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Abstract 
 

Genome-wide association studies (GWASs) have advanced our understanding of 

the genetics of human bone mineral density (BMD), a clinical predictor of fracture risk 

and osteoporosis. Aside from the identification of causal genes, other difficult challenges 

to leveraging GWAS include characterizing the roles of predicted causal genes in disease 

and providing additional functional context, such as the cell type predictions or biological 

pathways in which causal genes operate. Using single cell transcriptomics (scRNA-seq) 

can augment the utility of BMD GWAS by linking variants and genes to a cell type 

context in which these causal genes may drive disease; however, few population-level 

single-cell transcriptomics data sets have been generated on bone. To address this 

challenge, we demonstrate the utility of bone marrow–derived stromal cells cultured 

under osteogenic conditions (BMSC-OBs) in large populations of Diversity Outbred 

(DO) mice. The BMSC-OB model can be used to generate cell type–specific 

transcriptomic profiles of mesenchymal lineage cells to inform human genomic studies. 

By enriching for mesenchymal lineage cells in vitro, coupled with pooling of multiple 

samples for scRNA-seq preparation and downstream genotype deconvolution, we 

demonstrate the scalability of the BMSC-OB model for population-level studies. 

Furthermore, we show that BMSC-OBs are diverse and consist of bone-relevant cells, 

such as osteoblasts, osteocyte-like cells,  marrow adipogenic lineage precursors 

(MALPs), and cells with characteristics of mesenchymal progenitors. Through the use of 

scRNA-seq analytical tools, we confirm the biological identities of BMSC-OBs and show 

that their transcriptomic profiles are similar to cells isolated in vivo. To contextualize 

BMD GWAS-implicated causal genes and prioritize targets for subsequent investigations, 
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we generated cell type-specific gene co-expression networks (GCNs). Using pseudotime 

trajectories inferred from the BMSC-OB scRNA-seq data, we identify networks enriched 

with genes that exhibit the most dynamic changes in expression across trajectories. We 

discover 21 network driver genes, which are also causal genes that have human BMD 

GWAS associations that colocalize with expression/splicing quantitative trait loci 

(eQTL/sQTL). These driver genes, including Fgfrl1 and Tpx2 (along with their 

associated networks), are predicted to be novel regulators of BMD via their roles in the 

differentiation of mesenchymal lineage cells. In this work, we showcase the power of 

single-cell transcriptomics from mouse bone-relevant cells and human BMD GWAS to 

prioritize genetic targets with potential causal roles in the development of osteoporosis. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
  



 III 

 Table of Contents 

Abstract ............................................................................................................................... I 

Table of Contents ............................................................................................................ III 
List of Figures .................................................................................................................. VI 
 
Chapter 1 - Introduction ................................................................................................... 1 

1.1. An overview of the genetics of osteoporosis and bone mineral density .................... 2 
1.2. Characterizing the genetics of BMD via GWAS ........................................................ 3 
1.3. Systems genetics approaches utilizing transcriptomics data .................................... 4 

1.3.1. Expression Quantitative Trait Loci (eQTL) Analysis .............................................................. 6 
1.3.2. Splicing Quantitative Trait Loci (sQTL) Analysis ................................................................... 9 
1.3.3. Network Analyses using transcriptomics data ....................................................................... 12 

1.4. Single-cell transcriptomics ......................................................................................... 19 
1.4.1. Summary of bulk transcriptomics (RNA-seq) ....................................................................... 20 
1.4.2. Single-cell and RNA capture ................................................................................................. 21 
1.4.3. Dimensionality reduction and clustering ............................................................................... 23 
1.4.4. Pseudotime Trajectory Analysis ............................................................................................ 27 
1.4.5. Limitations ............................................................................................................................. 30 

1.5. Using the Diversity Outbred mouse population as a model to study bone ............ 31 
1.6. BMSCs and in vitro osteogenic differentiation ........................................................ 34 
1.7. Summary ...................................................................................................................... 37 
1.8. Chapter 1 - Main Figures ........................................................................................... 39 

Chapter 2 - Single-Cell Transcriptomics of Bone Marrow Stromal Cells in Diversity 
Outbred Mice: A Model for Population-Level scRNA-Seq Studies ........................... 45 

2.1. Abstract ........................................................................................................................ 46 
2.2. Introduction ................................................................................................................. 47 
2.3. Materials and Methods ............................................................................................... 49 

2.3.1. Sample preparation and in vitro cell culture of BMSCs ........................................................ 49 
2.3.2. Single-cell isolation procedure ............................................................................................... 50 
2.3.3. Single-cell analysis pipeline ................................................................................................... 51 
2.3.4. Bulk RNA-seq analysis .......................................................................................................... 52 
2.3.5. Integration of data sets via canonical correlation analysis (CCA) ......................................... 52 
2.3.6. Souporcell .............................................................................................................................. 53 
2.3.7. Scenic ..................................................................................................................................... 53 
2.3.8. CELLECT .............................................................................................................................. 54 

2.4. Results .......................................................................................................................... 55 



 IV 

2.4.1. BMSC cultures grown under osteogenic differentiation conditions are heterogenous .......... 55 
2.4.2. Cell clustering is robust to the effects of cell isolation .......................................................... 56 
2.4.3. Cell types isolated from BMSC-OBs are similar to their in vivo counterparts ..................... 58 
2.4.4. Transcriptomic profiles from scRNA-seq for individual cell types are robust ...................... 59 
2.4.5. Frequency of osteogenic cell types are highly variable across DO mice ............................... 60 
2.4.6. BMSC-OBs show expected gene regulatory networks .......................................................... 61 
2.4.7. MALPs and osteogenic cells capture BMD heritability identified by GWAS ...................... 62 

2.5. Discussion ..................................................................................................................... 63 
2.6. Acknowledgements ...................................................................................................... 68 
2.7. Author Contributions ................................................................................................. 69 
2.8. Disclosures ................................................................................................................... 69 
2.9. Data Availability Statement ....................................................................................... 69 
2.10. Chapter 2 - Main Figures ........................................................................................... 70 
2.11. Chapter 2 - Tables ....................................................................................................... 78 

Chapter 3 - Cell Type-Specific Network Analysis in Diversity Outbred Mice 
Identifies Genes Potentially Responsible for Human Bone Mineral Density GWAS 
Associations. ..................................................................................................................... 80 

3.1. Abstract ........................................................................................................................ 81 

3.2. Introduction ................................................................................................................. 82 

3.3. Results .......................................................................................................................... 84 

3.3.1. BMSC-OBs derived from DO mice yield diverse cell types that are enriched for 
mesenchymal lineage cells ................................................................................................................... 84 

3.3.2. Mesenchymal lineage cells are enriched in BMD heritability ............................................... 87 

3.3.3. Generating mesenchymal cell type specific Bayesian networks to inform BMD GWAS ..... 87 

3.3.4. Identifying putative drivers of mesenchymal cell differentiation .......................................... 88 

3.3.5. Identification of differentiation driver genes (DDG): ............................................................ 91 

3.3.6. Network analysis predict Fgfrl1 and Tpx2 as novel regulators of BMD: .............................. 93 

3.4. Discussion ..................................................................................................................... 94 

3.5. Methods ........................................................................................................................ 99 

3.5.1. Sample preparation and scRNA-seq ...................................................................................... 99 

3.5.2. scRNA-seq analysis pipeline .................................................................................................. 99 

3.5.3. Trajectory and tradeSeq Analysis ........................................................................................ 101 

3.5.4. CELLECT Analysis ............................................................................................................. 102 

3.5.5. WGCNA ............................................................................................................................... 103 

3.5.6. Bayesian network learning ................................................................................................... 103 

3.5.7. DO eQTL mapping .............................................................................................................. 104 

3.5.8. Cell type proportion analysis ............................................................................................... 105 



 V 

3.6. Acknowledgements .................................................................................................... 105 

3.7. Author Contributions ............................................................................................... 106 

3.8. Disclosures ................................................................................................................. 106 

3.9. Chapter 3 - Main Figures ......................................................................................... 107 

Chapter 4 - Concluding Remarks and Future Directions ......................................... 116 
4.1. Summary and Conclusions ....................................................................................... 117 

4.1.1. Assessing the utility of the BMSC-OB model ..................................................................... 118 

4.1.2. Leveraging scRNA-seq data from the BMSC-OB model to inform GWAS ....................... 119 

4.2. Future Directions ...................................................................................................... 119 

4.2.1. In vitro investigation of prioritized targets ........................................................................... 119 

4.2.2. RNAi-mediated knock-down ............................................................................................... 120 

4.2.3. Prime-editing ........................................................................................................................ 122 

4.3. Long-read, single-cell transcriptomics .................................................................... 124 

Appendix A - Supplementary Figures ......................................................................... 127 
A. Chapter 2 - Supplementary Figures ........................................................................ 128 

B. Chapter 3 - Supplementary Figures ........................................................................ 133 

Appendix B - Supplementary Tables ........................................................................... 136 
A. Chapter 2 - Supplementary Tables .......................................................................... 137 

B. Chapter 3 - Supplementary Tables .......................................................................... 137 

References ...................................................................................................................... 138 
 
 

  



 VI 

List of Main Figures  
 

Chapter 1 
 

Figure 1. Expression Quantitative Trait Loci (eQTL) can affect the expression of genes in 
a cell type-specific fashion. .............................................................................. 39 

Figure 2. Splicing Quantitative Trait Loci (sQTL) can affect isoform-specific gene 
expression patterns. .......................................................................................... 40 

Figure 3. Summary of preperation strategy for single cells using droplet-based scRNA-
seq. .................................................................................................................... 41 

Figure 4. Summary of Unique Molecular Identifer (UMI) de-duplication. ...................... 42 
Figure 5. Single cells captured via scRNA-seq are projected in a multi-dimentional, 

Principle Component (PC) space to highlight variability in gene expression. . 43 
Figure 6. Overview of the BMSC-OB model. Bone marrow derived stromal cells 

(BMSCs) are extracted from the femurs of Diversity Outbred (DO) mice. ..... 44 
 

Chapter 2 
 

Figure  1. ScRNA-seq of BMSC-OBs identifies multiple cell-types. ............................... 70 

Figure  2. Liberation of single cells from a heavily mineralized matrix in vitro has 
minimal impact on transcriptomic signatures of BMSC-OBs. ......................... 71 

Figure  3. ScRNA-seq of BMSC-OB and scRNA-seq data derived from cells harvested in 
vivo cluster together and have few transcriptomic differences. ....................... 72 

Figure  4. Transcriptomic profiles of individual cell-types from scRNA-seq of BMSC-
OBs are robust and representative of bulk RNA-seq data. ............................... 74 

Figure  5. Cell-type frequencies captured by scRNA-seq are highly variable across 
individual DO mice. ......................................................................................... 75 

Figure  6. SCENIC gene regulatory network (GRN) analysis reveals expected 
transcriptomic activity and validates the identities of cell-types in BMSC-OBs.
 .......................................................................................................................... 77 

 
Chapter 3 

 
Figure  1. Analysis of single cell RNA-seq (scRNA-seq) data for BMSC-OBs derived 

from 80 Diversity Outbred (DO) .................................................................... 108 

Figure  2. Overview of the network analysis pipeline ..................................................... 109 

Figure  3. Pseudotime Trajectory Inference analysis and establishment of cell type 
boundaries for tradeSeq analysis .................................................................... 111 



 VII 

Figure  4. TradeSeq-identified genes associated with BMSC-OB differentiation exhibit 
eQTL effects. .................................................................................................. 113 

Figure  5. Fgfrl1 and Tpx2 are prioritized DDGs and putative drivers of mesenchymal 
differentiation. ................................................................................................ 115 

  



 1 

  

 

  

  

  

  

  

  
 

 Chapter 1 

  

 Introduction 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 2 

1.1. An overview of the genetics of osteoporosis and bone mineral density (BMD) 

Osteoporosis is often regarded as a multifactorial disease and commonly 

characterized by low bone mineral density (BMD), a measure of the amount of bone 

mineral in bone tissue, and an increased risk of fracture1,2. Millions of patients in the US 

have been clinically diagnosed with osteoporosis and billions are spent annually on 

fractures attributed to osteoporosis3.  

BMD remains one of the most significant clinical predictors of fracture and can 

be affected by a myriad of factors, such as age, sex, nutrition, and environmental 

exposures1,4; however, BMD is also a highly heritable trait and genetics is suggested to 

play a large role5. In terms of narrow sense heritability (h2), which is a measurement used 

to quantify the variance of a phenotypic trait that may be due to genetic variation6, the 

heritability of BMD is estimated to be h2 = 0.5 - 0.8, further supporting the role of 

genetics in this complex trait5. Characterizing the genetic factors underlying BMD is a 

critical prerequisite to advancing the clinical treatment of osteoporosis. 

Decades of work have cultivated a foundational understanding of some genetic 

determinants of osteoporosis, such as associations with polymorphisms in canonical 

genes (e.g.,  vitamin D receptor7 or type I collagen8). We are now equipped with modern 

techniques, such as genome-wide association studies (GWASs), that can enable the 

resolution of millions of single nucleotide polymorphisms (SNPs) associated with 

disease. These genetic variants which are scattered across the genome can be associated 

with specific genes and variation in BMD, or other processes related to bone. 

 



 3 

1.2. Characterizing the genetics of BMD via GWAS 

GWAS remains one of the most powerful approaches to identify variants 

associated with a disease. Typically the output of these investigations is thousands of 

SNPs that exhibit statistically significant associations with the trait or disease of interest9. 

In the context of osteoporosis research, the largest GWAS to date analyzed estimated 

bone mineral density (eBMD) from the heel in approximately 420,000 individuals10. 

While BMD is typically measured clinically by dual-energy X-ray absorptiometry (DXA) 

from the femoral neck or lumbar spine, quantitative ultrasound is and often used 

alternative and measures eBMD on the calcaneus11, as performed in the aforenoted 

GWAS study. While a number of other GWASs have been performed with the same goal 

of identifying genetic associations for BMD, the BMD GWAS from Morris and 

colleagues10 remains the most comprehensive. From this study, a total of 1,103 

independent associations were identified across 518 loci, of which 301 were novel, and 

together explain 20.3% of total eBMD variance.  

While results from large GWAS studies have revolutionized our understandings 

of the genetics of a variety of human diseases, they are not without their shortcomings. A 

noteworthy challenge of GWAS studies is that many associations fall in close proximity 

to one another along the genome and tend to be in extensive linkage disequilibrium (LD) 

with one another. Thus, the identification of causal SNPs is convoluted by LD; numerous 

statistically significant associations with a disease-state or phenotype may not be causal, 

but act as surrogates for causal variants12. Additionally, functional characterization of 

these SNPs is complicated by the fact that the vast majority (>80%) of the statistically-

significant associations reside in non-coding regions of the human genome13. For 
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example, causal variants may be located in DNA regulatory regions (e.g., enhancers or 

promotors) and affect the regulation of transcription and subsequent expression of a 

disease-relevant gene. Despite the mentioned challenges, GWASs have been successful at 

resolving hundreds of putative causal loci impacting BMD. Nevertheless, the specific 

genes affected by many of the identified associations remain unknown. Leveraging 

systems-based approaches and the integration of a variety of “-omics” level data have 

proven invaluable to facilitating the functional characterization of GWAS associations.  

 

1.3.  Systems genetics approaches utilizing transcriptomics data 

In the past decade alone, the advancement of Next Generation Sequencing (NGS) 

technology, which often functions to sequence DNA at high-throughput in a short period 

of time14, has enabled the generation of massive volumes of molecular data. The 

quantification of diverse biological features and deconvolution of cellular processes can 

be achieved with NGS technology, which has fueled the emergence of the field of 

systems biology. Ultimately, systems biology aims to make a molecular map or network, 

sometimes in order to resolve the functional role of perturbations to any layer of biology 

in a certain state, like a disease. In this field, data can take on many forms; broadly, it is 

referred to as “-omics” data, but it can be further classified based on what layer of 

biology is captured in the data. For example, data derived from genomic studies aims to 

characterize the relationships, functions, or interactions between genes that comprise a 

genome15; likewise, proteomics data aims to characterize protein isoforms, structures, or 

modifications in the cellular proteome16.  
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Given the reliance on population-scale genomics data for GWAS analyses, the 

application of systems genetics approaches have been instrumental to predicting the 

molecular function of GWAS variants. The field of systems genetics, a derivative of 

systems biology, is concerned with characterizing sources of genetic variation that may 

perturb other molecular features (e.g., gene expression, protein, metabolite levels), 

especially in relation to a complex trait or disease, like BMD and osteoporosis17. The 

interdisciplinary nature of systems genetics requires the generation of various -omic data 

modalities, such as transcriptomics, one of the most powerful sources of -omic data. 

Single-cell transcriptomics data aims to characterize RNA transcripts within a 

cell, typically to quantify changes in expression patterns under various states, such as a 

developmental stage, experimental, or physiological condition18. When used in unison, 

transcriptomics and GWAS data can be used to predict the consequences of genetic 

variation at certain loci; we can substantially improve our ability to resolve the 

connections between disease-associated variants and the genes they may regulate or 

functionally impact.  

As shown in our recent work, bulk transcriptomics (RNA-seq) data and BMD 

GWAS data can be used in conjunction to discover multiple genes predicted to impact 

BMD19. Al-Barghouthi and colleagues generated RNA-seq data from mouse cortical bone 

samples and applied a network-based approach to highlight genes (and their associated 

networks) with strong evidence of impacting BMD19. To prioritize the identification of 

causal genes, they made use of human BMD GWAS from Morris and colleagues10; they 

required a gene to be implicated by GWAS and potentially serve as an eQTL (discussed 

below). Ultimately, they identified 66 genes (19 of which were novel or not reported 
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previously to be implicated in bone processes) likely to be causal for human BMD 

GWAS associations. While many studies have utilized transcriptomics data and GWAS 

to highlight causal genes, this work functioned to inform bone biology, a field currently 

lacking in molecular or “-omic” data, and thus remarkably contributed to the ongoing 

effort to generate and robustly analyze bone transcriptomics data. The remainder of this 

section will focus on transcriptomic analyses commonly used in systems genetics to 

predict the molecular effect of GWAS associations.  

 

1.3.1. Expression Quantitative Trait Loci (eQTL) Analysis 

Genetic variation has a significant influence on transcriptional regulation and 

many GWAS variants are presumably located in regulatory regions of the genome. 

Regulatory regions, or regulatory elements, are stretches of DNA that have roles in 

orchestrating many cellular processes, such as transcriptional regulation and chromatin 

organization20. Some of the best-known examples of regulatory regions of the genome are 

enhancers and promotors, and regulatory proteins are often recruited to specific motifs 

within these regions to enhance (or suppress) the transcription of target genes. Many 

GWAS-identified variants do not reside in the protein-coding regions of genes, but are 

located in regulatory regions of the genome and function to perturb expression of causal 

genes.  

Genetic variation that is associated with the expression of genes is commonly 

referred to as expression quantitative trait loci (eQTL) while the associated gene is 

sometimes called an “eGene”21. In order to identify eQTL, transcriptomics data must be 

acquired, ideally, from a tissue or cell type relevant to the trait or disease in question. 
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Further, genotype information from these sample must also be obtained, either from a 

genotype array capturing a panel of SNPs or from whole-genome sequencing (WGS). 

Statistically significant SNPs associating with the expression of a gene are identified, 

which can exert their effects or operate in a cell type-specific manner (Figure 1). 

There are two categories of eQTL: cis-eQTL, which operate in close genomic 

proximity (approximately 1 Mbp) to the associated eGene (e.g., in the promotor) (Figure 

1), and distal or trans-eQTL, which operate much farther away, sometimes on completely 

different chromosomes, from the affected eGene (e.g., in a distal enhancer)22. In terms of 

eQTL discovery, historically, most studies have only been equipped to identify locally-

acting cis-eQTLs due to statistical power difficulties in detecting trans-eQTLs23; 

however, much genetic variation is harbored in regions that induce trans-effects on target 

genes24 and trans-eQTL are expected to regulate the expression of a wider range of 

genes25. 

To identify disease-relevant eQTL, a common approach is to perform a 

colocalization of disease-associated SNPs identified from GWAS. In this case, a 

colocalization analysis would function to identify eQTL and GWAS signal that originate 

from a shared genomic locus, which harbors potentially many causal variants. Therefore, 

not only can colocalizing sources of genetic variation begin to predict the function of 

uncharacterized GWAS variants, but also describe a potential causal mechanism of 

disease. For example, strongly colocalizing eQTL can be further fine-mapped to predict 

the precise SNP(s) that govern the expression of essential genes driving the manifestation 

of disease or a complex trait, like BMD.    
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An excellent resource that has been frequently leveraged in eQTL studies is the 

Genotype-Tissue Expression (GTEx) Consortium. The GTEx project was first launched 

in 2010 and is an ongoing effort to study the genetic effects on tissue-specific gene 

expression across a collection of human tissues26. To date, the project has provided open 

public access to data captured from over 54 non-diseased tissue sites from over 1000 

post-mortem human donors; this data is derived from WGS and bulk transcriptomics 

(RNA-seq) assays performed on most samples27. However, one pitfall of this resource is 

that essential bone cell types (e.g., osteoblasts and osteocytes) are not represented in this 

data. While these cell types are most canonically associated with bone diseases and traits, 

such as osteoporosis and BMD, the GTEx project and others demonstrate that many 

eQTL are shared across tissues and various cell types28. Therefore, the utility of this 

resource can extend to research investigating bone. For example, our recently published 

work leveraged data provided by GTEx; it was used in unison with transcriptome-wide 

association study (TWAS) and eQTL colocalization in order to predict causal genes 

underlying BMD GWAS associations29. 

Leveraging these data, Al-Barghouthi and colleagues identified 512 putatively 

causal genes associated with BMD29. Notably, their approach functioned to make use of 

non-bone gene expression data (from GTEx) and currently available BMD GWAS data to 

prioritize candidates. First, a TWAS was performed using the BMD GWAS data from 

Morris and colleagues10, as well as the gene expression reference available on GTEx; a 

TWAS functions to prioritize genes associated with a trait or disease, which are further 

associated with significant SNPs identified from a GWAS30. Next, an eQTL analysis was 

performed using 49 GTEx tissues; using the same BMD GWAS data, local eQTL were 
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identified for genes located within a GWAS locus via colocalization to determine if 

signals highlighted via both analyses are due to the same sets of genetic variants. The 

TWAS and eQTL analyses identified 2156 and 1182 genes, respectively. A total of 512 

genes that were significant in both analyses were subsequently deemed prioritized causal 

genes with putative roles as regulators of BMD or bone-relevant biological processes 

(e.g., osteoblast differentiation, ossification, etc.) 

 

1.3.2. Splicing Quantitative Trait Loci (sQTL) Analysis 

Another mechanism by which genetic variation can impact gene regulation is via 

alternative splicing. The process of splicing is most canonically associated with the 

generation of multiple different messenger RNA (mRNA) isoforms from a transcript of 

an expressed gene, thus contributing to a wealth of diversity in terms of protein structure 

and function31. However, splicing can also operate on non-coding RNA species as well32, 

further expanding the possible functional impacts tied to splicing patterns in a cell. 

