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Abstract

This thesis presents experimental progress towards highly efficient generation of cavity-

enhanced, narrow-band multiphotons using spontaneous parametric downconversion.

It also suggests theoretical proposals for new applications of multiphoton sources in

quantum information technology.

Photons prepared in Fock states, with a well-defined number of particles, are

the essence of the quantum nature of light, and their unique nonclassical properties

help us to develop quantum information technology. The generation of Fock states

has been most commonly achieved by using spontaneous parametric down-conversion

(SPDC) through the χ(2) nonlinearity in bulk crystals. During the SPDC process

the nonlinear crystal emits photon-number correlated modes, and a photon-number-

resolving measurement in one mode heralds the preparation of the other mode in a

Fock state. The fidelity and the success rate of Fock state generation is limited by

the multimode nature of SPDC emission. In this thesis, I will investigate the use of

cavity-enhanced SPDC modes for higher fidelity photon pair generation, in which the

well defined mode of the cavity is enhanced and results in the narrow-band source

of the heralded single-photons with up to 80% heralding efficiency. The heralding

efficiency is defined as the ratio between number of coincidences and single events on

the heralding mode. The photon-number-resolving ability of high-quantum-efficiency

transition edge sensors is used for the heralding and detection. We further discuss

the feasibility of Fock state generation with higher photon numbers upon improving
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the data acquisition and analysis techniques. We also demonstrate and implement an

interferometry scheme that exploit the phase of the photon and is capable of reading

boundless bits of digital information using a single photon.

This thesis also introduces new theoretical proposals for using Fock states to

obtain quantum advantages for various quantum information applications, here to

increase the efficiency in reading out information stored in a classical digital memory

and to discriminate optical phases with lower error rates than is feasible with classical

protocols.
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Chapter 1

Introduction to quantum optics

The nature of light has been established by quantum mechanics to be both wave and

particle, and contradictory points of view- localized particle like nature and delocal-

ized field nature- can coexist. This duality addresses the inability of the classical

concepts, particle or wave, to fully describe the behavior of the quantum light.

Many aspects of light can be described by classical optics, which considers light

as an electro magnetic wave. But classical optics is not complete and cannot describe

fascinating experimental observations, such as blackbody radiation and photoelectric

effect.

To explain these experimental observations, Albert Einstein gradually developed

the concept of photons as discrete units of light with a certain frequency ν, and each

with energy E = hν. A beam of light contains a large numbers of photons, but cannot

be described as a stream of photons traveling at the speed of light.

Quantum optics describes photons as an elementary excitation of the quantized

electromagnetic field. Each field mode has energy states like a harmonic oscillator

1
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and the state of excitation of a mode is said to be the number of photons in a mode,

so photons are distributed through the mode and are not localized to any specific

position like particles.

Here, we introduce quantum states of the quantized electromagnetic field which

are appropriate to the description of optical fields. We first describe number or Fock

states, these states contains a well-defined number of photons. We then talk about

optical fields which involve a superposition of number states. Such coherent states of

the light are the closest possible quantum representation of a classical field.

1.1 Quantum states of light

The Hamiltonian of a quantized electromagnetic field, with frequency ωk and traveling

in free space, is

H =
∑

k

~ωk (a†kak +
1

2
) (1.1)

where ak and a†k are mutually adjoint operators which follow the bosonic commu-

tation relations:

[ak, ak′ ] = [a†k, a
†
k′ ] = 0 [ak, a

†
k′ ] = δkk′ (1.2)

These operators are annihilation and creation operators, where ak annihilates and a†k
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creates a photon with a wave vector k, where:

ak |nk 〉 =
√
nk |nk − 1 〉 (1.3)

a†k |nk 〉 =
√
nk + 1 |nk + 1 〉 (1.4)

The Hamiltonian represents the sum of the number of photons in each mode k

multiplied by the energy of the photon ~ωk in that mode. The eigenvalues of the

Hamiltonian are ~ωk (nk + 1/2), where nk is an integer and represents the number of

photons in each mode k. The photon number operator is then

Nk = a†kak (1.5)

Fock states

Fock states or number states are quantum states of light with constant photon num-

bers. These are eigenstates of the number operator Nk,

Nk |nk 〉 = a†kak |nk 〉 = nk |nk 〉 (1.6)

which can be generated from the vacuum state by successive application of the cre-

ation operator

|nk 〉 =
(a†k)

nk

(nk!)1/2
| 0 〉 (1.7)

Number states are orthogonal 〈nk |nl〉 = δkl, and complete

∞∑

nk=0

|nk 〉 〈nl| = 1 (1.8)
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They form a complete basis for a Hilbert space.

At this point we only consider single mode quantum states with a well-defined

frequency ωk, and drop the k from equations. Fock states are purely quantum me-

chanical and have no classical counterpart and are the essence of the quantum nature

of the light. However, it is extremely difficult to create higher photon number Fock

states.

Coherent states

Coherent states of light have practical significance in quantum optics as a highly sta-

bilized laser operating above threshold generate coherent states. They are eigenstates

of the creation operator:

a |α 〉 = α |α 〉 (1.9)

and can be generated by applying the displacement operator,

D(α) = eαa
†−α∗a (1.10)

to the vacuum state, where α is a complex number. This yields [1]:

|α〉 = D(α)|0〉 = e−|α|/2
∞∑

n=0

αn

(n!)1/2
|n 〉 (1.11)

Therefore, the probability of obtaining a given photon number in a coherent state is

given by a Poisson distribution,

P (n) = | 〈n |α〉|2 =
|α|2n
n!

e−|α|
2

(1.12)



CHAPTER 1. INTRODUCTION TO QUANTUM OPTICS 5

with the average photon number,

〈N〉 = |α|2 (1.13)

The uncertainty in the measurement outcome of an observable O, also known as the

noise of the operator O, is equivalent to the standard deviation defined as:

∆O =
(
〈O2〉 − 〈O〉2

)1/2
(1.14)

Therefore, the uncertainty in the photon number for a coherent state can be calculated

as:

∆N =
√
〈(a†a)2〉 − 〈(a†a)〉2 =

√
|α|4 + |α|2 − |α|4 = |α| (1.15)

which is proportional to the average photon number, Eq. (1.13),

∆N = |α| =
√
〈N〉 (1.16)

and is referred to as the shot noise limit.

The annihilation and creation operators are not Hermitian and therefore are not

observables. It is, however, possible to construct a pair of Hermitian operators from

creation and annihilation operators

Q = a+ a† (1.17)

P = i(a† − a) (1.18)

Where Q is the amplitude quadrature operator, and P is the phase quadrature op-



CHAPTER 1. INTRODUCTION TO QUANTUM OPTICS 6

erator, they respectively correspond to the position and momentum of a harmonic

oscillator. While they satisfy the canonical commutation relation,

[Q,P ] = 2i (1.19)

The corresponding Heisenberg inequality is

∆Q∆P ≥ 1 (1.20)

The noises of the Q and P quadratures for a coherent state |α 〉 are

∆Q =
(
〈α | a2 + a†a+ aa† + a†

2 |α 〉 − α2 − α∗2 − 2|α|2
)1/2

= 1 (1.21)

∆P =
(
〈α | − a2 + a†a+ aa† − a†2 |α 〉+ α2 + α∗2 − 2|α|2

)1/2

= 1 (1.22)

Therefore coherent state |α 〉 is the minimum uncertainty state for the Q and P

quadratures, and satisfies ∆Q∆P = 1. They are the quantum states closest to a

classical field.

Squeezed states

We can define a general class of minimum uncertainty states. These states have

minimum uncertainty ∆Q∆P = 1, but they may have less noise in one quadrature

say ∆Q < 1 and thus more noise in other quadrature ∆P > 1. This more general

class of minimum uncertainty states are called squeezed states and can be generated

by applying the squeezing operator

S(ε) = e(ε∗a2−εa†2)/2 (1.23)
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where ε = re2iφ. One can calculate the effect of squeezed operators on quadratures

as [1],

S†(ε)(Q2 + iP2)S†(ε) = Q2 e
−r + iP2 e

r (1.24)

and quadrature noises are,

∆Q2 = e−r ∆P2 = er (1.25)

where Q2 and P2 are the rotated complex amplitudes, (Q2 + iP2) = (Q+ iP )e−iφ,

and φ is the squeezing angle. Therefore, the squeezing operator attenuates one com-

ponent of the rotated complex amplitude Q2 and amplifies the other one P2. The

degree of attenuation and amplification is determined by the squeezing factor r = |ε|.

A squeezed state is represented by an error ellipse in phase space, whose axis are

Q and P , Fig. 1.1. Increasing the squeezing factor stretches the ellipse. It should be

compared to a coherent state, which is represented by an error circle in phase space.

The squeezed state |α, ε 〉 is obtained by first squeezing the vacuum and then

displacing it.

|α, ε 〉 = D(α)S(ε) | 0 〉 (1.26)

The average photon number for the squeezed state is:

〈N〉 = |α|2 + sinh2r (1.27)

The average photon number for the squeezed vacuum, α = 0 is not zero and increases
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Q
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Figure 1.1: The noise for the quadrature Q and phase P , for coherent and squeezed
states. φ is the squeezing angle, and ∆Q2 and ∆P2 are rotated quadratures.

with the squeezing parameter,

〈N〉 = sinh2r (1.28)

The photon number uncertainty is then,

∆N =
√
〈N2〉 − 〈N〉2 =

(
|α|2e−2r + 2 sinh2 r cosh2 r

)1/2
(1.29)

which should be compared to the shot noise limit Eq. (1.16).

1.2 Classical and Nonclassical States of Light

So far we have described three different states of quantized light, the Fock state, the

coherent state and the squeezed state. Coherent states are closest to classical light,

but Fock and squeezed states have nonclassical nature and cannot be described by
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classical optics. These nonclassical light states have nonclassical noise properties,

called quantum noise, and will be discussed later in section 1.3.

Fluctuations and coherence properties of nonclassical light cannot be described

in classical terms. The second order of coherence plays a crucial role in distincting

between a classical and nonclassical states of light.

In the following we calculate the second-order correlation function for zero time

delay, g(2)(0), and divide different states of light into classical and nonclassical states

based on their second order correlation function.

1.2.1 Quantum degree of second-order coherence g(2)(0) for
classical and nonclassical states of light

In optics, correlation functions are used to characterize statistical properties of the

electromagnetic field [1]. The degree of coherence is the normalized correlation of

electric fields. Properties of the light beam that are relevant to optical interference

can be expressed in terms of the concept of the optical coherence. Light at two points

in space or time that is capable of being superimposed to produce interference is said

to be coherent and the potential magnitude of the interference effects is governed by

the first-order coherence of the light beam employed.

The degree of first-order coherence is defined as the normalized electric field cor-

relation function:

g(1)(r1, t1, r2, t2) =
〈E−(r1, t1)E+(r2, t2)〉

(〈E−(r1, t1)E+(r1, t1)〉〈E−(r2, t2)E+(r2, t2)〉)1/2
, (1.30)
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where

E+(r, t) = i
∑

k

(~wk/2ε0V )1/2εkak exp (−iwkt+ i
−→
k · −→r ) (1.31)

E−(r, t) = −i
∑

k

(~wk/2ε0V )1/2εka
†
k exp (iwkt− i

−→
k · −→r ) (1.32)

Angle brackets denote statistical averages.

Differences between classical and quantum predictions for first-order interference ex-

periments tend to be difficult to detect. In fact, both the classical and quantum

degrees of first-order have numerical value in the same range,

0 ≤ |g(1)(τ)| ≤ 1 (1.33)

More striking differences occur in measurements that depend upon the degree of

second-order coherence, which is used to find the statistical character of intensity

fluctuations. All the existing experiments that distinguish classical from quantum

properties belong to this category. The degree of second-order coherence is defined

in terms of the correlation of light intensities at two space time points (r1, t1) and

(r2, t2) :

g(2)(r1, t1, r2, t2; r2, t2, r1, t1) =
〈E−(r1, t1)E−(r2, t2)E+(r2, t2)E+(r1, t1)〉
〈E−(r1, t1)E+(r1, t1)〉〈E−(r2, t2)E+(r2, t2)〉 (1.34)

All of the factors in Eq. (1.30), Eq. (1.34) are expectation values of products of

Hermitian operators with their conjugates and must be positive

0 ≤ g(2)(0) ≤ ∞ (1.35)
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However, If the electric fields are considered classical, we can reorder them to express

g(2)(0) in terms of intensities, I(r1, t1) = E+(r1, t1)E−(r1, t1).

For the classical light

〈E−(r1, t1)E−(r1, t1)E+(r1, t1)E+(r1, t1)〉 = 〈I2〉 (1.36)

then

g(2)(0) =
〈I2〉
〈I〉2 (1.37)

And by means of Cauchy’s inequality, one can show that

(∑N
i Ii
N

)2

≤
∑N

i Ii
2

N
−→ 〈I〉2 ≤ 〈I2〉 (1.38)

Therefore, if the light is classical then g2(0) must satisfy

g(2)(0) ≥ 1. (1.39)

And there is a nonclassical range of values for which

0 ≤ g(2)(0) ≤ 1. (1.40)

This leads to significant differences between quantum and classical second-order

coherence functions. Here, we calculate g(2)(0) for the coherent and thermal sources

and compare it with g(2)(0) of Fock state.

A considerable simplification in the computation of the degree of second order

coherence occurs when the light beam exists only in a single mode of the optical
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system. Most factors in Eq. (1.34) cancel and g(2)(0) simplifies to,

g(2)(0) =
< a†a†aa >

< a†a >2
=
< a†aa†a > − < a†a >

< a†a >2
(1.41)

Defining N = a†a,

g(2)(0) =
< N2 > − < N >

< N >2
(1.42)

Hanbury Brown and Twiss [2], [3], proposed and implemented a method to observe

second order coherence using an intensity interferometer. We determined the photon

number statistics and the average photon numbers using a photon-number-resolving

PNR detector, and directly estimating g(2)(0) without running the Hanbury Brown

and Twiss experiment.

To determine the photon number averages, we looked at detector data over duration

∆t, then divided it into smaller time bins of size δt, which is in the order of the

detector resolution or cool down time, then calculated the average photon number in

each time bin. The total number of bins is

Nbins =
∆t

δt
(1.43)

If we measure mi photons per δt, then,

< N > = 1
Nbins

∑
imi (1.44)

< N2 > = 1
Nbins

∑
im

2
i (1.45)
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and

g(2)(0) = Nbins

∑
im

2
i −

∑
imi

(
∑

imi)2
(1.46)

If we have n1 one-photon peaks and n2 two-photon peaks and no higher photon

numbers during ∆t, then we have n0 = Nbins − n1 − n2 and

∑

i

mi = n1 + 2n2

∑
im

2
i = n1 + 4n2 (1.47)

So,

g(2)(0) = Nbins
n1 + 4n2 − (n1 + 2n2)

(n1 + 2n2)2
= Nbins

2n2

(n1 + 2n2)2
(1.48)

Therefore, one can easily calculate g(2)(0), knowing the photon number statistics

on one and two photons. Note, here we consider very attenuated intensity beams and

the probability of detecting more than two photons is very low and is taken to be

zero.We rewrite g(2)(0) in terms of probabilities pj = nj/Nbins to get

g(2)(0) =
2p2

(p1 + 2p2)2
(1.49)

As mentioned, this applies for very attenuated light. For a coherent state, it means

α → 0. Plugging the photon number probabilities of a coherent state Eq. (1.12),

pn = e−α
2 α2n

n!
, into Eq. (1.41) yields g(2)(0) = 1 for coherent sources. This proof is

more general and is true for all values of α as,

g(2)(0) =
〈α|a†a†aa|α〉
〈α|a†a|α〉2 =

α4

α4
= 1 (1.50)
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Similarly for Fock states |n >, g(2)(0) simplifies to:

g(2)(0) =
〈n|a†a†aa|n〉
〈n|a†a|n〉2 =

n(n− 1)

n2
=
n− 1

n
(1.51)

Therefore g(2)(0) is less than one for Fock states, and reach its lowest value of zero

for a single photon source. It is also expected from Eq. (1.48) when n2 = 0.

It proves that Fock states have second order coherence values out of the range

predicted by classical optics, Eq. (1.39). We measured the g(2)(0) of a single photon

in our lab and reported values less than one, as will be discussed in more detail, in

section 4.3.1.

1.3 Quantum optics and quantum interferometry

One of the important applications of nonclassical light is precision measurement and

interferometry, as nonclassical states of light can be used for ultra precise optical

phase estimation.

The precision in optical measurements with coherent states of light that rely on

interferometry are limited by the vacuum noise of beam splitters Eq. (1.16), but using

quantum properties of light one can beat this “shot noise” level of beam splitters and

attain more precise measurements over what is classically possible. In the case of opti-

cal interference measurements, this is referred to as Heisenberg limited interferometry

(HLI).

To measure an optical phase one can use an interference experiment. The Mach-

Zehnder Interferometer (MZI) is an example of an interferometer. In the following,
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we study MZI and basic optical elements such as beam splitters and phase shifters in

quantum optics, then will focus on optical interferometry with nonclassical light.

1.3.1 Mach-Zehnder Interferometer

The MZI is a two-mode light interferometer, Fig. 1.2, it consists of two beam splitters

(BS) to separate and recombine fields. A path difference between arms of the MZI

results in a phase shift φ between arms. The distribution of output beam intensities of

the MZI depends on the optical phase difference between arms of the interferometer.

In order to control the optical phase shift one of the reflecting mirrors is mounted

to a piezoelectric transducer (PZT), so that φ is controlled by applying a variable

voltage to the PZT.

Figure 1.2: Schematic of the MZI.
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To study the evolution of the quantum state in the MZI, we first study the effect

of its components, the beam splitter and phase shifter on a quantum state.

Phase Shift Operator

The evolution of quantum state is easier to compute in the Heisenberg picture, where

operators are propagated and the state is static.

The Heisenberg equation of motion is,

i~ ȧ(t) = [a(t), H(t)] (1.52)

Using the Baker-Haussdorff lemma, one can solve the Heisenberg equation as,

a(t) = U †(t) a U(t) (1.53)

where U = e
−i
~ Ht is the unitary evolution operator.

Since a phase shift difference is equivalent to a path difference between two modes,

then one can deduce the unity phase shift operator from the free Hamiltonian Eq. (1.1)

as,

U(φ) = e−iφa
†a (1.54)

where φ = ωt is an optical phase shift. The action of the phase shift operator is then,

U †(φ) a U(φ) = ae−iφ (1.55)

aout = e−iφ a (1.56)

The single mode phase shift operator can generalize to a relative phase shift operator
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between modes a and b, and can be presented in a matrix form as,



aout

bout


 =



eiφ/2 0

0 e−iφ/2






ain

bin


 (1.57)

where ain, bin are input and aout, bout are output quantum modes.

Beam Splitter

A beam splitter is a partially reflecting mirror, Fig. 1.3, and its hamiltonian can be

written as:

HBS = ~κ(a†b+ ab†) (1.58)

The evolution operator is

ain

bin bout

aout

BS

Figure 1.3: Schematic of the BS.

UBS = e−iκt(a
†b+ab†)

and its action in Heisenberg picture can be calculated as,
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

aout

bout


 =



a(t)

b(t)


 =




cosκt i sinκt

i sinκt cosκt






ain

bin




Defining optical Fresnel coefficients of the dielectric layer on the beam splitter surface,

as ρ = cos(kt) and τ = sin(kt), ρ2 + τ 2 = 1, simplifies the matrix equation to,



aout

bout


 =



ρ iτ

iτ ρ






ain

bin




where

UBS =




cosκt i sinκt

i sinκt cosκt


 =



ρ iτ

iτ ρ


 (1.59)

Thus, quantum modes a and b evolve in a beam splitter as,

aout = U †BSaUBS = ρa− τb (1.60)

bout = U †BSbUBS = ρa+ τb

MZI

Now we can analyze the MZI by calculating its representing matrix. It contains three

parts, the first 50:50 beam splitter a phase shifter and the second 50:50 beam splitter,

Fig. 1.2. The representing matrix can then be written as,
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1√
2




1 i

i 1






ei
φ
2 0

0 e−i
φ
2




1√
2




1 i

i 1


 = i




sin φ
2

cos φ
2

cos φ
2
− sin φ

2


 (1.61)

Where the first and last matrices represent 50:50 beam splitters and the middle

one represents the effect of φ relative phase shift.

At φ = π the resulting matrix is identical to a that of a perfectly reflecting mirror,

and at φ = π/2 the MZI acts as a 50:50 beam splitter.

1.3.2 Heisenberg limited quantum interferometry

Quantum mechanics imposes a fundamental limit on the precise measurement of

an optical phase shift. This fundamental limit is extracted from the time-energy

Heisenberg inequality,

∆E∆t ≥ ~ (1.62)

For a photon field of frequency ω, we have E = N~ω and φ = ωt, the time-energy

inequality can be rewritten as the number-phase inequality,

∆E∆t =

(
∆φ

ω

)
(∆N~ω) ≥ ~ ⇐⇒ ∆N∆φ ≥ 1 (1.63)

Therefore the number-phase Heisenberg uncertainty between the optical phase φ

and the photon number N bounds the phase precision to the limit of ∆φ = 1
∆N

.

∆N fluctuations are bounded by the mean photon number 〈N〉, as a result of the

energy constraint [4]. The resulting precision limit for phase measurements is called
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the Heisenberg limit.

∆φ =
1

〈N〉 (1.64)

The Heisenberg inequality Eq. (1.63) for modes a and b inside the MZI can be gen-

eralized to

∆(φa − φb) ≥
1

∆(Na −Nb)
(1.65)

However, conventional interferometers with light fed only into one input are not

optimal and can not reach the Heisenberg limit, because vacuum fluctuations enter

the unused port of the interferometer and amplify fluctuations. The phase measure-

ment sensitivity of this system cannot exceed what is sometimes called the standard

quantum limit, or more appropriately shot-noise limit (SNL) of the beam splitter,

∆φ =
1√
〈N〉

(1.66)

where 〈N〉 is the average number of photons injected to the interferometer. There-

fore, vacuum fluctuations degrade the interferometer performance by the factor of

1√
〈N〉

. We now study the MZI fed with coherent and Fock states and give a rigorous

derivation of such limits.

Coherent state input

The beam splitter output with a coherent state |α〉a in one input mode and a vacuum

|0〉b in other one can be calculated using Eq. (1.10), Eq. (1.61),
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UBS|α〉a|0〉b = UBSD(α)|0〉a|0〉b (1.67)

= e−|α|
2/2UBSe

αa†|0〉a|0〉b

= e−|α|
2/2

∞∑

n=0

αn

n!
(UBSa

†U †BS)nUBS|0〉a|0〉b

= e−|α|
2/2

∞∑

n=0

αn

n!
(ρa† + τb†)n|0〉a|0〉b

= e−|α|
2/2eραa

†
eταb

†|0〉a|0〉b

−→ UBS|α〉a|0〉b = |ρα〉a|τα〉b (1.68)

knowing UBS|0〉|0〉 = |0〉|0〉. Thus, a beam splitter splits the coherent state |α〉 into

two coherent states |ρα〉 and |τα〉. The fluctuations of the photon number difference

of modes a and b after the first beam splitter can be calculated as:

∆(Na −Nb)
2 = ∆(Na)

2 + ∆(Nb)
2 (1.69)

= |τα|2 + |ρα|2 = |α|2

⇐⇒ ∆(Na −Nb) = |α|

=
√
〈Na −Nb〉

So, the phase precision is shot noise limited Eq. (1.66) for a MZI fed with a

coherent state.

We now consider nonclassical Fock-states of light as the input of the interferome-

ter, in order to achieve the Heisenberg limited interferometry.
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Fock-state input

Fock states are good potential candidates for phase interferometry. However, injecting

Fock states to only one input of the BS results in interference of the light with vacuum

field and the binomial probability law. The beam splitter evolves quantum modes

prepared in |n〉a|0〉b as:

|ψout〉a,b = UBS|n〉a|0〉b = UBS
(a†)n√
n!
|0〉a|0〉b =

(UBSa
†U †BS)n√
n!

|0〉a|0〉b =
(ρa† + τb)n√

n!
|0〉a|0〉b

(1.70)

Therefore, |ψout〉a,b can be written as two Fock states in modes a and b with a binomial

photon counting probability distribution:

|ψout〉a,b =
n∑

m=0



m

n




1/2

ρmτn−m|m〉|n−m〉 (1.71)

Based on the well-known properties of the binomial distribution, we get 〈Na −

Nb〉 ∝ n/2 and ∆(Na − Nb) ∝
√
n. Therefore, the phase sensitivity is shot noise

limited ∆φ = 1√
〈N〉

, n = 〈N〉.

The essential point here [5] is that the interferometer phase noise for a Fock state

is the shot noise of the beam splitter, due to the vacuum interference, and has nothing

to do with the input state noise.

Therefore, using a single-mode Fock-state does not enable us to reach to the
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Heisenberg limit. In fact, many theoretical and experimental efforts have been made

to improve the optical phase measurement sensitivity and to reach the Heisenberg

limit for phase precision [6], [7], [8].

In this thesis we will mostly focus on proposals based on preparing light on in-

distinguishable Fock states and simultaneously injecting them into both arms of the

interferometer. Indistinguishable Fock states are twin-photon states with equal pho-

ton numbers and are prepared with the exact same frequencies and wavevectors,

|ψ 〉 =
∣∣∣ k̂a, ω, ε̂;n

〉
⊗
∣∣∣ k̂b, ω, ε̂;n

〉
(1.72)

Twin Fock-state input, Hong-Ou-Mandel Interference

We first consider a simpler case of a twin-Fock state, with n = 1, this yields

|ψout〉a,b = UBS|1〉a|1〉b

= UBSa
† b†|0〉a|0〉b

= (UBSa
†U †BS)(UBSb

†U †BS)|0〉a|0〉b

= (ρa† + τb†)(τa† − ρb†)|0〉a|0〉b

= [(ρτ (a†
2 − b†2) + (τ 2 − ρ2) a†b†)]|0〉a|0〉b

=
√

2 ρτ(|2〉a|0〉b − |0〉a|2〉b) + (τ 2 − ρ2) |1〉a|1〉b (1.73)

For the 50:50 BS, ρ = τ = 1√
2
, so the last term vanishes and the output state

becomes

|ψout〉a,b =
√

2 ρτ(|2〉a|0〉b − |0〉a|2〉b) (1.74)
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The probability of getting |1〉a|1〉b is zero, due to the quantum interference which

restricts photons to emerge together at the same port of the BS. This effect is called

Hong-Ou-Mandel (HOM) interference and is at the heart of the quantum optics.

Photons are not randomly distributed after the beam splitter and will be bunched

at one or the other output ports. Thus the noise in the photon number is maximized,

〈N〉 = 2, and correspondingly the phase noise is minimized, ∆φ = 1
2
, which should

be compared to the shot noise limit of ∆φ = 1√
2

In the generalized HOM effect, the BS is fed with twin-Fock states with higher

photon numbers . It is easier to study the generalized HOM in the Schwinger repre-

sentation as we will study in detail in chapter 3.

It is known that, implementing twin-Fock states facilitates achieving the Heisen-

berg limit for phase measurement [9]. We consider these states for error free and high

resolution optical phase discrimination, as will be discussed in chapter 3.



