
A Multi-Level Approach to NBTI Mitigation in
Processors

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Taniya Siddiqua

December 2012

c© 2012 Taniya Siddiqua

Abstract

We are in the era of multicore processors and it is expected that the number of the pro-

cessing cores on a chip will steadily increase over the next decade, driven by Moore’s

Law. While technology scaling has benefitted high performance, the scaling has a dark

side too: a degradation in the reliability of silicon devices. Processors have become

highly susceptible to a variety of reliability problems in silicon, such as particle induced

soft errors and hard errors. Therefore, processors have to be designed to provide ade-

quate protection against these reliability problems whilemaintaining high performance

and energy efficiency. Designing a reliable computer systemis a large and complex

multi-dimensional and multi-level problem, comprising ofdifferent hardware blocks,

reliability phenomena, design layers, metrics, and optimization techniques. This disser-

tation considers a key emerging reliability phenomenon: Negative Bias Temperature

Instability (NBTI). This dissertation develops NBTI mitigation techniques for the logic

and memory structures in the processor that impose very little performance, power, and

area overheads. This research also creates the foundation for understanding NBTI in

the context of one other important processor reliability problem: process variations.

i

To my loving parents and siblings

ii

Acknowledgements

It would not have been possible to write this dissertation without the help and support

of many people around me and I owe my gratitude to all those people.

My deepest gratitude is to my advisor, Professor Sudhanva Gurumurthi. I have

been extraordinarily fortunate to have him as my advisor forhis sage guidance. He was

always a source of inspiration. He gave me the freedom to explore on my own, and

at the same time the advice to recover when I swayed away from the right direction.

He taught me how to question thoughts and express ideas. No matter what, he was

always accessible and despite my uncountable mistakes, he always encouraged me to

do the proper thing with patience. I am also thankful to him for encouraging the use

of correct grammar and consistent notation in my writings and for carefully reading

and commenting on countless revisions of every manuscript Ihave written over my

graduate life. It was always a pleasure to work with him.

I would like to thank Professor Mircea R. Stan who was always there to listen and

give advice. I am deeply grateful to him for the long discussions that helped me sort out

the technical details of my work. His insightful comments and constructive criticisms

at different stages of my research were thought provoking and they helped me focus my

ideas. I would like to thank my other committee members Professor Kevin Skadron,

iii

iv

Professor Joanne B. Dugan, Professor Mary L. Soffa for theirguidance over the years.

I would also like to take this opportunity to thank Dr. Athanasios Papathanasiou with

whom I worked for a short duration as an intern, but his continuous encouragement and

advice helped me boost my confidence and made me ready for the corporate world.

I would like to thank my best friends Anindita and Sonia-Imran who always stand

by me not only during my happy moments but also during my toughmoments, help me

to recollect my enthusiasm about life and work. Thanks to them for showing enormous

patience with me when I am complaining for countless hours. Iwould also like to thank

Bushra and Aamer with whom I forged a special bond during my six-month internship.

Since then they have been a constant source of support and strength.

I would like to thank all my friends at the University of Virginia without whom

life would have been very difficult. Special thanks to Tanima, who made my stay

at Charlottesville much easier. She was always there for me whenever I needed her,

no matter how busy her schedule was. Whenever life seemed unruly, all the friendly

banters exchanged with Enamul, Nirjon, Munir, Yan alleviated some of the pressures

of graduate life and made me ready again to face more challenges. Special thanks

to Munir for bringing lots of fun and joy in the tedious graduate life. He has been a

continuous source of support through out my stay here. Even the newcomers Yamina,

Anindya and Jisa whom I got to know for such a short time made mylife so much

more fun. It is because of them, my last days of graduate life were more tolerable.

When I was practically homeless during the end of my graduatelife, Yamina was kind

enough to let me stay with her. I would also like to thank Tanveer, Samia, Anwica,

Redwan, Sadi and Samee for their support. Gratitude to Kirtifor his wise suggestions

and assistances through out my stay at Charlottesville. Lastly, thanks to VB who helped

v

me stay sane through these difficult years in the lab. All the technical discussions as

well as the lightweight conversations with him made the lab abrighter place to work.

I greatly value the friendship of all these people and I deeply appreciate their belief

in me. Their support and care helped me overcome setbacks andstay focused on my

graduate study.

Finally, my family without whom I cannot think of my existence. I am so much

lucky to have all my caring siblings Rashed, Arifa, Asma, Radwan and Saima. And of

course thanks to my most adorable angles, my nephews and nieces Sameen, Safwan,

Sahrish, Sara, Yaveen, Saihan and Sajid; even though they donot realize how they

impacted my life. Every year just the thought of spending some quality time with them

used to motivate me to work at a higher pace. Limitless gratitude and respect for my

wonderful brother-in-law Rifat Bhai who is more than a brother to me. Without his

moral support I would not be here. Lastly, my parents who are the source of all my

motivation and optimism. At times I lose all my hopes but my parents never let me feel

down. They make me realize what is life about and the fact thatI should always keep

going.

Last but not least, thanks to God for making my life bountifuland giving me the

strength to survive the tests.

Contents

Contents vi
List of Tables . viii
List of Figures. ix

1 Introduction 1

2 Overview of NBTI and Related Work 6
2.1 Related Work. 9

2.1.1 Stress reduction techniques for NBTI:. 9
2.1.2 Recovery enhancement techniques for NBTI:. 11
2.1.3 Process Variation:. 12
2.1.4 Interaction of NBTI and Process Variation:. 13

3 Modeling NBTI at the Architecture-level 15
3.1 Challenges Posed by Existing NBTI models for Architecture Simulation 16
3.2 Adapting the NBTI model for Circuit and Architecture Simulation . . 19
3.3 Summary . 22

4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting 23
4.1 Basics of Recovery Boosting. 25

4.1.1 Fine-Grained Recovery Boosting. 30
4.1.2 Coarse-Grained Recovery Boosting. 32
4.1.3 Other Issues. 33

4.2 Designing Microarchitectural Structures that SupportRecovery Boosting35
4.2.1 Physical Register File. 36
4.2.2 Issue Queue. 38
4.2.3 Circuit-Level Simulation Results. 42

4.3 Experimental Methodology for the Architecture Level Analysis. . . . 50
4.4 Architecture-Level Simulation Results. 51

vi

Contents vii

4.4.1 Physical Register File Results. 53
4.4.2 Issue Queue Results. 56

4.5 Summary . 61

5 Mitigating the Impact of NBTI on Processor Functional Units 63
5.1 Approaches to NBTI Mitgation at the Circuit and Microarchitecture

Levels . 65
5.1.1 Circuit Level Techniques. 66
5.1.2 Microarchitecture Level Techniques. 69

5.2 Experimental Setup. 73
5.3 Results. 75

5.3.1 Circuit-Level Optimization. 75
5.3.2 Microarchitecture-Level Optimization. 78
5.3.3 Multi-Level Optimization 81

5.4 Summary . 82

6 Modeling and Analyzing NBTI in the Presence of PV 84
6.1 Overview of NBTI and PV. 86
6.2 An analytical model for NBTI and PV. 88

6.2.1 Capturing the impact of Workload Variation, TemporalVaria-
tion, and PV . 89

6.3 Experimental Setup. 91
6.4 Results. 92

6.4.1 RF Results . 93
6.4.2 KSA Results . 96
6.4.3 Implications of the Results. 98

6.5 Summary . 100

7 Conclusions and Future Work 101

Bibliography 106

List of Tables

4.1 Modified SRAM cell operation. 28
4.2 Control signal truth-table for a register. 37

viii

List of Figures

2.1 NBTI Stress Phenomena.. 7
2.2 NBTI Recovery Phenomena.. 8

3.1 The existing circuit-level NBTI model breaks down with discretization. 17
3.2 The existing circuit-model NBTI model does not capture multiple se-

quences of stress and recovery events.. 19

4.1 Conventional 6T SRAM cell. 26
4.2 SRAM Cell Design for Recovery Boosting. 27
4.3 PMOS gate voltages of an SRAM bitcell due to recovery boosting us-

ing the modified SRAM cell shown in Figure 4.2 (Vdd=0.9V, T=90C)
. 28

4.4 Modified SRAM cell with connection to theVdd rail of an adjoining
row . 30

4.5 SRAM Array for Fine-Grained Recovery Boosting (N entries, M-wide) 31
4.6 PMOS gate voltages of an SRAM bitcell due to recovery boosting and

power gating (Vdd=0.9V,T=90C) 33
4.7 Register states. The candidate states for recovery boosting are shown

in dashed circles.. 37
4.8 Control Logic for generating Control Signal CR (UMx = ‘unmapped’

bit for registerx andCMx = ‘completed’ bit for registerx) 37
4.9 An issue queue entry.. 39
4.10 CAM structure of an issue queue entry (IW = issue width). 40
4.11 Modified CAM Structure (IW = issue width). MBC is the Modified

Bit-Cell for recovery boosting.. 41
4.12 Write delay of the modified bitcell. Node0 and Node1 are the node

voltages of the bitcell (Vdd=0.9V,T=90C). 42
4.13 Transition between recovery and normal modes. Node0 and Node1 are

the node voltages of the bitcell (Vdd=0.9V,T=90C). 44

ix

List of Figures x

4.14 Area of the register file and the issue queue for designs that use con-
ventional 6T cells and cells modified to support recovery boosting. . . 46

4.15 Power consumption of a single register entry (Vdd=0.9V,T=90C). . . 48
4.16 Power consumption of a single issue queue entry (Vdd=0.9V,T=90C). 49
4.17 Vt and SNM degradation for the RF for theBaseline, Recovery Boost-

ing andBalancing configurations (Vdd=0.9V,T=90C). 52
4.18 Breakdown of time spent by the registers in different states. The lowest

part of each stacked bar is theUnmapped state. 54
4.19 Improvement in the Static Noise Margin for the RF over the Baseline

processor configuration (Vdd=0.9V,T=90C). 55
4.20 Vt and SNM degradation for the IQ for theBaseline, Recovery Boost-

ing andBalancing configurations (Vdd=0.9V,T=90C). 56
4.21 Breakdown of time spent by the IQ entries in theValid and Invalid

states.. 59
4.22 Improvement in the Static Noise Margin for the IQ over the baseline

processor configuration (Vdd=0.9V,T=90C). 60

5.1 Partitioned Kogge-Stone Adder Design to Support NBTI Recovery. . 68
5.2 Utilization of the Integer ALUs in a 4-wide issue processor core using

thePS policy. 71
5.3 Guardband reduction for the FUs with 2, 4 and 8 segments.. 75
5.4 Percentage increase in area and delay for the FUs with 2, 4and 8 seg-

ments wrt. the unpartitioned FU design.. 77
5.5 Impact of the instruction scheduling policies.. 79
5.6 Guardband reduction using FUs with 2 segments and thePR schedul-

ing policy. 81

6.1 Different sources ofVt variation in PMOS devices.. 87
6.2 Vt distributions of the RF due to RDF, temporal, workload and com-

bined variation for themcf benchmark. 94
6.3 Number of bits experiencing SNM below the minimum allowed value

in a RF due to temporal, workload and the combined variation for the
different benchmarks. 95

6.4 Vt distributions of the KSA due to RDF, temporal, workload and com-
bined variation for themcf benchmark. 97

6.5 Percentage increase in delay in a KSA due to temporal, workload and
the combined variation for different benchmarks.. 99

Chapter 1

Introduction

The key drivers in processor design are high performance andenergy efficiency. Moore’s

Law has been key in enabling the design of processors with ever increasing perfor-

mance, for example, by facilitating multicore design. Additionally, the processor also

has to operate reliably and continue to do so over a long period of time, what is usually

referred to as theService Life of the processor. The service life target of a high perfor-

mance processor is typically 7-10 years. While technology scaling has benefitted high

performance, the scaling has a dark side too: degradation inthe reliability of silicon

devices. Processors have become highly susceptible to a variety of reliability problems

in silicon, such as particle induced soft errors and hard errors. A key emerging hard

error problem facing the microprocessor industry today is Negative Bias Temperature

Instability (NBTI), which affects the lifetime of PMOS transistors. Providing protec-

tion for the processor against declining silicon reliability in order to meet service life

guarantees can entail significant performance, power and area overheads.The overall

goals of this dissertation are to improve our understanding of NBTI and to develop mit-

1

Chapter 1 Introduction 2

igation techniques that impose little performance, power, and area overheads to meet

the service life target to combat this reliability problem.

NBTI occurs when a negative bias is applied at the gate of a PMOS transistor, which

causes an increase in the threshold voltage of the device. NBTI affects both the cycle

time and the stability of storage structures within the processor. In terms of its impact

on microprocessor circuits, the increase in the threshold voltage degrades the speed of

the transistors and therefore degrades the speed and the noise margin of the circuit in

which they are used, eventually causing the circuit to violate timing constraints. Such

timing violations due to NBTI will cause the circuit to behave incorrectly and cause the

processor itself to fail. NBTI is typically addressed via guardbanding. Guardbanding

accounts for the degradation in cycle time and the stabilityof the storage structures

over the lifetime by reducing the operating frequency and increasing the minimum

voltage of the storage elements (Vmin). Typically, 20% of the cycle time is reserved as a

guardband for the logic structures. Similarly,Vmin is increased by 10% as a guardband

to handle 10% increase in threshold voltage (Vt) for the storage structures. However,

reducing the frequency and increasingVmin have a detrimental impact on performance

and power respectively and therefore it is desirable to reduce the guardband via the use

of NBTI mitigation techniques.

NBTI mitigation techniques can be implemented at differentlevels of the system

stack (device, circuit, microarchitecture). There are pros and cons to providing the

protection at each of these levels. A hierarchical approachthat handles reliability at

various levels across the hierarchy can enable the designerto get the best of each of

the worlds by being able to optimally address issues at the level of the system stack

where they are most naturally handled well. The main contribution of this disserta-

Chapter 1 Introduction 3

tion is to develop and characterize NBTI mitigation techniques at different levels and

quantify their impact on metrics, such as, guardband reduction, area, delay, and appli-

cation performance. While NBTI itself is well characterized, NBTI is just one of the

physical phenomena that affect the reliability of the processor. It is also important to

understand NBTI in the context of other key physical phenomena in order to arrive

at optimal design decisions. This dissertation lays the foundation for such an under-

standing of NBTI by examining the interaction of this reliability phenomenon with

Process Variation (PV). PV is the variation in the transistor attributes (length, width,

oxide thickness) caused during the fabrication of the integrated circuits and manifests

itself as threshold voltage variation, which results in variability in circuit performance

and power. It is important to realize how NBTI is affected by PV in order to come up

with energy-efficient mitigation techniques. Therefore, we need a deep and accurate

understanding of how NBTI interacts with this physical phenomenon.

To summarize, this dissertation develops NBTI mitigation techniques for the mi-

croarchitectural structures in a microprocessor and creates the foundation for under-

standing NBTI in the context of other physical phenomena that affect the processor.

This dissertation consists of tasks that involve modeling and optimization related to

NBTI. The modeling tasks involve developing models for NBTIthat are usable at the

architecture level and capture the interaction between NBTI and PV described previ-

ously. The optimization tasks involve developing NBTI mitigation techniques for both

the logic and memory structures within the processor and explore multiple levels in the

design stack.

