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Abstract

The rapid advancements in modern technology have largely been driven by the miniaturization
of devices and improvements in materials engineering at the nanoscale. The intentional intro-
duction of atomic-scale compositional disorder through doping and alloying has enabled a direct
process to tune electrical and mechanical properties of materials. Furthermore, random solid solu-
tions and high-entropy materials have demonstrated that the random configuration of atoms, con-
figurational disorder, can lead to enhanced mechanical properties and improved thermodynamic
stability. From a thermal transport perspective, compositional and configurational disorder at the
atomic scale can significantly limit the ability for electrons and phonons to carry heat, resulting in a
reduced thermal conductivity. While significant advances have been made in modeling the thermal
conductivity of crystals, disorder beyond simple perturbations, especially in the case of amorphous
solids which lack atomic periodicity, proves challenging to capture within the framework of these
models, motivating the need for experimental study. Advancing the understanding of how disorder
affects thermal conductivity under a common framework, this dissertation fills the void of current
understanding in highly configurationally disordered crystals as well as compositionally disordered
amorphous thin films.

Three experimental techniques are used to measure thermal properties of materials: time-
domain thermoreflectance, frequency-domain thermoreflectance, and a newly developed steady-
state thermoreflectance. These non-contact, optical pump-probe techniques ensure the capability
to measure both thin films and bulk materials. After establishing the advances made in these exper-
iments, this dissertation reports the thermal conductivity of configurationally disordered thin film
entropy-stabilized oxides to demonstrate that the thermal conductivity decreases with increasing
configurational entropy. Probing the local structure of these materials reveals that local ionic charge
disorder enables amorphous-like thermal properties in these crystalline materials without dimin-
ishing elastic properties. Next, four new classes of bulk high-entropy ceramics – high-entropy
oxides, carbides, borides, and silicides – are investigated to show that high configurational entropy
again reduces the thermal conductivity of these materials relative to their constituent components.
Using a thermal conductivity imaging technique, it is shown that grain boundaries and secondary
phases can further reduce the local thermal conductivity. Finally, thermal transport in amorphous
thin films is investigated. It is shown that film thickness can limit the thermal conductivity of
amorphous silicon to reveal that propagating vibrational modes can significantly contribute to the
thermal conductivity, an attribute typically associated with crystalline solids. The introduction of
compositional disorder in amorphous solids is studied through hydrogenated amorphous silicon
nitride to reveal that the atomic bond coordination dictates thermal conductivity and suggests a
means for tuning thermal conductivity through hydrogenation and thermal annealing.

By considering the extreme cases of configurational, compositional, and structural disorder,
this dissertation provides evidence that crystalline materials can behave thermally as if amorphous,
while amorphous films can possess crystalline-like thermal properties. Taken together, this sug-
gests a common framework of how disorder affects the thermal conductivity in all materials.
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Chapter 1

Introduction

The science and engineering progress fueling the recent nanotechnology boom have enabled

revolutionary advances in fields ranging from information and medicine, to energy technology. De-

velopment of bottom-up synthesis methods have pushed the lower limits of feature size to enable

the fabrication of nanoscale and atomic scale particles, wires, and films [1]. As these length scales

diminish to the order of those of fundamental energy carriers, continuum-based models to describe

transport phenomena and material properties break down, necessitating a quantum-based descrip-

tion to precisely describe material behavior [2]. This is particularly true in the field of thermal

transport and energy conversion, where the macroscopic descriptor of thermal transport, a mate-

rial’s thermal conductivity, can be significantly influenced by sample dimension and atomic-scale

features. Therefore, as technologies develop and devices become smaller, a fundamental under-

standing of nanoscale thermal transport becomes increasingly important for thermal management

[3].

The field of nanoscale thermal transport is rooted in understanding how energy carriers interact

on the nanoscale to dictate macroscopic transport properties. From this understanding, we can then

engineer materials to obtain more desirable thermal properties for specific applications. Thermal

conductivity is the quantity that defines a material’s ability to carry heat. From a macroscopic

perspective, the thermal conductivity relates the heat flux to the temperature gradient. On the

nanoscale it defines the net power carried per unit distance per unit temperature that an ensemble
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of individual particles (or waves) carry. These energy carriers include any such particle that can

transport energy, but in most solids are limited to electrons and phonons (quantized lattice vibra-

tions). Furthermore, phonons are generally the overwhelmingly dominant carrier in nonmetals.

While great strides have been made in predicting the thermal conductivity of perfect crystals and

small variations thereof using first principals [4, 5], very rarely do materials fall into this paragon.

Deviation from a perfect crystal, i.e. disorder, proves to play a critical role in reducing thermal

conductivity.

We can define disorder as the breaking of translational symmetry within a crystal. From this

definition, it follows that disorder exists within all materials, as even geometric boundaries break

translational symmetry. Indeed, Haas and Biermasz first reported that the finite nature of the sam-

ples they measured limited the observed thermal conductivity. They noted that the thermal con-

ductivities of bulk quartz [6], KCl, and KBr [7] reach a maximum (Umklapp peak) near 10 K

and have a decreasing trend with temperature thereafter. Casimir later generalized these findings

to demonstrate that this result was due to long-wavelength phonons reflecting from the sample

boundaries when their propagation length becomes comparable to the sample dimensions at very

low temperatures [8]; this condition is now known as the Casimir limit.

Beyond these cryogenic temperatures, this spatial confinement effect on thermal conductiv-

ity seemingly becomes insignificant. However, the extent to which any disorder affects thermal

conductivity is determined based on the relative length scales of this disorder as compared to the

characteristic length scales of the heat carriers. For example, in bulk silicon, the thermal conductiv-

ity at room temperature is not affected by geometric boundaries since the phonon mean free paths

carrying heat are generally limited to below 10 microns [9]. By contrast, both silicon nanowires

[10] and silicon thin films [11] exhibit a strong reduction in thermal conductivity with reduced

characteristic length.

Beyond physical boundaries, disorder can manifest itself in isotopic impurities, compositional

and chemical impurities, and lattice imperfections to include dislocations, point defects, and grain

boundaries. These concepts are summarized in Fig. 1.1, showing how deviation from an ideal crys-

tal can be driven by both structural or compositional disorder. The limit of structural disorder is
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Figure 1.1: Representation of various types of disorder for crystalline solids. Disorder can include
any deviation from an ideal crystal; examples shown include defects, polycrystals, alloys and su-
perlattices, and the limit of solid-state structural disorder – the amorphous phase. The vibrational
thermal conductivity is described by Eq. (1.1); for crystals, the mean free path, `, is much greater
than the interatomic spacing, a. As disorder increases, ` is reduced. For amorphous solids, ` can
be equivalent to or smaller than a.

the amorphous phase of the material, where no long-range periodicity exists in the atomic arrange-

ment. Current understanding of thermal conductivity on the nanoscale comes from kinetic theory,

treating energy carriers as particles. In its simplest form, the microscopic definition of thermal

conductivity (k) is

k =
1
3

Cvv`=
1
3

Cvv2t (1.1)

where Cv is the specific heat capacity per unit volume (the amount of energy the heat carrier can

hold), v is the velocity of the heat carrier, ` is the mean free path (the average distance the carrier

travels before scattering with another carrier), and t is the relaxation time of the carrier (the average

time it takes before the carrier scatters). Because this dissertation is focused primarily on materials

having phonon-dominated thermal transport, we consider only the phonon thermal conductivity.

In an ideal crystal, intrinsic phonon-phonon scattering is known to dominate the mean free path

(relaxation time) to dictate thermal conductivity. Small perturbations from this ideal crystal have
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a known effect on t , so that k can be modeled with reasonably accurate predictive power. Even

binary and ternary alloys have well-defined frameworks for predicting thermal conductivity [12].

However, as disorder becomes large these theories break down. In fact, in highly disordered solids,

phonon mean free paths can be reduced so much that the materials behave thermally as if they are

amorphous [13]. In this transition region, shown in white in Fig. 1.1, the mechanisms dictating

thermal transport are unknown. The goal of this dissertation is to determine how structural and

compositional disorder in this regime can influence phonon relaxation times to reduce thermal

conductivity. To do so, the research presented here will focus on configurationally disordered

solid solutions to include entropy stabilized oxides, as well as high-entropy carbides, borides,

and silicides. Comparing experimental results with analytical and computational models, we can

elucidate the mechanisms of thermal transport in these highly disordered crystals.

Using these disordered crystals, we can approach this transition regime from the crystalline

side. Another way to approach this regime is from the amorphous side. In semiconductor de-

vices and applications, amorphous materials play critical roles in electrical and thermal insulation.

Amorphous solids are used for electrophotography [14], sensors [15], and are ubiquitous in pho-

tovoltaic (PV) solar cells, gate dielectrics, thermoelectric (TE) devices, solid-state non-volatile

phase change memory (PCM), memristors, and displays [16]. Because material properties dictat-

ing device performance are highly dependent on operating temperature, a thorough understanding

of thermal transport in amorphous materials is necessary for thermal management. However, a

fundamental understanding of thermal transport in amorphous materials has remained underdevel-

oped, particularly when compared with the development of predictive models governing thermal

transport in crystalline materials from first principals [4, 5].

Perhaps Freeman and Anderson said it best: “It is emphasized that the thermal conductivity of

an amorphous solid is not understood in any temperature range” [17]. While this remains true, great

strides have been made in modeling and physical understanding of thermal transport in amorphous

solids. From an atomic-level picture first proposed by Einstein, thermal transport in amorphous

dielectrics has largely been understood as a random walk of energy in which atoms vibrate as

uncorrelated oscillators with random phases, transferring energy to one another elastically. In this
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framework, vibrational mean free paths are intrinsically on the order of the interatomic spacing. Al-

though originally developed to describe thermal transport in crystals, this concept was eventually

adopted to successfully describe the temperature-dependent thermal conductivity of amorphous

materials and glasses above the plateau [18]. Slack [19] and later Cahill and Pohl [20] refined this

idea to establish the “minimum limit” to thermal conductivity by adopting the ideas of Debye to in-

clude coupled oscillators as opposed to the single uncorrelated oscillators considered by Einstein.

Still, this physical picture preserves the core idea that localized oscillators (now having a range

of frequencies) transfer energy in a random walk, having lifetimes of half a period of oscillation

and preserving the notion that the dominant energy transport is between nearest neighbors. While

this physical picture has been adopted with much success, experimental and computational results

regarding the dominating nature of propagating modes on thermal transport in certain amorphous

materials, most notably amorphous silicon (a-Si) [21–24], have raised questions about the valid-

ity of this random walk theory and about the physical origins of these heat carrying propagating

modes. Thus, we will approach this transition regime in Fig. 1.1 from the amorphous side by

studying amorphous silicon to reveal how propagating, phonon-like, modes can arise to give these

materials crystalline-like thermal conductivity characteristics. Finally, we study the introduction

of disorder into amorphous materials through hydrogenated amorphous silicon and silicon nitride

to show that these propagating modes can be suppressed through compositional disorder.

1.1 Applications

While the fundamental understanding of how disorder affects thermal transport is the focus of

this dissertation, this research is further motivated by several application areas where engineering

disorder into systems can be used to create better thermally-insulating materials to improve perfor-

mance. Below are three such applications where this dissertation research can have a direct impact

in manufacturing devices with improved performances.



CHAPTER 1. INTRODUCTION 6

Thermoelectric Devices

Thermoelectric devices convert heat into electricity and vice-versa [25]. A thermoelectric gen-

erator is a solid-state device that converts a temperature difference directly to electrical voltage via

the Seebeck effect. Thermoelectric refrigerators work in reverse, converting electrical current into

a heat flux via the Peltier effect to cool one side of the device. In either application, the efficiency of

the device is based on the thermoelectric properties of the active materials comprising the device.

The efficiency can be quantified by the thermoelectric figure of merit, Z, defined as [26]

Z =
sS2

k
, (1.2)

where s is electrical conductivity and S is the Seebeck coefficient. The Seebeck coefficient defines

the proportionality constant between the generated voltage and thermal gradient, having units of

[V/K]. Z has units of [1/K], so that often the dimensionless figure of merit, ZT is used instead;

thermoelectric efficiency is increased by making ZT as large as possible. We see that the ZT is

inversely proportional to k , which occurs because the thermoelectric elements act as the thermal

insulation between hot and cold sides [27]. Thus, decreasing k increases the temperature gradi-

ent and by extension the generated voltage. Metals have relatively low Seebeck coefficients and

electron-dominated thermal conductivities, as dictated by the Wiedmann-Franz law; as a result,

semiconductors are generally targeted for thermoelectric devices [28, 29]. While the thermal con-

ductivity of semiconductors has contributions from both electrons and phonons, in general the

phonon contribution is much larger. Therefore, a major avenue of research has been to engineer

materials with reduced phonon thermal conductivities; this reduction is achieved through the in-

troduction of disorder in ways that reduce k without significantly altering s and S.

Various types of disorder have been engineered into materials to reduce the thermal conduc-

tivity. One approach that has been proven successful is alloying, which was shown in 1958 to

achieve a ZT of 0.75 in p-type BixSb2�xTe3 (x ⇡ 1) near room temperature [30]. Only incremental

progress has been made in enhancing ZT since then – the best bulk materials today only have ZT

values of around 1, equivalent to about 10% Carnot efficiency in refrigeration [25]. To compete
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with conventional home refrigeration, this ZT needs to be over 4, equating to a Carnot efficiency

of 30% [25]. These low efficiencies have limited the use of thermoelectric devices to niche appli-

cations, such as cooling laser diodes. The introduction of interfaces in thin films, i.e., the use of

superlattices, has also proven to be effective [31]. In fact, the highest room temperature ZT re-

ported comes from p-type Bi2Te3/Sb2Te3 superlattices, having ZT = 2.4 [32]. This extreme jump

in ZT compared to predecessors represents optimism for thermoelectric devices and makes clear

the benefits of engineering disorder into thermoelectric materials for improving performance. Un-

derstanding the limits of this disorder on thermal conductivity, therefore, will be valuable towards

thermoelectric materials research.

Thermal Barrier Coatings

A large application area for disordered and amorphous solids is in thermal insulation, where

low thermal conductivity coatings are needed to insulate critical device components. A primary

example of this is thermal barrier coatings (TBCs). Gas turbines need to operate at as high temper-

ature as possible to maximize their efficiency [33]. While typical metal components have melting

temperatures within the range of desired operating temperatures, coating these components with a

protective film can shield them from such temperatures; TBCs do just that [34]. TBCs are multi-

functional films having thicknesses ranging from 100 µm to 2 mm [35, 36]. Typically made of a

refractory material, they serve to protect the metal components of a gas turbine from the extreme

temperatures in the gas [33]. This is achieved by inducing a large temperature drop within the TBC

when exposed to a heat flux so that the temperature at the TBC-metal interface is low enough to

avoid damage [37]. This temperature drop is entirely dictated by the TBC thermal conductivity.

To not only reduce thermal conductivity, but also to improve strain tolerance to mitigate stresses

due to the thermal-expansion mismatch between the metal and TBC [38], defects are deliberately

engineered into these materials [39]. For example, the most common material used for TBC ap-

plications is yttria-stabilized zirconia (YSZ) [39]. YSZ has very low thermal conductivity of 3

W m�1 K�1 at typical operating temperatures [39, 40]. This is achieved by taking an already

highly thermally insulating ceramic, ZrO2, and heavily doping it with Y2O3. The result is a nearly
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amorphous-like thermal conductivity relation with temperature [41]. Building off the success of

YSZ, understanding the implications of various other types of disorder, including high entropy, on

thermal conductivity can offer new avenues towards developing novel TBCs.

Phase-Change Memory Devices

In an endless pursuit to reach smaller dimensions to comply with Moore’s law [42], phase-

change memory (PCM) has emerged as a promising non-volatile random access memory due to its

higher memory capacity and integration density than dynamic random-access memory (DRAM)

[43, 44]. PCM exploits the large resistance contrast between the amorphous and crystalline phases

of a phase-change material [45]. Whereas the crystalline state generally exhibits low electrical

resistivity, the amorphous phase typically exhibits high resistivity, often three or four orders of

magnitude higher [46]. Although the difference is not as stark in most cases, the same general

relation holds true with the thermal resistivity [13]. The reversible electrical switching that occurs

between these states was shown by Ovshinsky in 1968 [47], but strong interest in its application

to memory did not come until the discovery of fast-switching materials such as Ge2Sb2Te5 (GST)

[48], which have crystallization times < 100 ns.

PCM works via induction of a phase-change to alter states between high and low electrical

resistance. To achieve a low resistance (crystalline) state, an electrical pulse is used to heat a large

portion of the memory cell above the crystallization temperature of the phase change material to

induce a crystalline phase transition. To return to the high resistance (amorphous) state, called the

reset operation [46], a larger electrical pulse is applied to melt the phase-change material, followed

by an abrupt end to the pulse to rapidly quench the material so that it stays in the amorphous

phase. The state of resistance determines the bit state of the material (0 or 1), and is read by

applying a small voltage not large enough to induce a phase-transition. Because PCM relies on

rapid heating and cooling of these materials, understanding the thermal conductivity is critical

to determining the optimal operating conditions of the PCM device. In particular, because the

amorphous-to-crystalline phase change needs to occur within specific temperature range (high

enough for crystallization but low enough not to melt), the thermal conductivity of the amorphous
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phase is imperative to determining the amplitude of electrical pulse needed to heat the sample.

Understanding the general role of size, structure, and composition on the thermal conductivity of

amorphous materials will help guide both material discovery and device optimization.

1.2 Statement of Objectives and Scope

The first overarching objective of this work is to understand the mechanisms that dictate ther-

mal transport in highly disordered crystals and amorphous solids. To do so, the materials selected

for study include entropy-stabilized oxides having increasing number of components to system-

atically increase compositional disorder, as well as high-entropy bulk oxides, borides, carbides,

and silicides. These high-entropy ceramics are included to understand the effects of extrinsic dis-

order such as grain boundaries, porosity, and phase segregation on thermal conductivity. Finally,

amorphous silicon films are studied in order to show how propagating vibrational modes can give

crystalline-like thermal transport characteristics to fully amorphous solids, while amorphous hy-

drogenated silicon nitride thin films are investigated to understand how compositional disorder

affects thermal transport in amorphous solids.

Just as importantly, the second overarching objective of this work is to rigorously develop the

experimental advances made in thermoreflectance experiments that were key to conducting this

research. Therefore, a large portion of this dissertation is devoted to the theory, mathematical

models, and experiments I have used and developed to study heat transfer in disordered materials.

The remainder of this dissertation is organized as follows:

• Chapter 2 - Theory of Thermal Conductivity - The concepts and equations governing thermal

conductivity are presented. Starting with the macroscale picture and working down to the

microscale picture, I will detail the necessary background to model thermal conductivity of

both crystalline and amorphous materials. This framework will be used later to compare

with experimental data to assess the role of disorder on thermal conductivity.

• Chapter 3 - Time- and Frequency-Domain Thermoreflectance - The primary measurement

technique used in this work is time-domain thermoreflectance (TDTR). Having a spatial
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resolution downwards of nanometers, this non-contact pump-probe technique is ideal for

the measurement of thermal properties of thin films and resolving the effects of microscale

features. Also used in this work is the sister technique, frequency-domain thermoreflectance

(FDTR), which adds an additional controlled variable to widen the space of thermal property

extraction. In this chapter, I discuss the core concepts behind these techniques, derive all

equations needed to model the temperature rise resulting from laser heating, derive the model

used to interpret experimental data, and discuss implications of the temperature rise and

thermal length scales on the experiment.

• Chapter 4 - Steady-State Thermoreflectance - In this chapter, I introduce an entirely new

technique that is a natural extension to FDTR: steady-state thermoreflectance (SSTR). This

technique works in principle by inducing a steady-state temperature rise in a material via a

long enough exposure to constant laser heating. Because of the steady-state nature of the

technique, the analysis is governed by Fourier’s law of heat conduction, rather than the heat

diffusion equation. As a result, this technique is sensitive only to thermal conductivity, rather

than thermal effusivity or diffusivity.

• Chapter 5 - Entropy-Stabilized Oxides - The effects of configurational entropy on thermal

transport are explored. In entropy-stabilized oxides with 2 to 6 metal cations contained

in a single-crystal oxide thin film, the temperature-dependent thermal conductivity reveals

amorphous-like behavior for the 5- and 6-cation oxides. Comparison of these results with the

analytical models derived in Chapter 2 suggest that mass-disorder scattering cannot explain

experimental results. Instead, observation of the local structure reveals that the highly dis-

ordered charges present in the anion-cation pairs, resulting from the random distribution of

cations, creates a large oxygen sublattice distortion. This charge-induced disorder controls

the thermal conductivity in entropy-stabilized oxides.

• Chapter 6 - High-Entropy Ceramics - The study of high configurational entropy on ther-

mal conductivity is extended to bulk ceramics. The thermal properties of four new classes

of high-entropy ceramics are explored: high-entropy oxides, high-entropy carbides, high-
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entropy borides, and high-entropy silicides. I show that high configurational entropy greatly

reduces the phonon thermal conductivity relative to binary constituents. However, there can

still be a significant electronic contribution to thermal conductivity that enables the carbides

and borides to maintain a relatively high thermal conductivity. Finally, the effects of mi-

crostructure are revealed through the use of TDTR to locally probe the thermal conductivity

as a function of real space in two dimensions to create a thermal conductivity image. The

carbides possess a relatively uniform thermal conductivity across the sample, whereas large

variation in the local thermal conductivity of the borides is attributed to secondary oxide

phases.

• Chapter 7 - Amorphous Thin Films - The role of size and composition on the thermal conduc-

tivity of amorphous materials is investigated. Measurement of the thermal conductivity of

amorphous silicon as a function of film thickness reveals how long wavelength propagating

vibrational modes can contribute to thermal transport, in opposition to conventional models.

Furthermore, amorphous hydrogenated silicon nitride is used to show how compositional

disorder effects thermal conductivity in amorphous solids. In particular, the introduction of

hydrogen and depletion thereof through thermal annealing allows for tunable thermal con-

ductivity through manipulation of the coordination number of the material.

• Chapter 8 - Summary and Future Projects - The major conclusions of this dissertation are

summarized to reveal the connection between each study towards supporting the overarching

goals of this research. Finally, several future projects are proposed that could build on the

results of this work.
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Chapter 2

Theory of Thermal Conductivity

In this chapter, I will provide some fundamental concepts and mathematical equations gov-

erning heat conduction that will be used to compare to experimental findings later in this disser-

tation. The concept of thermal conductivity was first formalized by Joseph Fourier in 1807 [49]

and subsequently made available to the broader scientific community in 1822 [49, 50]. In these

works, Fourier noted that the flow of heat is proportional to temperature difference, so that in

one-dimension (1-D) this can be written

Qz =�k ∂T
∂ z

, (2.1)

where Qz is the heat flux in the z direction [W m�2], T is temperature [K], and the proportionality

constant between heat flux and temperature gradient is defined as the thermal conductivity, k [W

m�1 K�1]. This phenomenological expression defines Fourier’s law of heat conduction, and is

valid for any snapshot in time. When transient heat flow is considered, Fourier’s law is only one

part of a larger governing equation. Transient heat flow within a material is governed by (i) how

much energy a material can hold per unit volume (volumetric heat capacity) and (ii) how quickly

the heat can be dissipated within that material (thermal conductivity). Heat conduction, a diffusion

process, is mathematically described by the transient heat diffusion equation,
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Cv
∂T
∂ t

= — · (k —T )+Qgen, (2.2)

where Cv is the volumetric heat capacity [J m�3 K�1], t is time [s], and Qgen is a volumetric heat

energy generation term [W m�3]. Each side of Eq. 3.7 describes an energy per unit time per unit

volume, typically given in units of [W m�3]. In general, there is little variation in volumetric heat

capacity between fully dense solids at and above room temperature; variation is generally con-

tained to approximately 1 to 4 MJ m�3 K�1. In contrast, thermal conductivity can vary by orders

of magnitude. For example, disordered C60 and other fullerene derivatives have thermal conduc-

tivities < 0.1 W m�2 K�1 [51] whereas diamond has a thermal conductivity > 2000 W m�2 K�1

[52]. Moreover, the volumetric heat capacity is an intensive property readily determined for most

materials based on analytical expressions detailed later. Finally, it is very common that heat trans-

fer can be assumed to be in steady-state (i.e., no time dependence), in which case the heat diffusion

equation simplifies to Fourier’s law such that the heat capacity plays no role in heat conduction.

For these reasons, the thermal conductivity is the primary quantity we use to describe a material’s

ability to transport heat; it is therefore the property of interest for this dissertation. Strictly speak-

ing, k is a second order tensor and the gradient operator in Eq. (2.2) necessitates the consideration

of off-diagonal terms when the coordinate system of interest, in this case the experimental coor-

dinate system, is not aligned to the principal directions of thermal conductivity for an anisotropic

material. In many cases, such as for most amorphous materials, k can be assumed isotropic so as

to become a scalar.

This macroscopic view of heat diffusion is valid at length and time scales large enough that

energy carriers at any spatial and temporal point can be described by an equilibrium energy dis-

tribution. From a microscopic point of view, energy is fluctuating among carriers at all times.

Heat carriers transfer energy to one another through energy conserving scattering events. In the

solid-state, these energy carriers consist of electrical carriers (electrons or holes), lattice waves

(phonons), coupled electromagnetic waves (plasmons), spin waves (magnons), and other excita-
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tions [53]. In all such cases, the wave-particle duality of these carriers means we can treat them as

particles, so that their heat transfer can be analyzed through the kinetic theory of gases [54]. Note,

an alternative approach to analyze heat transfer using wave mechanics is provided by Chen [2]. In

the simple kinetic theory picture, for a given energy carrier the net heat flux in the z-direction at a

given point in space is

Qz = Q+z �Q�z =
1
2
�
(nevz)|z+vzt � (nevz)|z�vzt

�
⇡�vzt

∂ (nevz)

∂ z
, (2.3)

where n is the number of carriers per unit volume, e is the energy of each carrier, vz is the velocity of

each carrier in z, and t is the relaxation time - the average time the carrier travels before scattering

with another carrier. An alternative description for vzt is the carrier mean free path, `. Assuming

isotropy, v2
z = v2/3, where v is the total velocity of the heat carrier. Additionally, note that ne

describes the internal energy per unit volume (U). Taken together, Qz is

Qz =
�v2t

3
∂U
∂ z

=
�v2t

3
∂U
∂T

∂T
∂ z

. (2.4)

Finally, note that the volumetric heat capacity is defined by the change in internal energy (per unit

volume) with temperature, i.e. Cv = ∂U/∂T . Thus,

Qz =
�1
3

Cvv2t ∂T
∂ z

. (2.5)

Comparing Eq. (2.5) with Eq. (2.1), the thermal conductivity is defined as

k =
1
3

Cvv2t, (2.6)

the same relationship given by Eq. 1.1. This simple derivation assumed a single heat capacity,

velocity, and relaxation time for all carriers. In reality, these quantities can vary widely, so that

the total thermal conductivity is the summation of all individual carriers. Furthermore, although

energies are discrete, the minimum De between carriers is small enough so that a continuum ap-

proximation is valid [2]. Therefore, the general expression for thermal conductivity is
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k = Â
e

1
3

Cv,ev2
ete ⇡

Z 1
3

Cv,ev2
ete de. (2.7)

This summation includes the contribution from each type of carrier over all energies. However,

in practice, one carrier typically dominates the thermal conductivity in a given material. In metals,

the concentration of free electrons is typically over 1021 cm�3 so that electrons carry the majority of

the heat. Some highly doped semiconductors can also have a significant contribution of electronic

thermal conductivity. In insulators and intrinsic semiconductors, the free electron concentration

is not large enough to support significant electronic thermal transport, so phonons dominate the

thermal conductivity. For example, intrinsic silicon has a carrier concentration of only 8.9 ⇥109

cm�3, whereas doped silicon has typical concentrations of 1018 cm�3 [55]. While a substantial

increase, this is still four orders of magnitude below the concentration in Cu, which is 8.47⇥1022

cm�3 [55]. As a comparison, typical phonon number densities at room temperature are around

1023 cm�3 for fully dense materials [55]. Thus, differences in free electron number density are

indicative of the relative contribution of electrons to thermal conductivity in most materials. In this

dissertation, although electronic contribution is considered in Ch 6, the focus will be primarily on

the lattice thermal conductivity.

2.1 Crystals

In order to model the thermal conductivity given by Eq. (2.7), we need to define each term

comprising k . In crystalline materials, the atoms are arranged in an ordered and periodic nature

on a length scale much larger than the lattice constant. Atoms can move about their equilibrium

positions in collective excitations to form normal modes of vibration. These vibrational modes,

which carry energy, are quantized and described as quasiparticles called phonons.
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Figure 2.1: Dispersion relations for 1-D atomic chain: (a) Solid line is the real dispersion relation
for a 1-D atomic chain given by Eq. 2.8, while dashed line represents the Debye dispersion. (b)
Dispersion relation for 1-D atomic chain with two distinct masses. In this case, M = 2m.

2.1.1 Phonon Dispersion

The phonon dispersion relation defines the phonon angular frequency (w) dependence on

wavevector (k). In real crystals, the phonon dispersion relation depends on the crystal structure,

number of atoms in the unit cell, atomic masses, and atomic bond strengths. Additionally, this

relation can be defined along any line of symmetry, so that different relations are defined along

any high symmetry direction. Given these parameters, lattice dynamics provide a framework with

which to calculate the phonon dispersion [56]. Experimentally, inelastic neutron scattering [57]

provides a way to obtain this relation at finite points in k-space.

To generalize the important concepts used later, an instructive example of how this phonon

dispersion arises is the one-dimensional (1-D) atomic chain. Depicted in Fig. 2.1(a), an infinite

spring mass system is assumed; the spacing between atoms is a, the mass is m and the spring

constant is K. The governing equation of motion for each atom is simply Hooke’s Law (md2xi
dt2 =

�Kxi, where x is the displacement of atom i). The solution to this simple problem is [58]

w(k) =
✓

4K
m

◆1/2 ����sin
✓

ka
2

◆���� . (2.8)
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Thus, the dispersion relation is described by a simple analytical function. Although we have not

defined any bounds on k, physically, a phonon wavelength cannot be shorter than the atomic spac-

ing, a. This implies that k is limited between [�p/a,p/a], i.e., the first Brillouin zone. Note that

the periodicity of Eq. 2.8 implies that w(k) = w(p/a+ k), an aspect that will be considered later

when considering how phonon wavevectors add together. Next, the evenness of Eq. 2.8 implies

that w(k) = w(�k), so that w(k) can be completely described by k from [0,p/a]. The resulting

relation is shown in Fig. 2.1(a).

The phonon group velocity, vg, is defined by

vg(k) =
∂w
∂k

. (2.9)

In the limit as k ! 0, vg(k) ! vs, where vs is constant defining the speed of sound of a material

in the direction and branch defining the dispersion relation. Under the Debye approximation, the

phonon dispersion is modeled as w(k) = vsk. This is shown for the 1-D chain in Fig. 2.1(a),

where vs = a(K/m)1/2. Since only one dimension is defined, atoms are limited to one phonon

polarization (branch), the longitudinal branch. However, in 3-D crystals, the motion of atoms can

be perpendicular to the wave propagation, giving rise to transverse branches.

Often materials have a crystal basis with more than one atom, giving rise to optical phonons.

Taking the previous 1-D example and making every other mass equal to M (see Fig. 2.1(b)), the

phonon dispersion becomes [56]

w(k) = K
✓

1
m
+

1
M

◆
±K

"✓
1
m
+

1
M

◆2
� 4

mM
sin2

✓
ka
2

◆#1/2

. (2.10)

There are two solutions, giving rise to an acoustic and an optical branch in the dispersion, shown

in Fig. 2.1(b). Note that optical branches are distinct from acoustic in that they do not approach

0 as k ! 0. Comparing the dispersions in Fig. 2.1(a) and (b), one notes that the latter has lower

group velocity and lower maximum frequency, both of which result from the heavier mass of M,

which was taken as M = 2m for the figure.

Having established the essential concepts about the phonon dispersion through these simple
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(a) (b)

Figure 2.2: Phonon dispersion relations in the G ! X (100) direction for (a) MgO [59] and (b) NiO
[60].

examples, next we consider two realistic dispersions that will be used in Chapter 5, those of MgO

and NiO along the G ! X (100) direction, shown in Fig. 2.2, taken from Refs. [59, 60]. MgO and

NiO have the same rocksalt crystal structure and similar lattice and interatomic force constants.

Therefore, the primary difference between the two is that Nickel has a ⇠2.4⇥ higher mass than

magnesium. Comparison of the two dispersion relations reveals that the sound speed and maximum

frequencies of each branch is reduced in NiO as compared to MgO, in agreement with the simple 1-

D chain model considered previously. To incorporate these dispersions later in calculating thermal

conductivity, we model each branch as a 4th order polynomial.

2.1.2 Phonon Density of States and Occupation

The phonon density of states (sometimes referred to as density of normal modes) is defined as

the number of phonon energy states per unit volume per unit energy. For a given phonon branch,

the density of states, D j(w), is described for an isotropic crystal by

D j(w) =
w2

2p2v3
j(w)

. (2.11)
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D(w) describes the available states that phonons can occupy. To determine the occupied states, we

need to invoke statistical mechanics. Noting that phonons are bosons, their equilibrium occupation

function is described by the Bose-Einstein distribution,

f (w,T ) =
1

exp
h

h̄w
kBT

i
�1

, (2.12)

where h̄ is the reduced Planck’s constant, kB is Boltzmann’s constant, and T is temperature. The

occupied density of states, then, is simply D(w) f (w,T ).

2.1.3 Phonon Heat Capacity

The lattice heat capacity (at constant volume) is defined as the change in internal energy (U)

with temperature,

Cv =
∂U
∂T

. (2.13)

To determine the total internal energy from phonons, we can simply add the contribution from each

individual phonon. Since we have described all functions thus far as continuum, this summation

becomes an integral so that the total energy of phonons per unit volume can be understood as the

number of occupied phonons (per unit volume per unit energy) multiplied by the energy of each

phonon. This can be written

U = Â
j

wmax, jZ

0

h̄w f (w,T )D j(w)dw. (2.14)

where the sum is taken over all branches of the dispersion relation and wmax, j is the maximum

angular frequency of branch j. Taking the derivative of U with temperature, the heat capacity

becomes
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Figure 2.3: Heat capacities vs. temperature for MgO and NiO. Data is taken from Ref. [61], while
the models are calculated from (2.15).

Cv = Â
j

wmax, jZ

0

h̄w ∂ f (w,T )
∂T

D j(w)dw = Â
j

h̄2

2p2kBT 2v3
j

wmax, jZ

0

w4 exp
h

h̄w
kBT

i

⇣
exp
h

h̄w
kBT

i
�1
⌘2 dw. (2.15)

Thus, heat capacity can be solved as a function of temperature given the phonon dispersion. Using

a polynomial dispersion to capture all branches of the polynomial and integrating over k-space

(note, all integrals over w can be converted to integrals over k), Eq. 2.15 is used to calculate the

heat capacity as a function of temperature for MgO and NiO; calculations are shown and compared

with literature data [61] in Fig. 2.3. This relatively simple model, having no fitting parameters,

shows remarkable agreement with literature heat capacities up to ⇠350 K for NiO and up to the

maximum temperature considered, 500 K, for MgO. The deviation in heat capacity observed in

NiO at high temperatures is due to a magnetic transition. Near 523 K, NiO undergoes a magnetic

disordering transition from an antiferromagnetic to a paramagnetic insulator [62], giving rise to a

so-called lambda-type anomaly in the heat capacity [63].
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2.1.4 Phonon Thermal Conductivity

Like heat capacity, the phonon thermal conductivity is a summation of contributions from all

phonons, given by

k =
1
3 Â

j

wmax, jZ

0

h̄wD j(w)
∂ f (w,T )

∂T
v2

j(w)t j(w)dw

=
1
3 Â

j

kmaxZ

0

h̄w j(k)D j(k)
∂ f (k,T )

∂T
v2

j(k)t j(k)dk.

(2.16)

where k is expressed as a function of both k and w to emphasize that integration can be done

with respect to either variable; often it is more convenient to work with one over the other. The

relaxation time comes from consideration of all individual scattering processes and is described by

Matthiessen’s rule,

t�1
j = Â

i
t�1

i, j , (2.17)

where the summation is over all possible scattering processes (i) for each phonon branch ( j). Thus,

the key to modeling thermal conductivity is to accurately model t j. This description of thermal

conductivity and its relaxation time was pioneered by works from Klemens, Callaway, and Ziman

[64–67], and is based on a semi-classical formalism where t j is defined phenomenologically.

There are three major categories of phonon scattering processes: intrinsic scattering, boundary

scattering, and point defect scattering. Figure 2.4 depicts each mechanism. In the absence of ex-

trinsic mechanisms, intrinsic scattering processes are the only phonon scattering events that would

dictate thermal conductivity in an ideal crystal. This phonon-phonon scattering process includes

momentum conserving Normal and momentum destroying Umklapp processes [64, 66, 68–70].

Shown in Fig. 2.4(a), Normal scattering involves a three-phonon process in which two phonon

momentums add (k1 + k2) such that the sum (k3) is within [0,p/a]. Umklapp scattering, on the

other hand, involves the resultant phonon wavevector falling outside the first Brillouin zone, such
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Figure 2.4: Representation of atomic structure, phonon scattering, and corresponding mathemati-
cal description of scattering time, t for (a) an ideal crystal, (b) interfaces and boundaries, and (c)
vacancies, impurities, and interstitials.

that k3 is reduced by 2p/a so that the net momentum is negative. Hence, Umklapp scattering is a

resistive process, since two positive-momentum phonons can scatter to result in a negative momen-

tum phonon. Although Normal processes are not directly resistive, they ensure redistribution of the

phonon population so that Umklapp processes become more likely, thereby indirectly contributing

to this resistance. Although Fig. 2.4(a) shows the addition of two phonons into one (three-phonon

process), intrinsic processes can also involve higher-order phonon scattering (four-phonon scatter-

ing, etc.) and the decay of one phonon into multiple (the reverse process to what is shown). The

probability of higher-order phonon scattering is not significant at room temperature for most mate-

rials, but can become so at high temperatures [71]. The combined Normal and Umklapp scattering

process used in this work takes the form [66]
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t�1
ph, j = Bw2T exp

✓
�C
T

◆
, (2.18)

where B and C are constants and “ph” denotes “phonon.”

The next phonon scattering process to consider is boundary scattering. Shown in Fig. 2.4(b),

boundary scattering occurs when phonons scatter at geometric boundaries such as material inter-

faces or grain boundaries. A phonon can partially transmit and reflect at such an interface so that

the process is net resistive. Boundary scattering becomes increasingly significant when material

dimensions become comparable to phonon mean free paths. It takes the form [2]

t�1
b, j = (1� p)

v j

d
, (2.19)

where “b” denotes “boundary,” d is the characteristic length, and p is the specularity parameter

that accounts for sample dimension and interface roughness, varying between 0 and 1.

The final scattering category considered is impurity scattering from point defects, isotope

atoms, and alloy atoms. This scattering results from randomly distributed mass fluctuations within

the periodic lattice. It takes a Rayleigh scattering form [66, 72],

t�1
I, j = Aw4, (2.20)

where “I” denotes “impurity” and A is a constant.

With these three scattering times defined, we can now determine A, B, and C by fitting Eq. (2.16)

to experimental data and adjusting these parameters to minimize the difference between model and

data. Returning again to MgO and NiO, Fig. 2.5 shows the experimental thermal conductivity data

vs. temperature for MgO [73] and NiO [74] as well as the best fit model. Two models are consid-

ered, one using the full phonon dispersion described by a polynomial function, and the other using

a Debye dispersion. In both MgO and NiO, similarly good fits are found for both the full disper-

sion and Debye dispersion. The best-fit parameters are listed in Table 2.1. As expected for intrinsic

MgO and NiO with low impurity concentrations, the fitted values for A in each case are negligible;

changing this value by several orders of magnitude made little difference to the fit. However, in
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Figure 2.5: Thermal conductivity vs. temperature for MgO and NiO. Data is obtained from
Ref. [73] for MgO and Ref. [74] for NiO. Models depict the thermal conductivity calculated by
Eq. 2.16 with best-fit values for parameters A, B, and C.