Chapter 2

A cavity-enhanced, narrow-band,
and single-mode Fock-state source

2.1 Introduction

Single and multiphoton sources prepared in Fock states have been a subject of great

interest.These states are the essence of the quantum nature of light and have been at

the heart of fundamental tests of the quantum theory, such as Bell inequalities [10],

[11] [12] [13], [14].

They are also required in the development of quantum information technology and

have many applications in quantum cryptography [15], [16], [17] [18], quantum metrol-

ogy [6], [7],quantum communication [19] , [20] and linear optical quantum computing

(LOQC) [21]. Moreover, Fock states have a nonpositive (hence non-Gaussian) Wigner

function, which is crucial to continuous-variable quantum information, namely expo-

nential speedup in quantum computing, [22], entanglement distillation [23], quantum

error correction [24] and fault tolerant quantum computing [25], [26].

The generation of Fock states has been most commonly achieved by using spon-

25



CHAPTER 2. CAVITY ENHANCED SINGLE-PHOTON SOURCE 26

taneous parametric down-conversion (SPDC) in nonlinear crystals [27], [28]. During

the SPDC process a pump photon is annihilated and lower energy signal and idler

photons are emitted in:

|ψ〉 =
1

cosh r

∞∑

n=0

tanhn r|n〉signal|n〉idler (2.1)

Here, r is proportional to the nonlinear interaction and the pump field amplitude.

Detection of signal photons is used to herald idler photons as in Fig. 2.1.

Signal mode, used for 
heralding.

pump mode
Heralded idler modeNonlinear 

Crystal 

Detector

Figure 2.1: pump mode spontaneously down converts to lower-energy cross-polarized
signal and idler modes These modes are always emitted with equal photon numbers
and measuring n photons on the signal mode, |n 〉signal, would herald the existence of
n photons on the idler mode, in |n 〉idler.

For low pump photon flux, small r, the multi-photon SPDC emission is negligible

and photons are mostly emitted in pairs, so that a photon click on the signal detector

conditionally prepares a single-photon state on the idler, as initially demonstrated by

Lvovsky et al [29].

A more recently developed type of heralded single and multi-photon generation is

based on spontaneous four-wave mixing in optical fibers [30]. In that scheme photon
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pairs can be generated directly in the guided mode of the optical fiber and results in

all-fiber photon sources with low optical losses [31].

Single photons can also be generated on demand from single quantum emitters,

such as in quantum dots [32], single atoms and ions [33], [34] and in Nitrogen-vacancy

(NV) centers in diamond [35].

In this chapter, I focus on single-photon generation using SPDC sources. The

fidelity and the success rate of Fock state generation is limited by the multimode

nature of SPDC photons. Currently, many experimental efforts are in progress to

improve various aspects of single-photon sources. A big effort is particularly required

towards improving the single-photon collection and detection efficiencies which is

essential, for example, for loophole-free tests of Bell’s inequality [10]. Many tests

of Bells inequality have been made since 1970s, but in these experiments significant

fraction of generated photons is lost during the measurement process and caused a

detection loophole, the detection loophole points out that even maximally entangled

particles when measured with low-quantum-efficiency detectors can be explained by a

local realistic theory. Increasing the generation and detection efficiencies of multimode

SPDC photons has been a difficult technical challenge for decades and only recently

higher heralding efficiencies, up to 83% have been achieved and so loophole-free tests

of Bell’s inequality have been conducted [14], [36], [37]. .

Furthermore, single photons need to be generated in well-defined spatial and tem-

poral modes to be appropriate for applications in quantum information processing.
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Many quantum information protocols, such as quantum repeaters [19] and device-

independent quantum key distribution [17] are based on single-photon sources produc-

ing in pure and indistinguishable states, with ideally zero second-order autocorrelation

g(2)(0) which means negligible emission of photons in higher numbers. Single-photon

sources also need to be narrowband to be compatible with the solid state quantum

memories and MHZ bandwidth of atomic absorption lines.

Highly efficient photon-number-resolving (PNR) detectors are the essential re-

quirement to achieve high heralding ratios for generating single-photons with low

g(2)(0), it also allowed us to herald on photons with higher photon numbers.

In this chapter, I present the implementation of cavity-enhanced SPDC for high-

fidelity photon pair generation in an intrinsically stable OPO, whose well-defined

cavity modes were used to herald photons in narrowband (∼ 10 MHz) and TEM00

quantum states, with up to 80% efficiency in preliminary results.

The heralding and measurements were performed by photon-number-resolving,

high-quantum-efficiency, transition-edge-sensors (TES) built at NIST by Sae Woo

Nam’s group [38].

This chapter is organized as follows. First, I introduce the TES and discuss the

data analysis technique we employed to study photon-number-resolved data. Then

in section 2, I explain our efforts towards efficient generation and heralding of single-

photons using single-pass spontaneous parametric down conversion. In section 3, I

discuss implementation of an optical cavity and how it improved the quality of the
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single-photon source. I also study the optical cavity behavior in different operation

regimes, and observe the onset of stimulated emission in the optical cavity operating

well below the oscillation threshold.

2.2 Photon-number-resolving transition-edge-sensors

A TES is a PNR detector that exploits the strongly temperature-dependent resistance

of the superconducting phase transition, see Fig. 2.2. It efficiently (> 90%) absorbs

the thermal energy of the photon and converts it to electronic signal which is propor-

tional to the energy of the absorbed photon [38]. The TES operates near T=100 mK,

which is at the onset of superconductivity in tungsten, the TES active device material.

The TES temperature is carefully tuned to sit at the bottom of the superconducting

transition edge, where a small temperature increase due photon absorption will result

in a big change in resistivity, Fig. 2.2, which will be further picked up and amplified

by SQUID (Superconducting Quantum Interferometric Device) electronics.

The electronic signal generated by the TES from the monochromatic continuous-

wave (CW) light at 1064 nm light is shown in Fig. 2.3.a. Photons arrive at the

detector at random times and in different numbers, which gives rise to different peak

heights. We zoomed in on photon peaks in Fig. 2.3.b, which shows that each peak

consists in a sharp rising edge, of the order of few hundred nanoseconds, followed by

a cooling decay of few µs, during which the detector is not ”dead” and can still detect

new photons. We have decreased the signal level to one peak per µs to avoid photon
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100 mK

Figure 2.2: Resistivity vs temperature for the tungsten film. TES operates at the
superconducting transition edge temperature, near 100 mK. The superconducting
transition edge connects the superconducting regime on the left to the normal regime
on the right.

pileups, where a second photon arrives while the first photon is still on the cooling

decay part of the signal. Photon peaks have different peak heights which indicates

different photon numbers.

There is residual uncertainty in the peak heights due to the readout noise of the

detector electronics Fig. 2.3.a . For accurate photon counting statistics a photon

arrival time should be identified and its height must be quantized.Each detection

event is identified by finding the rising edges in the signal and is characterized as a

photon event if it rises above a predefined threshold, which is set manually during the

calibration process and is designed to be above the average noise level. The first few

points of each photon event are recorded and summed up as a characteristic of each
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peak that contains information about the peak heigh. We sum up only the first few

points of each photon peak as photon births at the rising edge and the decaying part

of the peak is irrelevant to the photon characteristics, here we summed up 3 sample

points out of 10 total points associated to a photon peak and called it peak sum (PS).
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Figure 2.3: TES data. a) Raw TES data appears on the TES in the CW regime,
it consists of single and two photon peaks. b) TES raw data zoomed in to show the
sharp rising edge which takes hundreds of ns, and the slow falling edge of 4 µs.

We then build a histogram of these peak sums as presented in Fig. 2.4. The his-

togram has a continuous spread of numbers instead of well separated delta functions

for 1,2 and 3 photons, as was expected from the small uncertainties on peak heights.

However, three Gaussian-like peaks in the histogram are very well resolved and each

of them corresponds to a photon number.

One can assign a boundary between peaks, and based on these boundaries, one

can define quantization thresholds as in the Fig. 2.4. Quantized photon heights are

presented in Fig. 2.5.
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Figure 2.4: A histogram of peak sums used to decide the quantization thresholds.
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Figure 2.5: Quantized TES data.
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Implementing PNR detectors allowed us to study the photon number statistics

of classical and quantum states, it also enabled us to directly calculate the quantum

degree of second-order coherence, g2(0), which is a good measure of the quality of the

heralded single photon source. The new electronic board designed at NIST enabled

us to simultaneously operate 5 TES detectors.

2.3 Heralded single photon source

In this section, I focus on single-photon generation based on the spontaneous paramet-

ric down conversion (SPDC) in χ(2) crystals. I explain our efforts towards increasing

the heralding ratio and fidelity of the single-photon source before implementing the

optical cavity.

We used both periodically poled KTiOPO4 (PPKTP) and hydrothermally grown

KTP (HGKTP) crystals to spontaneously down convert 532nm pump photons into a

pair of 1064 nm, infrared (IR) photons in:

|ψ〉 =
1

cosh r

∞∑

n=0

tanhn r|n〉signal|n〉idler (2.2)

Signal and idler fields are therefore always generated in pairs, hence with correlated

photon numbers.

However, the SPDC emission is multimode in nature.In the low pump power

regime, where r is small, photons are mostly emitted in photon pairs and the total

emitted state is described by
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|ψSPDC〉n =

∫
dωs,id

−→
k sd
−→
k iψ(

−→
ks , ωs,

−→
ki , ωi)a

†
ωs,
−→
k s
a†
ωi,
−→
k i
|vac〉 (2.3)

where ωs, ωi and
−→
ks ,
−→
ki are respectively the frequency and the wave vector of the

signal and idler photons. ωs,i and ks,i can carry different values, however they are

constrained to obey the energy conservation:

ωi + ωs = ωp (2.4)

and the phase matching condition:

−→
ki +

−→
ks =

−→
kp (2.5)

2.3.1 Experimental setup

We implemented a type-two SPDC process, in which photons are generated in or-

thogonal polarizations and can be spatially separated using a polarizing beam splitter

(PBS). We then sent one polarization directly to the PNR detector. Measuring a sin-

gle photon (n photons) on this detector should herald the presence of a single-photon

(n photons) in the heralded arm. The experimental setup is shown in the Fig. 2.6.

The nonlinear crystal is pumped with an Innolight Diabolo laser. This laser

delivers 100 mW of infrared light at 1064 nm and 600 mW of green light at 532

nm. These light beams were both sent to the crystal, the green light was used

as the pump for the SPDC process and the infrared (IR) one, as a seed beam for

alignment purposes. Note that part of the seed beam is also frequency-doubled inside
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(Brewster prisms & DM:       ) 
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Figure 2.6: Experimental setup: A 532 nm pump beam is sent to a χ(2) nonlinear
crystal and spontaneously down converts to orthogonally polarized signal and idler
fields. Which are separated by a PBS and sent to the heralding and heralded de-
tectors.An extra Fabry-Perot cavity is implemented for alignment of, 1064 nm, seed
beam to the low-intensity SPDC modes.

the Diabolo laser to generate the green pump beam, so the frequency of the seed is

exactly half of the pump frequency.

In order to overlap the seed and SPDC beams spatially, we mode matched the

pump beam as well as the second harmonic of the seed, generated in the SPDC

crystal, to another Fabry-Perot cavity. The cavity finesse (F ) was 300 and its length

30 cm. Hence, careful alignment of these two beams guarantees the spatial overlap

of the seed beam and the SPDC modes over 30 meters. We then aligned the seed to

optical elements and fiber coupled TES. We achieved more than 91 ± 3% coupling

efficiency on coupling the seed beams to the 1550 nm, SMF 28 single mode fibers.

Finally, we blocked the seed and sent SPDC modes to optical elements and fiber
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coupled detectors and consistently achieved maximal signal and coincidence rates on

the heralding and heralded detectors, as scanning the TES fiber position in X and

Y directions dropped the signal level on TES, Fig. 2.7. It shows the success in our

alignment method.
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Figure 2.7: Integrated photon counts, over 13 ms, on the heralding and heralded
channels vs fiber position. The integrated peak were always at the maximum, red
dashed lines, after aligning SPDC with seed.

Extensive studies were conducted on the pump optimum focusing condition on

the nonlinear crystal to optimize it for various SPDC properties [39] such as, the

joint spectral density; the pair collection probability; the heralding ratio (pair/single

photon collection ratio), etc. Some properties can be jointly optimized while others

require a trade-off. We decided to design the pump and SPDC focusing conditions

on the crystal to increase the heralding ratio without sacrificing for the SPDC pair
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generation. Defining the focusing parameter as,

ξj =
L

kjw2
j

(2.6)

then we chose our focusing condition to obey,

ξsignal = ξidler = ξpump =
L

kpw2
p,s,i

= 0.23 (2.7)

Pump has wp = 60 µm waist on the L = 1 cm long PPKTP crystal. We then carefully

designed the optics elements behind the fiber couplers to optimize them for efficient

collection of SPDC modes satisfying wSPDC =
√

2wpump, Eq. (2.7).

Despite all careful alignments and designs, we were not able to achieve near unity

correlation between signal and idler photons, as was expected from theory and near-

unity detection efficiency of TES detectors. The correlation efficiency (number of

coincidences/ average number of photons on each detector ) was C = 25%± 5%. We

placed a TES detector in each of the heralding and heralded channels to determine

coincidence events and average photon numbers.

We then replaced the nonlinear crystal with an ultralow loss, hydrothermally

grown KTP (HGKTP) crystal. We believed that HGKTP crystals are better candi-

dates for single-photon generation due to their high damage resistance and low loss.

However, these crystals are birefringently phase matched (BPM) [40], which causes

walkoff between the orthogonally polarized signal and idler beams in the crystal. This

makes alignment quite challenging. So we decided to employ two identical HGKTP

crystals and place them 180 degree rotated with respect to each other in order to
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compensate for the walkoff. By careful crystal polarimetry, we oriented each crystal’s

X-principal axes separately and with respect to each other.

2.3.2 Crystal polarimetry

Born and Wolf [41] have analyzed birefringently phase matched crystals and described

polarimetry methods for determining several characteristics of a crystal, such as the

position of the principal axes and the refractive indices. We briefly explain their

method then describe how we used it to study HGKTP crystals.

Birefringence is a property of anisotropic materials where different polarizations

of light “see” different refractive indices. In addition, the poynting vector may also

”walk off ” the wave vector. It causes orthogonal polarizations to travel as illustrated

in Fig. 2.8:

HGKTP

He-Ne Laser

Variable HWP

No walkoff (ordinary beam)

 Walkoff (extraordinary beam)

Figure 2.8: Propagation off a principal axis in a birefringent crystal can walk off the
extraordinary beam [41]

The difference between two refractive indices ∆n for two orthogonally polarized

beams depends on the direction of the incident beam respect to the crystal’s principal
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axis, in our case the x axis of KTP. ∆n can be calculated as [41]:

∆n = (ne − no) sin2 θ (2.8)

Where, no and ne are the ordinary and extraordinary refractive indices and θ denotes

the angle which the traveling wave normal makes with the x axis. The phase difference

between traveling orthogonally polarized beams depends on the distance ρ traveled

by beams in the crystal and can be calculated as:

δ =
2πρ

λ
(ne − no) sin2 θ (2.9)

Hence the surfaces of constant phase difference are:

ρ sin2 θ = C (2.10)

The intersection of these constant phase planes with the plane of the crystal surface

corresponds to curves with constant phase difference on the crystal surface also called

”isochromates”, these curves approximates to hyperbolae for the special crystal cut

where principal axes make a relatively large angle with the crystal faces which is a

case for the HGKTP crystals.

To observe ”isochromates” curves, we need to tightly focus the beam to generate

beams traveling with large angles θ in the crystal, then one also needs to place two

polarizers both at 45 deg before and after the crystal. The first polarizer generates two

orthogonally polarized beams with equal amplitudes, the birefringent crystal then acts

as a variable wave-plate and adds a relative phase shift δ between polarizations and
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generates an elliptically polarized beam. Despite the phase shift, the total amplitude

of the beam is constant for all beams in all different directions. The second polarizer,

parallel or perpendicular to the first one, analyzes the elliptical polarization created

in the crystal, which also depends on the propagation direction.

So the second polarizer translates the constant phase shift curves to the con-

stant amplitude curves and generate interference fringes Fig. 2.9. The beam passing

through the principal axis of the crystal θ = 0, does not experience any phase shift

between polarizations δ = 0 and so pass through the second polarizer and results in a

bright (for parallel polarizers) or dark (for orthogonal polarizers) zone in the middle

of the fringes.

HGKTP

He-Ne Laser

+45
-45

Polarizer
X principal axes 
of KTP crystal

Figure 2.9: Tightly focused cross polarized beam generates an interference
fringe,”isochromatic” curve, upon placing two perpendicular HWPs before and af-
ter the HGKTP.

We used a HeNe laser to study HGKTP crystals. The He-Ne laser operates at 633

nm wavelength, which is far from the phase matching bandwidth of the KTP crystals
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in which the downconversion process is not efficient. Also, the crystal’s anti reflection

(AR) coating is not designed to work at 633nm, which will allow us to observe useful

etalon fringes.

We generated crystal fringes and observed parabolic ”isochromatic” curves, Fig. 2.10.a.

In addition to crystal fringes, we can also see circular Fabry-Perot, or etalon, fringes lo-

cated on the right of fringe Fig. 2.10.a . These etalon fringes are featured in Fig. 2.10.b.

Thus the bright spot in the middle of the crystal fringes Fig. 2.10.a locates the di-

rection of the x-principal axis while the dark spot in the middle of the Fabry-Perot

fringes points out the direction of the normal incidence to the crystal. Fig. 2.10.a

clearly demonstrates that centers of these two fringes does not overlap. It means that

the HGKTP crystal’s surface is cut with an angle with respect to the x-principal axis

.

X axis direction

a b

isochromatic curves

crystal normal incidence direction

Figure 2.10: Crystal polarimetry fringes a) isochromatic curves and etalon fringes.
b) etalon fringes

In fact, BPM in HGKTP crystals mandates that the x axis be at 22◦ normal
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incidence, an angle is carefully designed to ensure the orthogonally polarized signal

and idler beams poses appropriate refractive indices to fulfill the phase matching

condition Eq. (2.5) for the frequency degenerate signal and idler photons with ωs =

ωi = ωp
2

.

ns + ni = 2np (2.11)

The angle between the crystal surface normal and the x axes in HGKTP crystals

Fig. 2.10.a shows that beam is not traveling parallel to the x axis θ 6= 0 and so the

refractive indices for ordinary and extraordinary beam are different (no 6= ne), which

results in walk off between orthogonally polarized signal and idler beams Fig. 2.8.

For this reason, we employed another identical HGKTP crystal and oriented it

180◦ respect to the first one, to compensate for the phase shift and the walk off. The

second crystal completely takes care of the first crystal effects and so the ordinary

and extraordinary beams leave the crystal without a relative displacement Fig. 2.11.

HGKTP

He-Ne Laser

HGKTPHGKTP

He-Ne Laser

Figure 2.11: Identical HGKTP crystal placed at 180◦ with respect to the initial
HGKTP crystal and compensated for the walkoff and phase shift effects.

Crystal and Fabry-Perot fringes for two identical HGKTP crystals placed 180◦

with respect to each other are shown in Fig. 2.12. The resulting interference fringes

overlap which clearly shows that the effective x axis of the combined crystals is parallel
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to the normal incidence Fig. 2.12.

X axis and the normal incidence directions

Figure 2.12: Isochromatic curves and etalon fringes, after compensating for the walk
off.

Therefore, using the He-Ne laser and the crystal polarimetry allowed us to success-

fully compensate for the walk off and guarantees the spatial overlap between signal

and idler after the crystals.

However, the maximum achievable correlation efficiency using compensated HGKTP

crystals is C = 15±5% which is even lower than the correlation in the PPKTP crystals

with C = 25± 5% .

We later realized that is probably be due to the fact that SPDC photons are

generated randomly at different positions in the crystals, and this method can only

compensate the walk off for photons generated at the very beginning of the first
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crystal and will only partially compensate for the rest.

So far, we have tried both of the PPKTP and HGKP crystals to spontaneously

generate correlated signal and idler photons, however despite all careful alignment

and crystal polarimetry we have not been able to observe near-unity photon number

correlation.

At this point, we concluded that the reason for low photon number correlation

is the multimode nature of SPDC modes. In fact, the phasematching conditions,

Eq. (2.5) ,allows the generation of photons with various frequencies and in different

directions Fig. 2.13.
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Figure 2.13: SPDC process, phase matching condition ∆k = 0 allows the creation
of signal and idler photons in different directions.

Therefore, even at ∆
−→
k =

−→
0 , signal and idler modes can be emitted in various

directions or equivalently in higher order TEM modes, so both the signal and idler

modes are not simultaneously compatible with the single mode of an optical fiber and

efficient collection of the multimode SPDC pairs on the fiber coupled TES detectors
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is nearly impossible, as TES detectors are coupled to the 1550 nm single-mode fiber.

What’s even worse, the phase matching bandwidth also allows for a vector phase

mismatch ∆
−→
k 6= −→0 , in this case the situation is more critical and SPDC can create

completely decorrelated photons as in Fig. 2.14. In this case one mode, say the idler,

can efficiently couple to the fiber but other one, the signal, is completely off and will

be missed on the detector.
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�!
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Figure 2.14: Phase mismatched SPDC emission.

Thus, we decided to clean up the multimode and broadband SPDC modes, by

use of a 1 GHZ-bandwidth filtering cavity, with as large a free spectral range as

possible, in addition to a interference filter, to filter all SPDC modes and only pass

the spectrally and spatially well defined signal and idlers.

2.3.3 Filtering Cavity

We inserted a 0.5 mm long, 300 finesse filtering cavity in the SPDC path. The

cavity was carefully designed to have relatively small bandwidth of 1 GHZ along
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with large free spectral range (FSR) of 300 GHZ to efficiently filter the broadband

SPDC spectrum with ∼ 1 THz bandwidth. The filtering cavity is a Fabry-Prot cavity,

consisting of two opposing spherical mirrors with f=5 cm, with small mirror separation

distance of L=0.5 mm. Signal and idler photons are generated anywhere within the

(Brewster prisms & DM:       ) 
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Figure 2.15: The filtering cavity is placed on the signal and idler paths to filter out
a spatially and spectrally well-defined mode. Another 532 nm laser is employed to
produce locking signal for locking the filtering cavity.

SPDC frequency spectrum, see Fig. 2.16 , the only constraint being that they should

satisfy ωsignal + ωidler = ωpump imposed by the energy conservation Eq. (2.4). Thus,



CHAPTER 2. CAVITY ENHANCED SINGLE-PHOTON SOURCE 47

signal and idler frequencies can be written as:

ωsignal =
ωp
2
±∆ω (2.12)

ωidler =
ωp
2
∓∆ω (2.13)

Selecting a small fraction of the spectrum by inserting the filtering cavity resonant at

frequencies far from the the SPDC central frequency where (ωs = ωi = ωp
2

), results

in passing only one of the signal or idler photons through the cavity but filtering the

other and so should cause zero photon number correlation (Fig. 2.16.a). On the other

hand, at near degenerate frequencies, both signal and idler photons have frequencies

within the filtering cavity BW and both pass through the cavity.
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Figure 2.16: SPDC frequency spectrum for signal and idler a) the filtering cavity
is locked far from the SPDC central frequency, so the signal passes (red) but idler is
blocked (yellow) by the filter. b) the filtering cavity is locked exactly at half of the
pump frequency and both the signal and idler are passing through the cavity

Accordingly, careful locking of the filtering cavity on the central SPDC frequency

ωp
2

is really essential to achieve maximum photon-number correlation. We used an-

other green laser to generate locking signal for locking the filtering cavity precisely

at the desire length with the Pound-Drever-Hall technique.The seed beam is imple-
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mented as the frequency reference as it has exactly half of the pump frequency and

the locking laser frequency is properly tuned to enable same resonance condition with

the seed on the cavity. Fig. 2.17 shows the resonant modes of locking and seed beams

both on the filtering cavity, their resonances are on top of each other which means

they both happen exactly at the same length of the cavity and so locking the filter-

ing cavity on the green laser resonance guarantees passing the seed beam and so the

central frequency of the SPDC .

1 GHz 
@ 1064 nm

10 MHz 
@ 532 nm

Cavity length

In
te

ns
ity

Figure 2.17: Cavity spectrum for seed at 1064 nm and locking laser at 532nm

The locking mode bandwidth (BW) is 100 times narrower than the seed mode

BW, therefore locking the cavity even on the edges of the locking mode spectrum will

results in filtering cavity locked exactly on the maximum of the seed resonance, and

therefore on degenerate part of SPDC modes. In Fig. 2.18 we show the dependence

of the cavity detuning on the signal and idler correlation, we see the correlation will

drop from maximum to zero by detuning and locking the filtering cavity far from the
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degenerate mode.
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Figure 2.18: Correlation depending on the cavity detuning, it drops from maximum
value to zero by detuning the cavity from degeneracy.

So we could lock the filtering cavity exactly on the degenerate frequency and

achieved the optimum correlation respect to the cavity detuning from resonance.

However, the optimum correlation for HGKTP crystal after adding the cavity is

still at the same level as the correlation before inserting the filtering cavity c = 10±5%.

In fact, inserting the filtering cavity adds extra loss which is in the order of the

improvement in correlation, the loss could be due to the imperfect mode matching of

the signal and idler to the cavity, or losses on mirrors, in fact the cavity throughput

for the seed is only 80%. There are also other sources of losses which will be discussed

in detail later in the next section.
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2.4 Cavity enhanced and high-heralding-ratio single-

photon source

We tried inserting a narrow-band 1 GHz passive filtering cavity on the SPDC beam

path in an effort to clean for the spatially and temporally well defined SPDC modes

and also to improve the photon number correlation between signal and idler modes.

In fact, implementing a passive filtering cavity is the most common method exe-

cuted so far for decreasing the SPDC spectrum bandwidth. However, it has serious

drawbacks. Firstly, the spontaneous nature of the process makes the conversion prob-

ability directly proportional the SPDC bandwidth and simply filtering the spectrum

for smaller bandwidth and longer correlation time will dramatically reduce the bright-

ness of the signal. More importantly, the filtering cavity adds extra loss to the process

due to the Lorenrtzian cavity decay which will be explained in detail later in section

2.4.1. The Lorentzian loss is independent of losses originated from imperfect mode

matching of the signal and idler to the cavity.

Further, the filtering cavity cannot perfectly filter spatially well defined cavity

modes as the cavity is injected with multimode and broadband SPDC modes, in

which the resonance of higher order modes with off degenerate frequencies is still

possible, so higher order SPDC modes can penetrate through the filtering cavity.

More importantly, the completely nonresonant modes, although very weakly trans-

mitted by the filter cavity, are still in such large number that they can still overwhelm

the ”clean” doubly resonant modes. Therefore, implementing a filtering cavity after
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the down converting crystal cannot efficiently filter spatially and temporally well de-

fined SPDC modes as was indirectly proved by observing low correlation efficiency

after adding the filtering cavity.

Therefore, we decided to place the down-converting crystal in an optical cavity,

thereby making an optical parametric oscillator (OPO), only well below threshold that

resonates both the signal and idler modes as was first proposed and implemented by

Ou’s group [42]. Resonance property of cavity modes reduced the bandwidth of SPDC

to that of the cavity, without adding extra loss and sacrificing source brightness.