The specific contributions of this dissertation are:

Chapter 1 Introduction 4

1. Modeling NBTI at the Architecture-level: There have been several efforts in

developing analytical models for NBTI at the circuit-level. However, these mod-

els are suitable only for analyzing NBTI effects over a very short time span and

are not readily usable for architecture simulations. Sinceour research involves

exploring NBTI mitigation at multiple levels of the design hierarchy, our first

contribution is an analytical NBTI model that is suitable for microarchitecture

and architecture-level evaluations. This work has been published in ISQED 2011

[1].

2. NBTI Mitigation Techniques for Memory Structures: With the architecture-

level NBTI model, our next contribution is mitigation techniques that can com-

bat NBTI to meet the service life guarantee with minimal performance, power,

and area overheads. Modern processor cores are composed of several critical

SRAM-based structures, such as the register file and the issue queue. We de-

velop mitigation techniques for the memory structures in the processor core to

maximize their lifetimes. We develop and evaluate mitigation techniques at both

the circuit and microarchitecture levels. This work is published has been ISVLSI

2010 [2] and in the IEEE Transactions on VLSI 2011 [3].

3. NBTI Mitigation Techniques for Functional Units: Our next contribution is

mitigation techniques that can combat NBTI in the logic structures in the pro-

cessor with minimal performance, power, and area overheads. We present a

quantitative analysis of NBTI recovery techniques at the circuit and microarchi-

tecture levels for the functional units (FUs) in the cores ofa high-performance

Chapter 1 Introduction 5

multicore processor that can facilitate reducing the device-level guardband re-

quirements. This work has been published in GLSVLSI 2010 [4].

4. Modeling and Analyzing NBTI in the Presence of PV: Both NBTI and PV

affect the threshold voltage of the devices and these two problems should not be

addressed in isolation. Therefore, an analytical model is required which captures

the impact of both NBTI and PV in a coherent way and which is suitable for use

in architecture level analyses. Leveraging the prior research on NBTI and PV

modeling from the circuits community as the starting point,we develop a model

that captures the interaction between these two reliability phenomena. This work

has been published in ISQED 2011 [1].

The organization of the rest of this dissertation is as follows. The next chapter pro-

vides a brief overview of NBTI and discusses the related work. Chapter3 presents the

NBTI model for architecture simulations. NBTI mitigation techniques for memory and

logic structures are presented in the Chapter4 and5 respectively. Chapter6 discusses

the analysis of NBTI in the presence of PV. Lastly, Chapter7 conludes this dissertation.

Chapter 2

Overview of NBTI and Related Work

Negative Bias Temperature Instability (NBTI) is a growing concern for CMOS technol-

ogy and affects the lifetime of PMOS transistors. NBTI increases the threshold voltage

of PMOS devices, which in turn degrades the speed of circuits. To better understand

how to develop optimization techniques to combat NBTI, we first need to look at how

NBTI occurs and how it affects a circuit. During the fabrication process, hydrogen

atoms form aSi − H bond along theSi/SiO2 interface. Water molecules are often

present during the contact and via formation of the IC fabrication process, which can

increase the effects of NBTI by donating hydrogen to the silicon oxide interface. Al-

though many engineers feel that this is a fabrication problem, until it can be resolved,

it is important to be able to design around the issue.

When a logic input of “0” is applied to the gate of a PMOS transistor (Vgs = -Vdd),

NBTI occurs due to the generation of interface traps at theSi/SiO2 interface. When

silicon is oxidized, most of theSi atoms at the surface of the wafer bond with oxygen

while a few atoms bond with hydrogen. When the transistor is being stressed, an

6

Chapter 2 Overview of NBTI and Related Work 7
�

�
��
��
�
��

���

���

���

�
	

�
�

�
����

��
��

��
��

��

��

��

Figure 2.1: NBTI Stress Phenomena.

electric field is placed across the oxide layer. When a negative bias (i.e., a logic input

of “0”) is applied at the gate of a PMOS transistor, the relatively weakSi − H bonds

get disassociated as shown in Figure2.1. These hydrogen atoms enter the oxide layer.

The longer a hydrogen atom is in the electric field, the deeperinto the oxide layer it

will penetrate. Eventually the hydrogen atoms can reach theoxide/poly interface and

cluster there. By introducing positively charged ions/interface traps (hydrogen atoms)

into the oxide layer, the part of the field that inverts the transistor channel is weakened.

Over time, this reduces the number of hydrogen atoms that canbreak free. These

interface traps cause the threshold voltage (Vt) of the PMOS transistor to increase,

which in turn degrades the speed of the device and the noise margin of the circuit. This

is known as the Stress phase for the PMOS. The increase inVt due to stress is given by

the equation [5] :

∆Vts = (
qtox

eox

)
3
2 .K1.

√

Cox(Vgs − Vt).e
−Ea

4kT
+

2(VGS−Vt)

toxE01 .T−0.25
0 .t0.25

stress (2.1)

wheretstress is the time under stress,tox is the oxide thickness andCox is the gate

capacitance per unit area.K1, Ea, T0, E01 and k are constants equal to 7.5C−0.5nm−2.5,

0.49 eV,10−8 s/nm2, 0.08V/nm and8.6174 10−5eV/K respectively.

Chapter 2 Overview of NBTI and Related Work 8
�

�
��
��
�
��

���

���

���

�	�
�� �
���

��

��

��

��

��

Figure 2.2: NBTI Recovery Phenomena.

When a logic input of “1” is applied to the gate (Vgs = 0), the H atoms released in

the stress process can anneal the broken bonds, or the H atomsmay diffuse (or drift)

away from the interface toward the oxide/poly interface. This is illustrated in Figure

2.2. Therefore, this process helps in eliminating some of the traps. This is known

as the Recovery phase. During the recovery phase a positive electric field is placed

accross the oxide layer. The field removes the inverted channel and hydrogen is free to

reconnect with the available silicon by annealing [6, 7, 8, 9, 10]. This process, much

like stressing, can be exacerbated by increased temperature. As mentioned earlier, the

hydrogen can move all the way to the Si/Poly interface makingit possible that not

all of the hydrogen can return to theSi/SiO2 interface. This effect creates a state

of hysteresis, leaving behind a residual∆Vt after annealing. The effects on transistor

instability around theSi/SiO2 interface have been studied for many years and were

recognized as early as the 1970’s [11, 12]. Most research on NBTI was developed

by device and reliability physics groups. Alam and Mahapatra developed one of the

first comprehensive models to explain PMOS NBTI using a standard reaction-diffusion

model [13]. Later, Wang et al. presented a compact model that could be used for circuit

simulation [5]. The final increase ofVt after considering both the stress and recovery

2.1 Related Work 9

phases is [5]:

∆Vt = ∆Vts.(1 −
2ξ1tox +

√

ξ2e
−Ea

kT T0trec

(1 + δ)tox +

√

e
−Ea

kT (tstress + trec)
) (2.2)

wheretrec is the time under recovery,ξ2, ξ1 andδ are constants equal to 0.5, 0.9 and 0.5

respectively. From the equations, it is observed that NBTI is exponentially dependant

on the difference betweenVgs andVt, temperature and stress/recovery time. A lower

Vgs, temperature and stress time improves the lifetime whereasa higherVt and recovery

time improves it. A lowerVgs (which eventually lowers the temperature) will have an

impact on performance.

2.1 Related Work

Several recent studies have proposed techniques for mitigating NBTI to improve pro-

cessor lifetime. There are two basic approaches to mitigating NBTI: (i) reduce the

stress on the PMOS transistors; (ii) enhance the recovery process. Stress reduction tech-

niques aim to reduce the aging rate by controllingVdd, Vt, and temperature, whereas

recovery enhancement techniques aim to increase the recovery time for the PMOS de-

vices.

2.1.1 Stress reduction techniques for NBTI:

Srinivasan et al. [14] propose the use of Dynamic Reliability Management (DRM) to

stay within the reliability budget. They describe an architecture-level model RAMP,

Chapter 2 Overview of NBTI and Related Work 10

that can dynamically track lifetime reliability, responding to changes in application be-

havior. RAMP is based on device models for different wear-out mechanisms including

NBTI. Using RAMP, they show that dynamic voltage scaling is an effective response

technique for DRM, and that dynamic thermal management neither subsumes nor is

subsumed by DRM. Tiwari and Torrellas propose a technique called “Facelift” [15]

to hide the effects of aging through temperature-based job-scheduling to individual

cores of a multicore processor. Facelift hides the effects of aging by steering high-

temperature jobs to the fast cores and low-temperature jobsto the slow cores. The chip

appears to age less by keeping the slow cores cooler. Also, Facelift slows down aging

by making chip-wide changes toVdd or Vt at key times to balance the impact of the

changes on the aging rate and on the critical path delays. Finally, Facelift configures a

chip for a short service life by shifting performance from the unused lifetime portion

to the used one. Basoglu et al. [16] propose a low-cost NBTI-Aware DVFS framework

to reduce energy consumption and increase the lifetime of the processor. They utilize

real-time degradation data and employ a technique that alleviate this problem through

core-level DVFS control and OS-controlled workload mapping based on core status.

If the OS is informed of the degradation status of each core, it could map threads so

that sturdy cores (those with lowVt) work more than the weaker cores (those with high

Vt). This equalizes core lifetimes, and thereby extends overall processor life. All these

works aim to reduce the stress on the devices but make no attempt to leverage the re-

covery process to combat NBTI and therefore their effectiveness is limited. Our goal is

to leverage the recovery phenomenon to extend the lifetime the processor. In general,

the use of stress reduction techniques is orthogonal to recovery enhancement.

2.1 Related Work 11

2.1.2 Recovery enhancement techniques for NBTI:

Abella et al. [17] propose to feed specific bit patterns into the devices to increase

the recovery time for PMOS transistors in logic structures (e.g., adders) during idle

periods. They also propose to balance the degradation of thePMOS devices in SRAM-

based memory structures by storing appropriate data value into the SRAM cells when

they hold invalid data. Kumar et al. [18] propose a similar technique to periodically

flip the contents of SRAM cells to balance the wear on the PMOS transistors. The cost

of such a technique comes from the extra XNOR gates required to invert/deinvert data

with the invert bit (global signal indicating the current mode), which has an impact

in cycle time. However, invertion is not a suitable solutionfor combinational blocks

because inverted and non-inverted inputs may stress the same PMOS transistors. Shin

et al. [19] propose a recovery enhancement technique for caches whereSRAM cells

are proactively put into the recovery mode via the use of a spare memory array. They

reverse bias (Vgs = Vdd) the PMOS devices to put them into a deep recovery state.

When an array is put into the recovery mode, the PMOS device inone of the inverters

of each cell is put into the recovery mode followed by those inthe other inverters and

this recurring pattern is continued throughout the recovery period for the array. Gunadi

et al. [20] proposes Colt, which balances the utilization of devices in a processor by

equalizing the duty cycle ratio of the internal nodes of circuits and the usage frequency

of devices. It relies on alternating true- and complement-mode operations to equalize

the duty cycle ratio of signals. These approaches mitigate NBTI by balancing the

degradation of the PMOS devices within the cell. They aim to achieve a 50% lifetime

degradation for the PMOS devices. Our approach does not limit itself to achieving

Chapter 2 Overview of NBTI and Related Work 12

a balance in the degradation of the PMOS devices. Our approach attempts to extend

the recovery process of all the PMOS devices beyond 50% to extend the lifetime of

the processor. For the SRAM structures, we propose a new SRAMcell design thats

facilitates simultaneous recovery process for both the PMOS devices in the memory

cell. Similarly, power-gating is utilized to introduce simultaneous recovery process for

all the PMOS devices in the functional units along with new instruction scheduling

techniques that extend their idle time.

2.1.3 Process Variation:

There are several studies whose goal is to design PV tolerantsystems and do not look

at the impact of NBTI in the presence of PV. Tiwari et al. [21] present an architec-

tural framework that applies cycle-time stealing to the pipeline to tolerate PV. Chun

et al. [22] propose a scheme of adjusting the clock speed of a processorbased on

the instruction-level parallelism of the program phases toachieve overall performance

improvement to address PV. Sarangi et al. [23] propose a framework called EVAL

(Environment for Variation-Afflicted Logic) to understandhow processors can tolerate

and mitigate variation-induced errors. They present a technique to maximize processor

performance and minimize power in the presence of variation-induced timing errors

by adapting the processor frequency, multiple voltages, and two processor structures.

Even though these techniques provide effective solutions to tackle PV, the effectiveness

of these techniques might reduce in the presence of NBTI.

2.1 Related Work 13

2.1.4 Interaction of NBTI and Process Variation:

All the aforementioned studies concentrate on NBTI or PV without considering the

interaction between them. There have been several studies on the combined effect of

NBTI and PV. There are different sources of variation inherent in NBTI and PV that

affect the PMOS threshold voltage. One source of variation in the threshold voltage

due to NBTI is workload variation which is caused by executing different workloads on

the processor. This variation is due to changing patterns ofutilization of the microar-

chitectural structures and changes in the bit patterns within the structures. Another

factor lies in the silicon process, known as the Random Charge Fluctuation (RCF),

which causes a temporal variation in threshold voltage on top of the workload varia-

tion. Kang et al [24] propose a compact circuit-levelVt model that captures the impact

of temporal NBTI variations in the presence of PV and shows how temporalVt vari-

ations can affect the lifetime and performance of differentcircuit topologies. Basu et

al. [25] present a methodology to develop PV and NBTI tolerant robust standard cells

which can be used in timing critical sections of the circuits. They model the combined

effect of PV and NBTI on intrinsic gate delay using a reduced dimension modeling

technique to optimize the standard cells with a target lifetime of 10 years. Lu et al.

[26] design a comprehensive IC reliability analysis frameworkwith respect to NBTI

and PV. This work is capable of characterizing the overall circuit lifetime reliability, as

well as efficiently quantifying the vulnerabilities of individual circuit elements. This

analysis framework has been integrated into an iterative design flow for circuit lifetime

reliability analysis and optimization. Finally, Fu et al. [27] propose NBTI and PV

tolerant micrarchitecture design techniques to improve processor lifetime. They show

Chapter 2 Overview of NBTI and Related Work 14

that just combining PV mitigation techniques and NBTI recovery mechanisms lacks

the capability of exploiting the opportunity to optimize their interaction. They propose

microarchitecture designs that exploit the positive interplay between PV and NBTI that

improve the trade-offs among different metrics. While all these prior works study some

combinations of NBTI (static, or temporal variation, or workload variation) with PV,

no prior work has holistically analyzed the combined effectof temporal and workload

variations on top of static NBTI with process variation.

