

Using React-Awesome-Query-Builder for Marketing Campaigns

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Benjamin Ainley

Spring, 2023

Technical Project Team Members

Akhil Chinnakotla

Shafali Gupta

Bruce Nguyen

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

1

Abstract

The process for filtering out groups of

customers to target during a marketing

campaign can be tedious work. During my

internship at Capital One, my team developed

an app to be used by business professionals

which would allow for the creation of rulesets

that outline desired specifications of

customers to be targeted. This app was

developed using ReactJS for the frontend.

Rulesets are created using the React-

Awesome-Query-Builder library and stored

in JSONLogic format. We leveraged AWS

Lambda as a serverless backend, allowing us

to minimize the cost of computing and for

automatic scalability. This rules builder

application is not yet ready for production,

however. Features that would improve ease

of use need to be added, including better

search functionality through the use of tags.

On a larger scale, the application needs user

privileges, allowing for different levels of

authorization.

1. Introduction

 Currently there is no app for business

professionals with a streamlined user

interface for creating rulesets and processing

customer data. A lot of what is done in the

line of business I was in at Capital One is

done through command line tools, or two

separate applications. This rule building app

we worked on aims to change that by giving

marketers a single interface to work with.

Since business rulesets are stored in

JSONLogic format, marketers without

technical experience may have difficulty

understanding and creating these rulesets.

Because of this, our app displays rulesets in

natural language for easier understanding.

2. Review of Research

 Both React-Awesome-Query-Builder

and JSONLogic are relatively new so there is

very little research on those topics.

Robinson (2020) discussed the benefits and

downsides of using a serverless backend such

as AWS Lambda. We considered these issues

when developing our app and decided the

pros outweighed the cons.

Hamdani, et. al., (2022) aim to bridge both

ends of GDRP compliance checking by using

machine learning. When developing their

GUI, they decided to use JSONLogic to

serialize obtained rules as a JSON file. This

method is similar to our app’s use case, and

supports our use of JSONLogic for our app.

3. Project Design

Our team’s Rule Builder App design

process is divided into three main parts: the

backend, frontend, and API to link the two.

When discussing how we should approach

this project, our team agreed that it would be

beneficial to begin working on the backend

and API first. This would allow us to

understand how the data is stored and set up

how calls to this data will be processed. This

would make it easier for us when designing

the user interface since we will know what

the format in which the data will be

transferred.

3.1 System Architecture

Our team utilized Amazon S3 as a simple

way to store our JSON ruleset objects.

Amazon S3 is widely used by enterprises

because of its scalability, data availability,

security, and performance. We felt that S3 fit

the use case for our app very well since we

simply needed JSON rulesets stored, and

decided that using it was the best approach

for us. When setting up our backend, we

instantiated two S3 buckets, one hosted in the

east and the other in the west. We enabled

data replication for these buckets, so if an

object is added to a bucket in the east, it will

also be added to the west bucket, and vice

versa. This helps prevent data loss and keeps

data more available. If one server goes down,

2

the data is backed up in the other server, and

traffic will be directed there.

To retrieve the data stored in S3 from the

website, a user makes an API request. The

tool we decided to use as a communicator

between the frontend and backend is AWS

Lambda, a serverless, event-driven

computing service that runs code in response

to events. We decided to use AWS Lambda

due to cost and efficiency. It is cheap because

you only pay for what you use. Price is based

on the number of requests and the time of

execution. The developer also does not have

to worry about provisioning resources,

improving productivity, and scaling, all of

which are handled automatically (Robinson

2020). Because we will be handling millions

of customer records, our computation needs

to be scalable and cheap, making AWS

Lambda a good choice for the project. The

Lambda function would receive HTTP

requests, and perform different actions based

on the type of request. The main type of

requests required for our app are GET, POST,

PUT, DELETE, and a modified GET (multi-

get). Based on what request the Lambda

receives, it will perform that action on the S3

bucket to get, post, put, or delete a ruleset

stored.

The frontend of our app needs a way to

send an HTTP request to our Lambda

function. To make this happen, we set up two

Application Load Balancers (ALB), one

server in the west and the other in east. These

load balancers act a point of contact for the

frontend, and route HTTP requests to the

Lambda function. Postman, an API platform,

was used to test our API calls to ensure that

we could make requests through the ALB to

the Lambda functions. This allowed us to

ensure that our Lambda functions were

behaving as expected.

Once we verified that our API was

working correctly with our database, we

began working on the frontend. We created

the frontend using ReactJS which is

responsible for sending HTTP requests to our

ALB, which will route it to the Lambda and

then perform the corresponding function on

the S3 bucket. This update is then made

visible to the user through the webpage.

3.2 Website Requirements

The website my team worked on aims to

create a streamlined interface for marketers

to build rulesets for marketing campaigns. In

addition to just creating rules, marketers

should be able to view, update, and delete

these rulesets. While building or viewing

them, marketers should also be able to input

a customer’s record in order to test the results

of the ruleset they created.