In the free space SPDC process, pump photons downconvert into a superposition

of very many different free-space field modes Eq. (2.3). However, when the down

converting crystal is placed inside an optical cavity the pump photons are more likely

to annihilate into spatially well-defined resonant cavity modes, which can then be

efficiently collected into single-mode optical fibers for detection and communication

purposes.

In this section, I initially study the input-output theory to clarify the effect of

the filtering cavity and the cavity enhancement on SPDC modes, then I describe the

experimental observation of cavity enhanced SPDC modes by placing PPKTP crystals

inside an intrinsically stable optical cavity. Finally, I discuss about the effect of cavity

enhancement for improving the heralding efficiency in single-photon generation.
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2.4.1 Input-output formulation for optical cavities

The input-output theory of optical cavities studies the interaction of a single cavity

mode with external fields, it is a Heisenberg equation of motion for linearized quan-

tum fields coupled with appropriate cavity boundary conditions and describes the

evolution of the input field, cavity field, and output field [43].

An optical cavity is commonly described by a Hamiltonian of the form:

Ht = HSys +HBath +HInt (2.14)

Where HSys is the Hamiltonian for the intracavity field mode a, HBath is the free

Hamiltonian for the external field modes ain, aout,bin ,bout and Hint is the interaction

Hamiltonian that describes the interaction between the bath and cavity fields.

For the two-sided cavity with two partially transparent mirrors with associated

loss transmission coefficients γ1 and γ2, a single cavity mode interacts with external

fields ain, aout and bin, bout Fig. 2.19.

a

ain

aout

bout

bin

Figure 2.19: A schematic representation of the cavity field and the input and output
fields for a double-sided cavity

The quantum Langevin equation for the internal field is then given by [44],
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da(t)

dt
= − i

~
[a(t), HSys]−

1

2
(γ1 + γ2)a(t) +

√
γ1ain(t) +

√
γ2bin(t) (2.15)

When the optical cavity is empty, for example in the passive filtering cavity case, the

HSys is the free Hamiltonian for the intra cavity mode a:

HSys = ~ω0 a
†a (2.16)

where ω0 is the cavity resonance frequency. For the active OPO filter a downconvert-

ing crystal is placed inside the cavity and cavity is operating well below the oscillation

threshold. The pump mode of the OPO can be treated classically, then the system

hamiltonian HSY S is:

HSys = ~ω0a
†a+

i~
2

(εa†2 − ε∗a2) (2.17)

where ε = εpχ and εp is the amplitude of the pump, and χ is proportional to the

nonlinear susceptibility of the nonlinear medium. Therefore, Eq. (2.15) can be written

as:

da(t)

dt
= −iω0a(t) + εa† − 1

2
(γ1 + γ2)a(t) +

√
γ1ain(t) +

√
γ2bin(t) (2.18)

This is the equation of motion for the active filter but merges to the equation for the

passive filtering cavity in the limit of zero nonlinear interaction ε→ 0.
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Defining the Fourier transform of intracavity field a as:

a(t) =
1√
2π

∫ ∞

−∞
e−iω(t)a(ω)dω (2.19)

then equations of motion, Eq. (2.18) can be written in frequency space as:

− ia(ω) = −iω0a(ω) + εa†(−ω)− 1

2
(γ1 + γ2)a(ω) +

√
γ1ain(ω) +

√
γ2bin(ω) (2.20)

The relationship between input and output modes may be found using boundary

conditions at each mirror:

aout(t) + ain(t) =
√
γ1a(t)

bout(t) + bin(t) =
√
γ2a(t) (2.21)

We use boundary conditions to eliminate the intra cavity mode a in Eq. (2.20) and

obtain output cavity modes aout and bout in terms of input modes ain and bin, we also

transform to rotating frame with a→ eiω0a, the equations of motion then become:

aout(ω0 + ω) = G1(ω)ain(ω0 + ω) + g1(ω)a†in(ω0 − ω)

+G2(ω)bin(ω0 + ω) + g2(ω)b†in(ω0 − ω)

(2.22)

where:

G1(ω) =
γ1 − γ2 + 2iω

γ1 + γ2 − 2iω
, g1(ω) =

4εγ1

(γ1 + γ2 − 2iω)2

G2(ω) =
2
√
γ1γ2

γ1 + γ2 − 2iω
, g2(ω) =

4ε
√
γ1γ2

(γ1 + γ2 − 2iω)2
(2.23)
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In the following, we will study the effect of passive and active OPO filtering cavities

on SPDC modes.

Effect of passive filtering cavity on SPDC modes

We first examine the effect of passive filtering cavity on the SPDC modes, so ε→ 0,

we also consider a symmetric cavity with equal loss rate at each mirror, γ1 = γ2 = γ,

thus equations of motion simplify to:

aout(ω + ω0) =
iωain(ω + ω0) + γbin(ω + ω0)

γ − iω

bout(ω + ω0) =
iωbin(ω + ω0) + γain(ω + ω0)

γ − iω (2.24)

Thus the filtering cavity acts like a frequency dependent two-ported beam splitter.

At resonance frequency ω = 0

bout(ω0) = ain(ω0) (2.25)

It is a bandpass filter and passes all the light at the resonance frequency. But at

frequencies far from resonance ω >> γ:

aout(ω0) = −ain(ω0)

bout(ω0) = −bin(ω0) (2.26)

So all light is reflected with the well known π phase shift at these frequencies.

Now, we consider a filtering cavity with an SPDC photon as input to the filter
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from left, whose wave function can be written as:

|ψ 〉in =

∫
dω f(ω) a†in(ω + ω0) | 0 〉a | 0 〉b (2.27)

where f(ω) is the SPDC frequency spectrum, using the inverted form of Eq. (2.24)

as:

a†in(ω + ω0) =
γb†out(ω + ω0) + iωa†out(ω + ω0)

γ + iω
(2.28)

We can evolve the state through the cavity [45] giving:

|ψ 〉out = U |ψ 〉in =

∫
dωf(ω)

γb†out(ω + ω0) + iωa†out(ω + ω0)

γ + iω
| 0 〉a | 0 〉b (2.29)

And so,

|ψ 〉out =

∫
f(ω)dω

γ

γ + iω
| 0 〉a | 1 〉b +

iω

γ + iω
| 1 〉a | 0 〉b (2.30)

Therefore, the single photon is in a superposition of being reflected | 1 〉a | 0 〉b or

transmitted | 0 〉a | 1 〉b by the cavity, with frequency dependent probabilities. If we

consider the reflected field to be lost then the transmitted field is in a mixed state of

the vacuum and a single photon state with the Lorentzian frequency distribution:

γ2

γ2 + ω2
(2.31)

Now, we consider both the signal and idler photons into cavity, each of them can be

treated independently with respective frequencies ωs = ω and ωi = −ω, so:

|ψ 〉in =
∫
f(ω)dω a†ins(ω0 + ω)a†ini(ω0 − ω) | 0 〉as | 0 〉bs | 0 〉ai | 0 〉bi (2.32)
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and

|ψ 〉out =
∫
f(ω)dω a†outs(ω0 + ω)a†outi(ω0 − ω) | 0 〉as | 0 〉bs | 0 〉ai | 0 〉bi

=
∫
f(ω)dω (

γb†outs(ω0+ω)+iωa†outs(ω0+ω)

γ+iω
)(
γb†outi(ω0−ω)−iωa†outi(ω0−ω)

γ−iω ) | 0 〉as | 0 〉bs | 0 〉ai | 0 〉bi

(2.33)

Thus,

|ψ 〉out =
∫
f(ω)dω (

γ2

γ2 + ω2
| 0 〉as | 1 〉bs | 0 〉ai | 1 〉bi

− iωγ

γ2 + ω2
| 0 〉as | 1 〉bs | 1 〉ai | 0 〉bi

+
iωγ

γ2 + ω2
| 1 〉as | 0 〉bs | 0 〉ai | 1 〉bi

+
ω2

γ2 + ω2
| 1 〉as | 0 〉bs | 1 〉ai | 0 〉bi) (2.34)

Therefore, signal and idlers are in a superposition of four output states upon hitting

the cavity. They both pass through the cavity with a probability of ( γ2

γ2+ω2 )2, this

probability is higher for photons with near degenerate frequencies, there is also a

probability of ( ω2

γ2+ω2 )2 where both the signal and idler reflect from the cavity, which

is high for photons far from the resonance frequency. These two cases are of interest

for us as the reason for implementing the cavity is to extract photons with near

resonance frequencies and block off resonant ones. As clear from Eq. (2.34), there

is also a possibility of 2( γω
γ2+ω2 )2 where one of the signal or idler passes while the

other one rejects by the cavity, this case is not desirable since it cause a loss in the

photon number correlation. This loss is a Lorentzian loss and is due to the Lorentzian
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decay linewidth of the cavity. The maximum photon number correlation efficiency is

therefore bounded by the Lorentzian loss.

We look at the spectrum of the beam on the signal or idler detector placed after

filtering cavity on the bouts,i mode:

S(ω) = 〈 1, 0 |a,b b†outbout | 1, 0 〉a,b =
γ2

γ2 + 4ω2
〈 1, 0 |a,b a†inain | 1, 0 〉a,b =

γ2

γ2 + 4ω2

(2.35)

Therefore the full width at half maximum (FWHM) of the spectrum, ∆ω for each

of the signal or idler fields is simply ∆ω = 0.64γ. And the total photon number on

each detector is proportional to:

∫ ∞

−∞
f(ω)dω S(ω) (2.36)

The spectrum of the coincident detection S(ω)C is:

S(ω)coincidence = 〈b†outsboutsb†outibouti〉 =
γ4

(γ2 + 4ω2)2
(2.37)

vs the spectrum of singlet measurements on one of the detectors, for example click

on the signal when idler photon is reflected:

S(ω)singlet = 〈b†outsboutsa†outiaouti〉 =

(
γω

γ2 + 4ω2

)2

(2.38)

Therefore, correlation efficiency e, the number of coincidences on the signal and idler
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detectors divided by the average number of photons on each detector, can be calcu-

lated as follow:

e =

∫∞
−∞ dωf(ω) Scoincidence∫∞

−∞ dωf(ω) Ssingles +
∫∞
−∞ dωf(ω) Scoincidence

(2.39)

(2.40)

For the SPDC photon with a frequency spectrum of f(ω) = 1, for −B
2
< ω < B

2
and

f(ω) = 0 for |ω| > B
2

, then:

e =

∫ B
2

−B
2

dω γ4

(γ2+4ω2)2

∫ B
2

−B
2

dω ( γω
γ2+4ω2 )2 +

∫ B
2

−B
2

dω γ4

(γ2+4ω2)2

(2.41)

(2.42)

For B >> γ,

e −→ 1

2
(2.43)

Therefore due to the Lorentzian decay on the filtering cavity, the photon number

correlation efficiency cannot get beyond 50%.

Therefore, we have shown that the filtering cavity can perfectly reduce the SPDC

bandwidth to the cavity BW, ∆ω = γ, but note that Fabry-Perot spectrum repeats

itself every FSR, so one needs to carefully design the filtering cavity in a way that

its FSR be greater than the SPDC generation bandwidth to make sure only one

resonance frequency exists in the SPDC spectrum.
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Time domain analysis of filtering cavity

Equivalently in time domain, SPDC photons are short pulses with a coherence time

of δt = 1
∆ωSPDC

= 1
B

. Photons enter the cavity, and leave after several roundtrips,

some of them will pass right away but others will stay longer and then leave after few

roundtrips, the decay rate is exponential with the time constant proportional to the

cavity storage time ∆t = 1
∆ωcavity

.

So the output of the cavity will be a train of δt pulses in a ∆t envelope, when

each of δt pulses are separated by the cavity round trip time tr = 1
FSR

, Fig. 2.20.
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Figure 2.20: Intensity of the resonant SPDC field transmitted by the cavity, versus
time

However, if we force the filtering cavity FSR to satisfy FSR > B/2 then it means

δt > tr
2

and so the train of discerete pulses will merge to the continuous long pulse
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of ∆t. So one can increase the temporal bandwidth or equivalently decrease the

frequency BW of the SPDC modes by placing a passive filtering cavity with large

FSR. Increasing the temporal mode of the SPDC source is of great interest for us,

since TES detectors are slow with long temporal mode, so one need to adjust the

temporal mode of the source to match it with detectors temporal mode.

Effect of active OPO filter on SPDC modes

Now, we consider the effect of active filtering cavity on SPDC modes, this time the

down converting crystal is placed inside an one-sided cavity with loss rate γ1 = γ and

γ2 = 0 and ε 6= 0 in Eq. (2.23).

Collet and Gardiner [43] showed that placing a down converting crystal inside a

single-ended cavity produces a maximally entangled photon pair and optimizes the

photon number correlation. In fact, SPDC photons generated in a two-sided cavity

can penetrate either mirror, so photon number correlation degrades when measured at

only one output port of the cavity say bout. In contrast, placing a parametric amplifier

inside a single-ended cavity forces all photons to appear at the single output of the

cavity and produces maximally correlated photon pair.

Therefore, Eq. (2.23) simplifies to:

aout(ω0 + ω) = G′1(ω)ain(ω0 + ω) + g′1(ω)a†in(ω0 − ω) (2.44)
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where

G′1(ω) =
γ + 2iω

γ − 2iω
, g′1(ω) =

4εγ

(γ − 2iω)2

(2.45)

The field spectrum of resonant SPDC modes on the cavity output is:

〈a†(ω0 + ω)a(ω0 + ω′) = S ′(ω)δ(ω − ω′) (2.46)

where:

S ′(ω) = |g1(ω)|2 =
16|ε|2γ2

(γ2 + 4ω2)2
(2.47)

Therefore, similar to the passive filtering case the full width at half maximum (FWHM)

of the spectrum from the down-converted field is simply ∆ω = 0.64γ, cavity reduces

the SPDC bandwidth to the BW defined by the cavity. Cavity resonant fields are

also amplified by a factor of ∼ 1
γ2

, which will cause enhancement effect in down-

conversion due to cavity resonance.

The overall signal level is proportional to:

Rresonance ∼
∫ ∞

−∞
dω S ′(ω) =

∫ ∞

−∞
dω

16|ε|2γ2

(γ2 + 4ω2)2
=

4|ε2|π
γ

= 8|r|2F 2∆ω (2.48)

Where r = ε tr is a single pass gain parameter, with tr = 1
FSR

as cavity round trip

time, and F the cavity Finesse F = FSR
∆ω

= 1
∆ωtr

.

To calculate the cavity enhancement factor, as was first calculated by Ou’s group

[42], we need to compare the signal level for the cavity enhanced doubly resonant
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modes where both of the signal and idlers are resonating in the cavity, with the signal

level for non resonant SPDC modes. In fact not all the signal and idler modes of the

multimode SPDC are resonant to the cavity. Many of them are not mode matched

to the cavity or have frequencies far from resonance and will leak out of the cavity

after few bounces and without any enhancement.

The signal rate for free space SPDC generation:

S ′′(ω) = g′(ω) = rf(ω) (2.49)

where f(ω) is a gain spectrum of single-pass spontaneous down conversion determined

by phase matching condition, so the overall single pass generation is:

Rsingle−pass ∼
∫ ∞

−∞
dω S ′′(ω) =

∫ ∞

−∞
dω|r|2f(ω)2∆ω ∼ ∆ωSPDC |r|2 (2.50)

and so the average enhancement factor EF per mode is:

EF =
Rresonance/∆ωcavity
RSingle−pass/∆ωSPDC

∼ F 2 (2.51)

Therefore the average enhancement effect per mode is proportional to F 2, or roughly

is equivalent to the square of the number of bounces of light before it leaves the

cavity. Note that the EF is the cavity enhancement factor per mode and indicates

the ratio of SPDC photons emitted in the cavity mode compare to photons emitted

in random non resonant field modes in a frequency interval near cavity resonance

frequency. This cavity enhancement is of great interest because it forces most of the
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SPDC photons to be emitted to the spatially and spectrally well-defined cavity mode.

However, observing this enhancement effect is not trivial in practice, as we do not

have ideal single frequency photo-detectors to only select SPDC modes with resonant

frequency. In fact, all practical photo-detectors have relatively large detection BW,

so they will detect all modes generated in a whole SPDC spectrum, so the measured

EF is degraded by
∆ωcavity
∆ωSPDC

. To increase the observed EF and in order to clearly see

the enhancement effect we need to place another filtering cavity after active cavity to

decrease the ∆ωSPDC . In other words enhanced doubly resonant modes of the cavity

are buried in the ocean of non resonant modes, so one need to reject many of the non

resonant modes to increase the ratio of resonant to non resonant modes and improve

the enhancement effect.

2.4.2 Experimental observation of the cavity enhancement
and the onset of stimulated emission in an OPO oper-
ating well below the oscillation threshold

In this section, I focus on our efforts towards generating cavity-enhanced spontaneous

parametric down conversion. We built an intrinsically stable optical parametric os-

cillator (OPO) and showed that well-defined cavity modes enable us to herald single

photons in narrowband and single-mode quantum states, with up to 80% efficiency

in preliminary results, which is the highest heralding ratio we have achieved so far

after trying many different approaches.

The OPO is a Fabry-Perot cavity consisting of two opposing spherical mirrors,

Fig. 2.21. In our experiment we designed an OPO with 5 cm focal length mirrors and
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ωi
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Figure 2.21: Schematic of the Optical Parametric Oscillator (OPO), pumped with
pump photons with ωp and generated signal and idler photons with ωs and ωi

L=10 cm mirror separation distance. A PPKTP crystal was placed inside the cavity

and was pumped with 532 nm laser, with pump photons down converting into photon-

number-correlated signal and idler modes in the infrared (IR) wavelength range ( 1064

nm). The OPO is a single-ended cavity, in which one of the cavity mirrors is highly

reflective but the other one has 2% transmissivity for IR. The input cavity mirror is

highly transmissive at 532 nm, and the output cavity mirror is almost totally reflective

at 532nm so pump mode does not resonate inside the cavity and leaves the cavity

after a double pass. The cavity has a finesse of F = 314, with a Free Spectral Range

(FSR) of 1.5 GHz and a bandwidth close to 10 MHz.

Optical parametric oscillators are well known sources of nonclassical light and have

been already used to generate single-mode [46] and two-mode squeezed states [47]. It

is very well studied that resonating both the signal and idler fields simultaneously in a

doubly resonant OPO operating near and below the oscillation threshold, produces a

significant enhancement in the nonlinear interaction, as the cavity also confines signals
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and idlers to well defined spatial modes and dramatically narrows their bandwidth

[48], [49], [50].

When the OPO is operating near the oscillation threshold, the cavity enhancement

is very high and the ratio of doubly resonant photons, where both the signal and idler

modes are simultaneously resonant in the cavity, to non resonant ones, where non of

them are resonant, is huge and so one can completely ignore down conversion into

non resonant modes. In this regime enhancement is mostly due to the process of the

stimulated parametric down conversion.

There exist three different regimes of operation for an OPO, above the oscillation

threshold, where OPO ”lases” in bright and well-defined signal and idler modes,

below the oscillation threshold where stimulated emission process is still dominant.

And well below the oscillation threshold in which stimulated emission is negligible

and all photons are generated through the SPDC process.

The generation rate of the doubly resonant stimulated emission is proportional to

G2, where G is the pump power level normalized to the pump threshold power [50],

[51]. When the OPO is operating above the oscillation threshold, G > 1, the signal

and idler generation rate is higher than the cavity loss rate, therefore OPO lases and

generates bright signal and idler modes. But when OPO operates below the oscillation

threshold G < 1, stimulated emission process still dominates the spontaneous process,

but not cavity losses, the OPO does not lase and does not produce a bright output.

The stimulated emission rate decreases with the square of the pump power, so in
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OPOs operating well below the oscillation threshold, G ' 1% the stimulated emission

rate is remarkably degraded and most photons are generated through the process of

spontaneous down conversion.

OPO operating above oscillation threshold

It is well known that, in a doubly resonant type-II OPO, the double-resonance condi-

tion for the signal and idler inside a common cavity containing a birefringent nonlinear

crystal leads to a densely clustered mode structure [48], [49]

The cluster mode structure of our doubly resonant OPO, operating above the

oscillation threshold is shown in Fig. 2.22. In this oscilloscope trace, we measured the

pump beam reflected from cavity and the cluster structure is on the pump depletion,

which is due to conversion of the pump power into signal and idler modes. The trace

shows the rejected pump from OPO vs the cavity length detuning generated by a

piezoelectric transducer (PZT) mounted on one of the mirrors.

At double resonance both the signal and idler modes should satisfy:

L+ ns,il = ps,i
λs,i
2

= ps,i
c

2νs,i
(2.52)

where ns,i is the refraction indices of the signal and idler modes, L is the cavity length

outside the crystal, l the crystal length, ps,i their respective mode numbers (positive

integers) and νs,i is the signal and idler frequencies, which should also satisfy the

conservation of energy νs + νi = νp.
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Figure 2.22: Red Pump depletion peaks for doubly resonant modes well above the
OPO threshold. Green, ramp signal applied to a piezzo mirror of the OPO.

The minimum cavity length displacements corresponding to mode hops are calcu-

lated by Sheng Feng et al in [48] as:

δLmin ' [(δps + δpi) +
δn

2(n̄+ L/l)
(δps − δpi)]

λp
2

(2.53)

where λ is the pump wavelength and n̄ = (ns+ni)
2

. Mode clusters are labelled by

(δps + δpi) and are separated by half a pump wavelength. Inside a given cluster, the

modes are labelled by (δps + δpi) and separated by (δps = −δpi = ±1), then:

δLmin '
δnλp

2(n̄+ L/l)
<< λp (2.54)

In our experiment, δLmin is in the order of λ/200 so mode hops happen at every

' 2.2nm. This should be compared to the usual λ/2 mode hop of a singly resonant

OPO, e.g, laser cavity. Doubly resonant OPOs are extremely delicate to stabilize.
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We then locked the cavity on double resonance using Pound-Drever-Hall lock-

ing technique using the depleted pump signal as the cavity-length error signal, few

percent pump depletion is enough for locking. Bright signal and idler lasing modes

are generated in a well-defined cavity modes and are used for alignment and mode

matching of cavity modes into fibers and other optical elements.

OPO below the oscillation threshold and observation of onset of stimulated
emission

Now, we briefly study the behavior of OPO operating below the oscillation threshold.

We first brought the OPO above threshold and then dropped the pump power to the

level of Ppump = 0.1Pth, where Pth = 250mW . We observed the cluster structure on

the TES raw data, as were slowly tuning the cavity length, Fig. 2.23.
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Figure 2.23: ]
Doubly resonant peaks on the OPO operating below the oscillation threshold,

Ppump = 0.1Pth on left, and piezo ramp on the right.

In order to confirm what we observed below threshold was indeed the OPO clus-

ter spectrum, we compared cluster mode structures below and above the oscillation

threshold: we tuned the cavity with the same ramp in both cases and then recorded
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each clusters separately, Fig. 2.24. For the above threshold case, we measured doubly

resonant modes as pump power depletion on a regular power meter and displayed the

signal on the oscilloscope, but when OPO is operating below the oscillation threshold,

the emission rate of doubly resonant modes are low, on the order of a nw, so they

are not easily detectable by regular power meters. Thus we decided to measure them

on TES with a ND=8 optical density filter on the heralded channel to decrease the

signal level by a factor of 10−8 so as to be appropriate for detection on TES. For a

reason which will be explained later in this section, we placed a filtering cavity on

the heralding channel and looked for doubly resonant structure on the TES detector.

Figure 2.24 shows the cluster structure on the heralded and heralding channels along

with the piezo scanning ramp.
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Figure 2.24: Doubly resonant modes a) well above the OPO oscillation threshold,
on the oscilloscope, b) below the OPO oscillation threshold, raw TES data
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We then zoomed into the TES raw data and clearly observed the cluster mode

structure on the OPO below threshold Fig. 2.25, these clusters are similar to doubly

resonant cluster mode structure of OPO operating above threshold.
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Figure 2.25: Doubly resonant cluster structure on the heralding channel, zoomed in

The piezo ramp speed is the same in both cases, so we can compare two cluster

structures by evaluating and comparing their characteristic times.

We define the whole piezo scanning ramp time as T , cluster length TC , distance

between doubly resonant peaks ∆Tc and width of each doubly resonant peak as δtc

Fig. 2.26.

The ramp time T is equal in both cases, which means the total number of sample

points recorded on TES in one full piezo ramp corresponds to the total ramp time T ,

so if we assume 712210 data samples are recorded in 25 s, then relative time between

each sample is 35 µs. Other characteristic times Tc,∆Tc, δTc can equivalently be

calculated assuming each sample point takes 35µs in average, we calculated time



CHAPTER 2. CAVITY ENHANCED SINGLE-PHOTON SOURCE 72

Scanning ramp
1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

x 105

−1

0

1

x 104 ch1  ND=8

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
x 105

0

5000

10000

15000

20000
ch2 

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
x 105

3000

4000

5000

6000

7000
ch3

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

40200-20-40
x10-3 

Tc

Tc

�Tc

�Tc�Tc

�Tc

In
te

ns
it

y

Number of sample points

Time (s)

V
ol

ta
ge

 (a
rb

it
ra

ry
 u

ni
t)

Figure 2.26: Cluster mode structure and its time constants

constants for the above and below threshold and listed them in the following chart,

Fig. 2.27. As is clear from the chart, the respective time constants in each case are

very close to each other which indicates, as expected, that the doubly resonant mode

cluster structure is identical for the OPO below and above the oscillation threshold.

Note that we calculated the average time for each sample point as 35µs, however

as was discussed earlier in 2.2, each sample point actually takes only 400ns, in fact

35µs average time includes the big dead time in the data processing as the Python

program acquires data in 13 ms and then process them during the rest of a second.

As mentioned earlier the stimulated emission rate is proportional to G2, the square

of the pump power normalized to the pump threshold power, thus decreasing the

pump power decreases the stimulated emission rate. Stimulated emission process will
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Figure 2.27: Time constants for doubly resonant cluster mode structures below and
above the oscillation threshold

eventually disappear and all photons will be emitted through the SPDC process.

Intuitively speaking, for the stimulated emission to happen, one needs enough

pump rate to make sure the next pump photon arrives while the signal and idler

pair from the previous pump photon is still in the cavity, then the second pump can

stimulatedly emit another pair of signal and idler modes in the same spatial mode as

the original one, therefore decreasing the pump power reduces this probability. At

some point the pump rate will be so low that signal and idler pairs leave the cavity

before pump can emit another photon.

We briefly studied the dependence of the stimulated emission rate to the pump

power, Fig. 2.28 shows the stimulated emission of doubly resonant peaks for different

pump powers ranging from 30 mw down to 8mw.

It is clear from these graphs that as we decrease the pump power the probability of
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Figure 2.28: Blue, doubly resonant stimulated emission peaks for OPO operating at
various pump powers ranging from 30-8 mW. Green, ramp signal applied to a piezzo
mirror of the OPO.

stimulated emission decreases, and at P=8mW stimulated emission peaks completely

disappear. We also observed the onset of stimulated emission happening at P=18

mW.