Chapter 3

Modeling NBTI at the

Architecture-level

Analytical models provide guidance for assessing the reliability impact of a design de-

cision. There have been several efforts in developing analytical models for NBTI at

the circuit-level [5, 24]. However, these models are suitable only for analyzing NBTI

effects over a very short time span and are not readily usablefor architecture simula-

tions. Architects, on the other hand, study microprocessorreliability by executing dif-

ferent program benchmarks and extrapolate the collected statistics over a much longer

timescale (typically, 7-10 years). Throughout the benchmark execution, utilizations of

the microarchitectural structures vary. Also, the interactions among the structures, the

inputs to each structure, and bits stored within them changeover the course of execu-

tion of a benchmark. An analytical model for NBTI should be able to factor-in these

“variations” to be usable in architecture simulations to gain correct and holistic insight

into these inter-related reliability problems in silicon.In this work, we aim to leverage

15

Chapter 3 Modeling NBTI at the Architecture-level 16

the prior research on NBTI modeling from the circuits community to develop a model

that is usable at the architecture-level.

3.1 Challenges Posed by Existing NBTI models for Ar-

chitecture Simulation

Existing circuit-level models cannot be directly used for architecture-level simulations.

The existing NBTI models capture an analog process and assume continuous stress on

the PMOS devices in a circuit. They do not capture scenarios where there are multiple

sequences of varying stress/recovery times, which is the case when real workloads run

on the processor. Typically architecture-level simulations capture the real workload

behavior on the processor in a cycle-by-cycle basis and attempt to use the NBTI models

in a quantized way. As a result of this quantized usage, existing NBTI models cannot

be used directly in architecture-level simulations. To explain the problems with the

existing NBTI models in details, we choose the model presented in Chapter2 which

is widely used in the circuit literature. However, the problems we discuss apply to the

use of other circuit-level NBTI models too. This model has two limitations when used

in an architecture simulation:

i) The problem of discretization of the continuous model:

Let us consider a hypothetical scenario where a PMOS device is stressed fort1, t2 and

t3 units of time and the degradations in threshold voltage due to these stress events are

Vt(t1), Vt(t2) andVt(t3) respectively. If the device is stressed fort1 time units followed

by t2, andt3 is equal to (t1 + t2), then we expectVt(t3) = Vt(t1) + Vt(t2). Figure3.1

3.1 Challenges Posed by Existing NBTI models for Architecture Simulation 17

describes this behavior. The x-axis is the time and y-axis isthe threshold voltage. In

the figure, once stress time oft1 is applied initially, the model computes the threshold

voltage to reach A. At this point, if stress time oft2 is applied, instead of reaching

a value of B, the model computes it to be C, whereas the value should be B after (t1

+ t2) units of time. The reason for this problem is because∆Vts has an exponential

relationship with the stress time and we know that(t1 + t2)
x 6= (t1

x + t2
x). This model

is meant to represent the continuous process of stress and recovery phenomena and

it breaks down whenever we discretize this continuous process. Therefore, using the

model, we do not achieve the expected value ofVt(t3) which should be equal to [Vt(t1)

+ Vt(t2)]. However, this limitation will exist in the circuit-level simulations as well if

we want to use the model in a discretized way.

A
B

C

t1 t2

Vt

t

modelexpected

t3
Figure 3.1: The existing circuit-level NBTI model breaks down with discretization.

ii) The model is not usable with multiple stress/recovery events:

Chapter 3 Modeling NBTI at the Architecture-level 18

To understand this problem, let us consider another hypothetical example where a

PMOS device gets stressed followed by a single sequence of stress and recovery events.

Figure3.2 illustrates this situation. From the figure, with the first set of stress and re-

covery events, theVt reaches a value of B and A respectively. At this point of time,

with a subsequent stress event, the threshold voltage degradation pattern should follow

the pattern of the first stress event starting from point A, since both instants have aVt

value of A. Therefore, after applying the second stress fort1 time units, the finalVt

value should be, B whereas the model provides a different value of C. Thus, the model

is not able to capture multiple sequences of stress/recovery events properly. The reason

for this problem is because the model uses the instantaneousVt value as the history of

degradation. From the stress phase equation, we can see thatthe value of∆Vts depends

on the value ofVt. For a fixed stress time, the model would produce different∆Vts val-

ues for differentVt values. In this hypothetical scenario, the first stress event uses the

nominalVt value and the second stress event uses the degradedVt value. Therefore,

the two stress events oft1 time unit starting from point A produce two different values.

Both these properties need to be modeled correctly for an architecture level analy-

sis of NBTI degradation. Since the architecture simulations update theVt values of the

devices due to NBTI at different points of time throughout the execution of a workload,

the lack of the ability to discretize in the model results in incorrect estimation of theVt

degradation. Also, real workloads show varying patterns ofstress/recovery for differ-

ent structures within the processor. Hence, the assumptionof continuous stress on the

PMOS devices does not capture the realistic scenario. The next section discusses how

to modify the model to address these two limitations.

3.2 Adapting the NBTI model for Circuit and Architecture Simulation 19

A

B

C

t

Vt modelexpected
t1 t1

Figure 3.2: The existing circuit-model NBTI model does not capture multiple se-
quences of stress and recovery events.

3.2 Adapting the NBTI model for Circuit and Architec-

ture Simulation

From the original model described in Chapter2, we know that∆Vts is a function of

voltage, temperature, instantaneousVt, and tstress, whereas,∆Vt after recovery is a

function of∆Vts, tstress andtrec. We can rewrite the original model as:

∆Vts = fstress(V, T, Vt).t
0.25
stress (3.1)

∆Vt = ∆Vts.frec(tstress, trec) (3.2)

In this model, theVt value represents the history of stress and recovery events

(the total degradation). The main idea behind our proposed model is to represent the

Chapter 3 Modeling NBTI at the Architecture-level 20

degradation history in terms of the equivalent stress time experienced by the PMOS

device. Since the existing model is applicable for a single stress/recovery event, we

transform the previous multiple stress/recovery events into a single stress event and

use that equivalent stress time with the new stress/recovery event. Note that in this

case, we always use the nominalVt value. After the aforementioned modification, we

get the following model:

∆Vts = fstress(V, T).(tequi−stress + tstress)
0.25 (3.3)

∆Vt = ∆Vts.frec[(tequi−stress + tstress), trec] (3.4)

wheretequi−stress is the equivalent stress time resulting from previous stress and

recovery events andtequi−stress = 0 at t = 0. Now we discuss how to calculate the value

of tequi−stress.

From equation3.1, we get∆Vts, which is the increase in threshold voltage due to

the stress timetstress. If we reorganize equation3.1, we find the following:

tstress = [
∆Vts

fstress(V, T, Vt)
]4 (3.5)

This equation expresses the stress time experienced due to the previous stress/recovery

events when the increase in threshold voltage is known. Using equation3.5 with the

nominalVt and the given∆Vt, which is a result of previous stress and recovery events,

3.2 Adapting the NBTI model for Circuit and Architecture Simulation 21

we can calculate thetequi−stress:

tequi−stress = [
∆Vt

fstress(V, T)
]
4

(3.6)

After combining equations3.3, 3.4and3.6, we get the following final model:

∆Vts = fstress(V, T).{[
∆Vt

fstress(V, T)
]
4

+ tstress}
0.25 (3.7)

∆Vtf = ∆Vts.frec({[
∆Vt

fstress(V, T)
]
4

+ tstress}, trec) (3.8)

where∆Vtf is the final threshold voltage degradation and∆Vt is the threshold

voltage degradation due to previous stress and recovery events and∆Vt = 0 at t = 0.

Equations3.7and3.8together completes the model and they represent the stress and re-

covery phenomena respectively. This model can be readily used with any architectural

simulator to characterize the NBTI degradation of a PMOS device.

Note that, this model captures the effect of voltage and temperature variation as

well. Since the equivalent stress time is also a function of voltage and temperature,

whenever there is a variation in either voltage or temperature or both, the equivalent

stress time gets calculated under the new stress condition.

Chapter 3 Modeling NBTI at the Architecture-level 22

3.3 Summary

In this chapter, we develop an analytical model that captures NBTI for use in circuit

and architecture simulations. Existing models cannot be directly used for architecture-

level simulations. This is because these models assume continuous stress on the PMOS

devices in a circuit lacking the additive property and do notcapture scenarios where

there are multiple sequences of varying stress/recovery times, which is the case when

real workloads run on the processor. To address these problems, our proposed model

represents the degradation history in terms of the equivalent stress time experienced

by the PMOS device instead of theVt value used by the existing models. Using

this architecture-level NBTI model, we develop NBTI mitigation techniques for the

microarchitectural structures in a microprocessor and create the foundation for under-

standing NBTI in the context of PV, which we discuss in the following chapters.

This chapter covers work published in ISQED 2011 [1].

Chapter 4

Enhancing NBTI Recovery in SRAM

Arrays through Recovery Boosting

Memory arrays that use Static Random Access Memory (SRAM) cells are especially

susceptible to NBTI. SRAM cells consist of cross-coupled inverters that contain PMOS

devices. Since each memory cell stores either a ‘0’ or a ‘1’ atall times, one of the

PMOS devices in each cell always has a logic input of ‘0’. Since modern processor

cores are composed of several critical SRAM-based structures, such as the register file

and the issue queue, it is important to mitigate the impact ofNBTI on these structures

to maximize their lifetimes. Previous work on applying recovery techniques to SRAM

structures aim to balance the degradation of the two PMOS devices in a memory cell

by attempting to keep the inputs to each device at a logic input of ‘0’ exactly 50% of

the time [17, 18, 19]. However, one of the devices is always in the negative bias condi-

tion at any given time. In this chapter, we propose a novel technique calledRecovery

Boosting that allowsboth PMOS devices in the memory cell to be put into the recovery

23

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting24

mode. The basic idea is to raise the ground voltage and the bitlines toVdd when the

cell does not contain valid data. In this chapter, we describe how SRAM cells can be

modified to support recovery boosting and discuss several circuit and microarchitecture

level design considerations when using such cells to build SRAM arrays. We present

the circuit-level design of two large SRAM arrays in a 4-wideissue processor core - the

physical register file and the issue queue - that use the modified cells to provide recov-

ery boosting. We verify the functionality of these designs and quantify their area and

power consumption through SPICE-level simulation using the Cadence Virtuoso Spec-

tre circuit simulator [28] for the 32nm process technology. We show that the modified

SRAM structures impose only a 3-4% area overhead over the baseline non-recovery

boost designs and that their maximum power consumption is less than 2% over the

baseline. We then evaluate the performance and reliabilityof area-neutral designs of

these modified structures at the architecture-level via execution-driven simulation us-

ing the M5 simulator [29] and the SPEC CPU2000 benchmark suite [30] in nominal

operating condition. We show that recovery boosting provides a 56% improvement in

the static noise margin of the register file cells and a 48% improvement for the issue

queue across the benchmark suite while having a negligible impact on performance.

The organization of the rest of this chapter is as follows. The next section discusses

the recovery boosting technique. The circuit-level designand evaluation of the register

file and issue queue are given in Section4.2. The experimental methodology used for

the architecture-level evaluation is given in Section4.3 and the corresponding results

in Section4.4. Section4.5concludes this chapter.

4.1 Basics of Recovery Boosting 25

4.1 Basics of Recovery Boosting

Before we discuss recovery boosting, we first review the design and operation of a

conventional 6-transistor (6T) SRAM cell. The design of the6T cell is given in Figure

4.1. The cell is composed of a wordline (WL), a pair of bitlines (BL, BLB), two cross-

coupled inverters (I0, I1), and two access transistors (N0, N1). The cross-coupled

inverters store one bit of data. There are three basic operations that one can perform

on this SRAM cell: read, write and hold. To read and write data, the cell is selected by

raising WL to high. This activates the access transistors and connects the inverters in

the cell to the bitlines. During a read operation, both bitlines are first precharged high.

Based on the data stored in the cell, one of the bitlines is discharged. This change

is detected by a sense amplifier (which is not part of the cell)to determine the value

stored in the cell. During a write operation, one of the bitlines is raised high and the

other is lowered depending on the value to be written to the cell. When the cell is not

selected (WL = 0) for read or write, it is expected to hold the data stored in it and is

said to operate in the hold mode.

Since the SRAM cell has cross-coupled inverters, each inverter charges the gate of

the PMOS or NMOS device of the other inverter. Therefore, at any given time, one

PMOS device will always be in the stress mode. The goal of recovery enhancement is

to put the PMOS devices into the recovery mode by feeding input values to the cell that

will transition them into that mode. However, due to the cross-coupled nature of the

inverters, only one of the PMOS devices can be put into the recovery mode. Therefore,

previously proposed recovery enhancement techniques attempt to balance the wearout

of the two PMOS devices by putting each PMOS into the recoverymode 50% of the

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting26

Figure 4.1: Conventional 6T SRAM cell

time by feeding appropriate input values [18, 17, 19]. We propose a 6T SRAM cell

design shown in Figure4.2 which is capable of normal operations (read, write, and

hold) as well as providing an NBTI recovery mode (when the cell does not contain

valid data) that we call therecovery boost mode where both PMOS devices within the

cell undergo recovery at the same time. We refer to the periodwhen the cell does not

contain valid data that is never used by any other microarchitectural structure in the

processor as “invalid period”.

The basic idea behind recovery boosting is to raise the node voltages (Node0 and

Node1 in Figure4.1) of a memory cell in order to put both PMOS devices into the

recovery mode. This can be achieved by raising the ground voltage to the nominal

voltage through an external control signal. The modified SRAM cell has the ground

connected to the output of an inverter, as shown in Figure4.2. CR is the control signal

to switch between the recovery boost mode and the normal operating mode. During

4.1 Basics of Recovery Boosting 27� � � �� � �

� �

� � �
� � 	
 �� � 	
 �

Figure 4.2: SRAM Cell Design for Recovery Boosting

the normal operating mode, CR has a value of ‘1’ (Vdd), which in turn connects the

ground of the SRAM cell to a value of ‘0’. With this connection, the SRAM cell

can perform normal read, write, and hold operations. To apply recovery boosting, CR

has to be changed to a ‘0’ in order to raise the ground voltage of the SRAM cell to

Vdd. This circuit configuration puts both PMOS devices in the SRAM cell into the

recovery mode. A cell can be put into the recovery boost mode regardless of whether

its wordline (WL) is high or low. Unlike read and write operations on a cell, putting

a cell into the recovery boost mode does not require an accessto its wordline. The

operations of the modified SRAM cell are shown in Table4.1.

