
1

Canary-Coalminer Bot: Measuring Messaging Latency

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Daniel Zhao
Fall, 2022

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines
for Thesis-Related Assignments

Signature __ Date __________

Daniel Zhao

Approved __ Date __________

Briana Morrison, Department of Computer Science

2

ABSTRACT
Wickr is a business-oriented, secure end-to-end encrypted
messaging platform that lacked a tool to measure and report on
message latency. Engineers were reactively, rather than
proactively, addressing issues that could cause a downtime in
service. As an intern last summer, I designed a pair of bots to
continuously send ping messages and measure the delay in send and
receive times. I built the bot pair on the Wickr Bot API, a library of
commands and functions that allowed the creation of bot users, and
deployed onto the Wickr client so it could emulate real-time user
messaging. The project demonstrated successful measurements and
visualization of latency data to help engineers diagnose system
health. Further improvements to the bot pair would focus on being
able to diagnose the latencies of each individual step in the
messaging process, as well as adapting the bot pair to more metrics
for insight into other aspects of the system.

1. INTRODUCTION
A common issue with all communication tools is the potential for
messaging failure and lag. The culprits can vary from a crashing
server, high network traffic slowing messages, or back-end issues
slowing down message reception. In all of these cases, the
symptoms manifest as trouble for users. Personally, I have had
countless issues with Facebook Messenger failing to send
messages, but this issue is prevalent through all kinds of messaging
systems, such as IMessage, SMS, email, WhatsApp, etc. This
problem was the motivation for my summer project, since Wickr
also faces this messaging failure problem, especially as it is
relatively novel and rapidly developing. At the time, there was no
tool that engineers could use to measure message latency or failure.

2. RELATED WORKS
Various methods of measuring latency has already been used and
compared. Friston, et. al (2014) attempted to measure latency in
virtual environments with frame counting and Steed’s algorithm.[2]
However, to fully apply techniques, I had to adapt to network
latency measurements as Underwood, et. al (2018) did, which
found that measuring network performance is equivalent to
measuring the change in variation in the latencies. [4]

Many services now are being containerized due to the low overhead
needed to scalably support micro-services. One tool that solves the
virtualization problem effectively is Docker. Potdar, et. al (2020)
found that Docker outperforms a standard virtual machine in RAM
speeds, Disk operations, CPU usage, compression speed, etc.[3]
This positions Docker as the best possible tool for deploying
microservices such as the Canary-Coalminer bot pair.

3. PROJECT DESIGN
The project is built on the two foundations: the Wickr Pro
messaging system, and the WickrIO API platform. The messaging
system hosts and gives a user-interface for the bots, while the API
platform provides the code-base and deployment necessary to
create Wickr bots – vital for ping latencies since message
communication exists on these foundations. The bot would also be
incorporated with AWS services to allow for data visualization and
real-time alerts.

3.1 Wickr Architecture
Wickr is built on AWS infrastructure, key components are deployed
through EC2 (Elastic Compute Cloud) instances, such as the central
message processor and servers, as well as SQS (Simple Queue
Service) for message ordering, RDS (Relation Database Service)
for message storage, and many more components. A key subgroup
of Wickr is Wickr Integrations, otherwise known as WickrIO,
which is an API that handles development and deployment of Wickr
bots, and the team that I worked closely with.

WickrIO integrations are built on NodeJS and hosted on custom
Docker images. All integrations consist of creating bot users
through an admin dashboard (Fig 1), loading the necessary code
onto the integration, and then interacting with the bot using
commands in any chatroom the bot resides in. Although the
WickrIO system is proprietary to Wickr, it still allows integrations
with third party software, such as AWS compatibility, and thus
offers powerful capabilities.

Figure 1: WickrIO Bot Client Creation Page.

3.2 Bot Design
Prior to my project, the Wickr DevOps team began creating a pair
of bots that could expose the message latency. The goal was to
create an internal tool that existed on the Wickr client to measure
and send data to Prometheus, a data visualization tool. The project
was able to produce a working bot-pair; however the team quickly
discovered a host of developmental issues and dependency
problems. More precisely, due to miscommunication between the
DevOps and Bots teams, this early version of the Canary Bot
project utilized a legacy API for the bot’s development. The bot
would periodically crash and eventually stop sending data, so the
first attempt at message diagnostics was shelved. Though it had
many problems, this first bot was well-designed and well-
architected, and I ended up designing my solution based on this
iteration. I expanded upon the design of the previous iteration of the
Canary-Coalminer bot through a few key design choices.

First, because Wickr is hosted entirely on AWS Cloud
infrastructure, I architected all components to use native AWS
components as it was more sensible and secure. Secondly, I could
improve the utility and scalability of the bot by updating to the most
recent API version and designing with a factory design pattern. And
lastly, I integrated the bots with native dashboard visualization and
metric alarming to decrease response time of engineers in critical
events. The final design consisted of two bots communicating with
each other, one to send messages – the canary, and another to
process the messages and create data points – the coalminer.

3

3.3 Key Functionality
The architecture for the Canary-Coalminer bot includes:

• Canary Instance
• Coalminer Instance
• CloudWatch
• SNS
• IAM Role
• IAM Policy

Figure 2 shows the design of the bot architecture. There are two
bots, each hosted on their own instance, in any region. The
Coalminer interacts with AWS resources in order to provide
engineers insights, such as with metric analysis and alarms. In order
to connect, however, the EC2 instance must contain an IAM Role
and Policy that gives the bot special privileges to interact with
CloudWatch and SNS. The CloudWatch and SNS resources reside
in the same region as the Coalminer. CloudWatch is the primary
data visualization and alert tool. SNS provides the functionality to
notify engineers of bot downtime, latency spikes, or other alarming
scenarios. An SNS Topic is an endpoint provided for the alarm to
send messages. Often, it is an email endpoint, but can also be texts,
SQS queues, HTTP/HTTPS endpoints, etc.