Table 2.1: Fitting parameters corresponding to the terms described in Eq. (2.20) and Eq. (2.18),
determined by fitting Eq. (2.16) to the experimental data shown in Fig. 2.5.

Material (dispersion) A [s3] B [s K�1] C [K]

MgO (full) 1.86⇥10�38 4.61⇥10�19 80.3
MgO (Debye) 4.02⇥10�48 5.68⇥10�19 41.0

NiO (full) 1.12⇥10�39 9.20⇥10�19 146.3
NiO (Debye) �8.51⇥10�49 1.24⇥10�18 81.66

alloys and solid solutions, A can dominate the scattering.

For random alloys and solid solutions, Abeles developed the virtual crystal approximation

(VCA) [12], whereby a random alloy is treated as an effective crystal possessing the compositionally-

weighted average properties (sound speed, mass, atomic radii, dispersion, intrinsic scattering rates)

of the elements or compounds constituting the virtual crystal; additional phonon scattering results

from differences in constituent and virtual crystal properties. In general, these Rayleigh scattering

mechanisms are derived from perturbation theory [72], such that their use, and the phonon gas

picture in general, become dubious when disorder becomes large [75]. Still, this formalism has

been used to adequately model the thermal conductivity in a variety of materials, including SiGe
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[12, 76, 77], InGaN [78], InAsP [12], and GaInAs [12] across a range of compositions, and re-

mains the standard to model alloy thermal conductivity, even within first principles frameworks

[4]. Under the VCA, Rayleigh scattering includes an addition term resulting from mass-impurity

scattering (tm), which is described by

t�1
m, j =

 
GW

12pv3
j

!
w4, (2.21)

where the mass-impurity scattering is a Rayleigh scattering mechanism describing how mass,

strain, and atomic radius affect the phonon scattering rate through the constant, G. W is the volume

per atom and G is described by [12]

G = Gm +Gf = Â
i

xi

"✓
Dmi

m̄

◆2
+2
✓

DGi

Ḡ
�6.4g

✓
Ddi

d̄

◆◆2
#
, (2.22)

where xi is the fraction of element i, mi denotes the atomic mass of species i, Gi represents the

average stiffness constant of nearest neighbor bonds of species i within the host lattice, g is the

Grüneisen parameter describing the average anharmonicity between bonds, and di denotes atomic

radius of species i. Under the VCA, m̄, Ḡ and d̄ are the average mass, strain, and atomic radius

of the perturbed atoms. From this analytical expression, we observe that three terms dictate the

Rayleigh scattering of phonons within a multi-component alloy or solid solution: (1) mass differ-

ence, (2) bond strength difference, and (3) atomic radii difference between impurity and host atom.

While the mass differences are easily quantifiable, the latter terms, which are all related to the in-

teratomic force constants, are not. Therefore, we split the summation in Eq. (2.22) to distinguish

the contribution from mass and interatomic forces, G = Gm +Gf. In Chapter 5, we will model the

thermal conductivity with and without the Gf term to assess its contribution to the model.

The VCA also implies a modified form of Normal scattering form [68, 78],

t�1
N, j =

 
kBg2W1/3

m̄v3
j

!
T w2

j , (2.23)
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so that the total relaxation time according to Matthiessen’s rule becomes

t�1
j = t�1

I, j + t�1
m, j + t�1

ph, j + t�1
N, j + t�1

b, j . (2.24)

Under the VCA, all atoms are assumed to have the same mass equal to the average atomic mass,

m̄, such that mass differences in Eq. (2.22) are with respect to m̄. Additionally, the differences in

stiffness constants and atomic radii are with respect to those average quantities of all atoms. In this

case, the B and C used in Eq. (2.18) will take the form of the average B and C for each constituent

composition.

2.2 Amorphous Solids

In contrast to crystals, amorphous solids lack long-range translational and orientational order.

Because of the lack of atomic periodicity, it is no longer valid to describe vibrational modes in

amorphous solids as phonons, since they do not have well-defined wavevectors. Similarly, phonon

group velocity and mean free path become ill-defined, making modeling thermal transport in amor-

phous materials very challenging. However, if the kinetic theory ideas defining thermal conduc-

tivity in crystals holds true in amorphous materials, the lack of long-range order in these materials

suggests that vibrational mean free paths must be significantly lower than in crystalline materials.

Experiments in amorphous materials support this idea in that measured thermal conductivities for

amorphous materials are generally significantly lower than their crystalline counterparts. For ex-

ample, Si has a thermal conductivity of up to ⇠150 W m�1 K�1 in the crystalline phase at room

temperature [79], whereas amorphous silicon has a thermal conductivity as low as ⇠1 W m�1 K�1

[80]. In fact, using Eq. (2.6), Birch and Clark [81] first noted that the mean free paths interpreted

by thermal conductivity measurements suggested that in glasses, mean free paths above 30 K ap-

proach the interatomic spacing. Since the interatomic spacing represents the minimum possible

wavelength of a vibrational mode, the concept of a wave carrying heat loses significance below
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this length scale [18]. These findings suggest a modified framework is necessary to model thermal

transport in amorphous materials.

2.2.1 Minimum Limit to Thermal Conductivity

A fairly successful and conceptually appealing framework on which to model thermal conduc-

tivity in amorphous solids is based on ideas originally developed by Einstein [82] and later refined

by Slack [19]. In this description, atoms are treated as independent oscillators, so that energy hops

from one atom to another through a random walk at the same frequency but having random phases

with respect to one another [20]. According to Einstein, heavily damped atomic vibrations will

transfer energy within half a period of their oscillation [82]. With all atoms vibrating at the same

angular frequency wE (the Einstein frequency), the internal energy is then

U = 3nh̄wE f (wE,T ) =
3nh̄wE

exp
h

h̄wE
kBT

i
�1

, (2.25)

where n in this case is the atomic number density. The factor of 3 accounts for the three possible

polarizations of modes. Using this internal energy, the heat capacity is

Cv = 3nkB

✓
h̄wE

kBT

◆2 exp
h

h̄wE
kBT

i
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exp
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h̄wE
kBT

i
�1
⌘2 . (2.26)

Finally, the thermal velocity of atoms is equal to the distance traveled divided by the relaxation

time, i.e., v = n�1/3/tE. As previously mentioned, this relaxation time is half a period of oscilla-

tion, tE = wE/p . Substituting these expressions into Eq. (2.6), the thermal conductivity becomes

kEinstein =
n1/3kBwE

p

✓
h̄wE

kBT

◆2 exp
h

h̄wE
kBT

i

⇣
exp
h

h̄wE
kBT

i
�1
⌘2 . (2.27)

To slightly simplify this expression, we can define the Einstein temperature as QE = h̄wE/kB so

that thermal conductivity is
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kEinstein =
k2

Bn1/3

h̄p
QE

x2ex

(ex �1)2 , (2.28)

where x = (QE/T ). QE, due to the ambiguity of wE, is unknown; however, it can be obtained

by fitting Eq. 2.26 to experimental heat capacity data. Still, this single-frequency assumption

is not justified from any physical evidence. Instead, Slack later followed the ideas of Debye to

suggest that atoms could vibrate together as larger entities to obtain a spectrum of frequencies [19].

Thus, the thermal conductivity takes the same integral form presented in Eq. (2.16). However, the

relaxation time is taken to be half a period of oscillation, consistent with the Einstein model. This is

what Slack called the model of the minimum thermal conductivity. Furthermore, within the Debye

model, the maximum frequency of oscillation is equal to wD, j = v j(6p2n)1/3. Taken together, the

minimum thermal conductivity is

kmin = Â
j

h̄2

6pkBT 2v j

v j(6p2n)1/3Z

0

w3 exp
h

h̄w
kBT

i

⇣
exp
h

h̄w
kBT .

i
�1
⌘2 dw. (2.29)

This can be simplified to [18, 80]

kmin =
⇣p

6

⌘1/3
kBn2/3 Â

j
v j

✓
T
q j

◆2 Z qD, j/T

0

x3ex

(ex �1)2 dx, (2.30)

where qD, j is the Debye temperature, equal to qD, j = v j(h̄/kB)(6p2n)1/3. This model was for-

malized by Cahill and Pohl [18] so that it is often referred to as the Cahill-Pohl model. It has

been successful in describing the thermal conductivity in a variety of highly disordered crystals

and amorphous solids [80]. Although this model comes with the unsubstantiated assumption of no

dispersion, it comes with a major advantage over the Einstein model – it is an absolute model that

does not require fitting parameters.

To understand the differences between these models, we turn back to the example of MgO. Fig-

ure 2.6 shows the thermal conductivity vs. temperature for the Cahill-Pohl model (kmin calculated
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Figure 2.6: Thermal conductivity models vs. temperature for MgO. kMgO is determined using
Eq. (2.16) with best-fit values for parameters A, B, and C listed in Table 2.1, kmin is determined
using Eq. (2.30), and kEinstein is determined using Eq. (2.28) considering three values for QE, 100
K, 500 K, and 1000K.

using Eq. (2.30)) and the Einstein model (kEinstein calculated using Eq. (2.27)). To understand the

role of QE on this model, kEinstein is shown for QE = 100, 500, and 1000 K. Finally, for comparison,

The thermal conductivity model for crystalline MgO (kMgO), equivalent to that from Fig. 2.5, is

shown. Comparison of both kmin and kEinstein to kMgO reveals that the former are orders of magni-

tude lower in value and have an increasing, rather than decreasing trend with temperature over the

range considered. This increasing trend with temperature is a signature for amorphous and highly

structurally disordered solids [13]. It arises from the fact that relaxation times in the model are no

longer temperature-dependent, but rather are reduced to a half period of oscillation. Because the

group velocity is temperature-independent, the only term that has temperature dependence is heat

capacity, which increases with temperature (see Fig. 2.3); therefore, the thermal conductivity will

have the same temperature dependence. Comparing kmin to kEinstein, a higher thermal conductivity

is predicted for kmin than kEinstein for the temperature range and QE considered. There is generally

better agreement between kmin with experimental data [18, 20].
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2.2.2 Locons, Diffusons, and Propagons

While the “minimum limit” description of thermal conductivity has been adopted with much

success, many computational and experimental works have suggested this picture is not complete.

Moreover, kmin is still derived from the original idea that vibrational modes can be described

using the phonon gas model. An alternative description of thermal conductivity comes from con-

sideration of vibrational mode diffusivities. As mentioned previously, vibrational modes having

wavelengths below the interatomic spacing do not make physical sense. Therefore, a more appro-

priate descriptor of energy transport is given by the diffusivity, since this descriptor has no need

for a well-defined wavevector [83]. Diffusivity, having units of [m2/ s], describes the rate of heat

transfer; the quantized quasi-particle used to describe this is the diffuson [84].

In this picture, the diffuson is a subset of vibrational modes that exist in amorphous solids.

In general, harmonic normal modes of vibration are classified as extended (extendons) or local-

ized (locons). In three dimensions the vibrational spectrum has sharp boundaries called “mobility

edges” that distinguish these modes. Allen et al. [84] used numerical studies of amorphous sili-

con to reveal that within the extendon spectrum of frequencies, a less pronounced boundary exists

between phonon-like vibrational modes called propagons and the diffusive modes they called dif-

fusons; Allen et al. called this edge the “Ioffe-Regel” crossover. Note that in the phonon picture,

the Ioffe-Regel limit is the frequency edge at which the mean free path approaches the average

interatomic spacing, (` ! n�1/3) [85, 86], i.e., the mobility edge between extendon and locon.

However, these computational simulations showed that the Ioffe-Regel crossover and mobility

edge did not coincide. Propagons are phonon-like vibrational modes in that they can be reason-

ably well-defined by a wavevector and travel at the sound velocity over distances greater than the

interatomic spacings before scattering [87]. By contrast, in the diffuson region of the vibrational

frequency spectrum, only diffusive propagation occurs such that the concept of mean free path and

wavector lose significance. Allen et al.’s simulations showed that propagons and locons made up

only 4% and 3% of the vibrational modes in amorphous silicon, respectively. Generalizing the

results suggests that diffusons overwhelmingly dominate the vibration mode population in amor-

phous solids.
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Given the overwhelmingly large diffuson population, one may expect that thermal transport

should be dictated by diffusons. Indeed, this idea is generally in line with the previously defined

minimum limit idea in that diffusion implies the random walk theory of vibrational modes is valid.

However, recent experimental studies have suggested that propagons can significantly influence

thermal conductivity. In amorphous silicon, for example, experiments have shown that reduction

of sample size can reduce the thermal conductivity [21–24], suggesting that ballistic propagons

are being scattered at the boundaries to reduce thermal conductivity. Evidence for such strong

propagon contribution to thermal transport in other amorphous materials such as silicon nitride (a-

SiNx) and germanium is established but less convincing as it is still a matter of contention [16]. On

the other hand, several amorphous oxides such as silicon dioxide (a-SiO2) and alumina (a-Al2O3)

do not show any experimental evidence for significant propagon contribution to k at the length

scales typically measured (>10 nm) [16, 21, 88]. This does not mean that propagons do not exist,

but rather it suggests that their mean-free paths are greatly suppressed via intrinsic scattering; in

fact, recent studies suggest heat can traverse a-SiO2 ballistically when its thickness is below 5 nm

[89]. Taken as a whole, there is still much ambiguity in the conditions needed for a material to

support significant propagon thermal transport.
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Chapter 3

Time- and Frequency-Domain

Thermoreflectance

In this chapter, I will present the primary experiments used in this dissertation, the optical

pump-probe techniques, time- and frequency-domain thermoreflectance. After briefly discussing

the background, concepts, and implementation used in this work, I will focus primarily on the

mathematical basis used to model laser heating of materials. This formalism will be generalized

to model the spatial and temporal evolution of the temperature rise in samples with an arbitrary

number of layers. There is tremendous benefit to understanding this underlying temperature rise

and its implications on thermoreflectance experiments. In fact, it is this mathematical basis that

led to the creation of the new experimental advance as part of my dissertation work – steady-

state thermoreflectance – which will be discussed in the following chapter. Here, I will derive a

method to calculate the temperature rise and heat flux profiles as a function of depth and radius

for bulk, homogeneous materials and samples with layered thin-film structures during pulsed and

continuous wave laser heating.



CHAPTER 3. TIME- AND FREQUENCY-DOMAIN THERMOREFLECTANCE 33

3.1 Background

While Joseph Fourier’s formulation of the heat conduction law that defines thermal conduc-

tivity dates back to 1822 [50], significant efforts to experimentally measure and model thermal

conductivities of solid-state materials (as well as thermal boundary conductances between materi-

als) did not take place until the 1950s [53], through pioneering works from G. White, R. Berman,

G. Slack, and R. Pohl, to name just a few. Almost all experiments at the time were based on

steady-state, resistive heating approaches. However, in addition to suffering from long measure-

ment times and susceptibility to convective and radiative heat losses, these conventional techniques

do not provide the spatial resolution needed to measure temperature gradients of interest to modern

technologies, i.e., micrometer and nanometer length scales.

As was the case with many other scientific fields, the invention of the laser revolutionized the

study of heat transfer immensely, enabling a directed, localized, and controllable heat source with

which to perform experiments. In addition to being a heat source, the laser can also be used as a

local temperature probe by exploiting the principle of thermoreflectance. A material’s dielectric

function, and ultimately its reflectivity, varies with temperature. For small temperature rises, the

relationship between a material’s change in reflectance (DR) with change in temperature (DT ) can

be assumed linear, so that

DR
R0

=

✓
1

R0

∂R
∂T

◆
DT = b DT, (3.1)

where b is defined as the material’s thermoreflectance coefficient and R0 is the baseline reflectance

of the material at temperature T . Thus, the idea behind any thermoreflectance-based pump-probe

technique is to heat the sample with a pump beam and detect the resulting DR using the probe

beam. In general, laser excitation of a material can alter carrier concentrations, electronic ener-

gies, local strain, and other properties, all of which contribute to DR. Hence, to ensure that DR

is only dependent on DT , a thin metal transducer is typically deposited on the material of interest

to serve as a transducer. Paddock and Eesley first reported a transient thermoreflectance-based

pump-probe technique, termed picosecond transient thermoreflectance (TTR), in 1986 using two
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dye lasers to generate the pulsed pump and probe [90]. Paddock and Eesley measured the ther-

mal diffusivity of thin metal films by heating the samples with a pump beam that was amplitude

modulated, and detected the change in reflectance as a function of time by physically extending

the path length of the probe relative to the pump via a mechanical delay stage. A lock-in amplifier

was used to monitor changes in the probe reflected power by locking into a photodetected signal

at the pump modulation frequency. Note, lock-in amplification is the key to detection, as typical

thermoreflectance coefficients are around 10�5 – 10�4 K�1 [91–93]. Since this seminal work,

much progress has been made over the past three decades to advance the metrology, including

the ubiquitous use of a Ti:Sapphire oscillator to generate femtosecond laser pulses [94] as well

as the extension of the thermal model used to interpret thermoreflectance data to include multiple

dimensions [94] and pulse accumulation [95] when the temperature rise from a single pulse does

not decay to ambient before the next pulse arrives. This pulse accumulation is what distinguishes

time-domain thermoreflectance (TDTR) [94, 96, 97] from TTR [98].

The related pump-probe technique, frequency-domain thermoreflectance (FDTR), relies on the

same concept as TDTR in that it locks into a modulated temperature rise resulting from modu-

lated laser heating. However, the modulation frequency, rather than delay time, is the controlled

variable in this technique. FDTR traces its roots back to 1983, when Opsal, Rosencwaig, and Wil-

lenborg used focused, continuous wave (CW) lasers to both generate and detect thermal waves in

the megahertz frequency regime based on measuring the thermoelastic response of the sample to a

modulated heat source via detection of the deflected probe [99]. In 1985, Rosencwaig et al. [100]

showed the same thermal wave detection, now using thermoreflectance. Refinement of the tech-

nique to what it is known today, however, did not take place until 2009, when Schmidt, Cheaito

and Chiesa [101] reported an analysis to extract the thermal conductivity, thermal boundary con-

ductance, and heat capacity of films and bulk samples based on the frequency domain solution to

the heat diffusion equation over a wide range of modulation frequencies; it is this work that estab-

lished the name frequency-domain thermoreflectance. FDTR can be performed with either a CW

[101, 102] or pulsed [101] laser pump-probe setup. Both TDTR and FDTR have proven to be ro-

bust techniques capable of measuring thermal conductivities ranging from <0.1 to >2000 W m�1
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K�1. Moreover, the localized nature of measurements and capability to measure thin films have en-

abled unique scientific advances to include the measurement of the lowest fully-dense, solid-state

thermal conductivity materials ever measured at 0.05 W m�1 K�1 for WSe2 in the cross-plane di-

rection [103] and 0.03 - 0.06 W m�1 K�1 for C61-butyric acid methyl ester (PCBM) [51, 104], as

well as the measurement of one of the highest predicted thermal conductivities at >1000 W m�1

K�1 for cubic Boron Arsenide [105–107].

3.2 Experimental Details

A TDTR schematic, as it is implemented in this dissertation, is shown in Figure 3.1(a). In

this setup, a Ti:Sapphire oscillator, pumped externally by a Nd:YAG CW laser, outputs pulses

at a repetition rate of 80 MHz with a central wavelength of 800 nm; the full-width half max of

the spectrum is typically around 10 nm. The pulse width upon exiting the oscillator is ⇠100 fs.

The output is first sent through an optical isolator to prevent back reflections into the oscillator.

Thereafter, the beam is divided into a pump and probe path via a polarizing beam splitter (PBS)

and the ratio of power is controlled using a half-wave plate. The pump beam is sent through an

electro-optic modulator to become amplitude modulated with a frequency of 1 to 10 MHz in a

sinusoidally varying envelope (shown in Figure 3.1(b)); the pump is then sent through a Bismuth

Borate (BiBO) crystal for second harmonic generation to convert the wavelength from 800 nm to

400 nm. This conversion in wavelength is done to enable better absorption in transducers such

as gold and allow for wavelength filtering of the pump. Finally, the pump is reflected by a cold

mirror and directed through an objective lens (10⇥ and 20⇥ are used in this dissertation) to focus

the beam onto the sample.

The probe beam is first sent through a PBS and the transmitted portion is passed through a

quarter-wave plate before reaching the retroreflector mirror mounted on a computer-controlled

mechanical delay stage. The probe is reflected to a zero-degree mirror where it is sent back to the

retroreflector along the same path. As such, the probe then passes again through the quarter-wave

plate before reaching the aforementioned PBS; because the probe passes through the quarter-wave
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Figure 3.1: (a) Schematic of the two-color TDTR experiment: A Ti:Sapphire oscillator outputs
a train of pulses at a repetition rate of 80 MHz. This is split into a pump path and a probe path,
the former of which is modulated with a sinusoidal waveform via an electro-optic modulator and
frequency doubled via a BiBO crystal so that the wavelength becomes 400 nm. The probe beam is
used to monitor the change in reflectance at the sample surface. (b) Amplitude of power vs. time
for pump and probe before reaching the sample; the pump is modulated by a sinusoidal waveform
at a frequency of 10 MHz. (c) Example of data collected by TDTR for 20 nm Au on Al2O3:
the magnitude of reflection resulting from the modulated component to the pump heating event.
The data can be separated into three time regimes: (i) electron-phonon coupling, (ii) picosecond
acoustics via strain wave propagation, and (iii) heat diffusion.

plate twice before reaching the PBS, the polarization of the beam is shifted by half, allowing all

of the power to be reflected away from the PBS towards the sample. The delay stage ensures

that the probe pulse arrival to the sample is delayed relative to the pump heating event by up to

6 ns. After exiting the PBS, the probe is transmitted through a quarter-wave plate and PBS to

split the probe into a reference arm and a detection arm; the reference arm is sent to one of two

photodiodes comprising the balanced photodetector (BPD). The detection arm is sent towards the

sample, transmitting through the cold mirror, to be focused onto the sample via the same objective

lens as the pump. The reflected probe is transmitted back through the PBS, using the same quarter-

wave plate scheme used in the delay stage section, and sent into the other photodiode of the BPD.

The focus of the beam onto the sample is ensured using a CCD camera to minimize the probe size

by adjusting the sample stage position. The detection and reference probe powers reaching the

BPD are balanced using the half-wave plate; this balanced detection scheme cancels any common
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noise in the probe, significantly improving signal-to-noise ratios. The measured voltage is then

sent to a lock-in amplifier which picks out the frequency component only at the pump modulation

frequency. An automated LabVIEW program is used to collect the lock-in amplifier’s in-phase

(Vin) and out-of-phase (Vout) signals as a function of probe delay time.

The magnitude of this voltage (
q

V 2
in +V 2

out) is proportional to the total change in reflectivity

due to the change in temperature induced by the pump heating; a representative measurement of

this magnitude as a function of delay time is shown in Figure 3.1(c) for 20 nm Au on Al2O3.

Three regions are highlighted corresponding to the type of information this decay curve reveals:

(i) electron-phonon coupling, (ii) picosecond acoustics via strain wave propagation, and (iii) heat

diffusion. In the first few picoseconds after pump pulse absorption, the free electrons in the metal

transducer are excited; due to the low heat capacity of these electrons, the local electron tempera-

ture can be thousands of degrees out of equilibrium with the lattice [108]. Over the first ⇠10 ps,

electron-phonon coupling facilitates restoration to equilibrium between the electrons and lattice so

that they are at the same temperature. This rapid and localized heating induces a strain wave in the

transducer which propagates at the speed of sound though the film and reflects at the film/substrate

interface. When the reflected strain wave reaches the surface of the transducer, it changes the

piezo-optic coefficient of the probed surface volume, and thus changes DR. We refer to the “pi-

cosecond acoustics” regime as the portion of the curve where this strain wave manifests itself as

a local peak or trough in the transient decay (the sign depends on the piezo-optic coefficient and

relative mismatch in acoustic impedance between transducer and substrate). In this dissertation,

the picosecond acoustics regime is used to determine thickness of the transducer based on the mea-

sured time between echoes. Finally, the last regime is that of heat diffusion. Beyond ⇠100 ps, heat

diffuses through the sample such that the surface temperature decreases exponentially in time.

All analysis for extracting thermal conductivity is obtained from the heat diffusion regime. In

this regime, the ratio (�Vin/Vout) is generally used to extract thermal properties since sources of

error, such as power variation, are canceled out upon division. A multilayer, radially symmetric

thermal model is used to extract unknown parameters via a nonlinear least squares fit to experi-

mental data. Thus, the analysis for TDTR relies on the macroscale picture of heat diffusion. This
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macroscale analysis, however, can reveal a plethora of information about microscale phenomena

given proper interpretation. For example, measuring the reduction of thermal conductivity in spa-

tially confined systems, such as thin films, can reveal the influence of phonon-boundary scattering

[22, 109, 110], as well as the effects of microstructure, for example grain boundaries [111–113]

and crystalline coherence length [114]. Similarly, manipulating experimental length scales to the

order of the characteristic length scales of thermal transport can reveal information on phonon

mean-free path accumulation [115–118].

3.3 Core Concepts

For beginners to TDTR and FDTR, often there is confusion about the various temperature rises

that occur during experiment. We capture an “in-phase” and “out-of-phase” signal, and associate

that with a “real” and “imaginary” component of the induced temperature rise. But what does this

all mean physically? How can there be an imaginary temperature rise? In this subsection, I will

elucidate the meaning of these concepts.

Physically, in both TDTR and FDTR, an amplitude modulated heating event creates an am-

plitude modulated temperature rise at the sample surface having the same frequency as the pump.

There are two pieces of information associated with this modulated temperature rise: (1) the ampli-

tude of the temperature (A) and (2) the phase lag (f ) relative to the pump phase. This idea is shown

in Fig. 3.2. Starting with the more intuitive case of FDTR with a CW laser source, Fig. 3.2(a) de-

picts the power of the pump as a function of time for two modulation frequencies: 10 and 5 MHz.

Two frequencies are considered because FDTR relies on varying the modulation frequency as a

control variable, so it is instructive to see how changing this variable changes both A and f . Fig-

ure 3.2(c) shows the corresponding temperature rises for both modulation frequencies, and labels

the resulting f and A in each case. Note that the amplitude increases with decreasing modulation

frequency. Intuitively, one would expect that when applying heat to a sample, leaving the heat

source on longer will result in a higher temperature rise than quickly turning off the heat source.

Similarly, leaving the source off longer will allow the sample to cool to a lower temperature. So,
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(a)

(c) (d)

(b)

Figure 3.2: (a) Pump power vs. time for a 10 MHz and 5 MHz amplitude modulated continuous
wave laser having the same average power. (b) Pump power vs. time for a 10 MHz amplitude mod-
ulated pulsed laser. (c) The resulting temperature rise vs. time resulting from the sources described
in (a). f is the phase lag relative to the pump phase, and A is the amplitude of the temperature
oscillation. (d) The resulting temperature rise vs. time resulting from the source described in (b).
The phase lag and amplitude are equivalently described as in (c). However, in TDTR, the delay
time, f and A vary with the probe delay time, t . To show this, labeled are the resulting temperature
oscillations for t = 0.1 ns and t = 5 ns.

the lower modulation frequency having a larger temperature amplitude makes sense. The phase

lag, on the other hand, decreases with decreasing modulation frequency. This result may not be

intuitive, given that the time it takes to reach the maximum amplitude (f/w) actually increases

with decreasing frequency. However, consider the limit as modulation frequency approaches zero.

At zero modulation frequency, the pump is constant in time, so we should expect there to be no

phase lag at all. Indeed, this is the basis of steady-state thermoreflectance, to be discussed later.

Figure 3.3 shows the same temperature rise as Fig. 3.2(c) vs. wt. Now the phase can be clearly

shown to reduce with a lower modulation frequency.
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Figure 3.3: The same temperature rise as in Fig. 3.2(c) vs. wt. The phase lag, f is shown for both
the 5 and 10 MHz modulated temperatures.

Turning now to the TDTR case, Fig. 3.2(b) shows the pulsed pump power vs. time. Note that

mathematically, the pulses are treated as delta functions, but for visualization are plotted as finite

values. The resulting temperature rise vs. time is shown in Fig. 3.2(d). The definitions of phase

lag and amplitude remain the same in the pulsed case. However, in TDTR, the controlled variable

is now time delay (t) between the pump pulse and the probe pulse. Thus, the probe samples the

temperature rise at discrete values of t . The amplitude and phase lag are, as a result, functions of

t . To show this, Fig. 3.2(d) displays the sampled temperature vs. time for t = 0.1 and 5 ns. The

amplitude decreases with t due to cooling of the sample after pulse absorption, while the phase

lag increases simply by definition.

Notice that I have not mentioned anything about a real or imaginary portion of temperature rise.

TDTR and FDTR can be completely understood and modeled without these concepts. However,

where it becomes useful to invoke these concepts is when we analyze data collected by the lock-in

amplifier. Outlined in Fig. 3.4, lock-in amplification of a signal extracts the amplitude and phase

of the signal by mixing (multiplying) the signal with a reference wave having a defined phase. In

TDTR and FDTR, the pump is this reference. Although there is an additional phase shift the signal

receives from the electronics, this can be offset or corrected after data is taken [119]. So, we can

describe the reference signal (Vref) by a cosine wave with angular modulation frequency w0,
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Figure 3.4: The lock-in amplifier mixes a reference and signal wave. The product is sent to a low
pass filter to extract the in-phase and out-of-phase components.

Vref(t) =V0 cos(w0t), (3.2)

where V0 is the average voltage of the reference. The signal voltage (Vsig), following the tempera-

ture rise, is then a cosine wave with phase shift f . But to show the power of lock-in amplification,

we can include any other arbitrary function f (t) that might be present as noise. The signal is then

Vsig(t) =V1 cos(w0t +f)+ f (t), (3.3)

where V1 is the average voltage of the oscillatory signal. The mixed signal is then

Vmixed =Vsig(t)⇥Vref(t) =V0 cos(w0t)⇤ [V1 cos(w0t +f)+ f (t)]

=
1
2

V0V1 cos(2w0t +f)+ 1
2

V0V1 cos(f)+V0 f (t)cos(w0t).
(3.4)

This signal is then sent through a low-pass filter that effectively picks out only the DC component

of Vmixed, rejecting all components with a frequency dependence. This leaves only

X =
1
2

V0V1 cos(f), (3.5)

where X is defined as as this DC component, and is described as the in-phase component since we



CHAPTER 3. TIME- AND FREQUENCY-DOMAIN THERMOREFLECTANCE 42

described both the reference and source by the same oscillatory base function, in this case a cosine

wave. However, the lock-in also performs this same process with another, 90� shifted reference,

described mathematically by a sine wave. It is straightforward to show that this process results in

a DC component of

Y =
1
2

V0V1 sin(f), (3.6)

where Y is the out-of-phase component because it results from mixing a second reference 90� out-

of-phase with the first. Instead of describing these two processes independently, we can instead

describe them by complex functions, so the reference is Vref = V0eiwt . The lock-in process then

results in an output of X + iY , which can be converted back to the signal amplitude (A) and phase

(f ) by a simple coordinate transform, shown in the inset of Fig. 3.4. By invoking complex numbers,

we see the emergence of real and imaginary components that correspond simply to the in-phase

and out-of-phase components of the measured signal.

3.4 Mathematical Formalism

3.4.1 Pump Heating

The pump/probe experiments used in this dissertation rely on the same premise: using a peri-

odic pump laser to heat a sample and a probe laser to detect the resulting change in temperature

within the probed volume. Because of this common premise, we will derive a general form for

the temperature rise that occurs during laser heating so that it can be applied to any pump/probe

experiment, including pulsed pump/ pulsed probe, pulsed pump/ continuous wave probe, continu-

ous wave pump/ pulsed probe, and continuous wave pump/ continuous wave probe. The basis for

determining the temperature rise that occurs during laser heating is the heat diffusion equation. Be-

cause laser spots are generally circular, it is convenient to work in cylindrical coordinates so that

the radial symmetry simplifies the dimension to two. The heat diffusion equation in cylindrical
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Figure 3.5: Sample schematic of a sample with n layers. All parameters used are listed within their
respective layers to include in-plane and out-of-plane thermal conductivity (kr and kz), volumetric
heat capacity (Cv = rcp, where r is mass density and cp is specific heat capacity), and thickness (d).
Note that the final layers do not include d to emphasize that they are semi-infinite with respect to
the thermal length scales of laser heating. The inset shows the time-dependent functions governing
the laser heat source for both pulsed (repetition rate of 80 MHz) and CW cases with modulation at
10 MHz.

coordinates with radial symmetry and a volumetric heating source is given by

kr

⇢
1
r

∂T (z,r, t)
∂ r

+
∂ 2T (z,r, t)

∂ r2

�
+kz

∂ 2T (z,r, t)
∂ z2 +S(z,r, t) =Cv

∂T (z,r, t)
∂ t

, (3.7)

where kr and kz are in-plane and cross-plane thermal conductivity, respectively, T is the tempera-

ture (relative to some initial temperature) at a given location and time, r denotes radius (in-plane),

z denotes depth (cross-plane) and is orthogonal to r, S is the heat source, Cv is the volumetric heat

capacity (Cv = rcp, where r is the mass density and cp is the specific heat capacity), and t is the

time. For a surface adjacent to an insulating medium (such as air), the boundary condition is given

by

T (0,r, t) = Ttop(r, t), (3.8)

∂T (z,r, t)
∂ z

���
z=0

=� 1
kz

Qtop(r, t) = 0, (3.9)
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where Ttop(r, t) is the temperature rise and Qtop(r, t) is the depth-component of heat flux at the top

surface (z = 0) of a given material. The laser heating term is incorporated into S(z,r, t) in order to

include the heat deposition volume resulting from a nonzero optical absorption depth of the laser.

In some cases, as will be shown later, one can assume the heat is entirely deposited at the surface

(z = 0) so that the laser heating can be treated instead as a boundary condition [120]. In the general

case, however, S is defined as [121]

S(z,r, t) = F(z)P(r)G(t) =
2

pr2
0z0

h
1� exp

⇣
�d1

z0

⌘i exp
✓
�2r2

r2
0

◆
exp
✓
� z

z0

◆
G(t), (3.10)

where P(r) describes the radial distribution of the laser beam heating source, G(t) describes the

time response of this source, and F(z) describes the distribution of the heating source in the cross-

plane direction. Thus, the source term is decoupled into three functions. The right hand side of

Eq. (3.10) assumes that P(r) takes on a Gaussian profile with r0 describing the 1/e2 radius of the

beam, and the expression for F(z) comes from consideration of the optical penetration depth, z0,

and the thickness of the absorbing layer, d1 [121]. Two cases for G(t) are considered, a pulsed

source and a CW source. In the pulsed case, the time dependence of the beam is represented as a

train of delta functions,

Gpulsed(t) =
•

Â
n=�•

a0A0

fs
d (t �n/ fs), (3.11)

where the absorbed laser energy at the surface is given by the absorption of the sample, a0, mul-

tiplied by energy per pulse, A0/ fs where A0 is the time-averaged amplitude of laser power and fs

is the laser repetition rate. In this study, we consider only sub-picosecond pulses, such that the

expression of laser pulses as delta functions can be assumed without significant loss of accuracy.

The sum is taken over all pulses to account for any accumulation of heat over time. The continuous

wave laser heating event is simple by comparison, given by

GCW(t) = a0A0, (3.12)
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such that G(t) is constant with time. In both cases, G(t) is described in units of [W] such that

S(z,r, t) obtains the desired units of [W/m3].

Typically in optical pump-probe experiments such as TDTR and FDTR, an amplitude modula-

tion at angular frequency w0 [rad/s] is applied to the pump beam. To keep this analysis general, all

equations are derived using a modulated heat source, noting that the solution is equivalent to that of

an unmodulated source when w0 = 0. Thus, given the same absorbed average power of a0A0, the

fully extinguished sinusoidally modulated source terms for pulsed and CW sources, respectively,

can be expressed as

Gpulsed(t) =
a0A0

fs
(eiw0t +1)

•

Â
n=�•

d (t �n/ fs), (3.13)

GCW(t) = a0A0(eiw0t +1). (3.14)

These power functions are displayed in the inset to Fig. 3.5. Given the radial symmetry and the

periodic nature of the time varying heat source, Eq. (3.7) is conveniently solved in Hankel and

frequency space. Taking the Hankel and Fourier transforms, the heat diffusion equation becomes

�krk2T̃⇠ (z,k,w)+kz

∂ 2T̃⇠ (z,k,w)

∂ z2 + S̃⇠(z,k,w) =CvT̃⇠ (z,k,w), (3.15)

where k denotes the Hankel transform variable and w denotes the frequency space variable upon

taking the Fourier transform. The notation used here is such that for a function Y (z,r, t), Ỹ denotes

the Fourier transform of Y , while Ỹ⇠ denotes the Hankel transform of Ỹ . The transformed source

term becomes

S̃⇠(z,k,w) =
exp
⇣
� k2r2

0
8

⌘
exp
⇣
� z

z0

⌘

2pz0

h
1� exp

⇣
�d1

z0

⌘i G̃(w). (3.16)

Eq. (3.15) can then be simplified to
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∂ 2T̃⇠ (z,k,w)

∂ z2 = q2T̃⇠ (z,k,w)�
S̃⇠(z,k,w)

kz
, (3.17)

where

q2 =
krk2 + iCvw

kz
. (3.18)

The solution to this ordinary differential equation can be obtained using the method of undeter-

mined coefficients, such that it takes the form

T̃⇠ (z,k,w) = ã⇠ cosh(qz)+ b̃⇠ sinh(qz)+ c̃⇠e�z/z0 , (3.19)

The last term is the particular solution resulting from the heat source term; thus, this term alone

should satisfy Eq. (3.17), allowing for c̃⇠ to be obtained. Applying the boundary conditions given

by Eq. (3.8) and Eq. (3.9) allows for the following solution to be obtained:

T̃⇠ (z,k,w) = cosh(qz)T̃top
⇠

+
c̃⇠(k,w)

kz

✓
�1

q
sinh(qz)+z0 cosh(qz)�z0e�z/z0

◆
, (3.20)

where

c̃⇠(k,w) =
exp
⇣
� k2r2

0
8

⌘
G̃(w)

2p
h
1� exp

⇣
�d1

z0

⌘i�
1�q2z 2

0
� . (3.21)

The cross-plane component of heat flux is determined by

Q̃
⇠
(z,k,w)⌘�kz

∂T
∂ z

=�kzqsinh(qz)T̃top
⇠

+ c̃⇠(k,w)
⇣

cosh(qz)�z0qsinh(qz)� e�z/z0
⌘
. (3.22)

In matrix form, Eqs (3.20) and (3.22) can be expressed as
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2

64
T̃⇠ (z,k,w)

Q̃
⇠
(z,k,w)

3

75=

2

64
cosh(qz) 1

kz

⇣
�1

q sinh(qz)+z0 cosh(qz)�z0e�z/z0
⌘

�qkz sinh(qz)
⇣

cosh(qz)�z0qsinh(qz)� e�z/z0
⌘

3

75

2

64
T̃top(k,w)

⇠

c̃⇠(k,w)

3

75

(3.23)

for z between 0 and d1. Thus, knowing the temperature at the top surface allows the acquisition

of the entire depth-dependent temperature and heat flux profiles. While the solution up to this

point has been generalized to account for a depth-dependent heating source, in many cases, e.g., in

TDTR and FDTR relying on metal transducers, an assumption of surface heating is reasonable, in

which case in the limit as z0 ! 0 Eq. (3.23) simplifies to

2

64˜
T̃ (z)

˜
Q̃(z)

3

75=

2

64
cosh(qz) � 1

qkz
sinh(qz)

�qkz sinh(qz) cosh(qz)

3

75

2

64 ˜
T̃top

˜
Q̃top

3

75 , (3.24)

where

Q̃top
⇠

(k,w) =
1

2p
exp
✓
�

k2r2
0

8

◆
G̃(w). (3.25)

This solution is generalized to layered systems by noting that Eq. (3.24) is valid for any layer in

which
˜
T̃top and

˜
Q̃top for that layer are known. While the heat flux is prescribed to layer 1, the

temperature at this surface is unknown. To obtain this quantity, we invoke a semi-infinite boundary

condition at the back side of the final layer of some system having n layers (refer to Fig. 3.5), such

that the following condition holds

lim
z!• ˜

Q̃n(z) = 0. (3.26)

Applying this condition to the nth layer allows the determination of
˜
T̃top,n and

˜
Q̃top,n, defined to be

the temperature and heat flux at the surface of layer n, i.e., at z = Ân�1
i=1 di. These quantities can

then be related to the bottom temperature and heat flux of the (n� 1)th layer through the thermal

boundary conductance (TBC), G(n�1)/n, mathematically represented in matrix notation by
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2

64 ˜
T̃bot,n�1

˜
Q̃bot,n�1

3

75=

2

64
1 � 1

G(n�1)/n

0 1

3

75

2

64 ˜
T̃top,n

˜
Q̃top,n

3

75 , (3.27)

so that the bottom temperature and heat flux of the (n�1)th layer are known, allowing for the so-

lution to the temperature and heat flux at the top of this layer as well. This process can be repeated

for an arbitrary number of layers until ultimately the temperature at the top of layer 1 is determined.

