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Abstract

Strongly correlated materials include hosts of some of the most exciting topics in con-
densed matter physics, such as conventional and high-Tc superconductors, multiferroics,
Mott insulators, spin/charge-density-wave materials, and topological insulators. The
electron-electron correlation plays a critical role in these systems, and in many case
the correlation is a result of two competing order parameters. It is therefore important
to understand the interplay between the competing orders. One approach is to study
the domain topology, since the competing between different long-range orders will
have an impact on the spatial distribution of domains associated with each orders. The
most direct experimental ways of studying domain topology are surface probes such as
scanning/tunneling electron microscopes and second harmonic generation, as well as
bulk probes such as focused ion beam microscope. On the other hand, neutron/X-ray
scatterings, and magnetic susceptibility, transport and heat capacity measurements can
give indirect information on domain topology. Both the direct and indirect data can be
compared with Monte Carlo simulations to give information on the competing orders.

The electric field effect on the magnetic order in LuMnO3 and the Fe vacancy order
in KxFe2−ySe2 are discussed in this thesis. In both projects, neutron and X-ray scattering
experiments were performed to investigate the microscopic details of the system includ-
ing nuclear and magnetic structures, phase volume fractions, and spin wave excitations.
The information obtained from scattering was compared with simulation results using
Monte Carlo method. Although the Monte Carlo models used in both projects were con-
structed based on lattice symmetries without microscopic details, the simulation results
were still able to characterize the key features in the experiments. In LuMnO3 ferroelec-
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tric domain walls are coupled with the magnetic domain walls, and the external electric
field has an effect on the magnetic order through the change of the domain wall dis-
tribution. In KxFe2−ySe2, phase separation exists in the form of coexisting domains of
the vacancy-ordered and vacancy-free phases with disordered vacancies on the domain
boundaries. Post-annealing and quenching increases the volume fraction of the domain
boundary as well as the Meissner shielding fraction, indicating that the vacancy disorder
on these boundaries gives rise to superconductivity. In bothworks, the domain topology is
shown to be related to the competing orders, and can be associated with novel properties
such as superconductivity and the coupling between multiferroic orders.
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Chapter 1

Introduction

Many materials that have played important roles in today’s technologies have properties
that aremostly governed by the kinetic energies of electrons and are relatively insensitive
to the Coulomb repulsion between them. Metals used as building materials such as steel
and aluminium, as well as semiconductors in electronics such as germanium and silicon,
are good examples. The delocalized electrons in the form of Bloch waves define their me-
chanical, electrical, and thermal properties[1, 2]. Theories like the Fermi gas model and
the nearly free electron model are quite successful in explaining the electron behaviour
in these materials [1, 3, 4]. Meanwhile, there has been a growing interest among the con-
densed matter community in the development of the strongly correlated materials, ma-
terials with properties that cannot be explained by non- or weakly interacting electrons
[5, 6]. Strong electron-electron interaction is the key feature of these systems, includ-
ing the conventional superconductors with effective attraction between electrons due to
electron-phonon coupling, the high Tc superconductors with unclear electron-electron in-
teraction, charge density wave systemswith the interaction between electrons and lattice
distortion, magnetic materials with spin-spin couplings, and quantum spin hall systems
with electrons confined in low dimensions under magnetic field [5, 6].

One very basic model for strongly correlated system is the Hubbard model [8]. The
Hamiltonian consists of a hopping term t and an onsite Coulomb repulsion term U. As
shown in Fig.1.1, consider a weakly interacting system with half-filled conduction band
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Figure 1.1 – Schematic plots illustrating the Hubbard model and the change in band structure during
Mott-insulator transition when introducing the onsite repulsive interaction U.[7]

formed by d-wave electrons. If the onsite repulsion U is turned on, the degeneracy in d-
band can be lifted. A large enoughU can split the half-filled d-band into an empty band and
a filled band with a gap in between, and drive the system from ametal to a so called Mott
insulator [7, 9]. The Mott-Hubbard model can be used to explain the insulating behavior
of some transition-metal oxides as well as most of the parent compounds of the cuprate
superconductors in which the band theory calculation gives partially filled bands. The
strength of the onsite repulsion U can be tuned by chemical doping, as seen in the metal-
insulator transition in the Cr- and Nb-doped VO2 and the Se-doped NiS2 [10, 11]; or by
pressure, as seen in the iron oxide Fe2O3 [12].

In some cases, strongly correlated materials can have more than one competing order
parameter. One simple example is the J1 J2 Heisenberg model [13, 14, 15] with the fol-
lowing Hamiltonian: H = J1 ∑〈i, j〉σiσ j + J2 ∑〈〈i, j〉〉σiσ j. As shown in Fig. 1.2, the coupling

Figure 1.2 – Above shows a schematic plot of the J1 J2 Heisenberg model with the J1 and J2 interac-
tions indicated with solid and dashed lines, respectively.[13]

11



constants J1 and J2 are defined on the first and second nearest neighbor interactions on
a square lattice. When J2 > 0, the second nearest neighbor antiferromagnetic interaction
competes with the first nearest neighbor interaction, leading to frustration of the mag-
netic ground state [13]. Mean-field calculations predict a spin liquid state appearing at
|J2|/|J1| ∼ 0.5 [14, 15]. Materials such as Sr2CuTeO6 and Sr2CWeO6 are proposed to have
J1 J2 like interactions dominate [16, 17, 18]. Another class of material in which competing
orders are prevalent is the family of multiferroics, where two ferroic orders exist in a sin-
gle phase, leading to interesting phenomena such as magnetoelectric and piezoelectric
effects.

Figure 1.3 – Shown in (a) are the intensity map of the charge-density-wave and quench disorder in
the CuO2 and HgOy layers measured by high energy X-ray diffraction [19]. Shown in (b) are the SHG
study on the distribution of ferroelectric domains (∝ P) and antiferromagnetic domains (∝ I). The
domain walls are plotted on a separate plot [20].

When the order parameter breaks the symmetry, domains that are related by the bro-
ken symmetry operation will be presented in the sample [1]. Factors like temperature and
external field of the corresponding order (electric, magnetic, or strain field) can change the
domain topology significantly [21, 22, 23]. For systems with competing orders, coupling
between the order parameters can be seen in the domain walls shared by both orders
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[20]. For examples, Fig. 1.3 (a) shows the domain topology of the cuprate superconduc-
tor HgBa2CuO4+y observed using scanningmicro X-ray diffraction [19]. An anti-correlation
between the charge-density-wave puddles and the quench disorder represented by the
O-rich regions is demonstrated. Fig. 1.3 (b) shows the overlap of the ferroelectric domain
walls and the antiferromagnetic domain walls [20] in multiferroic YMnO3. Through such
domain wall coupling, it is possible to control the properties of one order parameter by
turning the corresponding field of the other order.
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1.1 Superconductivity

Since its discovery in 1911 [24], superconductivity has been intensively studied both ex-
perimentally and theoretically. One of the main driving force for these studies is the great
application potentials of superconductors with high transition temperature Tc. For exam-
ple, superconducting wires can be used for dissipationless transportation of electricity. By
allowing electrons moving without resistance, extremely large magnetic field provided by
extremely large current becomes feasible. Nowadays, superconducting electromagnets
have already been vastly used in MRI, magnetic levitation train, and particle accelera-
tors. Another application is in the so-called superconducting quantum interference de-
vices (SQUIDs) where superconductors form Josephson junctions to probe magnetic field
[25]. More recently, superconductors have been predicted to be a platform for quantum
computing, as the superconducting vortices can trap Majorana fermions that can lead
to entanglement and braiding [26, 27]. Although the superconducting transition temper-
ature has risen to above liquid nitrogen temperature, it is still a limiting factor and an
obstacle to their widespread applications. Thus, pursuing higher and higher transition
temperature and the mechanism behind high Tc superconductors theoretically and ex-
perimentally has always been one of the major focus in condensed matter physics.

Figure 1.4 – Schematic phase diagram of type-I and type-II superconductors. The two critical mag-
netic fields are labeled on the type-II superconductor plot. Superconducting vortices exist in the
mixed state between Hc1 and Hc2.[28]

Superconductivity is a state of matter that has zero electrical resistance at very low
temperature [24]. Another intrinsic feature of superconductivity is the Meissner effect,
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the complete screening and ejection of magnetic field upon entering the superconduct-
ing phase [29]. Superconductivity can be destroyed by finite magnetic field, and in 1935
superconductors with a second critical field that allows magnetic field to penetrate the
sample through isolated points were discovered [30]. As illustrated in Fig.1.4, supercon-
ductors with one critical field are classified as type-I, and those with two critical fields are
type-II.

Figure 1.5 – Schematic plots illustrating the electron-phonon coupling described in the BCS theory.
Phonons are shown in the form of lattice distortion.[31]

In 1950 Ginzburg and Landau brought up a mean-field theory explaining superconduc-
tivity as superfluid of electron-electron pairs formed under Bose-Einstein condensation
[32]. This theory explained type-II superconductors as a result of negative free energy
of the superconducting-normal state interface, which leads to partial superfluid fraction
and formation of vortices where magnetic field can go through between the two critical
magnetic fields [33, 34]. Later in 1957, the famous BCS theory was established, explaining
the mechanism of electron-electron pairing (Cooper pairing) in conventional supercon-
ductors as the result of electron-phonon coupling [35, 36]. Figure 1.5 is a schematic plot
of the electron-phonon coupling proposed in the BCS theory. The effective attraction be-
tween electrons is due to the above-background positive charge density near the lattice
distortions (phonons) excited by the electrons. Group theory analysis demonstrates that
any finite attraction between electrons is enough to cause Cooper pairing at finite tem-
perature [37]. Assuming particle-hole symmetry, the normal electron band structure can
be extended to electron-hole band structure, and in superconducting phase an energy
gap ∆ is present at the Fermi level, resulting in an energy gain of ∆ for every formation
of Cooper pairs [35, 36]. The energy gap starts from 0 at Tc, and saturates with a scale

15



of kBTc at T � Tc [38]. BCS theory predicts ∆ ∼ 1.764kBTc at zero temperature, and an
upper limit for the superconducting temperature Tc around 30 K [39]. The whole field of
superconductivity would be much less attractive if the cuprate ceramic superconductors
had not been discovered to break this limit [40].

Figure 1.6 – Shown here is a timeline of the discoveries of superconductors, with BCS type marked as
green circle, cuprates as blue diamond, fullerides as purple triangle, heavy fermion system as green
star, and Fe-based materials as yellow square.[41]

The discovery of superconductivity in cuprates [40], followed by fulleride [42] and Fe-
based compounds [43] has raised more questions than what the Ginzburg-Landau theory
and BCS theory had explained. The strength of electron-phonon coupling in these mate-
rials cannot account for their higher than expected Tc, indicating different pairing mech-
anisms. Unlike the isotropic s-wave gap in BCS theory [35, 36], d-wave [44] or s±-wave
(double s-wave with opposite spins) [45] superconducting gaps were observed in these
high-Tc superconductors. For the above reasons they are referred to as unconventional
superconductors, as opposed to conventional superconductors where the pairing mech-
anism can be described by the BCS theory. After decades of intensive researches, many
hypotheses have been brought out to explain these non-BCS-type pairing, including weak
coupling with spin fluctuations [46] and electron/hole-pocket nesting [47, 48, 49]. But
overall the theory on the unconventional superconductors is still controversial [50, 51].
Fig. 1.6 shows a timeline of the discoveries of different conventional and unconventional
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superconductors.

