 

himself if the definition of a Gauss is an amp per meter. He then asked himself the 

definition of an amp, which he thought was a “Joule per second or something.” Michael 

asked Reid to clarify how they had redefined length in their data table and Reid explained 

that they divided the length by one-inch to “cancel” the units. At this point, Reid asked if 

he would be able to look up the definition of a Gauss. The second author asked him why 

he thought he needed that information. Reid explained, 

We’re trying to check an expression that we’ve come up with…A Gauss is a 
metric unit and we’re measuring [length] in inches…There’s no way it [a Gauss] 
could be anything other than an amp per meter, according to what we think it is, 
right? I hope I’m doing horrible on this because I’m supposed to be a physics 
person. Let’s just check the first one. 
 

Reid then asked Michael to use their equation to calculate the strength of the magnetic 

field generated by a one-inch (0.0254 meters), 50-wrap solenoid at 3.16 A. Michael set 

up the equation (Figure 15) and found that the equation predicted a magnetic field 

strength of 6,220.5 G. Reid then asked Michael to divide that by 68.5 (the magnetic field 

strength they had measured for this solenoid). This resulted in 90.8, which Reid classified 

as “not very friendly.” 
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Figure 15. Michael’s work to verify their initial equation. 

Michael revisited their earlier decision to redefine N as the number of wraps of 

wire divided by 50 (see Figure 12). Michael recommended defining the variables in their 

table so that the numbers reflected how they would be used in their equation (e.g., since 

they were using 𝑁 = 50 in their equation, then the value for N in their table should also 

be 50). Reid explained that redefining N and L in their data table was to help them 

quickly identify the types of relationships (i.e., direct or inverse), but that was not a 

necessary step. Michael decided to revise his data table so that the values for N reflected 

the actual number of wraps and the values for L were converted to meters (Figure 16). 

 

Figure 16. Michael’s revised data table. 

Recognizing the need for a constant. After revising his data table, Michael said 

to Reid, “I’m wondering if there’s just a constant that’ll help us out.” Reid agreed and 
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suggested that their constant would be 90, which was based on the predicted magnetic 

field strength of the one-inch, 50-wrap solenoid at 3.16 A (6,220.5 G) divided by the 

actual magnetic field strength (68.5 G). Michael questioned whether or not that would be 

the constant, so the two began analyzing their data separately. 

After working separately for a few minutes, Reid asked Michael to explain his 

thinking about the constant in their equation. Michael told Reid that the constant was not 

90, but was actually closer to 1/100. Michael explained, “If your constant is some value 

x, you solve this [68.5 = 𝑥 !"×!.!"
!.!"#$

] and get 6,220. We did it the other way.” Instead of 

dividing the predicted value by the measured value, Michael explained that they needed 

to solve for x, which meant dividing the measured value by the predicted value 

(68.5÷ 6220 ≈ 0.011). Using 1/100 as his constant, Michael used the revised equation 

(𝐵 = !"
!""!

) to calculate the magnetic field strength for three different solenoids and found 

that the predicted magnetic field strength was within 3 G of the measured magnetic field 

strength. Reid immediately thought of 1/100 as having to do with their unit conversions. 

Initially, Michael and Reid had converted the solenoid lengths from inches to meters. 

Reid explained, 

If I take it [solenoid length] back to centimeters, I multiply by 100 and our 
constant goes away. Is it possible that a Gauss is an amp per centimeter? What 
the hell does that even mean? Centimeters of what? Length of coil? … But no 
one defines anything in terms of centimeters. I guess it’s possible that there’s just 
a 100 in the denominator. 
 

Michael reiterated that when calculating the constant, the exact value was not 1/100, but 

that it ranged from 0.0111 to 0.0113. Michael used three sets of solenoid data; Reid 

recommended that they calculate the constant of proportionality for each of the remaining 

sets of solenoid data to confirm. The two worked together and found that the constant 



 

 123 

ranged from 0.0103 to 0.0113, which they averaged to 0.011. Michael and Reid agreed 

that the constant could be approximated as 1/100, which caused Reid to again question 

whether or not the constant was related to unit conversions. 