Splicing is mediated by the spliceosome, which functions to recognize splice sites located 

at the 5’ (donor site) or 3’ (acceptor site) ends of introns located within a pre-processed 

RNA transcript32,33. The spliceosome subsequently removes (or retains) various 

combinations of introns to yield alternatively spliced transcripts. Aberrant splicing events 

can result in proteins with altered structural domains, functional features, or regulatory 

sites that can ultimately impact a cellular phenotype (Figure 2); alternatively, variation in 

splicing patterns can affect the abundance (or ratio) of specific protein isoforms in a cell 

(Figure 2). Importantly, the intricate process of alternative splicing can be altered by 

genetic variation.  
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Genetic variants associated with splicing events are referred to as splicing 

quantitative trait loci (sQTL) (Figure 2); they can impact splice site selection or the 

assembly of the spliceosome to result in dramatic changes in alternative splicing 

patterns34. Such variants can act to yield functional effects in cis or trans; cis-acting 

variants are located within the transcript undergoing splicing while trans-acting variants 

may result in the formation of a mutant core splicing protein or associated regulatory 

protein that functions to impact the process of splicing34.  Therefore, genetic variation can 

affect the abundance, diversity, and ratios of various spliced RNA transcripts, which can 

lead to the manifestation of different molecular phenotypes and disease. 

In order to identify sQTL, similar to eQTL discovery, transcriptomic and 

genotype data must be acquired on relevant samples. However, some challenges are 

incurred with sQTL studies (that are less of a hinderance in eQTL studies). For example, 

while commonly used and sufficient to quantify the expression of a gene, short-read 

RNA-seq data often does not enable a characterization of the complete repertoire of 

transcript isoforms that a gene can be spliced to yield. Transcriptomics data that is 

derived from short-read RNA-seq is comprised of short segments of sequenced RNA, 

which often do not contain the full-length sequence of RNA transcripts. Due to the 

significant degree of similarity that is often observed between alternatively spliced 

transcripts, mapping short-read data to a reference and associating a read with a specific 

isoform is statistically challenging35,36. Ultimately, this challenge inhibits the ability to 

adequately identify alternatively spliced RNA transcripts. However, recent advances in 

long-read RNA-seq technology now permit the capture and subsequent sequencing of 
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full-length RNA transcripts, therefore increasing our abilities to resolve novel transcript 

isoforms and better understand the nature of alternative splicing patterns.  

As mentioned previously, colocalization approaches to combine GWAS and 

eQTL results have been successful in identifying disease-associated SNPs, thereby 

predicting the functional mechanism through which they can cause disease (i.e., 

modulating the expression of a gene). A colocalization approach can be employed to 

combine sQTL and GWAS to highlight a different mechanism through which genetic 

variation can cause disease (i.e., impacting alternative splicing of transcripts). Strongly 

colocalizing sQTL/GWAS signals are fine-mapped to further predict the impact that the 

genetic variation has on splicing, such as observed differences in causal protein isoform 

ratio, function, stability, and related protein-protein interactions. In our recent work, we 

leveraged long-read RNA-seq and identified colocalizing BMD GWAS and sQTL 

associations from GTEx-related tissues in order to identify effectors of BMD37. 

 Abood and colleagues identified a total of 732 protein-coding genes with sQTL 

and associated with BMD37.  First, a colocalization was performed using the BMD 

GWAS data from Morris and colleagues10, as well as the sQTLs captured in GTEx, to 

yield the 732 “sGenes.” Of these, over half (367 total) were sGenes with sQTL shared 

across more than one GTEx tissue. The novelty of this study was the use of long-read 

transcriptomics in bone-relevant cells types to interrogate predictions made from 

colocalization of sQTL and BMD GWAS associations. From an immortalized osteoblast 

cell line (hFOBs), long-read RNA-seq was performed to subsequently generated 22 

million full-length RNA transcripts; 74% (50,588) of the transcripts were known 

(annotated previously on GENCODE) while the remaining 25% (17,375) were novel. 
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Using this data, they connected sQTL to 441 genes expressed in osteoblasts, further 

identifying putative genes impacted by splicing and associated with BMD.  

 

1.3.3. Network Analyses using transcriptomics data 

Polygenic diseases and complex traits, like osteoporosis and BMD, are a product 

of the cumulative effects of multiple loci that ultimately result in a phenotype38. In other 

words, we often expect to observe the consequences of genetic variation on more than 

one causal gene. Aside from identifying discrete sources of genetic variation that are 

predicted to drive disease, a comprehensive and systems-level understanding of disease 

can be achieved by characterizing how the interactions between genes (and related 

cellular processes) are affected by genetic variation. In order to infer interactions between 

genes, a network approach is often employed to resolve putative relationships, which is 

an essential strategy leveraged in the field of systems genetics. Many various types of 

networks can be resolved depending on the molecular data available. For example, 

network-level analyses, such as gene co-expression networks (GCNs), commonly take 

transcriptomics data as input to predict interactions between genes based on shared 

expression profiles. Many studies, including much of our recently published work, have 

demonstrated the utility of GCNs and a network-based strategy to predict the interactions 

of causal genes implicated by GWAS. 

 

1.3.3.1 Gene co-expression network (GCN) analyses 

The purpose of a GCN analysis is to group genes based on correlation in their 

expression, thus describing pairwise relationships between genes. As mentioned above, 
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transcriptomics data from multiple samples is used as input, providing a quantitative 

metric for each gene’s expression. The classic output of a GCN analysis are often 

visualized as web-like networks where each gene is referred to as a “node” and the 

connections between each node are referred to as “edges.” An edge represents a 

correlative connection between nodes, but in GCNs, edges are not assigned a 

directionality to further describe the interaction between connecting nodes, thus rendering 

GCNs undirected39.  

One approach commonly leveraged to generate such GCNs is weighted gene co-

expression network analysis (WGCNA)40. The goal of WGCNA is to group genes based 

on co-expression and then highlight clusters of densely connected genes, referred to as 

modules. Biologically insightful information can be gleaned from investigating the 

specific genes contained in various modules. As a general trend, co-expressed genes that 

comprise a module can be functionally related or play a role in similar cellular pathways 

or processes41. Further, WGCNA analysis can be extended to discover correlations 

between specific co-expression modules and a particular trait, such as a quantitative 

metric taken on a sample42. GCNs can also be used to contextualize causal genes 

implicated by GWAS associations; we frequently generate GCNs from bulk 

transcriptomics (RNA-seq) data from bone cells gathered from large populations of mice 

to inform BMD GWAS19,43,44. 

For example, Calabrese and colleagues generated bulk transcriptomics data from 

cortical bone from a large panel of mice (n = 96) and subsequently generated GCNs43. 

First, they defined a list of 167 genes implicated by 64 lead SNP associations from a 

large BMD GWAS. Subsequent GCN analysis identified two modules of co-expressed 
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genes that contained many GWAS-implicated genes. A high degree of correlation was 

observed between the eigengenes for the modules (r = 0.63); functionally, an eigengene 

serves as a summary of the gene expression for a module, or the first principal component 

for the gene expression profile. A gene ontology (GO) enrichment analysis was 

performed and indicated that the modules were significantly enriched for genes 

associated with processes relevant to osteoblasts, such as ossification and osteoblast 

differentiation, thus portraying the shared functional roles of genes in GCNs.  

Additionally, between the modules, many genes have previously reported 

evidence of impacting human BMD, such as sclerostin (Sost), osterix (Sp7; transcription 

factor Sp7), and osteoprotegerin (Tnfrsf11b; tumor necrosis factor receptor superfamily 

member 11b), all of which have canonical regulatory roles in osteogenic cells. Overall, 

they were able to associate genes to 30 of the 64 BMD GWAS loci, identifying two genes 

to investigate further: Spectrin, beta, nonerythrocytic 1 (Sptbn1) and MAP/microtubule 

affinity-regulating kinase 3 (Mark3), both of which had strong BMD GWAS 

associations. Interestingly, the International Mouse Phenotype Consortium (IMPC)45, 

which is an organization that functions to systematically study the phenotypic effects of 

knocking-out various genes in the mouse genome, reported that heterozygous mice for 

the gene-trap Sptbn1 allele exhibited increased whole-body BMD, while the opposite was 

observed for female mice, which had a decrease in whole-body BMD. In regards to 

Mark3, when knocked-down via siRNA in calvarial osteoblasts, cells exhibited an 

increase in mineralization in vitro. Further, heterozygous mice for the gene-trap Mark3 

allele exhibited increased femoral BMD. These data suggest a putative role of Sptbn1 and 

Mark3 in BMD.  
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In another one of our more recent works, Sabik and colleagues generated GCNs 

on calvarial osteoblasts using bulk RNA-seq data from a large panel of mice (n = 42)44. 

They also identified a module that contained many genes tied to osteoblast differentiation 

and mineralization, as well as genes implicated by BMD GWAS associations identified 

from Morris and colleagues10. Importantly, the eigengene of this module was the only one 

(of 13 total modules) significantly correlated (r = 0.49) with in vitro mineralization, a 

quantitative trait measured by the accrual of alizarin red-stained calcified nodules of 

cultured osteoblasts from the mice.  

Furthermore, they found that genes within this module fall into two distinct 

categories based on their gene expression patterns observed over the course of in vitro 

osteoblast differentiation: genes that exhibit high expression early during the process of 

osteoblast differentiation (EDS; n = 175 genes) and genes that exhibit higher expression 

later during differentiation (LDS; n = 323 genes). LDS genes were enriched for GWAS-

implicated genes; additionally, LDS genes had a significantly higher module membership 

(which is the correlation between a gene’s expression and the eigengene for the module) 

as compared to EDS genes, thus indicating a more central role of LDS genes in the 

module. Of the LDS genes, 48 overlapped with a BMD GWAS association, of which 12 

genes had a BMD GWAS association that also colocalized with an eQTL in a GTEx 

tissue. Of these 12 genes, 4 were measured via the IMPC and had significant (Padj < 0.05) 

whole-body alteration to BMD: cell adhesion molecule 1 (Cadm1), beta-1,4-N-acetyl-

galactosaminyl transferase 3 (B4galnt3), dedicator of cytokinesis 9 (Dock9), and 

adhesion G protein-coupled receptor D1 (Adgrd1, or Gpr133). These data suggest a 

potential casual role for these genes as drivers of BMD in humans.  
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Both of the aforementioned studies showcase the utility of GCN analysis to aid in 

the prioritization of candidate causal genes implicated by GWAS. However, because 

GCNs are undirected networks and generated solely based on correlations in the 

expression patterns amongst genes, a limitation to GCNs is that they only reveal which 

genes are active simultaneously and provide minimal information about causal 

interactions between genes46. Gene regulatory networks (GRNs), on the other hand, 

function to portray a network with interactions describing a regulatory relationship 

between nodes, ideally to describe a transcriptional program47. The generation of GRNs 

also requires additional data that can describe specific aspects of the regulatory nature of 

the network (e.g., transcription factor binding interactions); further, the application of a 

detailed mathematical function is needed to model regulatory relationships48. 

Nevertheless, gene co-expression networks (GCN) analysis remains a valid network-

approach to organizing genes and aids in forming initial predictions of disease-relevant 

genes. To glean more biologically insightful information from GCNs, additional methods 

can be applied, such as Bayesian network reconstructions, to model directed interactions 

from these correlation-based networks.  

 

1.3.3.2 Bayesian network analyses 

The overarching goal of performing network analyses is to learn the structure of a 

network and subsequently infer relationships between the constituents of the network. As 

described above, GCNs are constructed based on genes’ co-expression, but are limited in 

terms of further describing the interactions between genes in the networks. To ascribe 
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more meaning to networks, Bayesian network learning methods can be applied to predict 

causal interactions, for example, amongst co-expressed genes of a GCN.  

Bayesian networks (BN) graphically depict real dependencies between measured 

variables49, or the expression of genes in our case. The connections of a BN form to 

represent interactions between nodes (genes) and indicate that a gene’s expression 

depends on the expression of the gene(s) upstream of it in the network, which are referred 

to as parent nodes50,51. In a BN, the edges between the nodes are directed, often 

represented as arrows. The directed edges of the network indicate the conditionally 

dependent relationships between the nodes; furthermore, for each node, a probability is 

calculated that functions to describe the relationship it has with another node of the 

network50,51. To summarize all relationships between nodes within the network, joint 

probabilities are determined by taking the geometric sum of all probabilities for 

individual nodes50. To generate a network topology that best describes the gene 

expression data, methods such as the Max-Min Hill-Climbing (MMHC) algorithm52 are 

applied to maximize a score function and learn the optimal structure of a BN49.  

BNs are acyclic, requiring that no cyclic paths or “loops” are formed in the global 

structure of the network49. Thus, BNs are often classified as a type of directed acyclic 

graph (DAG)49. Dynamic Bayesian networks (DBNs), on the other hand, can be applied 

to understand more “cyclic” biological phenomena, such as feedback loops. DBNs take 

into account temporal or time-dependent relationships that are not modeled in acyclic 

BNs described above53. Given the inclusion of data taken on a variable at multiple time 

points, perhaps gene expression measurements taken over a time course experiment, 

DBNs can model temporal interactions in a network that change over time53. In practice, 
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DBNs may resolve relationships in which the expression of a gene at a certain time point 

may be dependent on the expression of various genes in a prior timepoint53. For example, 

DBNs can be employed to map changes in the expression patterns of genes and their 

associated partner genes to resolve feedback loops underlying potential transcriptional 

landscapes driving a phenotype54. Nevertheless, BNs are frequently used in systems 

genetics and are suffice in resolving meaningful, static interactions and infer causal 

relationships amongst genes. As we showcase in our recent work19, we leveraged BNs 

generated from WGCNA modules to highlight networks and genes potentially 

responsible for BMD GWAS associations.  

Al-Barghouthi and colleagues generated BNs from bulk transcriptomics data 

(RNA-seq) from cortical bone samples derived from a large cohort of Diversity Outbred 

(DO) mice (n = 192)19. A total of 142 WGCNA modules of co-expressed genes were used 

as input and subsequently reconstructed to generate BNs, which was necessary to resolve 

directionality between genes in the networks and model causal interactions. The 

structures of the BNs were learned using the MMHC algorithm. Networks were then 

prioritized based on having more neighbors (genes) in the BN than average as well as 

having a significant enrichment of genes with previously established roles in various 

processes related to bone; this yielded a total of 1370 “key driver” networks. Key drivers 

(KD) are nodes (genes) that are central to a network topology and enable the formation of 

a large neighborhood of genes that constitute a BN. Of the 1370 KDs, 1174 had a 

corresponding homolog in humans. Additionally, 688 of the KDs were genes that were 

within 1 Mbp of a lead SNP identified from BMD GWAS. From their Bayesian network 

analysis, they highlight two putative novel regulators of BMD: SERTA domain-
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containing protein 4 (Sertad4) and Glycosyltransferase 8 domain containing 2 (Glt8d2), 

both of which were identified in their network analysis as KDs of BNs containing many 

canonical genes involved with bone cell processes (e.g., Postn, Wnt16, and Pappa2). By 

leveraging BNs, they were able to model causal interactions between co-expressed, and 

potentially co-regulated, genes to ultimately identify novel key drivers of the regulation 

of BMD.  

 

1.4. Single-cell transcriptomics 

Pioneering breakthroughs in single-cell transcriptomics (e.g., scRNA-seq) have 

revolutionized our abilities to characterize gene expression. In the past decade alone, 

scRNA-seq technology has exploded in popularity and its applications to biomedical 

research are seemingly endless; we now can delineate the dynamic patterns of cell type 

and tissue-specific gene expression across a variety of conditions in order to generate 

experimental hypotheses or discover novel transcriptomic markers for cells.  

Currently, there is a lack of -omics data at single-cell resolution in the field of 

bone and osteoporosis research. To date, much of the transcriptomics data generated on 

bone has been microarray-based or from bulk RNA-seq. In fact, all of our work has 

leveraged RNA-seq data in various analytical frameworks to showcase its utility to 

informing BMD GWAS; however, the cell type context in which many of these GWAS 

associations are operational is unclear. In regards to informing GWAS, the integration of 

scRNA-seq data can provide cell type predictions for which observed genetic variation 

may have a functional impact. Given that numerous cell types are vital to bone function 

(e.g., osteoblasts, osteocytes, MSCs, adipocytes, etc.), capturing their transcriptomic 



 20 

profiles at single-cell resolution, particularly at population-scale, is essential to better 

characterizing their roles and understanding how alterations to their function may be 

associated with a phenotype or disease.  

Single-cell transcriptomics (scRNA-seq) now enables the elucidation of complex 

biology at much higher resolutions; however, bulk RNA-seq has historically served as a 

staple to investigating the transcriptome of cells associated with many disease states. 

While both serve very specific purposes, their differences are also apparent.  

 

1.4.1. Summary of bulk transcriptomics (RNA-seq) 

 Bulk RNA-seq studies capture and subsequently sequence RNA transcripts. RNA-

seq effectively provides a global “average” summary of gene expression for biological 

samples55; however, an often harped on limitation of using bulk data is that it does not 

enable the association of transcriptomic signal to individual cells for a sample. While 

methodological interventions can be performed prior to bulk sequencing in order to 

isolate a homogenous population of a discrete cell type (e.g., flow cytometry)56, this is not 

a feasible approach (from a labor and fiscal perspective) for high-throughput sample 

processing required for population-scale studies. 

Additionally, when RNA-seq is performed on samples from a heterogenous tissue 

comprised of many different cell types (e.g., peripheral blood), the resulting gene 

expression signatures are often challenging to associate with a specific cell type. 

However, deconvolution of bulk transcriptomics data can be achieved bioinformatically 

to estimate cell type abundance and infer expression profiles using computational tools 
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(e.g., CIBERSORTx)57, but a heavy reliance on reference data (derived from scRNA-seq 

or bulk-sorted data) as well as larger sample sizes can impact the accuracy of results58.  

Despite these drawbacks, performing bulk transcriptomics enables the capture of 

not only polyadenylated mRNA species, but also other diverse RNA species as well 

(depending on the selection/depletion method used), such as non-coding RNA59,60. 

Estimates suggest that the majority of the genome can be transcribed, but less than 2% 

encodes proteins, leaving the remaining to presumably encode non-coding RNA61; 

thousands of long non-coding RNAs (lncRNA) have been documented62,63. The 

implications of non-coding RNA in disease are now at the forefront of research in the 

pharmaceutical industry64; therefore, bulk RNA-seq technologies will likely remain the 

most feasible approach to characterizing the roles of diverse RNA species. Further, bulk 

RNA-seq experiments are becoming more economical to perform given the appreciable 

decrease in sequencing costs in recent years65. However, leveraging the most current 

transcriptomics technology can enable a more granular understanding of the biological 

processes impacted by disease at cell type-specific resolution. The remainder of this 

section will focus on some important concepts underlying single-cell transcriptomics, 

including analysis and current strategies used to investigate cellular heterogeneity 

captured in scRNA-seq data.  

 

1.4.2. Single-cell and RNA capture  

The appeal to performing single cell transcriptomics (scRNA-seq) is the ability to 

associate gene expression signatures to individual cells. Upon the disassociation of cells 

from tissue, droplet-based strategies (e.g. 10X Genomics), which are among the more 
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popular options for sample preparation66, partition individual cells into nanoliter-scale, 

oil-based droplets67. These droplets, called GEMs (Gel Bead-in-Emulsion), are generated 

using microfluidic technologies that encapsulate a single cell, along with the necessary 

enzyme and reagents required for a reverse transcription reaction, and importantly, a gel 

bead carrying thousands of oligonucleotides which are essential to the functionality of 

scRNA-seq (Figure 3)68.  

While slight variations exist in the sequence of the oligonucleotide of the gel 

bead, for the commonly used 3’ 10X Genomics protocols, the oligonucleotide structure is 

comprised of a primer sequence, a barcode sequence, a unique molecular identifier (UMI) 

sequence, and an oligo-dT sequence (Figure 3)68. The oligo-dT sequence serves the 

essential purpose of annealing to the 3’ polyadenylated tails of RNA transcripts to prime 

reverse transcription. The UMI and barcode sequences serve to index the captured RNA 

transcripts and associate them with a specific single cell, respectively, while the primer 

sequence enables subsequent polymerase-chain reaction (PCR) amplification for library 

construction.  

The overall structure of all oligonucleotides is the same for all gel beads in the 

employed protocol; however, each gel bead has a distinct barcode sequence. During the 

preparation of GEM droplets, every individual cell is captured with a single gel bead, and 

thus a distinct barcode sequence is associated with the cell: a critical feature for 

downstream analysis that enables the discrimination between the sequencing products 

derived from individual cells. 

While barcode sequences function to index individual cells, the UMI sequences 

function to index the captured RNA transcripts from the cell. Unlike the barcode 
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sequences, the nucleotide sequence of a UMI is variable69. In other words, for all 

oligonucleotides of a gel bead, the barcode sequences are identical, but the UMI 

sequences are different. The UMI sequence is valuable for improving transcript 

quantification, which can be skewed by nonlinear amplification during library 

construction PCR70; cDNA (generated from RNA transcripts) are copied via PCR and 

result in the accumulation of amplified progeny from original transcripts, which are 

referred to as PCR duplicates69. Exponential amplification of PCR duplicates can 

sometimes lead to their over representation and result in skewed gene expression 

quantification70. However, UMIs remedy this issue by enabling the “de-duplication,” or 

collapsing, of PCR duplicates, thus improving the ability to distinguish between the 

transcripts and their duplicates (Figure 4)69,70. Subsequent transcript quantification occurs 

by counting the collapsed UMIs for a gene, ultimately yielding a raw count to be used as 

expression measurements for all originally captured transcripts for any given gene 

(Figure 4).  

 

1.4.3. Dimensionality reduction and clustering 

 An attribute of scRNA-seq data is its high dimensionality as a result of capturing 

the expression of thousands of genes for thousands of individual cells (Figure 5). As the 

complexity of the data increases, measures must be taken to reduce this dimensionality to 

make data analysis practical, but also ensure as much meaningful information is retained 

as reasonably possible. Typically, more than 20,000 genes, or “features,” can be captured 

in scRNA-seq data; however, not all of the genes will be biologically informative to 

highlighting meaningful differences between cells or cell clusters66,71. Identifying the 



 24 

most highly variable genes (HVG), or those genes exhibiting higher expression in some 

cells and lower expression in other cells72, functions to prioritize these genes as 

informative sources of heterogeneity to investigate73. HVGs are selected by identifying 

those with the largest standardized variance, typically as determined via approaches such 

as variance-stabilizing transformation (VST)74.  By focusing on a subset of HVG (usually 

between 1000 - 5000 genes), the dimensionality of the data is reduced; nevertheless, even 

after feature selection, it remains quite high and additional measures must be taken for 

biological insight to be extrapolated73.   

While dozens of techniques can be implemented to lower the dimensionality of 

scRNA-seq data75, principal component analysis (PCA) is often employed to aid in 

summarizing the data76. In practice, PCA is a orthogonal linear dimensionality technique 

used to project gene expression for all single cells in a multidimensional space77. Multiple 

principal components (PCs) are calculated to summarize the variability observed in the 

gene expression data, typically on the HVGs. Genes whose expression exhibit the largest 

variation between cells will have the most impact on the resulting PCs. As a general 

trend, the first and second PCs capture the most variation observed in the data. 

Additionally, feature (gene) loadings are calculated, which are numeric values assigned 

to each gene that describes the influence or contribution its expression has in any given 

PC. These feature loadings are subsequently used to acquire cell embeddings, which 

represent the placement of each single cell in a lower dimensional PC space (Figure 5). 

The number of PCs to include during data analysis corresponds to how segregated the 

cells will be in PC space; however, as the vast majority of the variability is retained in the 

first 15-30 PCs, the inclusion of dozens of PCs beyond this range does not necessarily 
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enhance the capture of relevant information and would likely capture technical noise 

rather than meaningful biological heterogeneity. 