Figure 1.7 – Phase diagrams of cuprates (left) and Fe-based superconductors (middle and right).
[50, 51]

Among all the unconventional superconductors, Fe-based superconductors has drawn
many attentions after its discovery a decade ago [43, 51]. Historically, the notion of a com-
peting relationship between magnetism and superconductivity had led to a tendency of
avoiding magnetic elements in searching for new superconductors. Therefore the discov-
ery of superconductivity in a system with iron, a strongly magnetic element, was totally
unexpected. The Fe-based superconductors have developed into a big family including the
rare earth iron pnictides RFeAsO (R = La, Nd, Sm), the alkali metal iron pnictides AFe2As2

(A = Ba, Sr, Ca), the alkali metal iron chalcoginides AxFe2−ySe2 (A = K, Rb, Cs), as well as
FeSe and FeTe thin films. The diversity and complexity in the phase diagrams of Fe-based
superconductors have made this field exciting and challenging [51, 52].

Like in cuprates, the superconductivity in Fe-based materials often emerges with sup-
pression of long-range antiferromagnetic order, as shown in Fig. 1.7 [50, 51, 52]. The dif-
ference is that the antiferromagnetic parent phases in Fe-based superconductors are not
insulating as in cuprates but semimetallic [52]. As a result, for the iron pnictide family,
both electron band structure calculations and angle resolved photoemission spectroscopy
(ARPES) results indicate that the Fermi surfaces in these compounds consist of nearly cylin-
drical electron and hole pockets at the M(π,0)/M(0,π) and Γ(0,0) points, respectively
[45, 53]. The high density of states from the electron and hole pockets lead to Fermi sur-
face nesting, suggesting an s±-wave pairing symmetry in the superconducting gap [45],
different from the d-wave gap in cuprates [44]. On the other hand, ARPES measurements
on the iron chalcoginide compounds showeddifferent Fermi surfaceswith no hole pockets
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at theΓ point, indicating different gap symmetries without Fermi surface nesting [54]. The
Fermi surface of neither the pnictides nor the chalcoginides can be explained using the
weak-coupling theory derived from cuprates, and a model with strong electron-electron
correlation is needed.

Fe-based superconductors also tend to host order parameters other than antiferro-
magnetism prior to entering the superconducting phase. For example, the BaFe2As2 com-
pound shows a nematic phase prior to the structural phase transition between the or-
thorhombic phase and the tetragonal phase [55, 56]. Here nematicity refers to the orbital
of the electrons breaking 4-fold rotation symmetry of the lattice space group. Another
example is the alkali metal iron chalcoginide family where a long-range order of the Fe
vacancies is competing with superconductivity [57, 58, 59, 60]. The pairing mechanism in
Fe-based superconductors is believed to be closely related to the spin and charge density
fluctuations of these orders.
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1.2 Multiferroics

Ferroics describes a large variety of systems in the field of strongly correlated materials.
A phase transition separates the system into a high-temperature non-ferroic phase and a
low-temperature ferroic phase. In the low temperature phase, the symmetry is lowered
to allow spontaneous ordering. The most common ferroic orders are ferroelectricity [61],
(anti)ferromagnetism [62], and ferroelasticity [63], as shown in Fig.1.8. Ferroelectricity is
a property of materials that yields non-zero electric polarization without external elec-
tric field [61]. The space group has to be non-centrosymmetric, allowing different twin
structures to have opposite polarization directions. Applying external electric field can
change the polarization direction. Similarly, (anti)ferromagnetism describes spontaneous
long range order of the magnetic moments [62], and ferroelasticity involves spontaneous
strain in the material [63].

Figure 1.8 – Schematic plot illustrating the ferroic orders in multiferroic materials.

Each ferroic order on its own is enough to give rise to interesting physics and great
application potentials. For example, BaTiO3 is a typical ferroelectric compund with per-
ovskite structure. At 393 K the system transits from a paraelectric cubic phase into a
ferroelectric tetragonal phase with the displacement of the cations along the [001] direc-
tion with respect to the oxygen octahedrons. At 278 K, the displacement changes to the
[011] direction, distorting the unit cell to an orthorhombic phase. Finally at 183 K, the
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displacement becomes pointing along [111] direction, resulting in a rhombohedral struc-
ture [64]. The spontanuouse polarization in this system is 0.26 C/m2 and the dielectric
constant is over 7000 [65]. Such high polarization and dielectric constant at room temper-
ature have made BaTiO3 extremely useful in electronic and electro-optic devices, such as
thermistors, multilayer ceramic capacitors, microwave absorbers, and transducers [66].

Multiferroics are materials that host more than one ferroic order in the same phase
[67, 68]. It has been a key topic of interest among the condensed matter society over the
past two decades because they can serve as a great platform for magnetoelectric prop-
erties [69], such as controlling spin through electric field or controlling charge through
magnetic field. If a strong coupling between the electric and magnetic orders is present
around room temperature, it will have important implications on many technologies in-
cluding sensors, microwave devices, energy harvesting, photo-voltaic technologies, solid-
state refrigeration, data storage recording technologies, and random access multi-state
memories[67].

Magnetoelectric multiferroics can be classified into type-I and type-II based on the ori-
gin of the ferroelectricity [70, 71, 72]. Ferroelectricity requires the lattice breaking inver-
sion symmetry, which can be induced through different mechanisms including lone-pair
electron activation, charge density wave, geometric rotation of the polyhedron, andmag-
netic order. Type-I multiferroics have differentmechanisms of themagnetic and ferroelec-
tric transitions and their transition temperatures are often well separated. Examples in-
clude perovskitematerials BiFeO3 [73], the thin filmmaterials of PbTiO3/La0.67Sr0.33MnO3

[74], and the perovskite or hexagonal rare earth manganites RMnO3 [75, 76, 77]. On the
other hand, in type-II multiferroics the magnetic order is the cause of the ferroelectric
order and the critical temperatures are identical. Typical type-II multiferroics include
TbMnO3 [70], Ni3V2O6 [70], and MnWO4 [78, 71]. Although the two ferroic orders are
directly coupled, their low transition temperatures and small polarization magnitude are
obstacles for their application potentials. On the other hand, type-I multiferroics have
relatively high electric and magnetic transition temperatures, making them better candi-
dates for magnetoelectric and electromagnetic devices.

Unfortunately, the presence of magnetic and ferroelectric ordering in a single phase
20



in type-I multiferroics does not guarantee a strong coupling between them, because of
the different microscopic mechanisms behind the two [67, 79, 80]. For example, in the
perovskite BiFeO3 and BiMnO3 [73, 81], the magnetic ion Fe3+ and Mn3+ contribute to
the magnetic order while the Bi2+ ion moves and gives rise to ferroelectricity. The dif-
ferent atomic origins of the two ferroic orders result in a very weak coupling, shown in
the less than 0.6% dielectric anomaly under external magnetic field [80]. A more sensi-
tive dielectric anomaly controlled by magnetic field was observed in the so-called "frus-
tratedmagnets", including the perovskite and hexagonalmanganites RMnO3 and RMn2O5

[75, 76, 77], MnWO4 [78, 71], and Ni3V2O8 [82]. These materials have degenerated mag-
netic ground states due to geometrical frustration of the magnetic ion sublattice. The
magnetoelectric coupling in these systems is likely due to the correlation of both mag-
netic and electric orders with the lattice geometry.

Figure 1.9 – Schematic plot illustrating the geometrical frustration in trangular, kagome and py-
rochlore lattices. [83]

In frustrated magnets, spins cannot be aligned in a Néel order [83]. The complexity
in spin structures and the surrounding superexchange paths lead to single-ion anisotropy
and Dzyaloshinskii–Moriya interaction (DMI) [84, 85]. The corresponding Hamiltonian for
DMI has the following form: HDM =Di, j ·(SSSiii×SSS jjj). When dominant, the DMI can give rise
to chiral magnetic orders or excitations (Skyrmions) [86, 87]. When competing with the
Heisenberg term H = Ji, jSSSiii ·SSS jjj, the DMI can lead to a magnetic induced lattice relaxation
and a weak coupling between the magnetic and electric orders [88, 89].
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The layout of this thesis is the following. In chapter 2, twomain research techniques in-
volved in this thesis, neutron/x-ray scattering and Monte Carlo simulation, are discussed.
In chapter 3 the experimental studies on the multiferroic LuMnO3 under external electric
field using neutron scattering are shown [90]. In chapter 4 the Monte Carlo simulations
of the two competing orders in LuMnO3 are discussed [90]. In chapter 5, experimental
results on the Fe vacancy ordering in Fe-based superconductor KxFe2−ySe2 are presented
[55, 91]. In chapter 6, Monte Carlo simulation results on the Fe sublattice of KxFe2−ySe2

are demonstrated [91, 92]. Chapter 7 is the discussion, and chapter 8 is the conclusion of
the thesis.
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Chapter 2

Methods
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2.1 X-ray/Neutron Scattering

Both X ray and neutron can be used in scattering experiments to investigate microscopic
details of the static and dynamic crystal structures of matters [93]. In elastic scattering
channel, the diffraction pattern formed by scattering off a crystalline sample is a convo-
lution of the Fourier transform of real space information with a profile function. In the
inelastic channel, scattered intensities at non-zero transferred energy ∆E represent dif-
ferent dynamicmodes excited by the incident beam. With proper analysis, scattering data
can help determining the crystal structure, magnetic structure, local lattice distortions,
phonon density of states, spin wave spectrum and other important properties.

Figure 2.1 – Schematic plot of plane wave scattering off from a simple cubic lattice.