Figure 2: Canary-Coalminer Architecture.

The Canary and Coalminer instances interact with both the user and
CloudWatch. After creating and starting the two bots, the user can
initiate a connection by calling \register <canary-name to the
Coalminer bot, at which point a SYN-ACK handshake is created
between the two bots; the Coalminer attempts to register with the
Canary, and the Canary will confirm with the Coalminer after it has
been registered.

Figure 3: Canary Ping Design.
Canary-Coalminer Bot: Measuring Messaging Latency

After registering, the Canary will start pinging all the registered
Coalminers at regular intervals with pertinent data, including the
timestamp and ID of the ping. The Coalminer takes this pinged data
and processes it to create latency data, missing and out-of order
message counts, and message send-error counts. The data is then
sent to CloudWatch metrics through the PutMetricData API call.
The metric data resides in CloudWatch as pure data points, but also
automatically sent to customized data dashboards for quick
visualization. As seen in Figure 3, a canary will repeatedly ping the
Coalminers, and each will process the data to send to CloudWatch.

The advantages of modular bots are that each Coalminer can be
hosted in a different region from each other and from the Canary.
This allows engineers to gather latency data from multiple regions
using a 1-many design, and can help diagnose how latency is
affected by the region the Coalminer is hosted in. The user can also
create alarm notifications through the bot by using commands to
provision SNS topics or in-house ticketing. These alarms will send
warnings to the subscribed endpoints when a metric is acting
unusual. For example, if the latency peaks for the past 2 out 3 data
points, a message can send to engineers to notify them.

3.4 Challenges
Many challenges arose due to the coupling between the WickrIO
infrastructure and the server-API endpoints. Many times
throughout the project, the bot would crash due to back-end server
failures, and because WickrIO bot clients are not able to
automatically restart themselves, valuable data and alarming
functionality is lost in the downtime. The bot pair is not designed
to notify when the server has issues, which also limits its
functionality. Only small patches can be done, such as an alarm to
notify when data is no longer being processed. Occasionally, when
the bot performed a maintenance reset, it would max out on CPU
usage and thus be unable to perform any more functionalities.

4. RESULTS
The bot-pair was deployed in the alpha environment with
connections to two separate regions, as well as in the beta
environment in one region. At time of departure, the bots were

4

actively running in these two environments, with automatic
provisioning support for CloudWatch dashboards and alarms. The
bots also supported notification alerts through SNS topics and
Simple Issue Management (SIM) ticketing. Now, with the bots
implemented, high latency or downtime that engineers would have
been reactively mitigated can now be preemptively fixed before any
customers are exposed to the consequences. Thus, the bots achieved
the goal of decreasing the response time for engineers.

5. CONCLUSION
I architected and implemented a tool to measure and analyze
message latency metrics on using WickrIO and NodeJS. The bot-
pair is capable of sending pings between different AWS regions and
measuring the holistic delay involved in receiving these pings.
These measurements were then sent to a dashboard featuring
number gauges and percentile summaries to make the data more
available and usable for engineers. By decreasing engineer
response time and preemptively alerting of system downtime, the
bot-pair demonstrated its functionality as a vital component in the
diagnostic toolset that Wickr needed.

Although the tool is theoretically simple and straightforward, it
nonetheless is important in measuring system latency and
throughput. All network related systems desire low latency and
high bandwidth/throughput, and so mature network systems will
invest into proper diagnostic tools to maintain these standards. The
system I created is important due to its purpose of filling this niche,
while also streamlining data visualization and analysis.

6. FUTURE WORK
The major area of improvement for the bot-pair would be to
decompose the latency metrics. Essentially, the ping metrics are
holistically generated simply as the difference between the time
received and the time sent. This unfortunately ignores the details of
what sub-process is causing delays, such as a specific server
endpoint, or the host experiencing slowdowns on its own system.
The ability to subdivide latency into network, processing, and
computational delay has already been proven [1]. Thus, being able
to pinpoint which server-API endpoint or back-end process is
causing the delay will help engineers troubleshoot and fix problems
much more quickly.

REFERENCES
[1] K. Chen, P. Huang, and C. Lei. 2009. Effect of Network Quality
on Player Departure Behavior in Online Games. IEEE Transactions
on Parallel and Distributed Systems 20, 5 (2009), 593–606.
https://doi.org/10.1109/TPDS.2008.148

[2] S. Friston and A. Steed. 2014. Measuring Latency in Virtual
Environments. IEEE Transactions on Visualization and Computer
Graphics 20, 4 (2014), 616–625. https:
//doi.org/10.1109/TVCG.2014.30

[3] A. Potdar, N. D G, S. Kengond, and M. Moin Mulla. 2020.
Performance Evaluation of Docker Container and Virtual Machine.
Procedia Computer Science 171 (2020), 1419–1428.
https://doi.org/10.1016/j.procs.2020.04.152 Third International
Conference on Computing and Network Communications
(CoCoNet’19).

[4] R. Underwood, J. Anderson, and A. Apon. 2018. Measuring
Network Latency Variation Impacts to High Performance
Computing Application Performance. In Proceedings of the 2018
ACM/SPEC International Conference on Performance Engineering
(Berlin, Germany) (ICPE ’18). Association for Computing
Machinery, New York, NY, USA, 68–79.
https://doi.org/10.1145/3184407.3184427

