
Software Testing: Importance of Best Practices

CS4991 Capstone Report, 2023

August Diamond

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

ald8tdd@virginia.edu

ABSTRACT

A Charlottesville-based software company

chose to re-organize their large testing suite

to make testing more efficient. I utilized a

modern software testing management

platform to set up a standard format for

importing old testing instructions and creating

new test cases. In doing so, I examined the

company’s JavaScript code base to determine

the most practical way to separate testing

instructions based on the underlying code. I

also cross-referenced incoming bug reports

on Jira to determine the need for new test

case creation, or re-evaluation of old test

cases. My work resulted in the importation of

all old test cases to the company’s new test

management platform earlier than expected,

greater precision in bug diagnoses, and an

overall reduction in the time needed to

manually test the software. Future work may

involve further automation and incorporating

new artificial intelligence tools in the test

creation process for even greater efficiency.

1. INTRODUCTION

In a world where more and more tasks are

being delegated to computers, software

failures are becoming increasingly disastrous.

In the past decade, software has been behind

issues that would have been unimaginable in

the pre-internet days of computing; from self-

driving car crashes to AI models mimicking

human racism. Low-quality software causes

no end of issues. With the current scale of the

software industry, even seemingly minor

failures can take substantial tolls; if poor code

causes an app with a billion users to run 20%

slower than it should, millions of cumulative

user hours can end up wasted within a day.

For these reasons, ensuring we can trust our

software to perform tasks accurately, safely,

and efficiently has become of great

importance.

At the company where I completed my

internship, clients relied upon our services to

make real-time financial decisions. Any

errors in the information provided by our

software could potentially incur large

financial losses to our users, and result in

their decision to switch to a competitor

service. Given these factors, it was essential

to conduct comprehensive software testing to

ensure our product was free of faults. At the

same time, the testing process itself incurs

development costs; as maintainers of a live

service, the company wanted to optimize

these costs to allow updates to be pushed

routinely without unsustainable overhead. My

work acted as a part of balancing these

processes.

2. RELATED WORKS

The work of Pǎsǎreanu, et al. (2004) has been

pivotal in the adoption of automated test

generation in software. They provided three

techniques by which branch-comprehensive

tests can be generated for software with

complex input spaces or involving many

preconditions. The software produced by the

company I completed by internship with is an

example of software with a complex input

space, and the test analysis tools which we

used to check test coverage undoubtably drew

from this early report.

Also relevant is the work of Barr, et al.

(2015) regarding the oracle problem in

software testing, which confronts the

challenging task of minimizing costs while

maximizing benefits of test oracles—that is,

of the automated program, or when

automation is inadequate, the person who

verifies that the system under test is behaving

as expected. A sizable portion of the tests I

worked with over the course of the internship

were graphical, and thus hard to automate.

These tests were in line with Barr’s fourth

category of solutions to the oracle problem, in

which the objective is to reduce, rather than

replace, human effort. I primarily achieved

this through what Barr would refer to as

qualitative human oracle cost reduction,

which involved making manual test cases

easier for humans to parse and execute.

3. PROJECT DESIGN

There were five technical objectives in the

internship. First, the quality assurance team

wanted to move their large test suite from an

older platform to a more feature-rich test

management tool. The new tool supported

more modular separation of tests into steps or

phases, each of which could be marked as

passing or failing; this allowed for more

precision in determining the point of failure.

It also allowed us to separate test results by

system (e.g., operating system version,

monitor dimensions, etc.), so that we could

ensure the product functioned as expected

with the different architectures our clients

may be using. Second, the old manual tests

were to be rewritten in a standardized format,

such that distinct steps were separated where

possible, instructions were updated to reflect

the current structural flow of the software,

and tests were generally easier to parse.

Third, we were to analyze Jira bug reports,

the JavaScript code base, and other related

resources to determine the need for new test

cases, which we would confirm with the

senior QA engineers before writing and

adding to the database. This became a larger

focus after we finished porting the old test

cases. Our fourth objective was to determine

which groups of tests could easily be

automated with Selenium, with the ultimate

goal of automating all user interface tests.