One of the main goals of performing scRNA-seq is to capture cellular 

heterogeneity with an endpoint of generating “clusters” comprised of multiple individual 

cells that have a similar gene expression profile. Collectively, clusters can represent a 

distinct cell type or cell state (e.g., an intermediary cell state between precursor cells and 

differentiated cells). In the lower dimensional, PC space, single cells group together (or 

separate apart) based on their gene expression profiles (Figure 5). To define these 

groups, a kNN (k-nearest neighbors) algorithm is applied to generate a network in which 

each cell is connected to a specified number of “nearest neighbors” (other cells) in a 

specified number of dimensions (e.g., k = 20 neighbors in 15 PCs). The algorithm first 

calculates the Euclidean distances between cells in a PC space, then for any given cell, 

the shortest (nearest) distances to other cells (neighbors) are identified.  

Using the kNN network, a shared nearest neighbors (SNN) network is 

subsequently generated. In the SNN, for every cell, the connections to its neighbors can 

be assigned a weight - the Jaccard similarity coefficient. Its calculation considers the 

number of connections a cell, and one of its neighbors, has in common72,78. Next, 

community detection algorithms, such as the Louvain algorithm, are applied to identify 

communities of single cells using the SNN78,79. In an iterative process, the Louvain 

algorithm functions to maximize the modularity of the identified communities of cells; it 

optimizes the best possible connections between communities and aggregates 

communities that are closely connected to form “clusters”78.  
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After the identification of cell clusters, visualizing the clusters in a meaningful 

way requires the use of another dimensionality reduction technique. PCA is classically 

defined as being a linear dimensionality reduction technique; it serves its purpose of 

lowering the dimensionality and summarizing the variance of gene expression across 

cells captured in the scRNA-seq data. However, PCA can falls short in effectively 

reducing the dimensionality into as few as two components, which is a prerequisite for 

endpoint interpretation and visualization of the scRNA-seq data71. To generate a visual 

representation of the identified cell clusters, accurate portrayal of the distinct spatial 

distributions between them must be achieved after reducing the dimensionality to such 

low levels (e.g., two dimensions)71. In order to adequately reproduce the global structure 

of scRNA-seq data, nonlinear dimensionality reduction methods are commonly used, 

such as t-SNE (t-distributed stochastic neighbor embedding)80 and UMAP (Uniform 

Manifold Approximation and Projection)81. Both methods function to project the single 

cells in the lowest dimensional space, but differ in how they mathematically represent the 

distances between cell clusters82. A contentious debate still remains in the single-cell field 

regarding which method performs better. While the use of either is accepted, some 

suggest that UMAP preserves the global structure of the data better than tSNE83, while 

others have refuted this notion and suggest that they both perform (and underperform) 

equally84. Nevertheless, nonlinear dimensionality reduction approaches ultimately yield 

essential output of scRNA-seq analysis: typically, 2D graphical representations of the 

processed scRNA-seq that captures heterogeneity, and ideally, distinct clusters of single 

cells. Subsequent differential gene expression analysis of the resulting clusters can assist 

in assigning cell type annotations.  
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Marker gene identification for the clusters is often achieved by quantifying the 

expression of each gene in all cells of a cluster and subsequently comparing expression 

across all clusters in a “global” analysis of gene expression. Comparison is typically 

performed using the log fold change of the average expression of genes for a cluster. A 

“pseudobulk” approach can used to aggregate (sum) the expression of each gene across 

all cells of a cluster for one sample. Pseudobulk approaches are employed in an attempt 

to more accurately represent transcriptomic variance observed between individual 

biological samples85,86. Sample-specific, pseudobulk profiles can subsequently be used for 

differential gene expression (DEG) analysis between cell types across samples86. 

Nevertheless, the identification of various cell types or cell states is achievable by 

comparing marker genes to current literature or other scRNA-seq annotation databases. 

 

1.4.4. Pseudotime Trajectory Analysis 

The identification of marker gene expression for clusters is easily achievable and 

is often suffice as an initial pass of characterizing the heterogeneity of cells captured in 

scRNA-seq data. However, typical approaches function to identify marker genes in what 

can be classified as a “static” analysis of gene expression and do not adequately capture 

the dynamic changes in expression underlying biological processes.  

Gene expression can be viewed as a continuum and temporal changes in gene 

expression can be quantified, for example, across a path of cellular differentiation in 

which an undifferentiated cell (e.g., stem cells or progenitor cells) transitions from one 

cellular state to ultimately become a fully differentiated cell type. Paths of differentiation 

can be mapped in scRNA-seq data, depending on the degree of cellular heterogeneity of 
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the captured cells (i.e., not a homogenous population of identical cells). Numerous 

scRNA-seq tools function to infer cellular trajectories, or “lineages,” which can be used 

to characterize paths of differentiation. The most popular tools operate in a reduced 

dimensionality space containing single cells (e.g., PCA) and then infer trajectories (e.g., 

Slingshot87, Monocle88); however, other tools operate in a gene-space (e.g., CSHMM89) or 

analyzing RNA transcript splicing patterns (e.g., RNA velocity via scVelo90)91.  

 In the context of trajectory inference in a reduced dimensionality space, 

trajectories are most commonly constructed using a minimal spanning tree (MST) 

approach91. MST is an algorithm that learns the most efficient network (tree) of 

contiguous connections of all nodes such that the sum of all distance-weighted edges 

(e.g., Euclidean distance) is minimized92. For example, Slingshot begins to infer 

trajectories in a multi-dimensional space by treating cell clusters as nodes, or “centroids,” 

which are subsequently used as input to generate a MST87,91. Next, simultaneous principal 

curves are fit to summarize the MST and individual cells are orthogonally projected to 

them; importantly, a curve can bifurcate to indicate cells diverging from a lineage87.  

From these curves, “pseudotime” values are subsequently obtained for each cell, 

which are singular values assigned to each cell and describes both its transcriptional 

progression and placement along its associated trajectory87. When multiple lineages are 

inferred, cells are assigned to a particular lineage based on weights, which are derived 

from their projected distance to any given trajectory87. The output of the trajectory 

analysis is a pseudo-temporal ordering of single cells along a trajectory. Additionally, 

trajectories can be graphically represented as smooth curves which subsequently can be 
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overlayed onto the single cells in a lower dimensional space (e.g., UMAP) in order to 

visualize their progression to various terminal cell fates.   

Trajectory inference enables the analysis of temporal gene expression along a 

resulting trajectory. Differential gene expression can be assessed across the entire breadth 

of a single trajectory, or between specific points, which can be defined by pseudotime. 

Additionally, more than one trajectory can be compared to identify differing 

transcriptional patterns underlying the cells traversing along them. TradeSeq93, for 

example, is a tool that relies on the pseudo-temporal ordering of cells on a lineage to 

interpret the continuous nature of gene expression.  

Ideally, a linear relationship would be observed between pseudotime and the 

expression of a gene; however, this is not always true and nonlinearity must be accounted 

for93–95. To overcome this challenge, generalized additive models (GAM) are often 

implemented. GAMs estimate nonlinear relationships between predictor (independent) 

variables and the response (dependent) variable via smoothing functions that attempt to 

summarize the data using curves96. For example, tradeSeq employs a GAM to model gene 

expression as a function of non-linear pseudotime. Smooth functions are inferred for gene 

expression along pseudotime for a trajectory. These smoothers provide the foundation for 

which temporal gene expression analysis can be performed. For example, pseudotime 

boundaries can be established to define a particular region of interest along an inferred 

smoother (for a specific trajectory), then gene expression from cells mapping to the start 

and end of the pseudotime boundary can be assessed for dynamic changes in expression. 

Thus, pseudotime trajectory analysis can effectively facilitate temporal gene expression 

investigations.  



 30 

 

1.4.5. Limitations 

While scRNA-seq may seem like the all-cure for high-throughput and high-

resolution transcriptomic studies, it will not single-handedly replace bulk transcriptomics 

at this point in time and is not without its limitations. A pitfall of scRNA-seq is the “zero-

inflated” nature of the data that yields a sparser matrix with zero values for the expression 

of some genes in a proportion of cells, which are colloquially known as “drop-outs”97. 

The reason for the occurrence of a drop-out in the resulting data is commonly attributed 

to technical reasons, such as low sequencing depth, inefficient capture, or poor 

amplification of a transcript98,99. Alternatively, some drop-outs may indicate the true 

absence of the transcripts, thus capturing valid biological signal98,99. As a result, zero-

inflated scRNA-seq can impact downstream analysis of the data, such as 

normalization.73,97 Numerous imputation methods have been developed to correct drop-

outs by estimating their expression values in an attempt to improve subsequent data 

analysis; however, the accuracy of imputation methods and whether or not the resulting 

improvement in transcriptomic signal recovery is enough to warrant such intervention are 

under scrutiny99,100. 

  Additionally, the most commonly used scRNA-seq methods are often confined to 

capturing only polyadenylated RNA species, namely protein-coding mRNA and long 

noncoding RNAs (lncRNA) that are polyadenylated101. Therefore, much of the remaining 

RNA diversity of a cell (e.g., microRNA (miRNA), small-interfering RNA (siRNA)) is 

not captured via conventional scRNA-seq data. Another limitation is that short-read 

sequencers (e.g., Illumina-based sequencers) are commonly used to generate data for 
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scRNA-seq studies. As such, cDNA fragmentation is a procedural requirement for 

samples to be eligible for sequencing, thus resulting in a library composed of small 

fragments of RNA transcripts for sequencing (300-600 bp in length)102,103 rather than full 

length RNA transcripts. Furthermore, only the 3’ (or 5’, depending on the kit used) of the 

fragments are amplified and subsequently sequenced102, thus limiting our abilities to 

identify all spliced isoforms of a given RNA transcript. Together, these procedural 

constraints and limitations of current scRNA-seq technology impede a comprehensive 

analysis of the entire cellular transcriptome in one pass; however, great strides are being 

made to overcome these hurdles, such as long-read scRNA-seq. Nevertheless, the ability 

to resolve even a fraction of the transcriptome of a single cell (in a throughput fashion) 

has revolutionized biomedical research. 

 

1.5. Using the Diversity Outbred mouse population as a model to study bone  

One of the motivating goals of biomedical research is to have the work be 

applicable to humans and ideally, translational such that it may lead to clinical 

interventions that improve human health (e.g., vaccines or novel therapeutics)104. 

However, performing studies exclusively in human subjects is often not feasible; 

therefore, the establishment of mice as an animal model for human biomedical research 

began decades ago to provide researchers with the means to experimentally investigate 

biological phenomena related to human diseases105,106. In the context of bone biology 

research, mice have been used extensively as a model organism to study various aspects 

of skeletal development, bone cell function, remodeling, fracture healing, and the 

manifestation of osteoporosis107. Moreover, substantial similarities exist between human 
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and murine skeleton108, making it a logical choice of model organism for research 

investigating bone-related phenotypes and diseases. 

 Genetics studies are popular in a murine model due to the feasibility of genetic 

manipulations required to generate engineered mouse strains, along with other practical 

elements that enable these studies, such as the shorter life cycle, more control over 

breeding and subsequent genetic composition of progeny, and lower cost of animal 

maintenance109–111. For some genetic studies, inbred mouse strains are employed, namely 

for the purposes of generating a reproducible and nearly identical population of mice112, 

which is pertinent for certain experiments where genetic variation must be controlled113. 

Conversely, outbred populations are generated for the very purpose of retaining genetic 

variation across individual mice and may be more applicable to modeling genetic 

diversity representative of a human population113. The Diversity Outbred (DO) mouse 

population, for example, was developed as a genetically diverse stock of mice to enable 

studies to characterize the genetic basis of complex human diseases114,115.  

DO mice were first generated in 2009 from randomized breeding of mice from eight 

founder mice strains: A/J, CAST/EiJ, C57BL/6J, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ, 

WSB/EiJ, and 129S1/SvImJ112. Over the course of dozens of generations, individual DO 

mice have genetic backgrounds that exhibit a diverse assortment of allelic combinations 

derived from the founders115. Quantitative trait measurements and other phenotypes in the 

DO can be associated to specific regions of genetic variation across individual mice, 

which are typically the output of QTL analyses. A prerequisite to such studies is 

genotyping of the mice, which is feasibly achieved with high-density SNP arrays, such as 

the Mouse Universal Genotyping Array (MUGA)116; the GigaMUGA panel employs a 
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total of 143,259 markers spanning all mouse chromosomes to sufficiently discriminate 

between the DO founder strains116. These SNP arrays are subsequently used to 

reconstruct the haplotype of each mouse; for any given interrogated genomic locus, there 

are 36 genotype possibilities117. QTL analyses in the DO have been successful in 

identifying loci associated with complex and disease-related traits,112 including those 

associated with bone. In our recent work19, we utilized the DO mouse population to 

highlight specific haplotype backgrounds that are associated with quantifiable bone 

strength-related traits, as well as the expression of specific genes.  

In a large cohort of DO mice (N = 619), Al-Barghouthi and colleagues, captured 55 

skeletal phenotypes commonly used to evaluate bone, ranging from histomorphometry to 

microarchitecture and mechanics assessments19. Additionally, bulk transcriptomics 

(RNA-seq) data was collected from the femoral diaphyseal bone for a fraction of the 

cohort (N = 192). Using these data, they identified 28 significant QTLs for 20 of the 

traits, some of which reside in loci that were associated with more than one trait. In 

particular, one locus on chromosome 1 was associated with traits such as cross-sectional 

size (e.g., medial–lateral femoral width), cortical tissue mineral density, and cortical 

porosity. At this locus, QTL effects for one DO founder background, WSB/EiJ, was 

identified and potentially responsible for influencing the aforementioned traits. Upon 

performing an eQTL analysis, they identified 18 genes with eQTL that colocalized with 

six of the loci from the trait-QTL analysis; the locus on chromosome 1 was one of these 

high-priority loci. Candidate genes mapping to this locus included Immediate Early 

Response 5 (Ier5) and Quiescin sulfhydryl oxidase 1 (Qsox1), both of which indicated 

strong negative eQTL effects in mice with a WSB/EiJ background at this locus. Results 
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from this study portray the utility of the DO as a mouse population in the discovery of the 

genetic underpinnings of complex traits, particularly those implicated in bone. 

 

1.6. BMSCs and in vitro osteogenic differentiation 

One of the essential functions of most skeletal bone is to house and protect the 

bone marrow cavity, which contains the microenvironments where resident stem cells 

give rise to a diverse array of cell types critical to human function. In the marrow, two 

populations of stem cells exist: hematopoietic stem cells (HSCs) and mesenchymal stem 

cells (MSCs), both of which have the capacity for self-renewal and multipotency118–121, or 

the ability to subsequently differentiate into lineage-specific cell types. Because the use 

of the phrase “MSC” can be considered contentious in the field, as the characterization 

and precise definition of these cells is currently under scrutiny118, BMSCs (bone marrow-

derived stromal cells) will be the nomenclature used henceforth to refer those non- 

hematopoietic multipotent cells derived exclusively from the bone marrow122. HSCs can 

differentiate into most cells canonically associated with the immune system, like myeloid 

(e.g., monocytes, granulocytes) and lymphoid (e.g., B-lymphocytes, T-lymphocytes) 

lineage cells. Conversely, BMSCs can differentiate into cells belonging to a variety of 

lineages that are responsible for the formation of bone, fat, and cartilage tissues. 

Hematopoietic lineage cells have important roles in bone biology and disease, such as 

osteoclasts (derived from the myeloid lineage) that are responsible for the reabsorption of 

bone123,124, while the mesenchymal lineage cells give rise to multiple other bone-relevant 

cell types, such as osteoblasts, which are responsible for synthesizing new bone matrix123; 
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osteocytes, that embedded in bone and orchestrate bone maintenance123; chondrocytes, 

which generate cartilage125; and adipocytes, that store lipids126. 

Adipocytes account for a large proportion of the total bone marrow volume in 

adult humans (up to 70% depending on age)127,128, which is similarly observed in mice128; 

however, multipotent cells are far less abundant. For example, BMSCs are roughly 

estimated to comprise 0.01-0.1% of cells in bone marrow in humans120. Despite their low 

abundance in the marrow, a tremendous amount of research has been done to investigate 

the localization of BMSCs in the various compartments or niches of the bone marrow 

cavity121,129. In fact, they are an essential component of the perisinusoidal niches 

necessary for HSC maintenance in the marrow121, thus portraying another critical function 

of MSCs.  

As mentioned previously, BMSCs are capable of differentiating into both 

osteogenic (e.g., osteoblasts, osteocytes) and adipogenic (e.g. adipocytes) cells, and the 

commitment of BMSCs down either lineage has been implicated in osteoporosis and 

alterations in bone remodeling130. Further, the relationship and homeostatic balance of 

osteogenic and adipogenic cells have a clear connection to disease. For example, marrow 

adipose tissue (MAT) content has a well-defined inverse correlation with BMD131. While 

this relationship is observed in healthy patients (independent of age, sex, and bodily fat), 

in osteoporotic individuals, marrow adiposity is noticeably higher132. Thus, the aforenoted 

cell types, among the others derived from BMSCs, are essential to understand as they 

relate to the manifestation of various bone-related diseases, like osteoporosis. 

In the context of clinical and biomedical research, to overcome the challenge of 

the scarcity of BMSCs in raw marrow, several methods have been established to enrich 
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for sufficient quantities of them133. Among such methods include the strategy of 

exploiting the unique adherent property of BMSCs as the basis for their selection in vitro 

(Figure 6). Adherent selection and subsequent expansion during culturing typically 

yields homogenous populations of BMSCs from marrow. This method is regarded as 

feasible and timely134, lending to its popularity as a method for BMSC enrichment. 

Further, BMSCs can be induced to subsequently differentiate into a wide array of cell 

types upon the application of various culture mediums135. A well-established approach to 

accumulating osteogenic cells is by applying an osteogenic culture medium (containing 

components such as, Ascorbic acid, B-glycerophosphate, and Dexamethasome) to the 

BMSCs in vitro, thus yielding mature, mineralizing osteoblasts and potentially osteocyte-

like cells embedding in mineralized nodules (Figure 6).  

Accumulating adequate quantities of BMSCs and osteogenic cells is an essential 

prerequisite for studies aiming to characterize them, particularly via “-omics” technology; 

however, one obvious limitation is that by taking an in vitro approach, we do not 

replicate a perfect in vivo environment, in terms of biochemical composition or physical 

properties of bone tissue135. Differences in the expression of discrete genes or alteration 

of cellular signaling pathways could be affected by culturing cells in vitro135. 

Notwithstanding, as we and others show, in vitro usage of BMSCs and osteogenic cells 

remains a valid approach to characterizing many aspects of bone cell biology and 

findings can often be applicable or connected to in vivo phenomena136–139. 

  



 37 

1.7. Summary 

Osteoporosis is a complex disease characterized by low bone mineral density 

(BMD), which can contribute to skeletal bone fragility and a drastic increase in the risk of 

bone fracture. While genome-wide association studies (GWAS) for BMD have 

discovered over 1100 associations, understanding how causal genes drive disease is 

convoluted by a lack of other molecular data (e.g., transcriptomics) for bone cell 

phenotypes. These “-omic” level datasets are essential to enhancing the utility of BMD 

GWAS. To overcome this challenge, we perform single-cell RNA-seq (scRNA-seq) on a 

large population of bone-relevant cell types (BMSC-OBs) from genetically diverse mice 

(DO mice) in order to characterize the transcriptomic landscape of these cells, elucidate 

gene co-expression networks (GCNs), and contextualize BMD GWAS-implicated genes 

to provide high priority targets for future investigations.  

1) In Chapter 2, we demonstrate that bone marrow-derived stromal cells 

cultured under osteogenic conditions (BMSC-OBs) from the Diversity 

Outbred (DO) mouse population can be used as an in vitro model to generate 

single-cell transcriptomics data (scRNA-seq) for mesenchymal lineage cells in 

large numbers of mice (and potentially humans). We assessed the impact of 

the single-cell isolation procedure (used to liberate cells from a heavily 

mineralized matrix) and also compared the cell clusters generated in our in 

vitro model to cell types isolated directly from bone in vivo. Further, we made 

use of multiple scRNA-seq analytical tools to rigorously characterize the 

BMSC-OBs (e.g., SCENIC and CELLECT).  
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2) In Chapter 3, we showcase the scalability of our model and perform 

subsequent single-cell analyses from a larger sample pool. We perform 

scRNA-seq on BMSC-OBs from 80 DO mice in the same fashion as we 

previously described. We perform a pseudotime trajectory analysis to infer 

paths of differentiation across the cell clusters. Additionally, we perform a 

temporal gene expression analysis and identify genes with predicted roles in 

BMSC-OB differentiation. Further, in a cell type-specific expression 

quantitative trait locus (eQTL) analysis, we identify two eGenes (Pkm, 

S100a1) that can also be associated with significant differences in cell type 

proportion in mice with the genetic background driving the eQTL effect at 

each eGene locus. To inform BMD GWAS, we perform a cell type-specific 

network analysis. We aimed to contextualize genes with significant BMD 

GWAS associations and predict Fgfrl1 and Tpx2 as novel regulators of BMD.  

3) In Chapter 4, I provide suggested future experiments to validate the roles of 

predicted targets in Chapter 3. Additionally, I provide my final thoughts, 

considerations, and future directions for the project.  