This matrix approach [94, 95, 122, 123] can then be generalized so that the temperature and heat

flux within the nth layer can be determined from

2

64 ˜
T̃n(z)

˜
Q̃n(z)

3

75=

2

64
cosh(qnzn) � 1

qnkz,n
sinh(qnzn)

�qnkz,n sinh(qnzn) cosh(qnzn)

3

75

⇥
i=1

’
i=n�1,n�2,...

MiNi

2

64 ˜
T̃top

˜
Q̃top

3

75=

2

64˜
Ã

˜
B̃

˜
C̃

˜
D̃

3

75

2

64˜
T̃top

˜
c̃

3

75

, (3.28)

where

Mj =

2

64
cosh(qjdj) � 1

qjzj
sinh(qjzj)+

1� f ( j)
kz

⇣
z0 cosh(qjzj)�z0e�zj/z0

⌘

�qjkz sinh(qjdj) cosh(qjdj)

3

75 , (3.29)

Nj =

2

64
1 � f (j)

G(j�1)/j

0 1

3

75 , (3.30)

f (j) =

8
>>><

>>>:

1 j 6= 1

0 j = 1
, (3.31)
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q2
j =

1
kz,j

(iwCv,j +kr,jk2). (3.32)

Here, zn is defined as zn = z�Ân�1
j dj such that zn = 0 corresponds to the top surface of the nth

layer. Note that this set of equations can be used to solve the temperature profile in any given layer

once Ttop is obtained, since n can represent any layer of interest. To proceed, though, without loss

of generality we assume the nth layer denotes the final, semi-infinite layer of this geometry. Then,

˜
T̃top is determined by invoking the aforementioned semi-infinite boundary condition described in

Eq. (3.26), such that

˜
T̃top =� ˜

D̃

˜
C̃ ˜

c̃top. (3.33)

Since
˜
c̃top is a well-defined function given by Eq. (3.21),

˜
T̃top can be obtained. To obtain this

solution in radial space and time, the inverse Hankel and Fourier transforms are performed on
˜
T̃top.

Taking first the inverse Hankel transform yields

T̃top(r,w) =

Z •

0

�
✓

˜
D̃

˜
C̃

◆
c̃top
⇠

J0(kr)k dk

=
�G̃(w)

2p
h
1� exp

⇣
�d1

z0

⌘i

Z •

0

1�
1�q2

1z 2
0
�
✓

˜
D̃

˜
C̃

◆
exp
✓
�

k2r2
0

8

◆
J0(kr)k dk

= L̃(r,w)G̃(w),

(3.34)

where J0 is the zeroth-oder Bessel function of the first kind and L̃(r,w) is defined to simplify

notation. That is,

L̃(r,w) =
�1

2p
h
1� exp

⇣
�d1

z0

⌘i

Z •

0

1�
1�q2

1z 2
0
�
✓

˜
D̃

˜
C̃

◆
exp
✓
�

k2r2
0

8

◆
J0(kr)k dk. (3.35)
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The integration resulting from taking the inverse Hankel transform can be performed numerically;

the upper bound of the integral can be set to 2/r0 without significant loss of accuracy [94]. Next,

taking the inverse Fourier transform yields the desired temperature solution in radial and time

coordinates,

Ttop(r, t) =
1

2p

Z •

�•
L̃(r,w)G̃(w)eiwt dw. (3.36)

Thus, Ttop is completely characterized, in principle. In practice, there are several simplifying

assumptions that can be made based on the specific form of G̃(w).

Beginning with the modulated CW source described by Eq. (3.14), G̃(w) can be written as

G̃CW(w) = F{GCW(t)}= 2pa0A0

⇣
d (w �w0)+d (w)

⌘
, (3.37)

whereas the modulated pulsed source given by Eq. (3.13) becomes

G̃pulsed(w) = F{Gpulsed(t)}= 2pa0A0

 
•

Â
n=�•

d (w �w0 �nws)+d (w �nws)

!
, (3.38)

where ws is defined as 2p fs and F denotes the Fourier transform operation. Interestingly, in the

frequency domain the only difference between the pulsed and CW source terms is the additional

sum over n pulses for the pulsed case. The delta function representation of these expressions makes

the transformation from frequency space to time relatively simple. In the CW case, the expression

for Ttop becomes

Ttop,CW(r, t) = a0A0

Z •

�•
L̃(r,w)

⇣
d (w �w0)+d (w)

⌘
eiwt dw

= a0A
�
L̃(r,w0)eiw0t + L̃(r,0)

�
,

(3.39)

whereas in the pulsed case, the expression for Ttop takes the form



CHAPTER 3. TIME- AND FREQUENCY-DOMAIN THERMOREFLECTANCE 51

Ttop,pulsed(r, t) = a0A0

Z •

�•
L̃(r,w)eiwt

 
•

Â
n=�•

d (w �w0 �nws)+d (w �nws)

!
dw

= a0A0

 
•

Â
n=�•

L̃(r,w0 +nws)ei(w0+nws)t + L̃(r,nws)

!
.

(3.40)

It is clear that in both the CW and pulsed modulated heating cases, there are two contribu-

tions to the temperature rise at the surface: a steady state, “DC” temperature rise governed by

the average power deposited into the sample, and a modulated, “AC” temperature rise associ-

ated with amplitude modulation at a fixed frequency. Decoupling the terms and recognizing that

Ttop = Ttop,DC +Ttop,AC, the temperature rises for the CW case are given by

Ttop,DC,CW = a0A0 L̃(r,0), (3.41)

Ttop,AC,CW = a0A0 L̃(r,w0)eiw0t , (3.42)

while those of the pulsed case are given by

Ttop,DC,pulsed = a0A0

•

Â
n=�•

L̃(r,nws), (3.43)

Ttop,AC,pulsed = a0A0

•

Â
n=�•

L̃(r,w0 +nws)ei(w0+nws)t . (3.44)

These equations completely describe the temperature rise at the top surface of layer 1. With Ttop

known, T (z,r, t) can be explicitly calculated in any layer within a sample having layered structures

by invoking Eq. (3.28) and transforming back to real space and time.

Equations (3.41) - (3.44) completely describe the surface temperature distribution as a function

of radius and time for a CW and pulsed, respectively. The change in reflectivity detected by

the probe, however, is a weighted average over this temperature distribution. As detailed in the

next subsection, for a near surface probe absorption, the photodetector measures a reflectance
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signal proportional to a Gaussian-averaged temperature distribution about the probe radius, r1,

represented by

Tprobed =
4
r2

1

Z •

0
Ttop exp

✓
�2r2

r2
1

◆
r dr, (3.45)

where r1 is the probe radius. Using Eq. 3.45, the probe averaged temperature rise can be modeled

completely. We now calculate the probe averaged temperature rise for two samples: a-SiO2 and

Si coated with an 80 nm Al transducer (both common TDTR/FDTR calibration samples). The

parameters used in the model and the rest of this chapter are listed in Table 3.1. Figure 3.6 (a)-

(c) shows the pump power vs. time used in this calculation for both a pulsed and CW pump.

The absorption of power is assumed to be a0 = 0.1, the pump and probe diameters are 10 µm,

and the modulation frequency is 10 MHz. Figure 3.6 (d)-(e) show the resulting total, AC, and

DC temperature rises for the case of a-SiO2, while Fig. 3.6 (f)-(g) show the total, AC, and DC

temperature rises for the case of Si. Comparison of these two cases makes clear that steady-

state heating of the a-SiO2 is significantly higher than Si. However, in TDTR and FDTR, lock-in

detection ensures that only the AC temperature rise is captured. So, from a modeling perspective,

only the AC temperature rise needs to be determined to compare with TDTR/FDTR data. Still, this

steady-state temperature rise can have an indirect, often impactful, influence on a measurement.

3.4.2 Probe Detection and Signal Analysis

TDTR and FDTR work on the premise of detecting the time varying probe power after reflec-

tion from the heated sample. The probe beam incident absorbed flux takes a similar profile to that

of the pump, given by

Q1(z,r, t) =
2

pr2
1z1

h
1� exp

⇣
�d1

z1

⌘i exp
✓
�2r2

r2
1

◆
exp
✓
� z

z1

◆
G1(t), (3.46)

where z1 is the optical penetration depth of the probe beam, r1 is the probe 1/e2 radius, and G1

defines how the probe power varies with time. As with the pump, the probe can be pulsed or CW;
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Total DC AC

= +

(a) (b) (c)

+=

(d) (e) (f)

= +

(f) (g) (h)

Figure 3.6: (a) Total pump power vs. time, shown for a pulsed (red) and CW (blue) source having
the same average power. (b) DC component of the pump power. (c) AC component of the pump
power. (d)-(e) Total, DC, and AC temperature rises for 80 nm Al on a-SiO2. (f)-(h) Total, DC, and
AC temperature rises for 80 nm Al on Si. In all cases, r0 = r1 = 5 µm, a0A0 = 2 mW, and fmod =
10 MHz.

both cases are considered below. In the pulsed case, consider a pulsed probe separated in time with

respect to the pump beam by t . Then,

G1,pulsed(t) =
a1A1

fs

•

Â
m=�•

d (t �m/ fs � t), (3.47)

where a1 and A1 are the probe absorption and power, respectively. In the CW case,

G1,CW(t) = a1A1. (3.48)

The reflected probe power is determined by

Q1,R = (R0 +DR)Q1, (3.49)
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Table 3.1: Room temperature thermal parameters used in calculating temperature rises in this
study. kr is thermal conductivity [W m�1 K�1] in the radial (in-plane) direction, kz is thermal
conductivity [W m�1 K�1] in the z (out-of-plane) direction, Cv is volumetric heat capacity [J cm�3

K�1], and GAl(Au)/x is the thermal boundary conductance [MW m�2 K�1] between Al(Au) and
the material of interest.

Material kz kr Cv GAl/x GAu/x

C60 0.097a 0.097a 1.3a 100b -
Polymer 0.2c 0.2c 2.0c 26d -

a-Si 1.3e 1.3e 1.62f 100b -
a-SiO2 1.4g 1.4g 1.62f 100b 50h

Si 140f 140f 1.62f 100i -
Al 135b 135j 2.42k • -
Au 220b 220j 2.49k - •

a Reference [51]; b Estimated value, in practice this does not play a role in the temper-
ature rise calculation ; c Reference [124]; d Reference [125]; e Reference [121];
f Reference [61]; g Reference [22]; h Measured using TDTR; i Reference [126];
j Measured using four-point probe resistivity and applying the Wiedemann-Franz law;
k Reference [127].

where DR is change in reflectance due to laser heating. From Eq. (3.1) DR can be, for small

temperature rises, estimated based on its proportionality to the change in temperature.

DR = R0bDT = b0DT, (3.50)

where for convenience b0, which is an alternative way to describe the thermoreflectance coefficient,

is defined. From the previous section, we know that there are DC and AC components to the

temperature rise. Assuming the thermoreflectance coefficient is still linear for the DC component

(we will revisit this assumption later) the reflected power in the frequency domain can be written

F{Q1,r}=
Z •

�•

⇣
R0 +b0DT̃ (z,r,w 0)

⌘
Q̃1(z,r,w �w 0)dw. (3.51)

The reflected probe illuminates a photodetector to generate a photocurrent. The current through a

phototransistor is directly proportional to the intensity of the incident light. The voltage measured

is a function of this current and for typical PIN photodiodes has a linear relation. Therefore, the

photodetector voltage can be written as
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vPD(t) = g(1� l)(Q1,R)wa = g(1� l)
�
(R0 +DR)(Q1)

�
wa

= g(1� l)
Z •

0

Z •

0
(R0 +b0DT (z,r, t))Q1(z,r, t)2pr dr dz

= g(1� l)R0

Z •

0

Z •

0
Q1(z,r, t)2pr dr dz+ g(1� l)b0

Z •

0

Z •

0
DT (z,r, t)Q1(z,r, t)2pr dr dz

= v0(t)+Dv(t),

(3.52)

where g is a constant of proportionality relating to the conversion of intensity to voltage, l accounts

for any losses associated with the reflected light’s path to the photodetector (mirrors, lenses, ab-

sorption in the air, etc.), and the “wa” subscript denotes the weighted average intensity. In the

frequency domain, this is

vPD(w) = v0(w)+Dv(w). (3.53)

Consider a pulsed probe beam and modulated pulsed pump beam

Q̃1 =
2

pr2
1z1

h
1� exp

⇣
�d1

z1

⌘i exp
✓
�2r2

r2
1

◆
exp
✓
� z

z1

◆
G̃1(w) = P1(z,r)G̃1(w)

= 2pa1A1P1(z,r)e�iwt

 
•

Â
m=�•

d (w �mws)

!
,

(3.54)

where P1, introduced to simplify notation, is

P1(z,r) =
2

pr2
1z1

h
1� exp

⇣
�d1

z1

⌘i exp
✓
�2r2

r2
1

◆
exp
✓
� z

z1

◆
. (3.55)

The total temperature rise for the modulated pulsed pump is given by Eqs. 3.43 and 3.44, so that
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DT̃ = L̃0(z,r,w) G̃0(w) = L̃0(z,r,w)2pa0A0

 
•

Â
n=�•

d (w �nws)+d (w �w0 �nws)

!
. (3.56)

Therefore, the DC voltage becomes

v0(w) = R0Q1(z,r,w) = R0

•

Â
m=�•

•Z

0

•Z

0

P1(z,r)d (w �mws)2pr dr dz, (3.57)

while the change in voltage due to a change in reflectance is

Dv(w) = gb0(1� l)
Z •

0

Z •

0

Z •

�•
DT̃ (z,r,w 0) Q̃1(z,r,w �w 0)2pr dw 0 dr dz

= (2p)3gb0a0a1A0A1(1� l)
•

Â
n=�•

•

Â
m=�•

•Z

0

•Z

0

•Z

�•

P1(z,r) L̃0(z,r,w 0)e�i(w�w 0)t d (w 0 �w0 �nws)d (w �w 0 �mws)dw 0 r dr dz

+(2p)3gb0a0a1A0A1(1� l)
•

Â
n=�•

•

Â
m=�•

•Z

0

•Z

0

•Z

�•

P1(z,r) L̃0(z,r,w 0)e�i(w�w 0)t d (w 0 �nws)d (w �w 0 �mws)dw 0 r dr dz

= (2p)3gb0a0a1A0A1(1� l)
•

Â
n=�•

•

Â
m=�•

•Z

0

•Z

0

P1(z,r) L̃0(z,r,w �mws)e�imwst d
⇣

w �w0 � (n+m)ws

⌘
r dr dz

+(2p)3gb0a0a1A0A1(1� l)
•

Â
n=�•

•

Â
m=�•

•Z

0

•Z

0

P1(z,r) L̃0(z,r,w �mws)e�imwst d
⇣

w � (n+m)ws

⌘
r dr dz.

(3.58)

Typically DR is orders of magnitude smaller than R0 such that any changes in reflected probe

signal detected by the photodetector are indistinguishable from noise. Balanced photodetectors

allow for a way to reduce this dependence on R0. Under ideal conditions, the balanced photode-

tector will extract only the difference in intensity of the reflected probe beam and reflected signal,

effectively eliminating R0 from the previous equation. However, the noise fluctuations associated

with this resulting voltage are generally still much greater than the changes in voltage resulting

from DR. The lock-in amplifier provides a way to bypass this predicament, as it is responsible for

locking into a specific frequency response to allow for signal-to-noise ratios significant to extract

changes in probe reflected power. Locking into a frequency wref means a narrow band of frequen-

cies around wref will contribute to the detected voltage after lock-in amplification. Mathematically,
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this requires w = wref. Setting wref to be w0 ensures the detected signal is that of the modulated

heating event. In addition, the delta function in Eq. (3.58) will only be nonzero when n = �m.

Finally, since w0 is limited by the Nyquist-Shannon sampling theorem to be less than ws/2, and

because the lock-in amplification filters out all frequency responses outside a narrow band around

w0, V0(w) is always zero for nonzero modulation frequencies. Additionally these criteria require

the final term in Eq (3.58) to be zero, since any integer multiple of ws cannot be equal to w0. These

conditions imply that the voltage after amplification, VLA, can be written as

VLA(w) = (2p)3gb0a0a1A0A1c(1� l)
•

Â
n=�•

•Z

0

•Z

0

P1(z,r) L̃0(z,r,w +nws)einwstd (w �w0)r dr dz,

(3.59)

where c is introduced to represent the signal scaling that results from lock-in amplification. Finally,

the lock-in response can be represented in the time-domain by taking the inverse Fourier transform

VLA(t) = (2p)2gb0a0a1A0A1c(1� l)

⇥
•

Â
n=�•

•Z

0

•Z

0

•Z

�•

P1(z,r) L̃0(z,r,w +nws)einwstd (w �w0)eiwt r dw dr dz

= (2p)2gb0a0a1A0A1c(1� l)eiw0t
•

Â
n=�•

•Z

0

•Z

0

P1(z,r) L̃0(z,r,w0 +nws)einwst r dr dz.

(3.60)

To simplify this expression, we need to expand the inner integral so that

•Z

0

P1(z,r) L̃0(z,r,w)2pr dr =
•Z

0

P1(z,r)2pr dr

⇥

2

4
•Z

0

✓
�cosh(q1z) ˜

D̃

˜
C̃
+

1
kz

✓
� 1

q1
sinh(q1z)+z0 cosh(q1z)�z0e�z/z0

◆◆

˜
c̃ J0(kr)k dk

3

5 .

(3.61)
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To simplify notation, we introduce

˜
F̃(z,k,w)⌘�cosh(q1z) ˜

D̃

˜
C̃
+

1
kz

✓
� 1

q1
sinh(q1z)+z0 cosh(q1z)�z0e�z/z0

◆
, (3.62)

Simplifying, the integral becomes
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(3.63)

The expression within the brackets of the last term in this equation is simply the Hankel transform

of the probe intensity, i.e.,

•Z

0

2exp
⇣
� z

z1

⌘

pr2
1z1

h
1� exp

⇣
�d1

z1

⌘i exp
✓
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◆
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◆
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(3.64)

Substituting, we define

˜
L̃01(z,k,w) =

exp
⇣
� z

z1

⌘
G̃0(w)

2pz1

h
1� exp

⇣
�d1

z1

⌘ih
1� exp

⇣
�d1

z0

⌘i
•Z

0

˜
F̃(z,k,w)�
1�q2z 2

0
� exp

✓
�

k2(r2
0 + r2

1)

8

◆
k dk,

(3.65)

so that VLA(t) becomes
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VLA(t) = 2pgb0a0a1A0A1c(1� l)eiw0t
•

Â
n=�•

•Z

0
˜
L̃01(z,k,w0 +nws)einwst k dk dz = Z(w0,t)eiw0t ,

(3.66)

where Z(w0,t) is the transfer function relating the lock-in voltage to the temperature rise. It is

emphasized that Z is a function of both w0 and t , so that either parameter can be varied to change

Z; TDTR varies t while FDTR varies w0. Z includes all thermal properties and experimental pa-

rameters involved in TDTR. Remembering that the physical temperature rise is the real component

only, the lock-in voltage is the real part of VLA(t), so that it can be described as

Re{VLA(t)}= Re{Z(w0,t)eiw0t}= Re{Z(w0,t)} cos(w0t) � Im{Z(w0,t)}sin(w0t)

= X(w0,t)cos(w0t)� iY (w0,t)sin(w0t).
(3.67)

where X and Y are defined to be the real and imaginary components of Z. In agreement with the

simple picture provided in the previous conceptual overview, X and Y are constant for a given w0

and t . Equation (3.67) is valid for a pulsed pump and pulsed probe. All other scenarios can be

obtained in the same manner by substituting the appropriate form for the source term of the pump

and probe.

3.4.3 Post Processing

The lock-in amplifier records the X and Y voltages as a function of probe delay time (TDTR) or

modulation frequency (FDTR). As discussed previously, we provide a reference signal to the lock-

in amplifier to mix with the signal wave to extract X and Y . In an ideal experiment, this reference

phase will have the same phase as the pump relative to the probe. However, the electronics add

an additional electronic phase shift that needs to be offset. This can be done manually by, for

example, allowing the pump beam to bleed through to the probe photodetector to determine its

phase. In TDTR, an easy alternative solution is to phase correct via post processing by ensuring
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that the out-of-phase signal is constant across t = 0 [119]. Thus, the procedure is to determine

DX0 and DY0, the change in X signal Y signals as the delay time crosses t = 0. To ensure DY0 = 0

after post processing, we can fix X and Y as followed

Xfixed = X cos(Df)�Y sin(Df), (3.68)

Yfixed = Y cos(Df)+X sin(Df), (3.69)

where the Df = tan�1(DY0/DX0). In principle, once the phase corrected X and Y are obtained, they

can be used to fit data from the derived model. However, with so many scaling parameters, many

of which are difficult to quantify, it is not practical to do this. Instead, we can normalize the data

and model to a specific time delay to get rid of these constants. This is sometimes done with X to

improve sensitivity to certain parameters, namely thermal boundary conductance [114]. Similarly,

often the amplitude of the signal, often called the magnitude when describing X and Y as complex

functions, can used to fit data after normalizing. The magnitude, M, is defined as

M =
p

X2 +Y 2. (3.70)

Even this, though, is not ideal, since noise can significantly influence the signal and the choice of

normalization time can be ambiguous. Instead, it is far better to work with intrinsically unitless

quantities - the phase lag and the ratio, defined respectively as

f = tan�1
✓
�Y
X

◆
, (3.71)

R =
�X
Y

. (3.72)

Working with these has several benefits. In addition to avoiding normalization, using the phase

or ratio naturally cancels many potential experimental errors and noise; any common such er-

rors/noise are canceled upon division. As a note, using the phase or ratio is only possible with
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continuous wave or high repetition rate lasers, as the out-of-phase signal approaches zero when

there is no pulse accumulation [95]. The 80 MHz repetition rate of the oscillator used in this

dissertation ensures we can obtain an out-of-phase signal for all materials studied.

3.5 Thermal Penetration Depth

The derived equations are now used to determine the spatially-dependent temperature profiles

in order to study the thermal penetration depth (TPD) in bulk and thin film systems. This section

provides answers to the questions of how the TPD is dependent on time and length scales of the

laser heat source and sample geometry. In TDTR and FDTR, the TPD is of great importance as it

relates a measurement length scale to the length scale of physical phenomena of interest. For ex-

ample, interpretation of TDTR/FDTR extracted thermal properties’ relation to physical processes

relies on the idea that the TPD resulting from a modulated heating event can be orders of mag-

nitude smaller than the pump radius, making it the defining length scale of the thermal response

within the measurement volume. In fact, many of the recent advances in mean free path spec-

troscopy [117] stem from relating phonon mean free paths to the TPD imposed by a modulated

heating event [115, 128–132]. Therefore, it is of utmost importance to properly characterize this

length scale. This length scale is highly dependent on a multitude of variables that make accurate

analytical predictions difficult for realistic sample geometries and conditions, suggesting a need

for the rigorous calculations presented in this section. Such variables include time, modulation

frequency, material and interface properties, and heater radius.

Beyond TDTR and FDTR, accurate predictions of TPD are highly valuable to several appli-

cations; pulsed and continuous wave (CW) laser applications are ubiquitous in both industry and

scientific research. Many modern applications rely on laser heating to manipulate structural, me-

chanical, and electrical properties of materials. Pulsed laser heating, having versatile windows of

energy duration ranging from femtoseconds to nanoseconds, is routinely used in materials and mi-

crostructure fabrication [133–135], materials processing [136], laser cutting and micro-machining

[137], and property measurements through pump-probe techniques [96, 138–140]. Additionally,
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with picosecond and sub-picosecond pulse durations, pulsed lasers can be used to provide high

energy densities locally, providing a means for surface modification [141, 142]. Continuous wave

laser heating, likewise, has major applications in welding, cutting, surface treatment [143] such

as near-surface melting to modify wear and corrosion [144], and surface patterning [134]. In all

such applications, it is necessary to understand the spatially-varying temperature profile that results

from laser heating, since this temperature dictates material response.

The 1/e temperature decay TPD used to interpret TDTR and FDTR results is often estimated us-

ing the analytical solution to a 1-dimensional semi-infinite sample subject to a CW heating source

modulated in the high frequency limit (w0 � D/r2
0, where w0 is modulation angular frequency, r0

is pump radius, and D is thermal diffusivity) taking the form

TPD =

r
2D
w0

. (3.73)

However, this equation breaks down when experimental conditions deviate from those on which

this expression was derived. Considering commonly studied materials like silicon (Si), amorphous

silicon dioxide (a-SiO2), and aluminum (Al) on Si and a-SiO2 reveals that such deviations can

occur at modulation frequencies and pump radii common in TDTR and FDTR. To comply with

Eq. (3.73) and the definition typically used in TDTR/FDTR, the TPD is defined as the distance

away from the spatial coordinate of maximum temperature at which the temperature profile has

decayed to 1/e of this maximum temperature.

In order to establish the upper limit to the obtainable TPD from a modulated heating event,

consider the TPD associated with an unmodulated heating event. Since both modulated and un-

modulated temperature profiles are considered, the definition of TPD is generalized to quantify the

temperature decay both radially and in depth. This distinction is made because, when considering

the modulated temperature profile simulating the heating event to which lock-in detection occurs

during TDTR and FDTR, the temperature profile is typically one-dimensional; that is, the tem-

perature decay extends in depth much less than radially. However, as the modulation frequency

approaches zero, the TPD becomes large, on the order of pump radius, making the radial decay

length important.
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(a) a-SiO2 (b) Si

Figure 3.7: Temperature rise profiles for (a) bulk a-SiO2 and (b) bulk Si subjected to a CW source
with power a0A0 = 1 mW and 1/e2 gaussian radius of 15 µm. Also plotted in both cases is the
1/e distance away from the point of maximum temperature (z = r = 0 µm). For both SiO2 and Si,
the 1/e penetration depth is determined to be 13.3 µm at r = 0 µm and is independent of absorbed
power.

An unmodulated heating event is first considered to understand how the steady-state tempera-

ture profile and TPD compare when a source is constant (CW laser) vs. time-dependent (pulsed

laser). Note that the unmodulated case fundamentally establishes the upper limit to the attainable

TPD in the modulated case. The surface temperature for CW and pulsed sources are given by

Eqs. (3.41) and (3.43). For a bulk system (homogeneous, semi-infinite material) irradiated with

an unmodulated CW source, the TPD is determined to be independent of both pump power and

thermal properties of the system; only radius of the heating event is directly correlated with TPD.

Shown in Fig. 3.7 is the temperature profile for both bulk a-SiO2 and bulk Si subjected to the

same CW source having a heater radius r0 = 15 µm and average absorbed power of 1 mW. In

both cases, the temperature decay from the maximum temperature is equivalent when normalized.

However, it is clear that a-SiO2, given the same heat flux, has a significantly higher temperature

distribution. Nonetheless, the temperature decay with depth is proportionally the same in both

cases. While this may seem counterintuitive in the context of optical thermometry techniques, as

the thermal perpetration depth is traditionally assumed to increase with increasing thermal con-
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(a) (b) (c) (d)

Figure 3.8: Near-surface temperature profile as a function of radius and depth for bulk a-SiO2
subjected to a 80 MHz pulsed source as observed at (a) 100 ps, (b) 1 ns, (c) 10 ns, and (d) a CW
source. In all cases, the average absorbed power is set to a0A0 = 1 mW and the 1/e2 pump radius
is 15 µm

ductivity, these results can be understood in the context of a simple Fourier analysis, given that

the source is a constant heat flux. For example, in a one-dimensional example, given a constant

heat flux boundary condition, Fourier’s law implies Qtop =�k(dT/dz), so that the temperature is

described by a linear function in z, T (z) =�(Qtop/k)z+T (0). The 1/e temperature decay, then, is

simply T (0)/e =�(Qtop/k)zTPD+T (0). Solving for TPD, zTPD = T (0)(1�1/e)(k/Qtop), but in

accordance with Eq. (3.33), for a semi-infinite medium T (0) µ (Qtop/k), so that the dependency

of both heat flux and thermal conductivity are nullified. As a result, for simple isotropic homoge-

neous bulk materials, the TPD proves to be independent of the thermal properties and magnitude

of heat flux.

In the more complex case of a pulsed laser heat source, the TPD becomes time-dependent.

Fig. 3.8(a)-(d) displays the near-surface temperature distributions for SiO2 subjected to surface

heating from an 80 MHz pulsed laser source. At early times, the temperature rise is confined

closer to the surface due to the initial energy deposited by the laser pulse. By 10 ns, the heat

is largely distributed such that the temperature rise is nearly indistinguishable compared to the

equivalent CW source case.

To further expand on the role of the repetition rate, we calculate the radial- and depth-dependent
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Figure 3.9: Temperature decay in depth for bulk Si along the radius = 0 profile subjected to an
unmodulated pulsed source with repetition rates (a) 800 MHz, (b) 80 MHz, (c) 10 MHz, and (d) 1
MHz. In all cases, average absorbed power at the surface is 1 mW and pump 1/e2 radius is 15 µm.

temperature profiles for silicon at repetition rates spanning nearly three orders of magnitude (1

MHz to 800 MHz); the results are shown in Fig. 3.9 for the temperature decay in depth along the

r = 0 contour. For higher repetition rate pulsed sources (e.g., 800 MHz), the solution is almost

indistinguishable from the CW solution at any given time. 80 MHz is a commonly used repetition

rate for TDTR as it is a typical output of most commercial Ti:Sapphire oscillators. For this repeti-

tion rate, the temperature decay has a time dependence, but beyond 1 to 2 µm the depth-dependent

temperature decays to be equivalent to that of the CW source solution. The temperature profile

resulting from a 10 MHz repetition rate source displays similar characteristics, but takes longer

in time and depth to relax to the CW solution. Still, this similarity to the 80 MHz case suggests

that pulse accumulation is still present; that is, the thermal decay does not reach zero before the
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next pulse arrives. Finally, the 1 MHz case displays a unique trend in that the solution does not

approach that of the CW source until both decay to zero. This suggests that there is little, if any,

pulse accumulation. Furthermore, the t = 100 ps curve shows that before the temperature equili-

brates, the magnitude of temperature is relatively low and shows a flat profile in depth beyond the

near-surface region, confirming this lack of significant pulse accumulation.

These calculations lead to the following general conclusions. First, the steady-state tempera-

ture profile, while independent of time in the CW case, displays a strong time dependence when

considering a pulsed source. This results from the heat flux being supplied by impulses of en-

ergy such that the steady-state temperature distribution after pulse accumulation has saturated still

varies with time between each pulse. Second, the solution of the steady-state temperature profile

for a pulsed heating event relaxes in depth to that for a CW source of equivalent average power;

the depth it takes this co-incidence of solutions to occur is dependent on the repetition rate of the

system. In the limit as repetition rate becomes slow enough that the temperature decays to zero

between pulses, this co-incidence occurs only as z ! •. In this case, the solution is equivalent to

that of the single pulse (impulse) temperature response. At the other extreme, as the repetition rate

approaches infinity, the heating source becomes a CW source so that the thermal response relaxes

to that of a CW solution very close to the surface.

Next, consider the spatially-dependent temperature profiles when a modulated heat flux is ap-

plied to the surface. Since the laser heating magnitude is modulated about some average power, we

note that there will always be a steady-state (DC) component to temperature rise as discussed in

the previous section. In this section, however, the focus will be on the modulated (AC) component

to this temperature rise to comply with temperature profiles of interest to TDTR and FDTR. Equa-

tions (3.42) and (3.44) describe the surface temperature solution to such a heat flux condition. The

expression given by Eq. (3.73) is commonly used in both TDTR and FDTR studies to correlate

TPD with physical length scales associated with heat carriers [115, 128–132]. However, this equa-

tion, given the assumptions invoked in its derivation, is limited in its practical applicability and

clearly breaks down when true conditions deviate from such idealities. For example, in agreement

with the conclusion drawn from the unmodulated case, the TPD depends strongly on time after
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(a) (b)

Figure 3.10: Modulated temperature profiles as a function of depth at r = 0 µm for a bulk a-SiO2
system. The average power absorbed at the sample surface was chosen as a0A0 = 1 mW. The
modulation frequency in both cases was set to 1 MHz, while the repetition rate of the pulsed laser
was set to 80 MHz. The temperature decay with depth is shown when the heat flux is (a) CW and
(b) pulsed and observed at t = 100 ps.

pulse absorption for the pulsed case. Figure 3.10 clearly demonstrates this, showing calculations

of temperature rise as a function of depth for a (a) CW and (b) pulsed source. For a CW source,

the temperature profile with depth at r = 0 (representing FDTR when r1 ⌧ r0) shows that when

considering the magnitude of temperature decay, Eq. (3.73) exactly predicts the calculated TPD for

bulk a-SiO2. However, when a pulsed response of equivalent power is observed at 100 ps, the TPD

is clearly not accurately predicted by Eq. (3.73). Thus, the TPD varies with time in the pulsed case,

making its use as a metric of measurement volume unreliable in many situations. Of course, it can

be argued that since temperature deviations in pulsed vs. CW solutions occur only near-surface for

high repetition rate pulsed sources (note, as per our previous discussion, this is not the case with

low repetition rate sources), the experimental volume as a whole can still be reasonably predicted

using the CW solution. Nonetheless, it is clear that Eq. (3.73) has limitations, such that its use can

result in inaccurate predictions of TPD for certain experimental conditions. As it turns out, such

conditions are well within the norm of those typically used in TDTR and FDTR experiments. Two

such examples include: (i) the modulation frequency is on the order of the radially averaged ther-

mal diffusivity (w0 . D/r2
0) and (2) layers and interfaces become significant to thermal transport.
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(a) (b)

Figure 3.11: Thermal penetration depth vs. modulation frequency for (a) bulk a-SiO2 and Si and
(b) 100 nm Al on a-SiO2 and Si as determined computationally using the approach described in
this manuscript compared to that predicted via Eq. (3.73). In all cases, the heat flux is provided by
a CW source with power a0A0 = 1 mW and 1/e2 gaussian radius of 15 µm and the TPD is given
for the depth-dependent temperature decay along the r = 0 profile.

We consider both cases below.

The unmodulated temperature response suggests a physical limit to the thermal penetration

depth obtainable by a modulated source; that is, the thermal penetration depth resulting from a

modulated heat flux can never be greater than that resulting from an unmodulated heat flux with all

other parameters staying equal. Thus, Eq. (3.73) clearly breaks down at low modulation frequen-

cies. Figure 3.11(a) displays the thermal penetration depth vs. modulation frequency as predicted

via Eq. (3.73) and that calculated using the full solution discussed in the analysis above for both Si

and a-SiO2 (homogeneous semi-infinite substrates) using a pump beam radius of 15 µm. For bulk

a-SiO2, the thermal penetration depth predicted is reasonably accurate for the frequencies greater

than ⇠100 kHz, proving to be an effective predictor of TPD in the range of typical modulation

frequencies used in TDTR and FDTR. However, for Si, the prediction of TPD via Eq. (3.73) is not

accurate until ⇠10 MHz using the thermal properties listed in Table 3.1. We note that manipulating

the pump radius can change the accuracy of Eq. (3.73) relative to the calculated results. Smaller

pump radii lead to a decrease in the upper limit to the attainable TPD as calculated in the unmod-
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ulated case. As a result, the onset of disagreement between prediction and calculation occurs at

higher modulation frequencies for smaller pump radii. To get a better idea of where this discrep-

ancy begins, the TPD is normalized to determine the ratio of TPD/r0 as a function of modulation

frequency. Doing so reveals that the breakdown of calculation and theory, as implied by Si and

a-SiO2 examples, occurs when this ratio reaches approximately 0.2.

More importantly, however, note that in a typical TDTR or FDTR experiment, a metal trans-

ducer (typically on the order of 100 nm) is deposited onto a bulk substrate. The addition of this

thin film (and more importantly for high-thermal diffusivity materials, the interface between the

thin film and substrate) serves to completely change the temperature decay profile such that for

Si, the predicted TPD is never in agreement with the calculated TPD and can be off by orders

of magnitude at modulation frequency extremes on both the high and low end. This is observed

in Fig. 3.11(b), where the calculated TPD represents that within the Si or a-SiO2 substrate after

subtracting the 100 nm Al thickness. a-SiO2, on the other hand, shows similar agreement to the

predicted model as in the bulk case since the thermal resistance from the Al and Al/SiO2 interface

is negligible compared to that of the a-SiO2.

From these observations, two generalizations can be made. First, low-thermal diffusivity ma-

terials are less prone to the breakdown of Eq. (3.73) within typical experimental conditions of

TDTR and FDTR. Second, for high-thermal diffusivity materials, interfaces and layered structures

completely change the thermal decay profile such that simple analytical expressions can no longer

be used to accurately predict TPD. Thus, to obtain accurate estimations, the full solution to the

temperature decay profile with depth, radius, and time must be solved.

3.6 Steady-State Temperature Rise

In any optical pump-probe technique, the pump induces a steady-state temperature rise asso-

ciated with the average power absorbed during laser heating. In such experiments, an estimation

of this temperature rise can be crucial since thermal properties can vary significantly with tem-

perature. Because fitting procedures to extract thermal properties can be highly sensitive to these
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temperature-dependent input parameters, neglecting the temperature rise can result in large er-

rors of fitted parameters. This is particularly important at low temperatures where heat capacities

and thermal conductivities are highly temperature-dependent [2]. Moreover, appropriate modeling

of the temperature rise is needed in many cases for determining critical temperatures like phase

transition temperatures and damage thresholds. For example, many polymers have glass transi-

tion temperatures well within the range of temperature excursions reached in typical TDTR and

FDTR experiments [145, 146], while the same is true for the denaturing temperature of proteins

[147, 148]. Whether the goal is to avoid such temperatures or investigate material properties at

those temperatures, the calculation of the steady-state temperature rise due to laser heating is nec-

essary.

In this section, the previously derived equations are used to understand steady-state temperature

rise in pump-probe experiments in order to determine its practical implications on the experiments.

In particular, the effects that various thermal length scales have on the steady-state temperature

rise are revealed and all results are generalized where appropriate. For a modulated heating event,

these length scales include the the 1/e2 pump radius (r0), 1/e2 probe radius (r1), and the thermal

penetration depth. In the previous section, it was shown that the temperature rise resulting from

a modulated heating event in TDTR and FDTR could be decoupled into a modulated and steady-

state temperature response. As such, there are two thermal penetration depths to consider: the

modulated thermal penetration depth (dm), which defines the 1/e decay in depth relative to the

magnitude of the modulated component to temperature rise at the sample surface, and the steady-

state thermal penetration depth (ds), which defines the 1/e decay in depth relative to the steady-state

surface temperature rise.

From these calculations, several key findings are found based on typical experimental condi-

tions used in TDTR and FDTR. First, conductive thin film transducer layers, such as aluminum

(Al) and gold (Au) films ubiquitous in TDTR and FDTR, can significantly reduce the tempera-

ture rise by providing radial heat dissipation, leading to reductions in temperature rise of (in some

cases) orders of magnitude compared to the same temperature rise without a transducer. Second,

when sampling thin films, conductive substrates can likewise reduce this temperature by acting



CHAPTER 3. TIME- AND FREQUENCY-DOMAIN THERMOREFLECTANCE 71

as heat sinks. However, their effectiveness as heat sinks is entirely dependent on the length of

ds(⇡ r0) with respect to the film thickness. Finally, the effect of optical penetration depth on the

the steady-state temperature rise is quantified to reveal that large z can reduce the steady-state tem-

perature rise, but is only significant when it approaches the important thermal length scales such

that z ⇡ ds ⇡ r0. Taken together, this study emphasizes the need to decouple the modulated heat-

ing event from the steady-state heating event when considering laser heating and the importance

of accurately determining the steady-state temperature rise for layered structures.