As illustrated in Fig. 2.1, if assuming incident beam of neutron or x-ray is a plane wave
with amplitude A ∝ ei2πkkk···rrr, the scattered wave from a simple cubic lattice with one atom
per unit cell at observing point O has the following form:

A(kkk,kkk′′′) ∝ ∑
RRRnnn

ei2πkkk(rrrsss+RRRnnn)ei2πkkk′′′(rrrooo−RRRnnn) ∝ ∑
RRRnnn

ei2π(kkk−kkk′′′)RRRnnn (2.1)

Here kkk and kkk′′′ are the wave vector of the incident and scattered beam, RRRnnn represents the
position vector of the nth unit cell in the lattice. rrrsss and rrrooo are the vector of the source and
the observing point relative to the sample, respectively. The vector RRRnnn is the real space
position vector of the nth unit cell, and can be written as a combination of the lattice
primitive vectors aaa111, aaa222 and aaa333 with integer coefficients: RRRnnn = n1aaa111 + n2aaa222 + n3aaa333. And
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the vector κκκ ≡ kkk− kkk′′′ can be written as combination of the reciprocal unit vectors bbb111, bbb222

and bbb333: κκκ = κ1bbb111 +κ2bbb222 +κ3bbb333, where κi ∈ R. From the orthonormality of the primitive
and reciprocal unit vectors aaaiii ···bbb jjj = δi j, The sum in Eq. 2.1 becomes:

∏
i=1,2,3

Ni

∑
ni=1

ei2πκini = ∏
i=1,2,3

ϕ(Ni)
sin(πκiNi)

sin(πκi)
(2.2)

Here Ni represents the number of unit cells along the aaaiii direction. Since Ni has the scale
of Avogadro constant, the sum goes to zero for any non-integer value of κi, and gives
N = N1N2N3 for integer values. With that, Eq. 2.1 gives the Bragg’s law:

A(kkk,kkk′′′) ∝ N ∑
h,k,l∈Z

δ (κκκ−GGGhkl) (2.3)

The scattered beam has intensity only when κκκ = GGGhkl with the reciprocal vector GGGhkl =

hbbb111 + kbbb222 + lbbb333. Each set of Miller indices h,k, l corresponds to a series of crystal planes
in the lattice with a d-spacing dhkl = 2π/|Ghkl |. In the case of elastic scattering, |kkk|= |kkk′′′|,
Eq. 2.3 can be written in a more familiar form in terms of d-spacing, scattering angle 2θ ,
and incident wavelength λ :

nλ = 2d sinθ . (2.4)

Bragg’s law determines the position of the reflected beam, while the intensity of these
reflection depends on the form factor and the structure factor. The structure factor is re-
lated to the space group of the unit cell, the site symmetry of each atoms, the Miller
indices of the Bragg reflection, and the form factor of each atoms at the given GGGhkl . The
form factor characterizes the interaction between the incident beam and the sample, and
depends on the type of incoming wave as well as the type of atoms. For x ray, the scatter-
ing is due to electromagnetic interaction with the electron clouds surrounding the atoms,
and the x-ray form factor is the Fourier transform of the electron density. For neutron, the
scattering consists of two parts: one is the strong interaction between the neutron and
the nuclei of the atoms, and the other is the electromagnetic interaction between the
spin of neutron and the magnetic moment in the lattice. The nuclear part is represented
by pseudo potential and scattering length, while the magnetic part is proportional to the
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ordered moment.
The major difference between neutron and x ray in scattering experiment lies in the

form factor. The total integration of x-ray form factor is proportional to the number of
electrons in the atom, thus x ray does not scatter well off light elements such as H and
Li. It also lacks the ability to probe magnetic orders in the lattice. The neutron scattering
length does not scale with the atomic number and is rather random from one type of
atom to another. It can interact with magnetic moment of the atom and help determine
magnetic orders or excitations. Another advantage of neutron scattering comes from the
fact that neutrons are not relativistic particles and have different velocities for different
wavelengths. The time of flight of neutrons carries information of their energy, allowing
the energy and momentum space coverage to be enhanced by using white beam. On
the other hand, X ray is relatively easier to acquire comparing to neutron. An in-house
X-ray diffractometer can provide enough information for structure determination, while
a synchrotron light source can generate x ray with tunable wavelength and much higher
flux. Neutron sources with the suitable wavelength and flux for scattering experiment
require either a research nuclear reactor or a spallation facility. And even for the most
powerful ones, the fluxes are still orders of magnitude lower than those of synchrotron
x-ray sources.

Figure 2.2 – Shown in the figures are a schematic plot of powder diffraction (left) and a typical
powder diffraction pattern of NaCl (right). [94]

The crystalline sample used in scattering experiment can be in powder form or sin-
gle crystal form. For powder scattering, because each small grain of the sample has its
own orientation, the angular degrees of freedomwill be integrated out, and the collected
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data become a function of the momentum transfer magnitude |GGGhkl |, as shown in Fig.
2.2. Such a powder scattering experiment does not require any form of alignment of the
sample at a cost of losing the angular degree-of-freedom information. A method called
Rietveld refinement is specialized in solving the static crystal structure from powder data
[95]. In Rietveld refinement, structure factors of each Bragg reflections are calculated
based on an initial crystal structure, and are convoluted with profile functions to repro-
duce the one dimensional powder histogram. Parameters like the scaling factors, lattice
constants, atom coordinates, occupation numbers, and thermal factors are fitted with the
data using least-square method. Once the parameters are optimized, the refinement re-
sult becomes a possible solution of the average crystal structure. Powder diffraction data
can also be analysed through pair distribution function, which requires high resolution
and large coverage in the momentum space, and can provide information on the local
structure.

Figure 2.3 – Schematic plot of Laue diffractometer (left) and triple axis spectrometer (right). [94]

When single crystal samples are used, more information such as diffuse scattering,
anisotropic strain or twinning ratio can be obtained, at a cost of relatively small momen-
tum space coverage and slow data collecting rate. Such experiments include Laue diffrac-
tion, triple-axis diffraction, and four-circle diffraction, as shown in Fig. 2.3. In Laue diffrac-
tometer, incident beam is focused at the sample to create diffraction peaks with different
momentum transfer GGGhkl . A 2D detector is placed either in front or behind the sample,
and the collected data show the so called Laue pattern. Laue diffraction does notmeasure
the energy of the scattered beam, thus does not provide energy resolution. To survey the
energy transfer channel with single crystal, the neutron triple axis spectrometer comes
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into use. On the right panel of Fig. 2.3 is a schematic plot of a triple axis spectrometer.
A certain wavelength of the incident beam is selected by the monochromator before hit-
ting the sample. An analyzer is placed at an angle with respect to the incident beam to
pick up the wanted outgoing wavelength. "Triple axis" refers to the three adjustable axes
in the instrument that are perpendicular to the sketched plane: the axis passing through
monochromator, the axis aroundwhich the sample can rotate, and the axis of the analyzer.
This setup allowsmeasuring the intensity of the reflected beamwith energy different from
the incident energy, providing access to the inelastic channel. with the help of time-of-
flight technology, neutron scattering spectrometers with 2D area detectors are feasible,
allowing a much faster data collection speed. To resolve the angular degree-of-freedom,
one has to either align the sample with a goniometer before taking the data or construct
an orientation matrix in reciprocal space after taking the data. Both methods require high
quality single crystal samples.
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2.2 Monte Carlo Simulation

In condensed matter physics, most many-body Hamiltonians are not analytically solv-
able. The test and proof of such theories and models then relies on certain mathemati-
cal/computationalmethods, such as themean-field approximation, the density functional
theory, and the Monte Carlo method.

Figure 2.4 – Shown here are a schematic plot illustrating 2D Isingmodel (left) and the corresponding
simulation results showing magnetic phase transition (right).

Monte Carlo method is a computational technique that can simulate a probability dis-
tribution with the help of random sampling. An early example of random sampling is
the Buffon’s needle experiment [96], where needles are dropped randomly on parallel
lines to estimate the value of π . In Monte Carlo simulation, large enough amounts of
pseudo randomnumbers are generated to simulate certain probability distributions. Since
many-body system can be described using statistical ensembles, one can then simulate
a many-body problem by random samplers that follow the probability distribution de-
fined by the corresponding ensemble. One example is the Monte Carlo simulation of the
2D and 3D Ising model [97]. Ising model describes a lattice consists of spin 1/2 particles
with nearest neighbor Heisenberg interaction, as shown in Fig. 2.4. The Hamiltonian is
H =−∑〈i, j〉 Jσiσ j with σi =±1 represents the spin 1/2 degree-of-freedom on the ith site,
J represents the nearest neighbor coupling strength, and the sum goes through all pairs
of nearest neighbors 〈i, j〉. On the simulated lattice, a random change on the spin config-
uration is proposed in a way that satisfies the detailed balance rule and is accepted with
a probability of e−β∆E. Here ∆E is the energy difference between the new spin configura-
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tion and the old one, and β ≡ 1/kBT is the reciprocal of the thermodynamic temperature.
With enough number of iterations, the simulated spin configuration will be stabilized in a
state thatminimizes the free energy. By achieving such thermodynamic equilibrium at dif-
ferent temperatures, the properties of the magnetic phase transition can be captured. In
the simulation process, properties such as total energy E and magnetic order parameter
m can be calculated at each spin configuration. If two spin configurations are separated
by enough number of iterations, the two states can be considered independent. Averag-
ing over many independent states at a given temperature makes the statistical averages
〈E〉 and 〈m〉 good representatives of the corresponding bulk properties of the simulated
lattice at that temperature. Combining with 〈E2〉 and 〈m2〉, the heat capacityC and mag-
netic susceptibility χ are also represented. The accuracy of these statistical estimates
increases with the sampling size, and the scaling speed depends on the type of Monte
Carlo algorithm.

As shown in the right panel of Fig. 2.4, the magnetic phase transition in 2D Ising model
is captured by aMarkov chainMonte Carlo simulation. With different choices of the simu-
lated lattice size L, the measured quantities E, m,C, and χ will develop different temper-
ature dependent curves. A method called finite size scaling can be used to determine the
critical exponents of the phase transition by re-scaling the temperature and themeasured
quantities with the size L until each curve overlaps with each other. A typical finite size
scaling analysis on the 2D Isingmodel is shown in Fig. 2.5, where the 4th order Binder’s cu-
mulant B4, heat capacityC, magnetization m, and magnetic susceptibility χ are sampled
and scaled with different lattice size L to obtain the critical exponents: ν = 1, β = 1/8,
γ = 7/4. By comparing the simulated results of the critical exponents with theory predic-
tions, one can determine the universality class of the phase transition.
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Figure 2.5 – Shown here are the finite size scaling results on the Monte Carlo results of 2D Ising
model. On the left panel are the data versus temperature as collected. On the right panel are the
scaled data. The 4th order Binder’s cumulant B4 is used to determine the transition temperature.
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3.1 Introduction

Figure 3.1 – Shown in (a) and (b) are the crystal structures of RMnO3 above and below the ferro-
electric transition temperature TC, respectively. The arrow in (b) indicates the direction of theMnO5
bipyramid tilting (a.k.a. trimerization).

As a typical type-I multiferroics, the hexagonal RMnO3 (R = Y, Lu, Sc,· · · ) becomes fer-
roelectric below TC ∼ 570-990 K when the crystal transits from the high temperature
P63mmc phase to the low temperature P63cm phase through a structural instability of
the Mn and O atoms due to trimerization [75, 76, 77]. The trimerization then leads to the
rare earth atom splitting into two atomic sites which breaks inversion symmetry and gives
rise to polarization, as illustrated in Fig 4.1 (b). The polarization coming from such small
lattice distortion is an order of magnitude smaller than a regular ferroelectric material
[98, 99]. Since the Mn atoms form triangular lattice in the ab plane, the system becomes
geometrically frustrated [100]. Below TN ∼ 90 K, the magnetic moment of Mn orders in a
120◦ arrangement [101, 102, 103]. Based on representation analysis, 4 possible magnetic
structures (Γ1, Γ2, Γ3, and Γ4) with maximum magnetic group symmetry are shown in
Fig. 3.2 [102]. In magnetic structures Γ1 and Γ4, the moments of Mn atoms are aligned in
the ab plane perpendicular to the center of the trimerization, whereas in Γ2 and Γ3 the
moments are canted out-of-plane and pointed towards or away from the trimerization
center.