 

The work described in this dissertation aims to showcase examples of “systems-

level” approaches to investigate the genetics of osteoporosis and highlight targets with 

putative roles in human BMD by 1) leveraging our in vitro approach to generating 

osteogenic cells (BMSC-OBs) from the DO mouse population, 2) generating large-scale 

“-omics” data (scRNA-seq), and 3) performing a diverse array of single-cell analyses. 
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1.8. Chapter 1 - Main Figures 

 
Figure 1. Expression Quantitative Trait Loci (eQTL) can affect the expression of 
genes in a cell type-specific fashion.  
Based upon the genotype of a sample, transcriptomics data can be acquired from 
biological tissues of interest to resolve the effects of genetic variation on the expression 
of specific genes. Single-cell transcriptomics can resolve cell type-specific eQTLs to 
further characterize the effects of indiviudal samples’ genotype on the expression of 
genes. These genetic effects can be observed in specific cell types, but not others. For 
example, SNPs (associated with a specific genotype) found in a promotor region for a 
specific gene in osteocytes (brown cell) may only exert an observable effect on the 
expression of the gene in osteocytes, as opposed to adipocytes (yellow). Made with 
Biorender.  
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Figure 2. Splicing Quantitative Trait Loci (sQTL) can affect isoform-specific gene 
expression patterns. 
Upon acquiring either bulk or long-read RNA sequencing data, isoform-specific gene 
expression can be resolved from samples of interest. Genetic variation associated with the 
samples’ genotype can induce their effects on the biological process of splicing, resulting 
in a number of various events that can affect transcript expression, diveristy, abundance, 
etc. For exmaple, an aberrant splicing event can occur as a result of SNPs in donor sites 
of specific exons of expressed transcripts for a gene. In samples with genotypes confering 
such genetic variation, the isoform-specific gene expression patterns will be altered; the 
abundance and ratio of specific transcript isoforms can be skewed. Made with Biorender. 
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Figure 3. Summary of preperation strategy for single cells using droplet-based 
scRNA-seq. 
Droplet-based strategies for scRNA-seq (e.g., 10X Genomics) employ microfluidics and 
oil-based chemistry to encapsulate indivudal cells in a GEM (Gel bead-in-Emulsion). The 
GEM bead contains a captured single cell along with a Gel bead (3’ protocol depicted here). 
The Gel bead is composed of oligonucleotides which function to hybridize to 
polyadenylated RNA species (e.g., mRNA) released by the lysed single cell in the GEM. 
Additionally, the oligonucleotide contains specific sequences that are essential to 
downstream scRNA-seq analysis, such as the Barcode, Unique Molecular Identifier (UMI), 
and associated primer sequences. Made with Biorender.   
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Figure 4. Summary of Unique Molecular Identifer (UMI) de-duplication. 
UMI sequences index the RNA transcripts captured during scRNA-seq. They function to 
improve transcript quantification which can be skewed by PCR amplification during library 
construction. After sequencing, downstream analyses the UMIs enable de-duplication of 
exponentially amplified PCR duplicates. For example, Gene 1 is expressed in a cell to yield 
four transcripts, which are captured during scRNA-seq. During the PCR amplification 
process, some of the captured transcripts are duplicated in various amounts. During 
downstream bioinformatic analysis of the resulting scRNA-seq data, UMIs are collapsed 
to de-duplicate the sequenced transcripts. Therefore, the de-duplicated UMI counts yield a 
more accurate quantification of gene expression for Gene 1. Made with Biorender. 
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Figure 5. Single cells captured via scRNA-seq are projected in a multi-dimentional, 
Principle Component (PC) space to highlight variability in gene expression. 
During downstream bioinformatic analysis of scRNA-seq data, individual single cells are 
typically projected into a highly-dimentional PC space (three PCs shown here for 
visualization purposes). Cells cluster together based upon their transcriptomic profiles; 
cells sharing similar gene expression signatures cluster together while variability in gene 
expression drives the seperation of groups of cells. Subsequent dimentionality reduction 
techniques are applied to summarize this multi-dimentional space for visualization 
purposes (e.g., Uniform Manifold Approximation and Projection, UMAP). Made with 
Biorender. 
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Figure 6. Overview of the BMSC-OB model. Bone marrow derived stromal cells 
(BMSCs) are extracted from the femurs of Diversity Outbred (DO) mice.  
These mutli-potent mesenchmyal stems cells are subseqently selected for and expanded in 
vitro (~3 days). Osteogenic differentiation culture medium is applied over the course of 
10-12 days to facilitate the differnetiation of the BMSCs towards bone cell fates (e.g., 
osteoblasts (OB), osteocyte-like cells). BMSC-OBs are then released from their 
mineralized matrix using a single cell isolation procedure and prepared for droplet-based 
(e.g., 10X Genomics) scRNA-seq. Made with Biorender. 
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 Single-Cell Transcriptomics of Bone Marrow Stromal Cells in Diversity Outbred 

Mice: A Model for Population-Level scRNA-Seq Studies 
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2.1. Abstract 

Genome-wide association studies (GWASs) have advanced our understanding of 

the genetics of osteoporosis; however, the challenge has been converting associations to 

causal genes. Studies have utilized transcriptomics data to link disease-associated 

variants to genes, but few population transcriptomics data sets have been generated on 

bone at the single-cell level. To address this challenge, we profiled the transcriptomes of 

bone marrow–derived stromal cells (BMSCs) cultured under osteogenic conditions from 

five diversity outbred (DO) mice using single-cell RNA-seq (scRNA-seq). The goal of 

the study was to determine if BMSCs could serve as a model to generate cell type–

specific transcriptomic profiles of mesenchymal lineage cells from large populations of 

mice to inform genetic studies. By enriching for mesenchymal lineage cells in vitro, 

coupled with pooling of multiple samples and downstream genotype deconvolution, we 

demonstrate the scalability of this model for population-level studies. We demonstrate 

that dissociation of BMSCs from a heavily mineralized matrix had little effect on 

viability or their transcriptomic signatures. Furthermore, we show that BMSCs cultured 

under osteogenic conditions are diverse and consist of cells with characteristics of 

mesenchymal progenitors, marrow adipogenic lineage precursors (MALPs), osteoblasts, 

osteocyte-like cells, and immune cells. Importantly, all cells were similar from a 

transcriptomic perspective to cells isolated in vivo. We employed scRNA-seq analytical 

tools to confirm the biological identity of profiled cell types. SCENIC was used to 

reconstruct gene regulatory networks (GRNs), and we observed that cell types show 

GRNs expected of osteogenic and pre-adipogenic lineage cells. Further, CELLECT 

analysis showed that osteoblasts, osteocyte-like cells, and MALPs captured a significant 
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component of bone mineral density (BMD) heritability. Together, these data suggest that 

BMSCs cultured under osteogenic conditions coupled with scRNA-seq can be used as a 

scalable and biologically informative model to generate cell type–specific transcriptomic 

profiles of mesenchymal lineage cells in large populations. 

 

 
2.2. Introduction 

Osteoporosis is a disease characterized by low bone mineral density (BMD) and 

an increased risk of fracture140. Osteoporosis-related quantitative traits, such as BMD, are 

highly heritable141, and genome-wide association studies (GWASs) for BMD have 

identified more than 1100 independent associations10. The goal of BMD GWAS is to 

identify responsible causal genes142,143. However, this is often difficult because of 

challenges such as linkage disequilibrium between potentially causal variants143 and the 

observation that most associations implicate non-coding variation144. The generation of 

transcriptomics data and use of systems genetics approaches to interpret GWAS can 

address these limitations by assisting in prioritizing putatively causal genes for further 

investigation145,146 

The utility of transcriptomic data to inform BMD GWAS has been demonstrated 

through studies using approaches such as expression quantitative trait locus (eQTL) 

mapping and colocalization147–149, transcriptome-wide association studies 

(TWASs)29,150, and reconstruction of transcriptomic networks (e.g., gene-regulatory and 

co-expression networks)19,43,44. These studies have utilized bone, non-bone (e.g., the 

Gene Tissue Expression [GTEx] project)151, and mouse bone transcriptomic data. 

However, all of the transcriptomic data used to inform BMD GWAS to date has been 
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generated using bulk RNA-seq. These samples are a mixture of data derived from all 

cells associated with a particular microenvironment, and downstream data analysis is 

often constrained by the inability to definitively attribute transcriptomic signatures to a 

single cell type55. Further, signals from potentially rare cell types can be masked by the 

presence of more abundant cell populations152. As a result, there is currently a need to 

generate population-scale (i.e., hundreds of samples) cell type–specific expression data 

on cells directly relevant to bone to aid in the identification of causal BMD GWAS genes. 

In recent years, single-cell RNA-seq (scRNA-seq) has enabled the efficient 

generation of high-quality transcriptomes from individual cells153. ScRNA-seq can 

remedy the aforementioned challenges posed with bulk RNA-seq by enabling the 

generation of single-cell transcriptomic profiles from heterogeneous tissues or primary 

cell cultures. ScRNA-seq has provided significant insight into the landscape of bone cell 

types154–158. However, we still lack cost-effective approaches capable of generating 

scRNA-seq data at scale for key bone cell types. 

Here, we explored the use of bone marrow–derived stromal cells (BMSCs) 

cultured under osteogenic conditions (BMSC-OBs), a popular in vitro model of 

osteoblast differentiation, to address the above limitations by generating scRNA-seq data 

on cells of the mesenchymal lineage. We sought to explore technical challenges, cellular 

heterogeneity, and compare cultured cells to the same cells isolated directly from bone. 

We show that this approach not only enriches for osteogenic cells but also is a scalable 

approach capable of generating biologically informative cell type–specific transcriptomic 

profiles relevant to BMD GWAS. Our results suggest that scRNA-seq of BMSC-OBs has 

the potential to enable the large-scale generation of cell type–specific transcriptomic data 
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on mesenchymal lineage cells that can be used to inform genetic studies in mice and 

potentially humans. 

 

2.3. Materials and Methods 

2.3.1. Sample preparation and in vitro cell culture of BMSCs 

From a large cohort of diversity outbred (DO) mice characterized in Al-

Barghouthi and colleagues19, 5 mice (12, 45, 48, 50, 84) were selected randomly for in 

vitro culture of BMSCs and subsequent scRNA-seq. Bone marrow extraction and 

subsequent cell culture was performed as described in Al-Barghouthi and colleagues19. In 

brief, femurs were isolated and marrow was exuded by centrifuging at 2000g for 

30 seconds and suspended in 35 μL of fetal bovine serum (FBS, Atlantic Biologicals, 

Miami, FL, USA). After the addition of 150 μL of cold media (90% FBS, 10% dimethyl 

sulfoxide [DMSO; Thermo Fisher Scientific, Waltham, MA, USA]), marrow was 

triturated six times, placed into a Mr. Frosty Freezing Container (Nalgene, Rochester, 

NY, USA), and stored in liquid nitrogen for storage. In preparation for cell culture, 

samples were thawed at 37°C and resuspended in 5 mL of bone marrow growth media 

(MEM alpha [Gibco, Thermo Fisher Scientific], 10% FBS, 1% penicillin streptomycin 

[pen/strep, Gibco], and 1% glutamax [Gibco]). Samples were subjected to red blood cell 

lysis by resuspending in 5 mL of 0.2% NaCl for 20 seconds, then thorough mixing of 

1.6% NaCl. Cells were pelleted, resuspended in 1 mL bone marrow growth media, and 

cells from each mouse were cultured in separate wells of a 48-well tissue culture plate. 

Samples were incubated in 37°C, 5% CO2, 100% humidity incubator for 3 days. 

Thereafter, media was aspirated and replaced daily and adherent cells were allowed to 
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grow to confluence. After 6 days, cells were washed and underwent in vitro osteoblast 

differentiation for 10 days by replacing bone marrow growth media with 300 μL of 

osteogenic differentiation media (alpha MEM, 10% FBS, 1% pen/strep, 1% glutamax, 

50 μg/μL ascorbic acid [Sigma, St. Louis, MO, USA], 10 nM B-glycerophosphate 

[Sigma], 10 nM dexamethasome [Sigma]). 

 

2.3.2. Single-cell isolation procedure 

The isolation procedure outlined below was inspired by Hanna and colleagues159. 

Mineralizing cultures were washed twice with Dulbecco's phosphate-buffered saline 

(DPBS, Gibco). A total of 0.5 mL of 60 mM ethylenediaminetetraacetic acid pH 7.4 

(EDTA [Thermo Fisher Scientific], made in DPBS) was added to cultures and incubated 

at room temperature (RT) for 15 minutes. EDTA solution was aspirated, replaced, and 

cultures were incubated again at RT for 15 minutes. Cultures were washed with 0.5 mL 

Hank's balanced salt solution (HBSS, Gibco) and subsequently incubated with 0.5 mL 

8 mg/mL collagenase (Gibco) in HBSS/4 mM CaCl2 (Fisher) for 10 minutes at 37°C with 

shaking. Cultures were then triturated 10 times and incubated again for 20 minutes. 

Samples were then transferred to a 1.5 mL Eppendorf tube, centrifuged at 500g for 

5 minutes at RT, resuspended in 0.5 mL 0.25% trypsin–EDTA (Gibco), and incubated for 

15 minutes at 37°C. After trituration, samples were incubated for an additional 

15 minutes, after which 0.5 mL of media was added, incubated once more for 15 minutes, 

and centrifuged at 500g for 5 minutes at RT. Cultures were resuspended in 0.5 mL 

osteogenic differentiation media and cells were counted. After single-cell isolation, cells 
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from each of the five individual culture wells were pooled and concentrated to 800 

cells/μL in PBS supplemented with 0.1% BSA (bovine serum albumin). 

 

2.3.3. Single-cell analysis pipeline 

Pooled single cells were prepared for sequencing using the 10× Chromium 

Controller (10× Genomics, Pleasanton, CA, USA), as described in Al-Barghouthi and 

colleagues19. After the library was sequenced on the NextSeq500 (Illumina, San Diego, 

CA, USA), data were processed using 10× Genomics Cell Ranger toolkit (version 5.0.0) 

and reads were mapped to the GRCm38 reference genome160. Overall, 8990 cells were 

captured and data are available on the Gene Expression Omnibus (GEO) at accession 

code GSE152806. 

Seurat161 (version 4.1.1) was used for analysis of the scRNA-seq data. A Seurat 

object was generated with the inclusion of features detected in at least three cells and 

cells with at least 200 features detected. Souporcell162 (described below) was used to 

remove doublet cells. Additionally, cells with more than 5800 reads and less than 800 

reads were removed, as well as those cells with more than 10% mitochondrial reads. 

After filtering, 7357 cells remained for further analysis. The resulting object underwent 

standard normalization, scaling, and the top 3000 features were modeled from a variance 

stabilizing transformation (VST) using the Seurat “FindVariableFeatures” function. Cell-

cycle markers based on Tirosh and colleagues163 were regressed out using the 

“CellCycleScoring” and scaling functions. For subsequent dimensionality reduction, 14 

principal components (PCs) were summarized, which was the last PC in which the 

percent change in variation between the consecutive PCs was quantified to be more than 
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0.1%, as described in Piper and colleagues164. A kNN (k = 20) graph was created and the 

Louvain algorithm was used to cluster cells at a resolution of 0.22. Annotation of cell-

type clusters was performed manually based on differential gene expression analysis 

using the Seurat “FindAllMarkers” function (Supplemental Table S1). 

 

2.3.4. Bulk RNA-seq analysis 

Total RNA was extracted using a RNeasy Micro Kit (QIAGEN, Valencia, CA, 

USA) and poly-A selected RNA was sequenced via GENEWIZ (South Plainfield, NJ, 

USA). RNA-seq analysis was performed using a custom bioinformatics pipeline. Briefly, 

FastqQC165 and RSeQC166 were used to assess the quality of raw reads. Adapter trimming 

was completed using Trimmomatic167. Sequences were aligned to the GRCm38 reference 

genome160 using the single-nucleotide polymorphism (SNP) and splice aware aligner 

HISAT2168. Genome assembly and abundances in counts per million (CPM) were 

quantified using StringTie169. Differential expression analysis was performed using the 

DESeq2170 package in R. 

 

2.3.5. Integration of data sets via canonical correlation analysis (CCA) 

CCA171 in Seurat was used to integrate in vivo scRNA-seq data derived from 

Zhong and colleagues156 (1-, 1.5-, and 3-month time points) with the BMSC-OB in vitro 

data. The Zhong and colleagues156 data were first pre-processed in the same fashion as 

the BMSC-OBs scRNA-seq data set and clustered at a final resolution of 0.675 

(Supplemental Fig. S2). Cell types not present in the BMSC-OBs data set were removed 

from the Zhong and colleagues156 data in order to portray only osteogenic and adipogenic 
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lineage cells. After integration, the combined data set was analyzed as described in the 

single-cell analysis pipeline (above) and clustered at a final resolution of 0.22 

(Supplemental Fig. S5). 

 

2.3.6. Souporcell 

Upon performing Souporcell162 (version 2.0.0), barcoded cells identified as 

doublets were removed from the scRNA-seq count matrix during pre-processing of the 

data. Additionally, Souporcell was used to perform genotype deconvolution using the 

GRCm38 reference genome160. Five genotypically distinct clusters (genotypes) were 

inferred based on variants in the sequenced reads. Genotype clusters were assigned their 

corresponding DO mouse ID by comparing allele calls made by the shared variants 

captured between Souporcell and GigaMUGA arrays previously performed on all mice in 

the cohort. DO mouse IDs were assigned by making a pairwise comparison between each 

Souporcell genotype cluster and GigaMUGA array. The comparison yielding the highest 

percentage of matching allele calls indicated the identity/genotype of each mouse 

(Supplemental Table S7). 

 

2.3.7. Scenic 

pySCENIC172 (Single-Cell rEgulatory Network Inference and Clustering) (version 

0.11.2) was used to infer gene regulatory networks. A fully processed Seurat object 

containing cell-type annotations was transformed into a loom file by using SeuratDisk173 

(version 0.0.0.9019). The loom file was subsequently used as input to the SCENIC 

workflow172. In brief, gene regulatory networks (GRNs) were built using GRNBoost174 to 
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identify potential gene targets for each transcription factor (TF) based on co-expression. 

CisTarget175 was then used to select potential direct target genes of the governing TF of 

the co-expression modules (Supplemental Table S11). The activities of the final 

regulons were calculated using AUCell176 (Supplemental Tables S12 and S13). Regulon 

specificity score (RSS) is based on Jensen-Shannon divergence measurements, as 

described in Suo and colleagues177 (Supplemental Table S14). The most active and 

specific regulons as well as associated target genes were resolved for each cell-type 

cluster. 

 

2.3.8. CELLECT 

CELLECT178 (CELL-type Expression-specific integration for Complex Traits) 

(version 1.1.0) was used to identify likely etiologic cell types underlying complex traits 

of both the BMSC-OBs and Zhong and colleagues156 data sets. CELLECT quantifies the 

association between the GWAS signal and cell-type expression specificity using the S-

LDSC genetic prioritization model179. Summary statistics from the UK Biobank eBMD 

and Fracture GWAS10 (Data Release 2018) and cell-type annotations from each scRNA-

seq data set were used as input. Cell-type expression specificities were estimated using 

CELLEX(45) (CELL-type EXpression-specificity) (version 1.2.1). The CELLECT output 

prioritizes likely etiologic cell types for BMD (Table 1). 
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2.4. Results 

2.4.1. BMSC cultures grown under osteogenic differentiation conditions are 

heterogenous 

We isolated BMSCs from 5 DO mice (n = 1 male and n = 4 females). The DO is a 

genetically diverse outbred population derived from eight inbred laboratory strains114. We 

have previously used the DO to perform GWAS for bone strength traits19. BMSCs were 

cultured under osteogenic conditions for 10 days and cells generated mineralized nodules 

as previously shown in Al-Barghouthi and colleagues19 (Supplemental Fig. S1). After 

differentiation, cells were liberated from mineralized cultures and profiled using scRNA-

seq. After stringent pre-processing and quality control of the data (Materials and 

Methods), 17,457 genes were identified in 7357 cells across all 5 mice. Unsupervised 

clustering identified eight cell clusters ranging in size from 46 to 2367 cells (Fig. 1A). 

We manually annotated the cell-type identity of each cluster using the 

“FindAllMarkers” function in Seurat161 to highlight differentially expressed genes 

(DEGs) for each cluster relative to all other clusters (Supplemental Table S1). As a 

framework, we used the nomenclature of Zhong and colleagues156, who labeled, FACS-

selected, and sequenced single cells from bone marrow using Col2-Cre Rosa26 < lsl-

tdTomato > reporter mice156. In these mice, tdTomato (Td) labels cells spanning the 

mesenchymal lineage. From Td+ selected cells, three types of mesenchymal progenitors 

were identified: early (EMPs), intermediate (IMPs), and late (LMPs). None of the 

BMSC-OB clusters reported here had signatures of EMPs or IMPs (Fig. 1A); however, 

cluster 0 (32.2% of the cells) had high expression of marker genes associated with LMPs, 

such as Aspn, Timp3, Thbs2, and Itm2a (Fig. 1A, B). Clusters 1, 2, and 4 (49.7% of the 
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cells) all had signatures of cells in the osteoblast lineage. Mature osteoblasts (OB) in 

cluster 1 exhibited expression of Bglap and Mepe, whereas cluster 4 had a transcriptomic 

signature of osteocyte-like cells (Ocy) with high expression of Bambi and Sost (Fig. 1A, 

B). Cells in cluster 2 resembled an osteoblast progenitor (OBP) population differentiating 

into mature osteoblasts and expressed genes such as Sgms2, Ifitm5, and P4ha1 (Fig. 1A, 

B). Relative to the Zhong and colleagues156 data, we observed an enrichment in the 

proportion of mature bone cell types. In the BMSC-OB scRNA-seq data set, OBs and 

Ocy-like cells accounted for 29.1% and 5.6% of all sequenced cells, respectively, a 

notable increase from 8.0% (OB) and 0.9% (Ocy) in the Zhong and colleagues156 data set 

(Supplemental Fig. S2). Marrow adipogenic lineage precursors (MALPs), identified as a 

novel component of bone marrow in Zhong and colleagues156, were represented in cluster 

3 (accounting for 9.7% of the cells) and expressed known MALP markers (Cxcl12, 

Adipoq, H19, Hp, Lpl) (Fig. 1A, B). Clusters 5, 6, and 7 (8.3% of the cells) were cells not 

associated with the mesenchymal cell lineage and have transcriptomic signatures of 

immune cells derived from the hematopoietic cell lineage (Fig. 1A, B). The expression of 

select marker genes representative of all cell types were consistent with cell-type 

annotations (Fig. 1C). 

 

2.4.2. Cell clustering is robust to the effects of cell isolation 

The isolation of cells from their heavily mineralized matrix took ~2 hours, raising 

the possibility that the procedure itself could have an effect on gene expression, 

transcriptomic signatures, and downstream clustering of cells. To directly assess the 

effects of the single-cell isolation procedure, we performed a separate experiment in 
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which we generated two identical cultures of BMSC-OBs (10 days post differentiation as 

in the scRNA-seq experiment) from C57BL/6J mice (n = 7) (Fig. 2A). From one culture 

(bulk), we extracted RNA from the entire culture and performed RNA-seq. From the 

other culture (pooled single-cell bulk, psc-bulk), cells were harvested via the single-cell 

isolation procedure, pooled into one sample, and profiled using RNA-seq. Overall gene 

expression between the bulk and psc-bulk samples was highly correlated 

(r = 0.99, p < 2.2 × 10−16) (Fig. 2B). However, a total of 776 genes were differentially 

expressed (padj < 0.05) with a fold-change (FC) less than 0.5 and greater than 2.0 in the 

psc-bulk versus bulk samples (Supplemental Table S2). A PANTHER180 Gene 

Ontology (GO) enrichment analysis revealed that DEGs consisted of “acute inflammatory 

response” (GO:0002675, n = 11, p = 2.43 × 10−8) and “response to stress” 

(GO:0080134, n = 111, p = 4.96 × 10−19) signatures (Supplemental Table S3). Of the 776 

DEGs identified in the psc-bulk versus bulk samples, 684 (88%) were captured in the 

entire BMSC-OB scRNA-seq count matrix and 107 (14%) were quantified as a DEG 

(padj < 0.05, FC greater than 2.0 or less than 0.5) in any given cell cluster of the scRNA-

seq data (Supplemental Table S4). The majority of the expression of these DEGs are 

localized to hematopoietic immune cell clusters in the scRNA-seq data and are mediators 

of inflammation (eg, chemokines) or involved with immune cell activation (eg, cell 

surface or immunoglobulin receptors) (Supplemental Fig. S3, Supplemental Table S5). 

Of the 107 DEGs, 79 (74%) of them were expressed exclusively in the immune cell 

clusters (Supplemental Table S6). To evaluate the impact of the single-cell isolation 

procedures on cell clustering of the scRNA-seq data set, we removed all 776 DEGs from 

the scRNA-seq count matrix. Upon removal, a negligible effect was observed on the cells 
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clustering in Uniform Manifold Approximation and Projection (UMAP) space and six 

distinct cell clusters (five mesenchymal lineage cell clusters) were annotated, similar to 

the original UMAP (Fig. 2C). Only 8.1% of cells shifted from their original cell cluster 

assignments upon removal of the DEGs (Fig. 2D). Most of the cells with shifted 

assignments were located on the boundaries of cell clusters (Fig. 2D). These data indicate 

that gene expression is altered in a predictable manner by the cell isolation procedure but 

has little meaningful impact on cell clustering. 

 

2.4.3. Cell types isolated from BMSC-OBs are similar to their in vivo counterparts 

We next wanted to determine if mesenchymal cells generated in vitro were 

similar, in terms of global gene expression, to cell types isolated directly from bone. 