Michael reviewed the units they had been using for their independent variables 

thus far in their data analysis. They were measuring length in meters and electric current 

in amps. Reid inspected the power supply to confirm that the unit for electric current was 

amps. He asked Michael to connect one of the solenoids to the power supply. Once they 

turned on the power supply, Reid verified that the units were amps. He then explored the 

different menu options in the SparkVue software to see if the program’s settings could 

help him better understand the units used for measuring magnetic field strength. As Reid 

examined the software, he again tried to recall the definition of a Gauss. Reid explained 

to Michael, “If you want to know the number of [magnetic] field lines, it’s called a 

Gaussian surface…It’s a surface that you can figure out how many field lines penetrate it. 

But magnetic field is not measured in Gauss. It’s measured in Tesla.” Reid then asked the 

two authors if they designed the activity so that magnetic field was purposefully not 

measured in Tesla. The first author explained that there were two options for units when 

measuring magnetic field strength, one of those options was Tesla and the other was 

Gauss. 

Determining the constant. The second author interjected to ask what was 

bothering Michael and Reid about their current equation (𝐵 = !"
!""!

), where L had been 

converted to meters. Michael explained that, “100 is too much of a good number.” Reid 

questioned the decision to measure magnetic field strength in Gauss. The second author 

reiterated that the only reason magnetic field strength was measured in Gauss was 
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because that was one of the options in the software. The two authors asked what values 

they were using for their variables and they explained that they were using the actual 

number of wraps of wire (i.e., 50, 100, 150) for N and meters for L. Reid further 

explained, “I’m thinking that to go from centimeters to meters, we had a one over one-

hundred, which if Gauss is in units of centimeters, then that’s where our one over one-

hundred constant comes from and we don’t need to have it. But I don’t remember what a 

Gauss is.” The second author then asked, “Why does that [units] even matter if you have 

a constant of proportionality?” To which Reid answered, “Because we want to know why 

that one over one-hundred is so friendly over there.” During this exchange, Michael 

continued to calculate the predicted magnetic field strengths using their model and 

realized that the model did not accurately predict what they had measured. The second 

author asked what would happen to their equation if they did not convert the length of the 

solenoid from inches to meters and explained that, “The units don’t matter because 

they’ll all be accounted for with a different constant of proportionality.” Reid disagreed 

and explained, “You can’t equate a Gauss to something that’s in terms of amperes and 

inches…If you’re talking about amperes, you’re talking about the metric system…I’m 

just assuming that if there’s going to be a unit of length, it’s going to be metric.” Reid 

then wondered if Gauss was the standard unit for magnetic field strength and Tesla was 

the metric unit. Michael responded that the unit of length should not matter and that if 

they used inches instead of meters, then their constant would be approximately 1/2 

instead of 1/100. The second author again asked, “What would you get if you kept it in 

inches?” Reid answered that they would need a different constant, which Michael had 

already calculated to be 0.43. 
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Reid suggested that both he and Michael solve for the new constant, using inches 

for their solenoid length, and compare their answers. The second author reminded them 

that Michael had already done that, but Michael explained that because of the variability 

they observed when calculating their first constant, he was not confident that 0.43 was 

correct for all of their solenoid data. Michael further explained his reasoning behind 

calculating a new constant using the two-inch, 50-wrap solenoid as an example: 

Fifty times 3.16 divided by two inches is 79…34.5 divided by 79 is 0.436. This is 
the same way that I got one over one-hundred, right? … If we convert it [solenoid 
length] from inches to meters, it’s not getting rid of whatever constant if we think 
there’s a constant. It’s just the constant no longer incorporates that conversion. 

 
Reid and Michael worked together to calculate the constant for each of their sets of 

solenoid data (see Figure 17). They found that the average of their constants was 

approximately equal to 0.44, but Reid again questioned the constant because “you’re 

never going to have an equation that’s 0.44, though.” 

 

Figure 17. Reid’s (L) and Michael’s (R) calculations to find the constant. 

Michael suggested that they revisit the relationship between magnetic field 

strength and solenoid length. Michael thought that if the relationship was not “perfectly 

inverse,” then that might explain why their constant was 0.44. Reid was confident that the 

magnetic field strength was inversely related to solenoid length, but agreed to revisit their 

data to affirm their observation. At this point, the first author paused both Reid and 

Michael and asked them to consider other possible variables that could affect the strength 

of the magnetic field generated by the solenoid. Reid suggested that the radius of the coil, 
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which was held constant, and the properties of the materials could also affect the 

magnetic field strength. The first author shared her observation that Reid and Michael 

were fixating on the numeric value of their constant and whether or not having a 0.44 in 

their equation made sense. Reid explained that 0.44 “makes sense based on our 

observations, but we’re just trying to say what it [the relationship] is really.” The first 

author clarified that the goal was to find a relationship based on their observations and 

their collected data, to which Reid responded that they were confident in their final model 

“as long as you’ll accept an approximation symbol instead of an equals sign.” With this 

confirmation, Reid and Michael agree that their final equation was 𝐵 = 0.44 !"
!