In the case of a pulsed laser heat source, the steady-state response is taken as the accumulated

temperature rise resulting from a summation over all pulses absorbed by the sample. For high

repetition-rate lasers typically used in TDTR, the temperature rise associated with a single pulse is

small compared to the accumulated temperature rise for low thermal conductivity materials where

steady-state heating is of concern [120]. Additionally, the pulsed solution to steady-state heating,

for the time scales of interest in TDTR (100’s of ps to several ns), can be approximated as a CW

solution without significant loss of accuracy [120]. Thus, in this section, we generalize all results

to hold true for both high-repetition rate pulsed and CW sources, but solve all temperature profiles

assuming the heating event is from a CW source. Doing so has two advantages: (i) it is far more

computationally efficient since one does not need to sum over all pulses, and (ii) it eliminates any

time dependence (however small) to the temperature profile between pulse absorption.

Although the temperature rise can be decoupled into two terms for the modulated laser heating

event, the steady-state temperature rise dominates the temperature profile of any system, such that

for practical applications this temperature rise is the only one that needs to be considered. The mod-

ulated temperature rise oscillates about this steady-state temperature such that when time-averaged

over several periods it is zero. Moreover, for typical modulation frequencies used in TDTR and

FDTR, the amplitude of the modulated temperature rise can be orders of magnitude lower than

steady-state temperature rise. For example, Fig. 3.12 shows the steady-state and modulated tem-

perature profiles associated with a representative 100 nm aluminum (Al) film on an amorphous

silicon dioxide (a-SiO2) substrate subjected to laser irradiation modulated at 10 MHz and absorbed

at the Al surface. The average absorbed power is 1 mW and the beam has a Gaussian radial profile
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Figure 3.12: Temperature profile as a function of radius and depth for a 100 nm Al / a-SiO2 sample
subjected to a radially symmetric gaussian surface heating event with 1/e2 radius of 15 µm and
an average absorbed power of 1 mW. The heating event is modulated sinusoidally at 10 MHz;
the temperature profile is decoupled to display the (a) constant component from the unmodulated
(steady-state) response and (b) the magnitude of temperature from the modulated component.

with a 1/e2 heater radius, r0 = 15 µm. Figure 3.12(a) shows that the maximum temperature rise of

the steady-state component is over 10 K. In contrast, Fig. 3.12(b) shows that the magnitude (ampli-

tude of the temperature oscillation in time) of the modulated component of the temperature rise is

two orders of magnitude lower than the steady-state component. The material-dependent thermal

parameters used for all calculations in this chapter are listed in Table 3.1. Although this section is

focused on interpreting temperature profiles associated with TDTR and FDTR, most of the results

presented in this study can be generalized to interpret temperature profiles associated with other

experiments having radially symmetric heating at comparable length scales to those presented in

this study.

The condition that dm ⌧ ds is beneficial for determining thermal properties at a specific tem-

perature in TDTR and FDTR. Since the depth of the experimental volume is typically assumed

as dm [115, 116], the condition of dm ⌧ ds implies that one can assume a single temperature ap-

proximation within the experimental depth to avoid complications with spatially varying thermal

properties. This approximation is important because, in order to extract thermal parameters via

a heat diffusion model, fixed input parameters need to be defined; these parameters are generally

temperature dependent. A single temperature approximation allows one to assign fixed, spatially

independent values to these fixed parameters. In Fig. 3.12, dm is limited to under 300 nm for the



CHAPTER 3. TIME- AND FREQUENCY-DOMAIN THERMOREFLECTANCE 73

Al / SiO2 sample (including the 100 nm Al film thickness). The 99% temperature decay depth is

in this case is roughly 850 nm. Across the same depth, the temperature decay of the steady-state

temperature is less than 10%, validating the assumption that the steady-state temperature rise is

constant across the experimental depth. Increasing the modulation frequency or increasing the

heater radius can further reduce the ratio of dm/ds, ensuring a single temperature approximation

holds in depth.

The radial temperature decay lengths at the sample surface, on the other hand, are similar in

the modulated and steady-state cases. To determine the conditions for which a single temperature

approximation is valid in the radial direction, it is necessary to discuss the probe detection, turning

back to Eq. (3.45). When considering a bulk, homogenous material, this expression can be solved

analytically for an unmodulated CW source to become

T =
a0A0q

2pkrkz(r2
0 + r2

1)
. (3.74)

For an isotropic material with thermal conductivity k and when r1 = r0, this becomes [94]

T =
a0A0

2
p

pr0k
. (3.75)

This expression is often employed as an estimation of temperature when pump and probe radii

are similar, as it provides a simple analytical expression for calculating the temperature rise from

laser heating. However, there are two assumptions inherent in Eq. (3.75) that complicate its use

for TDTR and FDTR experiments when experimental conditions deviate from these assumptions.

The first assumption is that the radial distribution of temperature is accurately approximated

by a single temperature coming from TPA when r0 = r1. TPA is a Gaussian average of the radial

temperature distribution over the probe radius, providing a single temperature to estimate the radial

decay of temperature for a sample. This means that in the case of large radial temperature gradi-

ents, Eq. (3.75) will significantly underestimate the maximum temperature of the system and the

use of a single temperature approximation within the experimental volume of TDTR and FDTR

may not be valid. For example, Fig. 3.13(a) shows the surface steady-state temperature profile
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Figure 3.13: (a) Temperature rise due to pump beam heating as a function of radius. TPA is the
probe-averaged temperature rise, shown for the cases when the probe radius is equal to pump
radius, half the pump radius, and a quarter of the pump radius. (b) Normalized temperature (defined
as probe averaged temperature rise divided by maximum temperature rise from pump heating) as
a function of normalized probe radius (defined as the ratio of probe to pump radii).

induced by a pump beam with r0 = 15 µm and a0A0 = 1 mW for a bulk a-SiO2 sample assum-

ing a surface heating event. When r1 = r0, the calculated temperature rise (TPA), which agrees

perfectly with Eq. (3.75), is only capturing the temperature rise associated with a fraction of the

radial temperature gradient. When r1 is reduced relative to r0, TPA changes significantly, as de-

picted in Fig. 3.13(a), approaching the peak temperature as r1 ! 0 µm. While this simple example

shows temperature deviations of only a few Kelvin, higher heat fluxes or lower thermal conduc-

tivity materials can greatly increase the steady-state temperature rise; we explore the latter case

below. Before doing so, Fig. 3.13(b) generalizes these results to show the normalized temperature,

defined as the ratio of maximum temperature of the radial surface temperature profile (Tmax) to

TPA, as a function of normalized probe radius (r1/r0). When the normalized radius is 1, TPA gives

a temperature of 71% of the maximum temperature, while lowering the normalized radius to 0.5

and 0.25 increases the normalized temperature rise to 89% and 97% respectively. These results are

independent of laser power and material properties for this bulk, homogeneous case, allowing for

a generalized understanding of the conditions needed ensure a single temperature approximation

in the radial direction. Since the radial component to the measurement volume is dictated by the

probe, it is beneficial to reduce the probe radius relative to pump size to ensure a single-temperature
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Figure 3.14: Steady-state temperature rise as a function of radius for (a) bulk amorphous SiO2
and a 100 nm Al film on a SiO2 substrate, (b) bulk polymer and a 100 nm Al film on a polymer
substrate, and (c) bulk disordered C60, a 100 nm Al film on a C60 substrate, and a 100 nm Al film
on a 100 nm C60 film on a Si substrate

approximation in the radial direction.

The second assumption in Eq. 3.75 is that the sample is bulk and homogeneous, such that

it is not valid when layers and interfaces are considered. Since TDTR and FDTR experiments

almost always require a thin-film metal transducer layer, Eq. 3.75 becomes invalid. To show this,

in Fig. 3.14 we consider the steady-state surface temperature profiles for three representative low-

thermal conductivity materials, (a) a-SiO2, (b) polymer, and (c) disordered C60. In all cases, a

surface heating event with r0 = 15 µm and a0A0 = 1 mW is used and all temperature profiles are

shown with and without a 100 nm Al transducer layer (typical thickness used in TDTR and FDTR).

Additionally, TPA is shown to demonstrate the equivalence of Eq. 3.75 and TPA when r1 = r0 and no

transducer layer is included. The addition of the transducer layer completely changes the steady-

state temperature profile. For a-SiO2, Tmax is reduced by 44% with the addition of the transducer

layer, while the difference is compounded in the case of polymers and C60, reducing the peak

temperature by 79% and 87%, respectively.

This strong temperature reduction occurs because the transducer acts as a heat sink in the

radial direction. This radial heat sink effect is shown in Fig. 3.15 through the comparison of the

heat flux vector field (which includes heat flux components in the depth and radial directions) for



CHAPTER 3. TIME- AND FREQUENCY-DOMAIN THERMOREFLECTANCE 76

(b)(a)

(a) (b)

Figure 3.15: Heat flux vector field resulting from steady-state heating in (a) bulk a-SiO2 and (b)
100 nm Al on a-SiO2 when r0 = 1 µm and a0A0 = 1 mW.

(a) bulk a-SiO2 and (b) 100 nm Al on a-SiO2. In these examples, r0 = 1 µm to be comparable to

the transducer thickness for better visualization of the heat flux in the Al layer. For bulk a-SiO2,

the heat flux is dissipated throughout the depth and radial directions with similar magnitudes.

However, when a 100 nm Al layer is added, the radial heat flux in the Al layer is much greater than

any magnitude of heat flux in the a-SiO2 layer. In order to sustain the similar radial temperature

profiles in both the Al layer and a-SiO2 (see Fig. 3.12), the radial heat flux in the Al must be much

greater than that in the a-SiO2 to compensate for the difference in thermal conductivities.

This heat sink effect is generally not a factor in the modulated temperature rise, emphasizing

the need to decouple the steady-state and modulated temperature profiles that occur simultaneously

with a modulated laser heating event. Whereas the latter can typically be assumed one-dimensional

so that radial thermal transport is negligible, the former is highly dependent on radial transport. We

quantify this further in an experimental case study on a thin Au film deposited on a-SiO2 in the

following section. Although the steady-state heating is partially mitigated by the transducer layer,

adding a substrate can further reduce the heating, as shown in Fig. 3.14(c), where the steady-state

temperature rise is calculated for 100 nm Al on a C60 thin film with thickness d = 100 nm (a

thickness achievable for spin-coated thin films) on a bulk Si substrate. In this case, the temperature
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rise, compared to bulk C60 alone, is reduced by two orders of magnitude.

3.6.1 Experimental Case Study: Au on a-SiO2

To validate the calculations of steady-state heating, provide an example of when properly esti-

mating temperature rise is important, and develop an iterative approach to determining temperature-

dependent thermal properties, we study the case of a-SiO2 with a 65 nm gold (Au) transducer layer

using TDTR, the details and analyses for which are described elsewhere [94, 96, 97]. Gold was

chosen as the transducer because of its high absorbance at our pump wavelength of 400 nm, which

allows for large steady-state temperature rises. Additionally, Au has low absorbance at the probe

wavelength of 800 nm, so we can ignore any contribution from the probe when calculating the

steady-state temperature rise. An a-SiO2 substrate was chosen because of its well-established ther-

mal conductivity as a function of temperature, making it a good choice for proof of concept. We

measure the ratio of the in-phase to out-of-phase voltage of the probe response recorded by a lock-

in amplifier as a function of probe delay time. The 1/e2 radii for the pump and probe are 16.5

and 6.5 µm, respectively. The pump pulses are modulated with a 10 MHz sinusoidally varying

envelope. Using a high modulation frequency and small probe radius relative to the pump ensure

the single temperature approximation will be reasonably accurate for our experimental volume, as

discussed previously. Using a multilayer, radially symmetric thermal model [94, 97], we fit for

the thermal boundary conductance between the Au transducer and the a-SiO2 (GAu/a�SiO2) and the

a-SiO2 thermal conductivity (ka�SiO2). We assume bulk values for the heat capacities [61, 127] for

the Au transducer and a-SiO2 and adjust these with temperature as appropriate. The radial compo-

nent to thermal conductivity of the Au transducer is determined using the Wiedemann-Franz law

based on 4-point probe resistivity measurements.

To elucidate the importance of the thermal parameters that determine the temperature rise (both

modulated and steady-state), we can quantify the sensitivity of the surface temperature response

function to each parameter of interest as described by [149]
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Figure 3.16: Sensitivity of the magnitude of surface temperature rise to thermal parameters as
determined by Eq. (4.3) for the (a) 10 MHz modulated frequency response and (b) steady-state
unmodulated response for a 65 nm Au on a-SiO2 sample. Thermal parameters considered include
in-plane and cross-plane thermal conductivities (kr and kz, respectively) for both the Au and a-
SiO2 layers, volumetric heat capacities (Cv) for both layers, and thermal boundary conductance
across the Au/a-SiO2 interface (GAu/a�SiO2)

Sp =
∂ ln(V )

∂ ln(p)
(3.76)

where V is response function of interest, in this case the magnitude of the in-phase and out-of-phase

temperature response, and p is the parameter of interest. Although we fit for the ratio of in-phase to

out-of-phase signals to improve the signal-to-noise ratio, to theoretically compare the modulated

and steady-state responses, the magnitude is used since the steady-state response has no out-of-

phase component. Figure 3.16(a) shows the sensitivity of the 10 MHz modulated component of

temperature rise, while (b) shows the sensitivity of the steady-state component. In both cases,

higher absolute value of sensitivity indicates greater importance of a parameter to the temperature

response function. Comparison of the two suggests that in the modulated case, the influence of

both in-plane and cross-plane thermal conductivities of the Au layer (kAu,r and kAu,z, respectively)

are negligible to the magnitude of the temperature response. In contrast, the heat capacity (Cv,Au),

and by extension, the thickness of the Au film (dAu), play critical roles in determining this response.

As expected, the radial component to thermal conductivity of a-SiO2 (ka�SiO2,r) has negligible sen-
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sitivity to the temperature rise since the decay length in depth is much smaller than that radially,

such that heat flow is essentially one-dimensional. Because at typical TDTR modulation frequen-

cies, the thermal effusivity dominates the modulated temperature response from the a-SiO2 [150],

the heat capacity (Cv,a�SiO2) and cross-plane thermal conductivity (ka�SiO2,z) are indistinguishable

and share the same sensitivity. Finally, the thermal boundary conductance between Au and a-SiO2

(GAu/a�SiO2) has a significant contribution to the modulated temperature response due to the rel-

atively low measured value of ⇠50 W m�2 K �1, which could be due to poor adhesion between

the substrate and metal film [151, 152]. Taken together, the important parameters determining the

modulated temperature response function are temperature dependent. In particular, Cv,Au is crucial

to accurately determining the modulated temperature response. In analyzing TDTR data with the

thermal model, we fit for ka�SiO2,z and GAu/a�SiO2. However it is essential to input appropriate

estimates for Cv,Au and Cv,a�SiO2 based on steady-state temperature rise calculations to accurately

determine the thermal properties of interest. Thus, we need to understand the sensitivity of the

steady-state temperature response to these parameters.

The steady-state temperature response sensitivity to the same parameters is shown in Fig. 3.16(b).

In contrast to the modulated sensitivities, the heat capacities and thermal boundary conductance are

negligible, whereas the thermal conductivities (apart from kAu,z) dictate the temperature rise. The

sensitivity to kAu,z is negligible due to the limited thickness of the Au layer relative to the thermal

penetration depth of the steady-state temperature profile. Therefore, as previously alluded to, the

length and time scales of the temperature decay dictate the importance of the thermal parameters to

the temperature response at the surface. In TDTR, this means that estimating the temperature rise

governing the thermal parameters involves an appropriate estimation of the steady-state tempera-

ture rise. However, this temperature rise is governed by the thermal conductivity of the material of

interest, which is often the desired property to be measured in TDTR experiments.

To overcome this conflict and demonstrate a practical approach to employ temperature rise

calculations in conjunction with TDTR, we simultaneously estimate the steady-state temperature

rise and fit the a-SiO2 thermal conductivity iteratively via the process described in the inset of

Fig. 3.17. The laser power was measured and the Au absorbance was assumed to be 0.606 [154].
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Figure 3.17: Experimentally determined thermal conductivities of a-SiO2 measured with TDTR
when a 65 nm Au transducer layer is used. Blue squares denote the fitted values with tempera-
tures based on calculations that include the Au transducer layer, while red circles denote the fitted
values using temperature rise calculations without including the Au transducer. In both cases, an
iterative method was used as described by the inset whereby input thermal parameters were chosen
based on the steady-state temperature rise calculated, the TDTR data was used to fit the a-SiO2
thermal conductivity and the Au/a-SiO2 thermal boundary conductance, and all thermal parame-
ters were then used to recalculate the steady-state temperature rise. This process is repeated until
convergence is reached. Literature values are taken from Ref. [153].

Starting with the phase-corrected TDTR ratio data, we (1) input thermal parameters based on a

lookup table of thermal properties vs. temperature, interpolating where necessary. We then (2)

fit the thermal model governing the modulated surface temperature response to the TDTR data

to extract ka�SiO2,z and GAu/a�SiO2. These values, along with the other thermal parameters, are

then used to (3) calculate the steady-state temperature rise based on the full solution to the heat

diffusion equation for a layered sample. We then return to step (1) to repeat the process until a

convergence of temperature is reached. In this case, it took only 5 iterations on average to reach a

convergence. To emphasize the importance of the transducer layer to the steady-state temperature
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rise calculation, we perform this iterative method in two ways: calculating temperature rise with

and without the transducer layer. Note that the fit always includes the transducer layer and only

the steady-state temperature rise calculation is altered.

Figure 3.17 shows the resulting converged temperature rises and fitted thermal conductivities

for both cases of including and not including the transducer when calculating the steady-state tem-

perature rises. Uncertainties correspond to statistical variations between measurements as well as

uncertainty in Au film thickness (measured via mechanical profilometry as 63 - 65 nm). The latter,

because it is coupled to the heat capacity through the thermal mass of the film, such that they share

similar sensitivities, is the largest contribution to the uncertainty. A comparison of the measured

values of thermal conductivities to literature values [153] shows that the measured values, when

performing the appropriate temperature rise calculations, agree well with literature values. In con-

trast, not accounting for the transducer results in an over-prediction of the temperature rise so that

Cv,SiO2 is overestimated; due to the coupling of Cv,a�SiO2 and ka�SiO2,z in this thermal effusivity

regime, ka�SiO2,z is underpredicted, resulting in a disagreement with literature values.

3.6.2 Consideration of Optical Absorption Depth

Recent works have demonstrated the ability to use TDTR/FDTR to measure materials without

the use of a thin-film transducer layer [121, 155]. For this purpose, the effects of optical absorption

and depth-dependent laser excitation must be considered. The solution to this was derived already

in section 3.4.1, where z0 defines the optical penetration depth (OPD) of the absorbing layer.

Using this approach, we calculate the steady-state temperature rise and heat flux profiles for a bulk

amorphous Si (a-Si) sample with OPD of 300 nm [121] for the pump wavelength in FDTR. To

understand the effect of this parameter on the temperature profile, we also vary the OPD from 0

to 15 µm (the pump spot size) and calculate the variation in maximum temperature. The results

are summarized in Fig. 3.18, where the (a) steady-state temperature and (b) heat flux profiles are

shown for a-Si irradiated by a pump laser with r0 = 15 µm and a0A0 = 1 mW. In this case, because

the insulated boundary condition is invoked, there is no depth component to heat flux at the surface,

which results in a shifted distribution of heat flux compared to the surface heat flux considered in
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Figure 3.18: Effect of optical penetration depth on the heating of bulk materials: (a) and (b)
depict the steady-state temperature profile and heat flux for a bulk a-Si film when r0 = 15 µm and
a0A0 = 1 mW and the optical penetration depth is 300 nm. (c) Maximum temperature rise for the
same sample. The normalized temperature, defined as the ratio of maximum temperature with a
finite optical absorption depth to the maximum temperature assuming all optical absorption occurs
at the surface, is also plotted as a function of normalized optical penetration depth, defined as the
ratio of optical penetration depth to pump radius.

the previous sections. However, the temperature is still maximum at the surface; the influence of

optical absorption is to reduce this maximum temperature by distributing the heat flux into the

depth of the sample. A comparison of this temperature distribution to the same surface heating

event (z = 0) reveals little difference between them. The maximum temperature is reduced in the

former case by less than 3%, a clear reduction but not likely to be of consequence to pump-probe

experiments when estimating the steady-state temperature rise.

As with all previous discussion on the steady-state temperature rise, we emphasize the impor-

tance of length scales when generalizing these results. Although the influence of a 300 nm optical

penetration depth has a negligible effect on the steady-state temperature profile of the bulk a-Si

when a 15 µm pump radius is used, as z is increased (or equivalently, r0 is reduced), the role

of z becomes more influential in determining the temperature rise. To quantify this, we show in

Fig. 3.18(c) the difference in maximum temperature when z is varied from 0 to 15 µm. Moreover,

we generalize these results, which for isotropic bulk materials prove to be independent of material

properties and absorbed power when normalizing the temperature rise. We define the normalized

maximum temperature as the ratio of maximum temperature when an optical penetration depth of
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z is used to the maximum temperature when all the laser power is absorbed at the surface, such

that z = 0. The normalized OPD is defined by the ratio z/r0. Thus, we have incorporated the

important length scale of radius to demonstrate that when z/r0 is small, the steady-state tempera-

ture rise can be calculated using a surface heating event without significant loss of accuracy. This

also means that when considering the probe averaged temperature rise, Eq. (3.75) becomes a good

estimation for the temperature rise when the pump and probe spot sizes are similar.

An important final note is that this discussion has been focused on the steady-state, rather

than modulated, temperature rise. The 300 nm OPD proved to negligibly affect the steady-state

temperature rise in the a-Si example above due to the length scale of temperature decay in both

radius and depth being two orders of magnitude greater than this OPD. This is not the case for

a modulated heating event detected in TDTR/FDTR, which typically has a thermal penetration

depth on the order of 10’s to 100’s of nm for low thermal conductivity materials. As a result, the

OPD plays a crucial role in the temperature response of the modulated heating event, as shown by

Wang et al. [155] and Yang et al. [121]. In summary, when the optical penetration depth becomes

on the order of the defining length scales of temperature decay, large deviations in temperature

distributions can exist relative to the surface heating case.

3.7 Model Limitations

There are several limitations to the methodology employed to calculate temperature rise. One

such limitation is that this model is only valid in the diffusive and continuum limit to heat transfer.

Thus, at length scales when Fourier’s law breaks down due to heat carrier length scales exceeding

the experimental volume, this approach will not capture the temperature rise accurately within

that volume [129, 156] without adjusting the thermal properties to become “effective” properties

rather than intrinsic. For such cases, other approaches such as solving the full Boltzmann transport

equation may prove more appropriate. However, in most pump-probe techniques having beam

radii on the order of >1 µm, steady-state heating is typically only a concern for materials with

low thermal conductivities resulting from relatively short mean-free-path vibrations. Therefore,
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for most practical applications, a diffusive heat equation is valid for calculating the steady-state

temperature rise. A similar complication can arise with the use of the exponential decay of heat

flux described in Eq. (3.46). This term implicitly assumes that the heat carriers absorbing the

optical energy thermalize to obtain the same exponential decay in depth. This is not the case for

materials with weak electron-phonon coupling (e.g., Au or Ag) or long carrier relaxation times.

When determining the steady-state temperature rise, we discuss the heating imposed by a pump

beam in pump-probe techniques but have neglected the temperature rise associated with the heating

due to the probe beam. Accounting for the temperature rise associated with the probe beam is

necessary when the absorbed power density of the probe becomes significant compared to the

pump. Doing so is no different than the calculation of temperature rise from the pump, and the

total temperature rise is simply the addition of both pump and probe temperature rises, due to the

property of superposition [96]. However, in typical experimental conditions, the probe contribution

to temperature rise is often negligible due to the high reflectivity at probe wavelengths needed for

thermoreflectance measurements and the low power needed to establish a measurable signal. For

example, the probe power used in the experimental case study was only 3 mW while the pump is

varied from 10 mW to 40 mW. To compound this discrepancy, we used a gold transducer layer

such that the absorbance is about 0.6 for the 400 nm pump but less than 0.03 for the 800 nm probe.

Thus, the absorbed powers are roughly 6 - 24 mW for the pump and only ⇠0.1 mW for the probe.

In this case, it is clear that the probe plays a negligible role compared to the pump. However,

given other transducers such as aluminum or platinum, or different wavelengths used for pump

and probe, the probe may have a larger influence on the steady-state temperature rise.

Finally, there are limitations to the heat diffusion equation when large spatial steady-state tem-

perature gradients exist. Since the thermal properties that determine these gradients are temperature-

dependent, the thermal properties can vary spatially, such that nonlinear spatial temperature deriva-

tive terms arise in the heat diffusion equation. In many cases, such as for amorphous materials

whose thermal conductivities vary negligibly around and above their Debye temperatures, these

nonlinear terms can be ignored such that the heat diffusion model used here is valid for deter-

mining the steady-state temperature rise. When this is not the case, one must account for the
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temperature-dependent properties throughout all spatial gradients, which significantly complicates

the analysis. For such applications, finite difference methods or more rigorous analyses based on

solving the Boltzmann transport equation may be more appropriate.

3.8 Summary

In this chapter, I presented the key concepts and mathematical details governing TDTR and

FDTR. I derived the general set of equations necessary to not only interpret TDTR and FDTR

data, but understand the important length and time scales associated with experiments. One area I

focused heavily on was quantifying the thermal penetration depth. There has been immense interest

spectrally resolving the contribution from individual phonons to thermal conductivity, i.e., mean

free path spectroscopy [117]. Despite the complexity of the experiments, the basis for estimating

the experimental length scale has been a simple analytical expression, Eq. 3.73 [115, 128–132].

Here, I show that under realistic experimental conditions, this simple expression breaks down. In

the same vain, I show that the steady-state temperature rise estimation based on the commonly

used simple expression, Eq. 3.75, similarly breaks down in realistic conditions. Taken together,

this chapter emphasizes the need to accurately model the spatial temperature profile to properly

interpret experimental results.
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Chapter 4

Steady-State Thermoreflectance

In this chapter, I will present a new optical pump-probe technique to measure the thermal con-

ductivity of materials, steady-state thermoreflectance. This technique relies on using a continuous

wave laser to heat a material long enough to induce a steady-state temperature rise. A secondary

continuous wave laser is used to probe the resulting temperature rise. By varying the pump power

and monitoring the resulting temperature rise, Fourier’s law is used to determine a material’s ther-

mal conductivity. Below I present all experimental details and analysis describing the technique.

4.1 Background

Measurement techniques used to characterize the thermal conductivity of materials can be

broadly categorized into steady-state and transient techniques. The former, based on Fourier’s law,

allow for direct measurements of thermal conductivity, whereas the latter rely on the heat diffusion

equation such that volumetric heat capacity and thermal conductivity are coupled through the ther-

mal effusivity or thermal diffusivity, depending on the time and length scales of the measurement.

Some examples of transient techniques include transient hot-wire [157], transient plane source

[158], the 3w method [153], and non-contact pump-probe techniques such as laser flash [159],

time-domain thermoreflectance (TDTR) [90] and frequency-domain thermoreflectance (FDTR)

[101]. The 3w method, TDTR, and FDTR have proven to be robust techniques capable of mea-
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suring thermal properties of both bulk and thin film materials. TDTR and FDTR, as discussed in

detail in the previous chapter, have the advantage of being non-contact techniques requiring a very

small experimental surface area to heat and probe. However, these techniques can be expensive

and difficult to operate, as they generally require detection of the phase shift of a signal that needs

to be separated from instrument electronic phase shifts, along with additional knowledge of the

heat capacity of the material under study.

Steady-state techniques include the absolute technique, comparative cut bar technique, radial

heat flow method, and the parallel thermal conductance technique. Zhao et al. provide an ex-

tensive review of these techniques [160]. While these techniques are straightforward and require

only variations of Fourier’s law to analyze experimental data, they have practical limitations that

make them undesirable compared to the aforementioned transient techniques. For example, all

of these techniques are designed for bulk materials, so they require relatively large experimental

volumes and heater/sensor areas. This makes them highly susceptible to radiative and convective

losses, often necessitating vacuum conditions during measurements [161]. Moreover, techniques

requiring contact between a sensor and sample generally include the undesired artifact of contact

thermal resistance that can obscure the measurement of intrinsic thermal conductivity. Addition-

ally, they can require waiting times up to several hours to reach steady-state temperatures. Finally,

these techniques fundamentally measure the thermal conductance across a bulk specimen, rather

than within a locally probed area as has been shown in FTDR [162, 163] and TDTR [164, 165].

Given the benefits inherent in transient pump-probe techniques and the simplicity of steady-state

techniques, we develop a steady-state thermoreflectance (SSTR) technique based on a continuous

wave (CW) laser pump and probe. We show that SSTR is robust, capable of measuring materials

having thermal conductivities ranging from 1 to > 2000 W m�1K�1, showing excellent agreement

with literature values.

SSTR has several key benefits over conventional steady-state techniques. First, because tran-

sient temperature rise times can be on the order of tens of microseconds, SSTR is capable of high

throughput measurements, limited only by the electronics and sampling periods used. Typical

measurement times in this study vary from about ten seconds to five minutes per scan depend-
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ing on the resolution needed. Second, SSTR is non-contact, requiring no attached thermocouple.

Akin to TDTR and FDTR, SSTR as presented in this work is facilitated with the deposition of a

thin metal film transducer. However, because the time scales associated with SSTR measurements

(i.e., > tens of microseconds) can be much longer than lifetimes of photoexcited carriers that can

also contribute to changes in reflectivity, an additional transducer may not be needed [121, 155].

Third, steady-state techniques generally require large thermal resistances for accurate measure-

ments, so that the minimum sample volume needed scales with the sample’s thermal conductivity.

By contrast, the thermal penetration depth in SSTR is governed solely by the pump radius, since

this radius determines the thermal penetration depth in steady-state laser heating [120]. As such,

the measurement volume of SSTR is independent of the thermal properties of the material under

study; we show this later by measuring 300 µm thick wafers of diamond. Furthermore, because the

thermal length scales are governed by the pump radius, the spatial resolution in SSTR is limited

only by the ability to focus the pump and probe; in our experiments we can obtain pump/probe

1/e2 radii as low as ⇠1 µm. This allows us to probe local thermal conductivities to avoid, for

example, damaged regions of a bulk specimen that could otherwise obscure the intrinsic thermal

conductivity. Additionally, this allows for measurements of moderately thick films ranging from

tens to hundreds of microns without significant influence of any underlying substrate.

Comparing SSTR to transient thermoreflectance techniques, SSTR has a few distinct advan-

tages. First, TDTR and FDTR generally have shallow thermal penetration depths (<1 µm for most

materials), so they are typically mostly sensitive to cross-plane thermal conductivity. By compar-

ison, SSTR is fundamentally sensitive to the determinant of the total thermal conductivity tensor,

analogous to the 3w method [166]. Second, when a thin film transducer is used, generally, the

large thermal penetration depth makes the temperature rise at the sample surface more sensitive to

the thermal properties of the sample rather than the transducer properties or interface resistances.

Third, since there is no time dependence after the transient rise time, the steady-state temperature

profile is solely dependent on thermal conductivity. From a practical point of view, this greatly

simplifies the experiment and analysis.
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4.2 Principles of Operation

Detection of reflectivity (R) changes due to an induced temperature (T ) rise is limited by the

very small relative change in reflectivity of a material with temperature. For typical metals used

as transducers in thermoreflectance experiments, |dR/dT | is on the order of 10�5 or 10�4 K�1

[91–93]. There are two ways by which this limitation can be overcome. Using a periodic heat

source, lock-in amplification (LIA) techniques overcome this limitation though amplification and

electronic filtering, discussed in Chapter 3. Similarly, a periodic waveform analyzer (PWA) with a

boxcar averager can be used with a large enough sampling time to extract a periodic signal. Since

the steady-state signal has no frequency component, we seemingly cannot use these techniques

to measure the |dR/dT | associated with the “DC” temperature rise. Generally, in steady-state

techniques, a constant heat flux is used to induce a transient temperature rise followed by a steady-

state temperature rise. The transient portion of the temperature rise, which can persist for hours in

bulk techniques [160], is ignored and measurements are taken only in the steady-state regime. In

SSTR, obtaining a fast transient temperature rise followed by a long-lived steady-state temperature

rise allows us to cyclically turn the steady-state temperature rise on and off, enabling use of the

aforementioned signal detection schemes.

Thus, the concept of SSTR is to modulate the pump beam with a square wave at a low enough

frequency to enable an “on” state and an “off” state for the steady-state temperature rise to be

reached. By varying the power (µ heat flux) of the pump beam, we can vary the temperature rise

of the “on” state. Measuring the corresponding change in reflectivity (µ temperature), we can

apply Fourier’s law to determine thermal conductivity based on the linear relation between heat

flux and temperature. This concept is fundamentally different from FDTR in that our controlled

variable is pump power and we rely on measuring the magnitude of the reflectance signal, which is

directly proportional to the temperature rise induced by the pump under steady-state temperature

rise conditions. As such, there is no need to separate electronic phase from the overall signal phase,

as is necessary in both TDTR and FDTR.
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(a) (b)

(c)

Figure 4.1: Normalized surface temperature rise (DT/DTSS) vs. time for (a) Si and (b) a-SiO2
for CW laser surface heating with 1/e2 diameters (d0) of 1 µm, 10 µm, and 100 µm. Solid lines
indicate no transducer while dashed lines show the case with an 80 nm Al transducer. (c) DT/DTSS
vs. Fourier number in the case of no transducer. Thermal parameters used in model include those
for a-SiO2 (Cv = 1.66 MJ m�3 K �1, k = 1.4 W m�1 K �1), Si (Cv = 1.60 MJ m�3 K �1, k =
140 W m�1 K �1), and Al (Cv = 2.42 MJ m�3 K �1, k = 130 W m�1 K �1). Thermal boundary
conductance between Al and substrate was modeled to be 200 MW m�2 K �1.

4.3 Theory

4.3.1 Transient Temperature Rise

We now establish the criteria needed to establish a steady-state temperature rise “on” state. To

do this, we solve the heat diffusion equation in the time domain to determine the time needed for

the temperature rise to reach steady-state. Using the radially symmetric heat diffusion equation,

a material at an initial temperature rise of zero degrees at time t = 0 is subjected to a temporally

constant, spatially gaussian heat flux at the sample surface to simulate CW laser heating. A semi-
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infinite boundary condition is applied in all spatial dimensions. The derivation for this solution is

provided in Appendix A. We find that two experimental parameters can be balanced to determine

the operating conditions needed to achieve steady-state: the pump/probe radius and the modulation

frequency of the pump. This can be seen in two common examples used as calibrations in TDTR

and FDTR, silicon (Si, k ⇡ 140 W m�1 K�1) and amorphous silicon dioxide (a-SiO2, k ⇡ 1.4

W m�1 K�1). For simplicity, these thermal conductivities were approximated to be exactly 100⇥

different from one another. Three 1/e2 pump/probe diameters spanning three orders of magnitude

are considered: 1, 10 and 100 µm. Pump and probe sizes are equal in all example cases. Figure 4.1

shows the normalized temperature rise, DT/DTSS, where DTSS = DT (t ! •) is the steady-state

temperature rise, shown for (a) Si and (b) a-SiO2. Since thin metal transducers are typically used

in experiments, we apply the solution both with and without an 80 nm aluminum (Al) layer.

Strictly speaking, the temperature rise asymptotes to the steady state temperature rise, but we

can define a threshold for DT/DTSS based on a desired measurement tolerance. For example if

a ratio of 95% is used, we can select a modulation frequency that has a period longer than the

95% rise time of the temperature rise. For Si, the 95% rise times for a 1/e2 pump diameter of

1, 10, and 100 µm are ⇠10�7, 10�5, and 10�3 seconds, respectively. Similarly, for a-SiO2, the

95% rise time for a pump radius of 1, 10, and 100 µm are ⇠10�5, 10�3, and 10�1 seconds,

respectively. It is instructive to compare Si to a-SiO2, which differ in thermal diffusivity by almost

exactly two orders of magnitude. We see that for the same pump diameter, the rise time of a-SiO2

is two orders of magnitude longer than for Si. Furthermore, for both Si and a-SiO2, increasing

the pump diameter by one order of magnitude increases the rise time by exactly two orders of

magnitude. These two correlations suggest we can use the nondimensional Fourier number, Fo =

at/r2
0, where a is the thermal diffusivity, t is time, and r0 is the pump radius, to generalize these

results for a universal criterion to determine the rise times for any material. Figure. 4.1(c) shows

the relation between DT/DTSS and Fo, which holds true for any material having the previously

defined boundary conditions.

As previously mentioned, thermoreflectance experiments generally require use of a thin metal

transducer. In addition to having significant impact on the steady-state temperature rise itself [167],
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we find that it can have significant impact on the rise time of the transient temperature rise. For

example, for 80 nm Al/ Si, the rise time is lower than it is without the transducer layer for all

laser spot sizes, allowing for higher modulation frequencies to be used to obtain a steady-state

temperature rise. Conversely, the addition of an 80 nm Al layer to a-SiO2 leads to longer 95% rise

times than without the transducer layer. However, in both cases, the degree to which the rise time

differs from the predictable case without this transducer is entirely dependent on the pump spot

size, relative mismatch in thermal properties between the transducer layer and substrate, and, to a

lesser extent, the thermal boundary conductance between the transducer and substrate. In partic-

ular, as laser spot size decreases, the influence of the transducer on the rise time becomes more

substantial. Still, we find that in most cases, the nondimensional relation found in Fig. 4.1(c) is a

useful guide to select the maximum modulation frequency given the pump radius and a rough idea

of the thermal diffusivity of a sample. Of course, in practice, one can simply select a modulation

frequency as low as possible to ensure the steady-state temperature rise is reached; the advantage

of using higher modulation frequencies, if possible, is to reduce 1/ f noise and expedite testing

times.

4.3.2 Quasi Steady-State via a Sine Wave Heat Source

While the theoretical discussion thus far has been based on the idea of inducing an on/off state

of the steady-state temperature rise (i.e., square wave modulation), many lock-in amplifiers use a

pure sinusoid as a reference mixer, such that higher harmonics are not captured in detection. In

this case, the lock-in only captures the magnitude of the probe signal at the fundamental frequency

of the square wave. This does not pose an experimental problem, however, as we can still obtain

a regime of quasi steady-state temperature rise. To illustrate this point, we examine the frequency-

domain solution to the heat equation subjected to CW laser heating with a sinusoidal amplitude

modulation [101]. The normalized temperature rise, DT/DTSS, is shown in Fig. 4.2 for a-SiO2,

crystalline sapphire (Al2O3), Si, and diamond with 80 nm Al transducers. The solutions are shown

for 1/e2 pump and probe diameters of 1 µm, 10 µm, and 100 µm in Fig. 4.2(a), (b), and (c),

respectively. The temperature rise DT is the modulated temperature rise that varies sinusoidally at
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(a)

(b)
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Figure 4.2: Normalized surface temperature rise (DT/DTSS) vs. modulation frequency for CW
laser heating with an amplitude modulated sinusoidal profile. The samples modeled include a-
SiO2 (Cv = 1.66 MJ m�3 K �1, k = 1.4 W m�1 K �1), Al2O3 (Cv = 3.06 MJ m�3 K �1, k = 35 W
m�1 K �1), Si (Cv = 1.60 MJ m�3 K �1, k = 140 W m�1 K �1), and diamond (Cv = 1.78 MJ m�3

K �1, k = 2000 W m�1 K �1), shown for pump and probe 1/e2 diameters of (a) 1 µm, (b) 10 µm,
and (c) 100 µm. Al was modeled to have Cv = 2.42 MJ m�3 K �1 and k = 130 W m�1 K �1, while
Al/substrate thermal boundary conductance was modeled as 200 MW m�2 K �1 in all cases.

the same frequency as the laser heat source, but its magnitude asymptotes to a constant value, that

of the steady-state temperature rise, as the modulation frequency approaches zero. Similar to the

transient temperature rise case discussed previously, we see that smaller laser spot sizes allow for a

quasi steady-state temperature rise to be reached at higher modulation frequencies. We can exploit

this fact by running experiments at higher modulation frequencies and smaller spot sizes to reduce

1/ f noise at low frequencies.
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Figure 4.3: Schematic of the Steady-State Thermoreflectance (SSTR) experiment. PBS: polarizing
beam splitter, l/2, l/4: half- and quarter-wave plates, respectively, 90:10 BS: 90% transmission /
10% reflection beamsplitter, PD: photodetector, BPD: balanced photodetector, ND: neutral density
filter. Inset shows a representative pump waveform vs. time.