Therefore, we studied OPO operating below the oscillation threshold and observed

stimulated doubly resonant cluster structure even at pump powers P < 0.1Pth. Emit-

ted signal and idler modes are of great interest as these modes are generated in

well-defined cavity modes. However, for experiment in single or multi-photon regimes

using TES detectors, one needs to drop the pump power to levels even lower than

0.1Pth, for the signal and idler emission rate to be appropriate for measurement on

low saturation threshold TES detectors. TES detectors are very slow and their rising
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peak plus cooling time takes 3-4 µs, so one needs to design the photon emission rate

to be in the order of few fW, which is equivalent to one photon per 3µs. In this

regime the OPO is operating well below the oscillation threshold P < 0.01Pth, thus

we cannot count on cavity enhancement due to stimulated emission and need to find

other types of cavity enhancement effects. In the following we studies the cavity en-

hancement effect due to confining the vacuum modes on OPOs operating well below

the oscillation threshold.

OPO operating well-below the oscillation threshold

As was studied earlier in section 2.4.1 for OPOs operating well below the oscillation

threshold some cavity enhancement effect due to the confinement of the vacuum

modes exists and results in the enhanced emission of doubly resonant signal and idler

modes.

We tried to observe this cavity enhancement effect on TES detectors. We initially

brought the OPO above threshold and then dropped the pump power to levels well

below the oscillation threshold, then carefully tuned the cavity length to fulfill the

doubly resonant condition.But we could not see any enhancement on the signal level

as cavity tunes. Fig. 2.29.

In fact the OPO operating well below the oscillation threshold enhances the emis-

sion of narrow band doubly resonant signal and idler modes by a factor of F 2, but it

also enhances the generation of narrowband singly resonant modes, where only the

signal or idler modes are resonant to the cavity. OPO also emits broadband non res-
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Figure 2.29: Constant signal rate vs cavity length tuning, no sign of doubly resonant
effect.

onant modes where none of the signal or idler modes are resonant to the cavity and

both will leave the cavity right after generation. This emission mode is, obviously,

not enhanced by the cavity.

The condition for the signal or idler modes to resonate in the cavity Eq. (2.52)

satisfies for all cavity lengths with corresponding νs,i frequencies. These resonant fre-

quencies repeat every free spectral range ∆νFSR = 1.5 GHz, so singly resonant signal

and idler modes are emitted in frequency combs as shown in Fig. 2.30, Therefore, at

any arbitrary length of the cavity, there exist about 103 singly resonant modes each

with 10 MHz BW. If one divides the whole SPDC frequency spectrum to intervals

of 10 MHz BWs and assumes one mode exists in each frequency interval then there

exists 103 singly resonant modes in a 1THz SPDC spectrum

Note that combs for orthogonally polarized signal and idler modes do not overlap

as each of these modes have different FSR, ns 6= ni.

Signal and idler modes are also emitted with non resonant frequencies, these modes

don’t resonate in the cavity, but are still dominant in the SPDC process as there is
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Figure 2.30: Singly resonant frequency comb (pink) for the signal in the SPDC broad
frequency spectrum (blue). This graph is not to scale, see text.

overwhelming number of them generated in the huge SPDC bandwidth. For example,

assuming one mode in every 10 MHz frequency interval results in the emission of about

105 non resonant modes.

For doubly resonant modes, the resonant condition Eq. (2.52) must be satisfied for

both the signal and idler modes in a common cavity length L, therefore the doubly

resonant condition will happen only at special cavity lengths and at each length there

only exist one doubly resonant mode Fig. 2.30, note that combs have different FSRs

and cannot completely overlap at all frequencies.

Thus even if this one doubly resonant mode enhances by a factor of F 2 = 105, it

is still buried in the ocean of singly and non resonant modes and there is no surprise

if one cannot directly observe cavity enhancement due to doubly resonant modes by

simply tuning the cavity.
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Figure 2.31: ]
Doubly resonant frequency highlighted (green) at the middle of singly resonant

frequency comb ( light pink).

Adding a filtering cavity on the heralding channel

We then decided to place a filtering cavity on the heralding channel to filter out most

of the singly and non resonant SPDC modes while passing doubly resonant part of

the spectrum. We used the same filtering cavity as was employed earlier for filtering

the SPDC modes generated outside an OPO, this cavity has 1 GHz BW which can

perfectly transmit doubly resonant modes but filter out modes in the rest of the

spectrum Fig. 2.32

This time we placed the filtering cavity only on the heralding channel, Fig. 2.33.

At this point we decided to focus on increasing the heralding ratio and since for the

perfect heralding ratio one need to detect a photon on the heralded channel only after
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Figure 2.32: ]
Doubly resonant frequency highlighted (dark pink) at the middle of singly resonant
frequencies ( light pink), filtering cavity frequency spectrum (yellow) and the SPDC

spectrum (blue).

detecting a photon in the heralding detector then the loss on the heralding channel

is not important . So we placed the filtering cavity in the heralding channel to avoid

the effect of loss due to imperfect mode matching of the filtering cavity.

We then tuned the cavity length slowly by hand while the filtering cavity was

locked at the degenerate frequency. Note that the doubly resonant condition does

not always satisfied at degenerate frequencies, where ωs = ωi = ωp
2

.

However, refractive indices ns and ni are temperature dependent and one can

tune the crystal temperature to find a specific temperatures where signal and idler

modes can be degenerate and both fulfill Eq. (2.52). We likewise tuned the crystal

temperature, initially for the OPO above threshold, and noticed that at Tcrystal =
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Figure 2.33: Experimental setup, crystal is placed inside a Fabry-Perot cavity and
filtering cavity is displaced and is on the heralding channel

27.29◦ one of the doubly resonant modes of the cluster is passing through the cavity.

After finding the right cavity length and the crystal temperatures for degenerate

doubly resonant condition based on OPO above threshold, we dropped the power

and further fine tuned cavity length and T to compensate for the crystal temperature

decrease due to the pump power reduction.

We then observed doubly resonant cavity enhancement effect on the heralding

channel Fig. 2.34. Although the heralded channel still has constant output, we also

multiplied two channels to have a quick measure of coincidences. The coincidence

trace also follow the heralding channel and has increases near doubly resonant fre-

quencies.

So we successfully observed the cavity enhancement effect on doubly resonant

modes. As was discussed earlier in this chapter, doubly resonant modes are of great in-
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Figure 2.34: TES raw data on the heralding and heralded channels and also their
multiplication, cavity enhancement effect is clear.

terest as both the signal and idler modes are simultaneously resonant and enhanced in

the cavity.The cavity enhancement effect forces SPDC emission into the well-defined

spectral and spatial cavity modes. We expected that concentrating on doubly reso-

nant modes will allow us to reach to higher heralding ratios which is mostly due to

efficient collection of well-defined cavity modes into the single mode of the TES fibers.

We then carefully zoomed in the doubly resonant part of the TES raw data and

tried to calculate the heralding ratio, Fig. 2.35. In this graph the heralding ratio is

as high as 73%, there are 15 photon in the heralding channel and 11 of them coincide

with a photon in the heralded channel.

This heralding ratio is calculated in a very small sample of the doubly resonant
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Figure 2.35: TES raw data on the heralding and heralded channels, zoomed in.

TES data. We then tried to go through the whole data and calculated the heralding

ratio for larger samples. One should note that in this experiment we cannot lock the

OPO in the well below oscillation threshold regime, so we tried to manually tune the

piezo voltage by hand to stabilize the cavity length on the doubly resonance with few

nm accuracy, as the minimum distance between doubly resonant modes in a cluster

is about 2.2 nm.

Despite careful tuning of the cavity length, we could not stay at doubly resonant

modes for long time, therefore we divided the whole data points into shorter segments

to make sure there is pure doubly resonant mode in each time interval. We then

calculated the number of photons on the heralding and heralded channels and also

the heralding ratio for each time interval Fig. 2.36 .

This graph clearly shows two distinct regimes, on the left where the doubly reso-
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Figure 2.36: Number of heralding and heralded photons along with the heralding
ratio on precise time intervals
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nant condition is fulfilled, then number of heralding photons and also the heralding

ratio increases, and on the right where number of heralded photons decreases by a

factor of 10. In both cases, the number of photons on the heralded channel is constant

which totally supports our earlier discussions about the existence of singly and non

resonant modes and the importance of appropriate filtering.

To calculate the heralding ratio we went through the TES raw data and looked

for the coincident photon in the heralded channel upon detecting a photon in the

heralding channel, we then calculated the ratio of coincident photon events to the

heralded photon events as the heralding ratio.

The heralding ratio is not constant in all time interval but as soon as one hit

doubly resonant modes, heralding ratio rises to higher than 50% and can go as high

as 80%. Most of these fluctuations is probably due to the difficulty of holding the

OPO cavity on a doubly resonant mode .... by hand.

We also looked at the correlation function between the heralding and heralded

channels Fig. 2.37. Figure 2.37.b shows correlation function calculated on doubly

resonant modes, the correlation decays after 10 sample points which is equivalent to

a photon peak length (3 µs) and includes the photon rising and decaying times. So

when two traces are delayed by a photon time then the correlation function approaches

zero, which indicates that correlation is absolutely due to photon coincidences. Fig-

ure 2.37.c shows the correlation function calculated for the non resonant modes, it

clearly shows that there does not exist any specific correlation between traces on non
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resonant part of the spectrum.
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Figure 2.37: Correlation function: correlation C(τ) for a) doubly resonant modes, b)
doubly resonant modes, zoomed in, c) singly and non resonant modes, the correlation
for singly resonant modes is only 1/4 of the doubly resonant peak but consistent with
the noise level.

Achieving 80% heralding ratio is a record in our lab, as previously the heralding

ratio could never go higher than 54%.

It is worth mentioning that, other research groups have already reported single-

photon generation with high heralding ratios near 80%, however each of these groups
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have different approaches and so advantageous and disadvantageous. Ramelow, et al

[52] demonstrated the heralding of single-photons with 83% efficiency, they increased

the heralding ratio by placing a multimode fiber on the heralded channel to collect

whole SPDC emission including the multimode photons, multimode fiber on heralded

channel increased the heralding ratio but it also results in heralding on multimode

and broadband single photons, which are not necessary desirable for applications in

quantum communication. Pereira, et al [53] and Smith et al [54] have also reported

high heralding efficiencies up to 80%, the heralding ratio is symmetric and single-

mode in the first case, however both cases have corrected for detection inefficiencies

and have not reported direct measurement of heralding ratio.

Here we only looked at single-photon heralding ratio. In fact, our slow data

acquisition and processing speed results in low data sample rate and consequently

not enough statistics on higher photon numbers, so we cannot calculate the heralding

ratio for heralding on Fock states with arbitrary large photon numbers. However,

we believe that increasing the speed of data acquisition will enable us to efficiently

herald on Fock states with higher photon numbers.

2.5 Conclusion

In this chapter, we explained our efforts towards efficient generation of spatially and

temporally well-defined Fock-states. We first showed that using SPDC generation

on PPKTP or HGKTP crystals followed by a narrowband filtering cavity did not

help us to efficiently herald for Fock states in narrow-band and single-mode quantum
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modes. We explained about the multimode nature of SPDC photons and how it

prevents them from efficient collection into TES fibers, we also discussed about the

huge loss in photon number correlation initiated from the Lorentzian lineshape of

filtering cavity.

Eventually, we placed the nonlinear crystal inside a Fabry-Perot cavity, this time

the cavity enhancement effect boosts the generation of SPDC modes in a well-defined

cavity mode and allowed us to herald for narrow-band and single-mode Fock states.

We calculated up to 80% heralding efficiencies for single-photon generation and we

believed that this result can be generalized to higher photon number states using

faster data acquision and data analysis systems.



Chapter 3

Fock state interferometry in the
context of the information theory

3.1 Introduction

Quantum mechanics imposes a fundamental limit on the estimation of an optical

phase shift. The number-phase Heisenberg uncertainty between arms of the MZI

interferometer, Eq. (1.65) will bound the phase precision to ∆φ− = 〈N〉−1, φ− being

the optical phase difference between arms and 〈N〉 the average number of photons

sent to the interferometer, as was discussed in section 1.3.2.

However, interferometers fed with classical light can never reach this fundamental

limit of precision for phase estimation. In conventional interferometry, all photons are

sent to one of the input arms, see section 1.3.2, and vacuum mode enters through the

other arm, interference of light with vacuum mode results in a binomial probability

law and yields the beamsplitter shot-noise limit of ∆φ = 〈N〉−1/2, Eq. (1.66), therefore

the interferometer’s performance is degraded by the factor of 〈N〉−1/2 with respect to

the Heisenberg limit.

88
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In 1981, Caves showed that feeding the interferometer with a squeezed vacuum

field can improve the interferometer precision to beat the shot noise limit [55]. Later,

Yurke in 1986 [56] and also Holland and Burnett in 1993 [57] showed that how a

Heisenberg-limited interferometer ∆φ = 〈N〉−1 can be obtained using quantum light

in correlated number states. Many theoretical and experimental studies were con-

ducted and proved that a nonclassical light probe improves the precision in estimating

the optical phase by the factor of N−1/2, [6], [7], [8]. .

Nonclassical states of light are of great interest for ultraprecise optical phase esti-

mation. Implementing quantum correlations has improved the field of interferometric

sensing by predicting enhancement in the precision of optical phase measurements.

Such enhancement has improved gravitational-wave interferometers [58], [59].

In this chapter, we study Heisenberg-Limited Interferometry (HLI) in context

of the information theory. We show that the Heisenberg-limited phase estimation

can improve resolution of optical phase discrimination, and have applications in the

recently developed concept of the quantum reading of classical digital memory.

We propose a Fock State Interferometry (FSI) scheme inspired by the Holland and

Burnett Interferometer for the problem of discriminating a finite number M ≥ 2 of

optical phase shifts. Our suggested interferometry scheme, which is a Mach-Zehnder

Interferometer (MZI) fed with nonclassical light prepared in Fock states, Fig. 3.1,

realizes a physical model for error free discrimination between M=2,3 optical phases.

This model can also discriminate between tinier phase shifts beyond what is feasible
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by classical protocols.

| nbin i

| nain i

✓

JDR ReceiverState Preparation

Phase Reading

| nbout i

| naout i

Signal Beam

Reference

50-50 Beam Splitter

Figure 3.1: Phase estimation setup in FSI. To accurately estimate the phase applied
on the phase reading unit, we first prepare the Fock state |na〉|nb〉 then interfere it at
the first 50-50 beam splitter of the MZI. One of the BS outputs, called signal will be
sent to the phase reading unit and experience a phase shift and the other one will be
used as the reference. Finally both the signal and reference beams will interfere on
another 50-50 beam splitter and eventually they will be measured by Photon Number
Resolving detectors (PNRs). Their photon number sum and differences will be used
to estimate the phase θ.

In optical communication terms, the ability to discriminate between M optical

phase shifts can be beneficial for M-ary Phase Shift Keying (MPSK). MPSK is a

digital modulation scheme that conveys M messages by modulating the optical phase

of a probe signal. We show that using FSI we can accurately discriminate between

M , (M=2,3) optical phase shifts. Moreover, we will show that FSI allows conveying

the information encoded in smaller phase shifts.
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This Chapter is organized as follows, we first study the problem of discriminating

the finite number M ≥ 2 of optical phase shifts for M-ary BPSK and show that our

model can discriminate between two or three phases with zero probability of error

using only few photons, outperforming phase discrimination using coherent states

with heterodyne and homodyne receivers.

In the second part, we study the quantum optical reading of classical digital mem-

ory and its applications in the technology of digital memories such as optical disks.

We show that nonclassical light, along with a joint detection receiver, can outperform

optical reading techniques in conventional optical disks and drivers. Optical reading

in standard CD or DVD drives uses a laser-light probe and a direct-detection re-

ceiver and cannot read any more than 0.5 bit of information per transmitted photon.

In contrast, our experimentally feasible model for optical reading can read 1 bit of

information per transmitted photon. We will also show that our model is able to

discriminate between smaller phases and is sensitive to smaller phase shifts in the

memory encodings.

We also study denser optical encoding by implementing three distinct phases in

each pixel and show that it is possible to read log2(3) ∼ 1.6 bits of information per

pixel using as few as two photons.

3.2 Holland-Burnett Interferometer

In 1993 Murray Holland and Keith Burnett [57] proposed a Heisenberg-limited quan-

tum interferometer in which indistinguishable twin Fock states are simultaneously fed
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into input ports of a 50:50 beam splitter of a Mach-Zehnder interferometer (Fig. 3.1).

The behavior of Holland and Burnett interferometer (HBI) in the low photon-number

limit is predicted to be significantly different from that of a conventional MZI with

shot noise limited phase sensitivity, Eq. (1.66).

Injecting indistinguishable twin-Fock states prepared in Eq. (3.1) to both input

ports of the MZI interferometer enables one to estimate an optical phase shift differ-

ence ∆φ− with sub-shot-noise precision.

|ψ 〉 =
∣∣∣ k̂a, ω, ε̂;n

〉
⊗
∣∣∣ k̂b, ω, ε̂;n

〉
(3.1)

k̂ is the unit wave vector, ω the frequency, ε̂ the unit polarization vector, and n

the photon number.

The physics behind this interferometer and the beam splitter is similar to the

Houng-Ou-Mandel (HOM) interference of the twin Fock states which was explained

earlier in section 1.3.2. It employs photons prepared in states with maximum phase

difference fluctuations (∆φ−) before the beam splitter and therefore minimum (∆φ−)

after the BS and on the phase reading block of Fig. 3.1. Study of the twin Fock states

with higher photon numbers on the BS requires more complicated calculations com-

pare to the simple HOM and is better to be treated in the Schwinger representation,

which allows the application of angular momentum algebra and rotation matrices [9].
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3.2.1 The Schwinger Representation

The Schwinger representation [60] introduces a mathematical description of passive

lossless four-port optical devices based on rotations in an abstract 3D space. The

application of the Schwinger representation to the analysis of optical interferometers

was first demonstrated by Yurke et al [56].

Any linear passive lossless optical device with two input and two output ports can

be described by a 2× 2 unitary matrix of the special unitary group SU(2)

U =




cos β
2
ei(α+γ)/2 sin β

2
ei(α−γ)/2

− sin β
2
e−i(α+γ)/2 cos β

2
e−i(α+γ)/2


 (3.2)

Where α, β and γ are Euler angles [61].

U operates on the two dimensional vector (a, b)T , whose components a and b are

the annihilation operators for the two input fields at each port of the system.

The homomorphism from SU(2) to the rotation group in three dimensions, SO(3),

allows us to visualize the action of two-mode optical devices, such as beam splitters

and phase shifters, as rotations in 3D space. The general rotation in Eq. (3.2) is

mathematically equivalent to the rotation of the the following tridimensional vector

~J in 3D space:

J =




Jx

Jy

Jz




=
1

2




a†b+ b†a

−i(a†b− b†a)

a†a− b†b




(3.3)

Jx, Jy and Jz follow the canonical commutation relations for quantum angular mo-
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mentum operators Eq. (3.4), so ~J can be deemed a quantum angular momentum

operator.

[Ji, Jj] = i~εijkJk (3.4)

where i, j, k ∈ {x, y, z}, and ε is a Levi-Civita symbol.

The magnitude of the angular momentum J2, can be calculated as:

J2 = J2
x + J2

y + J2
z =

a†a+ b†b

2

(
a†a+ b†b

2
+ 1

)
=
N

2

(
N

2
+ 1

)
(3.5)

where

N = Na +Nb = a†a+ b†b (3.6)

is the total photon number operator.

Fock states |na 〉 |nb 〉 are the eigenstates of photon number operators Na and Nb

with eigenvalues na and nb. They are also eigenstates of J and Jz, with respective

eigenvalues j(j + 1) and µ:

| j, µ 〉 = |na, nb 〉 (3.7)

with

j =
na + nb

2
=
n

2
(3.8)

µ =
na − nb

2
(3.9)

Therefore, Fock states can be treated as effective spin eigenstates with total spin

j proportional to their total photon number n and µ proportional to their photon

number difference, and any unitary operation can be viewed as rotation of this spin
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in the tridimensional space.

As an example, input state of the interferometer with 2n photons in mode a and

vacuum in mode b is identical to:

| 2n 〉a | 0 〉b = | j, j 〉z , j = n (3.10)

And the twin Fock state input which is required for Holland-Burnett interferometry

is,

|n 〉a |n 〉b = | j, 0 〉z , j = n (3.11)

Mach-Zehnder Interferometer in the Schwinger Representation

Any unitary operation on the quantum fields a and b can be viewed as the SO(3)

rotation of the corresponding spin ~J , Eq. (3.3). And any arbitrary rotation of the

spin ~J can be carried out via three successive rotations, called the Euler rotations as:

Jout = eiαJz eiβJy eiγJz J in e−iγJz e−iβJy e−iαJz (3.12)

|ψ 〉out = eiαJz eiβJy eiγJz |ψ 〉in (3.13)

respectively in the Heisenberg and Schrodinger pictures.

In the Schwinger representation this arbitrary tridimensional rotation of the ef-

fective spin ~J in is equivalent to the Euler angle parametrization of the SU(2) rotation

of the two modes a and b basis, Eq. (3.2) [60] .

The representing SO(3) matrix for the Euler rotation is :



CHAPTER 3. FOCK STATE INTERFEROMETRY 96




Joutx

Jouty

Joutz




=




cαcβcγ − sαsγ −cγsα − cαcβsγ cαsβ

cαsγ + cβcγsα cαcγ − cβsαsγ sαsβ

−cγsβ sβsγ cβ







J inx

J iny

J inz




(3.14)

where c(α/β,γ) = cos (α/β, γ) and s(α/β,γ) = sin (α/β, γ)

In the following, we study the effect of beam splitters and phase shifters in the

Schwinger representation as building blocks of the Mach-Zehnder interferometer.

Beam Splitter in the Schwinger Representation

As described earlier in section 1.3.1, the representing SU(2) matrix for the beam

splitter with Fresnel intensity coefficients ρ = cosφ/2 and τ = sinφ/2 is:

UBS =




cos φ
2

i sin φ
2

i sin φ
2

cos φ
2


 (3.15)

It is equivalent to the general SU(2) matrix in Eq. (3.2) with the Euler angles

(α, β, γ) = (π/2, φ, π/2). Placing these Euler angles in Eq. (3.14) results in corre-

sponding SO(3) matrix for the effective spin J in rotation :




Joutx

Jouty

Joutz




=




1 0 0

0 cosφ sinφ

0 − sinφ cosφ







J inx

J iny

J inz




(3.16)

Therefore, the effect of the beam splitter on modes a and b is a rotation of effective

spin ~J by (−φ) around the x axis. The special case of the 50/50 beam splitter with
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ρ = τ = 1√
2
, φ = π/2 corresponds to a (−π/2) rotation around the x axis :

Jout = eiπ/2 J in e−iπ/2 (3.17)

|ψ 〉out = eiπ/2 |ψ 〉out (3.18)

Phase Shifter in the Schwinger Representation

The Phase shift θ between arms of the interferometer acts as: Eq. (1.57),

Uθ =



eiθ/2 0

0 e−iθ/2


 (3.19)

which corresponds to the general SU(2) matrix Eq. (3.2) with (α+γ = θ , β = 0).

The comparable SO(3) rotation matrix is,




Joutx

Jouty

Joutz




=




cos θ − sin θ 0

sin θ cos θ 0

0 0 1







J inx

J iny

J inz




(3.20)

which is a rotation of effective spin around z by θ.

Jout = eiθ/2 J in e−iθ/2 (3.21)

|ψ 〉out = eiθ/2 |ψ 〉out (3.22)

Mach-Zehnder Interferometer

The Mach-Zehnder Interferometer (MZI) is consisted of two 50/50 beam splitters,

and a phase shifter as was studied earlier in section 1.3.1. So, the effect of MZI is
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equivalent to a (−π/2) rotation around x axis, a θ rotation around z, and another

π/2 rotation around x.

Jout = e−i(π/2)Jx eiθJz ei(π/2)Jx J in ei(π/2)Jx e−iθJz e−i(π/2)Jx (3.23)

|ψout 〉 = e−i(π/2)Jx eiθJz ei(π/2)Jx |ψin 〉 = eiθJy |ψin 〉 (3.24)

Therefore the effect of MZI is equivalent to a single rotation of effective spin by θ

around the y axis.

The corresponding SO(3) matrix can be reconstructed by multiplying the SO(3)

matrices for beam splitter, phase shifter and another beam splitter and will be equiv-

alent to Eq. (3.14), with (α = γ = 0, β = −θ/2),




Joutx

Jouty

Joutz




=




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ







J inx

J iny

J inz




(3.25)

Here we are interested on the effect of MZI on Fock states, the eigenstates of

effective spin ~J , | j, µ 〉. The probability function P (µ′, µ|θ, j) for the input spin | j, µ 〉

to be measured after the interferometer as | j, µ′ 〉 for fixed θ and J (the total photon

number) can be described as a rotation matrix, which is a square matrix of dimension



CHAPTER 3. FOCK STATE INTERFEROMETRY 99

2j + 1 with general element,

P (µ′, µ|θ, j) = |〈j, µ′|ψout〉|2

= |〈j, µ′|eiθJy |jµ〉z|2

= (djµ′,µ(θ))2

(3.26)

Rotation matrix elements, can be calculated as a function of Jacobi polynomials,

djµ′,µ(θ) =

[
(j + µ)!(j − µ)!

(j + µ′)!(j − µ′)!

]1/2

(sin
β

2
)µ−µ

′
(cos

β

2
)µ+µ′ × P (µ−µ′,µ+µ′)

j−µ (cos β)

(3.27)

Mathematica program can calculate Jacobi polynomials and so rotation matrix ele-

ments for any arbitrary j, (µ, µ′) ≤ j.

3.2.2 Measurement method

The expectation value of the output intensity difference 〈na − nb〉out of MZI with

twin-Fock states as input modes, is independent of the phase shift θ between arms,

〈na − nb〉out = 2〈Jz〉out = 2 〈 j, 0 | sin θJx + cosθ Jz | j, 0 〉 = 0 (3.28)

Therefore, average intensity difference contains no information about the phase and

cannot be used to measure an optical phase shift. To overcome this difficulty, Hol-

land and Burnett employed a Bayesian detection method [62] which consists in burst

measurements of the output intensities, rather than average measurements. Later
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Kim et al [9] studied the HBI behavior and the Bayesian detection method in the

Schwinger representation. The Bayesian detection method is based on the Baye’s

theorem: where one performs p statistically independent measurements of µ, at j

with predefined phase θ, and can calculate the probability distribution of θ as,

P (θ, µ1 and............. and µp) =

p∏

i=1

P (µi|θ, j) =

p∏

i=1

djµ,0(θ)2 (3.29)

So far, we explained the Holland-Burnet interferometry scheme. At this point, we

will consider similar setup, the MZI fed with twin Fock states, but with different

measurement method, which relies on the single measurement outcome and is used

for discriminating between predefined optical phases.

3.3 MZI for phase discrimination

We now consider the MZI for optical phase discrimination, under constraint on the

total energy (photon number). We rely on the single measurement of Na − Nb or

equivalently the Jz measurement of the effective spin at the output ports of the inter-

ferometer, we then try to estimate the phase shift based on the single measurement

outcome.

For simplicity, we first explain the concept with M = 2 phases and then generalize

it to higher values of M . We consider an unknown phase θ of MZI, which can take

one of M = 2 values, denoted p1and p2 and define the estimated phase θ̂. The

diagram in Fig. 3.2 shows all four possible scenarios that can happen during the phase

estimation process. There is a possibility of success assigned with having θ = p1, p2
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and estimating θ̂ = p1, p2.