With only Heisenberg interactions, the magnetic ground states are degenerated as
33



Figure 3.2 – According to representation analysis, 4 possible magnetic structures of hexagonal
RMnO3 with highest magnetic subgroup are plotted and label as Γ1-Γ4. Only Mn sublattice is plot-
ted. The purple bonds between Mn atoms indicate the trimerization unit, and the blue arrows rep-
resent the magnetic moment.
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long as a 120◦ spin configuration is satisfied. The spin-orbit coupling introduces in-plane
anisotropy and lifts the degeneracy [104]. The out-of-plane canting is likely due to the
antisymmetric terms in the Hamiltonian, the Dzyaloshinskii–Moriya interaction [89, 105].
Different choice of the rare earth element results in different coupling strengths for the
in-plane and out-of-plane anisotropies, leading to differentmagnetic ground state. For ex-
ample, ab initio calculations on YMnO3 and LuMnO3 suggest Γ3 and Γ4 as the magnetic
ground state, respectively [104]. In a similar compound, Lu0.5Sc0.5FeO3, the system goes
through two magnetic transitions from the Γ2 structure to an indistinguishable Γ1 or Γ3

structure [103]. Polarized neutron scattering can provide additional information about the
out-of-plane spin arrangement to distinguish between Γ1 and Γ3, and between Γ2 or Γ4.
Whereas the difference between the two groups: Γ1/Γ3 and Γ2/Γ4 can be determined
using the magnetic peak (100) which only presents in the former.

The weak interaction between magnetism and ferroelectricity in RMnO3 has been ob-
served through in-plane dielectric anomaly with external magnetic field [106]. It is then
very natural to ask if an external electric field can have any effect on the magnetic order
in this system. To find out, single crystal neutron scattering experiments were performed
on LuMnO3 [90].
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3.2 Neutron Scattering Results

Figure 3.3 – Shown above is a schematic plot showing the experimental setup. The (001)-cut single
crystal LuMnO3 sample was glued between two Al plates by silver paint. The Al plates served as
parallel plate capaciter and provided static electric field across the sample.

The neutron scattering experiments were performed on the triple axis spectrometer
SPINS at Nist Center for Neutron Research. External electric field was applied on the sam-
ple along c direction. The experiment setup is shown in Fig. 3.3. Two aluminium plates
were glued on the two sides of a (001)-cut single crystal sample using silver paint, serving
as a parallel plate capacitor to provide static electric field on the sample. One single crys-
tal sample was cut into two pieces, so electric field of opposite direction can be applied
on the same sample from its unpolarized state.

Figure 3.4 – Shown in (a) and (b) are magnetic order parameter plots of LuMnO3 extracted from
the intensity of (101) and (100) peaks, respectively. The inset in (a) is a zoomed-in plot of the (101)
intensity at the vicinity of the transition temperature TN ∼ 90 K.
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Shown in Figs. 3.4 (a) and (b) are the integrated intensities of magnetic peaks (101)
and (100) as functions of temperature, respectively. A typical order parameter curve was
observed in the magnetic peak (101), in agreement with the calculated magnetic ground
stateΓ4. Themagnetic peak (100) is absent in theΓ4 structure, and theweak intensity ob-
served in our samplewas likely due to nuclear contribution of the trimerized lattice.Shown
in Fig. 3.5 is the scan along L direction across themagnetic peak (101) under different elec-
tric field near the magnetic phase transition. Starting from the fresh (unpolarized) state,

Figure 3.5 – Shown above are the elastic neutron diffraction data. Scans along L-direction through
the magnetic peak (101) were performed under different electric field at the vicinity of the magnetic
phase transition temperature TN=92 K. Subplot (a) gives the integrated intensities of the magnetic
peak (101) as a function of electric field.
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the sample showed an enchancement of the (101) peak intensity when applying negative
E-field, and remained unaffected when applying positive E-field. Due to the large coercive
field of this compound, such field effect on the magnetic peak were not reversible under
our setup with a maximum field of 15 kV/cm limited by the power supply and the sample
thickness.

Inelastic neutron scattering were also observed near the (100) magnetic peak, as
shown in Fig. 3.6. The excitation at 0.4 meV comes from the single-ion anisotropy (SIA)
in the system. The calculated spin wave spectrum is shown in Fig. 3.6. The position and
intensity of this SIA gap did not show a significant electric field dependence, suggesting
that the effect of external electric field on the magnetic order is not applied through the
single-ion anisotropy.

Figure 3.6 – Shown on the left are the inelastic neutron diffraction data. Scans along ∆E at the
magnetic peak (100) were performed under different electric field at T=90 K. Shown on the right is
a calculated spin wave spectrum with single ion anisotropy on Mn atoms.
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3.3 Summary

Neutron scattering experiments on single crystal LuMnO3 showed amagnetic ground state
of Γ2/Γ4 setting in at TN ∼ 90 K, while the iconic peak (100) of the Γ1/Γ3 structure
demonstrated a different temperature dependence. Inelastic scattering at (100) peak po-
sition revealed a spin wave excitation with the excitation energy ∆E. The energy gap cal-
culated at the Γ point on the spin wave spectrum suggested that the excitation is related
to single ion anisotropy. The intensity of (100) peak might be a result of the lattice trimer-
ization which also leads to single ion anisotropy. Under external electric field of certain
direction, the magnetic peak (101) showed an enhancement near TN , indicating the exis-
tence of a electric field controlled change on the magnetic order.
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4.1 Introduction

Figure 4.1 – Shown in (a) and (b) are the crystal structures of RMnO3 above and below the ferro-
electric transition temperature TC, respectively. The arrow in (b) indicates the direction of theMnO5
bipyramid tilting (a.k.a. trimerization). In (c) shows the 6 symmetry equivalent trimerization di-
rections, which correspond to the 6 structural domians as labeled in (d). Shown in (e) is a typical
simulated lattice below TC.

The ferroelectric phase transition in RMnO3 consists of the MnO5 bipyramid tilting
(trimerization) and the rare earth site splitting. The former breaks the Z3 symmetry of the
high temperature P63mmc phase [75, 76, 77] while the latter breaks the Z2 symmetry and
gives rise to polarization. Such a Z3×Z2 symmetry breaking creates 6 structural domains.
As shown in Figs.3.1 (a), (b) and Fig. 4.1 (a), the corner sharing MnO5 bipyramid layers
are separated by the rare earth atom layers. From the top view, each MnO5 bipyramid is
surrounded by 3 Lu atoms (α ,β ,γ). The trimerization involves tilting of the bipyramids to-
wards one of the 6 symmetry equivalent directions: α+,β+,γ+,α−,β−,γ−, each of which
corresponds to a structural domain [76]. This has been confirmed by observations using
optics second harmonic generation, SEM, STM and AFM [20, 76, 107, 108, 109, 110]. On
top of the ferroelectric order there is the magnetic order which can be characterized by
Heisenberg interactions, single ion anisotropies, and Dzyaloshinskii–Moriya interactions
[89, 105].

The coupling between the magnetic and electric orders in a type-I multiferroic system
is usually weak [68, 67]. In the hexagonal rare earth manganite system, the microscopic
origins of such a weak coupling lies in the correlation of the lattice trimerization with
both magnetic and electric orders [20]. On one hand, the electric polarization is a direct
result of the bipyramid tilting and rare earth site splitting. On the other hand, the cen-
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ter of trimerization defines the center of the single ion anisotropy terms for the magnetic
orders. As a result, a ferroelectric domain wall simultaneously serves as an antiferromag-
netic domain wall, giving rise to a weak coupling between the two ferroic orders.
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4.2 Monte Carlo Simulation

To further study such a weak coupling through domain walls, Monte Carlo simulations
on the ferroelectric order and magnetic order of RMnO3 were performed. The nearest
neighbor coupling of both order parameters are confined in the xy-plane due to the crystal
geometry [111]. For ferroelectric order, a 2D 6-fold clock model without microscopical
details was used [112]. For magnetic order, an x-y model with Heisenberg interactions and
single ion anisotropy terms was employed. The Dzyaloshinskii–Moriya interaction was
neglected since it mainly gives rise to the out-of-plane canting, which is a minor fraction
of the total ordered magnetic moment in this system [102, 104].

The ferroelectric part of the Hamiltonian has the following form:

HE =−∑
i

AE cos(6ϕi)−∑
〈i, j〉

JE cos(ϕi−ϕ j) (4.1)
Here ϕi represents direction of the bipyramid tilting on the ith unit cell, AE is the struc-
tural anisotropy coefficient, and JE is the coupling constant between the nearest neighbor
〈i, j〉. To simulate the hexagonal crystal structure of RMnO3, the Hamiltonian is defined on
a triangular lattice. The first term determines 6minima of the simulated variable: ϕn =

nπ

3

with n = 0,1, · · ·5, each corresponding to one of the 6 structural domains, as illustrated in
Fig.4.1 (d). The second term introduces ferroelectric coupling between nearest neighbors
with positive value of JE . The Metropolis Monte-Carlo algorithm is used to simulate the
system. In each iteration, a unit cell i is chosen randomly. A randomchange dϕ is proposed
to be added on ϕi, and will be accepted with probability MIN(1,exp(−β∆E)), with ∆E

being the corresponding change of the total energy and β = 1
kBT . A typical simulated lat-

tice in the ferroelectric phase is shown in Fig.4.1 (e), where different domains are painted
in different colors. The domain walls always cross at the junctions of all 6 domains, form-
ing Z6 vortices, which are direct results of the Z3×Z2 symmetry breaking. In the simulation
the vortices always appear in two low-energy cyclic sequences: α+,β−,γ+,α−,β+,γ− and
α+,γ−,β+,α−,γ+,β−, in agreement with the experimental observations [108, 109, 110].
In 3D the vortices in each xy-plane are connected, forming vortex loops [112, 111].
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The order parameter of this Z6 symmetry breaking transition is defined as:

mZ6 =
1
N


[
∑

i
cos(ϕi)

]2

+

[
∑

i
sin(ϕi)

]2


1/2

(4.2)

If the variable ϕ goes through 2π or −2π across the 6 nearest neighbors of a site i, this
site is classified as a vortex with positive or negative cyclic sequence. With this definition,
the high temperature phase consists of high density of vortices. The polarization per site
of the simulated lattice is calculated by:

P = p0 ∑
i

cos(3ϕi)/N (4.3)

Here P0 is the unit dipole moment of a unit cell. With that the Hamiltonian with external
electric field can be defined as:

HE =−∑
i

AE cos(6ϕi)−∑
〈i, j〉

JE cos(ϕi−ϕ j)

−E · p0 ∑
i

cos(3ϕi)/N
(4.4)

The ferroelectric transition with different lattice sizes is simulated under zero electric
field with JE = J, AE = 5

8 J. The Z6 order parameter mZ6 , the polarization P, the heat
capacity C and the density of Z6 vortices ρv are plotted as functions of simulated tem-
perature in Fig.4.2 (a), (b), (d) and (e), respectively. The simulation clearly showed two
transitions: TC1 ∼ 1.8 J/kB marks the temperature where the vortex density drops, and
TC2 ∼ 0.7 J/kB is associated with the onset of polarization. It is known that a 2D xy model
does not yield any 1st or 2nd order phase transition, but can give rise to the Kosterliz-
Thouless (KT) transition [113]. Previous theoretical works have shown that the 2D 6-state
clock model can go from disorder to order through either an Ising transition plus a 3-state
Potts transition or two KT transitions [114]. Numerical study on systems with similar Z6

symmetry breaking shows evidences of 2 KT transitions with a critical phase in between
[115, 116]. As shown in Fig.4.2 (a), (b), (d) and (e), the two transitions we observed exhibit
little lattice-size dependence. Finite size scaling analysis on these two transitions supports