However, the drawback of this approach is that it can take a long time to raise both

the node voltages toVdd in a high-performance processor that operates at a high clock

frequency. This is illustrated in Figure4.3, which presents the achieved PMOS gate

voltages of a bitcell over time due to recovery boosting. Thesimulation is performed

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting28

CR WL BL BLB Node0 Node1 Operation
1 0 X X 0/1 1/0 Hold
1 1 1 1 0/1 1/0 Read
1 1 1 0 0 1 Write ‘1’
1 1 0 1 1 0 Write ‘0’
0 X X X 1 1 Recovery Boost

Table 4.1: Modified SRAM cell operation

�����������������
� � � � � �����������	��
��
 ��������	
��������	�
�����

�������������
����������������������
�����

Figure 4.3: PMOS gate voltages of an SRAM bitcell due to recovery boosting using
the modified SRAM cell shown in Figure4.2(Vdd=0.9V,T=90C)

using the Cadence Virtuoso Spectre circuit simulator [28] for the 32nm process using

the Predictive Technology Model [31]. The operating temperature is 90C which is the

average temperature in which high-performance processorsoperate [32]. We use this

temperature value throughout the chapter for all the experiments. We can observe that

this approach achieves the desired gate voltage (Vdd) within 3.33 ns. For a processor

which operates at 3GHz frequency, it will take 10 cycles to switch to the recovery boost

mode. Similarly, it takes around 10 cycles to go back to the normal operating mode

from the recovery boost mode. However, our goal is to be able to switch between the

recovery boost mode and the normal operating mode within a single cycle which is

4.1 Basics of Recovery Boosting 29

critical for a high-speed SRAM structure, such as the issue queue, where instructions

need to be woken up and selected within a single clock cycle, in order to expedite

the execution of dependent instructions. As mentioned before, recovery boost mode

is applied when an entry of the structure holds data that is considered “invalid” at

the architecture-level. Entries in the high-speed structures change their status between

valid and invalid very frequently. For example, we find from architecture simulations

that an issue queue entry stays invalid for about 50 cycles before it changes its status

to valid. In such scenario, the cell shown in Figure4.2 will take 20 cycles of the 50

cycles (40% of the invalid period) to shift between modes, given that shifting to the

normal operating mode takes place during the end of the invalid period. Thus, only 30

cycles could be utilized for the recovery process. On the other hand, if extra cycles

are allocated to shift to the normal operating mode after theinvalid period, that would

have negative consequences on the processor performance. Therefore, single-cycle

switching is required for the high-speed structures in the processor for the maximum

utilization of the invalid states for the recovery process without any performance loss.

Such single-cycle switching can be achieved by raising the bitlines along with the

ground voltage toVdd. There are various ways of incorporating such cells into SRAM

arrays, which we will discuss shortly.

Recovery boosting can be provided at a fine granularity, suchas for individual

entries/rows of a memory array, or at a coarser granularity,such as for an entire array.

We now discuss how the modified high-speed recovery boostingSRAM cells can be

used in each of these scenarios and then discuss additional microarchitectural issues

related to implementing recovery boosting.

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting30

4.1.1 Fine-Grained Recovery Boosting
 � � �� � �

� �

� � �
� � � � �� � � � �

� � �
� � �

Figure 4.4: Modified SRAM cell with connection to theVdd rail of an adjoining row

In the normal operating mode, the state of the bitlines change during read and write

operations. Since a pair of bitlines is shared by all the memory cells in a given column

in the array, even those memory cells that are not being read from or written to will

have the voltage on their bitlines changing. In an ordinary SRAM array, these bitline

transitions do not affect the normal operation of the cells.However, in order to perform

recovery boosting of a memory cell, both bitlines of the cellneed to be raised toVdd.

Therefore, we need to be able to isolate the bitlines of the memory cells that are in the

recovery boost mode from the bitlines that are used for accessing other cells in the array.

To provide this isolation, we extend the memory cell in Figure4.2with connections to

theVdd rail of an adjoining row or column via two PMOS access devices. The design of

4.1 Basics of Recovery Boosting 31

the modified SRAM cell is shown in Figure4.4and an SRAM array that uses this cell

for controlling individual entries to operate either in normal or recovery boost mode is

shown in Figure4.5.

Figure 4.5: SRAM Array for Fine-Grained Recovery Boosting (N entries, M-wide)

In the memory cell design given in Figure4.4, the CR signal serves the same pur-

pose as before. When a value of ‘0’ is input to the CR line to transition the cell into the

recovery boost mode, in addition to raising the ground voltage, the two extra PMOS

devices connected to theVdd rail are also turned on. Therefore, by raising the ground

and connecting the bitcell toVdd, the cell can be transitioned into the recovery boost

mode without affecting cells in other rows of the array.

We make the extra PMOS devices resilient against NBTI by using high-Vt transis-

tors. Although high-Vt devices are slower, these devices are used only when transi-

tioning the cell into the recovery boost mode and not when transitioning to the normal

operating mode. Therefore, these devices do not impact performance but may delay the

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting32

transition into the recovery boost mode. Moreover, since these devices do not lie on the

performance critical path, they are sized so as to minimize the overall area. However,

the PMOS devices do consume leakage power. We quantify the power consumption in

Section4.2.

4.1.2 Coarse-Grained Recovery Boosting

In this approach, we use the SRAM cell design shown in Figure4.2 instead of the

one for fine-grained control. Here, a single control signal puts the entire array into

the recovery boost mode. The control signal CR with a value of‘0’ raises the ground

connection of each entry toVdd. In this design, connections to theVdd rail via the

PMOS devices are not required. Instead we merely need to raise all the bitlines in the

array toVdd to transition all the cells in the array to the recovery boostmode.

Tradeoffs Between Fine-Grained and Coarse-Grained Recovery Boosting: Going in

for the fine-grained approach entails an area overhead of having two additional PMOS

devices for each memory cell which can be prohibitive for large SRAM arrays such as

caches. On the other hand, the fine-grained approach provides single-cycle switching

with greater flexibility in managing NBTI by exploiting the usage characteristics of

individual entries in the structure. In this chapter, we evaluate the use of recovery

boosting for the register file and issue queue. Due to the relatively small size of these

structures (compared to caches), we use the fine-grained approach.

4.1 Basics of Recovery Boosting 33

����������������� � �� ��� ��� ��� ��� �������������	��
��
 ��������	
��������	�
�����

������������������
�����������
����������������������
��������������	��
��
� ����������
�

Figure 4.6: PMOS gate voltages of an SRAM bitcell due to recovery boosting and
power gating (Vdd=0.9V,T=90C)

4.1.3 Other Issues

Difference Between Recovery Boosting and Power Gating: Similar to recovery boost-

ing, power gating also involves a small change to the design of the SRAM cell and can

also be used to combat NBTI [33]. As shown in Figure4.6, we can observe that recov-

ery boosting achieves the desired gate voltage (Vdd) within a very short interval of time

(195 ps), whereas power gating achieves only about 11% ofVdd. Power gating requires

several thousand nanoseconds to reachVdd to provide recovery to the SRAM bitcell.

Therefore, it can be used as a stress reduction approach for the high-speed structures

since the duration of the invalid phases of these structurestend to be smaller than thou-

sand nanoseconds. When a memory cell stores valid data, neither recovery boosting

nor power gating can be applied and the PMOS devices in the cells will be stressed in

a similar way. However, when the memory cell is idle and the data in the cell is no

longer needed, it would be more beneficial to take advantage of recovery boosting.

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting34

Impact of Process Variation on Correct Functionality: In deep submicron technolo-

gies, intra-die process variation is an important issue. Different transistor parameters,

including Vt, are affected by process variation and can impact circuit delay charac-

teristics. Vt is affected by variations in the device geometry, random dopant number

flucations, and mobile charges in the gate oxide [34]. Process variation will affect the

delay characteristics of the 6T SRAM cell inherent in both the original and modified

bitcells in a similar way. Process variation can also impacttheVt of the twoVdd-rail

access transistors and the devices in the inverter connected to the CR line. If theVt of

theVdd rail transistors is high, then transitioning the bitcell tothe recovery boost mode

may be slower. This could reduce the amount of time for which we can apply recovery

boosting but will not affect the correctness of the SRAM celloperation. On the other

hand, if theirVt is lower, the bitcell will transition into the recovery boost mode faster

and the access devices will consume higher leakage power butwill again not affect cor-

rectness. A delay in the PMOS device of the CR line inverter will again merely slow

the transition into the recovery boost mode. However, a delay in the NMOS device

in the inverter could affect the speed at which the cell transitions out of the recovery

boost mode and into a normal operating mode, which can affectcorrectness. In order

to handle this situation, we need to set the clock frequency such that this delay can be

accomodated within a single cycle.

Recovery Boosting Does Not Exacerbate PBTI: Putting the PMOS devices into the

recovery mode does not increase the stress on the NMOS devices in the memory cell.

Stresses on the NMOS devices can lead to a phenomenon that is similar to NBTI called

PBTI (Positive Bias Temperature Instability), which occurs when a positive bias (Vgs

= Vdd) is applied to the NMOS device. As with NBTI, PBTI also generates interface

4.2 Designing Microarchitectural Structures that Support Recovery Boosting 35

traps and increases the threshold voltage. PBTI is expectedto become more important

in future deep submicron technologies [35]. While in the recovery boost mode, both

the ground and node voltages of the cell are raised toVdd. Consequently, theVgs of the

NMOS devices in the inverters becomes zero and therefore these NMOS devices do

not experience any positive bias. The access transistors are also not accessed during

the recovery boost mode. Therefore recovery boosting does not exacerbate PBTI on

the NMOS devices in the memory cell (and may in fact provide PBTI recovery [35]).

4.2 Designing Microarchitectural Structures that Sup-

port Recovery Boosting

Having discussed the basics of recovery boosting, we now turn our attention to de-

signing SRAM-based microarchitectural structures that use this technique to provide

resilience against NBTI. In this section, we present and evaluate the circuit-level de-

sign of two large SRAM-based structures within a 4-wide issue processor core, namely,

the physical register file and the issue queue, which we modify to support recovery

boosting. We study the design of a 128-entry multi-ported physical register file with 8

read-ports, 4 write-ports, and 64-bit entries. The issue queue uses a non-data-captured

design [36] and consists of 64 entries with 4 read-ports, 4 write-ports, and 65 bits per-

entry. The choice for the entry-size is based on the issue queue descriptions given in

[17].

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting36

4.2.1 Physical Register File

Superscalar processors attempt to exploit Instruction-Level Parallelism (ILP) by fetch-

ing, decoding, executing, and retiring multiple instructions each clock cycle. In order

to eliminate false dependences and support a large number ofin-flight instructions,

superscalar processors make use of register renaming. There are a number of microar-

chitectural options for implementing register renaming. In this chapter, we model a

microarchitecture that uses a separate architected register file and a physical register

file. Instructions whose source operand values are to be supplied by a physical regis-

ter have their architected source register mapped to the appropriate physical register

during renaming. These mappings from architected registers to physical registers are

maintained in a Register Alias Table (RAT). The physical register is returned to the

free list of registers when the next instruction that writesto the same architected regis-

ter commits.

A physical register goes through a sequence of four states, shown in Figure4.7: (i)

it is not mapped to any producer instruction and is free (Unmapped), (ii) it is mapped to

an instruction but it has not yet been written into by that instruction (Mapped-Invalid),

(iii) it holds a valid value that has been written to it (Mapped-Valid), and (iv) it holds

a valid value but the value is not read by any instruction before it is released to the

pool of free registers (Post Last-Read). Once the register completes thePost Last-

Read state, the register returns to theUnmapped state and remains in that state till the

register-renaming logic chooses it again for a mapping.

There are three candidate states that one could use for recovery boosting: Un-

mapped, Mapped-Invalid, andPost Last-Read. When a physical register is in theUn-

4.2 Designing Microarchitectural Structures that Support Recovery Boosting 37

Figure 4.7: Register states. The candidate states for recovery boosting are shown in
dashed circles.

Current unmapped completed Control Switch to
State bit bit Signal (CR) Recovery Boost?

Mapped/invalid 0 0 0 Yes
Mapped/valid 0 1 1 No

Unmapped 1 0 0 Yes
Unmapped 1 1 0 Yes

Table 4.2: Control signal truth-table for a register

mapped andMapped-Invalid states, it does not hold valid data and therefore we can

put its cells into the recovery boost mode without affectingarchitectural correctness.

The cells will need to be transitioned into the normal operating mode when moving

from theMapped-Invalid to theMapped-Valid state, which occurs when the producer

instruction has completed its execution and forwards the value to the register file.Post

Last-Read is a more complex situation. Several cycles may elapse between the last

Figure 4.8: Control Logic for generating Control Signal CR (UMx = ‘unmapped’ bit
for registerx andCMx = ‘completed’ bit for registerx)

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting38

time that the physical register is read and when the registeris released. This time

period could potentially be exploited for recovery boosting but it is challenging to pre-

cisely determine when the last-use of a register is complete. Although there have been

proposals to exploit this time window to speculatively release registers early for the

sake of performance and power [37, 38], these techniques entail additional complexi-

ties of tracking/predicting the last-use of registers and for maintaining and restoring the

old state of the early-released registers if needed. To reduce the complexity of imple-

menting recovery boosting, we put registers into the recovery boost mode only when

they are in theUnmapped andMapped-Invalid states. As we will show in Section4.4,

putting registers into the recovery boost mode just during these two states still provides

substantial improvements in reliability.

Since the register renaming logic tracks whether a physicalregister is in theUn-

mapped or Mapped-Invalid state, the control signal for the recovery boost mode is

set by the renaming logic. Each RAT entry has an ‘unmapped’ bit and a ‘completed’

bit that denotes whether the given physical register that the RAT entry points to has

been mapped and whether it has been written to respectively.Using these two bits, we

can implement the control signal for recovery boosting using the truth-table and the

corresponding logic shown in Figures4.2and4.8respectively.

4.2.2 Issue Queue

The issue queue houses instructions that have been fetched,decoded, and renamed and

are pending execution. Instructions are dynamically scheduled from the issue queue

based on the availability of their source operands and functional units. Instruction is-

4.2 Designing Microarchitectural Structures that Support Recovery Boosting 39

sue consists of two steps - wakeup and select - which both needto be completed within

a single clock cycle for high performance. Instructions that have finished execution

broadcast their result tags to all the instructions in the issue queue. Each instruction

in the issue queue compares the broadcasted tags with its ownsource tags for a pos-

sible match. Once both the source operand tags of an instruction have matched, the

instruction is ready to be issued to a functional unit (instruction wakeup). A subset of

the ready instructions are then selected to be issued to the functional units (instruction

select). These instructions obtain their source input operands from the register file or

the bypass network and then proceed to use the functional units granted to them.

RAM RAM CAM

Figure 4.9: An issue queue entry.

We model a non-collapsing issue queue that is organized as a circular FIFO with

head and tail pointers similar to the design proposed by Folegnani and Gonzalez [39].

We design the issue queue entry to be similar to the one described by Palacharla et al.

[40]. Conventional issue queues have a CAM/RAM structure wherethe CAM holds

the source operand tags and the RAM holds the remaining information. The structure

of the issue queue entry is shown in Figure4.9. Each entry has a valid-bit to indicate its

status. The valid-bit is set when the entry is allocated for adispatched instruction and

is reset when the instruction is issued and leaves the issue queue. We put invalid entries

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting40

into the recovery boost mode. (The valid-bit itself is not put into the recovery boost

mode to ensure correct operation of the instruction scheduler). The CAM performs

tag-matching operations against all the broadcasted tags each clock cycle. In order

to do this, each CAM entry has a set of comparators and the number of comparators

required depends on the issue width of the processor. The design of the CAM part of

the issue queue for a single bit is shown in Figure4.10. In each cycle, each matchline

is precharged. If there is a mismatch between the tag data in the memory cell and

the broadcasted result tag in any of the CAM cells in the issuequeue entry, then the

corresponding matchline is discharged; otherwise the matchline stays high. If any of

the matchlines for a given operand tag entry stays high, its corresponding ready signal

(RDY) is asserted high via the OR-block shown in the figure.