✓ ✓̂

p1

p2

p1

p2

Pp1,p1

Pp2,p2

Pp1,p2 Pp2,p1

Figure 3.2: The four possible scenarios of the binary phase estimation process. The
probabilities of correct estimation are Pp1,p1 and Pp2,p2 , The probabilities of erroneous
estimation are Pp1,p2 and Pp2,p1

A natural criterion to measure interferometer performance in the phase discrimi-

nation problem is the Probability of error (Pe).

For example in the Fig. 3.2 the Probability of error is proportional to Pp1,p2 and

Pp2,p1 vs the probability of success which depends on Pp1,p1 and Pp2,p2 .

Probability of Error, Pe

The average error probability is defined as,

Pe =
∑

i,j 6=i
p(θi)P (θ̂j|θi) (3.30)

The way to extract the probabilities of error and success from probability distributions

in Eq. (3.26), is to adopt specific selection rule.
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Selection rule

As mentioned earlier, for phase measurement we rely on the single Jz measurement

of the effective spin at the output ports and depending on the measurement outcome

µ′ - one of the 2j + 1 possible outcomes of the Jz measurement- decide about the

optical phase shift. The adopted selection rule is based on the maximum likelihood

and suggest we examine both phases p1 and p2 for each measurement outcome and

pick the one which is more likely to result in this specific outcome µ′ as the measured

optical phase shift θ̂ .

The Fig. 3.3 displays a probability chart to explain our selection rule. We have listed

all possible measurement outcomes µ′ in the horizontal axis and phases in the vertical

axis. Each element of this chart represents the probability of having phase θ = p1(p2)

and measuring µ′(−j, .., 0, .., j).

For each measurement outcome, we look at both phases p1 and p2 and the prob-

ability P (µ′, µ|p1(2), j) to rotate the initial state | j, µ 〉 to the measured state | j, µ′ 〉.

We then pick the phase which has the greater probability (selection rule):

If P (µ′, µ|p1) ≥ P (µ′, µ|p2) −→ θ̂ = p1 (3.31)

else θ̂ = p2 (3.32)

Therefore, probabilities of success and error are directly proportional to elements of

the rotation matrix Eq. (3.26). For example, in the chart in Fig. 3.3, the success
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Figure 3.3: An example of a selection rule chart for specified probability distribution
with effective input spin | j, µ 〉. The horizontal axis, µ′ indicates all possible 2j + 1,
Jz measurement outcomes, and the vertical presents predefined phase shifts. Each
element is the probability that the corresponding phase rotate the | j, µ 〉 to | j, µ′ 〉.
For each µ′, we compare two probabilities djµ′,µ(p) for p1 and p2 as indicated with red
signs and depending on their values pick one of the phases as measurement result
θ̂. Constructing this chart and examining all elements allows us to calculate all
probabilities of error and success.
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probability of applying p1 and measuring p1 is equal to:

Pp1,p1 = [dj0,µ(p1)]2 + [djj,µ(p1)]2 + .... (3.33)

But the failure probability of applying p1 and measuring p2 is:

Pp1,p2 ∝ [djm,µ(p1)]2 + [dj−m,µ(p1) + dj−j,µ(p1)]2 + ...... (3.34)

Since we are relying only on one set of measurement outcomes, then the prob-

ability of error can be very high. Therefore, in this work we carefully examine all

combinations of phases and pick the p1s and p2s which result in least probability of

error and are most suitable for optical phase discrimination problem. It is clear from

the selection rule chart that set of phases that have probability of one in one element

and the zero in all other corresponding horizontal elements results in error-free phase

discrimination. Any of these phases rotates the input eigenstate | j, µ 〉 to another

eigenstate | j, k 〉 with djµ,µ′(p) = 1(0) for µ′ = k (µ′ 6= k). Zero phase rotation is

equivalent to the identity operator and leaves the input eigenstate unchanged, there-

fore zero phase is always one of the optimal phases which can minimize the probability

of error. Therefore, we fix p1 = 0 and only vary p2 = p.

Mathematica programs

We wrote a Mathematica program to model the effect of MZI on any arbitrary spin

eigenstate | j, µ 〉 with randomly large j. The program calculates all probability dis-

tributions in Fig. 3.2 for whole set of phases, p1 and p2, (0 < p1, p2 < 2π). The
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Mathematica program presented in Fig. 3.4 is an example of such program which

models effective spin | j,m1 〉 = | 2, 1 〉. It is consist of three “For” loops, two of them

go through all possible values of p1 and p2 between zero and 2π and the third loop is

on all 2j+1 values of µ′. For each fixed value of p1, p2 and Jz measurement outcomes

µ′ = m2, program compares two probabilities of P (m2,m1|p1) and P (m2,m1|p2):

If P (m2,m1|p1) ≥ P (m2,m1|p2), then the estimated phase is θ̂ = p1, which

means every time that we measure m2 we call θ̂ = p1. It is correct guess with

the probability of P (m2,m1|p1) and with P (m2,m1|p2) our guess is a failure and

cause an error in phase discrimination. These probabilities respectively add up

to the probabilities of success and failure as, Pp1,p1 → Pp1,p1 + P (m2,m1|p1) and

Pp2,p1 → Pp2,p1 +P (m2,m1|p2). Eventually, this program loop through all possible Jz

measurement outcomes and calculates probabilities of Pp1,p1, Pp1,p2, Pp2,p1, Pp2,p2 and

Pe, for all sets of phases. We then compare the action of phase discrimination setup

for all phases p1, p2 and pick the ones which have best performance (least Pe).

Note that, this program does not only consider the effect of MZI on twin-Fock

state which is preferred for HBI, but is very general and can calculate the behavior

of MZI with arbitrary input state:

| 2n−m 〉a |m 〉b = | j,m 〉z n = j (3.35)
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j = 1; m2 = 0;
Data2D10 = Flatten[Drop[Reap[For[v = 0, v <= Pi*200, v++, {
       p = 0.000005 + v/100; 
       p00 = 0.00001; p0p = 0.00001; ppp = 0.00001; pp0 = 
0.00001; PIE = 0; 
       MI = 0; MI2 = 0;
               For[m = -j, m <= j, m++, {
                                            
         dlm0 = dJm1m2[0.000000001, m, m2, j]^2;  
         dlmp = dJm1m2[p + .000000001, m, m2, j]^2;
                                            
         If[dlm0 > dlmp, {p00 += dlm0; p0p += dlmp;}
                                                                     , {ppp +=
             dlmp; pp0 += dlm0;}]  
          }];
         MI3 = Log2[2] + 
         1/2 (p00*Log2[p00/(p00 + p0p)] + pp0*Log2[pp0/(pp0 +       
ppp)] +p0p*Log2[p0p/(p00 + p0p)] + ppp*Log2[ppp/(pp0 + 
ppp)]);
Pe = 1/2*(p0p + pp0);
       o = Sow[{Pe}];}]], 1], 2];

Figure 3.4: The Mathematica program to calculate the effect of MZI on effective
spin | j,m1 〉 of input photons . It calculates probabilities of error and success for two
phase discrimination on all possible phase combinations P1, P2.
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3.4 Information theory

In this section we briefly explain some basic concepts of the information theory. We

will use these concepts later to study the behavior of FSI, then compare FSI with the

more general case of a MZI with various types of input quantum states.

For any probability distribution, we recall the definition of Shannon entropy. Let X

be a discrete random variable with the probability density function, p(x), x ∈ X.

The Shanon entropy of the random variable X is :

H(X) = −
∑

x∈X
p(x) log2 p(x) (3.36)

The unit of entropy is bit. The entropy is a measure of the information required

on average to describe the probability distribution X. For example the fair coin toss

results in two outcome, each with equal probability 1
2
,

X = {1

2
,
1

2
}

H(X) = −1

2
log2(

1

2
)− 1

2
log2(

1

2
) = 1 (3.37)

So, it contains 1 bit of information, in other words,1 bit of information is required to

describe the X distribution.

Conditional entropy

We now extend the concept of the entropy of a single random variable to a pair of

random variables X, Y . The conditional entropy is the expected value of the entropies
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of the conditional distributions, averaged over the conditioning random variable:

H(Y |X) =
∑

x∈X
p(x)H(Y |X = x)

= −
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log2 p(y|x) (3.38)

where p(y|x) is the conditional probability of measuring y given that x occurred.

Mutual Information

We also introduce the mutual information (MI), which is a measure of the amount of

information that one random variable X contains about another random variable Y .

It is equivalent to the reduction in the uncertainty of one random variable due to the

knowledge of the other. For random variables X and Y with probability functions

p(x), x ∈ X and p(y), y ∈ Y and the conditional entropies H(X|Y ) and H(Y |X), the

mutual information can be written as:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (3.39)

One way to study the general problem of encoding the information in M optical

phases, M-ary phase shift keying (PSK), or the more specified problem of optical

reading is to look at the mutual information between the applied optical phases, θ

and the measured phases θ̂. Ideally, θ̂ should contain all the information about θ

and the mutual information I(θ; θ̂) should be equal to the amount of information in

random variable θ, H(θ).

Lets assume information is encoded in M optical phases with equal a priori prob-
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abilities so,

θ = {θ1, . . . , θi, . . . , θM} (3.40)

P (θ) = { 1

M
, . . . ,

1

M
, . . . ,

1

M
} (3.41)

H(θ) = log2M (3.42)

Then, one tries to estimate the optical phases θ̂, a random variable with the proba-

bility mass function ( Fig. 3.2):

θ̂ = {θ̂1, . . . , θ̂j, . . . , ˆθM} (3.43)

P (θ̂) = {P (θ̂1), . . . , P (θ̂j), . . . , P (θ̂M)} (3.44)

Note that θ̂ is not necessary the same random variable as θ, but their similarity and

the overlap in their information contents, defined as I(θ; θ̂), is a good measure of

success in the phase encoding problem.

I(θ; θ̂) can be calculated as:

I(θ; θ̂) = H(θ)−H(θ|θ̂) (3.45)

= H(θ)−
∑

j

P (θ̂j)
∑

i

p(θi|θ̂j) log2 p(θj|θ̂i)

p(θ̂j|θi) is the probability that one can directly extract from experiment so, we employ
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the Bayes theorem:

p(θi|θ̂j) =
p(θ̂j|θi)p(θi)

p(θ̂j)
(3.46)

p(θ̂j) =
∑

i

p(θ̂j|θi)p(θi) (3.47)

and substitute p(θi|θ̂j) with p(θ̂j|θi) in I(θ; θ̂):

I(θ; θ̂) = H(θ)−
∑

i,j

P (θi)
p(θ̂j|θi)p(θi)

p(θ̂i)
log2

p(θ̂j|θi)p(θi)
p(θ̂i)

=
∑

i

p(θi) log2 p(θi)−
∑

i,j

p(θi)p(θ̂j|θi) log2

p(θ̂j|θi)∑
k p(θ̂j|θk)

= log2M −
∑

i,j

p(θ̂j|θi)
M

log2

p(θ̂j|θi)∑
k p(θ̂j|θk)

(3.48)

I(θ; θ̂)max = log2M , when P (θ̂j|θi)i=j = 1 and P (θ̂j|θi)i 6=j = 0.

P (θ̂j|θi)i 6=j is the probability of having phase θi but estimating the wrong phase θ̂j

which results in error, similar to the cross probabilities in Fig. 3.2.

3.5 Optical Phase Discrimination

In this section we study the problem of discriminating a finite number M ≥ 2 of op-

tical phase shifts. We employ the Heisenberg limited Twin Fock state interferometry

(TFSI) inspired by the Holland and Burnett proposal, as phase discrimination set

up (Fig. 3.1), and compare its performance with the more general case of a Mach-

Zehnder Interferometer (MZI) fed with photons in various input Fock states, Fock

State Interferometer (FSI).
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The TFSI is very well studied in the Schwinger representation by Kim et al, [9],

they have considered TFSI for phase estimation and have shown that it is capable

of phase estimation with the Heisenberg-limited resolution. In this chapter we study

TFSI in the Schwinger representation but focus on the phase discrimination problem,

which may be viewed in communication terms in analogy with M-ary phase-shift

keying (PSK) [63].

The criteria which is typically used to measure the performance of an optical dis-

crimination scheme is the probability of error Pe, Eq. (3.30). We show that TFSI or

in general MZI with various Fock states as input (FSI) provides a feasible experimen-

tal scheme for optical phase discrimination with zero probability of error for M=2

and very low error probabilities for M=3. We also show that each of these exper-

imental schemes are optimal in discriminating between specific set of phases p1, p2.

Interestingly TFSI is able to discriminate between optical phase shifts separated by

π/2 which is in contrast to what the classical interferometry can do, it can only

discriminate between phases separated by π.

In this section we study phase discrimination in detail for M = 2, 3 and then will

discuss about higher values of M and why their consideration is not beneficial in this

interferometric scheme. We first consider M = 2, it is equivalent to encoding infor-

mation using two optical phases as Binary Phase-Shift Keyed (BPSK) modulation

which is used in the current technology of CD’s and DVD’s.
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3.5.1 Binary phase discrimonation, M=2

For the complete study of the binary phase discrimination, we consider a more general

interferometry scheme, the MZI with the Fock state input in the generic form of

|2n−µ〉a|µ〉b = | j, µ 〉z, Eq. (3.35), and compare its performance with the TFSI, which

is a MZI fed with indistinguishable twin-Fock states |n 〉a |n 〉b. In the Schwinger

representation, twin Fock state is equivalent to the effective spin | j, 0 〉z, (j = n).

The special case of the effective spin, with µ = j is equivalent to the shot noise

limited (SNL) interferometer, in which all photons are injected into only one input

port of the interferometer and vacuum enters the other port. SNL interferometers is

studied in detail in section 1.3.2 .

In order to study the behavior of interferometer on different input states, we

calculate the interferometer performance Pe and the mutual Information MI, for all p

phases. We then determine optimal phases depending on the specific choice of input

state,

Fig. 3.5 shows the performance of the interferometer as a function of phase p

when total of two photons are injected to the interferometer, photons can either be

prepared in twin-Fock state | 1 〉a | 1 〉b and fed into both ports of interferometer or

they can be prepared in | 2 〉a | 0 〉b and fed into only one arm. In both cases we can

find an optimal phase pi for which Pe = 0. However, each of these cases have different

optimal phases, the single-ported interferometer is optimal for discriminating between

phases (0, π), similar to the classical interferometers. But the interferometer fed with
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Figure 3.5: Probability of error Pe vs p for optical phase discrimination between
two phases 0, p and for two input states: pink) for effective spin | 1, 1 〉z which is
equivalent to interferometer fed with | 2 〉a | 0 〉b, two photons in one arm and vacuum
enters the other arm. Blue) for effective spin | 1, 0 〉z or equivalently interferometer
fed with | 1 〉a | 1 〉b, twin-Fock photons into interferometer.

twin Fock state (TFSI) can discriminate between (0, π
2
). It suggest that TFSI is good

for higher resolution optical phase discrimination and can have applications in higher

resolution phase discrimination or denser optical encoding.

We also looked at the interferometer fed with higher photon numbers in average

(navg = 2, 3) in Fig. 3.6. It is clear from this diagram that our interferometry scheme

is always adequate for error free 2-ary phase discrimination, however the optimum

p value very much depends on the input state. The interferometer fed with twin-

Fock state (TFSI) is optimum for discriminating between phases (0, p = π/2 − η),

in contrast, the single ported interferometer , µ = 0 is not ideal at this phase and

its performance is optimum at phases (0, π − ε < p < π + ε), both η and ε are
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Figure 3.6: Probability of error (Pe) vs p for optical phase discrimination between
two phases 0, p and for various input states with constant average photon number a)
navg = 2. b) navg = 3.

small numbers and their values increase by increasing the average photon number.

Therefore, the single ported interferometer is not ideal for discriminating between

phases separated by π/2 or less. The act of the Interferometer fed with effective spin

| j, µ 〉, (0 < µ < j) is more interesting, it has two optimum p, one close to π/2 and

the other at π, this makes them an excellent candidate for 2-ary phase discrimination

on phases separated both by π
2

and by π.

We have further studied the interferometer with higher average photon numbers

then picked the optimum p for each Navg and plotted in Fig. 3.7. The optimum p

always decreases by increasing the average photon number (higher spins), so sending

more and more photons to the interferometer allows us to successfully discriminate

between smaller and smaller phases.

In the following we compare the behavior of our interferometry scheme for 2-ary
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2

3

4Delta Q H2L
|j, 0iz () |nia|nib

|j, jiz () |2nia|0ibOptimum p

P 
HBI

P
Single ported MI Pe

1 1.56 2.93 1 0

2 0.95 2.48 1 0

3 0.68 2.16 1 0

4 0.53 1.93 1 0

5 0.44 1.76 1 0

n
avg

b)a)

Figure 3.7: a) Optimum p vs Navg, the value of optimum p decreases by increasing
the average photon number. The optimum p is smaller for twin-Fock state input
|n 〉a |n 〉b, ∀n. b) The optimum p (for both TFSI and single ported interferometers),
Pe and the Mutual Information (MI), for each Navg listed in a chart.

phase discrimination with the classical interferometer fed with coherent states.

2-ary phase discrimination using coherent states of light

In binary phase-shift keyed encoding using coherent states, the phase modulated

coherent states are given as |α 〉 and | −α 〉. In low photon number regime, these states

have small amplitudes (|α| =
√
Navg) and are largely overlapping (nonorthogonal),

so the ability to successfully distinguish these states at the receiver is limited, the

minimum error has completely analyzed and solved by Helstrom [64] and is known

as the Helstrom bound. Researchers have proposed various detection schemes to

approach this bound for coherent state discrimination. The simplest possible receiver

which rely on Gaussian operations is the Homodyne receiver [65], the error probability

for coherent state discriminating using Homodyne receiver is given by [66]:
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Pe(α) =
1

2
(1− erf(

|α|
2

)) (3.49)

where erf is the error function defined as:

erf(x) =
2√
π

∫ x

0

e−t
2

dt (3.50)

Dolinar Receiver:

In 1973 Dolinar proposed an adaptive measurement scheme that precisely achieves

the Helstrom bound for discriminating between two pure coherent states. The Dolinar

receiver is based on a combination of photon counting and real-time feedback control.

The minimum probability of error using the Dolinar receiver is:

Pemin =
1

2
(1−

√
1− e−4|α|2) (3.51)

This is the lowest possible error in distinguishing between two pure coherent states.

Therefore, one cannot reach to the zero probability of error using low intensity co-

herent states. However, Nair et,.al, [67], showed that in low photon regime when

Navg ≥ M−1
2

, here M = 2, there always exist an optimum quantum state which can

perfectly distinguish between M optical phases. Their proposed quantum state is:

|ψ 〉s =
1

M
(| 0 〉s + .........+ |M − 1 〉s) (3.52)
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Where, the sub s indicates that, ψs is a quantum state on the imaging probe

(signal). Their proposed state is the so called Phase state, the eigenstate of Phase

operator with minimum phase uncertainty, thus there is no surprise to act as the

optimum state for phase discrimination. They also proposed that for Navg <
M−1

2
, a

single-mode probe prepared in |ψ 〉s =
∑M−1

ν=0

√
pν | ν 〉, pν ≥ 0 achieves the minimum

error probability.

For M = 2, the minimum error probability can be written as:

Pe =
1

2
−
√

(N(1−N)) (3.53)

where N = Navg, the average photon number on the signal probe.

It is worth mentioning that, Nair, et al did not propose any experimental set up to

generate the optimum state Eq. (3.52). On other hand, our proposed interferometer,

provides a feasible experimental scheme for error free 2-ary phase discrimination, our

scheme does not outperform the optimum state Eq. (3.52) proposed by them for

energy efficient phase imaging but can discriminate phases with zero probability of

error but by implementing few more photons. We also show that our measurement

setup which is a MZI fed with Fock state input and with the specific joint detection

receiver as was explained earlier in section 3.2.2, outperforms the performance of the

interferometers with coherent state inputs and with Homodyne or Dolinar receivers

Fig. 3.8 .

Classical interferometers can typically distinguish between 0, π phase shifts, so bits
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10-4
0.01

1
Pe

Coherent State input with Homodyne Receiver

Coherent State input with Dolinar Receiver

Optimum state

                  with Joined detection Receiver.
|↵|2 = Navg}

0.5

|2Nia|0ib

Figure 3.8: Pe vs N = Navg, for BPSK encoding using (0, π) phase shifts for various
experimental schemes, the coherent state probe with Homodyne and Dolinar receivers,
the absolute optimum state for BPSK proposed by Nair, et.al [67], and the Fock state
with Joint detection receiver.
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of information 0(1) is encoded as 0(π) phase shifts. But, our proposed interferometer

can distinguish between various set of phases, say (0, π
2
), and each of these sets can

be used for encoding 0(1) bits of information. For the sake of comparison, we now

focus on our interferometer performance at (0, π) phase shifts. we have already shown

that MZI fed with | 2n 〉a | 0 〉b has optimum performance on these set of phase shifts,

so in Fig. 3.8, we compare the behavior of coherent state interferometers with MZI

interferometer fed with | 2n 〉a | 0 〉b .

3.5.2 3-ary phase discrimination, M=3

Now, we consider the problem of discriminating between three optical phase shifts

employing our proposed interferometer. We apply one of the three phases (0, p1, p2)

with equal probability, then try to guess the phase shift based on the Jz measurement

outcome. Again, the probability of error (Pe), is a natural criteria to measure the

performance of the phase discrimination. For M = 3 the Probability of error in

Eq. (3.30) can be expressed as:

Pe =
1

3
(pθ̂|θ(0|p1) + pθ̂|θ(0|p2) + pθ̂|θ(p1|0) + pθ̂|θ(p1|p2) + pθ̂|θ(p2|0) + pθ̂|θ(p2|p1))

(3.54)

We loop through all phases p1, and p2, in the whole range of 0 < p1, p2 < 2π and

calculate the probability of error for all possible combinations of (0, p1, p2), Fig. 3.9.

The probability of error very much depends on the choice of phases. We go through
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p2

Pe

p1

Figure 3.9: Probability of error (Pe) vs phase shifts p1 and p2, for optical phase dis-
crimination between three phase shifts (0, p1, p2). Interferometer is fed with photons
prepared in | 2 〉a | 2 〉b ⇔ | 2, 0 〉z.

all Pe values and pick the optimum phases which gives the minimum probability of

error. For example, for the interferometer fed with photons in | 2 〉a | 2 〉b which is

equivalent to the effective spin | 2, 0 〉z, the minimum probability of error is Pe = 0.16

and the optimum phases corresponding this Pemin, are (0, p1, p2) = (0, π
4
, π

2
).

As we have seen earlier in 2-ary phase discrimination problem, M = 2, the in-

terferometer performance very much depends on the form of the input state. In the

following we compare the interferometer fed with photons in all types of the effective

spins and then calculate their optimum phase values.

Fig. 3.10 compares the interferometer with four photons prepared in | 3 〉a | 1 〉b

and | 4 〉a | 0 〉b states, these Fock states are equivalent to the effective spins | 2, 1 〉z and
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p1

p2

Pe

a) p1
p2

Pe

b)

Figure 3.10: Probability of error (Pe) vs phase shifts p1 and p2, for optical phase dis-
crimination between three phase shifts (0, p1, p2). Interferometer is fed with photons
prepared in a) | 3 〉a | 1 〉b ⇔ | 2, 1 〉z. b)| 4 〉a | 0 〉b ⇔ | 2, 2 〉z

| 2, 2 〉z in the Schwinger representation. Similar to theM = 2 case, interferometers fed

with effective spins with lower µ values have more oscillation in their Pe diagram, with

local minimas occurring at smaller phases p1 and p2, so they are more appropriate

for discriminating between smaller phases. In other hand, the Pe performance for

effective spins with higher µ values are more flat and have minimums at higher phases.

As an example, in the case of j = 2 (Fig. 3.9), the minimum error probability for

effective spin | 2, 2 〉z occurs at (0, p1, p2) = (0, π
2
, π) which should be compare to

(0, p1, p2) = (0, π
4
, π

2
) for effective spin | 2, 0 〉z.

We further study the behavior of interferometer with different input states and

calculate their optimum phase values for higher photon average numbers as input to

the interferometer and consequently on the signal probe. We list all optimum phases

for different input states in the chart in Fig. 3.11.

Unlike, the M = 2 case, in the 3-ary phase discrimination, the Pe does not
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|2ia|2ib , |2, 0iz (0,⇡/4,⇡/2)
|3ia|1ib , |2, 1iz (0,⇡/2,⇡)
|4ia|0ib , |2, 2iz (0,⇡/2,⇡)
|3ia|3ib , |3, 0iz (0, 0.67,⇡/2)
|4ia|2ib , |3, 1iz (0,⇡/2,⇡)
|5ia|1ib , |3, 2iz (0, 2.32, 3.16)
|6ia|0ib , |3, 3iz (0,⇡/2,⇡)
|4ia|4ib , |4, 0iz (0, 0.55, 1.2)
|5ia|3ib , |4, 1iz (0, 1.2,⇡)
|6ia|2ib , |4, 2iz (0, 0.6,⇡)
|7ia|1ib , |4, 3iz (0, 0.66,⇡)
|8ia|0ib , |4, 4iz (0,⇡/2,⇡)
|5ia|5ib , |5, 0iz (0, 0.42,⇡/2)
|6ia|4ib , |5, 1iz (0, 1,⇡)
|7ia|3ib , |5, 2iz (0, 0.48,⇡)
|8ia|2ib , |5, 3iz (0, 0.45,⇡)
|9ia|1ib , |5, 4iz (0, 0.64,⇡)
|10ia|0ib , |5, 5iz (0,⇡/2,⇡)
|6ia|6ib , |6, 0iz (0, 1.32, 2.8)
|7ia|5ib , |6, 1iz (0, 1.32, 3.16)
|8ia|4ib , |6, 2iz (0, 0.38,⇡)
|9ia|3ib , |6, 3iz (0, 0.42,⇡)
|10ia|2ib , |6, 4iz (0, 2.68,⇡)
|11ia|1ib , |6, 5iz (0, 2.56,⇡)
|12ia|0ib , |6, 6iz (0, 1.56,⇡)

Input State
2 0.160 0.93
2 0.160 0.97
2 0.040 1.35
3 0.140 1.13
3 0.008 1.50
3 0.005 1.55
3 0.048 1.30
4 0.120 1.12
4 0.005 1.52
4 0.002 1.55
4 0.003 1.56
4 0.003 1.41
5 0.096 1.20
5 0.005 1.54
5 0.003 1.56
5 0.024 1.40
5 0.00004 1.58
5 0.00068 1.57
6 0.088 1.20
6 0.004 1.54
6 0.002 1.56
6 0.00007 1.58
6 0.00023 1.58
6 0.000066 1.58
6 0.0002 1.58

Navg Pe MI(0, p1, p2)

Figure 3.11: Minimum Probability of error (Pe) and the Mutual Information (MI)
for optimal phases (0, p1, p2), for various input states.
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reach the exact zero, which means our interferometer is not a perfect machine for

distinguishing between three quantum states. However, by increasing the average

photon numbers Navg and carefully choosing the appropriate effective spin | j, µ 〉, one

can achieve Pe with arbitrary small value. Once again, the above-mentioned chart

demonstrates that, smaller µ values are always good candidates for discriminating

between phases (p1, p2 < π). But, if discriminating between smaller phases is not of

any interest then other types on input states with effective spin | j, µ 〉 (µ > 0) are

better candidates and can perform phase discrimination with less error.