. 

Discussion 

While the Deriving Ampere’s Law activity incorporates scientific concepts (i.e., 

electromagnetism), the activity itself asks for a mathematical model and hence is much 

more aligned with the process of mathematical modeling (see Figure 2) rather than the 

process of scientific modeling (see Figure 1). The mathematical modeling cycle involves 

five phases: mathematizing, interpreting, verifying, revising, and generalizing. To better 

understand the pre-service teachers’ modeling strategies, both productive and non-

productive, the mathematical modeling cycle was utilized to interpret decisions they 

made over the course of the activity. Both groups of pre-service teachers were able to 

successfully derive Ampere’s Law and both groups demonstrated all five phases of the 

mathematical modeling cycle. 

There were several similarities and differences in the way the PSMTs and the 

PSSTs approached the Deriving Ampere’s Law activity. Both groups outlined a plan for 

data collection prior to starting the activity and when analyzing their collected data, both 
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groups identified the types of relationships between the independent variables and the 

dependent variable. Both groups also regularly tested and revised their model against 

their collected data. The groups differed in the way that they structured their model, the 

amount of consideration they placed on units and unit conversions, and their recognition 

of the need for a constant in their final equation. Their work on the Deriving Ampere’s 

Law activity also revealed beliefs both groups held about the nature of traditional 

“school” mathematics and science formulas and activities. 

Similarities between PSMTs and PSSTs 

The PSMTs and the PSSTs shared several similarities in their approach to the 

Deriving Ampere’s Law activity. These similarities included planning a systematic 

approach to data collection, identifying types of variation, and routinely verifying and 

revising their developed models. After the equipment demonstrations, both the PSMTs 

and the PSSTs agreed upon a plan for data collection. In the PSMT group, Emily said to 

Anna, “We don’t want to vary a bunch of things at once, so do you want to look at the 

same wraps, different length? Same length, different wraps? Same solenoid, different 

current?” This implied that Emily wanted to isolate the independent variables as they 

collected their data to better understand the relationships between the independent and 

dependent variables. In the PSST group, Reid told Michael that their goal was to “figure 

out direct and indirect relationships.” Similar to the PSMT group, the PSST group wanted 

to identify how each of the independent variables related to the dependent variable. 

While both members of the PSST group seemed to be in agreement with their data 

collection plan throughout the Deriving Ampere’s Law activity, there were moments of 

confusion between the members of the PSMT group. For example, when measuring the 
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solenoids of varying wraps of wire, Emily wanted to collect data at different current 

outputs. For Emily, this was a way to confirm that the relationship they hypothesized 

between number of wraps of wire and magnetic field strength held true at different 

electric currents. Anna, however, interpreted this as varying two independent variables 

simultaneously, which she found to be problematic. Emily attempted to explain her 

reasoning to Anna, but struggled to clearly articulate her rationale for measuring the 

solenoids at different electric currents. 

Both the PSMTs and the PSSTs analyzed their collected data by looking for 

relationships between the independent variables and the dependent variable. The PSST 

group articulated this approach to data analysis early on when Reid told Michael that 

their goal was to identify types of relationships (i.e., direct or inverse). This approach 

came about more organically for the PSMT group. After having measured the two-inch 

solenoids of varying wraps at 3.16 A, Emily described the relationship she observed 

qualitatively (“more wraps, more magnets”) and then checked to see if the change in 

magnetic field strength was proportional to the change in number of wraps of wire. Once 

she confirmed this, Emily then described the relationship, “As the number of wraps 

increases by a factor of x, so does the magnet strength,” which Anna recognized as an 

example of direct variation. The PSMT group approached their data analysis for the 

remaining solenoids in a similar fashion. 

The PSMTs and the PSSTs also regularly verified and revised their model. The 

PSMTs initial model was 𝑠 = !"
!

 and the PSSTs initial model was 𝐵 = !"
!