And the final objective was to assist the

senior QA engineers in beginning to automate

these tests with Selenium. This was a large

goal that we did not expect to finish before

the end of the internship period.

There were three categories of testing

performed during the internship: informal

testing during the revision process, formal

testing for correctness, and early automated

testing for proof of concept. In the first and

most common form, we as members of the

QA team would informally run tests ourselves

while in the process of (re)writing

instructions. We would note any problems,

whether related to the testing instructions or

outcome, and use our observations to further

improve the tests. After finishing a group of

tests, we would have other software engineers

who were not associated with QA run through

all of them and formally log their results in

the test management system. This was done

to test the system itself rather than to test the

quality of our test instructions, though minor

revisions would occasionally come from the

engineers’ feedback. This was also performed

less than the previous form of testing due to

the far higher resource cost. Finally, the

senior QA staff would occasionally

demonstrate the Selenium-based automated

tests they had been working on to us and

other employees. This form of testing was

more a proof of concept, as automated testing

was still in its early phases at this company

and had not been formally deployed yet.

4. RESULTS

The changes to the testing instructions were

well received by engineers at the company.

They reported that the testing process was

smoother and more efficient than it had been

using the old system, reportedly taking less

time to complete manual test execution.

Senior QA engineers found the new test

management system immediately useful for

its rich features like OS-dependent results

tracking, and they benefited greatly from

being able to apply those features

immediately to the old tests we had moved.

The standardization of test formats benefited

both of these groups’ abilities to comprehend

the nature of a test at a glance, which had

been difficult with the inconsistent formats

used before.

The new tests we created based on artifacts

like bug reports were also well received, and

those addressing high-priority functionalities

were quickly reviewed by the senior QA

engineers before being put into the set of

production tests. A small number of these

new tests were rewritten by the same QA

engineers if they did not fit the project

requirements, or moved to non-production

branches if they addressed features that were

still in development.

Relative to features in development, the

automated tests were not on production by the

end of the internship period, but had made

substantial progress. A sizable portion of the

UI-related tests had been automated, and the

most significant challenge at the time of my

departure was ensuring that these automated

tests would work on different operating

systems, monitors, etc.

5. CONCLUSION

Our work improving the testing suite at this

company was beneficial to all parties

involved with the software. Internally, the

engineers developing the product found the

new test suite easier to work with, and higher-

ups enjoyed reduced operational costs

associated with future testing. Clients, though

not directly exposed to the testing process,

benefited from a higher and more efficiently

verifiable product quality standard. I found

this work to be personally beneficial as well.

My experience at this internship taught me a

lot about the software development life cycle,

the different roles in a development team, and

above all, the importance and benefits of

testing in the software industry.

6. FUTURE WORK

Future work on the testing suite at this

company will undoubtedly involve further

test automation. Given the uniqueness and

customizability of this application’s user

interface, it may not be possible, or even

desirable to move away from manual testing

entirely. But there is still certainly room to

improve efficiency through some level of

automation. Part of this process may include

researching past applications of Selenium or

other automation frameworks on similarly

complex UIs. Alternatively, the company

may decide to keep UI-based tests manual

and focus on enhanced back-end testing.

Regardless, automation will surely play a

larger role in the future of this company’s

testing process.

Another avenue for further test enhancement

is generative AI. Though practical

applications are relatively unexplored due to

the newness of the technology, generative AI

has many theoretical applications for software

testing. For example, AI could be trained to

generate consistently formatted manual test

instructions from requirement documents,

bug reports, or other relevant artifacts. It

could also analyze existing codebases and test

suites to identify untested or under-tested

functionalities.

REFERENCES

Visser, W., Pǎsǎreanu, C. S., & Khurshid, S.

(2004). Test input generation with java

PathFinder. International Symposium on

Software Testing and Analysis.

https://doi.org/10.1145/1007512.1007526

Barr, E. T., Harman, M., McMinn, P.,

Shahbaz, M., & Yoo, S. (2015). The

Oracle Problem in Software Testing: A

Survey. IEEE Transactions on Software

Engineering, 41(5), 507–525.

https://doi.org/10.1109/tse.2014.2372785