Looking at the chart, one can conclude that, among all effective spins with constant

, Optimum state that results in minimum Pe

|Nia|Nib , |j, 0iz
|2Nia|0ib , |j, jiz

Ê Ê Ê Ê Ê
‡ ‡

‡

‡

‡

Ï

Ï

Ï
Ï

Ï

1 2 3 4 5 6 7N
1¥10-4
5¥10-4
0.001
0.0050.010
0.0500.100

Pe

|2N � 1ia|1ib , |j, j � 1iz

Figure 3.12: Minimum Probability of error (Pe) vs N for M=3 and for all forms of
input states. The effective spin | j, j − 1 〉z shows the best performance.

j, the spin | j, j − 1 〉z have the best performance. Fig. 3.12, demonstrate the Pe vs
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N = Navg for effective spins | j, 0 〉z,| j, j 〉z and | j, j − 1 〉z.

We also consider the performance of the interferometer for discriminating between

M > 3 optical phases. In fact, the interferometer performance degrades with higher

values of M and does not seem to be a good candidate for discriminating between more

that three phases. To show that, we introduce a quicker method for calculating the

Pe directly from the probability distributions djm,m′(p), this method is more straight-

forward compare to the Mathematica programs explained earlier, but only works for

effective spin | j, 0 〉 and for discriminating between M = j + 1 optical phases.

For the i-th row of any general selection rule chart, similar to the one presented in

the Fig. 3.13, elements can be written as (βi0, ....βik, ...., αi,kα , ......., βij), with αi,kα >

βik ∀k. we then define:

βi =
∑

k

βik (3.55)

Di = αi − βi = djm,m′kα
(pi)−

∑

k 6=kα
djm,m′k

(pi) (3.56)

The value of Di, αi and βi depends on the choice of phases pi on each row, so

we write them as a function of pi as D(pi), α(pi) and β(pi). Since the probability

of measuring all possible measurement outcomes is normalized to one, then α(pi) +

β(pi) = 1 ∀ i. Phases with α(pi) = 1 and β(pi) = 0 ∀(i, k), results in the perfect phase

discrimination. In most cases β(pi) 6= 0 and achieving error free phase discrimination

is impossible so we are interested to find phases pi that maximize α(pi) and minimize

the β(pi). In order to find optimum phases, we plot the function D(pi) = α(pi)−β(pi)
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Figure 3.13: The selection rule chart for discriminating between M = 4 optical phase
shifts with interferometer fed with | 3, 0 〉z input spin. we have not listed negative
values of µ′ in the chart, in fact, dj0,µ′(p1) = dj0,−µ′(p1), so we do not need to consider
−µ′ in separate columns and µ′ and −µ′ columns can be combined in one with βik =
2dj0,µ′k

(p1) for k 6= 0.

for all phases and then pick phases that corresponds to the maximum D(pi). Note

that, kα, the position of αi,kα depends on the choice of the phase shift and is not

required to be known in advance. We look at D(pi) for 0 ≤ kα ≤ j and then

pick the optimum phases which corresponds to a local maximum. Each maximum

corresponds to a minimum probability of error for Pei. Therefore knowing the value

of these maximums D(pi) for optimum phases pi, one can calculate the probability of

error as:

Pe =
1

M

∑

i

Pei =
1

M

∑

i

β(pi) =
1

M

∑

i

1−D(pi)

2
(3.57)

If maximum values of D(pi) drops below zero then the probability of error Pe ≥

1/2, it is considered as big error in the phase estimation problem and means that
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D(pi)

D(pi)

Figure 3.14: D(pi) for all phases, the phases at which each maximum occurs is
an optimum phase and the value of the maximum is inversely proportional to the
probability of error, a) M=4 b)M=6
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for these values the interferometer is not appropriate for this task. We have plotted

all D(pi)s for M = 4, 6 in Fig. 3.14, we can clearly see that the maximum values

are dropping very quickly by increasing the M , so our proposed interferometer is not

appropriate for discriminating between M > 3 optical phases.

3.6 Optical Reading

One application of our study of error free optical phase discrimination is to the re-

cently developed concept of quantum reading of a classical digital memory, which

uses quantum optical probe state to read optically encoded digital memories such as

in CDs and DVDs [68], [69]. Our proposed interferometry scheme can be employed to

generate the quantum state probe to read optically encoded digital memories and the

specified joint detection receive (JDR) can successfully record the encoded message.

Optical memories are highly reflective amplitude modulated memory surfaces in

which digital information is encoded in pixels as tiny indentations known as ”pits”

and the areas between pits which are known as ”lands”. Digital information stored in

the amplitude modulated memory surfaces can be read by shining a beam of light, in

which the information encodes on the optical phase shift of the reflected light probe

as a bi-phase modulation, also known as the binary phase shifted keyed (BPSK)

modulation and can later be recorded with photo diodes as the intensity difference

upon interference with the reference light.

The classical capacity of optical reading is the amount of bits of information that

can be reliably encoded and read per pixel, it is equivalent to the maximum attainable
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✓1 ✓2 ✓K✓k ....

Signal Probe, Ns photons sent to each pixel.

BPSK modulated light, reflected from memory surface

Ns

Figure 3.15: The setup for optical reading. Ns photons are sent to each memory
pixel of the amplitude modulated memory surface. The binary information is encoded
on the reflected light as BPSK modulation.

mutual information (MI) between the applied phase shifts θ and the measured phase

shifts θ̂ for each pixel:

C(Ns) = max I(θ; θ̂) (3.58)

and the Photon Information Efficiency (PIE) is the number of bits read per signal

photon:

PIE =
C(Ns)

Ns

(3.59)

We calculate the capacity of optical reading assuming only one memory pixel, we

adjust the Fock state interferometry scheme which is well studied for the problem of

phase discrimination for the optical reading and then compare its performance with

optical reading with coherent state and Homodyne or Dolinar receivers. We first

calculate the mutual information (MI), I(θ; θ̂) for all combination of p1, p2 phases

and then look for optimum phase values which maximizes the mutual information,

then we record these maximum values as the capacity of optical reading.
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Note that the average number of photons Ns in the signal port is:

Ns = 〈na, nb |U †BSNaU
†
BS |na 〉 |nb 〉 = 1

2
〈na | 〈nb | (a† + b†)(a+ b) |na 〉 |nb 〉

= 1
2
〈na | 〈nb | (a†a+ b†b) |na 〉 |nb 〉 = 1

2
(na + nb) = n = j (3.60)

We plotted the Mutual Information (MI) for TFSI fed with n = 1, 2 photons in

Fig. 3.16. The maximum value of mutual Information (MI) reaches one for all types

of effective input states and for all average photon numbers Navg = n. But optimum

phases corresponding to the maximum MI is different for various types of effective

spins.
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Figure 3.16: The mutual information for optical reading. The binary information is
encoded in optical phase shifts (0, p). a) n=1 b)n=2

The classical capacity of a quantum channel is limited by the Holevo bound, which

imposes an upper limit on the continued reliable rate of reading classical information
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from quantum channel [70], [71] . For the lossless phase only encoding the Holevo

capacity can be written as [72]:

C(Ns) = g(Ns) (3.61)

where:

g(x) = (1 + x) log2(1 + x)− x log2(x) (3.62)

The Holevo capacity can be achieved using optimum probe state with optimum re-

ceiver design, However, there is no feasible experimental scheme to approach this

limit. Common optical reading schemes implement coherent states of light along

with Homodyne or heterodyne receivers. We also consider optical reading with co-

herent state and Dolinar receiver. For these binary channels the channel capacities

can be written as:

C(Ns) = max I(θ; θ̂) = 1−H(Pe) (3.63)

H(x) = −q log2(q)− (1− q) log2(1− q) (3.64)

Pe for Homodyne and Dolinar receivers are calculated in Eq. (3.49), Eq. (3.51).

For the energy constraint issues, people are interested in experimental schemes for

optical reading in which the bits of information read per photon is higher. So we

compare the performance of various well known experimental schemes for optical

reading based on their photon information efficiency (PIE) vs the capacity of optical

reading (bits encoded per pixel) and the PIE vs Ns.
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Coherent State: BPSK encoding with Homodyne Receiver
Coherent State: BPSK encoding with Dolinar Receiver
Fock state: BPSK encoding with JDR. (HBI).
Holevo Bound

Ê

Ê
Ê ÊÊ

10-4 0.001 0.01 0.1 1 10Ns0

1

2

3

4

5
CHNsLêNs

Figure 3.17: Photon information efficiency C(Ns)/Ns versus Ns, for various interfer-
ometry schemes.

Fig. 3.17 and Fig. 3.18 compare the performance of optical reading implementing

TFSI with various input photon numbers with the Holevo capacity and the capacity

of binary phase encoding using coherent state probe with Homodyne and Dolinar

receivers.

The performance of our interferometer is slightly better than the Dolinar receiver

for n = 1. We also include the gray area which corresponds to the best performance

of conventional optical reading disks in the diagram which compares the PIE =

c(NS)/Ns vs the capacity of optical reading C(Ns). Conventional optical reading

techniques presented here use coherent state probe with on-off amplitude modulation

and direct detection. Our scheme clearly outperform the conventional techniques and
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in most cases the coherent state inputs with Homodyne and Dolinar receivers.
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Coherent state: On off encoding with direct detection

Coherent State: BPSK encoding with Homodyne Receiver
Coherent State: BPSK encoding with Dolinar Receiver
Fock state: BPSK encoding with JDR. (HBI).
Holevo Bound

Figure 3.18: Photon information efficiency (bits per photon) vs the encoding effi-
ciency (bits encoded per pixel) for various input state and receiver strategies.

In classical optical reading, lands and pits need to at least have λ
4

height difference

to be distinguishable with conventional light interferometry, λ being the optical probe

wavelength. In fact, λ
4

height difference results in a π phase shift on the optical beam.

Notably, our interferometry model is capable of distinguishing between smaller phase

shifts,Fig. 3.19, and thus shorter height differences. In fact, TFSI enable us to read

pits etched λ
8

deeper respect to lands , so our interferometry scheme realizes memory

surfaces with shallower pits.
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Figure 3.19: Optimum p for the MZI interferometer fed with two different effective
spins, vs the average photon number N = Ns. Optimum phases are smaller for MZI
fed with twin-Fock state and is higher for single ported MZI.

We also proposed an optical reading scheme with 3-ary phase shifted keyed (PSK)

modulation, where information is encoded as three distinct phases shifts (0, p1, p2),

in each memory pixel. This can potentially results in a denser optical encoding.

Figure 3.20 illustrates the performance of MZI interferometer for 3-ary PSK phase

encoding. The single ported MZI with | j, j 〉 effective spin, can reach to higher optical

capacities and can read log2(3) ' 1.6 bits of information per pixel with near zero

probability of error using as few as two photons, Fig. 3.11. MZI with twin Fock

states does not approach the maximum achievable capacity of optical reading but it

allows us to encode information in smaller phases.
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Figure 3.20: The capacity of optical reading using Fock states with 3-ary PSK
modulated phase encoding and joint detection receiver.

3.7 Conclusion

We have shown that employing the MZI interferometers fed with Fock states along

with specific joint detection receiver provide an experimental scheme for M-ary phase

discrimination on M = 2, 3. The probability of error for the M = 2 case is always

zero independent of the form of the input state, but for M = 3 Pe very much depends

on the form of the input state and is not exactly zero, We showed that using more and

more photons help us to discriminate between smaller and smaller phase shifts and

with less probability of error. We also showed that we can successfully discriminate

between various phases by carefully designing the input Fock state and sending the

specific effective spin. Our proposed interferometry scheme can also be implemented

for reading digital classical memories using quantum light. The performance of our
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interferometer will outperform the performance of conventional optical reading tech-

niques with coherent state inputs and direct detection, it also perform slightly better

than coherent state input BPSK encoding with Homodyne and Dolinar receivers.



Chapter 4

Information-efficient and boundless
reading of classical bits using
single-photon source

4.1 Introduction

Photons are ideal candidates for communicating information over long distances, they

are also extensively implemented in optical reading of stored digital information,

such as in CDs and DVDs. To achieve highly efficient communication and reading

rates, researchers are interested to maximize the information content of the photon.

There are many ways to increase the information capacity of a photon by encoding

information on the various photon degrees of freedom, such as in the amplitude, phase,

time, polarization and recently the orbital angular momentum of the photon [73].

In this chapter, we implemented an experimental scheme to exploit the phase of

the photon to read boundless bits of digital information using a single photon. This

scheme was first proposed by Saikat, et al in [72] and is an example of implementing

single photons for obtaining the quantum advantages for various quantum information

136
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applications, here to increase the efficiency in reading out information stored in a

classical digital memory. Another theoretical proposal for quantum optical reading

implementing a Mach-Zehnder interferometer fed with Fock states was proposed and

discussed earlier in section 3.6 .

In this experiment, we made use of the M ×M -port generalized Mach-Zehnder

interferometer (MZI) and showed how the optical phase can be used to read log2(M)

bits of classical digital information using a single photon. It allowed us to attain high

photon information efficiency (PIE), where the PIE is the number of bits read per

signal photon.

This chapter is organized as follow, we explained about the principle of interferom-

eter in the first section, then discussed about the quality of the single-photon source

by calculating the degree of second-order coherence g2(0). Having highly efficient

PNR detectors gave us the opportunity to directly measure the g2(0) as low as 0.03.

Finally in section three, we looked at the interferometer performance and demon-

strated the actual value of the PIE that we achieved considering all experimental

imperfections.

4.2 Principle of the experiment

The M ×M -port generalized MZI is depicted in Fig. 4.1. We used the freedom on

the optical phase shifts between arms of the interferometer to generate M binary

phase-shift keyed (BPSK) code word from the Hadamard code.

The single photon interfered in the M ×M -port beam splitter, experienced one of
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Figure 4.1: Principle of high-PIE optical reading scheme. AnM×M -port generalized
MZI is fed with a single photon. A Hadamard phase shift array of 0π0π....π as M-long
binary code word, is applied between interferometer arms and cause the photon to
constructively interfere on the third output port of the interferometer and so appear
on the third PNR detector.

the M Hadamard phase coded memory, and then recombined with another M ×M -

port beam splitter. The M ×M -port beam splitter is a symmetric generalized beam

splitter with M input and M output ports and can be realized using linear network

of standard 2× 2 beam splitters. Zukowski, et al showed that such generalized beam

splitter can be constructed using two ported beam splitters and can produce higher

dimensional Einstein-Podolsky-Rosen (EPR) correlations [74].

The M ×M -port beam splitter (MBS) which is also called W state transmitter,

evolve the single photon wave function and prepare it in the spatially entangled non

classical M mode W-state.

|W 〉 =
|10...0〉+ |01...0〉+ ...+ |00...1〉√

M
(4.1)

The single photon prepared in the W-state then experienced a Hadamard phase
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shifted code word between arms of the interferometer and depending on the Hadamard

code applied, the single photon interfered constructively at one of theM outputs of the

interferometer and destructively on other M − 1 output ports. Therefore by tracking

the photon and knowing where it clicks one can distinguish between M different

Hadamard phase shifts and consequently read log2(M) bits of classical information.

Here as a proof of principle, we experimentally realized the simpler case of the

4 × 4 -port interferometer which is capable of encoding and transmitting 2 bits of

information using a single photon (PIE=2). However, the scalability of the interfer-

ometer to the more general case of the M ×M -port interferometer is feasible using

the current technology in M × M -port integrated devices. Such devices allow the

design of MBS on integrated silicon chips and with superior performance [75]. They

will dramatically reduce the complexity of the set up required to generate arbitrary

large quantum states, such as W-states.

4.2.1 Interferometer

The experimental realization of this 4 × 4 -port W-state interferometer can be ex-

plained in 3 parts - the W-state creation, the phase array and the green machine

receiver. For accurate imaging of the phase array, the relative phases of all 4 modes

must be stabilized when they are moving from one part of the interferometer. Rather

than effect a 4-spatial-path stabilization system, we implemented a compact polar-

ization encoded system which required only a single path stabilization. As in Fig

Fig. 4.2, the input mode was sent in and split twice, first at PBS 1, then again at



CHAPTER 4. OPTICAL READING WITH A SINGLE PHOTON 140

a  ,a 

b  ,b 
λ/2 at π/8 

λ/2 at π/8 

λ/2 at π/8 

λ/2 at π/8 

λ/2 at π/8 

0 or π 

   h        v 

h         v 

Piezo 2  

Piezo 1  1 

3 

4 

2 

λ/2 at π/8 

λ/2 at π/8 

2 x λ/4 plates 

2 x λ/4 plates 

PBS1 

PBS2 
PBS3 

PBS4 

PBS5 

Figure 4.2: Polarization implementation of 4-port interferometer with only two optical
paths.

PBS 2. Note that at PBS 2, 2 optical modes are mixed with a vacuum mode each to

give 4 optical modes. There are two spatial modes in each PBS output and each has

two orthogonal polarization modes. In the case of a single photon input, this creates

a W-state. The polarization modes in the same spatial mode undergo the same path

length and therefore the same phase shifts. Therefore only the two spatial modes need

to be phase stabilized with respect to each other which is done using piezo 1. The

phase array is created using piezo 2 and 4 quarter wave plates. Piezo 2 shifts both

modes of one optical path with respect to the other path, while the 2 quarter wave

plates in each path are used to effect a relative phase shift of either 0 or π between
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the 2 polarization modes in the same spatial path. Finally we interfere the modes at

the other beam splitter array constructed of 4 beamsplitter, implemented compactly

in our setup using 3 polarization beam splitters. Each mode interferes with every

other mode and depending on the phase array, exit into the 4 detectors. If the phase

array is a Hadamard code, all the input must exit entirely through one of the ports

and the other three detectors will record zero. However this is the ideal situation and

in practice, loss and other constraints distort the results.

4.3 Single-photon source

Any single-mode quantum state (pure or mixed), when used as the imaging probe in

the proposed M×M interferometer, appears at one of the M output ports depending

upon the Hadamard codeword in the interferometer, so one can read same bits of

information with higher photon numbers. The Photon Information Efficiency (PIE)

then depends on the average number of photons N̄ used to read the information.

Therefore in order to achieve to higher information efficiencies, more bits of in-

formation read per photon, a true single-photon source with N̄ = 1 and ∆N = 0 is

required.

An extensive effort was conducted in our lab to generate high fidelity single photon

sources, as was discussed earlier in chapter 2. In order to examine the quality of our

single-photon source we studied the photon number statistics of the heralded source

and directly calculated the quantum degree of second-order coherence g(2)(0), with
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the method which was explained in detail in section 1.2.1.

4.3.1 Quantum degree of second-order coherence g(2)(0) for
heralded single-photon source

The second-order autocorrelation function g(2)(0) is ideally zero for a true single-

photon source and is equivalent to negligible emission of photons in higher photon

numbers and is highly desired in the current and many other quantum optic experi-

ments. However, g(2)(0) is not exactly equal to zero for real experimental situations

where losses in optical elements and detector imperfections play an important role,

therefore g(2)(0) 6= 0 and lower the g(2)(0) values corresponds to the better quality

single-photon sources. For the sake of comparison, we also calculated the g(2)(0) for

coherent and thermal states.

We analyzed the photon number statistics of the desired state on the TES, see

Fig. 4.3, The data presented in this graph is over one trace, we analyzed many of

these traces to have more accurate statistics.

Each trace is over ∆t = 13 ms in δt = 3µs bursts (TES resolution or cool down

time), we then analyzed up to 1000 such traces to have good statistics. The total

number of bins then are: Eq. (1.43)

Nbins =
∆t

δt
× 1000 =

13ms

3µs
× 1000 = 4.33× 106 (4.2)

We first calculated the g(2)(0) for the attenuated seed beam as a coherent source

of light. Counting average numbers of n1 and n2 and so p1 and p2 and plugging them



CHAPTER 4. OPTICAL READING WITH A SINGLE PHOTON 143

Number of sample points

V
ol

ta
ge

 (
ar

b
it

ra
ry

 u
ni

t)

⇥104

Figure 4.3: Raw TES data over 13ms (one trace). Single photon and two photon
peak’s height are respectively about 5V and 10 V. Red circles shows two photon
peaks which will results in g(2)(0) 6= 0, Eq. (1.48).

into Eq. (1.49), allowed us to calculate g(2)(0) = 1 ± 0.001, as was expected for a

coherent state source Eq. (1.50). We did not have enough statistics, so g(2)(0) is not

exactly one but is very close to unity.

We then considered the g(2)(0) of a thermal source. Tracing over one of the SPDC

modes, say the signal, prepared the idler mode in a thermal state. The g(2)(0) of a

thermal source should be equal to 2. Here, we evaluated the photon number statistics

of the idler mode on TES, and calculated g(2)(0) = 2.2± 0.2.

Finally, we consider the heralded single-photon state. We calculated the g(2)(0)

few times and every time on different data sets and with a particular pump power,

number of traces and measurement window as listed in the table 4.1. The value of

g(2)(0) depends on different parameters and ranges from 0.03− 0.181.

For a perfectly correlated sources, measuring a single photon on the heralding

channel prepares a single photons on the heralded channel, with no zero or two pho-
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Ipump heralding samples #traces n1 n2 Nbin g2(0)
175 µ W Ch 1 6 1064 6676 44 30456 0.059
175 µ W Ch 2 6 1064 6676 39 339136 0.058
175 µ W Ch 1 5 1064 6535 35 29359 0.047
175 µ W Ch 2 5 1064 6535 21 31115 0.030
230 µ W Ch 1 6 859 9647 115 42298 0.099
230 µ W Ch 2 6 859 9647 111 47519 0.108
400 µ W Ch 1 6 114 1287 16 10140 0.189
400 µ W Ch 2 6 114 1287 18 7856 0.160

Table 4.1: The g(2)(0) value calculated for heralded single photon state. The value in
each row is calculated for a particular pump power, number of trace and measurement
window.

tons contribution and results in g(2)(0) = 0. However, for imperfect experimental

situations with lossy detection, g(2)(0) > 0. Figure 4.4 clearly shows the effect of

imperfections on heralding on zero or two photons, it shows that many times there is

a photon in the heralding channel but it’s partner is missing on the heralded channel

(black circles), or during detection process on the heralding channel a |2〉signal|2〉idler

state can lose a photon and become a |1〉signal|2〉idler, so heralding on single photon

results in two photon on the heralded one (red circles) Fig. 4.4 , the latter situation

rapidly increase g(2)(0) from zero.

Increasing the pump power increased the squeezing parameter r and then the

probability of emitting photons in |2〉signal|2〉idler state, so expanded the g2(0) value

for the heralded single-photon state as presented in table 4.1.

The other important parameter for the g(2)(0) value was the measurement window.

TES detectors are not fast and have a response time of about 3µs, so at higher pump

photon rates there was greater probability of pileups, pileups happened when the
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Figure 4.4: TES data over 13 ms. a) heralded channel b) heralding channel, gener-
ated by disregarding higher photon peaks and keeping single photons. Red, green and
black ellipses shows the contribution of two- photons n2, single photons n1 and no
photons n0 on the heralded channel after heralding on single photons on the heralding
channel. total bin numbers on the heralded channel is Nbin = n0 + n1 + n2 .
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second photon arrived while the TES is cooling down after the first photon, in this

case second photon peak appeared on top of the decaying part of the first photon

peak. As we discussed earlier in section 2.2, photon births at the rising edge and this

second photon is independent and should not be combined with the first photon and

be considered as a two photon peak, however increasing the number of sample points

for photon sum then caused the pile up events to look like two photons and increased

n2 and the g(2)(0) as is clear from table 4.1.

All g(2)(0) values for the heralded single photon source is less than 1, as presented

in table 4.1, g(2)(0) < 1 shows the quantum nature of our source. One can drop the

pump power and properly design the detection window to achieve to g(2)(0) = 0.03.

4.4 Interferometer Performance

We studied the interferometer performance at a single-photon level, we first investi-

gated the interferometer fed with bright and attenuated coherent state inputs to char-

acterize the interferometer performance. Then, considered the interferometer with a

single-photon input and calculated the PIE in reading classical information stored

in Hadamard codings using a single photon, including all experimental imperfections

that decrease the PIE from the predicted theoretical values.

4.4.1 Interferometer with coherent state input

To characterize the behavior of the interferometer at photon level, we fed it with

attenuated laser beam and measured the output modes on the TES, we then compared
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its performance with the bright input interferometer. The intensity of the attenuated

laser beam is in the fw level, which is equivalent to one photon per few µs.

The interferometer response is state independent and so all light constructively

interfere at one output port and destructively on other ports at a constant Hadamard

code, for both the single-photon and coherent state inputs. We sinusoidally scanned

one of the interferometer mirrors to switch the interferometer phase between two

Hadamard phase coded arrays, it caused photons to oscillate between det 1 and det 2

and resulted in an interference fringe on each of the dets 1,2 with respective π phase

shift, while det 3 and det 4 are always dark. Therefore, photons appeared only in one

detector and the other detector is dark at each Hadamard phase. Fig. 4.5 compares

fringes for the attenuated and bright coherent states respectively on the TES and

regular power meters, in both cases the fringe visibility is in the order of 82 ± 2%.

Each point on Fig. 4.5.b is integrated photon counts (number of photons arrived to

detectors in 13 ms) and is plotted versus the interferometer phase

4.4.2 Interferometry with heralded single photon source

After characterizing the TES with coherent state input, we sent a single-photon source

to the interferometer. Heralded single-photon source is produced through the process

of SPDC, as was explained in detail in section 2.3 . Signal mode was directly sent to

the TES detector and was used for the heralding and the the idler mode was sent to

the interferometer. We then scanned the interferometer phase the same way as for

the coherent state input and tried to reproduce similar fringes as Fig. 4.5.
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Figure 4.5: Interference fringes: a) bright coherent state input, recorded on the
oscilloscope. b) attenuated seed beam where data is recorded on TES.

The interference fringe for a single-photon input is presented in Fig. 4.6, even

though fringes are clear and intensity oscillation on two bright channels are appro-

priately out of phase, as expected, their interference visibility is not very high and is

only 25% for one detector and 33% for the other one, which is much lower than the

fringe visibility for coherent state input.

The cause for this low visibility is believed to be the extremely multimode (spatial

and temporal) nature of SPDC emission.

Note that TES detector resolution was 1µs and therefore the average flux of the

source was less than 1 photon per 1 detection window. Therefore this was highly

quantum interference wherein each photon went through all 4 paths of the interfer-
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Figure 4.6: Interference fringes with single-photon input: integrated photon counts
versus interferometer phase.

ometer and interfered only with itself.

An important remark must be brought up here: the interference fringes will be

observed irrespective of the input state of the light, constructive interference being a

classical wave phenomenon. It is only by evaluating the PIE that we will be able to

ascertain how efficient a use we make of photon resources.

The PIE calculation depends crucially on the distinction between the number of

sent, ns, and received, nr, photons. If we look at only the heralded photons received

at the interferometer output we can expect a PIE of 2. However, if we account for

the total photons sent in, including the ones which are lost in the interferometer or

during the heralding process and gave us no information, then we have to account for

these photons by multiplying the PIE by the percentage of heralding efficiency, i.e
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the number of photons we see on the heralded channel that are correlated with the

heralding channel.