� �� � ! " # $% & '
� � ! " # $% & ()

* + , ()* + , () * + , ' * + , '- . & ! " � ./ & .
� 0 1

0 + * + 0 + * +

Figure 4.10: CAM structure of an issue queue entry (IW = issuewidth)

To provide recovery boosting, the memory cells of the RAM andCAM structures

are composed of the modified SRAM cells shown in Figure4.4. The modified issue

queue entry is shown in Figure4.11. The valid-bit works as the control signal (CR)

for the entry. When the memory cells in the entry transition to the valid state, the CR

4.2 Designing Microarchitectural Structures that Support Recovery Boosting 41

signal becomes high which pulls the ground down to low and theentry works in the

normal operating mode. When the entry transitions to the invalid state, the CR signal

becomes low and puts the memory cell into the recovery boost mode. When in the

recovery boost mode, both nodes of the memory cells in both the RAM and the CAM

parts are raised toVdd. Due to the high node voltages, the comparators in the CAM

will be triggered leading to a discharge of the matchline. Toavoid this unnecessary

precharging and discharging of the matchline (which wastespower), we further modify

the issue queue entry so that the prechargers of the matchlines are connected to the

CR signal. When CR is high in the normal operating mode, the matchlines will be

precharged toVdd and the tag-matching process will continue each cycle. WhenCR

is low during the recovery boost mode, the matchlines stay low and therefore do not

discharge.

Figure 4.11: Modified CAM Structure (IW = issue width). MBC isthe Modified Bit-
Cell for recovery boosting.

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting42

4.2.3 Circuit-Level Simulation Results

We now present the results from a circuit-level analysis of the designs discussed in Sec-

tions4.2.1and4.2.2. We perform SPICE-level simulation using the Cadence Virtuoso

Spectre circuit simulator [28] to verify the functionality of our designs and determine

their area and power consumption. Our experiments are carried out for the 32nm pro-

cess using the Predictive Technology Model [31]. Our bitcell device sizes are: PMOS

= 58nm× 33nm, NMOS = 87nm× 33nm, Access Transistor = 58nm× 41nm. The

supply voltage (Vdd) and the operating temperature (T) are 0.9V and 90C respectively.

For each structure, we simulate two designs: the baseline design that uses conventional

6T SRAM cells (which do not provide recovery boosting) and the design that uses the

modified SRAM cells discussed in Section4.1 to provide fine-grained recovery boost-

ing.

����������������� � �� ��� ��� ��� ��� �������������	��
��
 ��������	
���������	
�����������	
	�������
 ����������	
	�������
��������������	���������
 ��������������	���������

Figure 4.12: Write delay of the modified bitcell. Node0 and Node1 are the node volt-
ages of the bitcell (Vdd=0.9V,T=90C).

4.2 Designing Microarchitectural Structures that Support Recovery Boosting 43

Functionality

We evaluate two aspects of the functionality: (i) whether wecan perform read, write,

and hold operations on the modified SRAM cells, and (ii) whether the modified cells

correctly switch between the normal operating modes and therecovery boost mode. To

evaluate these, we looked at the waveforms of the voltage variations at the nodes and

bitlines of the cell in one clock cycle. We examine these waveforms for the read, write,

and hold operations and also for the transitions between therecovery boost mode and

the normal operating modes. We take into account the extra inverter delay required for

changing the ground voltage of the cell during these transitions.

In Figure4.12, we show that the node voltages (Node0 and Node1) of the modified

cell for recovery boosting takes 160 ps to reach desired voltage values whereas, the

conventional 6T cell takes 140 ps. Even though the write delay is increased by 20

ps because of the increased capacitance in the modified cell,this operation can be

done within a single cycle of a high performance processor. Since the read and hold

operations behave in a similar way for both modified and conventional 6T cells, we do

not present the waveforms for these operations.

Figure4.13(a) shows that the required time to switch to recovery boost mode is

190 ps. To switch to the recovery boost mode, both node voltages have to rise toVdd.

Node0 stays inVdd and Node1 takes 190 ps to rise toVdd. Since a bitcell transitions

from recovery boost mode to normal operating mode on a write,we ran simulation

to confirm that we can succesfully write to the cell after the transition within a cycle.

Figure4.13(b) shows the required time to switch to normal operating mode from re-

covery boost mode with a write operation. In recovery boost mode, both node voltages

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting44

(Node0 and Node1) stays inVdd. Therefore, with a write operation, Node0 has to stay

in Vdd and Node1 has to be pulled down to GND. As we can see from the figure, Node1

reaches the desired value (GND) within 140 ps. Therefore, shifting to the recovery

boost mode and to come back to the normal operating mode from it take 190 ps and

140 ps respectively.

�����������������
� �� ��� ��� ��� ��� �������������	��
��
 ��������	

����������	��
�	��	����
���	�����	
�������� �����
(a) Transition to recovery boost mode

����������������� � �� ��� ��� ��� ��� �������������	��
��
 ��������	
����������	��	���
��	��
������	
��
	����	����
	��
������	����� �����

(b) Transition to normal operating mode

Figure 4.13: Transition between recovery and normal modes.Node0 and Node1 are
the node voltages of the bitcell (Vdd=0.9V,T=90C).

4.2 Designing Microarchitectural Structures that Support Recovery Boosting 45

Our simulations indicate that we can correctly perform read, write, and hold opera-

tions on the registers and the issue queue entries that use the modified SRAM cells in

the register file and the issue queue. The extra circuitry forrecovery boosting is not ac-

tive during the normal operating mode and therefore they do not interfere with normal

operations on the cells. Since a register transitions from the recovery boost mode to

the normal operating mode (i.e.,Mapped-Invalid state to theMapped-Valid state) on a

write, our simulations confirm that we can successfully write to the cells after the tran-

sition. The same holds true for an issue queue entry. We also found that the matchlines

for the CAM cells that are in the recovery boost mode are not precharged so that they

never trigger a match for those cells.

Clock Frequency Setting: In our simulations, we found the smallest possible cycle-

time for the modified SRAM cell to be 220ps (a clock frequency of 4.5 GHz). We

choose a more conservative cycle-time of 333ps, which corresponds to a clock fre-

quency of 3 GHz. We found the delay of the high-Vt access transistors that connect

to theVdd rail to be small enough to transition the cell into the recovery boost mode

within a single cycle for the 3 GHz clock frequency.

Area

We designed our structures for both the baseline and recovery boosting cases to oc-

cupy the minimum area required to provide correct functionality. Care was taken to

size the devices so that they are of minimal size while meeting the 3 GHz clock fre-

quency requirement. We calculate the area of the structuresbased on the device sizes

in their respective netlists. We assume that the area overhead due to any new routing

or interconnect can be minimized by an optimized layout. In atypical SRAM array,

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting46

the cells are laid out in the array in a mirrored fashion so that the same interconnect

could be shared by adjacent rows and columns. Under these assumptions, the extra

PMOS devices and the inverters would dominate the area overhead and accounting for

the extra devices would give a first order approximation of the SRAM array area with

the modified cells. The overheads for the multi-ported register file and issue queue are

given in Figure4.14.

������������������������������
��	
����
�
��
����
�����������µµ µµ��	 �����������	��
����
��
��
�	�

������������	����	���������	�� ������	���	��

Figure 4.14: Area of the register file and the issue queue for designs that use conven-
tional 6T cells and cells modified to support recovery boosting.

Since the register file has 8 read-ports and 4 write-ports, each bitcell has 20 tran-

sistors: 4 transistors for the inverter-pair and 8 transistors each for the write and read-

ports (for supporting single-ended reads). Similarly, theissue queue has 4 read and

write-ports respectively and has 16 transistors per bitcell. To support recovery boost-

ing, we add 2 extra transistors of minimal size to each cell and one extra inverter for

an entire row of 64 bitcells, in the case of the register file, or 65 bitcells for the issue

4.2 Designing Microarchitectural Structures that Support Recovery Boosting 47

queue. Therefore, adding the extra transistors for recovery boosting to these heavily

multi-ported structures is expected to add only a small amount of area. Indeed, we

can see that the area of the physical register file and issue queue that use the modified

cells are 4% and 3% respectively more than their baseline designs. This overhead is

roughly equivalent to the area occupied by three registers in the modified register file

and two entries in the modified issue queue. We can therefore design the register file

and issue queue to be area-neutral with respect to the baseline (i.e., occupy the same

area as the baseline design) by having their capacities reduced by three registers and

two entries respectively. The rationale behind going in forarea-neutral structures is

to minimize the impact of designing structures that employ recovery boosting on the

processor floorplan. Going for the area-neutral design of the structures could affect the

performance of the processor. The performance impact of these area-neutral designs

are evaluated in Section4.4.

Dynamic and Leakage Power Consumption

Figure 4.15 gives the power consumption of a single register for both thebaseline

design and the one that uses the modified SRAM cell. Similarly, Figure4.16 gives

the power consumption of a single issue queue entry. For the register, we show the

power consumed for the read, write, and hold operations as well as when the cells

are in the recovery boost mode. For the issue queue entry, in addition to the power

consumed in the recovery boost mode, we quantify the power consumed in each of

the three normal operating modes. For each of these modes, wepresent the power

consumption for two scenarios: (i) when both source tags of an entry mismatch with

the ones broadcast down the issue queue in the same cycle, which is the highest power

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting48

�������������������

�	
� ��
�	 ����
�������µµ µµ�	

��������	

���������	
�����

������

������������	
��		 ����
���
��		
�	���	������������	�����������

Figure 4.15: Power consumption of a single register entry (Vdd=0.9V,T=90C).

consumption scenario since all the matchlines discharge, and (ii) when both source

tags match in the same cycle, which consumes the least amountof power.

We can see that the power consumed by the designs that use the modified SRAM

cells for the read, write, and hold operations are nearly equal to those of the baseline

designs. The maximum increase in power is less than 1% for theregister and less than

2% for the issue queue entry. The power consumption of the issue queue entry is higher

than the register because of its CAM/RAM structure. The slight increase in power for

the recovery boost designs is due to leakage in one of the PMOSaccess transistors

that connect to theVdd rail. The sources of the PMOS access transistors are connected

to Vdd and the drains are connected to the nodes. Therefore, based on whether a cell

holds a ‘0’ or a ‘1’, one of the two PMOS devices will leak. Since we use high-Vt

PMOS devices as the access transistors for the cells (to reduce the impact of NBTI),

4.2 Designing Microarchitectural Structures that Support Recovery Boosting 49

����������������������
�������µµ µµ�	

��������	

�

��
�����
�	���
�����
��	
������	��������	��
���
�	���	��
�	���	������������	������������

Figure 4.16: Power consumption of a single issue queue entry(Vdd=0.9V,T=90C).

the leakage power of these transistors is also reduced.

In memory arrays that use conventional SRAM cells, the cellswill normally be

operating in the hold mode when they house invalid data. However, when the modified

cells are used, cells that hold invalid data can operate in the recovery boost mode. We

can see that the power consumed in the recovery boost mode is orders of magnitude

less than in the hold mode. This is because the recovery boostoperation raises Node0

and Node1 (shown in Figure4.4) and the ground toVdd, which cuts off the path from

Vdd to ground and significantly reduces the leakage currents. Finally, there is a small

power benefit at the structure level since we use area-neutral designs for the physical

register file and the issue queue that are slightly smaller than the baseline designs.

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting50

4.3 Experimental Methodology for the Architecture Level

Analysis

Having seen the circuit-level design of the physical register file and the issue queue to

support recovery boosting, we now evaluate the impact of using these techniques at the

architecture level. We carry out our architecture-level evaluations via execution-driven

simulation using the M5 simulator [29]. We use the system-call emulation mode of

M5. Our workloads consist of all 26 benchmarks from the SPEC CPU2000 benchmark

suite [30]. The benchmarks are compiled for the Alpha ISA and use the reference input

set. We perform detailed simulation of the first 100-millioninstruction SimPoint for

each benchmark [41]. We model a 4-wide issue core, which is similar to those in

multicore processors. We assume the initial threshold voltage of the PMOS devices in

the memory cells to be 0.2 V and the service life of the processor to be 7 years based

on the work by Tiwari and Torrellas [15].

Reliability Metric - Read Static Noise Margin (SNM): NBTI causes an increase in

the threshold voltage of the PMOS transistors. In the case ofSRAM cells, this shift

in Vt could increase the time needed for reading from and writing to the cells. NBTI

could also decrease the read SNM (SNM) of the cells. The SNM isa measure of

the stability of the cell and specifies the maximum amount of voltage noise that can be

tolerated at the nodes of the memory cell before the contentsof the cell get flipped [42].

Previous work [18] has shown that, of these three metrics, the SNM is the one that is

most heavily affected by NBTI and therefore we use SNM as the reliability metric in

this chapter.

Initially, before the processor is used for executing workloads, the bitcells in the

4.4 Architecture-Level Simulation Results 51

register file and the issue queue are designed such that theirSNM is not limited by the

strength of the PMOS devices. But after these structures areexercised by workloads,

their SNM gets limited by the strength of the PMOS devices duethe impact of NBTI

on Vt. We capture this impact by tracking the stress and recovery cycles on all the

PMOS devices in the register file and the issue queue (based onour circuit-level designs

of these structures) over the course of an architecture simulation and extrapolate the

statistics to calculate the degradation inVt after the 7-year service life. We then feed the

Vt values of these PMOS devices into the Cadence Virtuoso Spectre circuit simulator

to calculate the SNM of all the cells in a structure at the end of the 7-year period and

use the smallest value to denote the SNM for that structure.

4.4 Architecture-Level Simulation Results

We now study the impact of putting memory cells of registers and issue queue entries

into the recovery boost mode when they hold invalid data. As discussed earlier, we put

registers into the recovery boost mode when they are in theUnmapped andMapped-

Invalid states. We present results only for the integer register filefor two reasons. First,

the integer benchmarks have very few floating-point instructions and therefore rarely

exercise the floating-point register file. Second, several of the floating-point bench-

marks have a large number of integer instructions in their first 100-million instruction

SimPoint and therefore significantly exercise the integer register file. (9 out of the 14

floating-point workloads have more integer than floating-point instructions in their first

SimPoint). As a result, the integer register file is exercised to a greater extent than the

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting52

���������������������
��������	
��

��������	

���������	�
��
����������
��������
��������������	
 ���
������

�
����	
 ����������	
 ������������ ���
������

�
������� ����������������
��� 	
��������	���
���������������	

Figure 4.17:Vt and SNM degradation for the RF for theBaseline, Recovery Boosting
andBalancing configurations (Vdd=0.9V,T=90C).

the floating-point register file for most of the benchmarks. Issue queue entries are put

into the recovery boost mode when they no longer hold valid data.