Zhong and colleagues156 performed scRNA-seq on Td+ bone marrow cells from mice at 

1, 1.5, and 3 months of age. We jointly processed the data from both experiments and 

integrated the data sets using canonical correlation analysis (CCA)171. Overall, the cells 

from both experiments displayed significant overlap (Fig. 3A). This was even more 

apparent when clusters were annotated and cell types (LMPs, MALPs, OBs, and Ocy-like 

cells) overlapped in UMAP space between the data sets (Fig. 3B). A notable difference 

between cell types was the absence of EMPs and IMPs in the cultured BMSC-OBs. 

However, an appreciable enrichment of osteoblast lineage cells, particularly in the OB 

population, was observed in the BMSC-OB data compared with the cells isolated directly 

from bone (Fig. 3B, C). Importantly, the overlap of cells from the two studies suggests 

few transcriptional differences as a consequence of cell culture and in vitro 

differentiation. 
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2.4.4. Transcriptomic profiles from scRNA-seq for individual cell types are robust 

One of our goals for future experiments will be to generate expression profiles for 

multiple mesenchymal cell types in large populations of mice (or humans) for use in 

downstream applications such as eQTL analysis or the generation of networks to inform 

human GWAS. To evaluate how well cell type–specific expression profiles from scRNA-

seq align with profiles generated via traditional bulk RNA-seq, we performed a 

correlation analysis between the expression profiles derived from each of the six defined 

cell types (five mesenchymal + one grouped immune cell cluster) examined in this study 

to bulk RNA-seq data (derived from psc-bulk data described above). We generated a 

“pseudobulk” profile (PB) from the entire scRNA-seq data by aggregating unique 

molecular identifier (UMI) counts for each gene across all cells to simulate a data set 

representative of one derived from bulk sequencing methods. Additionally, cell type–

specific PB profiles were generated by aggregating UMI counts for cells belonging to a 

specific cell type. A high correlation was observed between both the bulk/psc-bulk 

profiles and the PB profile generated for the entire scRNA-seq data set (r = 0.84 

and r = 0.85, respectively; p < 2.2 × 10−16) (Fig. 4A). We generally observed high 

pairwise correlations (r > 0.9) among osteogenic cell cluster PB profiles (LMP, OBP, OB, 

and Ocy) and between osteogenic clusters and MALPs (Fig. 4B). The immune cell 

cluster PB profile had a relatively lower correlation (r < 0.9) to both the osteogenic 

clusters and MALPs (Fig. 4B). Cell type–specific PB profiles were compared 

individually to the psc-bulk profile as well (Fig. 4B). As expected, the correlations were 
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similar to the correlation observed between the psc-bulk profile and the PB profile for the 

entire scRNA-seq data set (r = 0.85, Fig. 4A). 

Additionally, we estimated the minimum number of cells per cluster required to 

generate robust cell-type expression profiles by randomly selecting from 2 to 400 cells 

from each cluster, generating a PB profile (as described above), and subsequently 

calculating the correlation between each cell-type PB profile to the psc-bulk sample. 

Calculated correlations plateaued for all cell types at ~100 cells (Fig. 4C). These data 

indicate that aggregated data across at least 100 cells from a given cell type approximates 

data generated from bulk RNA-seq. 

 

2.4.5. Frequency of osteogenic cell types are highly variable across DO mice 

Because the BMSC-OB scRNA-seq data set consisted of multiple samples pooled 

into one, we used Souporcell162 for genotype deconvolution to assign a mouse-of-origin 

for each cell. Five genotypically distinct clusters (genotypes) were inferred by Souporcell 

from the scRNA-seq data based on SNPs captured in the sequenced cDNA. Genotype 

clusters were assigned to their corresponding DO mouse ID by comparing allele calls 

made for the variants captured between Souporcell and genotypes previously generated 

on all five DO mice using GigaMUGA genotyping arrays19,116. Of the 67,056 total 

variants identified by Souporcell, 0.87% (581) were also captured by the GigaMUGA 

arrays (143,259 total). DO mouse IDs were assigned based on the highest percentage (all 

~90%) of matching allele calls made upon pairwise comparison between Souporcell 

clusters and GigaMUGA arrays (Supplemental Table S7). Upon quantifying 

percent Xist expression in all single cells, we confirmed accurate Souporcell genotype 
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clustering of the male mouse in our cohort (Supplemental Table S8, Supplemental 

Fig. S4). After assigning a mouse-of-origin to all cells in the scRNA-seq data, we 

quantified differences in the frequencies of various cell types contributed by each mouse 

(Fig. 5A). For example, mouse 50 had a higher frequency of LMPs and MALPs and 

fewer osteoblasts and osteocytes compared with the other four mice (Fig. 5A, B). 

Additionally, we recorded a variety of phenotypic trait measurements on the five mice 

(Supplemental Tables S9 and S10); however, inferring correlation between cell-type 

proportions and trait metrics will require a larger sample size. Pooling samples for 

scRNA-seq, coupled with downstream genotype deconvolution, is an approach that is 

scalable for multi-sample input, which is necessary to reduce costs associated with 

performing population-level investigations. 

 

2.4.6. BMSC-OBs show expected gene regulatory networks 

Cell-type identification is largely based on the association of canonical and highly 

expressed genes within certain cell types; however, underlying gene regulatory networks 

(GRNs) provide insight into how expression is coordinated181. Moreover, GRN inference 

can be used to establish gene expression profiles for cell types of interest by elucidating 

which distinct transcription factors (TFs) are responsible for modulating the expression of 

downstream target genes181. We used SCENIC176 to better understand the GRNs that 

characterize the cell states in BMSC-OBs. The SCENIC analysis pipeline first generates 

regulatory modules inferred from co-expression patterns, which are used to form 

“regulons” consisting of a core TF that governs the expression of predicted target genes. 

Next, direct target genes are selected based on enrichment of the TF cis-regulatory motifs 



 62 

located upstream or downstream of target genes in the regulon (Supplemental 

Table S11). Across all individual cells, the activity of each regulon is quantified 

(Supplemental Table S12). 

We applied the SCENIC analysis pipeline to the BMSC-OBs and resolved distinct 

regulons associated with each cell cluster in the BMSC-OB data set (Fig. 6). Regulons 

were robust in activity (Fig. 6A, B; Supplemental Table S13) and specific for each cell 

type (Fig. 6C, D; Supplemental Table S14). For example, Sp7 (Osterix), a key TF 

known to be involved in osteoblast differentiation, was found to be more specifically 

associated and highly active in the OBP cell cluster (Fig. 6C, D). Similarly, we 

show Pparg is a highly active regulon and more exclusively associated with MALPs 

(Fig. 6C, D), consistent with its role as a master regulator of adipogenesis. This analysis 

suggests that not only do BMSC-OB cell types show similar transcriptomic signatures to 

the same cells isolated directly from bone, but also cell circuits (ie, GRNs) are similar. 

 

2.4.7. MALPs and osteogenic cells capture BMD heritability identified by GWAS 

We next used CELLECT178 to evaluate the relevance of identified cell types with 

regard to mediating the effects of GWAS. CELLECT is designed to use GWAS and 

scRNA-seq data to identify cell populations that are enriched for BMD GWAS 

heritability178. We applied CELLECT to the cell types identified in BMSC-OBs and those 

identified by Zhong and colleagues156. Gene expression specificity (ESμ), which is 

quantified as the marginal likelihood of a gene being specifically expressed in a given 

cell type178, was determined for each gene in each cell type across both scRNA-seq data 

sets (Supplemental Tables S15 and S16). We observed that genes with selective 
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expression in MALPs, OBs, and Ocy-like cells from both data sets were significantly 

(p < 0.05) enriched for BMD heritability (Table 1). In addition, IMPs and LMPs in the 

Zhong and colleagues156 data set were also significant. Non-mesenchymal lineage cells, 

which are mostly immune cells in both data sets, were not significant (Table 1). 

Interestingly, osteoclasts captured in the Zhong and colleagues156 data set were not 

identified as significant in the CELLECT analysis (Table 1). 

 

2.5. Discussion 

A considerable challenge faced upon analyzing GWAS is identifying the causal 

genes impacted by significant associations. Integrating transcriptomics data has proven 

invaluable for accomplishing this goal. Colocalizing genetic variation impacting gene 

expression with GWAS associations can identify putative causal genes influencing 

disease. Moreover, integrating single-cell transcriptomics data can provide the cellular 

context in which causal genes are most likely to be impactful. In the context of 

osteoporosis research, the generation of population-scale transcriptomics data at single-

cell resolution would aid in gene discovery. Here, we demonstrate the use of BMSCs 

cultured under osteogenic conditions (BMSC-OBs) from the DO mouse population 

coupled with scRNA-seq can serve as a model to generate single-cell transcriptomics data 

of mesenchymal cell types relevant to bone. Further, we demonstrate the utility of the 

BMSC-OB model for feasibly generating population-scale scRNA-seq data in a cost-

efficient manner. 

A number of approaches have been used to profile individual bone cells182. These 

include scRNA-seq on whole bone marrow, using fluorescence-activated cell sorting 
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(FACS) on marrow to enrich for mesenchymal lineage cells, the digestion of bone 

combined with FACS, and FACS on lineage-specific reporter mice. These studies have 

provided important insights into the cellular landscape of bone and the identity of skeletal 

stem cells. However, none of these approaches were developed with the goal of 

investigating bone cells at the population scale in mice or humans. These approaches 

isolate a wide range of cells, many of which provide little insight in the context of 

informing BMD GWAS. Profiling non-relevant cells significantly increases cost and 

makes population screening less feasible. As an alternative, BMSC-OBs have several 

attractive attributes. First, it is simple, marrow is relatively easy to isolate from 

populations of mice, or even humans, and isolating BMSCs based on plastic adherence is 

cost-effective and straightforward. Second, we show that osteoblasts and osteocyte-like 

cells are some of the most relevant to BMD GWAS, and we were able to enrich for these 

cells by culturing under osteogenic conditions. Third, we do not need to use FACS or 

specific reporter mice, making it possible to perform this approach in any population of 

mice and potentially humans. 

We show that after subsequent culturing of BMSCs under osteogenic 

differentiation, there was an enrichment in the relative frequencies of osteoblasts and 

osteocyte-like cells compared with cells isolated in vivo using a mesenchymal lineage 

reporter in Zhong and colleagues156. Additionally, the model yields adipogenic progenitor 

cells and their transcriptomic signature is similar to the MALPs identified in Zhong and 

colleagues156. These cells are classified as a stable intermediary cell type along the 

adipogenic differentiation route after mesenchymal progenitors and before more mature, 

lipid-laden adipocytes (LiLAs)156. Although more cell heterogeneity was observed than 
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initially expected after adherent selection of BMSCs and in vitro osteoblast 

differentiation, the sequenced BMSC-OBs yielded by our model were enriched for 

mature osteogenic cells (OBs and Ocy-like cells), which we demonstrate are likely to be 

the most relevant for informing BMD GWAS. 

We addressed the technical challenges posed with our approach, such as the 

single-cell isolation procedure used to liberate BMSC-OBs from a highly mineralized 

matrix in vitro. This procedure consists of an ~2-hour process involving incubations with 

proteases and EDTA, raising the concern of technical effects impacting the integrity and 

quality of the isolated cells for scRNA-seq. In the bulk versus psc-bulk experiment, we 

sought to characterize the impact of the single-cell isolation procedure on gene 

expression. Despite the induction of inflammation/stress-related genes in the psc-bulk 

sample, the overall gene expression profiles between bulk and psc-bulk samples were 

highly correlated and any observed change in gene expression had a negligible impact on 

global transcriptomic signatures or downstream annotation of mesenchymal cell types. 

However, care should be taken when interpreting the expression of individual genes, 

especially those identified to be responsive to the isolation procedure. 

We also assessed the biological informativeness of BMSC-OBs by comparing 

them to the same cells isolated directly from bone. Upon comparison of both scRNA-seq 

data sets, we found that the transcriptomic signatures of BMSC-OB cell types did not 

substantially differ from the cells isolated by Zhong and colleagues156. Nevertheless, 

differences between the two data sets were observed, namely the absence of 

early/intermediate mesenchymal progenitor (EMP, IMP) populations in the BMSC-OB 

data set, which is likely due to the maturation of LMPs beyond EMP/IMP cell stages 
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during the in vitro osteoblast differentiation. Importantly, these results indicate that 

individual cell types in BMSC-OBs are similar, in the context of transcriptomic 

signatures, to their counterparts in bone. 

A valid concern of population-based scRNA-seq studies is cost associated with 

increasing scalability and sample throughput. Using BMSC-OBs, we address this 

challenge by pooling cells derived from multiple mice into a single sample for scRNA-

seq. Because each DO mouse is genetically unique, we were able to assign each cell to a 

mouse based on coding variants. Our approach to genotype deconvolution employed 

Souporcell to cluster cells using genetic variants detected in scRNA-seq reads to 

effectively associate a “mouse-of-origin” to each single cell. Our ability to pool cells 

from multiple mice before library preparation and sequencing, then deconvolute the data 

bioinformatically, significantly reduced costs associated with generating scRNA-seq data 

(via 10× Genomics technology) by approximately a factor of five, which will make 

population-based experiments in hundreds of samples more cost efficient. 

Highlighting significant variation in cell-type abundances is often valuable and 

provides insight into many biological contexts, such as differences between experimental 

conditions, patient samples, or tissues. Additionally, in future experiments with larger 

sample sizes, we will be able to correlate variation in cell-type proportions to bone 

phenotypes (eg, bone mass, bone strength, etc.) with effect sizes necessary to make 

informative conclusions. Although the sample size of our mouse cohort in this study was 

small (n = 5), we observed notable differences in cell-type frequencies between our mice. 

These differences likely reflect variation in cell-type composition of the starting BMSCs 

from each mouse and differences in the rate/efficiency of osteoblast differentiation 
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arising as a function of mouse-specific genotype and environmental effects. With this 

study serving as a proof-of-concept, BMSC-OBs feasibly permit scalability and increased 

sample throughput, which can enable population-level connections between cell-type 

abundance and many quantifiable phenotypes. 

A limitation to our approach is that in vitro culture of BMSC-OBs may have an 

impact on the expression of certain genes; however, we show that the transcriptomic 

landscape of our BMSC-OBs are not vastly different from in vivo–derived BMSCs, 

suggesting that plastic adherence does not have a large “global” effect on the 

transcriptome. Another potential limitation is that marrow samples were frozen 

immediately after extraction for storage; however, in vitro culturing and osteogenic 

differentiation of the cells were successful thereafter, indicating the single freeze–thaw 

had minimal impact on transcriptome integrity and cell viability. Additionally, Zhong and 

colleagues156 scraped and digested the endosteal surface for the extraction of cells, 

whereas our approach begins with a bone marrow flush and subsequent enrichment for 

BMSCs in vitro. Therefore, a limitation of the BMSC-OB model is that it does not 

capture all cell types relevant to bone, such as osteoclasts. However, it is important to 

note that in our CELLECT analysis, BMD heritability was not enriched in genes whose 

expression was more specific to osteoclasts from the Zhong and colleagues156 data set. It 

is unclear why osteoclasts were not significant and may be due to cross-sectional 

measures of BMD being more so a product of peak bone mass and osteoblast-mediated 

bone accrual than bone loss, a process driven by osteoclasts, or the fact that these were 

likely immature osteoclasts as mature cells would be too large to be captured for 

sequencing. Interestingly, one of the strongest signals from the CELLECT analysis was 
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enrichment of BMD heritability in MALPs. MALPs express high levels of Cxcl12, a 

marker of Cxcl12-abundant reticular (CAR) cells183. Although data suggest the existence 

of two subsets of CAR cells, each with either osteogenic or adipogenic potential, Zhong 

and colleagues suggest that most CAR cells with adipogenic potential are MALPs184. 

Future studies will be needed to clarify the precise nature of these cell types, but the 

CELLECT analysis suggests that a subset of BMD associations impacts genes 

influencing BMD through their expression in MALPs. 

Here, we described how the osteogenic differentiation of BMSCs can facilitate the 

generation of large-scale scRNA-seq data for mesenchymal lineage cells derived from the 

DO mouse population. Based on findings gathered here, the transcriptomic profiles 

generated from BMSC-OBs will serve as a valuable biological input for future genetic 

analyses. For example, cell type–specific, co-expression networks can be used as input to 

perform directed Bayesian network reconstruction and key driver analysis (KDA), as 

previously described in Al-Barghouthi and colleagues19. These subsequent analyses can 

aid in informing GWAS and highlighting putatively novel genes driving disease. We 

have demonstrated that the BMSC-OB model has the potential to facilitate more holistic 

genotype-to-phenotype investigations, which will aid in our understanding of the genetics 

of bone mass and lead to the identification of novel therapeutic targets to treat and 

prevent osteoporosis. 
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2.10. Chapter 2 - Main Figures 

Figure  1. ScRNA-seq of BMSC-OBs identifies multiple cell-types. 
(A) Uniform Manifold Approximation and Projection (UMAP) cell clusters of 7357 single 
BMSC-OBs isolated from five Diversity Outbred (DO) mice. Cell numbers and 
corresponding percentages are listed in parenthesis to the right of the annotated cluster 
name. LMP: = late mesenchymal progenitor cells; MALP: = marrow adipogenic lineage 
precursors; OBP: = osteoblast progenitor cells; OB: = osteoblasts; Ocy: = osteocyte-like 
cells; Hem: = Hematopoietic lineage cells. (B) Dot plot185 of some of the most highly 
expressed genes for all annotated cell clusters. The size of the dots are proportional to the 
percentage of cells of a given cluster that express a given gene while the color of the dot 
corresponds to the scaled average gene expression. (C) Feature plots portraying the 
normalized expression of select marker genes associated with each cell cluster. 
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Figure  2. Liberation of single cells from a heavily mineralized matrix in vitro has 
minimal impact on transcriptomic signatures of BMSC-OBs. 
 (A) Flow chart diagram portraying the design of the bulk versus. pooled single cell-bulk 
(psc-bulk) experiment in C57BL/6J mice (N = 7). Cultured BMSC-OBs were harvested 
and underwent either immediate RNA extraction (bulk) or the single-cell isolation 
procedure, pooled, and then subsequent RNA extraction (psc-bulk). Extracted RNA from 
both conditions was sequenced via traditional RNA-seq. Created with BioRender.com. (B) 
RNA read counts for the bulk and psc-bulk gene expression profiles were converted to 
counts per million (CPM) values, log2-transformed, and the average for each gene was 
calculated across all samples within each group (bulk and psc-bulk). Correlation (R = 0.99, 
p < 2.2 2 x × 10−-16) was performed using the subset of genes shared between the two 
profiles (N = 17,924). (C) ScRNA-seq UMAP clusters of BMSC-OBs derived from the 
five DO mice after removal of differentially expressed genes (identified from the psc-bulk 
vs. bulk experiment, 684 total genes) from the scRNA-seq count matrix. (D) Cells 
highlighted in red represent those that changed from their original cell cluster annotation 
as a result of removal of DEGs (8.1% of cells). 
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Figure  3. ScRNA-seq of BMSC-OB and scRNA-seq data derived from cells harvested 
in vivo cluster together and have few transcriptomic differences. 
(A) Overlap of 13,310 single cells in UMAP space after integration of both the BMSC-
OBs and Zhong and colleagues156 scRNA-seq datasets. Integration was performed using 
Canonical Correlation Analysis (CCA) and using only the osteogenic and adipogenic 
lineage cells from each dataset as input. The integrated data was processed in the same 
fashion as the BMSC-OBs scRNA-seq data (Methods) and clustered at a resolution of 0.22 
(Supplemental Fig. S5). (B) UMAPs of the integrated data and split based on dataset origin 
(BMSC-OBs or Zhong and colleagues156). Cells are labeled with their original cell 
annotations from either BMSC-OBs or Zhong and colleagues156 datasets. (C) Bar chart 
representing the proportion of each annotated cell cluster in the integrated data based on 
dataset origin (BMSC-OBs or Zhong and colleagues156). 
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Figure  4. Transcriptomic profiles of individual cell-types from scRNA-seq of 
BMSC-OBs are robust and representative of bulk RNA-seq data. 
(A) Correlations between the bulk, pooled single cell-bulk (psc-bulk), and pseudobulk gene 
expression profiles. A pseudobulk (PB) profile was generated from the entire BMSC-OB 
scRNA-seq dataset by aggregating Unique Molecular Identifier (UMI) counts, converting 
to counts per million (CPM), and log2-transforming the counts. Counts for the PB, bulk, 
psc-bulk gene expression profiles were performed using the subset of genes shared between 
all three profiles (N = 13,920). (B) Correlations between the psc-bulk and cell-type specific 
PB gene expression profiles. Cell-type specific PB profiles were generated for individual 
cell clusters in the same fashion described above. (C) Correlations between psc-bulk and 
cell-type specific PB profiles generated using different numbers of sampled cells. Cell-type 
specific PB profiles were generated from random sampling of cells from the cell-type 
cluster. Eight samples were taken, ranging in size from 2 to 400 cells, and profiles were 
correlated to the psc-bulk profile. 
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Figure  5. Cell-type frequencies captured by scRNA-seq are highly variable across 
individual DO mice. 
(A) Uniform Manifold Approximation and Projection (UMAP) of cell clusters of the 
BMSC-OB scRNA-seq dataset split based on the five Diversity Outbred (DO) mice (12, 
45, 48, 50, 84). (B) Stacked bar chart representing the proportion of each cell-type derived 
from each mouse. 
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Figure  6. SCENIC gene regulatory network (GRN) analysis reveals expected 
transcriptomic activity and validates the identities of cell-types in BMSC-OBs. 
(A) Binarized heatmap SCENIC regulon activity results, where “1” indicates active 
regulons; “0” indicates inactive regulons. (B) Heatmap of SCENIC results portraying the 
scaled average for regulon activity in each annotated cell cluster, where the color key from 
blue to red indicates activity levels from low to high, respectively. (C) Plots of the top five 
regulons with the highest specificity score (RSS) for each cell cluster. RSS is quantified 
from 0 to 1, where “1” indicates the activity of a regulon is exclusively specific to one cell-
type, while “0” indicates the lowest level of exclusivity. (D) Cell density plots portraying 
the regulon-weighted kernel density of select regulons for each cell cluster. Cell density is 
weighted by the activity of a given regulon in the single cells. Plots represent regulon 
activity by leveraging signal from cells that are more likely to have a given regulon active 
in their neighboring cells186. 
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2.11. Chapter 2 - Tables 

Table 1. CELLECT cell-type prioritization on all cell-types annotated in the BMSC-
OBs and Zhong et al. (2020) scRNA-seq datasets. 