4.4 Experimental Details

Our experimental setup, shown in Fig. 4.3, consists of a CW diode probe laser (Coherent Cube),

having a wavelength of 786 nm and output power up to 30 mW, and a CW pump laser (Spectra-

Physics Millenia Vs) with a wavelength of 532 nm and output power up to 5 W. In practice, the

pump power is limited to <200 mW except in the case of the most conductive materials stud-

ied here, where output powers up to 1 W proved sufficient for the pump radii used in this study.

Likewise, the probe output is limited to < 1 mW to avoid any additional heating of the sample.

A mechanical chopper (Thorlabs MC2000B) is used to modulate the pump. Identical experiments

were performed using an electro-optic modulator (Thorlabs EO-AM-NR-C4) with excellent agree-

ment found between the two modulation sources. Ultimately, the chopper is preferred because it

is simple to use, inexpensive, allows for fully on/off square waves, and has a damage threshold far
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exceeding the operating powers of the pump. Internal modulation of a pump laser offers a further

step toward simplicity and cost reduction of the SSTR system. The pump waveform and power are

monitored by a photodetector (Thorlabs DET10A) by picking off 10% of the beam using a 90:10

beamsplitter. Although a power meter is sufficient for this purpose and was used in our original

implementation of SSTR, a photodetector is preferable because it allows us to send the signal to a

second oscillator in the lock-in amplifier to measure the pump power amplitude in the same way

we do the probe, i.e., with LIA or PWA detection. A neutral density (ND) filter is placed before

the pump photodetector to avoid saturation of the detector. The transmitted power is then reflected

by a cold mirror and sent through an objective lens to focus onto the sample.

The probe is split into two paths using a polarizing beam splitter. A half-wave plate is used to

control the power of each path. The transmitted portion is used as a reference while the reflected

portion passes through a quarter-wave plate that is adjusted to allow for maximum transmission of

the back-reflected probe from the sample. The probe is transmitted through the cold mirror and is

focused coaxially with the pump onto the sample using an objective lens. The focused pump and

probe diameters were adjusted with lenses to be equivalent sizes. Using a 20⇥ and 10⇥ objective

lens, the 1/e2 diameters are 11 µm and 20 µm, respectively, as measured via a scanning slit beam

profiler (Thorlabs BP209-VIS). The probe is back-reflected to a balanced photodetector (Thorlabs

PDB410A) along with the path-matched reference beam to minimize common noise in the probe.

The powers of the reference and sample beams going into the photodetector are adjusted to be

equivalent via the half-wave plate to minimize noise. Samples tested in this study include two

types of a-SiO2, a plain glass microscope slide (Fisherbrand) and a 3 mm thick Borosilicate Glass

(BK7) optical window (Thorlabs WG10530); a 1 mm thick quartz wafer (Precision Micro Optics);

two types of Al2O3, a 300 µm thick wafer (UniversityWafer) and a 3 mm thick window (Thorlabs

WG30530); two types of Si, a 300 µm thick wafer (UniversityWafer) and a 3 mm thick window

(Thorlabs WG80530); a 300 µm thick nitrogen-doped, n-type 4H-silicon carbide (4H-SiC) wafer

(MTI Corporation); and a 300 µm thick polycrystalline diamond wafer (Element Six TM200).

When using the 10⇥ objective lens, we typically use a higher order ND filter to further reduce

power going into the pump photodetector. This is done to compensate for the increased power
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needed to heat the sample to similar temperatures to those achieved with the 20⇥ objective. Using

a lock-in amplifier (Zurich Instruments UHFLI) synced to the chopper frequency, the magnitude

(DV ) of the probe signal divided by the DC probe signal (V ) is recorded simultaneously with the

lock-in magnitude of the pump photodetector (DP). DP as determined by the LIA is proportional

to the amplitude of the sinusoidal component of the pump waveform. Likewise, DV corresponds to

only the sinusoidal component of the probe waveform. LIA detection thus allows for modulation

of the pump with an arbitrary periodic waveform (square, sine, triangle, etc.) and with any offset

power to obtain the same relation between the lock-in pump power and lock-in probe magnitude.

The pump power is increased linearly so that a linear relation between DV/V with pump power is

obtained. The slope of this relation, after determining the appropriate proportionality constant, is

used to determine thermal conductivity by comparing it to the expected temperature rise (Eq. 3.45

as calculated for a modulated CW source) per unit power. Alternatively, a PWA with boxcar

averager is used to record both the pump and probe waveforms over several periods of temperature

oscillation by again syncing to the chopper frequency. Using this approach, we can visualize the

sample temperature rise vs. time to determine the steady-state regime of the temperature rise.

Comparing the two detection schemes, the LIA approach allows for faster data acquisition, al-

lows for full automation of both data acquisition and analysis, and is independent of the waveform

used, as only the sinusoidal component is recorded. However, because sinusoidal modulation can

only achieve a quasi steady-state, for accurate determination of low-diffusivity materials, (i) the

modulation frequency must be lower compared with the PWA case or (ii) the thermal model must

include the modulation frequency as an input parameter. The PWA approach, on the other hand,

extracts the total waveform of the probe reflectivity vs. time. As such, the square wave reflectivity

waveform that results from a square wave pump input can be deduced. Furthermore, data analysis

is done by manually choosing the time range in which the “on” and “off” state occur, ensuring we

can pick the true steady-state temperature rise for determining thermal conductivity.
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4.5 Signal Analysis

The probe reflectivity response measured by the photodetector, DV/V , is proportional to the

normalized change in reflectivity, DR/R, which is related to the change in temperature of the sam-

ple surface by the thermoreflectance coefficient b , as described by Eq. (3.1). In general, b is

temperature dependent. For Al, b is 1.14⇥ 10�4 K�1 and varies at a rate of 0.22⇥ 10�4 per

100 K [168] near our probe wavelength of 786 nm. Keeping temperature rises below 50 K en-

sures b varies less than 10%; estimated temperature rises [167] for our experiments are < 20 K.

Using the thermoreflectance coefficient and an additional conversion of DV/V to DR/R, we can

obtain DT . Next, by measuring the power of the pump and the reflectance of the sample at the

pump wavelength, we can in principle calculate the heat flux absorbed by the sample. These two

quantities allow for the determination of thermal conductivity through Fourier’s law applied to a

semi-infinite substrate. Thus, accurate determination of heat flux and temperature would allow

for an absolute technique to directly measure thermal conductivity. Since we measure DV/V and

the pump photodetector response, DP µ pump power, we seemingly have two proportionality con-

stants to consider, one relating DV/V to DT and one relating DP to the heat flux magnitude D|Q|.

We eliminate one of these proportionality constants by determining DV/(V DP), so that

✓
DV

V DP

◆
= g

✓
DT (k)
D|Q|

◆
, (4.1)

where DT/D|Q| is the modeled temperature rise per unit power. Next, we use a calibration with a

known thermal conductivity to determine g ,

g =

✓
DT (kcal)

D|Q|

◆�1

cal

✓
DV

V DP

◆

cal
. (4.2)

The calibration used to determine g is a single-crystal sapphire (Al2O3) wafer, measured to have a

net thermal conductivity (
pkrkz) of 35±2 W m�1 K�1 using both time-domain thermoreflectance

and a hot-disk transient plane source technique (Hot Disk AB - TPS 3500). We determine g by

comparing the measured DV/(V DP) to the DT predicted using the thermal model. We note that g

is different for different objective lenses used because (i) power loss may not be the same within
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the two objectives and (ii) we use a stronger neutral density filter to reduce power detected with

the pump photodetector when moving from the 20⇥ to 10⇥ objective to avoid saturation of the

detector. Additionally, g will differ between the LIA and the PWA approaches.

With g defined by a calibration, measurement of DV/(V DP) for any sample can be related

to the sample’s thermal conductivity by relating it to a thermal model predicting DT (k)/D|Q|.

The thermal conductivity input to the model is adjusted to obtain the best fit to the experimental

data using a global minimization algorithm to search for the smallest absolute difference between

model and data. The fundamental assumption using this approach is that the proportionality con-

stant g , which encompasses the thermoreflectance coefficient and conversion factor of change in

reflectance to change in photodetector voltage, is equivalent between calibration and sample. To

ensure this, we evaporate an 80 nm Al transducer layer on all samples under the same deposition

to ensure the thermoreflectance coefficient is the same from sample to sample. As a general rule,

we adjust the input power of the pump to induce approximately the same magnitude of DV/V for

each sample. This ensures that any nonlinear responses, whether from physical parameters such

as the thermoreflectance coefficient or from the photodetector response, however small, are offset

since they are encompassed in g .

4.5.1 Periodic Waveform Analyzer / Boxcar Averager

We first collect data using the PWA via a digital boxcar averager while modulating the pump

beam with a chopper at 100 Hz. Using two independent oscillators, we simultaneously record the

pump and probe waveforms over a phase space divided into 1024 bins. The reference frequency is

provided by the chopper. The resulting waveforms, which have been converted from phase space

to time, are shown for the pump in Fig. 4.4, while those of the probe are shown in Fig. 4.5. The six

samples shown include (a) an a-SiO2 glass slide, (b) z-cut quartz, (c) Al2O3, (d) Si, (e) 4H-SiC and

(f) diamond. The modulation frequency was kept at 100 Hz in all cases and a 20⇥ objective lens

was used, corresponding to 1/e2 pump/probe diameters of 11 µm. Each waveform was generated

by averaging over 5 minutes of real time data acquisition.

As expected, the pump waveform shows a perfect on/off square wave. Note that the magnitude
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Figure 4.4: Pump waveforms obtained using a periodic waveform analyzer, shown for (a) a-SiO2,
(b) quartz, (c) Al2O3, (d) Si, (e) 4H-SiC, and (f) diamond. The difference between the upper and
lower regimes of the waveform magnitude, DP (proportional to heat flux), is used to determine
thermal conductivity in each case.

is increased when moving to higher thermal conductivity materials to allow for the probe waveform

to reach approximately the same magnitude in each sample. The probe waveforms reveal that for

all samples except a-SiO2, a clear steady-state temperature rise is obtained as indicated by the

near-square waveform. By comparison, a-SiO2 has a relatively long-lived transient temperature

rise, but reaches our steady-state threshold by the end of the waveform. The advantage of PWA

analysis is that the signal difference between “on” and “off” state (DV ) is chosen manually, so that

we can neglect the transient portions of the temperature rise (however small) and only extract the

steady-state regime. This is achieved through a MATLAB script in which we pick the range of

time to extract signal in the “on” state and “off” state and subtract the mean signal of each state.

The difference corresponds to DV . The mean “on” and “off” signals chosen for each case are

displayed as dashed lines in Fig. 4.5. We repeat the same process for the pump waveform, where

the difference between high and low waveform states corresponds to DP. With g defined using

a calibration, this is all the information we need to determine thermal conductivity via a purely
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Figure 4.5: Probe waveforms obtained using a periodic waveform analyzer, shown for (a) a-SiO2,
(b) quartz, (c) Al2O3, (d) Si, (e) 4H-SiC, and (f) diamond. The difference between the upper and
lower dashed lines indicate the DV (proportional to temperature rise) used to determine thermal
conductivity in each case.

steady-state model (i.e., modulation frequency = 0 in the model).

4.5.2 Lock-in Amplifier

Next, we collect data via the LIA. To do so, we use the chopper reference frequency to lock into

the periodic signal produced by the reflected probe. Using an automated program to control the

pump power via serial command, we capture the magnitude of probe lock-in voltage as a function

of 10 powers. Figure 4.6 shows the resulting relationship between DV/V and proportional pump

power (DP) for two objective lenses, 10⇥ and 20⇥. The lock-in time constant used was 400 ms and

each datapoint represents the average over ⇠10 seconds of acquisition. The data shown include

those from 3 to 5 spots on each sample, which is the primary reason for any visible scatter in the

data. Each 10-data point scan takes about 2 to 3 minutes to run; this time is primarily dictated by

the wait time allowed to adjust the pump power. However, in principle, after characterizing the

noise floor, only a single data point is needed to establish a slope, suggesting the data acquisition
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(a) (b)

Figure 4.6: Measured DV/V vs. DP (µ pump power) shown for (a) 10⇥ objective lens (pump and
probe 1/e2 diameters of 20 µm) and (b) 20⇥ objective lens (pump and probe 1/e2 diameters of 11
µm). Measured samples include glass slide (squares), BK7 glass (open squares), quartz (triangles),
sapphire wafer (circles), sapphire window (open circles), silicon wafer (inverted triangles), silicon
window (open inverted triangles), 4H-SiC (pentagons), and diamond (diamonds). Gray lines show
the predicted slopes for materials having thermal conductivities 1, 10, 100, and 1000 W m�1 K�1.
A different neutral density filter was used to filter pump power detected when the objective lens
changed from 10⇥ to 20⇥, so the x-axes are not comparable between (a) and (b).

time is limited only by the time to reach a steady lock-in magnitude.

A linear fit is performed on each dataset to determine the slope, DV/(V DP). From this, the

thermal conductivity can be determined by comparing this slope to the thermal model after dividing

by g . Figure 4.6 shows the expected slopes for a material having thermal conductivity of 1, 10,

100, and 1000 W m�1 K�1. Comparing these lines with our experimental data, we see that our

samples’ slopes fall in line with what is expected for each substrate. For these models, we assumed

an Al transducer thermal conductivity that is descriptive of what we measure via four point probe

resistivity measurements, ⇠100 W m�1 K�1, a constant thermal boundary conductance of 200 MW

m�2 K�1 and modulation frequency of 100 Hz. To determine the impact of these assumptions, we

need to determine sensitivity to our model parameters, described below.
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Figure 4.7: Sensitivity, Sx, to parameter x vs. effective radius, defined as
q

r2
0 + r2

1, where r0 and r1

are the pump and probe radii, respectively, shown for (a) a-SiO2, (b) Al2O3, and (c) diamond. Sx
is defined by Eq. (4.3) and the parameters varied include the sample thermal conductivity, k2; the
transducer in-plane thermal conductivity, kr,1; transducer thickness, d1; and the thermal boundary
conductance, G, between the sample and transducer. k2 is defined as the geometric mean of the
cross- and in-plane thermal conductivities,

pkzkr.

4.5.3 Parameter Sensitivity

We quantify the sensitivity, Sx, of the thermal model to parameter x using a similar approach to

that defined by Yang et al. [162] by varying x plus or minus 10%. Since we measure magnitude

instead of phase, we add an additional division term to allow for fair comparison of sensitivities

between samples. Thus,

Sx =
|DT1.1x(r01)�DT0.9x(r01)|

DTx(r01)
, (4.3)
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Figure 4.8: Thermal conductivity, k vs. thermal boundary conductance, G, between the Al trans-
ducer and (a) silicon, (b) 4H-SiC, and (c) diamond. Two silicon samples were measured, a silicon
wafer and silicon window, to show that the same thermal conductivity is obtained despite a large
disparity in thermal boundary conductance between the two.

where DTx is the temperature rise calculated for input parameter x and r01 =
q

r2
0 + r2

1, where r0

and r1 are the pump and probe radii, respectively. We define sensitivity as a function of r01 to show

that we gain sensitivity to different parameters by utilizing multiple pump/probe diameters. Fig-

ure 4.7 shows the sensitivity as a function of r01 for four parameters, in-plane transducer thermal

conductivity (kr,1), transducer thickness (d1), sample thermal conductivity (k2 ⌘ pkr,2kz,2), and

thermal boundary conductance (G) between the transducer and substrate. The r01 used in our ex-

periments are shown as dashed lines. Three samples are considered: (a) a-SiO2, (b) Al2O3, and (c)

diamond. Amorphous silica and diamond were chosen to display because they represent the lower

and upper extremes of thermal conductivity measured in this study. For Al2O3, sensitivity of the

thermal model is overwhelmingly dictated by k2, demonstrating why Al2O3 is a great calibration

sample to determine g . For a-SiO2, k2 again is the most sensitive parameter to our thermal model

for the r01 used in experiment. However, we see that sensitivity to kr,1 and d1 are still somewhat

significant. These two quantities (and their corresponding uncertainties) were measured via four

point probe resistivity measurements and mechanical profilometry, respectively. Sensitivity to G

(not shown) was not significant at all in this case.

For diamond, we see that for the r01 used in experiment, we are highly sensitive to G. There-

fore, in order to determine diamond’s thermal conductivity, we need an accurate measurement for

G. To obtain this quantity, we exploit the different sensitivities to k2 and G at different r01 values
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Table 4.1: Best fit thermal conductivities for all samples tested using signal analysis by both the
periodic waveform analyzer (PWA) and lock-in amplifier (LIA). For anisotropic materials, e.g.
quartz and 4H-SiC, k ⌘pkrkz.

Sample k (W m�1 K�1)
SSTR (PWA) SSTR (LIA) TDTR literature

a-SiO2 glass slide 1.13 ± 0.08 1.06 ± 0.08 1.37 ± 0.13 1.3, ref. [153]
a-SiO2 BK7 window 1.12 ± 0.08 1.07 ± 0.09 1.18 ± 0.10 1.06, ref. [170]

z-cut Quartz 8.63 ± 0.36 8.63 ± 0.36 8.66 ± 0.61 8.6, ref. [171]
Al2O3 wafer 35.0 ± 1.4 35.2 ± 1.4 34.9 ± 1.6 34, ref. [156]

Al2O3 window 35.1 ± 1.4 34.8 ± 1.4 35.1 ± 1.8 34, ref. [156]
Silicon wafer 133 ± 6 136 ± 7 128 ± 9 133, ref. [156]

Silicon window 135 ± 10 136 ± 11 131 ± 9 133, ref. [156]
4H-SiC 310 ± 23 335 ± 28 324 ± 48 364, ref. [172]

Diamond 1760 ± 390 2010 ± 460 1950 ± 240 1900, ref. [93]

to determine both k2 and G. This procedure is performed for silicon (both the thin wafer and the

thick window), 4H-SiC, and diamond. After determining DV/(V DP) and converting to DT/D|Q|

via g , we adjust G in the thermal model and determine the best fit k2. Repeating this procedure

for two objective lenses results in two distinct curves describing k2 vs G; the intersection of these

curves represents the true values of k2 and G. This approach is similar to that described by Liu et

al. [150] to extract both thermal conductivity and heat capacity in TDTR by using multiple modu-

lation frequencies. The results are shown in Fig. 4.8 for (a) silicon, (b) 4H-SiC, and (c) diamond.

For silicon, the thermal boundary conductances are different between the wafer and the window.

This may be due to extrinsic effects such as roughness, surface finish, or variations in native oxide

thickness [169]. Nonetheless, the thermal conductivity is found to be equivalent in both samples, at

⇠135 W m�1 K�1, in agreement with literature values [156]. Likewise, for 4H-SiC and diamond,

we determine G and k2 based on the intersection of the curves for the 10⇥ and 20⇥ objectives.

Note, this approach can be avoided by running experiments at larger pump/probe spot sizes to be-

come insensitive to G entirely. This approach was not needed for any other samples studied, since

those measurements were not sensitive to thermal boundary conductance.
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Figure 4.9: Measured thermal conductivity vs. literature thermal conductivity. Results are shown
for all samples using both the lock-in amplifier analysis (open circles) and periodic waveform
analysis (open squares) methods. References are listed in Table 4.1.

4.6 Results and Discussion

The measured thermal conductivities for all samples tested are listed in Table 4.1. Results are

shown for SSTR using both the PWA/Boxcar and LIA signal analysis approaches to reveal that

the two approaches agree with one other. To confirm the accuracy of these measurements, Ta-

ble 4.1 also shows the thermal conductivities for the same samples obtained using TDTR, as well

as reported thermal conductivities in the literature. Figure 4.9 shows the measured thermal con-

ductivities vs. literature thermal conductivities spanning over three orders of magnitude. Overall,

we observe excellent agreement between literature values and our measured thermal conductiv-

ities using both SSTR and TDTR. Because SSTR fundamentally measures
pkzkr, for the case

of anisotropic materials, the reported values for k are equivalent to
pkzkr. To obtain kz and kr

independently in TDTR, for 4H-SiC we followed the methodology outlined by Qian et al. [172],

using a relatively large pump diameter of ⇠20 µm and high modulation frequency of 8.4 MHz

to determine kz, followed by a smaller pump diameter of ⇠10 µm and low modulation frequency

of 1.0 MHz to determine kr. Using this approach, we find that kz = 299± 33 W m�1 K�1 and
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kr = 350± 64 W m�1 K�1. Noting that the 4H-SiC sample measured in this study is N-doped

at a level somewhere between 1018 and 1019 cm�3, this measured kz agrees almost perfectly to

that reported by Qian et al. [172], whereas our measured kr is roughly 25% lower than their re-

ported value. This difference could be due to the sample-specific attributes such as doping level

or defects. Nonetheless, the measured k for TDTR agrees well with that of SSTR. For quartz,

the thermal diffusivity is too low to enable sensitivity to kr; instead, we determined k with TDTR

using two samples: z-cut and y-cut quartz. We find that for z-cut quartz, kz = 11.63±0.80 W m�1

K�1, while kz = 6.45± 0.46 W m�1 K�1 for y-cut quartz (equal to kr for z-cut quartz), both in

agreement with values reported by Feser et al. [171]. Thus, k is equal to 8.66±0.61 as determined

by TDTR, in excellent agreement with that determined by SSTR.

One possible discrepancy between SSTR and literature is observed in the case of a-SiO2. Al-

though we reference a commonly accepted literature thermal conductivity for glass of 1.3 W m�1

K�1, we note that reported values range from 1 to 1.4 W m�1 K�1 for glass depending on the

chemistry and density; in our case we measure a negligible difference between our glass micro-

scope slide and our BK7 window. In TDTR, we measure 1.37 W m�1 K�1 for a-SiO2, but because

TDTR requires a known heat capacity to determine thermal conductivity, any discrepancy between

our assumed value for volumetric heat capacity (1.66 MJ m�3 K�1) and the actual value (which

is density-dependent) could explain the difference in values obtained between the two techniques.

To prove this point, TDTR and SSTR provide a similar thermal conductivity for BK7, but BK7 has

a higher volumetric heat capacity than a-SiO2 [170].

Finally, we note that the thermal conductivity of diamond has relatively large uncertainty. This

is in part due to the limited temperature rise achievable in the material, resulting in a relatively low

signal-to noise ratio. However, by taking multiple measurements at the same spot on the sample,

we determine that this alone would only account for ⇠5-10% of the uncertainty. Uncertainty

in thermal boundary conductance adds another significant contribution, as revealed in Fig. 4.8.

Finally, we note that there is significant variation between different spots on the sample; measured

thermal conductivities varied as much as ⇠25% from the mean. This variation could be due to

local thermal conductivity reduction from grain boundaries. Sood et al [165]. showed that local
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thermal conductivities in CVD-grown boron-doped polycrystalline diamond (average grain size of

23 µm) can decrease k by nearly 60% near grain boundaries. Because grain sizes in the diamond

measured in this study range from 10 to 100 µm, we do not expect to see the same extent of

variation observed by Sood et al.

4.7 Sources of Uncertainty

Because SSTR relies on the proportionality constant, g , it is highly important to characterize g

and its uncertainty with accuracy. To determine uncertainty in g , we use a Monte Carlo approach to

randomly vary input parameters to the thermal model based on their corresponding uncertainties.

These parameters include the transducer thickness, d1 (80±3 nm); transducer thermal conductiv-

ity, kr,1 (100 ± 5 W m�1 K�1); substrate thermal conductivity, k2 (for Al2O3, 35 ± 2 W m�1

K�1); transducer / substrate thermal boundary conductance, G (for Al / Al2O3, 250 ± 30 MW m�2

K�1); and effective radius, r01 (assumed 5% uncertainty). Additionally, we include experimental

uncertainty in determining (DV/V DP). For the LIA analysis, this was determined by the standard

deviation of the best fit slope to experimental data, while in the PWA case it was determined by the

standard deviation of the signal in both the “on” and “off” states. Iterating over 105 simulations,

we obtain a standard deviation of < 5% of the mean. The same approach was used to characterize

uncertainties of the samples tested in this study. Assuming the independence of parameters sim-

plifies the uncertainty analysis, so that the uncertainty is D ⇡
q

Âi D2
i , where Di is the uncertainty

in k resulting from uncertainty in parameter i. The reported uncertainties are listed in Table 4.1.

Signal noise comes primarily from 1/ f noise. Using low probe powers, high pump powers,

and longer averaging and/or lock-in times can help to overcome this noise, but ultimately there is

a lower limit to the frequency that can be detected with a sufficient signal-to-noise ratio. We used

a digital oscilloscope to observe, in the frequency domain, the magnitude of DV compared to the

noise floor. For the highest pump powers used in each case, the signal-to-noise ratio was anywhere

from 10 to 100. Lock-in amplification and/or boxcar averaging further facilitated signal extraction.

For uncertainty resulting from model parameters, sensitivity to these parameters dictates the
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Figure 4.10: Sensitivity to thermal parameters of a three-layer model (1: 80 nm transducer / 2: film
/ 3: substrate) vs. layer 2 film thickness. The nine cases considered include (a) k2 = 1, k3 = 1, (b)
k2 = 10, k3 = 1, (c) k2 = 100, k3 = 1, (d) k2 = 1, k3 = 10, (e) k2 = 10, k3 = 10, (f) k2 = 100,
k3 = 10, (g) k2 = 1, k3 = 100, (h) k2 = 10, k3 = 100, and (i) k2 = 100, k3 = 100 W m�1 K�1. In
all cases, the transducer thermal conductivity is set to 100 W m�1 K�1, while the transducer/film
and film/substrate thermal boundary conductances (G1 and G2, respectively) are set to 100 MW
m�2 K�1.

magnitude of their contributions to total uncertainty. For low thermal conductivity materials, trans-

ducer thickness and thermal conductivity can be relatively significant, while for higher thermal

conductivity materials the interface conductance can be significant.

4.8 Thin Film Measurement Sensitivity

While the discussion and experimental results have been focused on the measurement of bulk

substrates, we note that thin film thermal conductivities can be measured under the right conditions.

In Fig. 4.10 we show the relative sensitivities to thermal parameters of a three-layer model (layer

1: 80 nm transducer / layer 2: film / layer 3: substrate) as a function of layer 2 film thickness,

assuming a 10⇥ objective lens is used so that the pump and probe diameters are 20 µm (radii
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are 10 µm). Due to the sensitivity of SSTR measurements being highly dependent on the relative

properties of film and substrate, k2 and k3 are varied in combinations of 1, 10, and 100 W m�1

K�1 for a total of nine cases. Sensitivities are shown for both in-plane (r) and cross-plane (z)

directions, as well as for transducer/film and film/substrate thermal boundary conductances (G1

and G2, respectively).

Quantifying the thickness at which SSTR can measure k2 as the thickness at which sensitivity to

this parameter surpassing k3, we find that highly dissimilar k2 and k3 allow for such measurement

as low as < 100 nm, two orders of magnitude below the measurement characteristic length scale

defined by the pump radius. Interestingly, whereas for bulk materials SSTR maintains the same

sensitivity to kr,2 and kz,2, for thin films this is not the case. For a thermally conductive film on

an insulating substrate, SSTR becomes highly sensitive to kr,2, whereas for a thermally insulating

film on conductive substrate, kz,2 becomes the dominant thermal parameter in the model. At the

other extreme, when film and substrate k are highly similar, sensitivity to k2 does not surpass

k3 until close to 10 µm, i.e., the pump radius. In this case, symmetry in the temperature profile

between the z and r directions is preserved so that sensitivity to k2 and k3 are equivalent, barring

minor influence from G2. Cleary, measurement of thin films is facilitated by strong differences in

film and substrate k . Still, even in the worst-case scenario in which these thermal conductivities

are equal, the critical film thickness that can be measured, as we define it, is about equal to the

pump radius. Consequently, reducing the pump/probe radii via higher objective lenses becomes an

option for improving sensitivity to thin film thermal conductivities.

4.9 Summary

A steady-state thermoreflectance method has been presented for measuring the thermal con-

ductivity of materials. This method relies on square-wave modulation of a continuous wave pump

laser to induce a steady-state temperature rise within a sample that is modulated continuously be-

tween “on” and “off” states. Using both a lock-in amplifier and periodic waveform analyzer with

a boxcar averager, we measure the change in reflectivity of a sample via a continuous wave probe
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(proportional to temperature change) together with the change in power of the pump (proportional

to heat flux). Using SSTR, we measure samples having thermal conductivities ranging from 1 to

>2000 W m�1K�1.
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Chapter 5

Entropy-Stabilized Oxides

One of the goals of this dissertation is to understand the mechanisms that enable crystalline

materials to behave, from a thermal transport perspective, as if they were amorphous. As discussed

in Chapter 2, introducing large disorder into a crystal through alloying is an approach to understand

this phenomena. In this chapter, I will investigate the effect of high configurational disorder on the

thermal properties of crystals by studying a new class of material: entropy-stabilized oxides.

5.1 Motivation

High-entropy alloys (HEAs), consisting of five or more approximately equimolar compositions

of elements [173, 174], have proven to exhibit unique physical properties such as high hardness

[175], thermal stability [176], structural stability [177], as well as corrosion, oxidation, and wear

resistance [178–180]. While microstructure and mechanical properties have been extensively stud-

ied, thermal properties, such as heat capacity and thermal conductivity, have been given far less at-

tention [181–183]. Although the random distribution of atomic configurations in HEAs are appeal-

ing for understanding the role of configurational disorder on thermal transport, insight is limited by

the significant electronic contribution that arises from the metallic nature of most HEAs, which can

obscure insight into the lattice thermal conductivity. When nonmetal constituents comprise a disor-

dered solid solution, the dynamics of thermal transport becomes dominated by phonons. However,
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only recently was the concept of entropy stabilization realized in ceramics [184], allowing for an

ideal platform to study the role of mass and interatomic force disorder beyond what has been previ-

ously accessible. Since the conception of these ceramics, high-entropy oxides have demonstrated

the capability for superionic mobility [185] and thermochemical water splitting [186]. Further-

more, high configurational entropy can be highly beneficial to the development of thermoelectric

properties [187]. Understanding the general implications of extreme configurational entropy on

the lattice thermal conductivity would greatly benefit the design of high-entropy materials for use

in such applications.

To this end, we study the thermal properties of a new class of mixed oxides analogous to their

HEA metallic counterparts, entropy-stabilized oxides (ESOs), characterized by their high configu-

rational entropy that leads to structural and chemical stabilization through a local minimization of

Gibbs free energy [184]. Each ESO forms a single phase, single crystal rocksalt structure having

a fixed oxygen anion sublattice; between each oxygen atom pair sits a cation randomly selected

among the equiprobable distribution of 5 or 6 unique elements. The ESOs (see Table 5.1) include

J14 (MgxNixCuxCoxZnxO, x = 0.2), and five 6-cation oxides made up of the J14 composition plus

an additional cation to include Sc (J30), Sb (J31), Sn (J34), Cr (J35), and Ge (J36). We show that

ESOs possess amorphous-like thermal conductivities that, in contrast to analytical theory, drop by

a factor of two when adding an additional cation species to a 5-cation crystal, regardless of the mass

added. Using extended X-ray absorption fine structure, we isolate the mechanism of this reduc-

tion to atomic level disorder resulting from charge differences among the ions. This local atomic

disorder manifests itself in an observable distortion of the oxygen sublattice while preserving long

range crystallographic order measured with X-ray diffraction. This finding is further corroborated

by molecular dynamics simulations that account for differences among interatomic forces through

electrostatic interactions based on Bader charges taken from density functional theory calculations

[188].
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Figure 5.1: (a) 2q -w X-ray diffraction scan around the (200) MgO substrate peak. Inset shows
J14 crystal structure with red anions representing oxygen and cation cites occupied by a random
distribution of five distinct elements. (b) Schematic for TDTR/FDTR experiment: sample is 80 nm
Aluminum on a ⇠100 nm ESO film grown on an MgO substrate. Laser heating by a modulated
pulsed pump is detected by a probe by locking into the pump modulation frequency; the modu-
lation frequency is varied and the probe is delayed in time relative to the pump, creating a time
and frequency space to which to fit a thermal model. (c) Combined TDTR/FDTR experimental
phase data (f = tan�1(Vout/Vin)) and surface fit for J14 at room temperature (symbols), together
with the best-fit thermal model and resulting normalized residuals (|(fm � fd)/fd|). (d) Contour
of deviation sum as functions of k and Cv for all thin film samples, as determined by the 95%
confidence interval in the normalized residuals. Sample compositions are provided in Table 5.1.
(e) k vs. 6th-cation atomic mass for 6-cation ESOs. For reference, k of J14 is also shown at its
average cation mass.

5.2 Experimental Details

ESO thin films were grown epitaxially on MgO substrates using pulsed laser deposition. Be-

cause the ESOs are pinned in-plane to the MgO substrate, their in-plane lattice parameters match

that of MgO at 4.21 Å, whereas the out-of-plane lattice parameters vary slightly based on compo-

sition. Crystal structures were characterized using X-ray diffraction (XRD). Figure 5.1(a) shows

the 2q -w XRD scan around the (200) MgO substrate peak. Lower (higher) 2q indicates larger

(smaller) out of-plane lattice parameters. Thermal characterization was performed using a com-

bined time- and frequency-domain thermoreflectance technique to simultaneously measure the
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thermal conductivity (k) and volumetric heat capacity (Cv) of the thin-film ESO samples. This

approach is based on the concept of varying the modulation frequency of the heating event to

change the measurement property from thermal effusivity to thermal diffusivity, thereby decou-

pling thermal conductivity from volumetric heat capacity, allowing for a unique measurement of

both quantities [101, 150, 164].

We extend the approach by Wei et al. [164] to incorporate TDTR phase data over a range of

frequencies sufficient for FDTR, so as to combine the benefits of multifrequency TDTR and FDTR

for thermal property measurement. This development provides a robust approach for measuring

both the heat capacity and thermal conductivity of thin films. In brief, by collecting data as a

function of both time and frequency, we use a surface fitting method to minimize the residuals

between a time- and frequency-dependent thermal model with experimental data by varying three

thermal parameters: ESO volumetric heat capacity, ESO thermal conductivity, and Al/ESO ther-

mal boundary conductance (GAl/ESO). The ESO/MgO thermal boundary conductance (GESO/MgO)

can in principle be set as a fitting parameter as well. However, in practice we are generally insen-

sitive to this parameter, such that doing so gives us no additional benefit or physically meaningful

information. Further details on the combined TDTR/FDTR approach and its comparison to the al-

ternative methods to simultaneously measure Cv and k can be found in the supporting information

of Ref. [189]. A schematic of the experiment and the sample geometry is shown in Fig. 5.1(b).

The resulting best-fit surface model and data are shown in Fig. 5.1(c) for J14, along with the nor-

malized residuals, for the phase as a function of delay time and modulation frequency. From this,

we follow the procedure outlined by Wang et al. [51] to determine the 95% confidence interval of

fitted thermal conductivity and heat capacity based on the 2 standard deviation difference from the

minimum normalized residual. Figure 5.1(d) shows the results for J14 and all 6-component ESOs,

where contour lines indicate the combinations of k and Cv corresponding to a 95% confidence

interval.
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Table 5.1: Thermal and physical properties of ESOs at room temperature. Compositions and
measured properties include film thickness (d), thermal conductivity (k), volumetric heat capacity
(Cv), and elastic modulus (E).

Name Composition d (nm) k
� W

mK
�

Cv
� MJ

m3K

�
E (GPa)

J14 MgxNixCuxCoxZnxO, x = 0.2 114 ±2 2.95±0.25 3.01±0.49 152.0±10.6
J30 MgxNixCuxCoxZnxScxO, x = 0.167 149 ±4 1.68±0.13 3.37±0.42 236.7±15.9
J31 MgxNixCuxCoxZnxSbxO, x = 0.167 117 ±6 1.41±0.17 3.29±0.54 158.4±10.9
J34 MgxNixCuxCoxZnxSnxO, x = 0.167 118 ±2 1.44±0.10 3.29±0.44 180.8±17.9
J35 MgxNixCuxCoxZnxCrxO, x = 0.167 109 ±8 1.64±0.24 3.96±0.75 151.0±9.2
J36 MgxNixCuxCoxZnxGexO, x = 0.167 109 ±3 1.60±0.14 3.55±0.48 229.9±21.2

5.3 Results and Discussion

There is a strong reduction in thermal conductivity between J14 and all 6-cation oxides; varia-

tion in k among the latter are within 20% of one another and follow an expected decreasing trend

with heavier average cation mass, as shown in Fig. 5.1(e). Accounting for uncertainties arising

from film thicknesses and thermal properties does not explain this reduction from 5- to 6-cations.

This finding suggests that there is an enhanced level of phonon scattering intrinsic to the 6-cation

oxides compared to J14 that is dictating the observed reduction in thermal conductivity. Further-

more, a 105 nm polycrystalline J14 sample (p-J14) was fabricated on an amorphous SiO2 (a-SiO2)

substrate; grain sizes were on the order of 50-100 nm as determined by atomic force microscopy

(AFM). Grain boundaries typically scatter phonons on the order of the grain size [112, 113], which

would reduce the thermal conductivity of p-J14 relative to single crystal J14. Because the substrate

is a-SiO2 in this case, heat capacity and thermal conductivity cannot be decoupled. However, if

we assume that the heat capacity is that of J14, the thermal conductivity is, within uncertainty,

equal to that of J14. This indicates that phonon scattering at grain boundaries negligibly affects the

thermal conductivity, suggesting that the phonons contributing most strongly to thermal transport

in J14 have mean free paths smaller than this average grain size. Moreover, this result indicates

that even with additional external scattering mechanisms, the thermal conductivity of J14 does not

reduce to those of the 6-cation oxides. To understand the significance of this reduction in thermal

conductivity, we measure a 78 nm amorphous J14 (a-J14) film grown on a-SiO2. Again assuming

the same heat capacity as J14, the thermal conductivity of a-J14 is 1.16±0.16, almost a third that
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of J14, and within 20% of the thermal conductivity of J31. This amorphous thermal conductivity

is typically assumed to be the minimum limit to the intrinsic thermal conductivity of a solid [80].

Reduced crystalline thermal conductivity approaching the amorphous limit is an attractive

property to several applications, including thermoelectric power generation [25] and thermal bar-

rier coatings [37], where crystalline materials allow for the desirable electronic properties and

temperature stability necessary for extreme environments. Such reduction is often achieved via

nanostructuring with defects and/or interfaces, the latter of which resulted in the lowest thermal

conductivity measured in a fully dense solid at 0.05 W m�1 K�1 for WSe2 in the cross-plane di-

rection [103], a 30⇥ reduction over the c-axis thermal conductivity of single-crystal WSe2. For

macroscale applications in which films inevitably become large enough that grains of varying

orientations form, thermal conductivity reduction in one crystallographic direction does not have

significant benefit. Thus, for isotropic crystals, such reduction is typically achieved via increasing

compositional disorder [13], which can lead to mass mismatch, atomic radii mismatch, and local

atomic strain that results in additional phonon scattering. For example, mixed crystals with con-

trolled disorder were shown to have thermal conductivities that approach their minimum limit [80].