However, even for the 100% efficient heralded single-photon source, ns = nr,

the fidelity and bandwidth of the source play an important role. In fact, in real

experimental situation, photon will not interfere in the interferometer with 100%

visibility which results in the possibility of photon appearing at wrong channel which

corresponds to reading wrong information and so drops the PIE from maximum.

Therefore, in the perfect heralding experiment or even if one only wants to consider

the received photon contribution for calculating the PIE, the information efficiency

still very much depends on the so called interference fringes and cannot reach to the

maximum value in imperfect interference of light in the interferometer.

In the following, we calculate the PIE value and its dependence to the fringe

visibility.

4.4.3 Photon Information Efficiency

We have already studied the quantum optical reading of classical digital memory

in section 3.6. The current experiment is another example of optical reading using

quantum light to increase the rate of information read per photon. In this scheme

as was first proposed by Saikat et al [72], the interferometer uses binary Hadamard

code words to encode binary phases on M pixels, each Hadamard code word consists

M binary pixels, Fig. 4.1. So the channel capacity per pixel, Eq. (3.58), is:



CHAPTER 4. OPTICAL READING WITH A SINGLE PHOTON 151

C(Ns) =
max I(X;Y )

M
(4.3)

Where I(X;Y ) = H(Y ) − H(Y |X), Eq. (3.39), is the mutual information between

the input X (which takes one of M values – each value corresponding to a Hadamard

codeword), and the output Y (which takes values for M different click positions).

For an arbitrary quantum state with ρ =
∑

n pn|n〉〈n|, then the average photon

number N̄ =
∑

n npn, the quantum state will pass through the MBS and then appear

in M different paths, where each path contains N̄
M

photons in average, so number

of photons in each signal probe is Ns = N̄
M

. The PIE is then equal to the channel

capacity per pixel per photon and can be calculated as:

PIE =
C(Ns)

Ns

=
max I(X;Y )/M

N̄/M
=
max I(X;Y )

N̄
(4.4)

Therefore, assuming p(x) = 1
M

for all x and using Eq. (3.48), one can calculate PIE

as:

PIE =
log2M − 1

M

∑
i,j P (Yj|Xi) log2

P (Yj |Xi)∑
k P (Yj |Xk)

N̄
(4.5)

PIE = log2M

N̄
, when P (Yj|Xi)i=j = 1 and P (Yj|Xi)i 6=j = 0.

P (Yj|Xi)i=j, is the probability of success where a Hadamard code Hi is applied and

photon shows up at the bright channel Chi, while P (Yj|Xi)i 6=j is the probability of

error, where a Hadamard code Hi is applied but a photon appears at the dark channel
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say Chj.

To calculate PIE for the 4× 4 interferometer, M=4, we did look at the transition

matrix P (Y |X) for X(Hadamard codes Hi) as rows and Y (click positions, chj) as

columns :

Ch1 Ch2 Ch3 Ch4






H1 0.38 0.21 0.21 0.21

H2 0.22 0.35 0.22 0.22

H3 0.2 0.2 0.4 0.2

H4 0.21 0.21 0.21 0.37

Therefore, substituting these probabilities in Eq. (4.5) results in:

PIE =
2− 1.95

N̄
=

0.05

N̄
(4.6)

This value for PIE is low and is due to very low interference visibility of SPDC

modes.

We calculated the dependence of the PIE on the interference visibility. Assuming

that all dark fringes have equal intensity and all four channels are similar, then the

transition matrix can be written as:
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Ch1 Ch2 Ch3 Ch4






H1 b d d d

H2 d b d d

H3 d d b d

H4 d d d b

Where b is the probability of photon ending up in bright channel versus d, the prob-

ability of reaching to dark channel for a constant Hadamard code. 3d + b = 1 .

Interference fringe visibility can be written as

v =
b− d
b+ d

(4.7)

In Fig. 4.7, we plotted the dependence of PIE vs fringe visibility v. Low interfer-

ence fringe visibilities will result in low PIE and in order to achieve the theoretical

limits of PIE = 2, the interference fringe visibility of close to 100% is required.

4.5 Conclusion

We studied an M ×M -port interferometer which is able to read log2(M) classical

bits of information using a single photon. We have successfully implemented a 4-port

interferometer, which can distinguish between 4 Hadamard encoded phase arrays, and

is an important step toward realization of the generalized M×M -port interferometer.

We explained about the importance of the true single-photon source in this exper-

iment, for attaining higher values of PIE, and showed that we can generate a heralded
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Figure 4.7: PIE vs interference visibility, lower interference visibilities will result in
low PIE.

single-photon source with g(2)(0) values as low as 0.03.

We then calculated the PIE = 0.05±0.01 bpp, and believed the difference between

this low value for PIE and the theoretical predictions, PIE=2, is due to the multimode

nature of SPDC modes and this value can be improved by enhancing the quality of the

heralded single photons. It inspired us to work harder to further improve the quality

of our single-photon source by generating spatially and temporary well defined single-

photon sources as was discussed in section 2.4.
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Conclusions

This thesis presents significant progress toward experimental realization of spatially

and temporally well-defined Fock-state source for applications in quantum informa-

tion. The assumptions behind many quantum information protocols are based on

Fock-state sources produced in single-mode and narrowband quantum states.

But the fidelity and the success rate of heralded Fock states, generated through

the SPDC process, are limited by the multimode and broadband nature of SPDC

emission. Therefore, we put extensive effort into generating single-mode and narrow-

band multi-photon source. We showed that using SPDC on PPKTP and HGKTP

crystals followed by a narrowband Lorentzian filtering cavity cannot efficiently re-

duce the spectral and spatial bandwidth of the heralded single-photon source, it also

significantly drops the heralding ratio. Therefore, we placed the nonlinear crystal

inside an intrinsically stable Fabry-Perot cavity, the cavity enhancement effect boosts

emission of SPDC photons into a well-defined cavity mode and generates high fidelity

photon pair. These well-defined photon pairs enabled us to herald single photons in

155
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narrowband (∼10 MHz) and TEM00 quantum states, with up to 80% efficiency in

preliminary results.

We believe that the experimental observation of cavity enhancement effect in in-

creasing the heralding ratio and quality of single-photon source, paired with our efforts

in improving data acquisition and analysis techniques will allow for the implementa-

tion of high quality Fock-state sources.

The heralding and measurements were performed by photon-number-resolving,

high-quantum-efficiency, transition-edge-sensors (TES) built at NIST by Sae Woo

Nam’s group. These detectors are the essential requirement for efficient heralding on

single-photons with low degree of second order coherence g(2)(0) = 0.03. They are

also required for heralding on Fock states with higher photon numbers.

We also suggested theoretical proposals in implementing Fock states for obtaining

the quantum advantages in quantum information processing, here for error free M-ary

optical phase discrimination and higher rate quantum optical reading of information

stored in classical digital memory.

Our proposed experimental scheme is an MZI interferometer fed with twin Fock

states, and is followed by a joint detection receiver. We showed that the interferom-

eter can outperform optical reading techniques with coherent state inputs and direct

detection receivers, as well as with Homodyne and Dolinar receivers.

As another example of implementing Fock states for advancing optical reading

rates, we conducted an experimental effort to realize photon efficient quantum optical
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reading of classical digital memory. We built a 4 × 4 interferometer and injected a

single photon into the interferometer, we showed that this experimental scheme is

capable of reading 2 bits of information using a single photon, and is an important

step toward realization of the generalized M ×M -port interferometer for reading

log2M bits of classical information, M can be arbitrary large and this scheme enables

us to read boundless bits of information using a single photon. We then discussed the

importance of the true single-photon source for obtaining higher photon information

efficiencies.

We hope that our experimental efforts towards realization of high heralding ra-

tio and high fidelity cavity-enhanced Fock-state generation can be paired with our

theoretical proposals and improves quantum information protocols.



Appendix A

Large-scale multipartite
entanglement in the optical
frequency comb of a
depleted-pump optical parametric
oscillator

In this appendix, I include my theoretical studies on the generation of multipartite

entanglement on a massive scale in the spectrum, or optical frequency comb, of a

single optical parametric oscillator (OPO) emitting well above threshold.

This work has been published in the journal of Quantum Information and Com-

putation (QIC).
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We show theoretically that multipartite entanglement is generated on a massive scale in
the spectrum, or optical frequency comb, of a single optical parametric oscillator (OPO)

emitting well above threshold. In this system, the quantum dynamics of the strongly

depleted pump field are responsible for the onset of the entanglement by correlating the
two-mode squeezed, bipartite-entangled pairs of OPO signal fields. (Such pairs are inde-

pendent of one another in the undepleted, classical pump approximation.) We verify the

multipartite nature of the entanglement by evaluating the van Loock-Furusawa criterion
for a particular set of entanglement witnesses deduced from physical considerations.
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ment

Communicated by: I Cirac & E Polzik

1 Introduction

The generation of massively entangled states is of great importance for quantum information.

For quantum communication, good examples are multiparty quantum teleportation [1] and

quantum secret sharing [2]. For measurement-based quantum computing, cluster states [3, 4]

are known to enable one-way quantum computing [5, 6]. Constructing large-scale quantum

registers and processors is therefore one of the prime objectives of experimental quantum

information, along with the suppression or alleviation of decoherence.

In most cases, the approach to scaling up the size of quantum registers or processors is

a “bottom-up” one, in which individual Qbits (following Mermin’s more harmonious spelling

[7]) are put together to form, say, an entangled quantum register [8]. Now, there are, in-

deed, extremely few examples of “top-down” approaches to multipartite entanglement, in

which a single physical system enables intrinsic generation of multipartite entanglement over

a large scale. To the best of our knowledge, there are but two such systems. The first one

is the individually trapped atoms in an optical lattice initially loaded with a Bose-Einstein

condensate subsequently undergoing a Mott insulator transition [9]. The second one is the

ensemble of entangled quantum modes of light, a.k.a. “Qmodes,” defined by the resonant

frequencies—or quantum optical frequency comb (QOFC)—of an optical parametric oscilla-

tor (OPO), in which the QOFC is entangled by the OPO’s nonlinear crystal [10, 11]. Recently,
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the simultaneous generation of 15 identical quadripartite “square” cluster states was realized

experimentally over 60 Qmodes of a single OPO [12].

The QOFC entanglement experiments mentioned above necessitate an exquisitely sophis-

ticated OPO [12], operated below threshold [13], and in which two or three different nonlinear

interactions must be phasematched [14, 15].

In this paper, we present the theoretical discovery of massive multipartite entanglement

generation in a much simpler system and in a completely different regime. The system is but

a standard OPO, in which only one nonlinear interaction is phasematched. In addition, the

OPO must be operated well above threshold. It is somewhat surprising that such a simple,

well-known system might lend itself to the generation of such an exotic quantum state as

a massively multipartite one. In particular, we emphasize that the entangling interaction

is only pairwise. It is the fact that all entangled pairs are derived from the same, strongly

depleted pump field that generates the multipartite entanglement by way of a bona fide 3-

field Hamiltonian. This is therefore a fundamentally different situation from that of the

below-threshold OPO in which pairwise interactions are chained and all their pump fields are

undepleted, yielding quadratic nonlinear interactions [10] in lieu of cubic ones.

This paper is organized as follows. In Section 2, we introduce the system Hamiltonian,

distinguishing between the depleted and undepleted pump cases. In Section 3, we solve

the equations of motion for the system by employing a linearization procedure. We are

certainly aware that more sophisticated treatments exist [16, 17, 18, 19, 13] and may indeed be

interesting to use in order to explore this system further. In particular, it is worth mentioning

the new physics of noncritical squeezing generation—that is, squeezing independent of the

system parameters such as pump amplitude—in the transverse spatial modes of an OPO,

which was recently predicted via the phenomena of spontaneous symmetry breaking [20, 21]

and pump clamping [22], the latter having already been observed in the laboratory [23]. Also,

in this novel regime, the well-known, laser-like (and usually slow) phase diffusion process of

an OPO [24, 25] becomes entwined with the squeezed variables and affects detection [21],

which isn’t usually the case in a critically squeezing two-mode OPO [24, 25]. As the present

paper doesn’t pertain to noncritical squeezing, we have set aside this issue of phase diffusion

for further studies, under the hypothesis that its effect may be similar to that in the usual

critical squeezing situation. We therefore focus here on the nontrivial new results obtained

from the simple approach adopted here. In Section 4, we use the multipartite inseparability

criterion derived by van Loock and Furusawa [26] to establish the existence of multipartite

entanglement in the optical frequency comb of a single OPO. We then conclude.

2 The quantum optical frequency comb of a single OPO above threshold

2.1 Hamiltonian of the system

We consider the simplest possible case of an OPO with a single, nondegenerate nonlinear

interaction. In this case the interaction-picture Hamiltonian is

Hint = 2i~χβ
n∑

i=1

(a†ia
†
−i − aia−i), (1)

where β is the classical (real) and constant (undepleted) pump field (in practice a stable,

narrow-linewidth, continuous-wave laser) and a±i are the photon annihilation operators of
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entangled Qmodes ±i, of frequencies

ω±i =
ωp
2
±
(
i+

1

2

)
∆, (2)

where ωp = ωi + ω−i is the pump frequency (see Fig. 1) and ∆ is the free spectral range of

Fig. 1. Optical frequency comb defined by the resonant modes of the OPO cavity, spaced by free

spectral range ∆. The green arrow symbolizes the pump field, placed at half its frequency for
clarity.

the OPO cavity.

Below the OPO emission threshold, such a system is known to emit two-mode squeezed

fields which demonstrate the Einstein-Podolsky-Rosen (EPR) paradox [27, 28]. Above the

OPO threshold, the undepleted classical pump approximation can still be taken to hold and

the generation of EPR states has also been shown to be possible, theoretically [29] and ex-

perimentally [30, 31, 32, 33].a

However, the undepleted classical pump approximation breaks down if the external pump

power is increased significantly above threshold. In that case, the pump must be treated as a

quantum field in the three-wave mixing interaction

Hint = 2i~χ
n∑

i=1

(pa†ia
†
−i − p†aia−i), (3)

where p is the annihilation operator of the pump field. Recently, it was predicted [34] and

experimentally demonstrated [35] that the pump field participates in three-way entanglement

in this case. Another interesting theoretical analysis showed that the signal fields from two

OPOs pumped by the same field could become entangled [36]. Here, we extend this analysis

to the QOFC of a single OPO, in which a vast number of different Qmode pairs are already

known to be entangled by their parametric downconversion from the pump field [37, 12]. In

the undepleted pump approximation, all EPR pumps are independent. However, when one

considers the OPO well above threshold, there is but a single quantum pump field, whose

strong (ideally total) depletion entail strong correlations between the EPR fields, since a

pump photon downconverting into one Qmode pair will necessarily not be downconverted

aNote that all previous works featured the entanglement of a single Qmode pair at a time, which is not
the situation described by Eq. (1). Indeed, Eq. (1) predicts many independent EPR pairs. Experimentally,
this requires that the OPO cavity be resonant for all Qmode EPR pairs, which can be realized either by
compensating birefringence in a type-II OPO or by using a type-I OPO. Dispersion is neglected in this
discussion as its effects can be neglected for the first tens to hundreds of modes.
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into any other pair. This paper posits that this situation should yield multipartite, rather

than bipartite, quantum correlations and our goal is to ascertain whether they result in

multipartite entanglement, which they do.

3 The quantum optical frequency comb of a single OPO above threshold

As mentioned before, we consider the simplest possible case of an OPO cavity with a single

pump mode and a single nondegenerate interaction in its nonlinear crystal. Such a crystal

implements the Hamiltonian of Eq. (3). We assume a single two-mirror standing wave cavity,

with one mirror of reflectivity R
′
±i = 1 for all modes and the other an output coupler of

R±i = 1−T±i < 1. Taking into account the vacuum modes Ain
i that enter the cavity through

its output coupler, the input-output theory [38, 39] can be used to derive the equations of

motion for the internal cavity modes

ȧi = 2χpa†−i − ki ai +
√

2ki A
in
i (4)

ȧ−i = 2χpa†i − k−i a−i +
√

2k−i A
in
−i (5)

ṗ = −2χ

n∑

i

aia−i − kp p+
√

2kp pin. (6)

Here k±i = T±i/2τ are the loss rates of the cavity mirror for mode i, τ being the cavity round

trip time. In order to solve Eqs. (4-6) we first rewrite field operators as centered fluctuations

about their expectation value

ai = αi + δai (7)

Ain
i = δAin

i (8)

p = $ + δp (9)

pin = $in + δpin. (10)

3.1 Classical steady-state solutions

The semiclassical, or mean value, equations follow directly from Eqs. (4-6):

α̇i = 2χ$α∗−i − ki αi (11)

α̇−i = 2χ$α∗i − k−i α−i (12)

$̇ = −2χ

n∑

i

αiα−i − kp$ +
√

2kp $in. (13)

Now, considering same cavity losses for all signal modes, ki = k−i = ka, the stationary

solutions of the two coupled equations Eqs. (11-12) for semi-classical mean values are

2χ$α0∗
−i = ka α

0
i (14)

2χ$α0∗
i = ka α

0
−i. (15)

this results in |α0
i | = |α0

−i| , |$0| = ka/2χ and φ0i + φ0−i − φ0 = 0 where φ0±i and φ0 are the

respective phases of α0
±i and $0. For simplicity we take $in real and positive therefore based
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on Eq. (13), φ0 = 0 and φ0i = −φ0−i. The stationary solution for the pump field’s mean value

can then be written as

4χ2
n∑

i

|α0
i |2 = kakp(

√
σ − 1), (16)

where

σ =

(
2χ

ka

√
2

kp
$in

)2

. (17)

Clearly, the right-hand side of Eq. (16) must be positive and σ = 1 defines the threshold

pump field

$th
in =

ka
2χ

√
kp
2
, (18)

Hence, σ = ($in/$
th
in)2 is also the pump to threshold power ratio. The classical signal

amplitudes are weakly set by Eq. (16).

3.2 Stability analysis

The stability of the steady-state solution can be determined by a linearized analysis for small

perturbations:

αi = α0
i + δαi (19)

$i = $0
i + δ$i. (20)

Substituting Eqs. (19-20) into Eqs. (11-13), we get

...

δα̇i = kaδα
∗
−i + 2χα0

i δ$ − kaδαi (21)

δ ˙α−i = kaδα
∗
i + 2χα0

−iδ$ − kaδα−i (22)

...

δ$̇ = −2χ

n∑

i

(α0
i δα−i + α0

−iδαi)− kpδ$, (23)

where i = 1, ..., n, n being the number of signal and idler pairs considered inside the cavity.

Defining δA =
(
. . . δαi δα∗i δα−i δα∗−i . . . δ$ δ$∗

)T
We can rewrite Eqs. (21-23)

in block matrix form:

d

dt




...
δαi
δα∗i
δα−i
δα∗−i

...
δ$
δ$∗




=




...
...

...
...

...
...

. . . −ka 0 0 ka . . . 2χα0
i 0

. . . 0 −ka ka 0 . . . 0 2χα0∗
i

. . . 0 ka −ka 0 . . . 2χα0
−i 0

. . . ka 0 0 −ka . . . 0 2χα0∗
−i

...
...

...
...

...
...

. . . −2χα0
−i 0 −2χα0

i 0 . . . −kp 0
. . . 0 −2χα0∗

−i 0 −2χα0∗
i . . . 0 −kp







...
δαi
δα∗i
δα−i
δα∗−i

...
δ$
δ$∗




.

(24)
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We derived the eigenvalues of the matrix in Eq. (24) for n = 1, 2, 3. In all these cases, the

eigenvalue sets have the following form:

{λ} = {0, . . . , 0︸ ︷︷ ︸
2n−1

,−2ka, . . . ,−2ka︸ ︷︷ ︸
2n−1

, λ1, λ2, λ3, λ4}, (25)

where, posing the pump-signal loss ratio κ = kp/ka,

λ1,2 = −1

2
ka

(
κ±

√
κ
[
κ− 8(

√
σ − 1)

])
(26)

λ3,4 = −1

2
ka

(
κ+ 2±

√
(κ+ 2)2 − 8n

√
σ

)
. (27)

Because of the particular symmetry of the problem—namely the block structure of the matrix

in Eq. (24), we argue that it is reasonable to postulate that Eq. (25) is the general eigenvalue

set, ∀n, even though a complete inductive proof is formally required. For certain initial

conditions all 2(2n + 1) eigenvalues of the matrix in Eq. (25) can only be zero or negative,

which ensures the stability of the stationary solution presented in Eq. (16). Equations (26-27)

show that, as the number of times above threshold σ increases, one can always find negative

values for λ1,...,4 by increasing the pump-signal loss ratio κ, thereby tending towards the

doubly resonant OPO, which is always stable.

3.3 Quantum fluctuations

Now, we rewrite Eqs. (4-6) for the quantum fluctuations around these classical mean values.

Notice α∗−i = αi,

˙δai = 2χ(δpαie
iφi +$δa†−i)− kaδai +

√
2kaδA

in
i (28)

˙δa−i = 2χ(δpαie
−iφi +$δa†i )− kaδa−i +

√
2kaδA

in
−i (29)

δṗ = −2χ
n∑

i

(αie
iφiδa−i + αie

−iφiδai)− kpδp+
√

2kpδpin. (30)

We introduce the generalized field quadrature operators as Qi = (eiφia†i + e−iφiai) and Pi =

i(eiφia†i − e−iφiai). Then solve these coupled equations we can use the symmetry of the

equations in the exchange of the two signal modes and introduce the new variables [40]

Qi+ = Qi +Q−i (31)

Qi− = Qi −Q−i (32)

Pi+ = Pi + P−i (33)

Pi− = Pi − P−i. (34)
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The equations of motion for these quadratures are

δQ̇i+ = 4χαiδQp +
√

2ka δQ
in
i+ (35)

δQ̇i− = −2kaδQi− +
√

2ka δQ
in
i− (36)

δQ̇p = −2χ
n∑

i

αiδQi+ − kpδQp +
√

2kp δQ
in
p (37)

δṖi+ = 4χαiδPp − 2kaδPi+ +
√

2ka δP
in
i+ (38)

δṖi− =
√

2ka δP
in
i− (39)

δṖp = −2χ
n∑

i

αiδPi+ − kpδPp +
√

2kp δP
in
p . (40)

As seen from Eq. (36) and Eq. (39), the equations for the antisymmetric modes are decoupled

from the pump and the solutions are, in the frequency domain [40],

δQ̃out
−i (Ω) = − iΩ

2ka + iΩ
δQ̃in
−i(Ω) (41)

δP̃ out
−i (Ω) =

(
−1− 2ika

Ω

)
δP̃ in
−i(Ω). (42)

The frequency-domain equations for the symmetric modes are [40]

iΩδQ̃i+(Ω) = 4χαiδQ̃p(Ω) +
√

2kaδQ̃
in
i+(Ω) (43)

iΩδP̃i+(Ω) = 4χαiδP̃p(Ω)− 2kaδP̃i+(Ω) +
√

2kaδP̃
in
i+(Ω) (44)

iΩδQ̃p(Ω) = −2χ
n∑

i

αiδQ̃i+(Ω)− kpδQ̃p(Ω) +
√

2kpδQ̃
in
p (Ω) (45)

iΩδP̃p(Ω) = −2χ
n∑

i

αiδP̃i+(Ω)− kpδP̃p(Ω) +
√

2kpδP̃
in
p (Ω). (46)

These equations can be easily solved for pump and signal- idler pairs. The output quadratures

are finally determined using input-output relations:

δQout
± =

√
2kaδQ± − δQin

±

δP out
± =

√
2kaδP± − δP in

±
δQout

p =
√

2kpδQp − δQin
p

δP out
p =

√
2kpδPp − δP in

p . (47)
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The solutions of Eqs. (43-46) are

δQ̃out
+i (Ω) = −


1 +

2ka

{
kpΩ + i[Ω2 + 8χ2(α2

i −
∑
j α

2
j )]
}

Ω
(
−ikpΩ + Ω2 − 8χ2

∑
j α

2
j

)


 δQ̃in

+,i(Ω)

− 16iχ2kaαi

Ω
(
−ikpΩ + Ω2 − 8χ2

∑
j α

2
j

)
∑

j 6=i
αj δQ̃

in
+,j(Ω)

− 8χ
√
kakpαi

−ikpΩ + Ω2 − 8χ2
∑
j α

2
j

δQ̃in
p (Ω) (48)

δP̃ out
+i (Ω) =

(
−1 +

2ka
2ka + iΩ

− 16χ2kaα
2
i

(2ka + iΩ)[(2ka + iΩ)(kp + iΩ) + 8χ2
∑
j α

2
j ]

)
δP̃ in

+,i(Ω)

− 16χ2kaαi
(2ka + iΩ)[(2ka + iΩ)(kp + iΩ) + 8χ2

∑
j α

2
j ]

∑

j 6=i
αj δP̃

in
+,j(Ω)

+
8χ
√
kakpαi

(2ka + iΩ)(kp + iΩ) + 8χ2
∑
j α

2
j

δP̃ in
p (Ω) (49)

δQ̃out
p (Ω) =

kpΩ− i
(

Ω2 − 8χ2
∑
j α

2
j

)

kpΩ + i
(

Ω2 − 8χ2
∑
j α

2
j

) δQ̃in
p (Ω)

+
4iχ
√
kakp

kpΩ + i
(

Ω2 − 8k2
∑
j α

2
j

)
n∑

j=1

αj δQ̃
in
+,j(Ω) (50)

δP̃ out
p (Ω) =

2ka(kp − iΩ) + ikpΩ + Ω2 − 8χ2
∑
j α

2
j

2ka(kp + iΩ) + ikpΩ− Ω2 + 8k2
∑
j α

2
j

δP̃ in
p (Ω)

− 4k
√
ka
√
kp

2ka(kp + iΩ) + ikpΩ− Ω2 + 8k2
∑
j α

2
j

n∑

i=1

αi δP̃
in
+,i(Ω). (51)

Substituting the classical solutions Eq. (16) in Eqs. (48-51) and taking Ω = 0, these equations

yield:

δQout
−i −→ 0 (52)

δP out
−i −→∞ (53)

δQout
+i −→∞ (54)

δP out
+i =

4χ
√
kakpαi

kakp
√
σ

δP in
p −

4χ2α2
i

kakp
√
σ
δP in

+,i −
4χ2αi
kakp
√
σ

∑

j 6=i
αj δP

in
+j (55)

3.3.1 Two-mode squeezing

In order to quantitatively study squeezing behavior, we assumed equal classical mean values

for all pairs. However, we can assume any ratio between the classical mean values, as long
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as they satisfy
∑n
i |αi|2 =

kakp(
√
σ−1)

4χ2 = const, Eq. (16). Therefore the variances of squeezed

and antisqueezed quadratures are

V (Q−i) =
〈
(δQ−i)

2
〉
−→ 0 (56)

V (P−i) =
〈
(δP−i)

2
〉
−→∞ (57)

V (Q+i) =
〈
(δQ+i)

2
〉
−→∞ (58)

V (P+i) =
〈
(δP+i)

2
〉

=
2(σ − 1)

nσ
, (59)

which yields the classic EPR result at threshold (σ = 1), the generation of n independent

entangled (i,−i) pairs.