scRNA-seq dataset Cell-type Beta Beta SE P-value 

Zhong et al. MALP 5.88 x 10-8 1.84 x 10-8 6.92 x 10-4 

Zhong et al. OB 4.80 x 10-8 1.56 x 10-8 1.05 x 10-3 

Zhong et al. Ocy 5.91 x 10-8 2.15 x 10-8 3.03 x 10-3 

BMSC-OBs Ocy 5.70 x 10-8 2.16 x 10-8 4.18 x 10-3 

BMSC-OBs MALP 4.86 x 10-8 1.86 x 10-8 4.57 x 10-3 

Zhong et al. IMP 3.61 x 10-8 1.68 x 10-8 1.57 x 10-2 

Zhong et al. LMP 3.09 x 10-8 1.71 x 10-8 3.55 x 10-2 

BMSC-OBs OB 6.24 x 10-8 3.56 x 10-8 3.98 x 10-2 

Zhong et al. EMP 2.86 x 10-8 1.79 x 10-8 5.52 x 10-2 

Zhong et al. CH 1.96 x 10-8 1.38 x 10-8 7.81 x 10-2 

Zhong et al. Mural 9.12 x 10-9 1.66 x 10-8 2.91 x 10-2 

BMSC-OBs LMP -4.57 x 10-9 2.04 x 10-8 5.89 x 10-2 

BMSC-OBs OBP -5.85 x 10-9 1.77 x 10-8 6.30 x 10-1 

Zhong et al. Erythrocyte -8.07 x 10-9 1.73 x 10-8 6.79 x 10-1 

Zhong et al. Mono -3.03 x 10-8 1.60 x 10-8 9.71 x 10-1 

Zhong et al. MF -2.98 x 10-8 1.52 x 10-8 9.75 x 10-1 

Zhong et al. EC -2.20 x 10-8 1.10 x 10-8 9.77 x 10-1 

Zhong et al. B-cell -3.47 x 10-8 1.63 x 10-8 9.83 x 10-1 

Zhong et al. OC -4.66 x 10-8 1.55 x 10-8 1 

Zhong et al. Granulo -3.56 x 10-8 9.95 x 10-9 1 

BMSC-OBs Hem -5.90 x 10-8 1.36 x 10-8 1 

Zhong et al. T-cell -6.45 x 10-8 1.35 x 10-8 1 

Zhong et al. HSC -6.28 x 10-8 1.28 x 10-8 1 

Zhong et al. GP -5.44 x 10-8 1.11 x 10-8 1 
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Note: Beta is regression effect size estimate for given annotation. Beta SE is the standard error for the regression 
coefficient. The p value is the one-sided test (beta >0) association between bone mineral density genomewide 
association study signal heritability and each annotated cell type. Any p values <0.05 are in bold. B cell = B 
lymphocyte; CH = chondrocyte; EC = endothelial cell; EMP = early mesenchymal progenitor; GP = granulocyte 
progenitor; Granulo = granulocyte; Hem = hematopoietic lineage cells; HSC = hematopoietic stem cell; 
IMP = intermediate mesenchymal progenitor; LMP = late mesenchymal progenitor; MALP = marrow adipogenic 
lineage precursors; MF = macrophage; Mono = monocyte; Mural = mural cells; OB = osteoblast; OBP = osteoblast 
progenitor; Ocy = osteocyte; OC = osteoclast; T cell = T lymphocyte. 
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3.1. Abstract 

Genome-wide association studies (GWASs) have identified many sources of 

genetic variation associated with bone mineral density (BMD), a clinical predictor of 

fracture risk and osteoporosis. Aside from the identification of causal genes, other difficult 

challenges to leveraging findings from GWAS include characterizing the roles of predicted 

causal genes in disease and providing additional functional context, such as the cell type 

predictions or biological pathways in which causal genes operate. Leveraging single cell 

transcriptomics (scRNA-seq) can assist in informing BMD GWAS by linking disease-

associated variants to genes and providing a cell type context in which these causal genes 

drive disease. Here, we use large-scale scRNA-seq data from bone marrow–derived 

stromal cells cultured under osteogenic conditions (BMSC-OBs) from Diversity Outbred 

(DO) mice to generate cell type-specific networks and contextualize BMD GWAS-

implicated genes. Using trajectories inferred from the scRNA-seq data, we identify 

networks enriched with genes that exhibit the most dynamic changes in expression across 

trajectories. We discover 21 network driver genes, which are likely to be causal for human 

BMD GWAS associations that colocalize with expression/splicing quantitative trait loci 

(eQTL/sQTL). These driver genes, including Fgfrl1 and Tpx2 (along with their associated 

networks), are predicted to be novel regulators of BMD via their roles in the differentiation 

of mesenchymal lineage cells. In this work, we showcase the use of single-cell 

transcriptomics from mouse bone-relevant cells to inform human BMD GWAS and 

prioritize genetic targets with potential causal roles in the development of osteoporosis. 
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3.2. Introduction 

Osteoporosis is a complex disease characterized by low bone mineral density 

(BMD), bone fragility, and an increased risk of fracture140. BMD is a highly heritable trait 

and a significant clinical predictor of osteoporotic fracture4,141. Increasing our 

understanding of the genetic basis of osteoporosis and BMD is critical for the development 

of approaches for disease treatment and prevention. Genome-wide association studies 

(GWAS) have identified thousands of genetic variants putatively influencing BMD. The 

largest BMD GWAS to date discovered over 1,100 associations10. However, the challenge 

lies in pinpointing causal genes, which has impeded the translation of genetic findings into 

novel therapies.  

A number of approaches exist to identify genes responsible for GWAS 

associations29,147,149,150. Most rely on population-based “-omics” data145, which are scarce 

for human bone, to connect associations to causal genes. However, most approaches do not 

provide information on how causal genes impact “systems-level” function146. To address 

these limitations, we recently used co-expression networks generated from mouse bone 

transcriptomic datasets to inform BMD GWAS. The idea is simple – genes that play a 

central role in the regulation of a complex trait are often functionally-related and 

functionally-related genes are often co-expressed41. For example, we generated gene co-

expression networks using RNA-seq data from mouse cortical bone to identify potential 

causal genes, such as MARK3 and SPTBN143. In a similar study, we generated networks on 

mouse calvarial osteoblasts using RNA-seq data and identified four novel GWAS-

implicated genes associated with osteoblast differentiation and predicted regulators of 

BMD (e.g., CADM1, B4GALNT3, DOCK9, and GPR133)44. Recently, we extended our use 
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of co-expression networks and used a Bayesian approach to generate directed networks 

using cortical bone RNA-seq data from 192 Diversity Outbred (DO) mice. We discovered 

19 novel genes (and their associated networks), such as SERTAD4 and GLT8D2, which are 

likely causal for human BMD GWAS associations19. 

To date, our analyses have been solely reliant on informing GWAS using networks 

generated from heterogeneous bulk transcriptomics (RNA-seq) datasets from bone. 

Leveraging single-cell transcriptomics (scRNA-seq) data, however, offers the added 

benefit of resolving the transcriptomic profiles of discrete cell type populations. Using 

scRNA-seq data can provide additional context to inform GWAS by predicting the specific 

cell types in which causal genes and their associated networks operate; however, generating 

scRNA-seq data on bone-relevant cell types at the population-scale (i.e., hundreds of 

samples) is an essential prerequisite. In recent work, we characterized the BMSC-OB 

model (bone marrow-derived stromal cells cultured under osteogenic conditions) from a 

small cohort of mice and assessed its utility for the generation of population-scale scRNA-

seq data136. The BMSC-OB model effectively enriches for mesenchymal lineage cells (e.g., 

mesenchymal progenitors, osteoblasts, osteocyte-like cells) at single-cell resolution. These 

cell type-specific transcriptomic profiles can be leveraged in  network analyses to prioritize 

and infer the function of putatively causal GWAS genes, particularly in the context of 

mesenchymal cell differentiation. Here, we showcase the scalability of this model and 

generated scRNA-seq data of BMSC-OBs from 80 Diversity Outbred (DO) mice to 

generate cell type specific networks in order to inform BMD GWAS. 

In this work, our goal was to prioritize and contextualize genes implicated by BMD 

GWAS using large-scale, scRNA-seq on bone-relevant cell types. We accomplished this 
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by using our previously established strategy of generating Bayesians networks19; however, 

here we do so in a cell type-specific fashion using scRNA-seq data. We subsequently 

prioritized networks based on their enrichment for genes exhibiting the most dynamic 

changes in expression across trajectories inferred from the scRNA-seq data, thus 

highlighting networks likely associated with the differentiation of BMSC-OBs. We then 

use these networks to prioritize genes with expression/splicing quantitative trait loci 

(eQTL/sQTL) which colocalize with BMD GWAS associations29,37. In doing so, this 

analysis provides additional support for a role of these genes in the regulation of BMD and 

highlights their potential roles in differentiation of cell types essential to bone tissue. 

 

3.3. Results 

3.3.1. BMSC-OBs derived from DO mice yield diverse cell types that are enriched for 

mesenchymal lineage cells 

We isolated BMSCs from Diversity Outbred (DO) mice (N=75 from the current 

study and N=5 from Al-Barghouthi and colleagues19 for a total of N=80) (N = 49 male and 

N = 31 females). The DO is a genetically diverse outbred mouse population114,115. We 

cultured BMSCs under osteogenic conditions and subsequently performed scRNA-seq, as 

described by Dillard and colleagues136. After stringent processing and quality control 

(Materials and Methods), the dataset consisted of 21,831 genes quantified across 139,392 

total cells. We manually annotated 15 clusters ranging in size from 270 to 27,291 cells and 

identified cell types of the mesenchymal lineage as well as various other cell types (Fig. 

1A, Supplementary Table S1). 
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Based on our prior BMSC-OB scRNA-seq study136, we expected to identify a large 

proportion of mesenchymal cells and a smaller fraction of non-mesenchymal cell types. 

Consistent with this hypothesis, clusters associated with mesenchymal lineages accounted 

for 74.14% of all cells (Fig. 1A). These included mesenchymal progenitor cells (MPCs), 

late mesenchymal progenitors (LMPs), osteoblast progenitors (OBPs), two mature 

osteoblast populations (OB1 and OB2), osteocyte-like cells (Ocy), and marrow adipogenic 

lineage progenitors (MALPs). The non-mesenchymal cell-types observed included 

macrophages, monocytes, granulocytes, T-cells, B-cells, endothelial cells, and osteoclast-

like cells (Fig. 1A). With regards to the mesenchymal cell types, the only differences in 

cell clusters relative to our previous report136 were the presence of MPCs and two mature 

osteoblast clusters. Interestingly, MPCs did not have transcriptomic profiles similar to 

other mesenchymal progenitor cells previously identified by our group and Zhong and 

colleagues156. All other mesenchymal cell types demonstrated specific expression of 

canonical marker genes (Fig. 1A, B).  

Upon comparing the two distinct osteoblast cell clusters, OB1 and OB2 (Fig. 1A), 

both clusters had ubiquitous expression of genes associated with mature osteoblasts (e.g., 

Col1a1, Bglap, Sparc, and Ibsp) (Supplementary Table S1). Interestingly, many of the 

“canonical” osteoblast markers were more highly expressed in OB1 compared to OB2 

(Supplementary Table S2). A PANTHER180 Gene Ontology (GO) analysis indicated that 

genes more highly expressed (|average log2FC| > 0.25, N = 467) in OB2 relative to OB1 

were enriched with genes associated with cellular response to hypoxia (GO:0071456, N = 

20, P = 2.30 x 10-13) (Supplementary Table S2, Supplementary Table S3). Additionally, 

we used CELLEX178 to calculate gene expression specificity (ESμ), which are metrics 
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assigned to each gene to quantitatively assess the specificity of its expression in a given 

cell type (Supplementary Table S4). We compared the top ESμ values for genes between 

OB1 and OB2 (Supplemental Fig. 1, Supplementary Table S5). Genes with high 

specificity in OB2 (ESμ > 0.8, N = 215) were also enriched for genes associated with 

cellular response to hypoxia (GO:0071456, N = 5, P = 2.27 x 10-3) (Supplementary Table 

S6). Among the hypoxia-related genes identified in both GO queries, which included 

Egln3, Ak4, Fndc1, Tbl2, and Mgarp, they exhibited more specific expression in OB2 

relative to OB1 (Supplemental Fig. 1, Supplementary Table S7).  

We next assessed the variability in cell type frequencies across DO mice by 

quantifying the proportions of each annotated cell type of the mesenchymal lineage. All 

other clusters, which mainly consisted of immune cells of hematopoietic origin, were 

aggregated into one group (Hem) for each mouse. We observed high variability in the raw 

proportional abundances of cell types derived from each mouse (Fig. 1C, Supplementary 

Table S8). For example, the proportions of osteoblasts (OB1 and OB2) varied significantly 

among individual DO mice (Fig. 1D). All mice used in the current experiment had been 

extensively phenotyped for a wide range of bone traits (microCT, histomorphometry, 

biomechanical bone properties, etc.) as part of a previous genetic analysis of bone 

strength19. We correlated cell type frequencies with bone traits, however, none of the cell 

type proportions were strongly correlated with any bone trait (Supplementary Table S9-

10). 
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3.3.2. Mesenchymal lineage cells are enriched in BMD heritability 

The primary goal of this work was to prioritize and contextualize genes 

implicated by BMD GWAS. As a first step towards this goal, we sought to determine the 

individual cell types identified in this study that are the most relevant to the genetics of 

BMD.  Using the BMD GWAS and the BMSC-OB scRNA-seq data, we performed a 

CELLECT178 analysis to identify cell clusters enriched for BMD heritability and 

observed that all mesenchymal cells were significantly (P < 0.05) enriched for BMD 

heritability (Fig. 1E, Supplementary Tables S11). None of the non-mesenchymal cells 

identified were significant (P > 0.05) (Fig. 1E). As a result, our downstream efforts using 

these data focused solely on mesenchymal cell types to inform GWAS. 

 

3.3.3. Generating mesenchymal cell type specific Bayesian networks to inform BMD 

GWAS  

We have previously shown that network-based approaches using bulk RNA-seq are 

powerful tools for the identification of putative causal genes identified via BMD 

GWAS19,43,44. Here, our goal was to apply these same approaches using the BMSC-OB 

scRNA-seq data to prioritize and contextualize genes we previously identified as being 

putative regulators of BMD29,37, such as those genes with human BMD GWAS associations 

that also colocalize with expression quantitative trait locus (eQTL; N=512) or splicing QTL 

(sQTL; N=732) in a tissue from Genotype-Tissue Expression (GTEx) project26. Genes 

identified in each study (or both) yield a list of high priority target genes (N = 1037). While 

GTEx does not currently contain data for bone tissue, eQTL can be shared across many 

tissues and may exert their effects in cell types resident to bone. Therefore, utilizing our 
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previous work, we hypothesized that generating cell type-specific networks would yield 

more biologically relevant representations of processes occurring within particular 

mesenchymal cell types. Additionally, by leveraging pseudo-temporal gene expression 

along inferred cell trajectories, our network analysis (Fig. 2) aims to identify driver genes 

of networks influencing BMD via their roles in mesenchymal cell differentiation. 

Our network analysis begins by partitioning genes into groups based on co-

expression by applying iterative weighted gene co-expression network analysis 

(iterativeWGCNA)187 to each mesenchymal cell type (Step 1, Fig. 2). In total, 535 modules 

were identified from the BMSC-OB scRNA-seq data, and the number of modules identified 

for each mesenchymal cell cluster ranged from 26 to 153 with an average of 76 modules 

per cluster (Supplementary Table S12, S13). We sought to infer causal relationships 

between genes in each cell type-specific co-expression module and subsequently identify 

networks involved in processes relevant to BMSC-OB differentiation. To this end, we 

generated Bayesian networks for each co-expression module, thus enabling us to model 

directed interactions between co-expressed genes based on conditional independence19 

(Step 2, Fig. 2). 

 

3.3.4. Identifying putative drivers of mesenchymal cell differentiation  

We hypothesized that many genes impacting BMD do so by influencing osteogenic 

differentiation or possibly bone marrow adipogenic differentiation, as suggested by the 

CELLECT analysis above. Therefore, the next step of our network analysis was to identify 

cell type-specific Bayesian networks enriched for genes potentially driving mesenchymal 

differentiation (Step 3, Fig. 2). To accomplish this, we first performed a pseudotime 
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trajectory analysis to infer paths of differentiation in the mesenchymal lineage cells. We 

resolved three pseudotime trajectories (two osteogenic, one adipogenic) originating from 

the MPC cell cluster and ending in either Ocy, OB2, or MALP cell fates (Fig. 3A). It is 

important to note that given the identification of multiple skeletal stem cells154,188–190, we 

do not view these trajectories as lineages, but rather “differentiation paths” (progenitor to 

mature and/or terminally differentiated cells) that are likely traversed by different subsets 

of skeletal stem cells.  

To identify genes likely impacting BMSC-OB differentiation, we used tradeSeq to 

identify genes that exhibit dynamic changes in expression along pseudotime93. Prior to 

performing the tradeSeq analysis, we parsed the pseudotime trajectories into regions that 

encompass cells associated with each cell type along their respective trajectories (Fig. 3B). 

We defined multiple cell type boundaries (nine in total) using pseudotime values, which 

represent points along a trajectory. The tradeSeq analysis was performed for each boundary 

(Supplementary Table S14).  For example, trajectories bifurcate in the LMP cell cluster 

(Fig. 3A); therefore, cells belonging to the LMP cluster can map to adipogenic and/or 

osteogenic trajectories depending on their placement along pseudotime. Between a cell 

type boundary, cells spanning a specific cluster (e.g., LMP) and mapping to a specific 

lineage (e.g., osteogenic trajectory) are used as input to analyze gene expression between 

the start and end points of the cell type boundary (e.g., LMP_to_OBP). We analyzed gene 

expression within the established cell type boundaries for all trajectories and identified 

genes that exhibit the most significant differences in expression between the start and end 

points of the cell type boundaries. The total number of significant trajectory-specific 

tradeSeq genes (Padj ≤ 0.05) ranged from 87 to 1697 across the 9 cell type boundaries 
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(Supplementary Table S14, S16-18). The expression of representative marker genes for 

all cell types as a function of pseudotime were consistent with boundaries defined for each 

cell type (Fig. 3C). 

To provide further support that tradeSeq-identified genes are enriched for genes 

involved in differentiation, we performed a cell type-specific expression quantitative trait 

locus (eQTL) analysis for each mesenchymal cell type. We identified 563 genes (eGenes) 

regulated by a significant cis-eQTL in specific cell types of the BMSC-OB scRNA-seq 

data (Supplementary Table S19). In total, 73 eGenes were also tradeSeq-identified genes 

in one or more cell type boundaries along their respective lineages (Supplementary Table 

S14). 

We hypothesized that if tradeSeq genes were responsible for driving mesenchymal 

differentiation, then the eQTLs that perturb their expression would also impact the 

proportion of cells at different stages along the cell trajectories. Despite being significantly 

underpowered for this analysis due to our relatively small sample size (N = 80), we 

identified two cell type-specific eGenes where the genotype responsible for the cis-eQTL 

effect was also associated with cell type proportions. The first of these genes was Pyruvate 

Kinase, muscle (Pkm), which was identified as a significant global tradeSeq gene (Padj = 

8.35 x 10-8; Supplementary Table S14, S15) associated with the transition from LMPs to 

OBPs along an osteogenic trajectory (Fig. 4A). Moreover, Pkm serves as an eGene in the 

LMP cell cluster (LOD = 9.72; Fig. 4B, Supplementary Table S19). Mice inheriting at 

least one Pkm PWK allele at this locus (N = 15) demonstrated lower Pkm expression (Fig. 

4C) and a notable reduction in mature osteoblasts (OB1) and osteocyte-like cells (Ocy) 
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proportions (P = 0.030 and P = 0.026, respectively), while LMP proportions were 

unaffected (Fig. 4D, Supplementary Table 20).  

Similarly, S100 calcium binding protein A1 (S100a1) was an OBP to OB1 

transition tradeSeq gene (Padj = 0.023; Fig. 4A, Supplementary Table S14, S15) and an 

eGene in the OBP cell cluster (LOD = 10.12; Fig. 4B, Supplementary Table S19). Mice 

inheriting at least one 129 allele at this locus (N = 30) had higher S100a1 expression, while 

the opposite was observed for mice inheriting NZO alleles (N = 14) (Fig. 4C). 

Additionally, 129 mice showed a significant decrease in LMP proportion and increase in 

OB1 proportion (P = 0.008 and P = 0.016, respectively) (Fig. 4D, Supplementary Table 

S20), while no significant differences were observed in cell type proportions among NZO 

mice (Supplementary Fig. 3, Supplementary Table S20). These data support the role of 

tradeSeq-identified genes in the differentiation of mesenchymal cell types.  

 

3.3.5. Identification of differentiation driver genes (DDG): 

We hypothesized that tradeSeq-identified genes involved in BMSC-OB 

differentiation would be highly connected and play central roles in various cell type-

specific Bayesian networks. In order to test this hypothesis and discover BMSC-OB 

differentiation genes potentially responsible for BMD GWAS associations, the next step 

of our network analysis leveraged the trajectory-specific tradeSeq genes identified for each 

cell type boundary (Supplementary Table S16-18) to identify differentiation driver genes 

(DDGs) (Step 3, Fig. 2). We identified DDGs by extracting subnetworks (i.e., large 3-step 

neighborhood; see Methods) for each gene in each cell type-specific Bayesian network and 

identifying those subnetworks enriched (Padj < 0.05) for lineage-specific tradeSeq genes for 
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the cell type boundary. The analysis identified 408 significant DDGs (Supplementary 

Table S21, S22-24). We performed a PANTHER180 GO analysis for the cell type 

boundaries yielding a sufficient number of DDGs and found that DDGs for the osteogenic 

cell type boundaries (LMP_to_OBP, OBP_to_OB1, OBP_to_OB2) were enriched for 

genes associated with the cell cycle (GO:0007049; N = 23, 18, 23; P = 1.12 x 10-6, 1.29 x 

10-13, 1.0 x 10-14, respectively) (Supplementary Table S25-27). The DDGs for the 

adipogenic cell type boundary (LMP_to_MALP, MALP_to_end) were enriched for genes 

associated with extracellular matrix organization (GO:0030198; N = 10; P = 1.62 x 10-7) 

and lipid metabolic processes (GO:0006629; N = 25; P = 1.83 x 10-11), respectively 

(Supplementary Table S28-29). Across all 408 DDGs, 49 were identified in one or more 

cell type boundaries as genes with a significant alteration (P < 0.05) of whole-body BMD 

when knocked-out/down in mice, as reported by the International Mouse Knockout 

Consortium (IMPC)45 (Supplementary Table S22-24).  

We used our previously generated list of potentially causal BMD GWAS genes 

(N=1037) to subsequently prioritize the DDGs (Step 4, Fig. 2). Of the 408 DDGs, 21 DDGs 

in one or more cell type boundaries were genes that have BMD GWAS associations that 

colocalize with sQTL/eQTL. The majority of these DDGs were identified in LMPs along 

both the osteogenic (LMP_to_OBP) and adipogenic (LMP_to_MALP) trajectories (N = 10 

and 6, respectively; Supplementary Table S21, S30). The remaining DDGs were 

identified in OBPs along both osteoblast trajectories (OBP_to_OB1, OBP_to_OB2; N = 1 

and 3, respectively) and MALPs (MALP_to_end; N = 6). Additionally, 3 of the 21 DDGs 

are IMPC genes that exhibit a significant alteration of BMD (Supplementary Table S21, 

S30).  
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3.3.6. Network analysis predict Fgfrl1 and Tpx2 as novel regulators of BMD: 

Of the 21 prioritized DDGs and their associated networks, we identify two DDGs 

that putatively impact human BMD via their roles in LMP differentiation along either an 

adipogenic (Fgfrl1) or osteogenic (Tpx2) trajectory. Based on our previous work, both 

Fgfrl1 (fibroblast growth factor receptor-like 1) and Tpx2 (TPX2 microtubule nucleation 

factor) were identified as genes with significant human BMD GWAS associations that also 

colocalized with eQTL identified in the cultured fibroblast and Testis GTEx tissues, 

respectively29. The Fgfrl1 network was enriched for tradeSeq-identified genes (N = 6 

genes, Padj = 7.5 x 10-3) for LMPs along an adipogenic trajectory (Fig. 5A). The Tpx2 

network was enriched for tradeSeq-identified genes (N = 9 genes, Padj = 5.7 x 10-7) for 

LMPs along an osteogenic trajectory (Fig. 5B). An increase in the expression of all 

tradeSeq-identified genes was identified for each network (Fig. 5C-D, Supplementary 

Table S16, S18); their expression patterns were consistent with the cell type boundaries in 

which they were identified via tradeSeq (Fig. 5C-D). Additionally, Tpx2 exhibited a 

significant alteration of BMD in both male and female mutant mice (Genotype P-value = 

1.03 x 10-3) from IMPC (Fig. 5E). Four of the genes in the Tpx2 network were kinesin 

family (Kif) motor protein genes191: Kif4, Kif11, Kif15, Kif23. In the Fgfrl1 network, many 

genes can be associated with adipocyte function (e.g., Lpl, Plpp3, Igfbp4)192–194 and the 

maintenance of cilia (e.g., Cfap100, St5 (Denn2b), Mark1)195–197.  
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3.4. Discussion 

BMD GWAS has been successful at identifying thousands of SNPs associated with 

disease; however, the identification of the causal genes and defining their functional role 

in disease remains challenging. The integration of “-omics” data, particularly 

transcriptomics, can assist in overcoming this challenge. Leveraging transcriptomics data 

has proven invaluable to informing GWAS, as demonstrated in studies that use this data to 

perform eQTL mapping, transcriptome-wide association studies (TWASs), and co-

expression/gene-regulatory network prediction. Genetic variation impacting causal genes 

are often colocalized with GWAS associations, thus providing a potential mechanism 

through which disease manifests via perturbations in causal gene function or expression. 