44



(a)                (b)                 (c)

TC2

TC1

Tc             Tc1 Tc 

                 Tc1(d)                  (e)                 

Figure 4.2 – Above shows the simulation results on the ferroelectric part of the model. First, the
ferroelectric transition with different lattice sizes is simulated under zero electric field. The Z6 order
parameter mZ6 , the polarization P, the heat capacityC and the density of Z6 vortices ρv are plotted
as functions of simulated temperature in (a), (b), (d) and (e), respectively. Second, the responds of
an L = 40 lattice to the external electric field in temperature range of 0.26∼ 2.51 J/kB are demon-
strated in (c).

neither Ising transition nor Potts transition. Therefore the two ferroelectric transitions in
our model are most likely KT transitions. Shown in Fig.4.2 (c) are the simulation results of
polarization as a function of the electric field E in a temperature range of 0.26∼ 2.51 J/kB

on a L = 40 lattice. Initially the lattice was fully polarized by negative field. The external
electric field was then gradually increased. The simulated lattice reached equilibrium at
each field point. Below TC2 the system shows a clear ferroelectric hysteresis. Between
TC2 and TC1 the system shows paraelectric behaviour with a non-linear P-E curve, similar
to the superparaelectric P-E curve observed in relaxor ferroelectrics[117, 118]. Above TC1

the system becomes a normal paraelectric with linear P-E curve. The superparaelectric
behavior between TC2 and TC1 suggest that the system is in a critical phase with infinite
correlation length, which further supports that the two observed transition is KT type.
The results of the simulation on the ferroelectric variable with zero electric field demon-
strate that the Z6 symmetry breaking in our model is achieved through two KT transitions.
First the system breaks Z3 symmetry, indicated by the decrease of vortex density, then the
system breaks Z2 symmetry, leading to non-zero polarization. This two-step nature of the
ferroelectric transition in RMnO3 has been observed experimentally [119]. The lattice re-
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sponds to external electric field is in agreement with experimental results [109, 110, 120].
On top of the 6-fold clock model for ferroelectricity of the system, the 2D x-y model

for magnetic order can be added by introducing the following Hamiltonian [121]:

HS =−∑
i

AS cos(2φi)−∑
〈i, j〉

JS cos(ψi−ψ j) (4.5)

Here the variable φi represents the magnetic ordering within the ith unit cell, and the
variable ψi ≡ ϕi +φi takes the ferroelectric domain of that unit cell into account. AS rep-
resents the single-ion anisotropy for spin, and JS is the coupling constant between the
nearest neighbor 〈i, j〉. The magnetization per site in the jth structural domain is calcu-
lated by:

M j =
µ0

N j


[
∑

i
cos(φi)

]2

+

[
∑

i
sin(φi)

]2


1/2

(4.6)

with µ0 representing the magnetic moment within a unit cell, and N j being the size of
the jth domain. If fixing the ferroelectric variable ϕi = 0 across the whole lattice, the spin
part of the model is equivalent to a 2D Ising model under strong anisotropy term AS. By
averaging amoung different structural domain themagnetic order parameter of thewhole
lattice is defined as:

MS =
1
N ∑

j
N jM j (4.7)

With only one structural domain, the magnetic order parameter is Ising like with rea-
sonably large anisotropy AS. It is then interesting to study how the magnetic transition
behaves when the lattice exhibits different level of complexity in structural domain dis-
tribution. In the magnetic Hamiltonian HS the nearest neighbor coupling term utilizes
the combined order variable ψi ≡ ϕi + φi, thus the magnetic long range order will be
affected when going from one ferroelectric domain to another. Since the ferroelectric
transition temperature of RMnO3 is an order of magnitude larger than its magnetic tran-
sition temperature, the value of the parameters inHS were chosen to be AS = JS = 0.05J.
Shown in Fig.4.3 (a) are six 100×100 simulated lattices with different structural domain
distributions. The ’slow cooled’ lattice was simulated by gradually decreasing the tem-
perature from above TC1 to 0.1J/kB. The ’quenched’ lattices were simulated by abruptly
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(a) (b)

(c)

slow cooled                       polarized

quenched at 0.6 J/KB          quenched at 0.8 J/KB

quenched at 1.7 J/KB          quenched at 1.9 J/KB

α+ α-β+ β-γ+ γ-

Figure 4.3 – Shown in (a) are six 100×100 simulated lattices with different structural domain distri-
butions. The magnetic order parameters and susceptibilities of the six lattices plus a single domain
case are plotted in (b) and (c) as functions of temperature. The inset in (c) are zoomed-in plot of the
susceptibility curves of the last two quenched lattices.

changing the temperature from the labeled values to 0.1J/kB. The ’polarized’ lattice was
created by applying positive electric field on the ’slow cooled’ lattice. The simulation re-
sults of the magnetic order on these lattices plus a trivial single domain case are shown
in Fig.4.3 (b) and (c) in the form of magnetization and magnetic susceptibility. With in-
creased structural domain complexity and decreased average domain size, the magnetic
moments order with a lower transition temperature and a lower saturated magnetiza-
tion at base temperature. Previous works have shown coupling between magnetoelastic
coupling in this system using inelastic neutronscattering and ultrasonic measurements
[122, 123]. In our model, the only thing that couples the magnetism and ferroelectricity
is the ∑〈i, j〉 JS cos(ψi−ψ j) term in Eq. (3), where the first nearest neighbor coupling of
the magnetic moment is weakened if the two neighbors belong to different ferroelectric
domains. When the structural domain becomes more complex, the frequently chang-

47



ing ϕi induces disorder in the coupling constant JS, which drives the system towards the
Edwards-Andersonmodel for spin glass [124]. In fact, themagnetic susceptibility curves of
the ’quenched at 1.7 J/kB’ and ’quenched at 1.9 J/kB’ lattices shown in the inset of Fig.4.3
(c) is very similar to the no-field-cooling curve of a spin glass.
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4.3 Summary

In the Monte Carlo simulation of the hexagonal rare earth mangtite system, a 6-fold clock
model was used for the ferroelectric order and an x-y model with Heisenberg interaction
and single ion anisotropy term was used for the magnetic order. The parameters repre-
senting the interaction strength for the ferroelectric order were chosen to be much larger
than those for the magnetic order, simulating the well separated transition temperatures
in the real system. In the simulation, the only overlap between the two ferroic orders
was to use the sum of the two order variables in calculating the Heisenberg interaction
of the spins. The simulation results demonstrated that the magnetism in the system can
still be affected by an external electric field through the Z6 structural domains under such
a small coupling in the model, and that in extreme case the high vortex density can drive
the system into a spin glass state.
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Chapter 5

Neutron and X-ray study on the Fe

Vacancy Ordering in Fe-based

Superconductor KxFe2−ySe2
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5.1 Introduction

The coexistence and self-organization of multiple phases into complex morphologies pro-
vide for an electronic complexity that is at the heart of strongly correlated electron sys-
tems [56]. In the Fe-based and cuprate superconductors, superconductivity emerges by
suppressing the static antiferromagnetic (AFM) order [52] but spin and charge density fluc-
tuations persist, and are critical in the electron pairing mechanism. Coupled with these
fluctuations is a heterogeneous lattice where the spatial interplay between the spin and
charge degrees of freedom leads to nanoscale phase separation [19]. Thus the lattice
structure is a signature of the phase separation and it is key to elucidating the symmetry-
breaking ground state properties that allow superconductivity to evolve. The AxFe2−ySe2

system is a test bed for exploring the very peculiar crystal symmetries that appear be-
cause of the close proximity of superconductivity to a magnetic insulating state, leading
to a multiphase complex lattice whose precise nature has not been resolved, in spite of
many studies. This has been in part due to inconsistent sample chemistry and an intricate
vacancy ordering scheme that led to many different proposed crystal phases.

Figure 5.1 – Crystal structures of KxFe2−ySe2 in its I4/mmm and I4/m phases.

The AxFe2−ySe2 (A = K, Rb, Cs) iron selenide superconductor class has been intensely
studied [125] in part due to the Fe-vacancy order and of its role in phase separation that
may lead to SC and NSC regions [57, 58, 59, 60, 126]. With vacancies at both the A and
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Fe sites, a well-known structural transition occurs when the Fe vacancies order at TS ∼

580 K[57]. Above TS in the high temperature tetragonal phase with the I4/mmm space
group, the vacancies are randomly distributed at both the Fe and A sites. Upon cooling
below TS, a superlattice structure appears due to Fe vacancy order. Several scenarios have
been proposed regarding the nature of the microstructure below TS. In one, the lattice
is phase separated into a minority I4/mmm phase which is compressed in-plane and ex-
tended out-of-plane in comparison to the high temperature centrosymmetric phase and
has no Fe vacancies, and amajority phasewith the Fe vacancies ordered in different super-
lattice patterns [127, 128, 129, 130]. The most commonly reported superlattice structure
with Fe vacancy order is the √5×

√
5× 1 with space group I4/m [57, 126, 131, 132]. The

crystal structures of the KxFe2−ySe2 in its I4/mmm and I4/m phases are plotted in Fig. 5.1.
More recently, other superlattice patterns have been reported in the literature such as
the 2×2×1 [126, 133], the 1×2×1 [58, 126, 133, 134] and the√8×

√
10×1 [59].

The distinction among the different superlattice patterns arises from the underlying
order of the Fe and alkali metal sublattices. As illustrated in Fig. 5.1, in the superstructure
with space group I4/m, the Fe site symmetry is broken from thehigh temperature I4/mmm

space group, giving rise to two crystallographic sites. Preferred site occupancy leads to the
√

5×
√

5 supercell, in which one site is empty (or sparsely occupied) while the other is
almost full. Magnetic ordering is characteristic of this phase. Below TN ∼ 560 K, AFM
ordering arises in the I4/m phase and persists well below Tc[57]. The AFMmagnetic state
[57, 58, 131] is robust unlike what has been reported in other Fe-based superconductors,
and its coexistence with the superconducting state has raised concerns about the validity
of the s+/- coupling mechanism coupled with the absence of hole pockets at the Fermi
surface and the lack of nesting in this system[135]. More recently, evidence of alkali site
vacancy order has beenpresented aswell with a√2×

√
2 superlattice structurewithin the

I4/mmm phase in KxFe2−ySe2[127] and CsxFe2−ySe2[136, 137, 138]. The centrosymmetry
of the I4/mmm is broken due to the alkali metal order. The I4/mmm phase with no Fe
vacancy has largely been attributed to be the host of superconductivity in part because of
the absence of magnetism and vacancies.