We evaluate three different processor configurations, which we denote as:Base-

line, Recovery Boosting, andBalancing. Baseline models 4-wide issue core that do not

use any NBTI mitigation technique.Recovery Boosting replaces the integer register

file and the issue queue of the baseline configuration with their counterparts that sup-

port recovery boosting. We assume that the modified structures forRecovery Boosting

are designed to be area-neutral with respect toBaseline by trading off a small amount

of storage capacity to accommodate the extra area required to implement recovery

boosting. Based on our area evaluations in Section4.2, we assume that the modified

integer register file and issue queue have 125 registers and 62 entries respectively. In

all our simulations, we find that this reduction in capacity has a negligible impact on

4.4 Architecture-Level Simulation Results 53

performance and therefore we do not present detailed performance results.Balancing

denotes a recovery enhancement scheme similar to the one proposed in [17] that uses

the same time intervals thatRecovery Boosting exploits to balance the degradation of

the two PMOS devices in the memory cell. As pointed out by Abella et al. [17], flip-

ping the contents of the memory cells only when they hold invalid data instead of when

they hold both valid and invalid data, for which additional circuitry is required [18], is

the preferable approach for high-speed SRAM structures in order to not increase their

delay significantly. Since the access times of the physical register file and the issue

queue have a strong impact on processor performance, theBalancing technique is ap-

plied only when the memory cells hold invalid data. We optimistically assume that

Balancing does not impose any additional area overheads over the baseline design and

that it can keep the inputs to each PMOS device at a logic ‘0’ exactly 50% of the time

whenever the cells are in this mode.

For the remainder of this chapter, we will refer to the integer register file and the

issue queue as RF and IQ respectively.

4.4.1 Physical Register File Results

Figure 4.17 shows theVt degradation and the resultant SNM for the RF across the

benchmarks due to NBTI after the 7 year service life for theBaseline, Recovery Boost-

ing andBalancing configurations. As mentioned earlier, the initialVt is 200 mV and

using this value, we get the initial SNM of the RF to be 171 mV before the RF is

stressed by the benchmark. For theBaseline, on an average, theVt degrades to 305 mV

across the benchmarks, which leads to an average SNM of 109 mV. Therefore,Base-

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting54

��������������������	��
���������
���������	�
��������
��

���������

��������	

���������	�
��������������� ������	
����
� ������	���
� ����	����	����

Figure 4.18: Breakdown of time spent by the registers in different states. The lowest
part of each stacked bar is theUnmapped state.

line causes about 37% degradation in SNM. To improve the SNM over the Baseline,

Recovery Boosting takes advantage of the invalid periods of the RF to apply recovery

to the registers. A breakdown of the time spent by the registers in the four different

states given in Figure4.7 is shown in Figure4.18. The values given in the graph are

an average over all the registers and over the entire SimPoint for each benchmark. As

we can see, the registers are in theUnmapped andMapped-Invalid states for a large

fraction of time for most of the benchmarks. Therefore, we have significant opportu-

nities to apply recovery boosting for the RF. The impact on the SNM as a result of

using recovery boosting is given in Figure4.17. As Figure4.17shows, the average

degradedVt stays close to 245 mV because of the applied recovery to the RFbitcells.

This causes the SNM to degrade to an average value of 144 mV, which is about 15%

4.4 Architecture-Level Simulation Results 55

�����
������
����

��������	
����
���
��
������������

��������	

���������	�
����
��������������������� �	�
�	�
��

�����

Figure 4.19: Improvement in the Static Noise Margin for the RF over theBaseline
processor configuration (Vdd=0.9V,T=90C).

degradation in SNM over the initial condition. Similarly, for theBalancing approach,

the average degradedVt stays close to 265 mV and the SNM degrades to an average

value of 133 mV.

In Figure4.19, each pair of bars shows the improvement in the SNM overBase-

line for Recovery Boosting andBalancing respectively. As Figure4.19shows, while

Balancing provides a good improvement in the SNM,Recovery Boosting provides sig-

nificantly higher reliability benefits by virtue of its ability to put both PMOS devices

into the recovery mode. Across all the benchmarks,Balancing provides a 40% im-

provement in the SNM whileRecovery Boosting provides a 56% improvement. These

results clearly highlight the benefits of recovery boostingas a technique to mitigate

NBTI in the RF.

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting56

4.4.2 Issue Queue Results

���������������������
��������	
��

��������	

���������	�
��
����������
���������������������	
 ���
������

�
����	
 ����������	
 ������������ ���
������

�
������� ����������������
��� 	
��������	���
���������������	

Figure 4.20:Vt and SNM degradation for the IQ for theBaseline, Recovery Boosting
andBalancing configurations (Vdd=0.9V,T=90C).

Figure4.20shows theVt degradation and the resultant SNM for the IQ across the

benchmarks due to NBTI for theBaseline, Recovery Boosting andBalancing configu-

rations. Similar to the RF, the initialVt and the SNM are 200 mV and 171 mV respec-

tively. On an average, theVt degrades to 305 mV and the SNM degrades to 109 mV

for theBaseline. Unlike the RF, theVt and the SNM of the IQ varies across different

benchmarks for theRecovery Boosting configuration. Specially, theVt and the SNM

varies a lot for the floating-point benchmakrs. The reason behind this is illustrated in

Figure4.21where the breakdown of the time spent by the IQ entries in theValid and

Invalid states for each benchmark is shown. The time-breakdown is anaverage over all

the entries in the IQ and over the entire SimPoint of each benchmark. The duration of

the Invalid state is much shorter for some floating-point benchmarks as shown in the

4.4 Architecture-Level Simulation Results 57

figure. On an average,Vt degrades to 254 mV and the resultant average SNM becomes

140 mV for theRecovery Boosting configuration. Similarly,Vt degrades to 272 mV

and the resultant average SNM becomes 131 mV for theBalancing configuration.

While the RF results show thatRecovery Boosting is consistently superior toBal-

ancing, the IQ shows a more varied trend. The reliability results are given in Figure

4.22. For the integer benchmarks, which are in the left-hand sidegroup in the graphs in

Figure4.21, the IQ entries are in theInvalid state for a large fraction of the time (over

76% on average) and therefore enjoy significant benefits fromrecovery boosting. The

exception to this ismcf, where the IQ entries spend only 34% of the time in theIn-

valid state. The difference in the SNM improvement betweenBalancing andRecovery

Boosting is much smaller for this benchmark and so is the overall benefit over Base-

line. This is because 37% of the instructions inmcf are memory instructions (33.5%

are loads and 3.5% are stores). Given the large number of load-instructions and the

fact that load values are consumed by subsequent instructions in its dependence-chain

that wait in the IQ, they have a significant impact on the occupancy characteristics of

the IQ. We find that the L1 data-cache miss rate formcf is high (54.5%), which leads

to these dependent instructions occupying IQ entries for a longer period of time. As

a consequence, there are fewer opportunities to apply either Balancing or Recovery

Boosting to the IQ formcf compared to the other integer benchmarks. Note that al-

though the IQ entries are in theValid state while these instructions wait, the destination

register of a producer instruction remains in theMapped-Invalid state in the RF till the

value is actually ready to be written to the register. We can see in Figure4.18that the

registers spend a longer time in theMapped-Invalid state formcf than for the other

integer benchmarks. Therefore, the RF still benefits from recovery boosting during

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting58

this period.

The floating-point workloads exhibit a range of behaviors.Recovery Boosting pro-

vides significant improvements in the SNM for more than half the benchmarks and

the benefits provided are much better thanBalancing. However, for certain workloads

(swim, equake, fma3d) the benefits provided byRecovery Boosting andBalancing

are nearly the same. Most interestingly, forsixtrack, lucas, andapplu, Balanc-

ing provides slightlybetter improvement in the SNM thanRecovery Boosting. We now

explain why this happens.

First, as we expect, there is a relationship between the benefits thatRecovery Boost-

ing provides and the amount of time that the IQ entries spend in the Invalid state, as

Figure4.21indicates. There are several factors that influence the amount of time that

various workloads spend in theInvalid state, such as the percentage of high-latency

instructions in the instruction mix of the benchmark and thememory system perfor-

mance (both the hit-rates of the L1 instruction and data caches as well as the average

miss latencies). For workloads that have a significant number of high-latency floating-

point instructions, the instructions data-dependent on those high-latency instructions

will occupy IQ entries for a longer time.sixtrack, lucas, andapplu contain

a significant number of floating-point instructions in theirinstruction-mix (65%, 64%,

and 52% respectively). These three workloads also have the highest fraction of floating-

point multiply instructions among all the floating-point workloads (36%, 23%, and

24% of the overall mix respectively). Since a floating-pointmultiply takes 4 cycles

to execute, instructions on their dependence-chains wait in the IQ for a long time in

the Valid state. Similarly, for workloads that have a high percentageof load instruc-

tions, the IQ entries occupied by the loads and their dependence-chains will remain in

4.4 Architecture-Level Simulation Results 59

theValid state for a longer time if the loads frequently miss in the cache. In general,

the IQ occupancy behavior depends on both the characteristics of the application and

the exact microarchitectural configuration of the processor. However, since we do not

optimize either of these factors forBalancing andRecovery Boosting, it is more impor-

tant to understand when one scheme will be more beneficial than the other in terms of

reliability.

��������������������	��
���������
���������	�
����
������

���������

��������	

���������	�
����
��������� �����

Figure 4.21: Breakdown of time spent by the IQ entries in theValid andInvalid states..

To achieve a good SNM, it is important to minimize the increase inVt due to NBTI

of both PMOS devices in the memory cell. Additionally, it is also important to ensure

that thedifference in the threshold voltages between the two PMOS devices is kept as

small as possible.Recovery Boosting addresses the first condition whereasBalancing

addresses the second. When an IQ entry holds valid data for a long period of time, as

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting60

�����
������
����

��������	
����
���
��
������������

��������	

����������	
����
���������� �	�
�	�
��

�����

Figure 4.22: Improvement in the Static Noise Margin for the IQ over the baseline
processor configuration (Vdd=0.9V,T=90C).

is the case forsixtrack, lucas, andapplu, one of the PMOS devices in each

memory cell stays in the stress phase while the other in the recovery phase. This in-

creases the difference in theVt between the two PMOS devices and therefore degrades

the SNM. When the IQ entry is in theInvalid state for a short period of time,Recov-

ery Boosting reduces theVt of both PMOS devices all the memory cells. However,

Balancing flips the bits stored in those cells so that the PMOS device that was in the

recovery phase while the IQ entry was valid now enters the stress phase and vice-versa,

which tends to reduce the difference inVt between the two PMOS devices. As a re-

sult, for workloads where the IQ entries spend very little time in theInvalid state, the

SNM for theBalancing scheme is better than forRecovery Boosting. The difference

is especially evident forlucas, whose IQ entries spent the least amount of time in

4.5 Summary 61

theInvalid state (5% of the time) as shown in Figure4.21. However, when theInvalid

periods are even slightly longer, the difference between the two schemes becomes less

evident and it starts becoming more beneficial to reduceVt than to try maintaining a

small threshold voltage difference for longerInvalid periods. For example, we can see

in Figure4.21thatsixtrack andapplu spend successively longer periods in the

Invalid state (13% and 21% respectively) and consequently the gap betweenBalancing

andRecovery Boosting diminishes andRecovery Boosting provides more benefit than

Balancing for workloads with longerInvalid times.

In general, we find thatRecovery Boosting is more beneficial thanBalancing for a

wide range of IQ entryInvalid-state occupancy times.Recovery Boosting provides a

48% improvement in the SNM overBaseline whereasBalancing provides only a 37%

improvement for the entire SPEC CPU2000 benchmark suite.

4.5 Summary

SRAM memory cells are especially vulnerable to NBTI since the input to one of the

PMOS devices in the cell is always at a logic ‘0’. In this chapter, we propose recovery

boosting, a technique that allows both PMOS devices in the cell to be put into the

recovery mode by raising the ground voltage and the bitline to Vdd. We show how

fine-grained recovery boosting can be used to design the physical register file and issue

queue and evaluate their designs via SPICE-level simulations. We then show that area-

neutral designs of these two structures can provide significant reliability benefits with

very little impact on power consumption and negligible lossin performance.

Chapter 4 Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting62

This chapter covers work published in ISVLSI 2010 [2] and in the IEEE Transac-

tions on VLSI 2011 [3].

Chapter 5

Mitigating the Impact of NBTI on

Processor Functional Units

NBTI affects both the cycle time and the stability of storagestructures within the pro-

cessor. These problems are typically addressed via guardbanding. Guardbanding ac-

counts for the degradation in cycle time and the stability ofthe storage structures over

the lifetime by reducing the operating frequency and increasing the minimum voltage

of the storage elements (Vmin). Typically, 20% of the cycle time is reserved as a guard-

band for NBTI and a 10% increase in threshold voltage (Vt) can be handled with a 10%

increase inVmin [17]. However, reducing the frequency and increasingVmin have a

detrimental impact on performance and power respectively and therefore it is desirable

to reduce the guardband via the use of NBTI mitigation techniques. In this chapter, we

look into guardband reduction techniques to address the degradation in cycle time.

Techniques for putting PMOS devices into the recovery mode can be implemented

at both the circuit and microarchitecture levels in the processor. The goal of circuit-

63

Chapter 5 Mitigating the Impact of NBTI on Processor Functional Units 64

level techniques is to design the structures such that as many PMOS devices as possible

in the structure can be put into the recovery mode whenever possible. Circuit-level

techniques typically attempt to tackle NBTI at the granularity of a single structure.

Microarchitecture level techniques, on the other hand, canmanage NBTI for several

structures within the processor core using techniques suchas instruction fetch and

scheduling policies. There are tradeoffs in implementing NBTI recovery at each of

these levels in the system in terms of area, power, performance, complexity, and, their

effectiveness in reducing the guardband.

In this work, we present a quantitative analysis of NBTI recovery techniques at

the circuit and microarchitecture levels for the functional units (FUs) in the cores of a

high-performance multicore processor. We choose to study FUs because of the general

trend in multicore processor design, where more cores are integrated onto the die each

sucessive generation but the cores themselves tend to be relatively simple and have

only a small number of FUs. In this scenario, the failure of even one FU could seri-

ously jeopardize the ability of that core to provide high performance. We characterize

the effectiveness of NBTI mitigation at both the circuit andmicroarchitecture levels

and quantify their impact on other important figures of merit, such as, area, delay, and

application performance. The objective of this chracterization study is to identify those

techniques that can effectively reduce the guardband but have the least amount of per-

formance impact on applications, as well as impose minimal overheads in terms of area,

power, and delay. We then show that lightweight optimizations at each level is more

effective in reducing the guardband without adversely affecting the other figures of

merit than applying more extensive changes at any one level.To the best of our knowl-

edge, this is the first study to systematically analyze NBTI recovery techniques at each

5.1 Approaches to NBTI Mitgation at the Circuit and Microarchitecture Levels65

of these levels for FUs and develop multi-level optimization techniques to tackle this

important reliability problem. In this chapter, we proposeand evaluate three different

NBTI-aware FU designs in terms of guardband reduction, areaand delay. We show

that, on an average, the three different designs provide a guardband reduction of 42%,

46% and 47% over the baseline configuration. We then propose three different NBTI-

aware scheduling policies and evaluate their impact on performance and guardband

reduction. We show that, on average, the three policies provide a guardband reduction

of 43%, 54% and 63% over the baseline FU configuration. Finally, we analyze the

effectiveness of combining lightweight optimizations at each level and show that this

approach provides a 56% guardband reduction with minimal impact on other figures

of merit.