However, if the OPO is above threshold (σ > 1), the variance of the phase sum, Eq. (59)

will increase from zero [40, 29] and will eventually stop being squeezed. It states the well-

known fact that for the OPO operating well above the emission threshold, twin pairs are not

independent EPR pairs due to the pump statistics, unless kp � ka [29]. This is precisely

the mechanism that we rely upon to create multipartite entanglement in this work. We give

two preliminary examples before turning to the evaluation of precise multimode entanglement

criteria.

3.3.2 Multimode squeezing

We give two examples of squeezed multimode operators which will be useful in the next

section.

First off, specifically combining phase sum operators of two pairs i and j yields

αi(Pj + P−j)− αj(Pi + P−i) −→ 0. (60)

Even though phase sum operators for each pair become noisier with increasing input pump,

this noise can be canceled appropriate linear combinations.

Another interesting example is that of operator
∑n
i=1(Pi + P−i)− xPp. In Fig. 2 we plot

Fig. 2. Plot of nV (Pi +P−i), in red, and V [
∑n

i=1(Pi +P−i)− xPp], in blue, for n = 3 and x = σ.

When σ increases, the variance of Pi+P−i increases from zero and approaches the shot noise level.
However, the variance of

∑n
i=1(Pi + P−i) − xPp, not squeezed at threshold, subsequently drops

from the shot noise level (of value 1 in this graph) and shows squeezing. In this particular graph,

the minimum of V [
∑n

i=1(Pi + P−i) − xPp] occurs at σ = 1.18 but, in general, the value of σ for
which the blue curve reaches its minimum, as well as the value of the minimum itself, depends on

the choice of x.
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its variance as a function of σ, for x = σ. This graph clearly shows that the assumption

of the existence of a correlation between all modes and the pump is a sensible one. Having

established this, we turn to directly testing the existence of multipartite entanglement in our

system.

4 Multipartite entanglement in the OPO well above threshold

4.1 The van Loock-Furusawa inseparability criterion

The van Loock-Furusawa (vLF) multipartite entanglement criterion [26] is the multipartite

generalization of the Duan [41]-Simon [42] criterion, itself the continuous-variable formulation

of the Peres [43]-Horodecki [44] positive partial transpose criterion. A density operator is

partially separable if and only if it can be written as the convex sum

ρ̂ =
∑

i

ηiρ̂i,k1.....km ⊗ ρ̂i,km+1...,kn , (61)

where the mode set (k1, ..., km) is separable from the mode set (km+1, . . . , kn). If we define

two “entanglement witnesses,” quadrature operators with arbitrary real parameter sets {hi}i
and {gi}i,

u = h1Q1 + h2Q2 + · · ·+ hnQn (62)

v = g1P1 + g2P2 + · · ·+ gnPn, (63)

then the separable density operator of Eq. (61) must verify the vLF inequality [26]

Vρ(u) + Vρ(v) > 2
(
|hk1gk1 + · · ·+ hkmgkm |+ |hkm+1gkm+1 + · · ·+ hkngkn |

)
, (64)

whose violation implies the existence of entanglement between mode set (kr,. . . ,km) and

mode set (ks,. . . ,kn). Operators u and v were coined variance-based entanglement witnesses

for continuous-variable systems by Hyllus and Eisert [45], in reference to the original Qbit

expectation-value-based entanglement witnesses [44, 46, 47].

4.2 Multipartite entanglement in a single, depleted-pump OPO

In order to demonstrate multipartite entanglement, we examine the conditions for violation

of all possible vLF inequalities, corresponding to all possible respective mode partitions such

as Eq. (61), and their associated experimental regimes.

4.2.1 Pump-signals partition

We first consider the separability of the sole pump mode from all signal modes. We define u1
and v1 as

u1 =

n∑

i=1

αi
α1

(Qi +Q−i) +
2

x

n∑

i=1

αi
α1
Qp (65)

v1 =

n∑

i=1

(Pi + P−i)− xPp, (66)
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with the real parameter x > 0. Based on Eq. (64), the separability of mode p implies

S1 = V (u1) + V (v1) > 2 (|h−ng−n + · · ·+ h−1g−1 + h1g1 + · · ·+ hngn|+ |hpgp|) (67)

> 2 (2|h1g1 + · · ·+ hngn|+ |hpgp|) (68)

> 2(| 2

α1

n∑

i=1

αi|+ |
2

xα1

n∑

i=1

αi(−x)|) (69)

> 8

α1

n∑

i=1

αi. (70)

Here, and in the following, we make the assumption that all classical amplitudes {αi}i are

equal, for the sake of simplicity. This doesn’t lessen the generality of our treatment and makes

numerical evaluations easier. Under this assumption, we get

S1 > 8n. (71)

Figure 3 displays the maximum violation of the above inequality versus n and σ, for optimized

values of the arbitrary weight x. As can be seen, there always exist values of (n, σ) for

which S1 − 8n is negative, which proves the inseparability of the pump mode from the signal

modes. Unsurprisingly, entangling a larger number of pairs (n) requires a higher pump to

threshold power ratio (σ). However, further increasing the pump power (σ) does degrade the

inseparability, which might just be due to the increasing depletion of the intracavity pump

field.

a1 a−1

a2 a−2

a−nan

ap

Fig. 3. Left, sketch of the mode partition studied. Center, plot of the optimum values of x = xopt
which give maximum violation S1(x) − 8n of the vLF inequality, at a given pump to threshold
power ratio σ and a given number n of mode pairs inside the cavity. Right, plot of the maximum

vLF inequality violation S1(xopt) − 8n, versus σ and n. We took the particular case Ω = 0 and

αi = αj ∀i, j.

4.2.2 Partition of one (aj , a−j) EPR pair

We now study the inseparability of an entangled pair (aj , a−j) from the rest of the signals

and the pump. For such a partition, we define

u2 = Qj+ +
n∑

i 6=j

αi
αj
Qi+ +

2

xαj

n∑

i

αiQp (72)

v2 =
n∑

i 6=j
(
αi
αj
Pj+ − Pi+), (73)
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and the vLF inequality is

S2 = V (u2) + V (v2) > 2 (|2hjgj |+ |2h1g1 + · · ·+ 2hngn + hpgp|) (74)

> 2

∣∣∣∣∣∣


2

1

αj

n∑

i 6=j
αi



∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣
− 2

αj

n∑

i6=
αi + 0

∣∣∣∣∣∣
(75)

> 8

αj

n∑

i 6=j
αi (76)

> 8(n− 1). (77)

Figure 4 shows the violation of this inequality for a broad range of parameters. It also demon-

strates the necessity of applying larger input pump intensity when considering more pairs

inside the cavity in order to generate inseparability between all pairs, again unsurprisingly.

aj a−j

a1 a−1

a2 a−2

a−nan

ap

Fig. 4. Left, sketch of the mode partition studied. Center, plot of the optimum values of x = xopt
which give maximum violation S2(x)−8(n−1) of the vLF inequality, at a given pump to threshold

power ratio σ and a given number n of mode pairs inside the cavity. Right, plot of the maximum

vLF inequality violation S2(xopt)− 8(n− 1), versus σ and n. We took the particular case Ω = 0
and αi = αj ∀i, j.

4.2.3 Pair set partition

We next turn to partitions {(a1, b1) . . . (ak, bk)}{(ak+1, bk+1) . . . (an, bn)}. The operators are

u3 =
k∑

i=1

Qi+ +
n∑

j=k+1

αj
α1
Qj+ +

2

xα1

n∑

l

αlQp (78)

v3 =
k∑

i=1

n∑

j 6=i
(Pi+ −

αi
αj
Pj+), (79)

and the vLF inequality is

S3 = V (u3) + V (v3) > 2 (|2h1g1 + · · ·+ 2hkgk|+ |2hk+1gk+1 + · · ·+ 2hngn + hpgp|) (80)

> 8k(n− k). (81)

Assuming 1 6 k < n, then it is straightforward to show that 8(n − 1) 6 8k(n − k) 6 2n2.

As a consequence, the vLF inequality S3 is automatically violated when vLF inequality S2 is,

and does not need to be considered separately.
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4.2.4 Single signal mode partition

Finally, we consider partitions of a single signal mode, or several such, all belonging to dif-

ferent EPR pairs (i,−i). Because the signal mode ai is highly entangled to the mode a−i—
and to all other signals by virtue of the preceding—the separability test is simple in the

present case. It is straightforward to show that the necessary vLF inequality for the partition

{a1, . . . , ak}{a−1, . . . , a−k, (ak+1, a−(k+1)), . . . , (an, a−n))} ,

S4 =V


Qj −Q−j +

∑

i6=j

αi
αj

(Qi −Q−i)


+ V


∑

i 6=j
Pi + P−i −

αi
αj

(Pj + P−j)




> 2 (|h1g1 + · · ·+ hkgk|+ |h−1g−1 + . . . h−kg−k + 2hk+1gk+1 + . . . 2hngn|)

> 2| −
∑

i 6=1

αi
α1

+
k∑

i=2

αk
α1
|+ 2|

∑

i 6=1

α−i
α1

+
k∑

i=2

α−k
α1

+ 0|

> 4(n− k), (82)

is always violated in the presence of single EPR pair entanglement. This is because the left

hand side term of Eq. (82) contains EPR nullifiers [48], a.k.a. EPR entanglement witnesses,

whose squeezed variances tend toward zero. The inseparability of any other form of parti-

tions on modes when modes a1 and a−1 are placed in different partitions, can be examined

by inequalities similar to S4 and with nonzero boundaries. Such inequalities are always vi-

olated. Therefore, if EPR entanglement is present (the checking of which is a staple of the

experimental calibration of a regular two-mode squeezer), then the violation of both S1 and

S2 is a necessary and sufficient condition to mode inseparability for all possible partitions in

the optical frequency comb of a single OPO.

4.3 Entanglement between pairs without considering the pump

Here we ask the question of the possibility of multipartite entanglement between twins without

considering the pump field. For that, we rewrite inequality S2 without the pump quadratures:

S
′
2 = V (u

′
2) + V (v

′
2) > 8(n− 1) (83)

with

u
′
2 = Qj+ +

n∑

i 6=j

αi
αj
Qi+ (84)

v
′
2 =

n∑

i 6=j

αi
αj
Pj+ − Pi+. (85)

In Fig. 5, we plot the violation of this inequality. As can be seen by comparing with Fig. 4,

Inequality S
′
2 requires slightly larger σ to be violated, compared to S2, for small values of

n. It shows we need to pump harder (and get closer to total depletion) in order to see pure

entanglement between twin pairs. The arguments of subsections and 4.2.3 and 4.2.4 may be

reused here to complete the inseparability proof.
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Fig. 5. Plot of the vLF inequality violation S
′
2 − 8(n− 1), versus σ, the pump to threshold power

ratio, and n, the number of mode pairs inside the cavity, for Ω = 0 and αi = αj , ∀i, j.

4.4 Optimal entanglement witnesses

A valid question is whether the entanglement witnesses that were derived here on the basis of

physical considerations, namely the pump-depletion-induced correlations between EPR pairs,

are in fact the optimal entanglement witnesses for the system. In other words, do different

observables exist that would lead to even more strongly violated vLF inequalities? Answering

this question should, in turn, inform on what type of entangled state is really generated here.

The search for optimal entanglement witnesses was addressed by Hyllus and Eisert, using

semidefinite programming procedures [45]. While the scope of the present paper is limited to

this successful demonstration of large-scale entanglement in a simple OPO, the exact nature

of the quantum state generated is clearly an interesting followup question, on which light

can be shed by seeking the optimal entanglement witnesses and checking whether they are

different from the ones derived above.

5 Conclusion

We showed that a single OPO operating well above threshold can generate multipartite en-

tanglement in its quantum optical frequency comb. We verified the multipartite nature of

the entanglement by evaluating the van Loock-Furusawa separability criterion over all possi-

ble Qmode partitions. We showed that all of these vLF inequalities can be violated, for an

arbitrary large number of pairs n, simply by increasing the input pump power higher above

threshold.

While the presence of multipartite entanglement in such a simple system is a remarkable

feature, it is important to keep in mind that the exact type of entanglement that is pro-

duced here (GHZ, W, cluster) is difficult to determine. The search for optimal entanglement

witnesses for this system is a promising approach to illuminate this question. Note that pre-

vious work has shown that multipartite cluster-state generation, which was experimentally

demonstrated in a single OPO below threshold [12], should actually fail above threshold [13].

However, the multipartite entanglement that we discovered in the simple OPO above thresh-

old would certainly be useful for quantum communication applications, such as quantum

secret sharing.
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Spontaneous Rotational Symmetry Breaking,” Phys. Rev. Lett. 100, 203601 (2008).

21. C. Navarrete-Benlloch, A. Romanelli, E. Roldán, and G. J. de Valcárcel, “Noncritical quadrature
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Appendix B

Experiment-Computer Interface:
Data Acquisition and Data
Analysis Techniques

In order to improve data acquisition and data processing techniques and do real time

data analysis, we decided to buy and implement Alazar ATS9440 waveform digitizer

with a commercial real time sampling rate as fast as 125 M sample/s. This waveform

digitizer has 1 Gig dual-port memory and enabled us to acquire and analyze TES

data real time for a live update on photon number statistics, correlation functions

and histograms.

Extensive real time programming, dropped the actual real time sampling rate from

the commercial 125 M sample/s into 10 Msample/s. Overall we improved the data

acquisition speed from 3 ∗ 104 in our old data acquision technique into 107 samples

per second using Alazar card. Implementing vectorized Matlab coding also helped us

in speeding up the programming.

In the following, I included our Matlab programs for analyzing TES data in con-
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tinuous wave (CW) regime. Analyzing TES data in CW regime is different from in

pulse regime where all photons hit the detector at specific times and one can syn-

chronize the photon counting window with the pump pulse repetition times. In CW

regime photons are hitting the detector at random times and extra steps are required

to recognize photon arrival times for digitizing data and calculating the correlation

function, as was explained in section 2.2.

The main part of the Matlab code which reads TES data from Alazar card and

analyzes them, is presented in the following.

function[err,P, data3D]=Analyze realtime(err,first call,data,P,S,T,ch,varargin)

create template = 0;
histogram = 0;
joint histogram = 0;
DSO = 0;
corr = 0;
get variance = 0;
trace variance = 0;
prob dist = 0;
plot 3d = 0;
cw = 0;
cw characterize = 0;
characterize = 0;
ched = 0;
statistics = 0;
amplifier = 0;
testamp = 0;

numpts = 2 * S.RecsPerChannelPerBuffer * S.numchannels2record * S.RecordLength;

clear data3D;
if ~isfield(P,'nametemplate') || isempty(P.nametemplate)

P.nametemplate = 'template.mat';
end
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% if ~isfield(P,'figH') || isempty(S.FigH)
% S.FigH = figure;
% end

for m = 1:length(varargin{1}),
if ischar(varargin{1}{m}) % varargin commands are always char
switch lower(varargin{1}{m})

case 'create template'
create template = 1;

case 'create template and run'
create template = 1;

case 'histogram'
histogram = 1;

case 'probability distribution'
prob dist = 1;

case 'joint histogram'
joint histogram = 1;

case 'dso'
DSO = 1;

case 'get variance'
get variance = 1;

case 'traccse variance'
trace variance = 1;

case 'homdata'
HOM = 1;

case '3d'
plot 3d = 1;

case 'cw'
cw = 1;

case 'ched'
ched = 1;

case 'cw characterize'
cw characterize=1;

case 'char'
characterize=1;

case 'stat'
statistics=1;

case 'corr'
corr=1;

case 'amp'
amplifier=1;

case 'test'
testamp=1;

end
end

end

if characterize
chname = 'ABCD';
if S.FIFO
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data3D = double(reshape(typecast(uint8(data.Value(1:numpts)),'uint16')
, S.numchannels2record, S.RecordLength,
S.RecsPerChannelPerBuffer))-2ˆ15;

else
data3D = double(reshape(typecast(uint8(data.Value(1:numpts)),'uint16'),

S.RecordLength, S.numchannels2record, S.RecsPerChannelPerBuffer))-2ˆ15;

end
global call PhotonData;
data=data3D;
numchan=size(data,1);
size(data);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
numtosum=6.;
mat=(0:numtosum-1)';
L=size(data,2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%to set the mean of the noise to zero, kill all photons above thresh then
%recenter plot.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
noisethresh=[-150;200;200;200]; %threshold for noise mean to be 0...

% has to be decided by user
noisethresh=noisethresh(1:numchan);
datai=data-repmat(noisethresh,1,size(data,2))>0;
data=data-repmat((sum(data.*not(datai),2)/size(data,2)),1,size(data,2));
noise =0
data=data.*datai;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%A NEW WAY OF CALCULATING PHoTON PEAKS... ONE THAT ALLOWS TIME BINS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
diffthresh=[150;150;150;150]; %threshold to count a rising edge.
diffthresh=diffthresh(1:numchan);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%change to get 4 channels%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dataf=zeros(size(data));
for k=1:numchan

phindex=find(diff(diff(data(k,:))>diffthresh(k))>0);
%photon indices at rising edge
d=data(k,:);
df=dataf(k,:);
datajj=repmat(mat,1,size(phindex,2))+repmat(phindex,numtosum,1)+1;

%count numtosum points after first point
size(datajj);
datajj(datajj>length(d))=1; %if last photons longers than datasize truncate
if size(datajj,2)==1

datajj=[datajj ones(size(mat),1)];
end
datatt=d(datajj);
size(phindex);
phmax=max(datatt,[],1)-max(0,min(datatt,[],1)-50);

%take the max point at each photon peak
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% phmax=sum(datatt,1); %take the max point at each photon peak
size(phmax);
df(phindex)=phmax; %set the photon heights to photon indices,
dataf(k,:)=df;

end
PhotonData=[PhotonData dataf];
for k=1:numchan

subplot(2,2,k);
[n,x]=hist(PhotonData,400);
stairs(x,n);
set(gca,'yscale','log');

end
lastcall= S.Repeats*S.numBuffers;
cal=call;
PBL=-2000*(ones(numchan,1));
PBH=inf*(ones(numchan,1));
if call== lastcall

fprintf('Click at the boundry of peaks. Press enter when finished.\n')
[PB,PBy]=ginput
PB=reshape(PB,length(PB)/S.numchannels2record,S.numchannels2record)';
PB=[PBL PB PBH];
save('photon limits','PB' )

end
call=call+1;

drawnow;
end

if cw

% when FIFO, structure: ABCDABCDABCD % otherwise AAAAABBBBBCCCCCDDDDD
% read data from buffer

chname = 'ABCD';
if S.FIFO

data3D = double(reshape(typecast(uint8(data.Value(1:numpts)),'uint16'),
S.numchannels2record, S.RecordLength, S.RecsPerChannelPerBuffer))-2ˆ15;

else
data3D = double(reshape(typecast(uint8(data.Value(1:numpts)),'uint16'),
S.RecordLength, S.numchannels2record,S.RecsPerChannelPerBuffer))-2ˆ15;

end
global photons Ns cs scaled peaksfs Nm cm Nh numchan
global ntotal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

datasum=sum(data3D,1);
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% datasum=data3D(1,:,1);
%data2=data2(data2<thresh)=0;
thresh = 700;
numtosum=10;
mat=(0:numtosum-1)';
L=length(datasum);
datak=repmat(mat,size(find(diff(datasum>thresh)>0)))+
repmat(find(diff(datasum>thresh)>0),numtosum,1)+1;
dataj=datak(:)';
dataj(dataj>size(data3D,2))=1;
npileups=sum(diff(dataj)>=0);

load('photon limits')
% PB=reshape(PB,length(PB)/4,4);
% PB=[-inf*ones(size(PB,1),1) PB inf*ones(size(PB,1),1)];

% PB=[ PB inf*ones(size(PB,1),1)];
N=zeros(numchan,size(PB,2)-1); %photon number 0 1 2 ... for each channel
N2=zeros(numchan,size(PB,2)-1);
%PB is photon bounds manually set in characterize part

load('scale factors')

for chns=1:numchan
datat(chns,:)=data3D(chns,dataj,1);
ph=sum(reshape(datat(chns,:),numtosum,[]),1);
photon(chns,:)=ph;
scaled peaks(chns,:)=polyval(p(chns,:),photon(chns,:));
scaled peaksf=floor(scaled peaks);

maxpnumber=size(PB,2)-1;

for i=1:maxpnumber
N(chns,i)= sum(photon(chns,:)>PB(chns,i)& photon(chns,:)<PB(chns,i+1));
N2(chns,i)=sum(scaled peaksf(chns,:)==i-1);

% qp(chns,(photon(chns,:)>PB(chns,i)& photon(chns,:)<PB(chns,i+1)))=i-1;
% N(chns,i)=sum(qp(chns,:)==i-1);

end
end

photons=[photons photon];
scaled peaksfs=[ scaled peaksfs scaled peaksf];
p1=scaled peaksf(1,:);
p3=scaled peaksf(1,:);
c=zeros(3,3);
for i=1:3

for j=1:3

c(i,j)=(sum(p3(p1==i)==j)/sum(p1==i))*100;
end

end
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Nm=cat(3,Nm,N);
cm=cat(3,cm,c);
Nh=cat(3,Nh(:,:,2:end),N);
%plox= squeeze(Nh(1,2,:))
Ns=Ns+N2;
cs=(cs+c)./(2);
N;
Ns;
cs;
save('Number matrix','Nm')
save('Correlation matrix','cm')
for chns=1:numchan

subplot(numchan,2,chns)
[x,n]= hist(photons(chns,:),400);

stairs(n,x);
set(gca,'yscale','log');

drawnow;
end

save('Nh')

end

if cw characterize

% when FIFO, structure: ABCDABCDABCD
% otherwise AAAAABBBBBCCCCCDDDDD

% read data from buffer

chname = 'ABCD';
if S.FIFO

data3D = double(reshape(typecast(uint8(data.Value(1:numpts)),'uint16'),
S.numchannels2record, S.RecordLength, S.RecsPerChannelPerBuffer))-2ˆ15;
if strcmp(T.Clock,'internal')

end
drawnow;

else
data3D = double(reshape(typecast(uint8(data.Value(1:numpts)),'uint16'),
S.RecordLength, S.numchannels2record,
S.RecsPerChannelPerBuffer))-2ˆ15;

end
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numchan=S.numchannels2record;
global photons, numchan;
global ntotal;
global reps BufferIndex call;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data1=data3D(1,:,1);
data2=data3D(2,:,1);
data3=data3D(3,:,1);
data4=data3D(4,:,1);
datasum=sum(data3D(:,:,1),1);
%datasum=data1;

thresh=700;
numtosum=10;
mat=(0:numtosum-1)';
L=length(datasum);
%datasum(datasum-thresh<=0)=0.01;
datak=repmat(mat,size(find(diff(datasum>thresh)>0)))+repmat(find(diff
(datasum>thresh)>0),numtosum,1)+1;
dataj=datak(:)';
dataj(dataj>length(data1))=1;
npileups=sum(diff(dataj)>=0);
datat1=data1(dataj);
datat2=data2(dataj);
datat3=data3(dataj);
datat4=data4(dataj);

for chns=1:4
datat(chns,:)=data3D(chns,dataj,1);
ph=sum(reshape(datat(chns,:),numtosum,[]),1);
photon(chns,:)=ph;

%numphotons=length(photons);
end

photons=[photons photon];

for chns=1:S.numchannels2record
subplot(2,2,chns)
[n,x]=hist(photons(chns,:),400);
stairs(x,n);
set(gca,'yscale','log');

end

lastcall= S.Repeats*S.numBuffers;

cal=call;

if call== lastcall
fprintf('Click at the boundry of peaks. Press enter when finished.\n')
[PB,PBy]=ginput
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PB=reshape(PB,length(PB)/S.numchannels2record,S.numchannels2record)';
save('photon limits','PB' )
maxpnumber=size(PB,2)+1;
for chns=1:S.numchannels2record
p(chns,:)=polyfit(PB(chns,1:size(PB,2)),(0:size(PB,2)-1),min(3,size(PB,2)-1));
end
save('scale factors','p')
%plot scaled peaks to see the scale
for chns=1:S.numchannels2record
scaled peaks(chns,:)=polyval(p(chns,:),photons(chns,:));
subplot(2,2,chns)
hist(scaled peaks(chns,:))
end
end
call=call+1;

drawnow;

end



Bibliography

[1] D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).

[2] R. H. Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations in

light. i. basic theory: The correlation between photons in coherent beams of

radiation,” Proc. Roy. Soc, A p. 242:300 (1957).

[3] R. H. Brown and R. Q. Twiss, “Interferometry of the intensity fluctuations in

light ii. an experimental test of the theory for partially coherent light,” Proc.

Roy. Soc. A p. 243:291 (1958).

[4] Z. Y. Ou, “Fundamental quantum limit in precision phase measurement,” Phys.

Rev. A 55, 2598–2609 (1997).

[5] C. Caves, “Quantum-mechanical radiation-pressure fluctuations in an interfer-

ometer,” Phys. Rev. Lett. 45, 75 (1980).

[6] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, “General framework for

estimating the ultimate precision limit in noisy quantum-enhanced metrology,”

Nat Phys 7, 406–411 (2011).

185



BIBLIOGRAPHY 186

[7] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev.

Lett. 96, 010401 (2006).

[8] A. Luis and L. Sánchez-Soto, “Quantum phase difference, phase measurements

and Stokes operators,” Prog. Opt. 41, 421 (2000).

[9] T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, “Influence of decorre-

lation on Heisenberg-limited interferometry with quantum correlated photons,”

Phys. Rev. A 57, 4004–4013 (1998).

[10] J. F. Clauser and A. Shimony, “Bell’s theorem. experimental tests and implica-

tions,” Reports on Progress in Physics 41, 1881 (1978).

[11] A. Aspect, P. Grangier, and G. Roger, “Experimental realization of Einstein-

Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequali-

ties,” Phys. Rev. Lett. 49, 91–94 (1982).

[12] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih,

“New high-intensity source of polarization-entangled photon pairs,” Phys. Rev.

Lett. 75, 4337–4341 (1995).

[13] J. C. Howell, A. Lamas-Linares, and D. Bouwmeester, “Experimental violation

of a spin-1 Bell inequality using maximally entangled four-photon states,” Phys.

Rev. Lett. 88, 030401 (2002).



BIBLIOGRAPHY 187

[14] P. Shadbolt, J. C. F. Mathews, A. Laing, and J. L. O’Brien, “Testing foundations

of quantum mechanics with photons,” Nat Phys 10, 278–286 (2014).

[15] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. A. Smolin, “Experi-

mental quantum cryptography,” J. Cryptology 5, 3–28 (1992).

[16] C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,”

Phys. Rev. Lett. 68, 3121–3124 (1992).

[17] Antonio, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-

independent security of quantum cryptography against collective attacks,” Phys.

Rev. Lett. 98, 230501 (2007).

[18] N. Sangouard and H. Zbinden, “What are single photons good for?” Journal of

Modern Optics 59, Issue 17, 1458–1464.

[19] C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and

N. Gisin, “Quantum repeaters with photon pair sources and multimode memo-

ries,” Phys. Rev. Lett. 98, 190503 (2007).

[20] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum

communication with atomic ensembles and linear optics,” Nature 414, 413-418

(2001).

[21] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum

computation with linear optics,” Nature 409, 46–52 (2001).



BIBLIOGRAPHY 188

[22] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto, “Efficient clas-

sical simulation of continuous variable quantum information processes,” Phys.

Rev. Lett. 88, 097904 (2002).

[23] J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian

operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
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