While bulk RNA-seq data has been the foundation of such analyses, leveraging scRNA-

seq data can provide valuable biological context by predicting the cell type in which causal 

genes are affected. To inform BMD GWAS, the generation of population-scale 

transcriptomics data at single-cell resolution in bone-relevant cell types can assist in the 

discovery of novel gene targets. Here, we leverage our previously established BMSC-OB 

model and perform scRNA-seq on 80 DO mice to generate single-cell transcriptomics data 

of mesenchymal cell types relevant to bone. Using this scRNA-seq data, our goal was to 

prioritize putative causal genes and provide a biological context in which GWAS-

implicated genes potentially cause disease, at cell type-specific resolution. Through our 

temporal gene expression and network analyses, we identified 21 networks governed by 

predicted differentiation driver genes (DDGs) with a corresponding human BMD GWAS 

association colocalizing with eQTL/sQTL in a GTEx tissue.   
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We demonstrate that the BMSC-OB model serves as an effective method to enrich 

mesenchymal lineage cells, particularly bone-relevant cells. We characterized cells from 

80 mice and identified both osteogenic and adipogenic cells derived from the mesenchymal 

lineage, such as two populations of osteoblasts (OB1 and OB2), osteocyte-like cells (Ocy), 

and MALPs. Our trajectory inference analysis identified three distinct trajectories in which 

mesenchymal progenitor cells give rise to both osteogenic and adipogenic trajectories, thus 

portraying biologically relevant and known paths of differentiation of mesenchymal 

progenitor cells. Temporal gene expression was analyzed along each trajectory, in a cell 

type-specific fashion, to identify genes that were changing the most as a function of 

pseudotime (tradeSeq-identified genes). Subsequent cis-eQTL analysis indicated that the 

expression of some tradeSeq-identified genes were also associated with DO haplotype at 

the eGene locus, such as Pkm and S100a1. Further, the DO haplotype responsible for the 

eQTL for these two eGenes could also be associated with the relative proportion of cell 

types. While instances such as these were rare to identify, they illustrate that the potential 

consequence of genetic variation impacting the expression of tradeSeq-identified genes 

may be observed in the abundances of certain cell types. Nevertheless, these results indicate 

a role of tradeSeq-identified genes in the process of differentiation. 

To inform BMD GWAS, we utilized the scRNA-seq data in a network analysis to 

contextualize causal genes (and their associated network) by predicting the cell types 

through which these genes are likely acting. Towards this goal, we generated cell type-

specific Bayesian networks from our BMSC-OB scRNA-seq data. Our approach was 

similar to our previous network analyses where bulk RNA-seq data was leveraged to 

identify genes with strong evidence of playing central roles in networks19,43,44. In contrast, 
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here we utilized scRNA-seq data to identify DDGs and prioritize networks based on the 

likelihood (Padj < 0.05) that they are involved in the differentiation of mesenchymal lineage 

cells (based on network connections enriched for tradeSeq-identified genes determined 

from inferred trajectories). Leveraging our previous work29,37, we prioritized DDGs if they 

were genes with BMD GWAS associations colocalizing with human eQTL/sQTL in a 

GTEx tissue. Together, a gene being both a DDG and having BMD GWAS associations 

that colocalize with eQTL/sQTL is strong support of causality.  

We identified 21 DDGs and associated networks, some of which with little to no 

known prior connection to bone. We contextualize these causal genes and their networks 

by not only providing cell type predictions in which they likely operate, but also providing 

information regarding the biological processes they likely affect. For example, the Tpx2 

network was identified in LMPs differentiating along an osteogenic trajectory. Tpx2 is a 

microtubule nucleation factor that interacts with spindle microtubules during cellular 

division198. In our previous study, Tpx2 was identified as a gene that has BMD GWAS 

associations that colocalize with eQTL in the Testis GTEx tissue29. While GTEx does not 

maintain bone tissue, eQTL are shared across many tissues; therefore, non-bone eQTL may 

exert their effects in cell types associated with bone, such as LMPs, and evidence of a 

human eQTL effect indicates that genetic variation can modulate the expression of Tpx2. 

Additionally, when knocked out by IMPC, Tpx2 exhibited a significant increase in whole 

body BMD (excluding the skull); therefore, the regulation of this gene may have a role in 

BMD. In the surrounding neighborhood of the Tpx2 network, other genes are associated 

with cellular division as well, such as Topoisomerase 2A (Top2a) and the kinesin family 

(Kif) genes191,199. Taken together, these results indicate a potential role of Tpx2 as a 
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mediator of BMD via its role in microtubule maintenance during the expansion of 

osteogenic cell populations. 

Additionally, the Fgfrl1 network was identified in LMPs differentiating along an 

adipogenic trajectory. Fibroblast growth factor receptor-like 1 (Fgfrl1) is presumed to 

function as a decoy receptor that regulates FGF ligands200. Our previous study also 

identified Fgfrl1, which has BMD GWAS associations that colocalize with eQTL in the 

cultured fibroblasts GTEx tissue19. In the surrounding neighborhood of the Fgfrl1 network, 

Lpl, Plpp3, Igfbp4 have well-established roles in adipocyte function and metabolism192–194; 

however, other genes can be associated with cilia function, such as Cfap100, St5 (Denn2b), 

Mark1195–197. Interestingly, the maintenance of cilia is essential to the function of both 

LMPs and pre-adipocytes (MALPs) while mature adipocytes lack cilia201. Therefore, the 

modulation of ciliogenesis and/or cilia function may coincide with Fgfrl1 signaling. 

Additionally, given the prioritization of MALPs in the CELLECT analysis and the well-

established inverse relationship between marrow adiposity and BMD131,132, skewed 

balance of LMP differentiation toward adipogenic cell fates may affect BMD. In summary, 

the Fgfrl1 network  harbors genes involved in adipogenic function, including cilia, which 

may contribute to LMP differentiation along an adipogenic trajectory. Together, these 

results indicate a potential role of Fgfrl1 as a mediator of BMD via its role in adipogenic 

differentiation and maintenance of cilia. 

Analyses performed here are not without limitations to consider. A pitfall of 

scRNA-seq is the sparsity of the resulting data, which yields an increased frequency of zero 

values for the expression of some genes in a proportion of cells, also known as “drop-

outs”97. While statistical approaches can be employed to impute missing data, the accuracy 
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of such methods and whether or not the resulting improvement in transcriptomic signal 

recovery is enough to warrant such intervention is contentious99,100. However, this issue 

may be partially offset given the larger scale of the scRNA-seq performed in this study and 

the average expression approach performed for network and eQTL analysis. An additional 

limitation is that the BMSC-OB model does not capture osteoclasts, another cell type 

associated with bone tissue. Importantly, results from our CELLECT analysis indicate that 

BMD heritability was not enriched for genes whose expression was more specific to 

osteoclast-like cells. Although we likely captured immature osteoclasts in our model, as 

mature cells would be too large to be captured for sequencing, the low prioritization of the 

osteoclast-like cells may due to BMD being a product of osteoblast-mediated bone accrual 

than bone loss via osteoclasts. Lastly, while our study employed 80 DO mice, the issue of 

statistical power is still a limitation; however, we demonstrate that the BMSC-OB model 

is amenable to high throughput and the inclusion of hundreds of mice, thus statistical power 

will be improved in future studies.  

In summary, we showcase the use of large-scale scRNA-seq data to inform GWAS 

by performing a network analysis to contextualize BMD GWAS associations. Through the 

use of various single-cell analyses, we have expanded upon our understanding of the 

genetics of BMD. Our work exemplifies the power of single-cell transcriptomics coupled 

with systems genetics to discover the genetic determinants of disease. 
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3.5. Methods 

3.5.1. Sample preparation and scRNA-seq 

We prepared our samples in the same fashion as performed previously in Al-

Barghouthi and colleagues19. In brief, bone marrow was extracted from the femurs of 

initially 80 DO mice. BMSCs were grown to confluence after 3 days of incubation in 48-

well plates and then underwent in vitro osteoblast differentiation for 10 days with 

osteogenic differentiation media (alpha MEM, 10% FBS, 1% pen/strep, 1% glutamax, 

50 μg/μL ascorbic acid [Sigma, St. Louis, MO, USA], 10 nM B-glycerophosphate [Sigma], 

10 nM dexamethasome [Sigma]). After differentiation, single cells were liberated from 

mineralizing cultures via incubations with 60 mM ethylenediaminetetraacetic acid pH 7.4 

(EDTA [Thermo Fisher Scientific], made in DPBS), 8 mg/mL collagenase (Gibco) in 

HBSS/4 mM CaCl2 (Fisher), and 0.25% trypsin–EDTA (Gibco). After single-cell 

isolation, cells from mice were pooled into groups containing cells from five mice total and 

concentrated to 800 cells/μL in PBS supplemented with 0.1% BSA (bovine serum 

albumin). Pooled single cells were prepared for sequencing using the 10× Chromium 

Controller (10× Genomics, Pleasanton, CA, USA) with the Single Cell 3’ v2 reagent kit, 

according to the manufacturer’s protocol. Libraries were sequenced on the NextSeq500 

(Illumina, San Diego, CA, USA). 

 

3.5.2. scRNA-seq analysis pipeline 

The data was subsequently processed using the 10× Genomics Cell Ranger toolkit 

(version 5.0.0) using the GRCm38 reference genome160. Using Seurat161 (version 4.1.0), a 

combined Seurat object containing all cells was generated with the inclusion of features 
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detected in at least three cells and cells with at least 200 features detected. We used 

Souporcell162 (version 2.0.0) to deconvolve the genotypes of all mice and to remove 

doublet cells. Cells were assigned to their associated DO mouse by making a pairwise 

comparison between allele calls made by the shared variants captured between Souporcell 

and GigaMUGA genotype arrays generated for all mice in the cohort, as previous 

performed in Dillard and colleagues136. We filtered out cells with more than 6200 reads 

and less than 400 reads, as well as those cells with more than 10% mitochondrial reads. 

Further, cells were removed if they expressed greater than 20% Rpl and 15% Rps reads, 

which equates to cells approximately exceeding the 98 percentile. After filtering, 139,392 

cells remained and the resulting object underwent standard normalization, scaling, and the 

top 3000 features were modeled from a variance stabilizing transformation (VST) using 

the Seurat. Cell-cycle markers based on Tirosh and colleagues163 were regressed out using 

the “CellCycleScoring” and scaling functions. For subsequent dimensionality reduction, 

15 principal components (PCs) were summarized. Then, a kNN (k = 20) graph was created 

and the Louvain algorithm was used to cluster cells at a resolution of 0.5. Annotation of 

cell-type clusters was performed manually based on differential gene expression analysis 

using the Seurat “FindAllMarkers” function (Supplementary Table S1). 

For subsequent WGCNA and eQTL mapping, transcriptomic profiles for each cell 

type cluster were generated for each sample using a mean expression approach, as 

performed similarly by others202,203. For each sample contributing at least 5 cells to a given 

cluster, unnormalized unique molecular identifier (UMI) counts of gene expression for all 

cells in the cluster for the sample were averaged and then rounded to the nearest hundredth 

decimal place. A total of 80, 80, 77, 67, 50, 76, 80 mice contributed enough cells to the 
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MPC, LMP, OBP, OB1, OB2, Ocy, and MALP cell type clusters, respectively. Genes with 

non-zero expression values in fewer than 15 samples were removed. A total of 11971, 

15162, 14857, 13674, 13825, 14136, and 14534 genes remained for the MPC, LMP, OBP, 

OB1, OB2, Ocy, and MALP clusters, respectively. Samples were normalized by computing 

CPMs (counts per million) without log transformation for each gene using edgeR204 

(version 4.0.7), then transformed via VST using DESeq2170 (version 1.42.0), and quantile 

normalized using preprocessCore (version 1.60.2).  

 

3.5.3. Trajectory and tradeSeq Analysis 

Trajectory inference analysis was performed using Slingshot87 (version 1.8.0) on 

the mesenchymal lineage cell clusters (seven total) of the BMSC-OB scRNA-seq data. The 

starting cluster was set as the MPC cluster and trajectories were inferred using 15 PCs. 

TradeSeq93 (version 1.4.0) was used to analyze gene expression along the trajectories by 

fitting a negative binomial generalized additive model (NB-GAM) to each gene using the 

“fitGAM” function with nknots = 10, which was determined by using the “evaluateK” 

function. Prior to performing the tradeSeq analysis, the scRNA-seq data was downsampled 

to reduce the size of the dataset to approximately 10,000 cells (sampled at random across 

all seven clusters). 

All cell type boundaries were established to encompass on average 78% of cells of 

a cell cluster (Supplementary Table S14). To identify genes significantly changing 

between boundaries, we first performed a global test with tradeSeq to compare gene 

expression between lineages (two osteogenic, one adipogenic) in order to highlight genes 

exhibiting a significant difference in expression using the “startVsEndTest” function 
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(Supplementary Table S14, S15). Next, we performed tradeSeq to compare gene 

expression within each trajectory to highlight genes with a significant difference in 

expression between boundaries in a trajectory-specific fashion using the “startVsEndTest” 

function (Supplementary Table S14, S16-18). All tests were performed with the log2 fold 

change threshold (l2fc) = 0.5. For all global and lineage-specific tests, the P-values 

associated with each gene were adjusted to control the false discovery rate using the 

“p.adjust” function from the stats (version 4.2.1) R package and genes were filtered to 

include those with a Padj < 0.05.  

 

3.5.4. CELLECT Analysis 

CELLECT178 (CELL-type Expression-specific integration for Complex Traits) 

(version 1.1.0) was used to identify likely etiologic cell types underlying complex traits of 

both the BMSC-OBs scRNA-seq data (Fig. 1E, Supplementary Table S11). CELLECT 

quantifies the association between the GWAS signal and cell type expression specificity 

using the S-LDSC genetic prioritization model179. Summary statistics from the UK 

Biobank eBMD and Fracture GWAS (Data Release 2018) and cell type annotations from 

each scRNA-seq data set were used as input. Cell type expression specificities were 

estimated using CELLEX178 (CELL-type EXpression-specificity) (version 1.2.1) 

(Supplementary Table S4).  
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3.5.5. WGCNA 

Cell type-specific mean expression matrices (as obtained above) were used as input 

to generate signed co-expression network modules (Supplementary Table S12-13). 

IterativeWGCNA187 (version 1.1.6) was used from a Singularity container built from a 

Docker hub image205. A soft threshold (power) of 14, which exceeded a R2 threshold of 

0.85 for all cell type clusters, was selected for module construction (Supplementary Fig. 

2). Modules were generated using iterativeWGCNA with default parameters for the 

“blockwiseModules” function, a minimum module size of 20 genes, minCoreKME = 0.7, 

and minKMEtoStay = 0.5. 

 

3.5.6. Bayesian network learning 

Bayesian networks were learned from each of the cell type-specific modules of co-

expressed genes with the bnlearn (version 4.8.3). Gene expression matrices containing the 

genes for each module were used as input to the “mmhc” function which employs the Max-

Min Hill Climbing algorithm (MMHC) algorithm52 to learn the underlying structure of the 

Bayesian network. From the generated networks, igraph (version 1.6.0) was used to resolve 

3-step neighborhoods206. Nodes (genes) that were unconnected to a neighborhood or 

connected to only one neighbor were removed. Neighborhoods were filtered to include 

those with a size greater than 1 standard deviation from the mean across all neighborhoods 

generated for the network.  

DDGs (differentiation driver genes) are genes that yield large 3-step neighborhoods 

that are enriched (Padj < 0.05) with tradeSeq-identified genes for a given cell type boundary. 

We calculated whether each neighborhood contained more tradeSeq-identified genes (for 
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the neighborhoods’ associated cell type boundary) than would be expected by chance using 

the hypergeometric distribution (“phyper” function) from the stats (version 4.2.1) R 

package. The arguments were as follows: q: (number of neighbors in a neighborhood that 

are also tradeSeq-identified genes for a given cell type boundary) – 1; m: total number of 

tradeSeq-identified genes for a given cell type boundary; n: (total number of identified 

neighborhoods) – m; k: neighborhood size (total number of neighbors); lower.tail = false. 

P-values were adjusted to control the false discovery rate using the “p.adjust” function from 

the stats (version 4.2.1) R package. These pruning steps resulted in a total of 408 DDGs 

and associated networks for all cell types (Supplementary Table S21, S22-24).  

 

3.5.7. DO eQTL mapping 

Prior to performing the eQTL analysis, DNA was extracted from the tails of the 80 

DO mice, using the PureLink Genomic DNA mini kit (Invitrogen) and genotyped using 

the GigaMUGA array by Neogen Genomics (GeneSeek; Lincoln, NE). Processing and 

quality control of genotype data, including calculation of genotype/allele probabilities, was  

performed  as previously described in Al-Barghouthi and colleagues19. Cell type-specific 

mean expression matrices (as obtained above) for mesenchymal lineage clusters were used 

as input for the eQTL mapping, which was performed using a linear mixed model (LMM) 

via the “scan1” function from the qtl2117 (version 0.30) R package with allowances for the 

following covariates: sex, age at sacrifice (in days), weight, length, and DO mouse 

generation. To identify significant eQTL, we calculated a LOD (logarithm of the odds) 

threshold; for each cell type cluster, we chose 50 genes at random and then permuted them 

1000 times using the “scan1perm” function from qtl2. We established the LOD threshold 
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of 9.68 and 9.49 for the autosomal chromosomes and X chromosome, respectively, by 

taking the average of the median LOD across each cell type. A total of 563 eQTL that 

exceeded the LOD thresholds and were no more than 1 Mbp from the transcription start 

site of the associated eGene (Supplementary Table S19).  

 

3.5.8. Cell type proportion analysis 

To account for technical sources of variation often retained in scRNA-seq, cell type 

proportions were transformed using the arcsin (asin) square root transformation from the 

speckle207 R package (version 0.0.3). Tests of statistical significance were performed using 

the propeller t-test and ANOVA functions with default parameters. Sex of the mice and the 

batch each mouse was associated with for sequencing were modeled as covariates. 

Transformed values were used as input for computing tests of statistical differences of cell 

type proportions between mice, as well as correlation to phenotypic traits (Supplementary 

Table S8, S9-10).  
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3.9. Chapter 3 - Main Figures 
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Figure  1. Analysis of single cell RNA-seq (scRNA-seq) data for BMSC-OBs derived 
from 80 Diversity Outbred (DO) 
 (A) Uniform Manifold Approximation and Projection (UMAP) of 139,392 single cells 
(BMSC-OBs). Cell numbers and corresponding percentages for the fifteen (15) annotated 
cell clusters are listed in parenthesis to the right of the annotated cluster name. (B) Dot 
plot185 portraying representative and highly expressed genes for all annotated cell clusters. 
Dot color indicates the scaled average gene expression while the size of the dot corresponds 
to the percentage of cells of a given cluster that express a given gene. (C) The raw 
proportional abundances of seven (7) mesenchymal cell clusters and one (1) cluster (Hem) 
representing the remain cells (i.e., hematopoietic immune cells) across all 80 DO mice. (D) 
UMAP plots for mesenchymal lineage cell clusters for DO mouse 50 and DO mouse 233. 
(E) CELLECT (CELL-type Expression-specific integration for Complex Traits) cell type 
prioritization results. The seven (7) mesenchymal cell clusters were significantly enriched 
(P < 0.05) for BMD heritability and the MALP, Ocy, and OB1 cell clusters were 
significantly enriched after correcting P-value for multiple testing. All remaining cell 
clusters (i.e., hematopoietic immune cells) were not significant (P > 0.05) 
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Figure  2. Overview of the network analysis pipeline 
(A) Step 1: For all seven (7) of the mesenchymal lineage cell clusters (MPC, LMP, OBP, 
OB1, OB2, Ocy, MALP), cell type-specific co-expression modules were generated using 
iterative Weighted Gene Co-expression Network Analysis (iterativeWGCNA). Step 2: 
Bayesian networks were learned to generate directed networks and model causal 
interactions between co-expressed genes. Step 3: Differentiation Driver Genes (DDGs) 
were identified by extracting subnetworks (i.e., large 3-step neighborhood) for each gene 
in each cell type-specific Bayesian network and highlighting those subnetworks that were 
enriched (Padj < 0.05) for lineage-specific tradeSeq genes for the cell type boundary. Step 
4: DDGs (and associated networks) were prioritized if the DDG was identified previously 
as an expression/splicing quantitative trait loci (eQTL/sQTL) that colocalized with BMD 
GWAS associations. Made with Biorender. 
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Figure  3. Pseudotime Trajectory Inference analysis and establishment of cell type 
boundaries for tradeSeq analysis 
(A) Three (3) trajectories (two adipogenic, one adipogenic) were inferred from the 
mesenchymal cell clusters of the BMSC-OB scRNA-seq data using Slingshot. All 
trajectories originate from the MPC and end in either osteogenic (Ocy, OB2) or adipogenic 
(MALP) cell fates. (B) For each of the trajectories, cell type boundaries were generated 
using pseudotime values along the trajectories, which encompass the majority of cells of a 
cell type mapping to their respective trajectory. (C) Normalized gene expression of select 
genes associated with each cluster are represented in feature plots (top) and each gene 
plotted as a function of pseudotime (bottom) for all pseudotime trajectories (color 
corresponds to cell type annotation observed throughout). Vertical lines (red) represent the 
cell type (pseudotime) boundaries established for each cell type (label). The cell type 
boundary for OB1 and OB2 are represented as one red line/label for visualization purposes. 
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Figure  4. TradeSeq-identified genes associated with BMSC-OB differentiation 
exhibit eQTL effects.  
(A) Pkm was identified as a significant global tradeSeq-identified gene (Padj = 8.35 x 10-8) 
for LMP cells along an osteogenic trajectory (LMP_to_OBP) (left). S100a1 was identified 
as a significant global tradeSeq-identified gene (Padj = 0.023) for OBP cells along an 
osteogenic trajectory 1 (OBP_to_OB1) (right). (B) Plots indicating the cell type-specific 
expression quantitative trait loci (eQTL) signal for both Pkm and S100a1. A negative eQTL 
effect on Pkm expression was observed in LMPs for Diversity Outbred (DO) mice with a 
PWK haplotype background at the Pkm locus (left). A positive eQTL effect on the 
expression of S100a1 was observed in OBPs for DO mice with a 129 haplotype background 
at the S100a1 locus, while a negative effect was observed for NZO mice (right). (C) The 
expression of Pkm and S100a1 based on DO mouse (expression values transformed via 
variance stabilizing transformation (VST), as described in Methods). Genotype 
abbreviations correspond to DO haplotype background (legend) at the respective gene 
locus. Mice with at least one PWK allele (genotype abbreviation G) tend to have decreased 
expression of Pkm (left). Mice with at least one 129 allele (genotype abbreviation C) tend 
to have increased expression of S100a1, while NZO mice (genotype abbreviation E) have 
decreased expression (right). (D) PWK mice had a significant reduction in mature 
osteoblasts (OB1) and osteocyte-like cells (Ocy) proportions relative to other mice (P = 
0.030 and P = 0.026, respectively; t-test), while LMP proportions were unaffected. 
Asterisks represent any of the other haplotype backgrounds. 129 mice showed a significant 
decrease in LMP proportion and increase in OB1 proportion (P = 0.008 and P = 0.016, 
respectively; t-test), but OBP proportions were unaffected. No significant effects on cell 
type proportions were observed in NZO mice (Supplementary Fig. 3). 
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Figure  5. Fgfrl1 and Tpx2 are prioritized DDGs and putative drivers of 
mesenchymal differentiation. 
(A) Fgfrl1 was identified as a Differentiation Driver Gene (DDG) of a network for LMPs 
differentiating along an adipogenic trajectory. The network is enriched (Padj = 7.5 x 10-3) 
for trajectory-specific tradeSeq-identified genes for the LMP_to_MALP cell type 
boundary (Hnmt, St5, Igfbp4, Cyp1b1, Pdzrn4, Mark1). Fgfrl1 was previous identified as 
a gene that has BMD GWAS associations that colocalize with an eQTL in the cultured 
fibroblast GTEx tissue. (B) Tpx2 was identified as a DDG of a network for LMPs 
differentiating along an osteogenic trajectory. The network is enriched (Padj = 5.7 x 10-7) 
for tradeSeq-identified genes for the LMP_to_OBP cell type boundary (Tpx2, Top2a, Kif4, 
Iqgap3, Prc1, Kif11, Ect2, Sgo2a, Ube2c). Tpx2 is both a tradeSeq gene and previous 
identified as a gene that has BMD GWAS associations that colocalize with an eQTL in the 
Testis GTEx tissue. (C-D) An increase in the expression of all tradeSeq-identified genes 
coincides with the cell type boundary in which they were identified as significant along 
their respective trajectories. (E) Box plot displaying whole-body bone mineral density 
(BMD) measurements (excluding skull) from the International Mouse Knockout 
Consortium (IMPC) for Tpx2 mutant mice, which exhibited a significant increase in BMD 
(Genotype P-value = 1.03 x 10-3) in both male and female mice (N = 8 (M) and 8 (F) 
mutants; N = 2574 (M) and 2633 (F) controls) 
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4.1. Summary and Conclusions 

Genome-wide associations studies (GWAS) have been successful at identifying 

thousands of SNPs associated with disease; however, defining the role of putative causal 

genes identified from GWAS remains challenging. The integration of “-omics” data, 

particularly transcriptomics, can assist in overcoming this challenge. Leveraging 

transcriptomics data has proven invaluable to informing GWAS, as demonstrated in 

studies that use this data modality to perform eQTL mapping and co-expression/gene-

regulatory network predictions. Historically, bulk RNA-seq data has been the foundation 

of such analyses; however, leveraging scRNA-seq data can provide valuable biological 

context by predicting the cell types in which causal genes operate and influence disease. 