The outline of the rest of this chapter is as follows. The nextsection discusses the

NBTI mitigation techniques we consider. The experimental methodology is described

in Section5.2. The results are presented in Section5.3and Section5.4concludes this

chapter.

5.1 Approaches to NBTI Mitgation at the Circuit and

Microarchitecture Levels

In this section, we describe how degradation due to NBTI can be reduced at the circuit

and microarchitecture levels for the functional units (FUs) and describe the specific

designs and policies we evaluate. While our circuit designsare optimized versions of

a previously proposed technique [27], the microarchitecture level schemes we propose

Chapter 5 Mitigating the Impact of NBTI on Processor Functional Units 66

are novel.

5.1.1 Circuit Level Techniques

Fu et al. [27] proposed a circuit-level technique where a FU is divided into multi-

ple segments and instructions with narrow-width operands are steered into one of the

segments based on the delay of each segment due to NBTI. The delay of a segment

depends on the level of stress experienced by the PMOS transistors in that segment.

Higher the stress, more would be the increase inVt and hence higher would be its

delay. The specific design considered in [27] is a 64-bit FU that is divided into four

segments of 16 bits each. An instruction with 16-bit or smaller operands uses the seg-

ment with the smallest delay while the other segments are putinto the recovery mode.

Instructions with operand-widths greater than 16 bits makeuse of the entire FU.

There are two drawbacks to the design proposed by Fu et al. First, each segment in

the FU is built as a Carry Lookahead Adder (CLA) and the segments are connected as

a multi-level CLA to form a 64-bit FU. CLAs are seldom used in high performance mi-

croprocessors due to their low speed. Instead, most processors today use some form of

a high-speed prefix adder. Second, to put PMOS devices in the idle segments into the

recovery mode, they feed in special input vectors. Since an FU is a complex combina-

tional circuit, a single vector of bits input to the FU cannotput all the PMOS devices in

it into the recovery mode and instead a sequence of input vectors are necessary, which

takes multiple clock cycles. Therefore, the PMOS devices cannot utilize the entire

duration of an idle period to recover from NBTI. We address both these limitations as

follows.

5.1 Approaches to NBTI Mitgation at the Circuit and Microarchitecture Levels67

In this chapter, we model the FU to be a 64-bit Kogge-Stone adder (KSA) which

is a high-speed prefix adder [43] for the purpose of estimating NBTI. KSA is a widely

used FU design due to its regular structure and its speed. In order to put all the PMOS

devices in the FU into the recovery mode during an idle period, we make use of power

gating [44]. Power gating reduces leakage power in the circuit by usinga header or

footer device which connects the entire circuit toVdd or ground. Whenever the circuit

is idle, turning off this transistor disconnects the circuit from Vdd or ground. In our

model, we use footer devices to connect the circuit to ground. During power gating,

we find that the gate voltages of the PMOS devices in the FU stayreasonably close to

a logic value of ‘1’, thereby putting the FU into the recoverymode.

We design the KSA such that it consists of segments that are capable of processing

narrow-width operands while the idle segments undergo recovery using power gating.

We profiled the SPEC CPU2000 benchmark suite [30] to determine the distribution of

narrow-width operands. We find that there are a large number of instructions with 8-bit,

16-bit, and 32-bit operands. Therefore, there is significant scope for NBTI recovery by

partitioning the 64-bit FU into 2, 4, or 8 segments, where each segment is 32 bits, 16

bits, or 8 bits respectively. Each such segment can operate as an independent FU on

operands of the given width and multiple such segments can becombined to operate

on wider operands. For example, if the FU is partitioned into4 parts, an instruction

with two 16-bit input operands needs to utilize only one partwhile the other three can

be put into the recovery mode. An instruction with 32-bit operands can use either the

first two or last two consecutive segments while the other twoare put into the recovery

mode. Figure5.1shows an FU that has two segments. To ensure that all parts of the FU

experience roughly an equal amount of wear, we schedule instructions to the segments

Chapter 5 Mitigating the Impact of NBTI on Processor Functional Units 68

in a round-robin fashion.

2 3 4 5 3 67 8 2 3 4 5 3 67 9
: ;<; : = <=>?@A BCD E >F@A BCD E

>G @A BCD E>H @A BCD E I JI JI J
KL MNOLPLQPN M RN STPL MK O RU V

I JW I XLQ YZ [JTXSP
Figure 5.1: Partitioned Kogge-Stone Adder Design to Support NBTI Recovery.

It is important to note that the KSA is fast because the carries are computed in

parallel, a feature that we retain in the partitioned design. The delay of the FU, when

operating in the 64-bit mode, should not be significantly affected by the partitioned

nature of the design. In order to achieve this property, we introduce a set of MUXes be-

tween adjacent segments, as shown in Figure5.1. The selection input to these MUXes

depend on the width at which the FU will be used. For example, in the case of Figure

5.1, the input to the MUXes will determine whether the FU will be used as a 64-bit FU

or a 32-bit FU. Each segment is connected to ground via a footer device. The gates of

the footer devices are controlled by zero detectors and a one-bit counter output. The

5.1 Approaches to NBTI Mitgation at the Circuit and Microarchitecture Levels69

purpose of the zero detectors is to decide whether the instruction has narrow-width

operands or not. The one-bit counter is incremented every time a narrow-width op-

eration is performed. If the operands are narrow-width, they are steered towards a

particular segment using a round-robin policy based on the value of the counter. The

footer for the left segment is shared with the MUXes since theMUXes provide the

input to the left segment.

There are tradeoffs in designing the FU in a partitioned manner to support recov-

ery. The more segments that a FU has, greater are the opportunities for recovering

the PMOS devices and reducing the guardband, since there will be a better matching

between narrow-width operands and the number of segments required to operate on

them. However, such a design comes at the cost of increased area, delay, and higher

power consumption when it is used for operating on wide operands. We analyze these

tradeoffs in Section5.3.

5.1.2 Microarchitecture Level Techniques

There are opportunities to reduce the guardband by carefully managing the hardware

resources within the core at the microarchitecture level. The usage characteristics of

different FUs can be controlled through various instruction scheduling policies. The

dynamic instruction scheduler decides which instructionsare executed and at what

times on a given set of FUs and therefore has a strong impact onthe utilization char-

acteristics of the FU. The scheduler consists of two key components: wakeup logic

and select logic. The wakeup logic is responsible for asserting an instruction as being

‘ready’ in the issue window by updating the source dependences of instructions waiting

Chapter 5 Mitigating the Impact of NBTI on Processor Functional Units 70

for their source operands to become available. Every time a result is produced by a FU,

the tag of the result is broadcast to the waiting instructions in the issue window. Each

waiting instruction compares the result tag with the tag of each of its source operands.

Once both operand tags have matched, the instruction is ready to execute (instruction

wakeup) and the ready instructions signal the select logic to request execution on a

given type of FU. Once a FU becomes available, the select logic directs a suitable

instruction to that unit for execution by asserting the corresponding grant signal (in-

struction select). Since multiple instructions could wakeup in a given cycle and the

processor typically has multiple FUs of the same type, thereneeds to be a policy to se-

lect a subset of the ready instructions and assign them to specific FUs based on resource

availability. Modern instruction schedulers typically use a form of prioritized schedul-

ing where instructions are selected in an oldest-first orderfrom the issue window and

each instruction is issued to the lowest-numbered FU that isfree. We call this policy

Prioritized Scheduling (PS). In this approach, an instruction will be allocated to FU0

if it is available; if FU0 is busy, then FU1 will be checked for availability and so on.

This non-uniform assignment leads to the case where FUs withsmaller sequence num-

bers get utilized more than those with higher sequence numbers and hence degrade

faster. This is illustrated in Figure5.2, which presents the utilization of the integer

ALUs (in terms of the number of cycles that the FU is busy over the entire execution

time of the workload) of a 4-wide issue processor core for a set of SPEC CPU2000

benchmarks. As we can observe from the figure, the lower-numbered functional units

tend to be heavily utilized and therefore will wear out sooner than the higher-numbered

ones. We propose instruction scheduling policies that attempt to extend the recovery

times for the FUs so that their degradation due to NBTI can be minimized. We make

5.1 Approaches to NBTI Mitgation at the Circuit and Microarchitecture Levels71

\\]^\]_\]`\]a\]b\]c\]d
efghgijfgkl

m n op q r s t uv

w x op y z{ o s | } o zy } y z|z~ s y z{ o� �� � � �� � � �� � � �� �

Figure 5.2: Utilization of the Integer ALUs in a 4-wide issueprocessor core using the
PS policy.

use of power gating to put idle FUs into the recovery mode. We now present a brief

overview of the instruction scheduling policies that we evaluate.

i) Priority Rotation Scheduling (PR): ThePR policy is geared towards achieving a

balanced utilization of the FUs in order to level the wear on them. This policy modifies

the conventionalPS scheduling policy so that the priorities of the FUs are changed,

in a round-robin fashion, after a fixed number of cycles (CyclePR) have elapsed. In

thePR policy, we start with FU0 having the highest priority and assign lower priorities

to the other FUs based on their sequence numbers (i.e., FU0 initially has the highest

priority whereas FUn−1 has the lowest). AfterCyclePR cycles, FU1 gets the highest

priority, FU2 gets the second highest priority and so on and FU0 has the lowest priority.

The select logic is similar to the PS policy but with added functionality to change the

priorities of the FUs afterCyclePR cycles. A key advantage of thePR policy is that

Chapter 5 Mitigating the Impact of NBTI on Processor Functional Units 72

it does not degrade performance in the sense that no FU is precluded from being used

because it is in the recovery mode.

ii) Time-Dependent Scheduling (TD): Time-Dependent Scheduling extends the con-

ventional policy to include an explicit fixed recovery period. In theTD policy, whenever

the wakeup logic flags an instruction to be ready, the select logic allocates the lowest

numbered FU that is available. After a FU is used, no other instruction is assigned to

that particular FU for a fixed number of cycles (CycleTD). This policy allows the FU

to undergo recovery forCycleTD cycles after each stress phase. We can implement

this in hardware by keeping the busy signal of the FU assertedfor CycleTD cycles

after the FU is used. However, since the FU cannot be used during this time, there

could be a detrimental impact on performance.

iii) Prioritized Time-Dependent Scheduling (PTD): Prioritized Time-Dependent Schedul-

ing combines thePR andTD policies to include an explicit fixed recovery period to the

highest priority FU. In this scheme, similar toPR policy, the priorities of the FUs are

changed in a round-robin fashion after a fixed number of cycles (CyclePRC) have

elapsed. Whenever an FU gains the highest priority, it also gains the priviledge of

an extended recovery period after it is used. When this high priority FU is used, no

other instruction is assigned to this particular FU for another fixed number of cycles

(CycleTDC), allowing it to undergo recovery after each stress phase. Other FUs can

be continued to be used as usual. OnceCyclePRC cycles have elapsed, the priorities

are rotated. This transition in priorities does not affect the residual time for which an

FU can remain in the recovery mode. Any FU that enters the recovery mode is guar-

anteed to be in that mode forCycleTDC cycles. Since thePTD policy prevents an

FU that is in the recovery mode from being used till the requisite number of cycles

5.2 Experimental Setup 73

elapse, this policy could also have a detrimental impact on performance. However, if

CyclePRC is chosen to be significantly larger thanCycleTDC, only one FU would

tend to be in the recovery mode at any one time and therefore the degradation in per-

formance would tend to be less severe than theTD policy. We evaluate these policies

in Section5.3.

5.2 Experimental Setup

Our circuit-level modeling is performed via SPICE-level simulation using the Cadence

Virtuoso Spectre circuit simulator [28] for the 32nm process using the Predictive Tech-

nology Model [31]. Our architecture-level evaluations are carried out via execution-

driven simulation using the M5 simulator [29]. We simulate a 4-wide issue core, which

is representative of cores used in multicore processors today, that runs at a 3 GHz clock

frequency and has a supply voltage of 0.9V. We use all 26 benchmarks from the SPEC

CPU2000 benchmark suite in our evaluations [30]. The benchmarks are compiled for

the Alpha ISA and use the reference input set. We perform detailed simulation of the

first 100-million instruction SimPoint for each benchmark [41].

We focus on the impact of NBTI on the integer ALUs only. Although we consider

both integer and floating-point benchmarks in our evaluations, several of the floating-

point benchmarks have a considerable number of integer instructions in their instruc-

tion mix and therefore make heavy use of the the integer ALUs [45]. We present our

results for only the integer ALU with the lowest sequence number since this ALU tends

to be the most heavily utilized of all the ALUs with conventional instruction schedul-

ing, as explained in Section5.1.2. Since NBTI affects the threshold voltages of PMOS

Chapter 5 Mitigating the Impact of NBTI on Processor Functional Units 74

devices in the FUs, the delay of the FU hardware increases which causes a potential

danger to meet the timing constraints. Guardbanding is usedto protect a circuit from

failure, which entails both performance and power penalties. In all our experiments, we

assume that the baseline processor uses the unpartitioned FU design, thePS instruction

scheduling policy, and a guardband of 20% [17].

In our evaluations, we use the percentage reduction in the guardband with respect

to the baseline as the figure of merit to quantify the extent towhich a particular design

mitigates the impact of NBTI. To compute guardband reduction, we track the stress and

recovery cycles of the FUs in the architectural simulations. Using these statistics, we

estimate the degradation inVt after a 7-year service life [15], using which we calculate

the delay degradation in the structures and finally the guardband reduction. We also

quantify the impact on other important figures of merit, suchas, area, delay, and appli-

cation performance (in terms of IPC), to study the effectiveness of NBTI mitigation at

both the circuit and microarchitecture levels.

Our goal is to evaluate the extent to which optimizations at only the circuit or

microarchitecture level can reduce the guardband and ascertain the costs incurred in

applying these optimizations on the other figures of merit. These results are presented

in Sections5.3.1and5.3.2. Based on this analysis, in Section5.3.3, we study whether

less aggressive optimizations at each level, which impose less overheads, can be com-

bined to provide an effective means to reduce the guardband.

5.3 Results 75

5.3 Results

5.3.1 Circuit-Level Optimization

We now study the tradeoffs between different circuit-leveltechniques. We partition the

FU into 2, 4 and 8 segments and analyze the guardband reductions, area overheads,

and the increases in delay with respect to the baseline.

�����������
��������������	
����
���

���
��������	

���������	
	���

������������������	���������
������ ��
������ ��
������
Figure 5.3: Guardband reduction for the FUs with 2, 4 and 8 segments.

Guardband Reduction: Figure5.3presents the guardband reduction (as a percentage)

due to the modified FU designs. The FU with 2 segments providesa guardband reduc-

tion of 30%-55% whereas a 4-Segment FU and a 8-Segment FU provide 35%-60%

and 40%-60% guardband reductions respectively. This result shows that the more par-

titions that a FU has, the higher would be the guardband reduction. However, we see

that the guardband reduction achieved by going from the baseline to the 2-segment de-

sign is much higher than going from the 2- to 4-segments and 4-to 8-segments. Also,

Chapter 5 Mitigating the Impact of NBTI on Processor Functional Units 76

the integer benchmarks, which are the left-hand side group of bars in the figure5.3,

experience less guardband reductions than the floating-point benchmarks.