. With an initial 

structure in mind, both the PSMTs and the PSSTs used their collected data to confirm 

whether or not their model was accurate. They selected one of the solenoids they had 
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measured (e.g., two-inch, 50-wraps) and used their values for number of wraps of wire, 

solenoid length, and electric current to see whether or not their model predicted the same 

magnetic field strength as their collected data. This then informed their next steps for 

model revision. The PSMTs and the PSSTs continued this cycle of testing and revising 

until they settled upon a generalizable model that they felt accurately predicted their 

collected data. 

Differences between PSMTs and PSSTs 

There were several differences between the PSMTs and the PSSTs as they worked 

through the Deriving Ampere’s Law activity. These differences included structuring their 

model, considering units and unit conversions, and recognizing the need for a constant. 

These differences may have been influenced by the pre-service teachers’ beliefs about the 

nature of school science and mathematics, which is further explored in the forthcoming 

subsection. Recall that both the PSMTs and the PSSTs derived their initial model 

structure by relying on the types of variation (i.e., direct or inverse) they observed for 

each of the independent variables. The PSSTs did not attempt to generate intermediate 

models over the course of the activity. Instead, they translated the relationships they had 

described qualitatively (see Figure 13) into their initial model structure (𝐵 = !"
!

). 

The PSMT group, however, considered informal models for each of the 

independent variables separately. When analyzing the relationship between number of 

wraps of wire and magnetic field strength, Emily described the relationship, “As the 

number of wraps increase by a factor of x, so does the magnet strength.” When analyzing 

the relationship between electric current and magnetic field strength, Emily described the 

relationship as, “current over Gauss equals x.” When Anna and Emily recognized the 
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relationship between solenoid length and magnetic field strength was inverse variation, 

Emily described the relationship as 𝑥𝑦 = 𝑘. 

It is worth noting that both Anna and Emily mentioned that direct and inverse 

variations were topics they had recently seen in their middle school practicum 

placements. Their recent experiences with direct and inverse variations might have 

influenced the way that they approached these relationships in their data analysis. 

Consider how inverse variation is defined in a popular Algebra I textbook – “y varies 

inversely as x if there is some nonzero constant such that 𝑥𝑦 = 𝑘” (Holliday, Cuevas, 

Moore-Harris, & Carter, 2005, p. 624). This definition of inverse variation is identical to 

the way that Emily described the relationship between solenoid length and magnetic field 

strength. When developing their model, the PSMT group first set up the equation !
!
= !

!
, 

which was structured differently than the PSST group’s equation. However, given the 

PSTM group’s recent classroom experiences with direct and inverse variation, their 

formulation of the relationship is not surprising. Another interesting difference between 

the PSST group and the PSMT group was the letters they chose to represent their 

variables. The PSST group used B (magnetic field strength), N (number of wraps), I 

(intensity), and L (length) and the PSMT group used s (magnetic field strength), w 

(number of wraps), a (Amps), and l (length). The PSST group named their variables as 

they would appear in physics textbooks. 

While both the PSMTs and the PSSTs considered the role of units when revising 

their models, the extent to which units and unit conversions affected their progress with 

the task differed significantly. After deciding upon the structure of the model, the PSMTs 

realized that they needed a constant in their denominator (𝑠 = !"
!!

), but both Anna and 
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Emily acknowledged that using 𝑘 = 2 was not particularly precise. Unsure of whether or 

not they could attribute the discrepancy between the model’s predicted magnetic field 

strength and their collected data to measurement error, Anna suggested that their constant 

should be greater than two and that it might be the conversion factor between inches and 

centimeters (1 inch = 2.54 centimeters). After testing 𝑠 = !"
!.!"!

, both Anna and Emily saw 

that this revised model was not more accurate and they abandoned the idea that the 

constant was related to unit conversions. 

The issue with units played a much greater role in the PSSTs’ approach to the 

Deriving Ampere’s Law activity. The issue of units first appeared when the PSSTs 

prepared for their initial round of data collection and Reid mentioned that he had 

forgotten the definition of a Gauss. After Reid and Michael had identified the 

relationships between the independent variables and the dependent variable (see Figure 

13), units became an even greater concern. When Michael explained to Reid that the 

magnetic field strengths predicted by their model (𝐵 = !"
!