Similarly, unary and binary compound superatomic crystals were shown to have amorphous-like

thermal conductivities when orientational disorder is present [190]. On the other hand, complex

crystals such as the cubic I-V-VI2 semiconductor AgSbTe2 have intrinsically glass-like thermal

conductivities [191] attributed to the spontaneous formation of nanoscale domains with different

orderings on the cation sublattice [192].

Regardless of the mechanism, a thermal conductivity reduction generally comes at the expense

of a crystal’s stiffness, as determined by its elastic modulus. This is shown in Fig. 5.2(a), where

thermal conductivity is plotted as a function of elastic modulus for a wide array of isotropic crys-

tals. Whereas metals can maintain a relatively high thermal conductivity due to contribution from

electron transport, phonons are the dominant heat carriers in nonmetals; reduction of elastic modu-

lus is indicative of a reduction in phonon group velocity and energies, resulting in a lowered thermal

conductivity. As shown in Fig. 5.2(a), the regime of simultaneously stiff and insulative crystals is

unpopulated, despite the need in practical applications such as thermal barrier coatings. We show
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Figure 5.2: (a) Thermal conductivity (k) vs. elastic modulus (E) for a wide range of isotropic crys-
tals at room temperature. Materials are grouped into metals (squares) and nonmetals (triangles),
the former having the subset of high-entropy alloys (open squares) and the latter having the subset
of ESOs (circles). (b) Ratio of E to k for the highest-ratio crystals from (a). A table of data and
references can be found in the Supporting Information.

that ESOs, whose elastic moduli are measured with contact resonance atomic force microscopy

(CR-AFM), represent a step towards filling this void. In fact, in Fig. 5.2(b) we quantify the ratio

of elastic modulus to thermal conductivity (E/k) to show that ESOs fall in line with the highest

E/k crystals at room temperature, surpassing prominent thermal barrier coating materials such

as zirconates BaZrO3, and La2Zr2O7 and the most commonly used Y2O3-stabilized ZrO2 (YSZ)

[40]. By comparison, HEAs have elastic moduli falling anywhere from 20 to 180 GPa [193], while

thermal conductivities generally exceed 10 W m�1 K�1 [193]. The general metallic nature of most

HEAs means that they will have relatively large contributions from electrons to thermal conductiv-

ity. However, recent developments in HEAs for use in thermoelectric applications [183, 194] have
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demonstrated that HEAs can have thermal conductivities as low as 0.5 W m�1 K�1 at room tem-

perature [183]. Because E/k (µ 1/Ct , where C is heat capacity and t is phonon scattering time)

is indicative of the phonon scattering rate, the high ratios observed for ESOs demonstrate the use

of entropy stabilization with multiple components to reduce phonon scattering times rather than

velocities, which opens the door to unique combinations of properties, in this case simultaneously

high elastic modulus and near-minimum thermal conductivity.

To better understand this reduction in thermal conductivity from 5- to 6-cations, we measure

the thermal conductivities of J14 and J35 over a temperature range of 78 – 450 K, presented in

Fig. 5.3(a). J14 and J35 have nearly identical average mass, thickness, and sound speed, mak-

ing the two ideal candidates to compare. A similar reduction in thermal conductivity is observed

in J35 compared to J14 at all temperatures tested. Unlike typical crystalline materials’ thermal

conductivity trends with temperature, both J14 and J35 display trends indicative of amorphous

materials, having increasing thermal conductivities with temperature. To put this into perspec-

tive, we measure the thermal conductivity of a-J14 to show this characteristic amorphous thermal

conductivity relation with temperature, revealing that J35 shows similar magnitudes of thermal

conductivity to those of a-J14 at comparable temperatures. Furthermore, we measure 2-cation ox-

ides of Cu0.2Ni0.8O, Zn0.4Mg0.6O, Co0.25Ni0.75O at 230 – 450 K to show the characteristic Umk-

lapp scattering trend (µ 1/T ) expected in crystalline materials and enhanced thermal conductivity

relative to J14/J35. Qualitatively, the addition of cations results in greater deviation from a per-

fect crystal, which reduces thermal conductivity through increased phonon scattering. We model

this phonon scattering to estimate the thermal conductivity as a function of temperature using the

virtual crystal approximation (VCA) [12], based on the kinetic theory model presented in Ch. 2.

Under the VCA, all cations are assumed to have the same mass equal to the average cation

mass such that mass differences in Eq. (2.22) are with respect to this average mass. Additionally,

the differences in stiffness constants and atomic radii are with respect to those average quantities

of all cations. In this case, the B and C used in Eq. (2.18) will take the form of the average B

and C for each oxide constituent. However, we estimate these values based on the average of only

two such components, MgO and NiO, due to the lack of rigorous temperature dependent thermal
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Table 5.2: Model parameters for VCA under a Debye approximation: g is the Grüneisen parameter,
Gf is the strain portion of G, B and C are Umklapp scattering parameters.

No fit Best fit
Sample B (s K�1) C (K) Gf g Gf g

J14 1.081 ⇥10�18 114 0 1.6±0.4 0.496 0
J35 1.081 ⇥10�18 114 0 1.6±0.4 1.39 0

Cu0.2Ni0.8O 1.24 ⇥10�18 81.6 0 1.6±0.4 0.0015 1.43
Zn0.4Mg0.6O 0.92 ⇥10�18 146.3 0 1.6±0.4 0 0.84
Co0.25Ni0.75O 1.24 ⇥10�18 81.6 0 1.6±0.4 0.11 1.34

conductivity data for single crystal forms of the other constituents. Nonetheless, we find that

this approximation B and C is relatively unimportant because the other scattering terms dominate

the total scattering time of the system. We use the VCA with the relaxation time described by

Eq. (2.24) to calculate the models. We begin with no fitting parameters, ignoring Gf in Eq 2.22

and assuming the Grüneisen parameter is that of MgO. Uncertainty in the VCA is primarily from

uncertainty in this Grüneisen parameter controlling the normal scattering rate, which we vary from

1.2 to 2.0 based on the constituent oxide values. We then fit for Gf and g . All model parameters

are listed in Table 5.2.

Assessing the VCA as a predictive model, Fig. 5.3 shows that it accurately describes the ther-

mal conductivity relation with temperature for both (b) Cu0.2Ni0.8O and (c) Zn0.4Mg0.6O when

considering only mass disorder as the phonon-defect scattering process. The VCA, while captur-

ing the Umklapp scattering temperature trend observed experimentally, does not accurately predict

the magnitude of thermal conductivity for (d) Co0.25Ni0.75O, owing to the nearly identical mass

of Co and Ni, suggesting the need to include additional phonon scattering due to variations in the

interatomic force constants (IFCs). For the purposes of the VCA analytical model, we treat the

IFC scattering rate coefficient and the Grüneisen parameter, which affects normal scattering rates,

as fitting parameters. With these adjustable parameters, the VCA can accurately capture the mea-

sured thermal conductivity, as depicted in Fig. 5.3(d). Addition of these fitting terms proves to

make a negligible difference for (b) Cu0.2Ni0.8O and (c) Zn0.4Mg0.6O. Overall, the VCA captures

the thermal conductivity of these 2-cation oxides with reasonable agreement to experiment.

When applied to 5- and 6-component ESOs, the VCA lacks predictive capability in both mag-
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Figure 5.3: (a) Thermal conductivity vs. temperature. Purple and gray lines depict VCA models
without fitting parameters for Cu0.2Ni0.8O and Zn0.4Mg0.6O, while maroon line is the minimum
thermal conductivity model for J14 (kmin); shaded regions indicate uncertainties in the model.
Thermal conductivity data is shown together with VCA models with and without adjustable pa-
rameters for (b) Cu0.2Ni0.8O, (c) Zn0.4Mg0.6O, (d) Co0.25Ni0.75O, (e) J14 (f) J35, and (g) a-J14.

nitude and temperature trend; this is shown in Fig. 5.3(e) and (f) for J14 and J35, respectively.

In fact, the VCA predicts that J14 and J35 should have higher thermal conductivities than both

Zn0.4Mg0.6O and Co0.25Ni0.75O due their virtual crystal’s average mass having a smaller weighted

difference with constituent masses than do the 2-cation oxides. Indeed, a saturation of phonon scat-

tering from mass disorder limits the thermal conductivity reduction achievable with an increasing

number of components [195]. A similar argument can be made regarding additional terms describ-

ing disorder scattering in the VCA, which are likewise defined by the difference between average

and constituent properties. While fitting parameters allow for better agreement between the VCA

and experimental thermal conductivities, no combination of Grüneisen parameter and IFC scatter-

ing rate can capture the amorphous-like temperature trend. However, this amorphous-like trend

has been observed in a variety of complex crystalline systems [13]. In such cases, the minimum

thermal conductivity (kmin) model [80] that was defined in Eq (2.30) can be invoked to lend insight

into experimental findings. We show in Fig. 5.3(g) that kmin, as defined for J14 based on sound

speed derived from CR-AFM, agrees well with experimental thermal conductivities for a-J14 and
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reasonably captures J35’s thermal conductivity.

That the VCA fails to capture the trend in thermal conductivity of J14 and J35 may be inter-

preted by recent developments by Seyf et al. [75], who hypothesize that non-propagating modes

(diffusons) can comprise the majority of vibrational modes contributing to thermal conductivity

when disorder becomes large. This manifests itself in amorphous-like thermal conductivity trends

with temperature. Moreover, we do not observe any statistically significant size effects in thermal

conductivity for the samples tested here (see supporting information of Ref. [167]), further sup-

porting the idea that either diffusons or short mean-free-path phonons/propagons dominate thermal

transport in these systems. An alternative interpretation, however, is that if the VCA is valid, the

temperature-independent Rayleigh scattering may be large enough to overwhelm Umklapp scatter-

ing. Indeed, if we remove Umklapp scattering from the VCA model, we can reasonably emulate

the thermal conductivity as a function of temperature, suggesting that Rayleigh scattering is the

dominant phonon scattering mechanism dictating thermal conductivity. Finally, although strong

anharmonic phonon scattering has been shown to arise due to large mass disorder [76], the thermal

expansion coefficient for the ESOs are measured via temperature-dependent XRD to be ⇠1.2 –

1.4⇥10�5/�C, in agreement with constituent oxides MgO [196] and NiO [62], suggesting anhar-

monic scattering is not abnormally strong in the ESOs. Therefore, the temperature-independent

nature of the mechanism causing reduction in thermal conductivity in ESOs, in particular that

driving down 5- to 6-cation thermal conductivities, suggests strong Rayleigh scattering resulting

from IFC disorder. The best-fit VCA models reveal that IFC disorder-induced scattering must be

⇠2.8⇥ higher in J35 than in J14 to account for the difference in thermal conductivities between the

two. We emphasize that J14 and J35 have approximately the same average mass. Additionally, we

systematically increase mass disorder among 6-component oxides via increasing 6th-cation mass

(Fig. 5.1(e)) to conclude that while this increase leads to a reduction in thermal conductivity, the

variation is less than 20%, far from the level of reduction needed to explain the difference from

that of J14. Therefore, we hypothesize that there is a strong IFC disorder induced by local ionic

charge disorder that is driving the enhanced reduction in thermal conductivity. Such a mechanism

should be observable via differences in the local structure within the unit cell of J14 and J35.
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Table 5.3: Resulting parameter values from EXAFS analysis. All uncertainties are propagated
though Artemis. S2

0 is the amplitude reduction factor, E0 is the inner potential energy shift, R is the
half scattering path distance, and s2 is the EXAFS Debye-Waller factor.

Parameter J14 J35

S2
0 1.0 0.85

E0 3.0 ± 1.0 2.0 ± 1.0
R 2.10 ± 0.02 1.96 ± 0.08
s2 0.0073 ± 0.0005 0.006 ± 0.002
R 2.15 ± 0.04 1.93 ± 0.04
s2 0.0073 ± 0.0005 0.006 ± 0.002
R 3.00 ± 0.01 2.86 ± 0.02
s2 0.0073 ± 0.0005 0.006 ± 0.002
R - 2.97 ± 0.02
s2 - 0.006 ± 0.002

To test this hypothesis, we use extended X-ray absorption fine structure (EXAFS) [197–200]

to observe changes in the local coordination environment about Co absorbers in J14 and J35.

EXAFS spectra were collected at beamline 10-BM-B at the Advanced Photon Source, Argonne

National Laboratory (Lemont, IL). The Co K-edge was measured in fluorescence mode using a 4-

element Vortex detector, elevated 30� above the sample. Measurement parameters varied by region

of interest, determined by signal at higher k values up to ⇠12 Å, as described elsewhere [201].

Individual scattering paths from Co absorbers are generated in J14 and J35 using FEFF6 [202],

and fit to c(R) using Artemis [203]. All EXAFS related uncertainty values were generated through

the least squares output from fitting results. Quantitatively, we obtain local structural information

of the first and second nearest neighbors by fitting a theoretical model to the uncorrected c(R)

between ⇠1-3.1 Å using a Kaiser-Bessel window, including all scattering path lengths that fall

within this range. The structural model used for fits is based on information obtained though

X-ray diffraction, shown in Fig. 5.1(a), exhibiting a single phase, tetragonally strained rocksalt

structure pinned in-plane to the MgO substrate. Each fit generally contains four fitting parameters:

amplitude reduction factor S2
0, inner potential energy shift E0, half scattering path distance R, and

EXAFS Debye-Waller factor s2. The resulting best-fit values for which are listed in Table 5.3.

While XRD revealed crystallographic order, EXAFS allows for an atomic-level probe of the

local crystal structure needed for determination of any observable quantity that would reveal such
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(b)(a)

Figure 5.4: Extended X-ray absorption fine structure data and models about cobalt for (a) J14 and
(b) J35. Model and best fit model are shown for the magnitude (top) and imaginary portion of the
real space function c(R) as a function of radius away from the cobalt absorber (R).

IFC disorder. Figure 5.4 shows fits to the phase-uncorrected, self-absorption corrected magnitude

and imaginary part of the real space function c(R) for (a) J14 and (b) J35, obtained by taking

the Fourier transform of the EXAFS spectra, k2c(k), using a Keiser-Bessel window in the range

of 3.75 - 10 Å�1. Each c(R) is consistent with a typical metal-oxide system, where the first

and second peaks correspond to scattering between the absorber and atoms in the first and second

coordination shells, respectively. Figure 5.5 illustrates the modified unit cell for both (a) J14 and (b)

J35 compositions extracted by EXAFS. For J14, we find an expected distortion of the Co octahedra

that coincides with the observed lattice parameters of the tetragonal unit cell, a = 4.21 Å and

c = 4.29 Å. By the second coordination shell, or absorber-metal scattering paths, we find that the

half-path length agrees with observed lattice parameters within less than 1%. The addition of a

6th component, as is the case in J35, appears to dramatically change the absorber octahedra such

that a geometric extension no longer aligns to the lattice parameters. J35 exhibits a tetragonally



CHAPTER 5. ENTROPY-STABILIZED OXIDES 124

i
ii

iii

i
ii

iii

a) b)

c) d)(c) (d)

(a) (b)

Figure 5.5: Illustration depicting local structural changes about the cobalt species in (a) J14 and
(b) J35. A comparison of the changes as a result of adding the 6th cation can be viewed by unit
cell cross section along the (200) plane, as shown in (c) and (d) for J14 and J35 respectively. The
lowercase roman numerals mark the coordination shell radius for i. nearest neighbor anion, ii. next
nearest neighbor anion, and iii. nearest neighbor cation. In both cases, the nearest neighbor cation
shell radius corresponds to one-half the face diagonal of the unit cell parameters, as determined
through XRD.

compressed unit cell, with a = 4.21 Å and c = 4.08 Å. Half scattering path lengths between the Co

absorber and the six nearest neighboring oxygen atoms suggest a highly compressed octahedra with

4 planar oxygens at 1.93 Å and 2 axial oxygens at 1.96 Å. Again, comparing the half scattering

path length of the next nearest neighbors agrees with observed lattice parameters to within 1%.

These EXAFS results largely align with our hypothesis from the thermal measurements in that a

large strain is present in the 6-component ESOs such that the oxygen atoms are displaced from

their ideal coordination positions. Such strong oxygen sublattice distortion is the indicator that

IFC disorder is greatly enhanced in J35 relative to J14. This strong IFC disorder is promoted by

charge compensation among cations to preserve charge neutrality when a 6th cation is added [204].

The attribution of thermal conductivity reduction in ESOs to IFC disorder is further supported

by molecular dynamics simulations in which IFC disorder is modeled by electrostatic point charges

in the interatomic potential based on Bader charges from density functional theory calculations

[188]. These simulations reveal that accounting for differences in interatomic forces through ad-
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justment of average properties, analogous to the VCA, cannot capture magnitude or trend in ther-

mal conductivity, whereas integration of randomly distributed mass and charge disorder accurately

captures the reduction in thermal conductivity observed between J14 and 6-cation oxides, reducing

the thermal conductivity by a factor of almost two, in agreement with experiment. Moreover, in

these simulations, mass and charge disorder are decoupled to show that the latter is responsible for

the strong reduction in thermal conductivity. Taken together, the experiment and simulation reveal

that ESOs can possess a uniquely low thermal conductivity while maintaining a relatively high

elastic modulus, made possible through highly disordered interatomic forces resulting from charge

disorder among ionic bonds. These results provide an example of the broader aspect of entropy

stabilization as a means to create materials with unique thermophysical properties that could be

highly beneficial to thermoelectric and thermal barrier coating applications.

5.4 Summary

In this chapter, we studied the role of increasing compositional disorder on the thermal con-

ductivity of crystalline oxide thin films. From a thermal transport perspective, large differences

between elemental properties such as mass and interatomic force can reduce the rate at which

phonons carry heat and thus reduce the thermal conductivity. Measuring the structural, mechani-

cal, and thermal properties of single-crystal ESOs, we showed that local ionic charge disorder can

effectively reduce thermal conductivity without compromising mechanical stiffness. These ma-

terials demonstrate similar thermal conductivities to their amorphous counterparts, in agreement

with the theoretical minimum limit, resulting in this class of material possessing the highest ratio

of elastic modulus to thermal conductivity of any isotropic crystal. Towards the goal of this dis-

sertation, we now understand that the mechanism dictating the reduction of thermal conductivity

in highly configurationally disordered oxides is the local charge disorder. This charge disorder is

strong enough to induce an observable structural distortion of the oxygen sublattice. In this respect,

configurational disorder and structural disorder are coupled and the distinction between the two,

from a phonon scattering perspective, becomes ambiguous.
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Chapter 6

High-Entropy Ceramics

In the previous chapter, the effects of increasing configurational disorder on thermal conductiv-

ity were studied using thin-film entropy-stabilized oxides. These single-crystal, epitaxially grown

films were ideal for isolating the effects of large configurational disorder on phonon scattering to re-

duce thermal conductivity. Many applications where high-entropy materials are of interest require

bulk samples having thicknesses on the order of tens of microns to meters. In bulk material synthe-

sis, it is far more difficult to obtain the same level of control over unwanted defect formation. As a

result, the microstructure of these bulk materials can have features that make interpretation of ther-

mal conductivity more challenging; these include multiple phases, polycrystallinity, and porosity,

to name just a few. Additionally, while oxides were studied in the previous chapter, the application

space for high-entropy ceramics motivates the use of additional base sublattice elements, namely

borides, carbides, and silicides. Therefore, in this chapter, I will experimentally study the thermal

conductivity of high-entropy oxides, carbides, borides, and silicides to understand the combined

effects of configurational disorder and microstructure on the thermal conductivity in these bulk

materials.
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6.1 Motivation

In aerospace applications operating at very high temperatures (> 2000 �C), such as hypersonic

flight or rocket propulsion systems, there is a critical need for the development of materials which

can survive such extreme temperatures. To this end, ultra-high temperature ceramics (UHTCs)

have proven to be at the forefront of research [205, 206], as they are of interest to thermal protection

systems, coatings, and heating elements. While early development of UHTCs were focused on SiC

and Si3N4, currently there is a strong interest in transition metal diborides such as hafnium diboride

(HfB2) and zirconium diboride (ZrB2) as well as carbides such as hafnium carbide (HfC), tantalum

carbide (TaC), and alloys thereof; in fact, an alloy of HfC and TaC was recently predicted by ab

initio molecular dynamics simulations to possess the highest melting point of any material [207].

While melting temperature is a significant metric used to determine a materials effectiveness

as a UHTC, in real engineering applications failure typically occurs from other means such as oxi-

dation [208], thermal shock [205], or other thermomechanical or thermochemical-based processes

[209]. Thus, UHTCs are generally desired to possess a high oxidation resistance, high thermal

shock resistance, high hardness and elastic modulus, and high thermal conductivity. A high ther-

mal conductivity can be especially important to distribute heat effectively away from a high load

heat source, such as wing leading edges and nosetips. On the other hand, low thermal conductivity

can be desired for other applications such as thermal barrier coatings to protect essential device

components by maintaining a strong temperature difference within the coating when a heat source

is present [37]. Thus, understanding thermal conductivity in UHTCs will greatly benefit the ad-

vance of these materials for engineering applications. To this point, most research efforts have

been limited to binary diborides and carbides such as the ones previously discussed. However,

as detailed in Chapter 5, great advances in physical properties of metals ensued with the advent

of high-entropy alloys. In the nascent field of high-entropy ceramics, there is a critical need to

characterize and understand physical properties such as thermal conductivity. Thus, the goal of

this chapter is to experimentally measure the thermal conductivity of bulk high-entropy ceramics

containing up to five metal components in order to understand how high-entropy ceramics differ
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from constituent binary ceramics and how microstructure plays a role. To do so, the sample space

studied includes high-entropy fluorite oxides, high-entropy carbides, and high-entropy borides, and

high-entropy silicides.

6.2 High-Entropy Fluorite Oxides

The fabrication of entropy-stabilized oxides was the first demonstration of extending the con-

cept of high-entropy alloys to ceramics with ionic bonds [184]. These and similar oxides have

been shown to possess unique material properties to include superionic mobility [185], enhanced

dielectric constants [210], and capability for thermochemical water splitting [186]. As a result,

there is tremendous interest in developing new high-entropy oxides to explore the capabilities of

their physical properties. Current developments include single-phase high-entropy perovskite ox-

ides [211] and multicomponent rare earth oxides [212].

In this section, we study a new class of such oxides, high-entropy fluorite oxides (HEFOs).

Fluorite oxides are of interest because of their use as solid ionic conductors [213], high tempera-

ture barrier coatings [214], and solid electrolyte materials for solid oxide fuel cells [215]. In all

such applications, the thermal conductivity is an important factor as the device’s operating tem-

perature, often dictated by the oxide layer’s properties, can significantly affect performance. The

most widely used fluorite oxides (ZrO2, HfO2 and CeO2) generally possess high oxygen conduc-

tivities, low thermal conductivities, high hardnesses, and high melting temperatures. Note that this

low thermal conductivity in rare-earth oxides is in contrast to that observed for typical constituent

oxides of the ESOs studied in the previous chapter. For example, monoclinic ZrO2 has a room

temperature k of about 5 W m�1 K�1 [33], whereas MgO exceeds 50 W m�1 K�1 [73]. These in-

trinsically low thermal conductivities make rare-earth oxides exceptional candidates for insulating

applications such as thermal barrier coatings. Given the strong reduction in thermal conductivity

observed in ESOs compared to constituent oxides, the use of heavy rare earth metals used in the

development of high-entropy fluorite oxides motivates the study of thermal conductivity in these

systems.
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Table 6.1: Thermal conductivity (k) and hardness of HEFOs at room temperature. Thermal con-
ductivity was measured using TDTR, and hardness was measured in Ref. [216] using a Vickers
diamond indenter.

Name Composition k
� W

mK
�

Hardness (GPa)

HEFO1 (Hf0.25Zr0.25Ce0.25Y0.25)O2�d 1.74 ± 0.15 13.6 ± 0.5
HEFO4A (Hf0.25Zr0.25Ce0.25)(Y0.125Yb0.125)O2�d 1.55 ± 0.20 12.7 ± 0.7
HEFO7B (Hf0.2Zr0.2Ce0.2)(Y0.2Gd0.2)O2�d 1.61 ± 0.13 13.1 ± 0.5
HEFO8A (Hf0.25Zr0.25Ce0.25)(Yb0.125Gd0.125)O2�d 1.81 ± 0.14 12.6 ± 0.5
HEFO8B (Hf0.2Zr0.2Ce0.2)(Yb0.2Gd0.2)O2�d 1.62 ± 0.13 12.3 ± 0.7

8YSZ 8 mol% Y2O3 Fully Stabilized ZrO2 2.02 ± 0.17 13.2 ± 0.4

The samples studied in this section include five single-phase HEFOs as well as 8YSZ (8 mol%

Y2O3 Fully Stabilized ZrO2) for comparison. The compositions of these HEFOs are listed in

Table 6.1; they include the elements Hf, Zr, Ce, Y, Yb, and Gd in various combinations and com-

positions. Although other HEFOs were synthesized and detailed in Ref. [216], the five considered

here were all single-phase, synthesized at the same time, and tested at the same time, making them

the best to compare as part of a single controlled study.

Thermal conductivities were measured using TDTR. To do so, a ⇠90 nm Al film (measured

using picosecond acoustics) was thermally evaporated onto each sample to act as a transducer to

convert the optical energy to thermal energy. Using TDTR, the pump was modulated at a frequency

of 9.8 MHz. The pump and probe beams were focused with a 5⇥ objective lens to 35 µm and 15

µm 1/e2 diameters, respectively. Since in the previous chapter, we found that ESOs had heat

capacities that generally agreed with the rule of mixtures, the heat capacity was assumed in this

case to be 3 MJ m�3 K�1; thus, the fitting parameters include only the HEFO thermal conductivity

and Al/HEFO thermal boundary conductance. The ratio of in-phase to out-of-phase data was used

to fit for these parameters.

Figure 6.1(a) shows the TDTR ratio (-X/Y) data obtained for all samples. Although the fitting

time window was from 300 to 5500 ps, Fig. 6.1(a) shows the data down to 10 ps to display the

picosecond acoustic echoes used to determine the Al film thickness. The best-fit thermal conduc-

tivities are shown in Fig. 6.1(b), and are listed in Table 6.1. For 8YSZ, k was measured to be 2.02

± 0.17 W m�1 K�1, which agrees well with literature for fully-dense, polycrystalline 8YSZ [39].
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(a) (b)

Figure 6.1: (a) TDTR ratio (-X/Y) data taken for five HEFO samples and 8YSZ. (b) Thermal
conductivities determined from TDTR.

This low thermal conductivity of 8YSZ is a large reason for its ubiquitous use as a thermal barrier

coating. In general, k is dependent on extrinsic properties such as porosity, doping concentration,

and microstructure variation resulting from differences sample preparation. Thus, the agreement

between literature and measured values for 8YSZ, together with the fact that HEFO and 8YSZ

samples were fabricated in the same way, allows for a fair comparison of thermal conductivities

between all samples.

Comparing the measured k of HEFO samples to 8YSZ, we observe a small reduction for all

HEFOs, with HEFO4A having a 23% lower k . Similar to the results observed in ESOs, the effects

of having 5 components in the oxide reduces the thermal conductivity. As a note, Vickers hard-

ness measurements were performed on all single-phase high-entropy oxides and 8YSZ (results are

shown in Table 6.1) to reveal that there is generally no significant difference between samples.

While hardness is not directly related to intrinsic bond strength as was the case with the elastic

modulus measured for the ESOs, hardness is still generally indicative of elastic modulus and thus

phonon group velocity. Therefore, given the similarity in heat capacities, any differences in ther-

mal conductivity can be attributed to differences in phonon scattering times. That said, there is

little variation in k between samples. Even HEFO1, which has only four metal components, does
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not show a significant difference in thermal conductivity compared to the others having five com-

ponents. This suggests that the saturation of reduction, which was observed in ESO samples only

when six metal components were introduced, is reached with fewer components in this case. This

could be due to the heavier atomic masses and already intrinsically lower thermal conductivities

of constituent oxides. Taken as a whole, the concept of high-entropy engineering shows promise

for fabricating materials with low thermal conductivities; however, there is a lower limit to this

reduction. As is typical in engineering YSZ for thermal insulation applications, introduction of

porosity can provide an additional tool to reduce thermal conductivity on a macro scale.

6.3 High-Entropy Carbides

The next class of high-entropy ceramic studied is the high-entropy carbide (HEC). Transition-

metal carbides are of major interest to UHTC applications because of their potential for extremely

high melting temperatures that exceed those of the current state-of-the art refractory borides [205].

For example, tantalum carbide and hafnium carbide have two of the highest melting temperatures

of any known materials at 3980 �C and 3928 �C, respectively [205]. These carbides also possess

high hardnesses and elastic moduli that are favorable to UHTC applications. The primary issue

with carbides is that they are highly susceptible to oxidation [205]. As high-entropy alloys have

shown, fabrication of multi-component materials with high-entropy can lead to enhanced prop-

erties to include resistance to corrosion, oxidation, and wear at elevated temperatures [178–180].

However, from a thermal conductivity perspective, as revealed by the previously studied oxides,

the large variations in masses and interatomic forces resulting from the lattice containing multiple

components can result in increased phonon scattering to reduce thermal conductivity. In contrast to

oxides, however, carbides are electrically conductive, meaning they can also have a significant elec-

tronic contribution to thermal conductivity. For instance, in near-stoichiometric single crystal TiC,

electrons can comprise 25% of the total thermal conductivity [217]. Therefore, in this subsection,

we will study the thermal conductivity of a series HECs to determine how thermal conductivity is

affected by valence electron concentration to reveal the importance of the electronic contribution
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Table 6.2: Thermal properties of HECs at room temperature. The thermal conductivity (k) for
each composition was measured with SSTR using the both the LIA and PWA, while volumetric
heat capacity (Cv) was determined using TDTR.

Name Composition k
� W

mK
�
, LIA k

� W
mK
�
, PWA Cv

� MJ
m3K

�
, TDTR

HEC1 Hf0.2Nb0.2Ta0.2Ti0.2V0.2C 9.16±0.45 9.07±0.40 2.76±0.25
HEC2 Hf0.2Nb0.2Ta0.2Ti0.2W0.2C 8.78±0.43 8.80±0.39 2.71±0.29
HEC3 Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2C 13.6±0.6 13.6±0.6 2.99±0.28
HEC4 Nb0.2Ta0.2Ti0.2V0.2W0.2C 8.70±0.43 8.64±0.39 3.15±0.28
HEC5 Hf0.2Ta0.2Ti0.2W0.2Zr0.2C 9.81±0.49 9.57±0.42 2.85±0.26
HEC6 V0.2Nb0.2Ta0.2Mo0.2W0.2C 8.26±0.42 8.19±0.37 3.16±0.28
TiC TiC 30.4±1.3 29.8±1.3 2.70±0.23
TaC TaC 36.2±1.5 36.3±1.4 2.85±0.25
HfC HfC 20.1±0.9 20.1±0.8 2.42±0.21

to thermal conductivity.

The samples studied include six HECs comprised of nominally 50 mol % carbon and a 50

mol % mixture of five distinct transition metal elements with equal composition. HECs possess a

single-phase, rocksalt crystal structure comprised of a fixed carbon sublattice and cation sublattice

containing equimolar, randomly distributed metal elements. For comparison, we also study three

binary carbides: TaC, TiC, and HfC. The names and compositions for all samples are listed in

Table 6.2. Details on fabrication and characterization of these samples can be found in Refs. [218]

and [219]. In brief, samples were fabricated using high energy ball milling in argon atmosphere

by mixing powders of each of the individual carbide compounds (TiC, ZrC, HfC, VC0.88, NbC,

TaC, Mo2C, W2C). The milled powders were consolidated in batches via spark plasma sintering at

2473 K under a uniaxial load of 30 MPa in vacuum environment.

To measure the thermal conductivity, we use two techniques: TDTR and SSTR. When mea-

suring k using TDTR, the heat capacity is an input parameter to the thermal model used to fit to

experimental data. Just as in Chapter 5, we do not know the heat capacities of these new materials.

While we can estimate this quantity using the rule of mixtures, a more rigorous approach would

involve measuring it independently. Unlike in the thin film case of ESOs, we cannot use a multi-

frequency TDTR approach to determine both Cv and k simultaneously due to the sensitivity of the

two being coupled within the experimental frequency range of our TDTR capabilities [150]. This

motivates the use of SSTR, which is insensitive to heat capacity. Using SSTR, we measure k for
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Figure 6.2: (a) SSTR data taken for six HEC samples, TaC, TiC, HfC, Sapphire (Al2O3) and z-cut
Quartz. (b) Thermal conductivities determined from SSTR. (c) TDTR ratio data (-X/Y) vs. time
for six HEC samples, TaC, TiC, and HfC. (d) Volumetric heat capacities determined from TDTR.

HEC samples; using TDTR, we can then determine Cv independently.

SSTR measurements are conducted using both the PWA and LIA approaches discussed in

Chapter 4 with a 10⇥ objective lens resulting in pump and probe 1/e2 diameters of 19.5 and 18.5

µm, respectively. Before doing so, an 80 nm Al transducer (thickness confirmed with picosecond

acoustics) was deposited onto each sample. A sapphire wafer, with Al deposited under the same

deposition, was used as a calibration. After calibrating, all HEC and binary carbide samples were

tested and the resulting thermal conductivities are listed in Table 6.2. Figure 6.2(a) shows the

SSTR data obtained for all samples, including the Al2O3 calibration and a z-cut quartz reference,
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included to show that the tested samples have thermal conductivities that are effectively bounded

by quartz on the low end and sapphire on the high end. The y-axis is shown as both the measured

probe signal and estimated temperature rise, while the x-axis is shown for both the measured pump

signal and estimated absorbed power of by the sample. The resulting thermal conductivities are

shown in Fig. 6.2(b) and listed in Table 6.2.

TDTR was also used to measure the thermal properties of these samples; a high modulation

frequency of 8.4 MHz and relatively large 1/e2 pump/probe radii of 20/13 µm ensure the temper-

ature decay is one-dimensional and the extracted property is thermal effusivity [150]. Since k is

known from SSTR, we can then determine Cv via TDTR independently. This also serves as a check

for SSTR measurements, since the heat capacity of TiC, TaC, and HfC are known to be 2.76, 2.72,

and 2.39 MJ m�3 K�1, respectively [61]. TDTR ratio data is shown in Fig. 6.2(c). In general, the

higher ratios observed are indicative of higher thermal effusivities. Given the expected similarity

in Cv among all samples, the ratio is therefore also indicative of k; the same qualitative trend is

observed for samples in TDTR and SSTR. The heat capacities extracted are shown in Fig. 6.2(d)

and given in Table 6.2. As a check, the binary carbide heat capacities all fall within about 3% of

the aforementioned literature heat capacities.

For thermal conductivity, SSTR reveals that TiC has a k of ⇠30 W m�1 K�1. Literature reveals

that k can vary heavily, with reports from ⇠18 to 34 W m�1 K�1 near room temperature [220]. It is

well known that in transition metal carbides, carbon vacancies can scatter phonons to significantly

reduce k [221]. The relatively high k obtained for this TiC suggests that carbon vacancies are

not as significant in this sample compared with other literature values. Similarly, TaC exhibits the

highest k of the samples tested at ⇠36 W m�1 K�1, significantly higher than the often quoted

22 W m�1 K�1 [221]. Again, this may be indicative of fewer carbon vacancies and/or closer to

stoichiometric composition of our tested TaC. On the other hand, HfC exhibits a k of 20 W m�1

K�1, in agreement with prior studies on stoichiometric HfC [221, 222].

In comparison to the binary carbides, HECs have reduced thermal conductivities that generally

fall between 8 and 10 W m�1 K�1, with one outlier (HEC3) having a thermal conductivity of 13.6

W m�1 K�1. There is not a large difference in mechanical properties within the set of HECs;
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Figure 6.3: Thermal conductivity (k) vs. valence electron concentration (VEC) for HECs.

elastic moduli of all samples range from 443 to 533 GPa [219], while hardness is between 27 to 33

GPa [219]. Based on the previous studies on entropy-stabilized and high-entropy oxides, we expect

that phonon scattering is significantly enhanced in these HECs as compared to the binary carbides.

However, unlike the oxides, there is an electronic contribution to thermal conductivity that could

still be significant. That the thermal conductivity remains relatively high is perhaps indicative

of this significance. In order to confirm this, we show that thermal conductivity is increased as

valence electron concentration (VEC) decreases (i.e., as the HEC becomes more metallic). Indeed,

Fig 6.3 shows that thermal conductivity monotonically decreases with increasing VEC.

As mentioned previously, one of the goals of this chapter is to understand the effect of mi-

crostructure on thermal conductivity. To do so, we determine k as a function of real space in two

dimensions to extract a thermal conductivity map (or image). Thermal property mapping, or some-

times referred to as thermal microscopy when a frequency component is added to change the depth

of the image [162], is a recently established technique that has evolved in frequency-domain ther-

moreflectance [162, 163], time-domain thermoreflectance [165], and CCD-based full-field thermal

imaging [223–225]. In this work, we use the time-domain variation, which has the major advan-

tage of allowing adjustment of the probe beam delay time to ensure the measurement is insensitive

to thermal boundary conductance between the transducer and the sample [165]. At a fixed delay
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Figure 6.4: (a) SEM image of HEC3 around the ⇠300 µm ⇥ 300 µm region that is mapped with
TDTR. (b) Depiction of mapping procedure: the sample is rastered in two dimensions with respect
to the focused pump/probe spot. (c) Normalized magnitude image of the probe recored for a 20⇥
objective lens magnification at a delay time of 1 ns. (d) The ratio data for the same conditions as
(c).

time, the phase-corrected ratio and magnitude of the thermoreflectance signal is recorded at dis-

crete points on the sample to make up pixels to be used to create an image. Comparing the ratio

value of each pixel to the thermal model discussed in Chapter 3, k is determined for each pixel to

create a thermal conductivity image.

In practice, this process is achieved by mounting the sample on a 3-axis stage with motors

having a bidirectional repeatability of < 1.5 µm and a closed-loop piezo motor controlling the focal

plane of the sample. The sample is oriented so that movements along the sample surface result in

no appreciable changes in focus. The position of the sample is rastered about two dimensions

relative to the pump/probe focused spot in steps of as small as 1 micron; in this case, a step size

of 4 µm is used for a 10⇥ objective lens (pump and probe 1/e2 diameters of 20.5 and 12.0 µm,
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respectively) and a step size of 2 µm is used for the 20⇥ objective lens (pump and probe 1/e2

diameters of 10.5 and 7.5 µm, respectively).

The TDTR mapping is performed on HEC3 over a ⇠300 µm ⇥ 300 µm square area whose

corners were indented with a diamond indenter. Figure 6.4(a) shows an SEM image of the sample

area before an 80 nm Al transducer was deposited. To obtain an image, the sample is rastered in 2

dimensions as depicted conceptually in Fig. 6.4(b); the magnitude of the probe signal and the ratio

(-X/Y) are recorded at a probe delay time of 1 ns. This delay time was chosen to reduce sensitivity

to the thermal boundary conductance between the aluminum and HEC in order to maximize the

relative sensitivity to HEC3’s thermal conductivity. Using the magnitude and ratio data, images can

be obtained by stitching together the data recorded at each pixel. The corresponding normalized

magnitude and ratio images are shown in Fig. 6.4(c) and (d), respectively, using a 20⇥ objective

lens, a step size of 2 µm, and a dimension size of ⇠400 µm ⇥ 400 µm for a total of 40,401 pixels.

Comparison of the magnitude (Fig. 6.4(c)) image to the SEM image (Fig. 6.4(a)) reveals that the

many microscale features appear well, if not better, in the former image. The clear appearance of

the indented corners ensure that the orientation of the TDTR images match that of the SEM. Next,

the ratio image (Fig. 6.4(d)) again shows large contrast between the indented areas and elsewhere,

but shows a relatively uniform ratio otherwise.

To convert the ratio image to a thermal conductivity image, the TDTR model is calculated for a

range of k to create a dataset of k and their corresponding ratios. The ratio image is then converted

to a thermal conductivity image by comparing to this dataset and interpolating where necessary.