3.3 Key Components of Website

Our frontend’s main functions involved

the four basic CRUD functions: create, read,

update, and delete, which correspond with

the Lambda functions previously mentioned.

Depending on which button is pressed, the

corresponding HTTP request will be sent to

our ALB. The website’s interface largely

consisted of a button to create rulesets and a

table with rows containing a ruleset name and

buttons for viewing, updating, and deleting

that ruleset. In addition to those main

functions, our website also includes a search

bar to make it easier for marketers to look up

rulesets, and another button to validate a

customer record against a ruleset.

Figure 1: User Interface

 When a button such as “create” is

pressed, a pop-up implementing React-

3

Awesome-Query-Builder appears on screen.

The user can now customize their ruleset by

adding different fields and/or groups of

fields. React-Awesome-Query-Builder is

highly configurable, and what types of rules

are available is determined by the way the

config file is set up. This allows the project to

be flexible and allows React-Awesome-

Query-Builder to be used for other types of

projects with different use cases. When the

user is finished building and naming their

ruleset, they can save it and the query will be

stored in JSON format and saved in the S3

bucket.

Figure 2: Create Ruleset Pop-up

 When the validate button is clicked, a

pop-up of the ruleset the user wishes to use

appears. In a text area, the marketer can paste

in a customer’s record and compare it against

the ruleset. If the customer passes the

validation, the screen would display that the

customer record passes; otherwise if it fails.

The marketer is also able to edit the ruleset

on this screen. While validating a customer’s

record, the marketer may want to make some

changes to the ruleset and this allows them to

do so. This validation process is made easier

thanks to JSONLogic’s apply() function. We

are able to easily take a rule and apply it to a

customer’s record, which are both stored in

JSON format.

Figure 3: Validation Screen

3.4 Challenges

The greatest challenge we ran into while

developing our app involved our continuous

integration and continuous deployment

pipeline. Capital One uses a CI/CD pipeline

called OnePipeline where our code is built

and run through tests. If the tests pass, our

app is then deployed. Although our test cases

were passing, the pipeline failed due to the

version of ReactJS not being up to date.

However, we needed to use this version of

ReactJS when using React-Awesome-Query-

Builder, and this caused difficulty when

trying to deploy our app. We reached out to a

number of Capital One employees who were

in charge of OnePipeline, but our issue was

never resolved. Due to this we had to host our

app locally.

4. Results

The rules builder app that my team

worked on was built from scratch and aims to

provide something completely new for the

company. Because of this our app was never

pushed to production but is still in the

development stages since there are additional

features that need to be fleshed out. However,

after the end of my internship, we onboarded

my manager’s team and they picked up where

we left off and are continuing to further

develop our app. As of right now, they have

built their first official rule for the company.

The plan now is to enable a UI for the

marketers in quarter two of 2023.

4

5. Conclusion

This project has potential to make an

impact on the marketing line of business at

Capital One by making the process of

building marketing campaign rulesets

simpler for business professionals. Currently

the process of building these rulesets and

filtering customers can be tedious work.

There is not an app that offers a streamlined

interface for this task, and much of the work

is done through command line tools or two

separate applications. These tools are not

always intuitive and can be difficult to

understand if marketers do not have a lot of

technical knowledge regarding query

languages. This app provides a single

interface that makes this whole process

simpler. A business professional can now

create rulesets, view existing ones, edit them,

and run customer records against these

rulesets all in one place. The interface uses a

React component which displays queries in a

more natural language, allowing for an easier

understanding by business professionals.

With this app marketers won’t have to worry

as much with the technical aspect of

campaigns and can focus on the business

side.

6. Future Works

The app is still in the early phases of

development and still needs additional

features before it is ready for production.

There are a few different directions the

application could head, which has not been

fully determined yet. A feature that could be

added is a more advanced search

functionality which would improve ease of

use through the use of tags. Another small

feature that could be added is the ability to

clone a ruleset and modify it. On a larger

scale, the application needs user privileges.

Right now, there is no functionality of

signing in. This needs to be added with

different levels of authorization in order to

increase security. The app also only

processes one customer record at a time. To

improve upon this, we plan to add the ability

to import large batches of records to be

processed.

5

References

Robinson, D. (2020) Serverless: Weighing up

the pros and cons for enterprises,

ComputerWeekly.com. Available at:

https://www.computerweekly.com/feature/S

erverless-Weighing-up-the-pros-and-cons-

for-enterprises

Hamdani, R.E. et al. (2021) “A combined

rule-based and Machine Learning Approach

for automated GDPR compliance checking,”

Proceedings of the Eighteenth International

Conference on Artificial Intelligence and

Law [Preprint]. Available at:

https://doi.org/10.1145/3462757.3466081

https://www.computerweekly.com/feature/Serverless-Weighing-up-the-pros-and-cons-for-enterprises
https://www.computerweekly.com/feature/Serverless-Weighing-up-the-pros-and-cons-for-enterprises
https://www.computerweekly.com/feature/Serverless-Weighing-up-the-pros-and-cons-for-enterprises
https://doi.org/10.1145/3462757.3466081