) did match their collected data, 

Reid’s initial thought was that the discrepancy was because of their units. Two of their 

variables were measured in metric units (i.e., amps, Gauss) and one of their variables was 

measured in standard units (i.e., inches), which introduced the issue of dimensional 

analysis. They then converted inches to meters, which resulted in a constant that Michael 

approximated as 1/100. The nature of this number, which resembled a metric conversion, 

led both Michael and Reid to question again whether or not the constant was related to 

unit conversions. Reid again asked about the definition of a Gauss and noted that 

traditionally, magnetic field strength was measured in Tesla. For the PSST group, the 

units in the equation were incredibly important and both Reid and Michael lost sight of 
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the fact that a constant of proportionality would take into account any need for unit 

conversions. 

Both the PSMTs’ final model (𝑠 = !"
!.!!

) and the PSSTs’ final model (𝐵 = 0.44 !"
!

) 

included a constant. However, the two groups recognized the need for a constant at 

different points in the activity. This could have been due in part to how the two groups 

mathematized and interpreted the Deriving Ampere’s Law activity. The PSMT group 

interpreted the goal of the task was to develop a mathematical model that could describe 

their collected data. As soon as the PSMT group recognized the structure of their model 

was 𝑠 = !"
!

, Anna set up the equation !
!
= !

!
 to verify the accuracy of their model using 

their collected data. This happened approximately 50 minutes into the activity. Emily 

recognized fairly quickly that if they multiplied their length by two, then the relationship 

was approximately equal and both Anna and Emily described multiplying by two as their 

constant. They then spent approximately 15 minutes calculating the constant using their 

collected data. 

The PSST group, however, did not articulate the need for a constant until later. 

While the Deriving Ampere’s Law activity was posed the same way to the PSST group as 

the PSMT group, Reid interpreted the goal of the task was to identify the direct and 

inverse variations. Once Reid confirmed that his group had identified the types of 

variations, he was satisfied with their final answer. It was Michael who suggested that 

they use their collected data to verify their model. Recall that when their initial model 

(𝐵 = !"
!

) did not fit their collected data, both Reid and Michael attributed the error to unit 

conversions. It was not until approximately 75 minutes into the activity that Michael 
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suggested they needed a constant in their equation and it was approximately 30 minutes 

after that when Michael and Reid arrived upon a constant based on their collected data. 

Beliefs about “School” Formulas and Numbers 

The Deriving Ampere’s Law activity also revealed several beliefs that the PSMTs 

and the PSSTs had about the difference between math and science in school and real-

world applications of math and science. Both the PSMTs and the PSSTs spoke about 

“nice” numbers versus “not nice” numbers. For Emily (PSMT), she preferred the 

equation 𝑠 = !"
!!

 because the constant was a “nice number” and “that’s how a lot of 

science things look.” Even though she recognized their model did not accurately predict 

magnetic field strength when compared to their collected data, there was something about 

the nature of the model that she preferred. Reid and Michael engaged in a similar 

conversation when developing their final model. Because of their unit conversions, 

Michael approximated their first constant to be 1/100, but that “the 100 was too nice to be 

an observational value.” Similarly, Reid described the 100 as being “so friendly.” 

However, both Reid and Michael shared that having 0.44 as their constant also did not 

feel correct. Reid explained that he was “used to seeing cleaner relationships” and 

Michael explained that they “wanted it [the model] to be too clean.” Reid and Michael 

were describing the difference between theoretical relationships they had seen in 

textbooks compared to relationships that were derived experimentally. 

The PSSTs, and to a lesser extent, the PSMTs, introduced the idea of metric 

conversions, which seemed to derail their progress. The PSST group, in particular, did 

not consider the fact that a constant of proportionality would account for differences in 

units. While acknowledging the role of units is important, both the PSMTs and the PSSTs 
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seemed to lose sight of how a constant of proportionality affects an equation. The PSMTs 

momentarily considered mathematical constants (i.e., 𝜋, 𝑒) as a possible constant in their 

final equation. While it did not take much time for them to recognize these values did not 

work in their equation, the fact that these values had no relation whatsoever to the 

problem at hand did not deter them from testing these possible constants in their final 

model. 