It is understood at present that by post-annealing and quenching, superconductivity
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can be controlled in this system [139, 140] even though the actual mechanism remains
unknown. Magnetic refinement fromneutron powder diffractionmeasurements revealed
thatmagnetic order does not exclude the presence of a SC phase[141]. Moreover, a smaller
magnetic moment was refined in NSC crystals indicating no correlation of the absence
of magnetism and superconductivity. To identify which crystal phases are present, high-
energy X-ray scattering measurements were performed on two kinds of KxFe2−ySe2 sin-
gle crystals, one annealed and SC, and the other as-grown and NSC. In combination with
Monte Carlo simulations, it is shown that superconductivity in the annealed and quenched
crystal is most likely present in regions where the√5×

√
5×1 Fe vacancy ordered I4/m

phase borders the I4/mmm domains with no Fe vacancies. The in-between region con-
sists of an non-magnetic Fe vacancy disorder phase. Thus superconductivity in this system
appears at the crossover of the vacancy order-disorder transition. Quenching increases
the boundary walls around the I4/m domains, leading to an increase of the percolation
paths and an enhancement of superconductivity.
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5.2 Experimental results

Single crystals of KxFe2−ySe2 were grown using the self-flux method. The first step of the
synthesis involved the preparation of high-purity FeSe by solid state reaction. Stoichio-
metric quantities of iron pieces (Alfa Aesar; 99.99%) and selenium powder (Alfa Aesar;
99.999%) were sealed in an evacuated quartz tube, and heated to 1075 ◦C for 30 hours,
then annealed at 400 ◦C for 50 hours, and finally quenched in liquid nitrogen. In the
second step, a potassium grain and FeSe powder with a nominal composition of K:FeSe
= 0.8:2 were placed in an alumina crucible and double-sealed in a quartz tube backfilled
with ultrahigh-purity argon gas. All samples were heated at 1030 ◦C for 2 hours, cooled
down to 750 ◦C at a rate of 6 ◦/hr, and then cooled to room temperature by switching off
the furnace. High quality single crystals were mechanically cleaved from the solid chunks.
In the final step, the annealed crystals were additionally thermally treated at 350 ◦C un-
der argon gas for 2 hours, followed by quenching in liquid nitrogen. The crystals that were
not heat-treated were labeled as-grown. The magnetic susceptibility and transport were
measured from 2 to 300 K and the as-grown crystal is NSC while the annealed crystal is
SC. Back-scattered scanning electron microscopy (SEM) measurements were carried out
at room temperature on the two samples[141]. The characterization of these crystals was
previously reported in Ref.[141]. The SEM measurements showed that the surface mor-
phology of the as-grown crystal has two kinds of regions: rectangular islands with a bright
color and a background with a dark color. On the other hand, instead of island-like do-
mains, very small bright dots were observed on the surface of the annealed crystal. Spe-
cific heat measurements performed on the SC crystals showed no transition at Tc ∼ 29 K,
as seen in Figs. 5.2 (e) and (f), indicating that it does not exhibit bulk superconductiv-
ity. The single crystal diffraction measurements were carried out at the Advanced Photon
Source of ArgonneNational Laboratory, at the 11-ID-C beam line. In-plane andout-of-plane
measurements were carried out on both types of crystals at room temperature.

The X-ray diffraction from the hk0 scattering plane shows evidence of coexistence of
multiple phases, consistent with earlier measurements. Shown in Figs. 5.2(a) and 1(b) are
the patterns corresponding to the as-grown and quenched crystals, respectively. Several
features are observed in both samples that arise from the presence of the two configura-
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(1/ 1/ 0)I4/mmm (1/ 1/ 0)I4/mmm

Figure 5.2 – The diffraction patterns from the hk0 plane from (a) as-grown and (b) quenched crystals.
In (c) and (d) are the plots along the 00l direction in the as-grown and quenched crystal, respectively.
The hk0 patterns consist of two configurations of the I4/mphase highlighted by the two inner dashed
boxes, and the I4/mmmphasewith a

√
2×
√

2 superlattice structure highlighted by the outer dashed
box. Subplot (e) shows the specific heat measurement of the SC sample at zero magnetic field (0 T).
(f) is the difference of the SC sample’s specific heat data at 0 T and 1 T in the vicinity of Tc ∼ 29 K.

tions of√5×
√

5×1 superlattice structurewith the I4/m symmetry [127, 132] indicated by
the two inner dashed boxes as well as the I4/mmm phase indicated by the outer dashed
box. The arrow points to a superlattice peak indexed to ( 1

2
1
2 0). The lattice constant cal-

culated from this peak position matches that of the I4/mmm phase with a√2×
√

2 A-site
vacancy order. The scattering patterns along the l-direction are shown in Figs. 5.2(c) and
(d) for the as-grown and quenched crystals, respectively. Bragg peaks from I4/mmm ap-
pear at the lower Q side of the I4/m peaks. Neither l=2n+1 superlattice peaks nor diffuse
scattering are observed along the (00l) direction, leaving the out-of-plane stacking of the
√

2×
√

2 K-vacancy order unclear. Due to sample rotation during measurement, weak
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observed

calculated (110)I4/m in
SC sample

(b)

(c)

superlattice
(110)I4/m

superlattice
(200)I4/m(1/ 1/ 0)I4/mmm

(420) in
I4/m

(200) in
I4/mmm

(a)

Figure 5.3 – (a) A comparison betweenBragg peaks from I4/mand I4/mmmphases. (b) The observed
superlattice peak (110) in SC crystal is compared with the calculated intensity based on an ideal I4/m
structure. (c) The powder integral of the hk0 scattering plane in the vicinity of the superlattice peak
( 1

2
1
2 0).

reflections are observed at the lower Q and higher Q sides of the (006) and (006̄) Bragg
peaks, and can be indexed to the (204) and (206) Bragg peaks, respectively.

In both crystals, the diffraction pattern is dominated by a majority phase with the
I4/m space group with Fe vacancies and aminority phase consisting of the high symmetry
I4/mmm space group with no vacancies at the Fe site and a weak√2×

√
2 vacancy order

at the K site. Shown in Fig. 5.3(a) are the (200) Bragg peak from the I4/mmm minority
phase and the (420) Bragg peak from the I4/mmajority phase in the hk0 plane. They are
well-resolved given that the two phases have different lattice constants (a/√5∼3.90 Å in
I4/m, a∼3.84 Å in I4/mmm), often difficult to see in powders. Shown in Fig. 5.3(c) are the
powder integrated diffraction patterns obtained from the annealed and as-grown crystals
in the vicinity of the ( 1

2
1
2 0) superlattice peak. Even though this peak is observed in both

diffraction patterns, it is significantly stronger and clearly above the background level in
the as-grown crystal at Q∼ 1.16 Å−1 but barely visible in the annealed sample. The ( 1

2
1
2
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Table 5.1 – Refined structure parameters for the I4/m phase that includes both the Fe-vacancy
disordered and Fe-vacancy ordered phases. Atomic position: K1, 2a (0,0,0); K2, 8h (x,y,0); Fe1,
4d (0, 1

2 ,
1
4 ); Fe2, 16i (x,y,0.2515); Se1, 4e ( 1

2 ,
1
2 ,0.1351); Se2, 16i (x,y,0.1462). Out-of-plane coor-

dinates are not refined, values are from ref[57]. If not listed, the site occupancy (Occ.) is 1.

SC NSC
a(Å) 8.7261(7) 8.7243(5)
c(Å) 14.108(4) 14.104(4)K1 Occ. 0.75(7) 0.73(7)Uiso 0.046(7) 0.050(6)K2 x 0.376(4) 0.377(2)

y 0.196(2) 0.211(2)Occ. 0.73(7) 0.76(6)Uiso 0.046(7) 0.050(6)Fe1 Occ. -0.04(2) -0.06(2)Uiso 0.016(3) 0.023(2)Fe2 x 0.1990(4) 0.1979(3)
y 0.0898(5) 0.0876(5)Occ. 0.90(2) 1.02(1)Uiso 0.016(3) 0.023(2)Se1 Uiso 0.010(2) 0.018(1)Se2 x 0.1070(4) 0.1083(3)
y 0.3012(3) 0.3028(2)Uiso 0.010(2) 0.018(1)

wR 6.7% 5.0%volume frac. 73(1)% 66.5(6)%

0) peak is not as intense as the other superlattice features which suggests that the K-site
vacancy is partially ordered in the I4/mmm phase. The K-site vacancy order can break
the symmetry of the centrosymmetric I4/mmm to P4/mmm or to an even lower symme-
try depending on its out-of-plane stacking pattern. However, our out-of-plane diffraction
data did not provide enough information to further confirm the new symmetry. Single
crystal refinement was performed on the hk0 plane data, and the results are summarized
in Tables 5.1 and 5.2, where space group P4/mmm was used to refine the ( 1

2
1
2 0) super-

lattice peak of the minority phase. How the K vacancy order affects superconductivity is
still an open question. The refinement yielded a volume fraction for the I4/mmm phase
of 27(1)% in the annealed sample and about 33.5(6)% in the as-grown. At the same time,
the refinement indicates that the I4/m phase is not fully ordered with the √5×

√
5× 1

Fe vacancy ordered supercell (detailed discussion can be found in Appendix). Shown in
Fig. 5.3(b) is a comparison of the integrated intensity of the (110)I4/m superlattice peak
to the calculated intensity assuming a fully ordered Fe-vacancy. The experimental inten-
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Table 5.2 – Refined structure parameters for the P4/mmm Fe-vacancy free phase. Atomic posi-
tion: K1, 1a (0,0,0); K2, 2e ( 1

2 ,0,
1
2 ); K3, 1c ( 1

2 ,
1
2 ,0); Fe1, 8r (x,x,0.25); Se1, 2g (0,0,0.1456); Se2,

2h ( 1
2 ,

1
2 ,0.1456); Se3, 4i (0, 1

2 ,0.3544). Out-of-plane coordinates are not refined, values are from
ref[57]. If not listed, the site occupancy (Occ.) is 1.

SC NSC
a(Å) 5.437(1) 5.433(1)
c(Å) 14.230(7) 14.237(2)K1, K2 Uiso 0.03(1) 0.068(4)K3 Occ. 0.47(5) 0.52(1)Uiso 0.03(1) 0.068(4)Fe1 x 0.249(1) 0.244(1)Uiso 0.039(5) 0.023(1)Se1, Se2, Se3 Uiso 0.023(3) 0.029(1)

wR 6.1% 1.4%volume frac. 27(1)% 33.5(6)%

sity is reduced which shows that even within the I4/m majority phase, the Fe vacancies
are not fully ordered. Two different Fe vacancy schemes are present within the I4/m su-
perstructure, one with fully ordered Fe vacancies and AFM order and one with partially
ordered (or disordered) vacancies and non-magnetic. Focusing on the disordered Fe sub-
lattice it is indistinguishable from the ordered Fe sublattice because their lattice constants
are unresolved in the experimental data. The I4/m phase evolves continuously from the
high temperature I4/mmm as shown by Ricci et al in Ref.[127]. The I4/mmm was used to
represent the Fe disordered sublattice. High pressure experiments are planned next to
distinguish the Fe ordered from the Fe disordered sub lattice.
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5.3 Summary

The Fe-based superconductor KxFe2−ySe2 is known to phase separate into a Fe-vacancy
ordered antiferromagnetic phase and a Fe-vacancy free non-magnetic phase. As-grown
sample showed island-like domains of vacancy ordered phase under scanning electron
microscopy. Anneal and quench the sample after it was prepared can improve the
sample homogeneity as well as increase the superconducting shielding fraction from
below 5% to around 75 %. Below superconducting temperature, the quenched sample
still showed large magnetic moment, suggesting that the vacancy ordered phase is not
the superconducting phase. By single crystal refinement, volume fraction of the vacancy
free phase were obtained for both quenched and as-grown sample. The superconduct-
ing quenched sample had less vacancy free phase volume fraction comparing to the
non-superconducting as-grown sample, indicating that the vacancy free phase is not
superconducting either. The occupation number of the Fe2 site from the refinement
implied that the thermal treatment of post-annealing and quenching induced vacancy
disorder in the sample, which could be related to superconductivity.
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Chapter 6