The resulting thermal conductivity images are shown in Fig. 6.5(a) and (c) for a 10⇥ and 20⇥

objective lens, respectively. The 10⇥ case used a step size of 4 µm in each direction, whereas

the 20⇥ case used a step size of 2 µm. Comparison of the two reveals that features, including the

indented corners, become sharper in the latter case thanks to the improved resolution. Sampling k

within the area enclosed by dashed lines, the statistical average of the k distribution is equivalent

in each case. This k distribution is shown for the 10⇥ case and 20⇥ case in Fig. 6.5(b) and(d),

respectively. The mean is 14.0 ± 1.0 in the 10⇥ case and 14.1 ± 1.2 W m�1 K�1 in the 20⇥ case,

both within uncertainty of the previously measure value using SSTR.
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(a)

(c) (d)

(b)

Figure 6.5: (a) Thermal conductivity map obtained using a 10⇥ objective lens with pump and probe
1/e2 diameters of 20.5 and 12.0 microns, respectively. (b) Histogram of thermal conductivity values
for the region enclosed by the dashed lines in (a); the mean and median thermal conductivities are
14.0 and 14.1 W m�1 K�1. (c) Thermal conductivity map obtained using a 20⇥ objective lens with
pump and probe 1/e2 diameters of 10.5 and 7.5 microns, respectively. (d) Histogram of thermal
conductivity values for the region enclosed by the dashed lines in (c); the mean and median thermal
conductivities are 14.1 and 14.4 W m�1 K�1.

Fundamentally, the conditions used in TDTR ensure that the temperature profile is effectively

one-dimensional, so that thermal conductivity in the cross-plane direction is being measured. So,

although the grain orientations are random within this area, the cubic crystal structure of HECs im-

plies that the thermal conductivity is isotropic and therefore should not vary with grain orientation.

Therefore, any differences in thermal conductivity can be attributed to microstrurctural features.

While a few such features can be observed, appearing as black pixels in the image, thermal con-

ductivity is relatively uniform throughout the sampled area, indicating that potential microstructure

scattering mechanisms such as grain boundaries are having little effect on the thermal conductivity.



CHAPTER 6. HIGH-ENTROPY CERAMICS 139

6.4 High-Entropy Borides

The next class of high-entropy ceramic studied is the high-entropy boride (HEB). Because of

the aforementioned appealing attributes of refractory metal diborides, namely ZrB2 and HfB2, the

extension of high-entropy engineering to borides is a logical step beyond oxides. In this section,

we study the local k of HEB1, which has the composition (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, to re-

veal how microstructure can influence thermal conductivity. To do so, we use the same TDTR

mapping procedure discussed in the previous section. HEB1 is unique from all high-entropy ce-

ramics prior to it in that it possesses a layered hexagonal crystal structure with alternating rigid

two-dimensional boron nets and high-entropy two-dimensional layers of metal cations [226]. The

samples were fabricated using high energy ball milling to mix the five constituent diboride pow-

ders, followed by densification via spark plasma sintering. XRD, SEM, and EDX were used to

characterize the sample to confirm the compositions were largely uniform, albeit with the presence

of uniformly-distributed minor secondary (Zr, Hf)O2 phases. Extensive details on the fabrication

and characterization of HEB1 can be found in Ref. [226].

TDTR mapping is performed on HEB1 over a 180 µm ⇥ 180 µm square area to capture

the full ⇠70 µm ⇥ 120 µm region of the sample that was captured in SEM and EBSD. The

SEM image of this region is shown in Fig. 6.6(a); this region’s corners were marked using a

focused ion beam (FIB) in order to easily match the TDTR image with the SEM image. The darker

regions of the image include the secondary (Zr, Hf)O2 phases. Fig. 6.6(b) shows the same image

rotated to match the orientation that was captured with TDTR. The magnitude of the probe signal

and the ratio were recorded at a probe delay time of 4.5 ns, chosen as such to reduce sensitivity

to the thermal boundary conductance between the aluminum and HEB in order to maximize the

relative sensitivity to HEB1’s thermal conductivity. The normalized magnitude and ratio images

are shown in Figs. 6.6(c) and (d), respectively, using a 20⇥ objective lens, a step size of 2 µm,

and a dimension size of ⇠180 µm ⇥ 180 µm for a total of 8281 pixels. Both the magnitude

and the ratio images show there is a distinct difference in signal between the area within the FIB

markings and the area outside of these markings. Because EBSD was performed in this area over
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Figure 6.6: (a) SEM image of HEB around the ⇠60 µm ⇥ 120 µm region that is mapped with
TDTR. (b) Rotated image of SEM to match orientation of TDTR images. (c) Normalized magni-
tude image of the probe recored for a 20⇥ objective lens magnification at a delay time of 4.5 ns.
(d) The ratio data for the same conditions as (c).

a long period of time (⇠8 hours), a thin carbon layer is formed, adding an additional thermal

resistance that affects the TDTR signal. Because this carbon layer is estimated to be on the order

of nanometers, it only affects the thermal boundary conductance between the Al and HEB1, rather

than the HEB1 thermal conductivity. This is confirmed by performing full TDTR scans within the

region and outside the region. On average, k is equivalent within and outside the region at ⇠25 W

m�1 K�1, whereas the thermal boundary conductance was 37 MW m�2 K�1 inside the region and

72 MW m�2 K�1 outside the region.

Next, the ratio image is converted to a thermal conductivity image. Figure 6.7(a) and (c) show

the thermal conductivity images using a 10⇥ and 20⇥ objective lens, respectively. Like the ratio

image, there is a large contrast due to the difference in thermal boundary conductances within
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(b)
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(a)

Figure 6.7: (a) Thermal conductivity map obtained using a 10⇥ objective lens with pump and probe
1/e2 diameters of 20.5 and 12.0 microns, respectively. (b) Histogram of thermal conductivity values
for the region enclosed by the dashed lines in (a); the mean and median thermal conductivities are
26.5 and 26.8 W m�1 K�1. (c) Thermal conductivity map obtained using a 20⇥ objective lens with
pump and probe 1/e2 diameters of 10.5 and 7.5 microns, respectively. (d) Histogram of thermal
conductivity values for the region enclosed by the dashed lines in (c); the mean and median thermal
conductivities are 26.1 and 26.8 W m�1 K�1.

the region enclosed by dashed lines and outside this region. The values for k shown in the map

are only valid for the enclosed region. A distribution of thermal conductivities within this area is

shown for the 10⇥ case and 20⇥ case in Fig. 6.7(b) and (d), respectively. The mean k is 26.5

± 2.6 in the 10⇥ case and 26.1 ± 3.6 W m�1 K�1 in the 20⇥ case. There are two noteworthy

points of comparison between the 10⇥ and 20⇥ cases: first, the influence of microscale features

such as secondary (Zr, Hf)O2 phases become stronger in the latter case, which can be explained

by the fact that when a larger pump and probe are used, the sampled area encompasses more

variation over which an average thermal conductivity is extracted; when the pump/probe become
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(a)

(c) (d)

(b)

Figure 6.8: (a) TDTR normalized magnitude, (b) ratio, and (c) thermal conductivity image of
HEB1 using a 50⇥ objective lens with pump and probe 1/e2 diameters of 3.5 and 3.25 microns,
respectively. (d) Histogram of thermal conductivity values for the region enclosed by the dashed
lines in (c); the mean and median thermal conductivities are 25.8 and 27.7 W m�1 K�1.

small enough, grains and phases can be sampled individually. Second, the distribution of thermal

conductivities becomes larger and skewed towards lower values in the 20⇥ case, evidenced by

the higher standard deviation. Interestingly, though, the average thermal conductivity remains the

same (within uncertainty) in both cases.

Next, TDTR mapping is repeated using a 50⇥ objective lens, allowing for pump and probe

1/e2 diameters of 3.5 and 3.25 µm, respectively. In this case, the delay time is 2.8 ns, the step

size is 1 µm, and the total size is 140 µm ⇥ 140 µm. The TDTR magnitude and ratio images are

shown Fig. 6.8(a) and(b), respectively. The corresponding thermal conductivity image is shown in

Fig. 6.8(c) and resulting distribution from the enclosed region within the dashed lines is shown in

Fig. 6.8(d). The higher resolution of the 50⇥ image allows for finer details to be seen, including
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the appearance of regions of low thermal conductivity (< 15 W m�1 K�1). The distribution shows

that the mean thermal conductivity is 24.8 ± 5.6 W m�1 K�1; the higher standard deviation in this

case is consistent with the previous findings. Furthermore, the skewed distribution towards lower

values is evident, indicative of sampling more independent grains and/or secondary phases having

lower thermal conductivities.

The wide distribution in thermal conductivity observed demonstrates that microstructure is in-

fluencing thermal conductivity. Given the anisotropic nature of HEB1, there is reason to believe

this variation is due to grain orientation. To test this, we compare the EBSD grain orientation image

to the thermal conductivity image to extract the thermal conductivity corresponding to each grain

orientation. Figure 6.9(a) shows the EBSD micrograph, where grain orientations are depicted by

a colormap. The 0001 crystallographic direction is represented by red, the 1̄21̄0 direction by blue,

and the 021̄0 direction by green. The black regions represent the secondary (Zr, Hf)O2 phases. In

order to determine the thermal conductivity of each orientation, we first apply a filter to determine

the regions of each orientation. To do so, the filter criteria is defined such that for each orientation

the RGB threshold is set to >100 for one of the three colors and <100 for the others, where the

RGB scale ranges from 0 to 255. Filtering for each orientation results in the filtered EBSD mi-

crographs shown in Fig. 6.9 for the (b) 0001 direction, (c) 1̄21̄0 direction, and (d) 021̄0 direction.

For each filter, the coordinates are recorded and the thermal conductivity map is interpolated over

these coordinates to extract a distribution of thermal conductivities corresponding to each orienta-

tion. Figure 6.9(f) shows the resulting distributions for (red) the 0001 direction, (blue) the 1̄21̄0

direction, (green) the 021̄0 direction, and (black) secondary phases. These histograms reveal that

although HEB1 has an anisotropic crystal structure, its thermal conductivity in each orientation is

on average equivalent under the present experimental conditions at ⇠25 W m�1 K�1. In contrast,

the secondary (Zr, Hf)O2 phases show a wide k distribution with a significantly lower average of

18.4 W m�1 K�1.

To further elucidate the roll of this secondary oxide phase, we next compare the EBSD phase

image to the thermal conductivity image. Figure 6.9(g) shows the EBSD phase image, where

green represents the HEB1 composition and black represents secondary (Zr, Hf)O2 phases as well
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Figure 6.9: (a) EBSD micrograph showing grains and corresponding orientations; the image is
rotated to match the thermal conductivity image determined by TDTR mapping. Filtered EBSD
micrograph for the (b) 0001 direction, (c) 1̄21̄0 direction, and (d) 021̄0 direction. (e) thermal
conductivity image of HEB1 using a 50⇥ objective lens with pump and probe 1/e2 diameters of 3.5
and 3.25 µm, respectively. The three circles, represented by 1,2, and 3, indicate secondary phases
to be compared to the phase image. (f) Histograms of thermal conductivities for each of the three
filtered grain orientations; the red corresponds to the 0001 direction, blue to the 1̄21̄0 direction,
green to the 021̄0 direction, and black to regions of black in (a), corresponding to secondary phases.
(g) Phase identification via EBSD: green is the HEB1 composition and black shows the secondary
(Zr, Hf)O2 phases. (h) Thermal conductivity histograms for (black) (Zr, Hf)O2 phases, (green)
HEB1 phase, and (hollow) all phases. The same circles shown in (e) are included for comparison.

as grain boundaries. Comparing Fig. 6.9(g) to (e), it is evident that the relatively low regions of

thermal conductivity correspond to the oxide phase regions of the phase image. This is made clear

by the three circles labeled 1, 2 and 3 in both (e) and (g), where relatively large oxide phases

give rise to local regions of reduced thermal conductivity. Furthermore, using RGB filtering to

determine the locations of black pixels, the thermal conductivity image is interpolated to extract a

distribution shown in Fig. 6.9(h). In agreement with the orientation results, using the phase image

reveals the secondary oxides possess a wide thermal conductivity range with an average of 18.8 W

m�1 K�1. This wide distribution could be due to variation in structure within (Zr, Hf)O2, but also
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due to the fact that there is overlap in the measured area between (Zr, Hf)O2 and HEB1 phases, such

that some thermal conductivities encompass a weighted average of the two. By comparison, the

HEB1 phase has an average of 25.3 W m�1 K�1, and the total average for all phases is 24.7 W m�1

K�1. Thus, while the (Zr, Hf)O2 phases have reduced thermal conductivities relative to the HEB1

phase, their presence is minor enough to not significantly alter the total average. Nonetheless, it is

clear that local thermal conductivity can vary widely and be heavily influenced by the presence of

secondary phases.

6.5 High-Entropy Silicides

The final high-entropy ceramic studied is the high-entropy silicide (HES). Refractory disili-

cides, particularly those of group IV, V, and VI elements, are promising for high-temperature ap-

plications due to their relatively high melting temperatures, which can exceed 2000 �C [227], and

oxidation resistance at elevated temperatures with the formation of a protective SiO2 native ox-

ide layer [228, 229]. Until now, the scope of high-entropy ceramics has been limited to oxides,

carbides, borides, and nitrides. Here, we examine the thermal conductivity and volumetric heat

capacity of the HES, (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. This HES is unique in that it possesses a

CrSi2-type hexagonal C40 structure with the ABC stacking sequence [230]. This is significant

because, to date, all known HECs, with the exception of HEBs discussed in the previous section,

have cubic symmetries. Even the diborides possess a relatively simple hexagonal (AlB2) crystal

structure with comparatively high symmetry [226].

Extensive details on the structural properties and fabrication procedures can be found in Ref. [230].

In brief, high-energy ball milling was used to mix starting powders of MoSi2, NbSi2, TaSi2, TiSi2,

and WSi2, and densification was achieved via spark-plasma sintering in vacuum environment with

an argon backfill to minimize any oxidation. XRD, SEM, EDX, and EBSD confirm the presence

of a single high-entropy solid-solution phase with some additional oxide contaminations. Finally,

nanoindentation was used to characterize the hardness at 16.7 ± 1.9 GPa and elastic modulus of

421 ± 19 GPa, comparable to those for constituent disilicides MoSi2 and WSi2 [231].
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(a) (b)

Figure 6.10: (a) TDTR ratio (-X/Y) data vs. probe delay time for HES. (b) SSTR probe lock-in
magnitude vs. pump lock-in magnitude for HES, Al2O3, Quartz, and glass.

Thermal conductivity was measured using both TDTR and SSTR. To do so, a thin Al transducer

(84 ± 4 nm measured using picosecond acoustics) was electron-beam evaporated onto the sample.

The TDTR ratio data is shown in Fig. 6.10(a), with the best fit model corresponding to k = 6.9

W m�1 K�1. For TDTR, the pump was modulated at 8.4 MHz to heat the sample. The pump

and probe 1/e2 diameters were 15 and 9 µm, respectively. These two conditions ensure a one-

dimensional heating event in the cross-plane direction and an effective measurement of thermal

effusivity [150]. To determine the thermal conductivity, the volumetric heat capacity was estimated

to be 2.5 ± 0.3 MJ m�3 K�1 based on the rule of mixtures average of constituent heat capacities

[61]. Fitting a multilayer heat diffusion model to experimental ratio data, the best-fit thermal

conductivity is determined to be 6.9 ± 1.1 W m�1 K�1. Uncertainty in thermal conductivity

results from variation from multiple measurements, uncertainty in Al thickness, and uncertainty in

heat capacity.

As confirmed in the HEC study, SSTR provides an independent means for determining thermal

conductivity without the need for estimating a heat capacity. The SSTR data shown in Fig. 6.10(b)

for HES as well as two reference samples, an a-SiO2 glass slide and a Al2O3 wafer, both deposited

with Al at the same time as the HEC. The thermal conductivities of a-SiO2 and Al2O3 were 1.0 and
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35 W m�1 K�1, respectively, in agreement with those measured in Ch. 4. The thermal conductivity

of the HES is determined to be 6.7 ± 0.5 W m�1 K�1, in agreement with TDTR. If we return to the

TDTR data and now fit for heat capacity using the SSTR-determined thermal conductivity as an

input, we determine that the heat capacity for HES is 2.6 ± 0.3 MJ m�1 K�1, in close agreement

with the rule of mixtures assumption.

6.6 Summary

In this chapter, we studied the role of compositional disorder on the thermal conductivity of

bulk high-entropy ceramics. Beginning with high-entropy fluorite oxides, we determined that the

thermal conductivity was < 2 W m�1 K�1, on par with the 6-cation entropy-stabilized oxides from

Ch. 5. Next, we studied cubic high-entropy carbides to show that the thermal conductivity in these

materials is largely dictated by electrons, as evidenced by the increasing thermal conductivity with

reduced valence electron concentration. This large electronic contribution allows carbides to have

thermal conductivities significantly higher than the oxides, ranging from ⇠8 to 14 W m�1 K�1.

Using TDTR mapping, we determined that the thermal conductivity of HEC3 was largely uniform,

indicating little to no influence from microstructure, grain orientation, or any secondary phases.

Next, we studied the high entropy boride to show that the thermal conductivity is even higher, at

⇠25 W m�1 K�1. This HEB sample, having a layered hexagonal crystal structure, showed a wider

variation in local thermal conductivity extracted from TDTR mapping. Comparison of thermal

conductivity images to EBSD micrographs revealed that the thermal conductivity for each grain

orientation was on average equivalent. However, local reductions in thermal conductivity were

attributed to secondary (Zr, Hf)O2 phases. Finally, we studied the high-entropy silicide to show

that the thermal conductivity was lower than the HECs and HEBs, at ⇠7 W m�1 K�1. In all

cases, thermal conductivities are reduced up to an order of magnitude from constituent elements,

attributed to a reduction in phonon thermal conductivity from mass and strain disorder. However,

the electronic contribution to thermal conductivity can still be significant, allowing carbides and

borides to maintain relatively high thermal conductivities.
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Chapter 7

Amorphous Thin Films

Having established the role of increasing configurational and compositional disorder on the

thermal conductivity of crystalline materials, I now turn to amorphous materials. I first investi-

gate the role of size effects on the thermal conductivity of amorphous silicon to reveal that long-

wavelength propagating vibrational modes can contribute significantly to thermal conductivity,

in direct opposition to the traditional picture that thermal transport in amorphous materials is gov-

erned by diffusive vibrational modes limited to length scales on the order of the average interatomic

spacing. I then investigate the role of composition on the thermal conductivity of amorphous hy-

drogenated silicon nitride (a-SiNx:H). After establishing an understanding of thermal transport in

a-Si, a-SiNx:H enables us to understand how the introduction of compositional disorder through

new atomic species can change the underlying bond network and the resulting thermal conductiv-

ity.

7.1 Amorphous Silicon: Size Effects on Thermal Conductivity

7.1.1 Background

The influence of size effects on the phonon thermal conductivity of crystalline thin films has

been the topic of a wide array of studies [2, 10, 11, 232] that have shaped the direction of fields

rooted in nanoscale heat transfer and applications reliant on nanotechnology. It is well known
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that for films with thicknesses less than the length scale of their phonon mean free paths, thermal

conductivity can be reduced due to incoherent boundary scattering of phonons ballistically travers-

ing the film. By comparison, the role of size effects on the thermal conductivity of disordered or

fully amorphous solids has been examined to a lesser extent. Unlike crystalline solids, in which a

well-defined spectrum of phonons exists in a periodically repeating lattice, the vibrational modes

in disordered solids are described using a different taxonomy due to the lack of atomic period-

icity [84]. In these systems, the vibrational modes can be classified as propagating, delocalized

(phonon-like) modes called “propagons”; non-propagating, delocalized modes called “diffusons”;

and non-propagating, localized modes called “locons” [21, 84, 233, 234]. Previous studies have

demonstrated that propagating modes in disordered and amorphous systems can contribute signif-

icantly to the thermal conductivity of certain materials, such as amorphous silicon nitride [235]

and disordered silicon-germanium alloys [109, 115]. This implies that in highly disordered or

amorphous thin films, size effects in the vibrational thermal conductivity can exist depending on

the degree to which propagating modes contribute to the thermal conductivity. However, in other

amorphous thin films, namely SiO2 and Al2O3, size effects in the thermal conductivity have not

been observed [21, 88].

Taken together, the impact of size effects on thermal conductivity in amorphous solids remains

underdeveloped. The study of heat carrier mean free path contributions to thermal conductivity

has evolved significantly over the past decade [130] through analytical methods like the thermal

conductivity accumulation function [236] and through experimental methods like TDTR [94] and

Broadband FDTR (BB-FDTR) [116]. In the approach taken here, we use TDTR to measure the

thermal conductivity of amorphous silicon films of varying thicknesses, an approach that Zhang

et al. [232] analytically demonstrated can provide information regarding the spectral dependence

of the phonon thermal conductivity in nanosystems. While our results provide similar insight into

the role of long mean free path propagons to the thermal conductivity of amorphous silicon as that

reported by Liu et al. [132], our approach is fundamentally different. Liu et al.’s approach relied

on varying the modulation frequency, and hence the thermal penetration depth and resulting mea-

surement volume beneath the surface in order to isolate the role of propagons with mean free paths
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larger than the measurement volume on the thermal conductivity measurement. Our approach of

varying the amorphous silicon film thickness in a regime in which we sample a substantial portion

of the thickness leads our measurements to be independent of modulation frequency. This allows

us to report an intrinsic value of thermal conductivity of our samples, gives direct insight into the

role boundary scattering of propagons on the thermal conductivity in the amorphous silicon, and

avoids any potential complications or misconceptions regarding the interpretation of modulation

frequency dependent TDTR data that otherwise could cloud our results [116, 237–239].

Examining the vibrational taxonomy discussed above, if the amorphous solid’s thermal conduc-

tivity contains a significant contribution from propagons compared to non-propagating modes, then

size effects should play a role in thermal conduction. That is, increasing film thickness will reduce

propagon-boundary scattering as films approach the length scales of propagon mean free paths, al-

lowing these propagons to contribute to thermal conductivity. Amorphous silicon (a-Si) serves as a

suitable candidate to study this hypothesis given the well-established literature both experimentally

[116, 131, 132, 240–245] and computationally [21, 84, 246]. These computational studies suggest

that propagons can contribute significantly to thermal conductivity when not restricted by forced

scattering (e.g., by boundaries). Thus, clear size effects on the measured thermal conductivity of

a-Si films should be observable, driven by propagon-boundary scattering. Figure 7.1 summarizes

the literature data on experimentally measured values of a-Si thermal conductivity as a function

of film thickness. While a general trend of increasing thermal conductivity with film thickness is

observed, the lack of uniform growth conditions among samples hinders any insight into discern-

ing intrinsic properties from byproducts of fabrication or measurement technique. It is clear that

in order to study the nature of long-wavelength heat carriers and the role of film thickness on a-Si

thermal conductivity, a systematic study with samples prepared under identical growth conditions

is necessary.

To this end, we measure the thermal conductivity of a series of amorphous silicon thin films

ranging in thickness from 3 – 1636 nm. Our results not only demonstrate size effects in the ther-

mal conductivity, which remain pronounced up to the thickest films, but also show evidence of

a crossover from a constant thermal conductivity to an increasing thermal conductivity. We an-
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Figure 7.1: Literature data for thermal conductivity of amorphous silicon as a function of film
thickness: solid squares represent samples prepared via sputter deposition [116, 241–243], solid
diamonds represents samples prepared via e-beam evaporation [245], open diamonds represent
samples prepared via hot-wire chemical vapor deposition (HWCVD) [131, 132], open squares
represent sample prepared via low-pressure chemical vapor deposition (LPCVD) [244], and closed
and open circles represent samples prepared via thermal evaporation and cyclic plasma chemical
vapor deposition (CPCVD), respectively [240].

alytically study this trend under the hypothesis that it is driven by an increasing contribution

from propagons with increasing a-Si thickness [21]. Using a kinetic theory approach to model-

ing the thickness dependent thermal conductivity, we empirically determine a propagon/diffuson

crossover frequency in our a-Si samples, which is in excellent agreement with previous theory

and molecular dynamic simulations [21, 84]. Our results provide experimental support to the pro-

gagon/diffuson/locon taxonomy describing the underlying vibrational thermophysics driving the

thermal conductivity of a-Si, while also highlighting the shortcomings of the minimum thermal

conductivity model for describing the thermal conductivity of thick a-Si films [80].
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7.1.2 Experimental Details

We fabricated a-Si films on native oxide/silicon substrates using RF sputter deposition. Nom-

inally 80 ± 3 nm of Al was deposited on top of the a-Si samples by electron-beam evaporation

to act as an opto-thermal transducer during our thermal conductivity measurements; we verified

the thickness of the Al film on each sample using mechanical profilometry and picosecond acous-

tics [247, 248]. As detailed in the supplemental material of Ref. [22], we characterize the a-Si

films with X-ray photoemission spectroscopy to quantify the chemical composition and Raman

spectroscopy to confirm the amorphous nature of the films.

We measured the thermal conductivity of the a-Si using TDTR, the details and analyses for

which are described in Chapter 3. We measure the ratio of the in-phase to out-of-phase voltage

of the probe response as a function of pump-probe delay time using pump and probe 1/e2 spot

sizes (diameters) of 55 and 13 µm, respectively, while the pump pulses are modulated with a

f = 12.2 MHz sinusoidally varying envelope. Using a multilayer, radially symmetric thermal

model [94, 97], we fit for the thermal boundary conductance between the Al transducer and the

a-Si film (GAl/a�Si) and the a-Si thermal conductivity (ka�Si). We assume bulk values for the

heat capacities of the Al transducer, a-Si film, and Si substrate [61, 127]. Using a modulation

frequency of 12.2 MHz, the thermal penetration depth is relatively shallow (roughly 140� 180

nm using an approximation for thermal penetration depth as d ⇡
p

ka�Si/p fCv,a�Si, where Cv is

the volumetric heat capacity). As a result, for the samples having thicknesses greater than d , we

can measure GAl/a�Si and ka�Si without knowledge of the thermal boundary conductance across

the a-Si/native oxide/Si substate interface, and for thicknesses greater than approximately d/0.47,

we can assume the a-Si film as semi-infinite compared to the modulated pump-induced thermal

wave [150]. While this semi-infinite assumption simplifies the analysis, we note that to ensure our

results are independent of thermal penetration depth, we repeat measurements over modulation

frequencies ranging from 1.0 to 12.2 MHz (corresponding to thermal penetration depths between

⇠150 to 600 nm) and confirm consistency among results.

It is important to realize that as the film thickness decreases to thicknesses less than the Al

transducer thickness, TDTR measurements become more sensitive to the thermal conductance of
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the film (ka�Si/d), where d is the film thickness, and lose sensitivity to the thermal mass of the

film (Cvd). In this thin-film regime, the intrinsic thermal conduction of the film must be separated

from the thermal boundary conductance across the a-Si/native oxide/Si interface
�
Ga�Si/c�Si

�
,

especially when Ga�Si/c�Si ⇡ ka�Si/d and the thermal penetration depth during TDTR experiments

is on the order of, or greater than, the film thickness. In general, this thin-film regime can be loosely

defined as having a thickness less than the thermal penetration depth. To appropriately quantify

this regime, we apply sensitivity analyses in which we perturb several parameters in our TDTR

analysis to determine the magnitude of influence for these parameters on the results. We find that

the thermal conductivity measured for samples with thicknesses less than ⇠150 nm includes an

additional thermal resistance due to the substrate interface that masks its intrinsic value.

7.1.3 Thin Film Analysis

Analysis of samples within this thin-film regime (d < 150 nm) can be difficult. Lee and Cahill

[249] showed that if the intrinsic thermal conductivity is independent of film thickness, a series

resistor model can be used to account for the presence of the interface resistance being measured

during TDTR. In parallel with molecular dynamics described in detail in the supplemental material

of Ref. [22], we systematically study this with the initial assumption that the series resistor model

is valid for all film thicknesses in the thin-film regime. To model intrinsic thermal conductivity, we

use the following:

1
Gm

=
1

Gtotal
+

d
ki
, (7.1)

where Gm is the total measured thermal conductance across the Al/a-Si interface, a-Si layer, and

a-Si/c-Si interface, ki is the intrinsic thermal conductivity, and Gtotal accounts for the both GAl/a�Si

and Ga�Si/c�Si in series using a thermal circuit model. Defining keff = Gmd, we rearrange Eq. (7.1)

to become:

ki =
keff

1� keff

Gtotald

. (7.2)
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Figure 7.2: Thermal conductivity of amorphous silicon (amorphous silica) samples: filled squares
(filled triangles) represent thermal conductivity as measured without influence of Ga�Si/c�Si
(Ga�SiO2/Si), while open squares (open triangles) denote the derived thermal conductivity as deter-
mined using Eq. (7.2). The dashed line at k = 1.4 W m�1 K�1 represents the literature bulk value
of SiO2 thermal conductivity [250], while the dotted line at k ⇡ 1.1 W m�1 K�1 represents the
fitted value for the thermal conductivity of our a-Si thin films using Eq. (7.2). Shown in the inset
is a plot of effective thermal conductivity of a-Si thin-films vs. film thickness and the model using
Eq. (7.2) with best fit values for ki and Gtotal.

Using Eq. (7.2), we fit ki and Gtotal to our experimental data (6 data points classified by the thin-

film regime) using a nonlinear least-squares fit. If the aforementioned assumptions are correct, we

should observe a good fit to our data. Indeed, this is the case, as shown in the inset to Fig. 7.2.

The best fit value for ki is 1.1 (±0.15) W m�1 K �1 while the best fit value for Gtotal is 92 (±30)

MW m�2 K �1, where uncertainty is based on 95% confidence bounds. To further validate these

results, we repeat this procedure using all subsets of data points within the set of films used in

this initial calculation; we find a remarkable consistency among all combinations, indicating that

this procedure gives an acceptable average for the thermal conductivity for films in the thin-film

regime. Moreover, it demonstrates that any film size effects on thermal conductivity are relatively

insignificant, such that we proceed under the conclusion that thermal conductivity for films less
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than ⇠100 nm is constant.

To understand the sensitivity of this data to the fitted value for Gtotal, we use this value (92 ±

30 MW m�2 K �1) and corresponding uncertainty to calculate ki values for each film thickness

via Eq. (7.2); we denote these values as “derived” thermal conductivities to distinguish them from

measured values. Both derived and measured thermal conductivity values are shown as a function

of thickness in Fig. 7.2. Uncertainty in the data includes contribution from uncertainty in Al and

a-Si film thickness as well as uncertainty in fitting. Sensitivity to Gtotal becomes more prominent

with decreasing film thickness, hence the large uncertainty associated with the estimated thermal

conductivity of the thinnest films. Note that the 150 nm film, not analyzed with this thin-film

procedure, still shows near-negligible film size dependence on its thermal conductivity.

To confirm the validity of this analysis technique, we follow the same procedure with a-SiO2

thin films grown via dry oxidation. We find that the best fit value for ki is 1.4 ± 0.13 W m�1 K�1

while the best fit value for Gtotal is 180 ± 55 MW m�2 K�1, where again uncertainties are based on

95% confidence bounds. This fitted value of 1.4 W m�1 K�1 is in agreement with the bulk value

for thermal conductivity of amorphous silica [250]. Moreover, these findings suggest that any size

dependence observed in our a-Si data are not a result of partial oxidation of the films.

7.1.4 Results and Discussion

We move forward in our analysis with the assertion that the intrinsic thermal conductivities

of our a-Si films below ⇠100 nm are relatively constant (ki = 1.1 W m�1 K�1) with changes in

film thickness. Figure 7.2 depicts the thermal conductivity over the entire range of thicknesses

measured in this study; a clear increasing thermal conductivity trend is observed with increasing

film thickness beyond ⇠100 nm. Given that the thermal conductivity of these films is determined

to be intrinsic to the a-Si layer and that films with thicknesses greater than the thermal penetra-

tion depth have near negligible sensitivity to the a-Si/substrate interface, we hypothesize that our

measurements are sensitive to the increasing thermal effusivity of the a-Si due to the increased

contribution of propagon modes to thermal transport. In other words, for films with thicknesses

less than the mean free path of propagons, these propagons are traversing the thickness of the a-Si
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ballistically and scattering at the a-Si/c-Si interface, leading to a reduction in the thermal con-

ductivity. Thus, size effects in these long wavelength modes become less pronounced as the film

thickness is increased, leading to an increase in thermal conductivity, an experimental result that

has been demonstrated in crystalline solids [2, 11] and disordered alloys [109]. As the limit of this

contribution to thermal conductivity by propagons approaches zero, we are left with only contri-

bution by diffusons; we therefore attribute the constant thermal conductivity we derive above to

diffuson thermal conductivity. This experimentally observed conclusion is consistent with Larkin

and McGaughey’s [21] recent molecular dynamics simulations, which predicted a diffusion ther-

mal conductivity in a-Si of 1.2 (±0.1) W m�1 K�1 and attributed size effects in a-Si to be driven

by propagon-boundary scattering.

We compare this derived value for diffuson thermal conductivity to the prediction from the

minimum thermal conductivity (kmin) model, given by Cahill et al. [80]. For amorphous silicon,

kmin as calculated by this model is ⇠1 W m�1 K�1, in close agreement with what we observe in

our results. This model treats atomic vibrations as harmonic oscillators that scatter at distances

on the order of the average interatomic spacing. This kmin model captures the nature of diffusons

given the small length scales over which diffusons scatter (<10 nm) [246]. However, the model

fails to capture the nature of propagon contribution to thermal conductivity, as evidenced by our

data in Fig. 7.2. Thus, an improved model is needed to describe the thermal conductivity of all

heat carriers in a-Si.

Our data suggest two regimes of thermal conductivity in a-Si films: the regime of relatively

constant thermal conductivity that is dominated by diffuson transport (d < 100 nm, kdiffuson = 1.1

W m�1 K�1) and a regime of increasing thermal conductivity dominated by propagon transport (d

> 100 nm). Based on these regimes, the rate of increase in thermal conductivity of films in the

“propagon-dominated” regime can be directly linked to the propagon/diffuson crossover frequency,

so that the propagon contribution to the thermal conductivity of a-Si can be analytically modeled

via:
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Figure 7.3: Thermal conductivity of our a-Si thin films. Open squares denote derived thermal
conductivity using Eq. (7.2), while filled squares denote the thermal conductivity as directly mea-
sured. Our thermal conductivity model (k = kdiffuson +kpropagon) is plotted with its best fit value
for fp!d of 1.8 THz (solid curve) as well as the individual contribution of kpropagon as calculated
using Eq. (7.3) (dotted curve). Also shown are the calculated curves for the same model using
values for fp!d of 1.6 THz with kd = 0.95 W m�1 K�1 and 2.0 THz with kd = 1.25 W m�1

K�1(dashed curves). Finally, shown in solid circles is the literature data presented in Fig. 7.1 up to
a film thickness of 4 µm to demonstrate agreement between our model and this data.

kpropagon =
1
3 Â

j

wp!d, jZ

0

h̄wD j(w)
∂ f
∂T

v2
jt jdw (7.3)

where j is an index that refers to the polarization (longitudinal or transverse), wp!d is the crossover

angular frequency (from propagon regime to diffuson regime), h̄ is the reduced Planck’s constant,

w is the propagon angular frequency, D is the propagon density of states, f is the propagon equilib-

rium distribution function (assumed to be a Bose-Einstein distribution), v is the sound speed, and

t is the propagon relaxation time. Due to the long-wavelength nature of propagons, we model the

density of states using a Debye model based on the sound speeds and atomic density of a-Si [80].
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We also assume that relaxation times of propagons can be modeled similarly to Umklapp scatter-

ing and impurity scattering of long-wavelength phonons in silicon; we use values for these relax-

ation times based on a three-phonon scattering model of the form t�1 = Aw4+BT w2 exp(�C/T )

[64, 66, 68–70]. Fitting to bulk literature thermal conductivity data for crystalline silicon sam-

pled over 100 – 700 K using a Debye approximation, we find that A = 1.82⇥10�45 s3, B =

2.8⇥10�19 s K�1, and C = 182 K. We include a boundary scattering time for the propagons given

by tb = d/(2v j) [21, 251]. Finally, we assume wp!d,T = wp!d,LvT/vL, where “L” and “T ” denote

the longitudinal and transverse propagon modes, respectively.

Figure 7.3 shows the intrinsic thermal conductivity as a function of film thickness for all a-

Si films in this study as well as our model for propagon contribution to thermal conductivity for

film thicknesses up to 4 µm. The total thermal conductivity is the sum of thermal conductivity

contributions from diffusons (kdiffuson) and propagons (kpropagon). Treating wp!d as a free param-

eter, we use a least-squares method to fit this model to our experimental data. The best fit value

for this propagon-diffuson crossover frequency, fp!d = wp!d,L/2p is ⇠1.82 (±0.2) THz, indi-

cating that vibrational frequencies describing a-Si’s dispersion relation beyond this value do not

behave as propagons. One notes the sensitivity of this curve to the fitting parameter; while negli-

gible at smaller film thicknesses, choice of wp!d becomes significant in the propagon-dominated,

large film thickness regime. For comparison, we include the literature values of a-Si thermal con-

ductivity as a function of film thickness first presented in Fig. 7.1. Although simple, our model

aligns with both our experimental observations and literature data up to thicknesses of 4 µm. Ad-

ditionally, our propagon-diffuson crossover frequency agrees well with our molecular dynamics

calculation of 2.0 THz [22] as well as that of Larkin and McGaughey, 1.8 THz [21].

In conclusion, we presented evidence for size effects in the measured thermal conductivity of

amorphous silicon thin films. We showed that size effects can be attributed to the nature of the

long-wavelength vibrations. Based on our experimental observations, only propagons with mean

free paths greater than ⇠100 nm contribute significantly to thermal conductivity. For films with

thicknesses less than ⇠100 nm, the thermal conductivity is dominated by diffusons, which do

not show a significant, observable film thickness dependence for the films measured in this study.
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Towards the goal of this dissertation, this section shows that fully amorphous materials can pos-

sess thermal properties normally attributed to crystalline materials, arising from long-wavelength

propagating modes. Thus, the conventional notion of kmin defining the thermal conductivity of

amorphous materials is only appropriate in diffuson-limited thermal transport.

7.2 Amorphous Hydrogenated Silicon Nitride: Composition Ef-

fects on Thermal Conductivity

7.2.1 Background

Hydrogenated amorphous thin films synthesized by plasma-enhanced chemical vapor depo-

sition (PECVD) are widely used in the semiconductor industry for a variety of electronic, opto-

electronic, photovoltaic, thermal, mechanical, microelectromechanical, and biological applications

[252, 253]. Amorphous hydrogenated silicon nitride (a-SiNx:H) films, in particular, are widely

used for both surface and bulk passivation of silicon and as anti-reflective coatings to improve

solar cell efficiency [254–260]. The higher refractive indices achievable in these films and tun-

ability thereof based on stoichiometry makes a-SiN:H highly appealing for selective anti-reflective

coatings compared with alternative thermal oxide layers [256]. Beyond solar cell applications,

a-SiNx:H films also find use as gate dielectrics for insulation in amorphous hydrogenated sili-

con (a-Si:H)-based and organic thin-film transistors [261, 262], heterojunction bipolar transistor

technology [263], as well as liquid-crystal display (LCD) and other newly emerging display tech-

nologies [253].

Despite its ubiquity in these application areas, a thorough investigation of the thermal prop-

erties of a-SiNx:H has remained unexplored. In particular, because stoichiometry and hydrogen

composition control the physical properties of this material [264], a systematic study of the role of

Si, N, and H composition on the thermal conductivity of a-SiNx:H thin films would greatly benefit

the prediction and modeling of heat transfer in devices reliant on a-SiNx:H films. Considering

the aforementioned application space, the thicknesses of a-SiNx:H films can vary between a few
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nanometers to several microns. Thus, in this section, we investigate the role of film thickness,

composition, and hydrogenation on the thermal conductivity of PECVD-grown a-SiNx:H films to

show how thermal conductivity can be systematically reduced through hydrogen content; in fact,

no matter the ratio of Si and N, the thermal conductivity is primarily dictated by the atomic per-

centage (at.%) H. In general, we find that deposition through PECVD restricts the lower-bound of

achievable hydrogen content. In order to further reduce the at.% H in these materials, we anneal

the samples at four temperatures ranging from 650 �C to 1000 �C to induce chemical dissociation

of the hydrogen out of the films [265].