Both the PSMTs and the PSSTs spoke about how the Deriving Ampere’s Law 

activity compared to their previous classroom experiences. Reid shared how this activity 

differed from physics labs when he said, “I just remember lab activities can be so 

structured that you just move through them and you follow one direction and then the 

next and you have no idea.” Similarly, Emily explained, “Science experiments were 

never really something that I enjoyed. I can look up this relationship in a book.” Emily 

found traditional science experiments to be over-scripted and she found filling in pre-

made data tables to be tedious and not meaningful. Anna shared a similar sentiment. She 

explained, 

You’re given the equation, you write it down…you solve a bunch of problems and 
stuff, so that’s what takes the fun out of science because you are just memorizing 
formulas…But here, you’re bringing in the scientific process and they have to 
think like scientists. 

 
Both Michael and Reid connected their experiences from the Deriving Ampere’s 

Law activity to the concept of inquiry learning, which was a topic they had recently 

discussed in their secondary science methods course. Michael shared that he found the 

open-ended nature of the Deriving Ampere’s Law activity to be much more beneficial 

than labs that are more structured. Reid, who had already completed his undergraduate 

degree in physics, shared, “I’ve never been given things to make observations and then 
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come up with the expression as a result of the observation.” He spoke about how he 

recalled classroom experiences where he would have to derive equations from existing 

models or lab experiences where he would have to verify known relationships, but the 

process of deriving a model from collected data was something he did not recall ever 

doing before. Both Anna and Emily shared that while the Deriving Ampere’s Law activity 

was related to electromagnetism, they interpreted the activity as being relevant in a 

mathematics classroom. 

Limitations 

There are three potential limitations to this research study. The first limitation is 

that researcher bias may have influenced data analysis. The first author developed the 

materials for the Deriving Ampere’s Law activity, giving her an intimate understanding of 

the task, as well as her own modeling strategies. To mitigate how this may have 

influenced data analysis, both authors recorded field notes separately and they also 

triangulated their findings across multiple data sources. The second limitation is that the 

magnetic field sensor probe tip was damaged while the PSSTs were working on the 

activity. The authors were able to immediately replace the damaged probe with an 

identical probe, so this minor equipment malfunction did not seem to hinder the PSSTs’ 

progress. The third limitation is related to the generalizability of the findings. There was a 

lot of variation in the pre-service teachers’ prior knowledge. The two PSMTs shared that 

direct and inverse variation was a topic they had recently seen in their practicum 

placements. As a result, their understanding of direct and inverse variations was 

influenced by their recent experiences in a middle school classroom. One of the PSSTs 

had significant prior experiences in electromagnetism, having majored in physics as an 
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undergraduate student and having worked as an engineer prior to beginning his teacher 

preparation program. However, given the nature of the research questions for this study, 

the differences in the pre-service teachers’ prior knowledge were expected. 

Conclusion 

Both the pre-service mathematics teachers (Anna and Emily) and the pre-service 

science teachers (Michael and Reid) were able to experimentally derive Ampere’s Law, 

which relates three independent variables (number of wraps of wire, electric current, and 

solenoid length) to the strength of the magnetic field produced by a solenoid. While it is 

possible to complete the Deriving Ampere’s Law activity individually, as evidenced 

during early pilot testing of the activity itself, it was useful for both the PSMTs and the 

PSSTs to have a partner to discuss their ideas and strategies for completing the activity. 

The PSMTs’ and the PSSTs’ approach to completing the Deriving Ampere’s Law activity 

revealed similarities and differences between the groups’ modeling process based on their 

prior knowledge and also highlighted how their beliefs about the nature of traditional 

school activities influenced their strategies.  

Both groups were excited by the Deriving Ampere’s Law activity and made 

connections between the activity and their experiences in their methods courses and their 

practicum placements. Despite the limitations noted above, the findings from this study 

indicate the importance of providing pre-service teachers with the opportunity to engage 

in modeling activities. By engaging in the modeling process themselves, the pre-service 

teachers who participated in this study became more aware of their own understanding of 

modeling and considered how they might incorporate modeling activities such as the 

Deriving Ampere’s Law activity into their own classroom instruction. Furthermore, based 
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on these findings, it appears that incorporating activities that involve this type of data 

collection and analysis into teacher preparation for mathematics and science teachers 

would be beneficial. Not only is there value in providing pre-service teachers with the 

opportunity to engage in the kind of thinking associated with modeling activities, but 

activities such as the Deriving Ampere’s Law activity also provide pre-service teachers 

with examples of inquiry-driven and collaborative instructional activities. 

For this paper, the Deriving Ampere’s Law activity was approached holistically. 