Monte Carlo Simulation on the Fe

Vacancy Ordering in Fe-based

Superconductor KxFe2−ySe2
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6.1 Introduction

It is known that the superconducting shielding fraction of KxFe2−ySe2 can be enhanced
by annealing the sample above TS followed by quenching [139, 140]. Scanning electron
microscopy (SEM) studies showed that the post annealing and quenching process can af-
fect the spatial domain distribution [141]. Before thermal treatment, the as grown sam-
ple shows islands of vacancy free I4/mmm domains surrounded by I4/m domains on
the cleaved surface. After quenching, the surface loses the island pattern and becomes
more homogeneous. A scanning photoelectron microscopy (SPEM) study demonstrated
the existence of a filamentary network of the superconducting phase in the quenched
sample [142]. The superconducting phase has been assumed to be the Fe vacancy free
I4/mmm phase partly due to the connection between the enhancement of the super-
conducting shielding fraction under thermal treatment and the Fe vacancy free I4/mmm

phase change from islands to a more homogeneous distribution under the same thermal
process. However, by simulating the post annealing and quenching process on a quasi-2D
Fe-sublattice using the Metropolis Monte Carlo algorithm with an Ising-like Hamiltonian,
we found that a third phase stands out as a result of freezing the high temperature va-
cancy disordered I4/mmm phase during quenching, serving as a candidate for the super-
conducting phase.
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6.2 Monte Carlo Simulation

1 0 2

vacancy free 
I4/mmm

I4/m conöguraton I

I4/m conöguration II

disordered I4/mmm

1
2

3

4

5

4
5

(a)

(b)

Figure 6.1 – Shown in (a) is a schematic ab-plane of the simulated lattice, demonstrating four types
of domain: the vacancy free I4/mmm phase (yellow), two configuration of the

√
5×
√

5×1 vacancy
order phase (light blue, green), and the disordered I4/mmm phase (dark blue). The black (red) dots
represent Fe atom (vacancy). The nth intra-plane nearest neighbor coupling constants Jab

n is illus-
trated here up to n = 5. Subplot (b) shows the nth inter-plane nearest neighbor coupling constants
Jc

n from n = 0 to 2.

The Monte Carlo simulation used in this work is defined on the Fe sublattice only, and
is based on the Metropolis algorithm. The Hamiltonian is constructed using an Ising-like
general form ofH = ∑

Nab
n=1 ∑〈i, j〉ab

n
Jab

n σiσ j +∑
Nc
n=0 ∑〈i, j〉cn Jc

nσiσ j. The Ising variable σi =±1

represents the occupancy of the site i, with +1 for an Fe ion and -1 for a vacancy. The
coupling constants Jab,c

n are defined over the nth nearest neighbor pair 〈i, j〉ab,c
n in the ab-

plane or between adjacent layers along c, respectively, as shown in Fig. 6.1. Since both
the high symmetry I4/mmm phase and the vacancy ordered √5×

√
5× 1 phase have a

quasi-2D nature, the Hamiltonian will have strong intra-plane coupling and weak inter-
plane coupling, which is achieved by the difference in the magnitude and total number of
coupling constants defined for the intra- and inter-plane. The Monte Carlo step is chosen
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to site swap to conserve the total vacancy number, since the vacancy to Fe ion ratio in the
sample is not changing during the thermal treatment. For each Monte Carlo step, a pair
of i and j sites is randomly chosen, and is swapped with a probability of MIN(1,e−∆E/T ),
where ∆E represents the energy change caused by the swap, andMIN() returns themin-
imum value of the input. The simulation runs on a simple tetragonal lattice with periodic
boundary condition, where each ab-plane is a square lattice, simulating the Fe-sublattice
in ab-plane of AxFe2−ySe2. Since this is a simple simulation model focusing on the Fe va-
cancy pattern, other factors such as thermal vibrations, site distortions and differences in
lattice constants between the phases are not considered.

To get the√5×
√

5 vacancy order, the intra-plane coupling Jab
n must be defined at least

up to Nab = 5 with Jab
1 , Jab

2 , Jab
3 > 0 and Jab

4 , Jab
5 < 0. A perfect√5×

√
5×1 pattern has

20% of vacancies, thus if the vacancy ratio is lower than 20%, part of the simulated lat-
tice will have no vacancy, representing the vacancy free I4/mmm phase. The ground state
of such lattice will consist of one I4/m domain and one vacancy free I4/mmm domain
with a domain distribution that minimizes the length of the domain wall. At a finite tem-
perature below TS, the two configurations of the I4/m phase should appear with equal
probability, since the coupling constants Jab

4 and Jab
5 do not distinguish between them.

When T>TS, the vacancies should be randomly distributed. If a vacancy is found in an
incomplete √5×

√
5× 1 environment, this site as well as its nearest neighbors will be

assigned to a disordered I4/mmm phase. Four types of domains can be defined on the
simulated lattice, as illustrated in a schematic plot Fig. 6.1(a).

The inter-plane coupling constants can affect the transition temperature, but do not
contribute to the vacancy order or domain distribution. In this work the simulation is
carried out on a 200× 200× 5 lattice with 15% vacancies, and the coupling constants in
the Hamiltonian are defined up to the 5th intra-plane nearest neighbor and the 1st inter-
plane nearest neighbor with the following values: Jc

0 =−3.0, Jab
1 = 10.0, Jab

2 = 8.0, Jab
3 =

8.0ï¼Œ Jab
4 =−6.5, Jab

5 =−6.5.
Fig. 6.2(a) is a plot of the total energy as a function of the simulation temperature,

in which a typical Ising-like phase transition is observed at T∼ 35. Fig. 6.2(b) shows the
change of volume fractions of each phase in the same temperature range. It is clear that
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(b)

(c)        (d)       (e)

(f)        (g)       (h)

Figure 6.2 – In (a) the total energy of the simulated lattice is plotted as a function of temperature. In
(b) the volume ratio of each phase is plotted as a function of temperature. (c)-(e) show Fe vacancies
(black dots) on a 100× 100× 1 region of the simulated lattice at temperature T1 = 11, T2 = 31,
T3 = 41, respectively, as indicated by the dashed lines in (a). (f)-(h) show the same region but with
each phase painted using the color shown in figure 1 (a).
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(a)         (e)

(b)         (f)

(c)          (g)

(d)         (h)

Figure 6.3 – Shown above are population of domain size as well as domain distribution in ab-plane
from four simulated lattices: (a) and (e) are as grown sample, (b) and (f) are quenched at T=35, (c)
and (g) at T=40, (d) and (h) at T=45. Note: the x axis in (a)-(d) is the ratio of the volume size over the
total lattice volume.
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the Ising-like transition simulated by the Hamiltonian is a transition from a vacancy disor-
dered phase to a√5×

√
5×1 vacancy ordered phase. This indicates that the constructed

Hamiltonian and the choice of coupling constants are suitable to modeling the structural
phase transition from the high temperature I4/mmm phase to the vacancy ordered I4/m

phase in the AxFe2−ySe2 system.
The vacancy and domain distributions of the simulated lattice at three typical sim-

ulated temperature points T1 = 11, T2 = 31, T3 = 41 are shown in Figs. 6.2(c)-(h). At
low temperature, both the vacancy free I4/mmm phase and the two configurations of the
I4/m phase grow into big domains, while the disordered I4/mmm is mainly located on the
domain walls. When the lattice warms up towards the transition, vacancies start to lose
the√5×

√
5×1 pattern, and the disordered I4/mmm phase emerges in the big domains.

Above the transition temperature, the simulated lattice is dominated by the disordered
I4/mmm phase, and the other phases form small islands that scatter over the lattice.

To simulate the effects of annealing and quenching, a simulated lattice which has equi-
librated at low temperatures (as grown) is brought to high temperatures (higher than TS).
Once the lattice reaches the high temperature equilibrium, the temperature is set back to
base temperature directly. After the thermal treatment, the size of each domain is calcu-
lated, and the population of each type of domain over 100 simulated lattices is analyzed.
Fig. 6.3 shows the domain size population ((a)-(d)) and domain distribution ((e)-(h)) for the
as grown lattice and for a lattice quenched at T=35, 40, 45. The domain distribution of the
quenched lattices show a significant increase of disordered I4/mmm phase. The domain
size population plots clearly show that the population of the disordered I4/mmm domains
become larger as the quenching is carried out at higher simulated temperatures. When
the lattice is quenched at T=45, the disordered I4/mmm domain with a size over 40%
of the whole lattice dominates. This indicates that the high temperature phase freezes
during the quenching process at a high annealing temperature (i.e. T=45), leaving the
disordered I4/mmm phase spreading over the lattice.
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6.3 Summary

The SC crystal has less of the I4/mmm phase with no Fe vacancies than the NSC crystal.
Furthermore, the simulation results indicate that the SC crystal tends to form more do-
main boundarieswith the Fe-vacancy disorderedphase sandwichedbetween the I4/mmm

vacancy free and the I4/m vacancy ordered phases as seen in Fig 6.3(d), and very possi-
bly leads to superconductivity in a filamentary form, in agreement with a reported SPEM
study [142]. Theory work based on DFT calculation from T. Berlijn et al. also suggested
that randomly distributed Fe vacancies can lead to effective doping, and can preserve the
band structure from being destroyed as in the Fe vacancy ordered I4/m phase [143]. The
enhancement of superconductivity as well as the filamentary nature of the superconduc-
tivity in this compound is attributed to the increase of domain walls by annealing and
quenching.
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Chapter 7

Discussion
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7.1 Discussion on the multiferroic RMnO3

Multiferroic materials have drawn the attention of the condensed matter community
in the past few decades for the potentials of finding electric field controlled spintron-
ics or magnetic field controlled electronics. Unfortunately, having ferroelectricity and
(anti)ferromagnetism in a single phase of amaterial does not spontaneously lead to strong
coupling between the two orders. One possibility of strong magnetoelectric coupling is
in type-II multiferroics where magnetism is the cause of ferroelectricity. The downsides
are the low transition temperature and the relatively small magnetic moment and elec-
tric polarization. Recently, magnetic order induced dielectric constant anomaly was ob-
served in type-I multiferroics with frustrated magnetic structures such as the hexagonal
rare earth manganites. These materials have ferroelectric transition at 500 K ∼ 1000 K

and (anti)ferromagnetic transition around 50 K ∼ 100 K with reasonable magnetic mo-
ment and electric polarization. Although very weak, the observed coupling between the
ferroic orders is a promising sign of potential magnetic field controlled electronics. Mean-
while, it is also interesting to investigate the possible electric field effects on the magnetic
order in multiferroics with frustrated magnetism.