To inform BMD GWAS, the generation of population-scale transcriptomics data at 

single-cell resolution in bone relevant cell types can assist in the discovery of novel gene 

targets. Ultimately, this dissertation showcases the utility of an in vitro approach to 

generating single-cell transcriptomics for bone-relevant cell types derived from 

genetically distinct mice (i.e., the BMSC-OB model using DO mice) to inform human 

BMD GWAS. 

While the drug discovery pipeline is lengthy, taking dozens of years for an 

identified target to become clinically tested and approved for human use, novel strategies 

for target identification will continually be advanced upon. Drug targets supported by 

findings from GWAS studies tend to be more successful in their candidacy for treatment. 

Undertaking population scale genomic studies is essential to advancing medicine, 

understanding risk for disease, and discovering novel therapeutics. Additionally, the 

inclusion of other data, such as transcriptomics data, can further assist in the prioritization 
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of targets identified from GWAS. Here, the integration of these large-scale data enabled 

the contextualization of BMD causal genes through the use of single-cell transcriptomics 

(scRNA-seq). These high-priority target genes, now with newly provided biological 

context (e.g., predicted cell type context, biological process through which they operate), 

can be further prioritized and downstream efforts can be pursued to fully characterize or 

validate their predicted impact on BMD.  

Further, the work described here can be extended to contribute to research outside 

the context of osteoporosis and BMD. Analytical strategies taking single-cell 

transcriptomics data as input, such as the network analysis described in Chapter 3, can 

be used as a framework to assist in prioritizing other causal genes identified in other 

complex disease GWAS studies, such as coronary artery disease (CAD), neurological 

conditions/disorders, or diabetes. 

4.1.1. Assessing the utility of the BMSC-OB model 

In Chapter 2, we demonstrate that bone marrow-derived stromal cells cultured 

under osteogenic conditions (BMSC-OBs) from the Diversity Outbred (DO) mouse 

population can be used as an effective in vitro model to generate population-scale 

scRNA-seq data for mesenchymal lineage cells in large numbers of mice. Subsequent 

characterization of the cell types captured in the scRNA-seq data and other single-cell 

analyses (e.g., CELLECT and SCENIC) validate that the BMSC-OB model not only 

enriches for osteogenic cells, but yields biologically informative transcriptomic profiles  

of cell types relevant to informing BMD GWAS.  
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4.1.2. Leveraging scRNA-seq data from the BMSC-OB model to inform GWAS 

In Chapter 3, we showcase the scalability of the BMSC-OB model and perform 

scRNA-seq on 80 DO mice. The inclusion of more samples enabled robust 

characterization of the mesenchymal lineage cells captured by the BMSC-OB model. 

Further, we performed additional single-cell analyses, such as cell type-specific cis-eQTL 

analysis, temporal gene expression analysis, and a network analysis using the scRNA-seq 

data. Our goal was to prioritize putative causal genes and provide a biological context in 

which GWAS-implicated genes potentially cause disease, at cell type specific resolution. 

Coupling both the temporal gene expression, which identified putative genes driving 

differentiation, and network analyses, we identified many networks that had central genes 

with a corresponding human BMD GWAS association colocalizing with eQTL/sQTL in a 

GTEx tissue.  

 

4.2. Future Directions 

4.2.1. In vitro investigation of prioritized targets 

An overarching goal of performing multi-omic studies and other computational 

analyses is to generate a list of high priority targets with the most evidence of being 

causal to a disease or phenotype to investigate further. Subsequent investigations are 

ideally taken from a computational setting, to a wet laboratory setting and in vitro studies 

are often pursued as a first step. Wet laboratory strategies for target validation do not 

feature significantly in this dissertation, nevertheless, our laboratory is experienced in 

molecular biology techniques that can enable preliminary validations. In fact, much of 

our recently published work involved first using computational strategies to identify or 
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prioritize genetic targets (using various data modalities), then leverage a variety of 

approaches to observe or perturb the genetic target in vitro.  

4.2.2. RNAi-mediated knock-down 

Performing knock-down studies in vitro is a molecular biology strategy often 

employed to study the effects of perturbed or inhibited expression of a specific gene. 

RNA interference (RNAi) can be performed via short interfering RNA (siRNA), for 

example, to serve as an effective and reproducible approach to performing knock-down 

studies in vitro208. In brief, one approach to siRNA-mediated knock-down involves the 

introduction of siRNAs containing sequence that is complementary to the target mRNA. 

The RNA-induced silencing complex (RISC) binds the siRNAs, then, together they bind 

to the complementary target mRNA transcripts. The transcripts are subsequently cleaved 

and degraded, thus resulting in inhibited translation and decreased protein product of the 

target gene208. 

The idealized outcome of such studies could be increased/decreased expression of 

other genes, or potentially an observable cellular phenotype as a result of knock-down of 

the target. Before pursuing siRNA-mediated knock-down studies, however, other 

preliminary studies are performed to provide a more granular understanding of the 

expression of the target, such as investigating the isoform-specific (spliced transcripts) 

expression pattern of the gene of interest. For example, RT-qPCR (reverse transcription-

quantitative PCR) can be used to analyze the expression of various spliced isoforms of a 

target, however, a comprehensive understanding of the repertoire of potentially several 

spliced isoforms of the target would be required. Alternatively, in our more recent work, 

Abood and colleagues37 used long-read RNA-seq to delineate the isoform-specific 
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expression of various genes. Importantly, hFOBs were used as the cellular input for the 

study, an immortalized pre-osteoblast cell line, which were cultured under osteogenic 

culture medium in vitro. Samples for sequencing were taken across multiple points 

during their differentiation (days 0, 2, 4, and 10). The resulting long-read RNA-seq data 

captured the diverse array of spliced transcripts for many genes, such as Tpm2, which had 

primarily four spliced isoforms. They showed that upon the siRNA-mediated knock-

down of Tpm2 isoforms, altered accumulation of mineralized nodules occurred in vitro, 

an indication of the activity of mature osteoblasts during culturing. Knock-down of 

prioritized targets in vitro, followed by mineralization assays, is a pipeline leveraged 

frequently in our group; it serves as convincing preliminary evidence of causality of our 

prioritized genetic targets in the process of bone formation.  

In Chapter 3, we use a network analysis leveraging scRNA-seq to contextualize 

genes with BMD GWAS associations. In doing so, we predict the cell type in which these 

genes putatively act, along with the other network constituents that are co-expressed. Of 

the two high-priority targets identified, both Fgfrl1 and Tpx2 may have a role in BMD or 

osteogenic cell differentiation in the LMP cell cluster. In order to investigate the role of 

these genetic targets further, the aforementioned in vitro assays can be employed. 

Assessing Fgfrl1 and Tpx2 expression during osteogenic cell differentiation, perhaps in a 

time course experiment (12 days) where cell cultures are sampled at multiple time points, 

would provide a more granular perspective into their expression profiles. Characterizing 

the precise isoforms of targets may provide additional insight into the defined expression 

patterns of these targets during differentiation. Finally, siRNA studies could be 

performed to assess how perturbed expression of these targets, at the isoform-specific 
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level, can impact the ability of LMP differentiation or mineralization of osteogenic cells. 

The outcome of these studies would confirm the proposed roles of both Fgfrl1 and Tpx2 

in differentiation. Additionally, assessing the expression of the constituents of their 

respective networks would provide a systems-level understanding of the network as a 

result of siRNA-mediated knockdown of Fgfrl1 and Tpx2. Nevertheless, the 

aforementioned in vitro studies are essential and provide support for subsequent in vivo 

studies, which is another capability of our lab.   

 

4.2.3. Prime-editing 

Since the emergence of CRISPR-Cas System (clustered regularly interspaced short 

palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins), a multitude of 

subtypes and derivatives of this molecular assay have become wildly popular in the 

biomedical research community209. While the CRISPR-Cas System can take many 

functional forms, its most noteworthy capability is applied to genetically modify specific 

sites across the genome. For example, our lab is currently establishing expertise in 

performing Prime-editing, which supposably improves the accuracy of genome editing. 

The Prime-editing systems employ a modified Cas9 nickase fused with a reverse 

transcriptase, along with a guide RNA (pegRNA)210. Together, the Prime-editing system 

enables single base pair gene editing while improving upon shortcomings of traditional 

editing strategies, such as error-prone repair of double-strand breaks and propensity for 

indels210. The ability to efficiently and accurately edit specific nucleotide sites across the 

genome makes Prime-editing extremely relevant to many biomedical research 

investigations. 
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In Chapter 3,  we perform a cell type-specific eQTL analysis to identify genetic loci 

associated with the expression of specific genes. In the context of our BMSC-OB model 

which employs DO mice, each of which have a unique genomic background derived from 

eight specific founder mice, our eQTL analysis identified founder backgrounds that were 

associated with the expression of certain genes. Importantly, we highlighted cis-eQTLs, 

which constrained the identification of eQTL signal that was within 1 Mbp of the 

transcription start site of the associated gene (eGene). Given that we leveraged scRNA-

seq data for the basis of this eQTL analysis, we highlighted many eGenes at cell type-

specific resolution. Therefore, an abundance of information was gained by performing 

this eQTL analysis, such as: 1) genomic loci of interest, 2) genes with expression levels 

associated with the genomic loci of interest, 3) the founder strains from which the 

genomic loci are derived, and 4) cell types in which the effects of identified eQTL may 

be observed. Together, these insights can make a compelling story pertaining to a specific 

target gene, one that may warrant follow-up laboratory investigations, such as the 

aforementioned Prime-editing. 

Among those identified eGenes (identified in Chapter 3) were Pkm and S100a1, 

which exhibit strong cis-eQTL effects on their expression and associated with specific 

DO mouse haplotype background at their respective loci. Further fine-mapping of the loci 

can potentially identify the SNPs that are responsible for the eQTL effect. Given that 

these eQTLs are predicted to exert their effects on their target eGenes in cis, fine-mapped 

SNPs likely reside in regulatory elements in close proximity to the eGene. A variety of 

follow-up investigations can be employed to validate the eQTL effect on the prospective 

eGene, such as Prime-editing.  
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Prior to pursuing avenues of research employing Prime-editing, preliminary studies 

to further investigate the eGenes of interest, such as Pkm, could include quantifying the 

baseline expression level of an eGene in a control mouse population, such as B6, and 

subsequently comparing baseline to the expression in a mouse population with a genome 

that is comprised entirely of the DO founder background of interest, such as PWK (which 

is putatively associated with a negative effect on the expression of Pkm). These studies 

should be done in a homogenous population of LMPs, which was the cell type in which 

the eQTL was identified. The hypothesized outcome of this study should be decreased 

levels of Pkm in LMPs from PWK mice, relative to B6 control mice. Additionally, fine-

mapping studies could identify the SNPs driving the eQTL in PWK mice, which should 

discover causal SNPs located in either a known promotor region for the associated gene, 

or a novel regulatory element. Finally, after these preliminary studies validate our 

hypotheses, Prime-editing studies could be warranted. Editing the causal SNPs in the 

PWK mice could “rescue” the expression levels of Pkm to those observed in B6 control 

mice. Additionally, introducing the causal SNP via Prime-editing into the B6 control 

mice could further validate the genetic effect of the eQTL on Pkm expression. These 

experiments serve as a suggested framework for follow-up in vitro experiments to 

perform after prioritized genetic targets are identified.  

4.3. Long-read, single-cell transcriptomics 

One of the themes of this dissertation was to showcase the capabilities of scRNA-

seq, specifically as it applies to informing BMD GWAS. As mentioned in Chapter 1, 

scRNA-seq has significant advantages over traditional, bulk RNA-seq, such as being able 

to attribute transcriptomic signal to single cells. Upon downstream clustering and 
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analyzing the expression across thousands of cells, a more refined understanding of the 

transcriptome underlying specific cell types can be gained, such as osteoblasts or 

MALPs. However, some scRNA-seq methods (e.g., some droplet-based protocols), are 

not capable of capturing isoform-specific gene expression. As we continue to venture 

towards a more granular understanding of the transcriptome, neglecting the impact of 

splicing on a biological system or involvement in disease would hinder biomedical 

research. Therefore, to overcome this looming challenge, recent advancements in 

scRNA-seq technology have strived to couple both highly desired cell type specificity 

with long-read sequencing. For example, the biotechnology company, PacBio (Menlo 

Park, CA), has developed MAS-seq (Multiplexed Arrays Sequencing) to capture full-

length RNA transcripts, at single cell resolution. 

While MAS-seq protocols have yet to be established in our lab, its 

implementation could dramatically improve our understanding of the isoform-specific 

expression profiles of bone-relevant cell types. In Chapter 3, we highlight two high-

priority eGenes (Pkm and S100a1), along with the associated DO haplotype background 

potentially impacting their expression. Further, mice with the associated DO haplotype 

background for these two targets exhibited abundance/proportion differences in various 

cell types captured in the BMSC-OB scRNA-seq data. These analyses attempt to connect 

DO haplotype, expression of specific targets, and the abundance of certain cell types. 

Osteogenic cell types, namely the OB1 population (which exhibited canonical markers of 

mature, mineralizing osteoblasts) were among the cell types that were observed to have 

significant (P < 0.05) differences in their abundance in mice harboring the DO haplotype 

background of interest.  
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Understanding how genetic background can potentially impact the abundance of 

relevant cell types is at the forefront of biomedical research that perform scRNA-seq 

studies. Given the importance of osteoblasts in bone biology and BMD, follow-up studies 

to investigate the aforementioned findings may be warranted. In terms of follow-up 

investigation of these two targets, MAS-seq could be worthwhile to pursue. 

For example, in the case of Pkm, we show that mice with the PWK background 

have decreased expression of Pkm. Further, these same mice also have decreased 

proportion of both OB1 and Ocy. Many approaches could be pursued in vitro to further 

validate the putative connection between PWK, Pkm, and decreased osteoblast 

proportion. In a pilot study, MAS-seq could be employed to feasibly gather long-read, 

scRNA-seq data on BMSC-OBs derived from mice with entirely PWK background; this 

would capture 1. expression levels of Pkm (at isoform-level) and 2. the proportions of 

OB1/Ocy for each PWK mouse, both of which are necessary features to capture. 

Importantly, this experiment would be performed in a control mouse population as well, 

such as B6, for comparison purposes. The ideal outcome of this study would be 

validation of the aforenoted trend (PWK background, decreased Pkm expression, and 

reduced proportion of osteogenic cells) and the trend would be significant upon 

comparison to control (B6). Aside from validation of the hypothesis, other novel insights 

could be gleaned from this proposed experiment, such as elucidating the isoform-specific 

expression patterns for Pkm across BMSC-OBs (in both PWK and B6 mouse 

background). 

  



 127 

 

 

 

 

 

 

 

 Appendix A 

  

 Supplementary Figures 
  



 128 

 

A. Chapter 2 - Supplementary Figures 

 

 
 
Supplemental Figure 1: Mineralization of BMSC-OBs after in vitro osteogenic 
differentiation. Mineralized deposits were quantified via IRDye 680 BoneTag Optical 
Probe incorporation. Fluorescence units were calculated by subtracting the average 
number of units recorded in background wells from the units recorded in the DO mouse 
sample wells. 
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Supplemental Figure 2: Uniform Manifold Approximation and Projection (UMAP) 
of cell clusters for the 17,311 cells from the Zhong et al. (2020) scRNA-seq dataset. 
Endosteal Td+ bone marrow cells were sequenced from 1-month-old (n=2), 1.5-month-
old (n=3), 3-month-old (n=3) male Col2/Td mice. The Zhong et al. (2020) scRNA-seq 
data was processed in the same fashion as the BMSC-OBs scRNA-seq data (Methods) 
and clustered at a resolution of 0.675. Cell count numbers and corresponding percentage 
of the entire population are listed in parentheses to the right of the annotated cluster 
name: OB: osteoblast; Ocy: osteocyte; EMP: early mesenchymal progenitor; IMP: 
intermediate mesenchymal progenitor; LMP: late mesenchymal progenitor; MALP: 
marrow adipogenic lineage precursors; CH: chondrocyte; HSC: hematopoietic stem cell; 
EC: endothelial cell; GP: granulocyte progenitor; OC: osteoclast; Granulo: granulocyte; 
MF: macrophage; Mono: monocyte; Mural: mural cells; T-cell: T-lymphocyte; B-cell: B-
lymphocyte. 
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Supplemental Figure 3: Feature plots portraying the normalized expression of select 
Differentially Expressed Genes (DEGs). The selected DEGs had an average log2 Fold 
Change (avg_log2FC) greater than 2.0 in any given cluster of the BMSC-OB scRNA-seq 
and that belong to either Gene Ontology (GO) Terms: regulation of response to stress 
(GO:0080134), acute inflammatory response (GO:0002526), or both. 
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Supplemental Figure 4. Boxplots for each Diversity Outbred (DO) mouse portraying 
Xist (X-inactive specific transcript) expression (as a percentage of all reads) for each 
barcoded cell belonging to each of the 5 Diversity Outbred (DO) mice (M = male, F 
= female). Souporcell genotype deconvolution of the BMSC-OB scRNA-seq dataset 
resulted in grouping of individual cells based on genotype. Genetic variants captured for 
each genotype cluster were compared to the same variants captured by GigaMUGA 
genotype microarrays (performed previously on each mouse). In a pairwise comparison 
between Souporcell genotype clusters and GigaMUGA microarray data for each DO 
mouse, a mouse was assigned a genotype cluster based on the highest percentage of 
matching allele calls made for genetic variants identified between Souporcell and 
GIGAMUGA genotype microarrays. DO mouse 12 was confirmed to be male based on 
low Xist expression in all cells, further confirming accurate genotype clustering of cells 
via Souporcell. 
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Supplemental Figure 5: Uniform Manifold Approximation and Projection (UMAP) 
of cell clusters for the 13,310 cells from the integrated scRNA-seq data (BMSC-OB 
and Zhong et al. (2020) datasets). ScRNA-seq data integration was performed using 
Canonical Correlation Analysis (CCA) and using only the osteogenic and adipogenic 
lineage cells as input. The integrated data was processed in the same fashion as the 
BMSC-OBs scRNA-seq data (Methods) and clustered at a resolution of 0.22. Cell count 
numbers and corresponding percentage of the entire population are listed in parentheses 
to the right of the annotated cluster name: EMP: early mesenchymal progenitor; IMP: 
intermediate mesenchymal progenitor; LMP: late mesenchymal progenitor; OB: 
osteoblast; Ocy: osteocyte; MALP: marrow adipogenic lineage precursors. 
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B. Chapter 3 - Supplementary Figures 

 
Supplementary Figure 1: Comparison of gene expression specificity scores (ESμ) for 
two osteoblast populations identified in the BMSC-OB scRNA-seq data. ESμ scores 
are a continuous values between 0 (not specific) and 1 (very specific). Black dots 
exceeding the dotted line are those genes with ESμ scores greater than 0.8. The five (5) 
labeled genes (Egln3, Ak4, Fndc1, Tbl2, Mgarp) were associated with the Gene Ontology 
(GO) term cellular response to hypoxia (GO:0071456), more highly expressed and more 
specifically expressed in OB2 (relative to OB1). 

 
  



 134 

 
Supplementary Figure 2: Scale Free Topology and Mean Connectivity graphs for 
the cell type-specific iterativeWGCNA analysis. A soft thresholding power of 14 was 
selected for the generation of all co-expression modules for all clusters, which was the 
point at which R2 exceeded a threshold of 0.85 
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Supplementary Figure 3: Tests of significance for cell type proportions for NZO 
mice. Mice with at least one NZO allele at the S100a1 locus (N = 14) had no significant 
difference in cell type proportions (P > 0.05; t-test) as compared mice with other DO 
haplotype background at this locus. Asterisks represent any of the other haplotype 
backgrounds. 
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A. Chapter 2 - Supplementary Tables 

 
Supplementary Tables and Description of Supplementary Tables associated with 

Chapter 2 can be found online with the corresponding published article (PMID: 

37436066) at https://doi.org/10.1002/jbmr.4882 

 

B. Chapter 3 - Supplementary Tables 

 
Supplementary Tables and Description of Supplementary Tables associated with 

Chapter 3 can be found online at the following Zenodo link: 

https://doi.org/10.5281/zenodo.11066753 
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