The activity has also been successfully implemented as four separate investigations with 

middle school students (see Corum & Garofalo, 2017). Plans for future research include: 

(1) further unpacking affective reactions and (2) reworking some design aspects of the 

Deriving Ampere’s Law activity. The data collected for this paper, as well as the data 

collected when the activity was implemented with middle school students, indicated that 

there were aspects of the Deriving Ampere’s Law activity that influenced students’ 

persistence and perseverance with the task. This data will be further analyzed to explore 

students’ affective responses. If possible, the middle school students who participated in 

the activity will be interviewed again to further reflect on their experience and to what 

extent, if any, the experience influenced their thinking about mathematics and science 

during the school year. 

In addition to unpacking students’ affective responses, plans for future research 

include reworking some design aspects of the activity itself. The original set of solenoids 

developed for the activity were calibrated using 3.16 A because of the limitations of the 

variable power supply used. A new set of solenoids, using a more reliable power supply, 

is under development to provide students with the ability to interact with current as a 



 

 138 

variable in a more meaningful way. With more reliable materials, the holistic version of 

the Deriving Ampere’s Law activity that was used with the pre-service teachers’ can be 

implemented with middle school students to get a better understanding of how younger 

students might approach the activity with limited scaffolding. Finally, opportunities for 

commercialization of the activity are underway to be able to develop and mass-produce 

sets of pre-wound, calibrated solenoids. These efforts would allow the Deriving Ampere’s 

Law activity to be implemented in a classroom setting, such as a secondary methods 

course or a middle school mathematics or science class. 
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Appendix A 

Surface Area and Volume Unit Pretest/Posttest 

 
 

 
  

Name:______________________________	

Please	us	the	spaces	next	to,	or	below,	the	questions	and	figures	to	show	your	work	or	explain	your	thinking.	

1.	Area	is	measured	in	what	kind	of	units?	

	

	

2.	Find	the	area	of	the	shapes	below:	

	 		

	

	

	

3.	Write	a	formula	for	the	area	of	any	rectangle,	or	tell	what	information	about	a	rectangle	is	needed	to	find	the	
area.	
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4.	Find	the	surface	area	of	the	following	solid:	

	

	

	

	

	

5.	What	is	the	minimum	amount	of	wrapping	paper	you	would	need	to	wrap	the	long	pencil	box	shown	below	
with	the	dimensions:	2	inches,	by	3	inches,	by	10	inches?	
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6.	What	is	the	minimum	amount	of	wrapping	paper	you	would	need	to	wrap	2	long	pencil	boxes,	if	one	is	stacked	
on	top	of	the	other,	like	below,	and	then	wrapped	together?	
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7.	Volume	is	a	measure	of____________________________________________________	

	

8.	Volume	is	measured	in	what	kind	of	units?	

	

	

9.	Find	the	volume	of	the	solid	shown	below:	

	

	

	

10.	What	is	the	volume	of	water	in	the	fish	tank	shown	below:	

																			 	

	

	

	 	

water	
line	
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11.	The	solid	below	is	a	cube.	How	many	faces,	edges,	and	vertices	does	it	have?	

	

	

	

12.	How	many	faces,	edges,	and	vertices	does	the	solid	below	have?	
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13.	When	the	figure	below	is	cut	out	and	folded	into	a	3-dimensional	solid,	how	many	vertices,	faces,	and	edges	
will	the	resulting	solid	figure	have?	Explain	your	thinking.	
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14.	Suzie	folded	a	flat	shape	and	taped	the	sides	together	to	form	the	prism	below.	Can	you	draw	a	shape	that	
could	have	been	folded	into	this	prism?		
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15.	The	shape	below	has	faces	numbered	1	through	6.		If	Billy	folds	the	2-dimensional	shape	below	to	form	the	
cube	below	it,	what	number	face	would	be	on	the	bottom	of	the	cube?		
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16.	You	have	a	moving	truck	with	a	bed	with	dimensions	6	ft,	by	5	ft,	by	10	ft,	like	in	the	figure	below.	

		 	

		

If	you	load	6	boxes,	each	with	dimensions	1	ft	by	2	ft	by	3	ft,	and	two	mattress	boxes	each	with	dimension	2	ft	by	
5	ft	by	7	ft	into	the	truck,	how	much	space	would	be	left	over	for	other	stuff?	
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Appendix B 

Surface Area and Volume Unit Posttest SOL Items 
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Appendix C 

IRB-SBS Documentation 
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