Towards the goal of this dissertation, a-SiNx:H serves as a sample system to understand the

role of compositional disorder on the thermal conductivity of amorphous materials through sys-

tematic variation of the underlying stoichiometry. As will be discussed in detail soon, the thermal

conductivity of a-SiNx has been suggested to have strong contribution from propagons at room

temperature [16], but verification of this as a general rule has remained elusive. Thus, to se-

lectively study the role of hydrogen on propagon thermal transport, we additionally measure the

thermal conductivity of hydrogenated amorphous silicon (a-Si:H) as a function of film thickness.

As was determined in the first half of this chapter, a-Si can have a large fraction of its thermal con-

ductivity comprised of propagons, giving rise to thickness-dependent thermal conductivity. The

addition of hydrogen to both a-Si and a-SiNx adds the additional complexity of bond termination.

Beyond simply mass variation alone, the addition of hydrogen fundamentally reduces the coor-

dination number, defined as the average number of atomic bonds an atom in a material possess,

which we previously showed to have significant influence on the thermal conductivity of 200 nm

films of amorphous hydrogenated silicon oxycarbide (a-Si[O/C]:H) [266].

Because of the limited nature of thermal characterization of a-SiNx:H, we begin by turning to

the more widely studied a-SiNx, representing the limit of the composition space for a-SiNx:H when

H ! 0. a-SiNx has been extensively studied due to its application in thermal isolation, surface

passivation, etch masking, and as structural or optical layers for various micro-electromechanical

systems (MEMS) [283, 284]. A review of literature, summarized in Fig. 7.4, reveals a wide varia-

tion in reported k for a-SiNx as a function of film thickness, ranging from ⇠0.5 to 13 W m�1 K�1
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Figure 7.4: Literature thermal conductivity (k) vs. film thickness for amorphous silicon nitride.
The thermal conductivity is shown for References [97, 235, 249, 267–282]. Closed symbols rep-
resent cross-plane thermal conductivity measurements, while all others represent in-plane thermal
conductivity measurements.

at room temperature. While conventional wisdom suggests the thermal conductivity of amorphous

materials is isotropic, Kwon et al. [23] used a-Si to show that this isn’t always the case. Therefore,

it is important to emphasize the direction of k reported (in-plane, kr, which is perpendicular to the

limiting dimension, or cross-plane, kz, which is parallel to the direction of limiting dimension).

The majority of reported measurements of thermal conductivity have been for suspended films and

membranes, such that kr is fundamentally measured. Mastrangelo et al. [267] first measured kr of

low stress, low pressure chemical vapor deposition (LPCVD) grown Si1.0N1.1 microbridges rang-

ing in thickness from 2 to 4 µm to be 3.2 W m�1 K�1, with no dependence on thickness. Griffin

et al. [268] later measured kr for CVD-grown Si3N4 using a steady-state technique to be ⇠2 W

m�1 K�1 and independent of thickness for films ranging in thicknesses from 0.06 to 8 µm. Zhang

and Grigoropoulos [274] used three experimental methods – the phase-shift method, the amplitude

method, and the heat-pulse method – to determine kr for an a Si-rich SiNx film (66.8% Si and

33.2% N in atomic weight) deposited via LPVCD; they found kr to be 9 and 13 W m�1 K�1 for

the 1.4 µm and 0.6 µm film, respectively, where the reduced thermal conductivity of the thicker
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film was postulated to be due to a higher density of voids. Irace and Sarro [277] used a resistor

heating and thermocouple-based technique to measure kr of a 800 nm thick, low stress LPCVD-

grown SiNx membrane to be 1.55 W m�1 K�1, the lowest value of kr yet reported. However, Zink

and Hellman [269] later used a membrane-based microcalorimeter technique to measure kr of a

LPCVD grown 200 nm thick low-stress amorphous SiNx membrane to be ⇠3 W m�1 K�1 at room

temperature, in agreement with the measurement by Mastrangelo et al. despite an order of magni-

tude reduction in thickness. Stojoanovic et al. [279] used a resistive heater and resistance-based

temperature detector to determine kr of a plasma-enhanced chemical vapor deposition (PECVD)-

grown, 180 nm thick SiNx membrane to be ⇠2 W m�1 K�1. Shortly after, Jain and Goodson [270]

used the 3w method to determine kr for a LPCVD-grown, freestanding 1.5 µm thick SiNx film to

be ⇠5 W m�1 K�1. Around the same time, Lee et al. [275] used a similar in-plane 3w method to

measure kr for a 550 nm thick, LPCVD-grown SiNx film to be 5.4 W m�1 K�1, in agreement with

the 3⇥ thicker film measured by Jain and Goodson. Queen and Hellman used a membrane-based

nanocalorimeter approach find that kr of 50 and 200 nm thick suspended SiN1.15 membranes were

⇠2.5 and ⇠4.5 W m�1 K�1, respectively; the reduced value of the former was attributed to bound-

ary scattering, possibly evidence for strong propagon contribution to k . Alam et al. [285] used

a MEMS-based experiment to measure the strain dependent kr of a 50 nm thick, LPCVD grown,

stoichiometric Si3N4 suspended film; the unstrained kr was 2.7 W m�1 K�1 but reduced to 0.34

W m�1 K�1 when tensile strain was increased to 2.4%. In contrast, Ftouni et al. [272] used the

reported stress-independent kr of 50 and 100 nm thick membranes to be ⇠2.5 - 3 W m�1 K�1

for the four samples tested, with modest thickness dependence in thermal conductivity. Sikora et

al. [273] used the 3w-Völklein method to measure kr of a LPCVD-grown, low stress a-SiNx, 100

nm thick membrane to be 10 W m�1 K�1, in agreement with the seemingly outlier values deter-

mined by Zhang and Grigoropoulos. Bodenschatz et al. [276] measured kr of a 100 nm thick SiNx

membrane to be 3 W m�1 K�1. Finally, Sultan et al.[235] used a MEMS-based micromachined

suspended platform structure to measure kr for 500 nm thick, LPCVD-grown SiNx microbridges to

be ⇠2.5 to 3.2 W m�1 K�1 at room temperature, a wider range but still in agreement with previous

measurements from the same group [286]. Taken as a whole, there is a wide variation in reported
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kr ranging from 1.2 to 13 W m�1 K�1 and no clear evidence for film thickness systematically

affecting kr.

Cross-plane thermal conductivity measurements are more limited. Lee and Cahill [249] first

used the 3w technique to measure the thickness dependence of kz in PECVD grown Si1.0N1.1

having thicknesses from 20 nm to 300 nm to reveal an increase in kz from ⇠0.5 to ⇠0.8 W m�1

K�1 over this thickness range; however, they ascribe this trend to interfacial thermal resistance.

On the other hand, a 180 nm sample grown with atmospheric pressure CVD had a thermal con-

ductivity of ⇠1.5 W m�1 K�1, revealing that differences in deposition process can have much

larger influences on thermal conductivity than film size. Govorkov et al. [282] used a differential

photoacoustic method to measure k of sputter-deposited Si3N4 to be 1.2 W m�1 K�1 for 100 nm,

210 nm, and 420 nm films. Bai et al. [278] used transient thermoreflectance to measure kz of

LPCVD-grown Si3N4 films ranging in thickness from 37 to 200 nm; they found an increasing kz

with thickness, increasing from 1.24 to 2.09 W m�1 K�1. Coquil et al. [280] used the 3w method

to determine kz for a 500 nm thick, PECVD-grown SiNx film to be 1.2 ± 0.4 W m�1 K�1. Hopkins

et al. [97] used TDTR to measure kz to be 3.1 and 3.5 W m�1 K�1 for a 46 nm and 232 nm thick

sample, respectively. Finally, Bogner et al. [281] used a differential 3w method to determine that

kz of Si3N4 increased from 0.8 to 1.7 W m�1 K�1 when film thickness increased from 298 to 1001

nm. For kz, the individual studies revealing a thickness-dependence in kz makes a stronger case

for significant propagon thermal transport. However, like the case for kr, when taken as a whole

there is no obvious trend indicating this is the case, particularly when compared with the evidence

provided for amorphous Si [22]. Furthermore, in addition to differences in deposition conditions,

it is important also to note that stoichiometries of the SiNx in Fig. 7.4 varied significantly; reported

nitrogen content varied from 33 to 57 atomic percentage.

7.2.2 Experimental Details

The samples measured in this study include seven sets of a-SiN:H samples having varying sto-

ichiometries, each set having six samples varying in thickness from nominally 50 nm up to 2 µm,

two sets of a-Si:H samples varying in thickness from nominally 50 nm up to 2 µm, and two sets of
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stoichiometric Si3N4 films. The Si3N4 films include four samples grown via LPCVD and having

film thicknesses ranging from nominally 50 nm to 500 nm and an additional sample grown via

high-temperature CVD (HTCVD); all were grown on (100) Si substrates. The a-SiN:H samples

were grown on (100) Si substrates via PECVD, while a-Si:H samples were grown via PECVD on

(100) Si with an intermediate 49 nm a-SiO2 layer between the film and substrate; this a-SiO2 layer

is necessary as a-Si:H alone does not adhere to the Si substrate. To systematically control the ratio

of N to Si within the a-SiN:H samples, seven sets of samples were grown, each using a constant

SiH4 flow rate of 600 sccm but having a NH3 flow rate ranging from 1500 sccm to 18000 sccm. The

deposition temperature was 400 �C. The set compositions and densities were characterized using a

combined nuclear reaction analysis and Rutherford backscattering (NRA-RBS) measurement per-

formed at the University of Albany Dynamitron Accelerator Laboratory, while Fourier-transform

infrared spectroscopy (FTIR) was used as an auxiliary technique to compliment composition char-

acterization and quantify bond states. Film thicknesses for all a-SiNx:H and a-Si:H samples were

characterized by ellipsometry using a combination of both transparent and absorbing models.

Thermal conductivities were measured using TDTR after depositing an 80 nm Al film onto the

samples to serve as a transducer of optical energy to thermal energy. Pump and probe diameters

were 36 µm and 17 µm, respectively, and the pump modulation frequency was 8.4 MHz; these two

conditions ensure measurement sensitivity is limited to kz rather than kr. In order to avoid estima-

tion of heat capacity, which could potentially vary based on density and stoichiometry, a combined

TDTR and FDTR method was used, as discussed in Chapter 5, to simultaneously measure the

thermal conductivity and volumetric heat capacity of ⇠200 nm thin-film samples for each set of

a-SiN:H samples. For the set of films having ⇠200 nm thicknesses, we use multiple modulation

frequencies to decouple thermal conductivity from volumetric heat capacity, thereby measuring

of both quantities [101, 150, 164, 189]. In this case, the modulation frequencies used were 8.4

MHz, 4.8 MHz, and 1.3 MHz. Using this approach, the heat capacity is determined to range from

⇠1.8 to 2 MJ m�3 K�1 for all a-SiNx:H samples, in agreement with Chen et al.’s measurement of

a-SiNx:H (19.3 at.% H). As a further check, this procedure was performed on all LPCVD-grown

Si3N4 samples; the measured heat capacities fell within 2.0 ± 0.2 MJ m�3 K�1, which equates to
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Figure 7.5: Measured thermal conductivity (k) vs. film thickness for all samples under study:
two sets of a-Si:H samples, seven sets of a-SiN:H samples grown with varying NH3 flow rates
(1500 sccm, 3000 sccm, 6000 sccm, 9000 sccm, 12000 sccm, 15000 sccm, and 18000 sccm), and
CVD-grown Si3N4 samples. For comparison, also included are the results for a-Si obtained in the
previous section. Inset shows thermal conductivity vs. NH3 flow rate for the ⇠200 nm sample and
thickest (⇠1 to 2 µm) sample of each set.

0.71 ± 0.07 J g�1 K�1, in agreement with prior studies on a-SiNx.[267, 271, 272, 285]

7.2.3 Results and Discussion

Figure 7.5 shows the thermal conductivity vs. film thickness for all measured samples; included

for reference is the measured thermal conductivity of a-Si determined in the previous section.

Beginning with the stoichiometric a-Si3N4 samples, the measured k for a 50 nm, 250 nm, and two

500 nm films grown via LPCVD were all approximately equivalent at ⇠2.1 – 2.3 W m�1 K�1 with

no clear thickness dependence. However, the Si3N4 sample grown with HTCVD was measured to

have a k of 1.95 W m�1 K�1. Next, for the a-SiN:H samples we observe that all sets possess a

thickness-independent thermal conductivity of ⇠1 W m�1 K�1. There is a minor dependence on

thermal conductivity with NH3 flow rate, showing that samples fabricated with higher NH3 flow

rates generally possess higher thermal conductivities by as much as 25%. This is shown in the
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inset to Fig. 7.5, where the thermal conductivity relation with NH3 flow rate is plotted for the 200

nm and thickest sample (nominally 1 to 2 µm) for each set. No matter the thickness, a general

increasing relation between k and increasing NH3 flow rate is observed. Nevertheless, for each

individual series there is no observable increase in k with increasing film thickness. This finding

is in contrast to the a-Si:H samples, which show an increasing k with increasing film thickness.

The size effects observed for a-Si:H are less pronounced than the a-Si samples, suggesting that

the addition of hydrogen is restricting the propagon thermal transport to some extent. This idea is

in conceptual agreement with the findings of Liu et al. [132], who note that for an 80 µm thick,

a-Si:H sample having 1 at.% H, the thermal conductivity measured with TDTR is modulation-

frequency dependent and at low frequencies agrees with 3w measurements of k = 4.5 W m�1

K�1 at room temperature; their TDTR results indicate that propagons having mean free paths

between 162 and 612 nm contribute ⇠ 40% of k [132]. On the other hand, the thinnest a-Si:H films

measured in this study fall within the expected diffuson-dominated thickness regime established for

a-Si. Interestingly, these samples possess a higher thermal conductivity than the a-Si, suggesting

hydrogenation is enhancing the diffuson contribution to k in a-Si:H. Note that this is common to

both sample sets, despite deviation in k at larger film thicknesses between the sets. The a-Si:H

results indicate that, while hydrogen can affect the ability of propagons to contribute to thermal

conductivity, it does not eliminate them completely. Therefore, we cannot attribute the lack of size

effects observed in the case of a-SiN:H to hydrogen alone.

In order to further understand the role of hydrogen on the thermal conductivity of a-SiNx:H,

we thermally annealed the samples to remove hydrogen. Three sets of a-SiNx:H were chosen to

anneal: the 1500 sccm NH3 series, the 9000 sccm NH3 series, and the 18000 sccm NH3 series,

representing the low, median, and high NH3 flow rate conditions used in deposition. Samples

were annealed in an argon-filled tube furnace for 4 hours at four different annealing temperatures:

650 �C, 775 �C, 900 �C, and 1000 �C. The samples were then characterized for composition via

NRA-RBS and FTIR. Additionally, for the nominally 200 nm thick samples in each NH3 flow rate

series, FTIR and ellipsometry via IR-VASE were used to determine the film thickness. Finally,

TDTR was used to measure the thermal conductivity of each sample. Table 7.1 shows the resulting
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Table 7.1: Properties of annealed a-SiNx:H samples. RBS was used to measure at. % N, at. % Si,
at. % H, and coordination number, hri. Thickness (d) was measured in two ways, FTIR and
ellipsometry via IR-VASE. Thermal conductivity was measured via TDTR.
Anneal Temperature (�C) % N % Si % H hri d (nm), FTIR d (nm), IR-VASE k (W m�1 K�1)

1500 sccm NH3 series
as deposited 28.5 51.4 20.1 3.11 194 190 0.89 ± 0.09

650 30.2 67.6 2.2 3.63 171 146 1.46 ± 0.16
775 33.2 66.6 0.2 3.66 161 - 1.88 ± 0.22
900 32.7 67.1 0.2 3.67 158 - 1.90 ± 0.22

1000 34.0 66.0 0.0 3.66 147 138 2.63 ± 0.39
9000 sccm NH3 series

as deposited 37.7 36.4 26.0 2.84 171 175 0.98 ± 0.08
650 44.4 45.8 9.8 3.26 168 171 1.41 ± 0.12
775 49.5 44.3 6.2 3.32 144 - 1.41 ± 0.15
900 50.4 48.4 1.2 3.46 132 - 1.58 ± 0.18

1000 48.8 51.2 0.0 3.51 131 139 2.25 ± 0.29
18000 sccm NH3 series

as deposited 43.4 30.8 25.8 2.79 176 191 1.14 ± 0.08
650 52.3 38.2 9.6 3.19 157 181 1.42 ± 0.12
775 50.2 42.1 7.7 3.27 142 - 1.50 ± 0.14
900 54.8 42.5 2.7 3.37 137 - 1.88 ± 0.19

1000 55.0 45.0 0.0 3.45 143 168 2.13 ± 0.24

compositions, thicknesses, and thermal conductivities for the nominally 200 nm thick samples

of each series as deposited and at each annealing temperature. Note that upon annealing, the

films shrink significantly in size to compensate for the loss of hydrogen. This observation is in

agreement with that of previous studies on annealed a-SiNx:H films [287, 288]. Figure 7.6 shows

the resulting thermal conductivity as a function of annealing temperature for these samples to

reveal a systematic increase in thermal conductivity with annealing temperature; at the highest

annealing temperature of 1000 �C, k increases by 200 to 250 % from the as-deposited samples.

Furthermore, for all annealed samples, the measured thermal conductivities showed no observable

thickness dependence.

To understand the relationship between k and annealing temperature, we turn to the compo-

sitional analysis of the post-annealed samples. NRA-RBS reveals that the as-deposited samples

possess significant differences in stoichiometry stemming from the deposition with varying NH3

flow rates. The 1500 sccm NH3 flow rate case proved to be Si-rich with 51.4 at.% Si and 28.5
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Figure 7.6: Measured thermal conductivity (k) vs.annealing temperature for a-SiN:H samples for
three sample sets: the high and low sccm NH3 cases (1500 and 18000 sccm, respectively) and one
in between (9000 sccm).

at.% N, while the 18000 sccm NH3 case proved to be N-rich with 30.8 at.% Si and 43.4 at.% N.

However, the hydrogen content did not vary as heavily; in fact, the 9000 sccm NH3 and 18000

sccm NH3 cases show nearly identical H content of ⇠26 at.%, suggesting a limit to the hydrogen

content achievable through this deposition procedure. At the low end, the 1500 sccm NH3 series

has a hydrogen composition of only ⇠ 20 at.%. Upon annealing, however, the hydrogen content

can be further reduced. Beginning with the 1500 sccm NH3 case, annealing at 650 �C significantly

reduces the hydrogen, from 20.1 to just 2.2 at.%. The corresponding change in thermal conductiv-

ity is 0.89 to 1.46 W m�1 K�1. While a substantial increase, this is still a relatively low thermal

conductivity compared to the next annealed cases; at 775�C and 900�C annealing temperatures,

the hydrogen is reduced to just 0.2 at.% and the corresponding thermal conductivities measured

are 1.88 and 1.90 W m�1 K�1, respectively. Annealing out the final, seemingly insignificant, 0.2

at.% H at 1000�C proves to have a significant effect on thermal conductivity, increasing it to 2.63.

This final composition is a Si-heavy Si0.66N0.34 stoichiometry. For the 9000 sccm NH3 case, an-

nealing at 650 �C, 775 �C, 900 �C, and 1000 �C diminishes the hydrogen percentage from 26.0



CHAPTER 7. AMORPHOUS THIN FILMS 169

(b)(a)

(c) (d)

Figure 7.7: Measured thermal conductivity (k) vs. (a) atomic % Hydrogen, (b) atomic % Nitrogen,
(c) atomic % Silicon, and (d) coordination number for the same samples shown in Fig. 7.6.

to 9.8, 6.2, 1.2, and 0 at.%, increasing the thermal conductivity from 0.98 to 1.41, 1.41, 1.58, and

2.25 W m�1 K�1, respectively. The final composition in this case is a nearly equal ratio of Si and

N, Si0.51N0.49. Finally, for the 18000 sccm NH3 case, annealing at 650 �C, 775 �C, 900 �C, and

1000 �C diminishes the hydrogen percentage from 25.8 to 9.6, 7.7, 2.7, and 0 at.%, increasing

the thermal conductivity from 1.14 to 1.42, 1.50, 1.88, and 2.13 W m�1 K�1, respectively. The

final composition in this case is a close to stoichiometric ratio of Si and N, Si0.45N0.55. Stoichiom-

etry proves to have a significant impact on the thermal conductivity of SiNx, increasing with Si

concentration.

Recasting the thermal conductivity as a function of composition, Fig. 7.7 shows k vs. (a)
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(b) (c)

Figure 7.8: FTIR spectrum for a-SiN:H samples annealed from 650 to 1000 �C for the (a/d) 1500
sccm NH3 series, (b/e) 9000 sccm NH3 series, and (c/f) 18000 sccm NH3 series.

at.% H, (b) at.% N, (c) at.% Si, and (d) coordination number, hri. Hydrogen content proves to be

a good predictor of the thermal conductivity for all samples regardless of Si and N stoichiometry,

showing a decreasing trend with increasing hydrogen content. As a function of nitrogen composi-

tion, k generally increases with increasing at.% N. Similarly, as a function of silicon composition,

k increases monotonically with increasing at.% Si for the 9000 sccm NH3 and 18000 sccm NH3

cases. On the other hand, the 1500 sccm NH3 case does not show this trend. Annealing beyond 650
�C in this case results in an increase in at.% N while the at.% Si remains nearly constant. Finally,

for each set, within uncertainty k increases monotonically with increasing coordination number,

in agreement with what has been observed for a-Si[O/C]:H [266] and amorphous fluorocarbons

[289]. Conceptually, the increase in coordination number is indicative of increasing the covalently

bonded Si-N network, which is directly indicative of elastic properties and sound speeds of the

system [289]. Beyond the direct contribution of improved elastic properties to thermal conductiv-

ity, the aforementioned a-Si[O/C]:H samples showed that increases in coordination number lead to

higher vibrational mean free paths through a longer network for heat to traverse [266].
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While RBS gives a direct measurement of the elemental composition of each sample, FTIR

is used to further quantify the hydrogen reduction to show the specific bonds being dissociated

during annealing. Figure 7.8 shows the FTIR spectra obtained for samples listed in Table 7.1 over

the range of (a)-(c) 400 to 2000 cm�1 and (d)-(f) 2000 to 4000 cm�1, separated as such to rescale

the magnitude to emphasize the relevant peaks corresponding to particular bonds. Specifically,

Fig. 7.8(a) and (d) show the absorption spectra for the 1500 sccm NH3 sample as-deposited and

annealed at 650 �C, 775 �C, 900 �C, and 1000 �C, Fig. 7.8(b) and (e) show the same information

for the 9000 sccm NH3 case, and Fig. 7.8(c) and (f) show this for the 18000 sccm NH3 case.

Referring first to the 400 to 2000 cm�1 window, a strongly IR-sensitive Si-N stretching mode

[290] is observed around 830 - 890 cm�1. Secondary peaks above 1000 cm�1 result from substrate

effects, likely due to SiO stretching modes [290] within the underlying Si substrate. Although the

peak near 1200 cm�1 has been observed in previous studies of a-SiN:H films [291] and attributed

to a bending mode in the Si-NH-Si group [292], the presence of this peak in the 1000 �C annealed

cases, where RBS confirms no hydrogen presence, indicates this is not the case. Within the 2000

to 4000 cm�1 window, an SiH stretching mode [290] is observed around 2100 - 2200 cm�1. In

particular, absorption near 2150 cm�1 and 2300 cm�1 has been attributed to the stretching modes

of Si-H2 and/or (Si-H2)n chains (n � 2), and Si-H3 [291, 293], so the wide spectra around this peak

observed in the as-deposited cases likely stem from a combination of these bonds. An additional

NH stretching mode [290] is observed near 3350 cm�1 for all as-deposited samples. Finally, there

is also a C-H peak labeled that we attribute to minor surface contamination. Upon annealing to 650
�C, both the Si-H and N-H peaks are significantly reduced in magnitude relative to the Si-N peak,

supporting the conclusion obtained from RBS that hydrogen is leaving the film and additional

Si-N bonds are being formed to increase coordination number. For all samples, each subsequent

anneal leads to a further decrease in Si-H and Ni-H bond peak intensities. The Ni-H bond appears

to dissociate more readily than the Si-H bond, as evidenced by the lower annealing temperature

necessary to reduce this peak to background noise. This is in agreement with predictions from Yin

and Smith [294] based on a free energy model, as well as observation by Chen et al. [252] on

similar a-SiN:H films. We find that the N-H peak is reduced to the level of background noise at
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annealing temperature of 650 �C, 775�C, and 900 �C for the 1500 sccm NH3, 9000 sccm NH3, and

18000 sccm NH3 cases, respectively, while the Si-H peak is not reduced to noise level until 775�C

for the 1500 sccm NH3 case and 1000�C for the other two cases. Overall, the FTIR spectra reveal

that hydrogen bonding is, within measurement sensitivity, nonexistent when annealed to 1000 �C

for all samples, corroborating RBS conclusions.

No significant size effects were observed on the thermal conductivity of a-SiN:H samples ei-

ther before or after annealing, in agreement with results for the stoichiometric a-Si3N4 samples

measured in this study. As mentioned previously, several prior studies present evidence for size-

dependent thermal conductivities in a-SiNx samples. Lee and Cahill [249] used a 3w measurement

to report effective thermal conductivities that increase with thickness, but argue against intrinsic

size effects in the thermal conductivity of the films by accounting for thermal boundary resistance

between both the heater/film and film substrate. Indeed, Lee and Cahill also observed size ef-

fects in the effective thermal conductivity of a-SiO2 thin films, which we showed in the previous

section to lack when considering interface resistances. Bogner et al. [281] also observed thickness-

dependent thermal conductivities for a-Si3N4 films measured by differential 3w , which could be

due to the same thermal boundary resistance argument. On the other hand, Bai et al. [278] used

a transient thermoreflectance to measure a thickness-dependent thermal conductivity of a-Si3N4

films and account for the interface resistance between the transducer and sample in their model.

The authors suggest that microstructure could be a factor in the observed thickness dependence,

noting that the density of their films was relatively low at 2.2 g cm�3; for comparison, the LPCVD

Si3N4 films measured here had a density of 2.8 g cm�3.

One potential effect on thermal conductivity to consider is the internal stress of the films, as the

thicker films showed cracked regions on the order of hundreds of microns to millimeters after an-

nealing. As-deposited a-SiN:H films have an estimated stress of <0.4 GPa. The coefficient of ther-

mal expansion mismatch between the a-SiNx:H film and Si substrate is ⇠2 ppm/�C. Multiplying

this by the maximum anneal temperature of 1000 �C and the elastic modulus (⇠200 GPa) provides

an estimated stress increase of 0.4 GPa, resulting in a total estimated stress of ⇠0.8 GPa. This falls

within the range (0.2 - 0.85 GPa) that Ftouni et al. [272] showed resulted in a stress-independent
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thermal conductivity for a-SiNx membranes. However, Alam et al. [285] showed that an applied

mechanical strain can significantly reduce the thermal conductivity of a-SiNx membranes. The

estimated strain in our films, as determined by the internal stress divided by elastic modulus, is

at most ⇠0.4 % without accounting for potential strain relaxation upon cracking, which falls in

line with that of reported a-SiNx films fabricated with PECVD. [249, 279] and LPCVD [269, 278].

Alam et al.’s results indicate that a strain of this amount could result in a decrease in thermal con-

ductivity by as much as 20%, in contrast to what Ftouni et al. described. Nonetheless, the a-Si:H

films, having similar levels of internal stresses (as deposited stress is ⇠0.45 GPa), prove that strain

will not diminish potential size effects on thermal conductivity. Taken together, the lack of size

effects observed for samples in this study suggest the thermal conductivities are diffuson-limited

with no significant contribution from propagons.

In summary, in this section we showed that the thermal conductivity of a-SiN:H is highly

dependent on stoichiometry and hydrogen composition. It is well known that PECVD growth

of a-SiNx films lead to high hydrogen concentrations [295]. As we determined in this section,

no matter the flow rate of NH3 used in deposition (1500 to 18000 sccm NH3 was used in this

study), the resulting films having hydrogen compositions ranging from 20 to 26 at.% possess a

thermal conductivity of ⇠1 W m�1 K�1. However, thermally annealing the films proves to reduce

hydrogen content to increase coordination number, resulting in increased thermal conductivities

of 2.6 W m�1 K�1 for Si-rich Si0.66N0.34 and 2.1 W m�1 K�1 for near-stoichiometric Si0.45N0.55.

This points to a clear methodology for manipulating the thermal conductivity within this range

based on the use of hydrogenation and thermal annealing.

7.3 Summary

In this chapter, I studied the role of size and composition on the thermal conductivity of amor-

phous thin films. I first investigated thickness-limited size effects on the thermal conductivity of

amorphous silicon thin films ranging from 3 – 1636 nm grown via sputter deposition. While ex-

hibiting a constant value up to ⇠100 nm, the thermal conductivity increases with film thickness
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thereafter. This trend is in stark contrast with previous thermal conductivity measurements of

amorphous systems, which have shown thickness-independent thermal conductivities. The thick-

ness dependence demonstrated is ascribed to boundary scattering of long wavelength vibrations

and an interplay between the energy transfer associated with propagating modes (propagons) and

non-propagating modes (diffusons). A crossover from propagon to diffuson modes is deduced to

occur at a frequency of ⇠1.8 THz via simple analytical arguments. These results provide em-

pirical evidence of size effects on the thermal conductivity of amorphous silicon and systematic

experimental insight into the nature of vibrational thermal transport in amorphous solids. Next, I

investigated the role of stoichiometry and hydrogen concentration on the thermal conductivity of

amorphous hydrogenated silicon nitride thin films to show that in heavily hydrogenated samples

(>20 at.% H), the thermal conductivity is limited to ⇠1 W m�1 K�1. Thermally annealing the

samples induces chemical dissociation of hydrogen bonds to effuse hydrogen out of the sample, in

turn increasing the coordination number and thermal conductivity. Upon full annealing to 0 at.%

H, the thermal conductivity is higher for Si-rich Si0.66N0.34 samples at 2.6 W m�1 K�1, while

near-stoichiometric Si0.45N0.55 has a size-independent thermal conductivity of 2.1 W m�1 K�1.
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Chapter 8

Summary and Future Projects

The continuing progress in modern technologies has been fueled by device miniaturization and

the engineering of material properties through compositional and configurational disorder. Under-

standing the fundamental behavior of heat carriers and how they are affected in the presence of

such disorder is pivotal for the thermal management of a wide array of applications ranging from

microelectronics to hypersonic aircraft design. This dissertation presented three studies outlining

the effects of configurational and compositional disorder on the thermal conductivity of crystalline

and amorphous materials. It was shown that extreme disorder leads to amorphous-like thermal

conductivities in crystalline, entropy-stabilized oxides. Bulk high-entropy ceramics – including

oxides, carbides, borides, and silicides – proved to have significantly reduced thermal conductivi-

ties relative to constituent components that can be further affected by microstructure. In amorphous

materials, it was shown that amorphous silicon lacking compositional disorder could possess a

significant contribution to thermal conductivity from propagating modes, an attribute typically as-

sociated with crystalline solids. On the other hand, when compositional disorder is introduced as

investigated through hydrogenated amorphous silicon nitride, the thermal conductivity, no longer

possessing such contribution from propagating modes, proves to be heavily dependent on hydro-

gen content and the coordination number; thermal annealing provides a means to systematically

reduce hydrogen content to increase thermal conductivity.
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8.1 Summary

In Chapter 2, the core concepts and mathematical equations governing heat conduction were

reviewed. The macroscale picture of heat diffusion based on Fourier’s law of heat conduction, to

be applied in depth in Chapters 3 and 4 for interpreting experimental data, was first introduced.

Thereafter, a simple derivation of a kinetic theory model for a microscale description of thermal

conductivity was outlined. Applying this kinetic theory model to crystalline solids, the various

phonon scattering mechanisms to be applied in Chapters 5 – 7 were reviewed. Next, a review

of thermal transport in amorphous materials was considered and the “minimum limit” to thermal

conductivity was derived. Furthermore, a review of the vibrational mode characterization in amor-

phous materials was used to introduce the concept of locons, diffusons, and propagons in order to

motivate the study of amorphous solids presented in Chapter 7.

Chapter 3 provided a detailed overview of time- and frequency-domain thermoreflectance

(TDTR and FDTR). The experimental details of the combined TDTR/FDTR apparatus used through-

out this work were presented. Thereafter, the core concepts of TDTR and FDTR were outlined,

followed by a detailed derivation of the physical temperature rises and lock-in amplifier responses

that occur during experiment. An emphasis was placed on the thermal penetration depth and

steady-state temperature rise that occurs during realistic experimental conditions. The generaliza-

tion of the derivations provided ensures that solutions can be obtained for arbitrary pump and probe

temporal and spatial functions.

In Chapter 4, a new experiment, steady-state thermoreflectance (SSTR), was proposed and im-

plemented. The experiment is based on applying long exposure to a constant laser heat flux so

that a steady-state temperature rise is obtained; a probe laser is used to measure the resulting tem-

perature rise in the material based on the resulting change in reflectivity. The experimental details

of the apparatus were provided and all mathematical details were derived in Appendix A. Using

SSTR, samples having thermal conductivities ranging from 1 to >2000 W m�1K�1 were measured

and shown to have excellent agreement with literature values and measurements by TDTR. This

technique was applied to the bulk materials studied in Chapter 6.
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Chapter 5 introduced the first study of how extreme configurational disorder affects the thermal

conductivity of entropy-stabilized oxides (ESOs). Manipulating a crystalline material’s configu-

rational entropy through the introduction of unique atomic species can produce novel materials

with desirable mechanical and electrical properties. From a thermal transport perspective, how-

ever, large differences between elemental properties such as mass and interatomic force can re-

duce the rate at which phonons carry heat and thus reduce the thermal conductivity. Measuring

the structural, mechanical, and thermal properties of single-crystal ESOs, Chapter 5 revealed that

local ionic charge disorder can effectively reduce thermal conductivity without compromising me-

chanical stiffness. These materials demonstrate similar thermal conductivities to their amorphous

counterparts, in agreement with the theoretical minimum limit, resulting in this class of material

possessing the highest ratio of elastic modulus to thermal conductivity of any isotropic crystal.

In Chapter 6, the thermal conductivities of four classes of novel bulk high-entropy ceramics

– high-entropy fluorite oxides, borides, carbides, and silicides – were reported to build on the

understanding of how configurational disorder affects thermal transport. Specifically, the role of

microstructure, including grain orientation and phase segregation, on the thermal conductivity was

quantified using TDTR-based thermal conductivity imaging. It was found that 4- and 5-cation flu-

orite oxides possessed low thermal conductivities on the order the ESOs from Chapter 5, 1 to 2 W

m�1 K�1. High-entropy carbides exhibited reduced thermal conductivities relative to their binary

constituent carbides, but maintained relatively high thermal conductivities at ⇠10 W m�1 K�1 that

showed only a minor dependence on microstructure. The high-entropy boride studied was able

to maintain an even higher thermal conductivity of ⇠25 W m�1 K�1, although still significantly

reduced relative to constituent diborides. There was found to be large variation in local thermal

conductivity attributed primarily to residual oxide phases. Finally the high-entropy silicide studied

showed a moderate thermal conductivity of ⇠7 W m�1 K�1, again reduced relative to constituent

disilicides. Taken together, this chapter further emphasized the effect of configurational disorder

on reducing the thermal conductivity of high-entropy ceramics, while revealing that microstructure

can further reduce the local thermal conductivity in these systems.

In Chapter 7, the role of size and composition on the thermal conductivity of amorphous ma-
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terials was investigated. Amorphous silicon thin films ranging from 3 – 1636 nm were determined

to have a constant thermal conductivity up to ⇠100 nm and an increasing the thermal conductivity

with film thickness thereafter. This trend contrasts with previous thermal conductivity measure-

ments of amorphous systems, which have shown thickness-independent thermal conductivities.

The thickness dependence was ascribed to boundary scattering of long wavelength vibrations and

an interplay between the energy transfer associated with propagating modes (propagons) and non-

propagating modes (diffusons). A crossover from propagon to diffuson modes was deduced to

occur at a frequency of ⇠1.8 THz via simple analytical arguments. Next, the role of stoichiom-

etry and hydrogen concentration on the thermal conductivity of amorphous hydrogenated silicon

nitride thin films was investigated. It was found that in heavily hydrogenated samples (> 20%),

the thermal conductivity is limited to ⇠1 W m�1 K�1 and size-independent. Thermally annealing

the samples increased the thermal conductivity up to 2.6 W m�1 K�1. This increase is attributed

to an increase in coordination number resulting from chemical dissociation of hydrogen bonds to

effuse hydrogen out of the sample.

8.2 Opportunities for Future Investigation

• Thermal diffusivity measurements using SSTR - In Chapter 4, I discussed the SSTR tech-

nique as a new tool to measure thermal conductivity of bulk materials. The technique re-

lies on modulating the pump at a low enough frequency to induce a long-lived steady-state

temperature rise. In this steady-state regime, only thermal conductivity dictates the temper-

ature rise of the material; thus, we ignore the transient temperature rise that comes before

the steady-state is reached. However, there is useful information contained in this transient

regime – namely, the thermal diffusivity. Analogous to the laser flash method, one can use

this transient rise time to determine a material’s thermal diffusivity. The periodic waveform

analyzer makes this transient regime possible to capture as a function of time. Furthermore,

to ensure this rise time is slow enough to capture for highly diffusive materials, one can in-

crease the pump diameter and lower the frequency, both of which increase the time to reach
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steady-state.

• Exploring the composition space of a-SiOx - In Chapter 7, I discussed how size and com-

position can both influence thermal conductivity of a-Si and a-SiNx:H to reveal the influence

of propagons on thermal transport. In this study, we could not vary the nitrogen content

enough to explore the full bounds of composition space between a-Si and stoichiometric

a-Si3N4. Perhaps a better candidate for this study is a-SiOx, where x varies from 0 to 2.

At room temperature, a-Si shows an unambiguous increase in thermal conductivity with film

thickness, whereas a-SiO2 shows unambiguous constant thermal conductivity with thickness.

The obvious question then is, at what concentration of O does this lack of size effects occur?

Answering this question could advance our understanding of propagon thermal transport.

• Size effects on the thermal conductivity of amorphous multilayers - As an additional

follow on to Chapter 7, it would be very interesting to understand how interfaces affect the

thermal conductivity of multilayers of amorphous materials that support propagons. For

example, if a-Si is grown in layers with a-SiO2, do propagons scatter with the a-SiO2 so

that no size effects in thermal conductivity are observed? Is there a critical thickness of

SiO2 necessary for this to occur? Can amorphous multilayers show evidence for coherent

(wave-like) to incoherent propagon (particle-like) regime akin to what has been shown in

crystalline superlattices? Answering these questions would further the current understanding

of vibrational modes and thermal transport in amorphous materials.
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Appendix A

Transient Temperature Rise in SSTR

In Chapter 3 we derived an expression to describe the surface temperature induced by a heating

event with an arbitrary time-dependence. The temperature of the top surface as a function of radius

and time is given by Eq. 3.36. The same procedure is used to determine the solution to the transient

response, but to do so we must modify the laser heat flux function to start at time t = 0. Therefore,

we apply the Heaviside step function, u(t), so that the source term for a CW source becomes

G(t) = A0 u(t), (A.1)

where A0 is the absorbed power. The Fourier transform is

G̃(w) = A0p
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(A.3)
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Integration is done numerically. In order to simplify the integration procedure, we expand L̃(r,w)

so that the first term in Eq. (A.3) becomes
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where
˜
Pt is a time-dependent function defined by

˜
Pt(k, t) =�

Z •

�•

0

@
D̃⇠ (k,w)

C̃⇠(k,w)

1
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The final term in Eq. (A.3) can be shown to take a similar form so that
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where
˜
P0(k) is a time-independent function defined by

˜
P0(k) =�

Z •
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The probe-averaged change in reflectance is the integration over the gaussian intensity in real

space. This probe averaged temperature rise, TPA is given by
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This expression can then be simplified to
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With P0 and Pt defined above, it straightforward to numerically integrate this expression to obtain

the transient temperature rise.
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