Neutron scattering and Monte Carlo simulation results on the electric field induced
magnetic ordering enhancement in the hexagonal rare earth manganites RMnO3 (R = Y,
Lu, Sc,· · · ) were discussed in chapter 3 and 4 [90]. As a typical type-I multiferroic mate-
rial, the hexagonal RMnO3 has different mechanisms for the ferroelectricity and antifer-
romagnetism. The ferroelectric transition at TC ∼ 900 K is due to the tilting of the MnO5

bipyramid towards one of the three rare earth atoms in the unit cell. This process, also
known as trimerization [77], breaks the lattice symmetry from P63/mmc to P63cm and cre-
ates 6 ferroelectric domains. At around 90 K, the spins of the Mn atoms order in a 120◦
arrangement. Apart from the reported dielectric anomaly atmagnetic transition tempera-
ture [106], our single crystal neutron scattering experiments on LuMnO3 demonstrated an
increase of the magnetic Bragg peak intensity near the magnetic transition temperature.
The enhancement was observed only when applying electric field along one direction of
a fresh sample, and reversing the field did not show an opposite effect. From second har-
monic generation results it was shown that the ferroelectric domain walls also serve as
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antiferromagnetic domain walls [20]. It was therefore a natural inference to attribute the
observed magnetic ordering enhancement as a result of domain wall motion under elec-
tric field. A Monte Carlo simulation was performed to confirm the proposed explanation.
For the ferroelectric order, a 6-state clock model was used to capture the nature of the
6 ferroelectric domains. For the magnetic order, a 2D x-y model with a 2-fold anisotropy
was used. By adding the ferroelectric order variable to the magnetic one in calculating
nearest neighbor interactions, the coupling through domain walls was simulated. The re-
sults of the simulation indicate that the magnetic transition temperature is a function of
the ferroelectric domain distribution. The simulated samples with more ferroelectric do-
mains have lower transition temperatures, and in the extreme case the system starts to
show spin glass/liquid behaviour.

In hexagonal RMnO3, the magnetic and electric orders are not competing with each
other. It is the long range magnetic order and the structural defects at the ferroelectric
domain walls that are competing. The Heisenberg and the Dzyaloshinskii–Moriya interac-
tions of the system will be interrupted while going from one ferroelectric domain to the
adjacent one, causing the high density of ferroelectric domain walls to delay themagnetic
transition to lower temperature. External electric field therefore has a secondary effect
on the magnetic ordering through changing the domain topology.
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7.2 Discussion on the Fe-based Superconductor KxFe2−ySe2

The pursuing for room temperature superconductivity has always been a major focus
among the condensed matter society. So far the highest critical temperature reported
under ambient pressure is 133 K in the Hg-Ba-Ca-Cu-O cuprate superconductor [144]. In
cuprates, superconductivity competes with the long range antiferromagnetic order, and
the spin fluctuation when the antiferromagnetic order disappears is believed to be re-
lated to Cooper pairing. The microscopic pairing mechanism for cuprates still remains
controversial, and the anticorrelation between the charge-density-wave peddles and the
quench disorder seems to play a role [19]. The first Fe-based superconductor was discov-
ered in 2008, and has developed into a whole family of Fe pnictides and chalcogenides
with Tc ∼ 10 K to 50 K [43, 51]. Having superconductivity in a system consisting of iron,
a strong magnetic element, is already counterintuitive. And with new features such as
nearly cylindrical electron and hold pockets, nematicities in electron structures, and va-
cancy orderings, Fe-based superconductors have quickly become the key topic in the com-
munity.

The Fe vacancy ordering in the Fe-based Superconductor KxFe2−ySe2 was discussed
both experimentally [55, 91] and computationally [91, 92] in chapter 5 and 6, respectively.
KxFe2−ySe2 has a complex phase diagram due to the vacancy on both the K site and the
Fe site. The absence of hole pockets at Fermi level shown by ARPES measurements dis-
tinguishes it from the iron pnictide family, and ruled out the possibility of having Fermi
surface nesting model and s±-wave gap symmetry [54]. Superconductivity in this system
is reported to be associated with a region on the phase diagram where the system phase
separates into a√5×

√
5 Fe-vacancy ordered phase and a Fe-vacancy free phase [127]. A

checkerboard antiferromagnetic order was observed in the Fe-vacancy ordered phase in
the superconducting state, indicating that the superconductivity does not arise from this
phase [51]. By comparing the neutron and x-ray diffraction patterns of a superconducting
and a non-superconducting samples, the volume ratios of the Fe-vacancy free and Fe-
vacancy ordered phases were extracted. The quenched and superconducting sample did
not show large volume fraction of the Fe-vacancy free phase. On the contrary, it showed
less of the Fe-vacancy free phase compared to the as-grown and non-superconducting
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sample. The refinement on the crystal structures of the two phases in each sample im-
plied a significant amount of randomly distributed Fe-vacancy in the quenched sample.
A Monte Carlo model on the Fe sublattice was constructed to simulate the Fe vacancy
distribution under different thermal treatment: quenched and as-grown. The Fe-vacancy
disorder state increased significantly at the domain boundaries under simulated quench-
ing, resulting in a filamentary network of disordered Fe-vacancy. With supporting results
from other groups [19, 143], the superconductivity in KxFe2−ySe2 system is attributed to
this Fe-vacancy disorder phase at the domain boundaries.

In this system, the competing orders are superconductivity and the Fe-vacancy order.
In the Fe-vacancy free phase, band structure calculations at the Fermi level show clear
electron pockets at the zone corners and hole pockets at the zone center. When the Fe
vacancies fully order in the √5×

√
5 pattern, a strong Fermi surface reconstruction is

expected due to the strong scattering against the Fe vacancies, resulting in antiferromag-
netism and suppression of superconductivity. With randomly distributed vacancies, ab
initio calculation with configuration average shows a dispersive band structure very simi-
lar to the one from the Fe-vacancy free phase, but with an effective doping which raises
the Fermi level above the hole pockets and can even create electron pockets at the zone
center [143]. The calculated Fermi surface of the Fe-vacancy disordered phase agrees
very well with ARPES results in this systems [54, 135], indicating that the disordered Fe
vacancies are the main contributor to the Fermi surfaces observed experimentally. With
post-annealing and quenching, the inhomogeneity of the domain topology is reduced, the
Fe-vacancy ordering is suppressed, and the resulting increase of the randomly distributed
vacancies can cause effective doping and lead to superconductivity.
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Chapter 8

Conclusion

Neutron and x-ray scattering are very import techniques in determining the static and
dynamic details of crystal structures. When performed on single crystal sample, the extra
information such as peak profile, diffuse scattering, and volume ratio of twin structures
can be used to reconstruct the bulk domain topology to some extent, which is beyond
the reach of surface probes such as scanning/tunneling electron microscopy and second
harmonic generation. Together withMonte Carlo simulations, the domain topology of the
sample can be studied.

The domain topology in a strongly correlatedmaterial with competing orders can be re-
lated to novel properties such as coupling between multiferroic orders and superconduc-
tivity. In hexagonal multiferroic RMnO3, both magnetic and electric orders are related to
the lattice distrotion called trimerization, leading to an electric field effect on themagnetic
ordering through domain walls between different trimerization center. In Fe-based super-
conductor KxFe2−ySe2, superconductivity occurs at the proximity of a√5×

√
5 Fe-vacancy

ordered phase and an Fe-vacancy free phase. Changing the domain topology through
post-annealing and quenching induces randomness to the Fe-vacancy order, leading to
superconductivity. In many systems with strong electron-electron correlations, samples
with complex spatial domain distributions are common. A interplay between the compet-
ing order parameters can be embedded in the domain topology. It is therefore necessary
to studywhat kind of effects the domain topologymay have. When different order param-
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eters are competing with each other, domains that are associated with one of the orders
may be tuned through temperature or external field, allowing an effective control on the
other order.

Apart frommultiferroics and Fe-based high-Tc superconductors, there are many other
strongly correlated systems with competing orders. Examples include long-range antifer-
romagnetic order competing with superconductivity in the cuprate superconductors and
superconductor-(anti)ferromagnet heterostructures, competing ferromagnetic and anti-
ferromagnetic orders in the spin glass/liquid systems, and competing topological trivial
and non-trivial orders in the topological insulators. Researches on the sample morphol-
ogy of cuprate superconductors already revealed percolation paths of superconducting
region in a filamentary network [19]. Studying the domain topology is a way of examining
the spin and charge fluctuation and the proximity effect. It would be interesting to try and
generalize the study on domain topology in the fields mentioned above.
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Appendix

The X-ray diffraction data from 11-ID-C, Advanced Photon Source of Argonne National Lab-
oratorywere collected in the formof intensity per pixel on the area detector during sample
rotation. To obtain the structure factor from the data for single crystal Rietveld refine-
ment, three important scale factors have to be removed from the data.

The first scale factor comes from the polarization of the X-ray beam. The electric field
component parallel to the scatteredwave vector cannot travel to the detector as radiation.
Thus for X-rays polarized parallel to the scattering plane (the plane defined by the incident
and scattered wave vectors), the intensity radiated to the detector is reduced by a factor
of cos2(2θ) comparing to X-ray polarized perpendicular to the scattering plane. 11-ID-C
uses unpolarized beam, so the scale factor becomes (1+ cos2(2θ))/2. Here 2θ is the
scattering angle in Bragg’s law.

The second scale factor, sin−1(2θ), comes from the Jacobian of changing from an an-
gular basis in real space to the reciprocal lattice basis. Derivation can be found in X-Ray
Diffraction by B. E. Warren. [145]

The third one depends on the angle between ~Ghkl and the sample rotation axis, i.e.
φhkl . When the sample rotates by dα , ~Ghkl rotates by sin(φhkl)dα accordingly. This leads
to a scale factor of 1/sin(φhkl) in the collected diffraction pattern. Removing it requires
finding the rotation axis. This is achieved by taking the ratio between integrated intensity
of same hkl reflections from the two configurations of I4/m phase. The structure factor
cancels out, and the intensity ratio is proportional to the ratio of the scale factor and
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volume fraction of the two configurations, as shown in the following equation.
Ihkl,1

Ihkl,2
∝

V1

V2
·

sin(φ0 +ϕhkl,2)

sin(φ0 +ϕhkl,1)
(8.1)

Here the subscript 1 and 2 represent the two configurations. φ0 defines the direction of
the rotation axis. By tuning the angle φ0, the best fitting on the reflections in HK0 plane is
reached at φ0 =−2.1◦ with Rsq = 0.97.

The structure factor of reflections in the hk0 plane were obtained by integrating the
peak intensities, removing the above scale factors then taking the square root. The two
configurations of I4/m were combined into one I4/m phase. Single crystal refinement
results based on these structure factors are listed in Table 5.1 and 5.2. In the non-
superconducting sample, the Fe site occupancies are close to a perfect√5×

√
5 vacancy

order. On the other hand in the superconducting sample, the Fe2 site has an occupancy
of 0.90(2), while the Fe1 site is almost empty. The partially occupied Fe2 site indicates
partial order of the Fe vacancy. The correlation between occupancy and thermal factor is
particularly strong when the site is almost empty. Therefore the refinement result of Fe2
occupancy is more reliable than the Fe1 occupancy. It is difficult to quantify the degree
of partial order in the superconducting sample, but the difference in Fe2 occupation
number clearly demonstrates that the annealed and quenched superconducting sample
has vacancy disorder in the I4/m phase whereas the as-grown non-superconducting
sample does not.
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