In order to understand how the modified FU design impacts NBTI, we need to ana-

lyze how the FUs are utilized and the distributions of the narrow-width operands. The

instruction mix gives an indication of how frequently each type of FU gets accessed.

For example, the higher the number of integer instructions,the higher is the proba-

bility of accessing integer FUs. A previous study by Siddiqua et al. [45] gives the

breakdown of the instruction mix of these benchmarks. We findthat the lowest guard-

band reductions are observed for those benchmarks which have a high percentage of

integer instructions. Similarly, to understand the benefitof the segmented designs, it

is important to look at the distribution of the narrow-widthoperands. We find that, on

average, the percentage of 32-bit operands is about 48% whereas it is 8% for 16-bit

operands and 27% for 8-bit operands across the benchmark suite. Since the 32-bit

operand sizes occur most frequently, we get a higher guardband reduction when we go

in for the 2-segment partition from the baseline, whereas the 4-segment to 8-segment

designs provide diminishing returns.

Area and Power: We design the FU for the baseline case to occupy the minimum

area required to provide correct functionality. The overheads for the partitioned FU

designs are given in Figure5.4(a). We can see that the area overhead of the 2-segment,

4-segment and 8-segment FUs are 3%, 7% and 12% respectively.The increase in

area is due to the number of sets of MUXes required for the three designs (1, 3 and 7

respectively). These MUXes increase the power consumptionof the FU and therefore

the designs with more segments will consume more power.

Delay: We evaluate the delay to measure the highest clock frequencyat which the

5.3 Results 77

����
�������

��������� ��������� ���������������������
�������������
� ¡¢

£¤¥¦§¦¨¥ ©ª«

���������	��
��������
��	�	������

(a) Increase in Area (%)

�����
����������
��

���	
�	�
 ���	
�	�
 ���	
�	�
���������	��
���
��
��������	����
�

����������	

���������	��
�����
������	
	������

(b) Increase in Delay (%)

Figure 5.4: Percentage increase in area and delay for the FUswith 2, 4 and 8 segments
wrt. the unpartitioned FU design.

FU can operate reliably. Figure5.4 (b) shows the increase in delay with respect to

the baseline design. In our simulations, we find that the increase in delay for the

2-segment, 4-segment and 8-segment FU designs due to the additional hardwares are

5%, 11% and 18% respectively. However, these increases in delay can be accomodated

Chapter 5 Mitigating the Impact of NBTI on Processor Functional Units 78

within a 333ps clock cycle time (which corresponds to the 3 GHz clock frequency) and

therefore all these FU designs can provide a single-cycle access latency for instructions

using the FUs.

Summary: There are merits and demerits to using the aforementioned FUdesigns.

The higher the segment count in the FU, the higher is the guardband reduction. How-

ever, the area, power, and delay overheads also increase significantly. Each segment

introduces a set of extra circuitry which adds area and increases power consumption.

For 64-bit operand computations, the FU would consume the highest power since all

the MUXes will be active and this power consumption will be higher with more parti-

tions. Overall, we find that we get higher guardband reduction with least area, power

and delay overheads for the 2-segment design. Therefore, wechoose the 2-segment

FU design for use in the multi-level approach in Section5.3.3

5.3.2 Microarchitecture-Level Optimization

We evaluate the guardband reduction and performance of thePR, TD andPTD policies.

We use a value of 10K forCyclePR andCyclePRC and a value of 1 forCycleTD

andCycleTDC for the different policies.

Guardband Reduction and Performance: Figure5.5(a) presents the percentage guard-

band reduction for the various policies. ThePR policy reduces the guardband by 30%-

55% whereas theTD andPTD policies reduce it by 50%-80% and 35%-70% respec-

tively. Since the scheduling policies aim to achieve improved guardband reduction by

increasing idleness to provide NBTI recovery, they may impact performance, as dis-

cussed in Section5.1.2. Figure5.5(b) quantifies the performance loss. As we can see,

5.3 Results 79

���������������
	�
�

����������	
����
���
���

��������	

�����������	��
�	��	
	�������������
���������	�
�������
������ ��
������ ���
������

(a) Percentage Guardband reduction

��������
�������������	�
����

�� ��������	

�����������	��
�	��	
	�������������	��������	�������
������ ��
������ ���
������
(b) Percentage loss in performance

Figure 5.5: Impact of the instruction scheduling policies.

theTD andPTD policies achieve a greater guardband reduction at the cost of reduced

performance whereas thePR policy experiences no performance loss. On average, the

TD andPTD policies lead to a performance loss of 17% and 8% respectively. ThePTD

policy provides a guardband reduction and experiences a performance loss that is be-

Chapter 5 Mitigating the Impact of NBTI on Processor Functional Units 80

tweenPR andTD because the value ofCyclePRC is much higher thanCycleTDC.

Therefore, the policies that attempt to increase the recovery time of a FU cause a cor-

responding loss in performance for the benchmarks. Similarto the circuit-level results,

the integer benchmarks have less guardband reduction than the floating-point bench-

marks.

The impact of scheduling policies on NBTI is influenced by twofactors: the instruc-

tion mix and instruction level parallelism. As mentioned before, the instruction mix is

an indicator of how frequently each type of FU gets accessed.Instruction level paral-

lelism also determines the frequency of use of the FUs. Also,it affects how groups of

FUs get used. When the IPC is high, more instructions are executed per cycle. Conse-

quently, more FUs will get utilized. Indeed we find the least guardband reductions are

observed for those benchmarks which have a high percentage of integer instructions

and higher IPC.

Summary: As the results indicate, there is a clear tradeoff between achieving higher

guardband reductions and application performance by usinginstruction scheduling.

Although theTD policy provides large benefits in terms of guardband reduction, it

imposes large performance overheads as well, which is unattractive for use in high-

performance processors. Although thePTD policy reduces the performance overheads

significantly while still providing significant guardband reductions, the detrimental im-

pact on application performance is still non-trivial. ThePR policy, on the other hand,

does not cause any performance loss while still providing a guardband reduction of

43% on average. Therefore, althoughTD andPTD provide large guardband reductions,

we choosePR, since it is the most lightweight policy in terms of its performance im-

pact, and use it in the multi-level approach.

5.3 Results 81

5.3.3 Multi-Level Optimization

In the results presented thus far, we have observed that increasing the effectiveness of

NBTI mitigation techniques at only the circuit or microarchitecture level to improve the

guardband entails penalties in terms of area, power, delay,and application performance.

On the other hand, lightweight optimizations ateach level could provide a net increase

in guardband reduction with less overhead. We now evaluate this hypothesis.

We choose the 2-segment FU design, which we found to have the smallest overhead

in terms of area, delay, and power in Section5.3.1as our circuit-level optimization and

thePR instruction scheduling policy as our microarchitecture-level optimization. The

result of combining these two optimizations is given in Figure5.6.

�������������
��	�

����������	
����
���
���

��������	

�����������	
���
����	���������	�������
���
������ ��������� �����������

Figure 5.6: Guardband reduction using FUs with 2 segments and thePR scheduling
policy.

From the figure, it is evident that we achieve a guardband reduction of 45%-75%,

which is a much higher range than the 30%-55% for both circuitand microarchitec-

ture levels. It is also important to note that the achieved guardband reduction due to

Chapter 5 Mitigating the Impact of NBTI on Processor Functional Units 82

the multi-level approach isnot merely additive from the individual optimizations at

each level. This is due to the fact that, in the multi-level approach, the overall flow

of bits through the FUs over the course of execution of the workload is different from

the previous two sets of evaluations. The new FU design changes the stress and re-

covery characteristics on the PMOS devices in the FU, due to the partitioned nature

of its design, compared to the unpartitioned FU design evaluated in Section5.3.2for

the microarchitecture-only optimizations. Similarly, the PR policy alters the overall

utilization of each FU and increases the idleness of all the FU segments, which al-

lows for greater recovery than thePS policy used in Section5.3.1for the circuit-only

optimizations.

Overall, we observe that the multi-level approach providesgreater reductions in

the NBTI guardband while retaining the low area, power, and delay benefits of the

2-segment FU design and the high performance of thePR policy.

5.4 Summary

In this chapter, we evaluate both circuit and microarchitecture level approaches to re-

duce the NBTI guardband for the FUs of a high-performance processor core. At the

circuit-level, we use an optimized version of a partitionedFU design and evaluate sev-

eral design points in terms of their effectiveness in reducing the guardband and also

their area, delay, and power. At the microarchitecture-level, we propose and evaluate

a set of NBTI-aware dynamic instruction scheduling policies and evaluate their impact

in terms of guardband reduction and performance. Finally, we show that a multi-level

optimization approach, which combines the benefits of both circuit and microarchitec-

5.4 Summary 83

ture level optimizations, is the most effective in reducingthe guardband while imposing

little overhead in terms of area, power, delay, and performance.

This chapter covers work published in GLSVLSI 2010 [4].

Chapter 6

Modeling and Analyzing NBTI in the

Presence of PV

Process Variation (PV) is the variation in the transistor attributes (length, width, oxide

thickness) caused during the fabrication of the integratedcircuits and manifests itself

as threshold voltage variations which results in variability in circuit performance and

power. The impact of NBTI is exacerbated by PV. Processors have to be designed to

provide adequate protection against both these problems. Both NBTI and PV have

received attention in the architecture community in recentyears and several mitigation

techniques have been proposed for each [17, 15, 4, 2, 21, 22]. Since both NBTI and

PV affect the threshold voltage of devices, these two problems should not be addressed

in isolation. To come up with the appropriate mitigation techniques, it is important

to accurately gauge the impact of both NBTI and PV and factor-in the impact of the

workloads that run on the processor as well. For this purpose, an analytical model is

required which captures the impact of both NBTI and PV in a coherent way and which

84

Chapter 6 Modeling and Analyzing NBTI in the Presence of PV 85

is suitable for use in architecture level analyses.

There have been several efforts in developing analytical models for NBTI and PV

at the circuit-level. However, these models are suitable only for analyzing NBTI and

PV effects over a very short time span and are not readily usable for architecture simu-

lations. Architects, on the other hand, study microprocessor reliability by executing dif-

ferent program benchmarks and extrapolate the collected statistics over a much longer

timescale (typically, 7-10 years). Throughout the benchmark execution, utilizations of

the microarchitectural structures vary. Also, the interactions among the structures, the

inputs to each structure, and bits stored within them changeover the course of execu-

tion of a benchmark. The analytical model for NBTI and PV should be able to factor-in

all these “variations” to be usable in architecture simulations to gain correct and holis-

tic insight into these inter-related reliability problemsin silicon. In this chapter, we

leverage the prior research on NBTI and PV modeling from the circuits community to

develop a model that captures the interactions between these two reliability phenomena

and which is usable at the architecture-level.

There are different sources of variation inherent in NBTI and PV that affect the

PMOS threshold voltage. One source of variation in the threshold voltage due to NBTI

is workload variation which is caused by executing different workloads on the proces-

sor. This variation is due to changing patterns of utilization of the microarchitectural

structures and changes in the bit patterns within the structures. Another factor lies in

the silicon process, known as the Random Charge Fluctuation(RCF), which causes a

temporal variation in threshold voltage on top of the workload variation. Alongwith

the variations due to NBTI, each device also has Random Dopant Fluctuations (RDF)

due toprocess variation (details of the sources of these variations are discussed inthe

Chapter 6 Modeling and Analyzing NBTI in the Presence of PV 86

next section). The analytical model we have developed accounts for all these variations.

In this chapter, we develop an analytical model to capture both NBTI and PV for use in

architecture simulations. We use this model to analyze the combined impact of NBTI

and PV on a memory structure (register file) and a logic structure (Kogge-Stone adder).

We show that the impact of the threshold voltage variations due to NBTI and PV over

the nominal degradation can hurt the yield of the structures. Due to the combined effect

of NBTI and PV across different benchmarks, 26 to 117 bits fail in a 8Kb size register

file and the execution delay increases by 18% to 28% in a kogge-stone adder. We then

discuss the implications of these results for architecture-level reliability techniques.

The outline of the rest of this chapter is as follows. The nextsection gives a brief

overview of the different sources of threshold voltage variation due to NBTI and PV.

The analytical model for NBTI and PV is described in Section6.2. The experimental

methodology is described in Section6.3. The results are presented in Section6.4and

Section6.5concludes this chapter.

6.1 Overview of NBTI and PV

Figure 6.1 shows the overall picture of the different sources of variation in PMOS

threshold voltage degradation due to NBTI and PV. We now describe how NBTI gets

affected by workloads that run on the processor and the silicon process.

As shown in Figure6.1, the impact of NBTI is affected by several factors. In a real

processor, different microarchitctural structures exhibit different utilization patterns

based on the characteristics of the workloads that exercisethem. On top of the overall

utilization of the structures, all the PMOS devices within each processor structure are

6.1 Overview of NBTI and PV 87¬ ­ ® ¯ ° ± ² ³ ³´ ° ¯ µ ¶° · ¸² ¹ ² ± º » ­° ¼
½ ¾ ¿½ À ¿Á ÂÃ Ä Å Ã Ã Æ Ç ÈÉ Ã Â Ê ÂË Å Ã ÂÌ È

PVNBTI

VÍ
Figure 6.1: Different sources ofVt variation in PMOS devices.

stressed in different ways throughout the workload execution due to the varying data

bit patterns (gate inputs of the devices) within them. Therefore, workload execution

leads to a variation in the threshold voltage degradation, which we callworkload varia-

tion. The third factor lies in the silicon process, known as Random Charge Fluctuation

(RCF), which causes atemporal variation on top of the workload variation. Recent

observations on PMOS devices with small gate areas show thatthe threshold voltage

degradation is a subject to random fluctuations [24, 46]. These fluctuations increase

as a function of stress time. The source of this behavior is the formation of a random

number of trapped charges, which can occur at random locations across the gate. Such

random fluctuations of trapped charges result in a variationin the threshold voltage

degradation and needs to be considered when studying NBTI. We call the impact of

NBTI which considers only the structure utilization and does not capture the effect of

Chapter 6 Modeling and Analyzing NBTI in the Presence of PV 88

the workload variation and temporal variation asstatic NBTI.

Furthermore, the degradation in processor lifetime due to NBTI is exacerbated by

Process Variation (PV). Process variations can be broadly categorized into two groups:

inter-die and intra-die variations [47]. Due to inter-die variations, the same device on

a die can have different characteristics across various dies, whereas, due to intra-die

variations, transistors can have different characteristics within a single die. There are

two more subcategories of intra-die variation: systematicand random variations. Due

to systematic variations, transistors close to each other are expected to have relatively

similar parameters (channel length and oxide thickness) when compared to those far-

ther away on the die. On the other hand, random variation is mostly caused by RDF.

Due to RDF, transistors can have mutually independentVt variation with respect to

each other, regardless of their spatial location. We consider only the effect of RDF in

this work, for two reasons. First, RDF is expected to be the major contributor to tran-

sistor threshold voltage variations in the sub-65nm technology [47]. Second, we look

at individual processor microarchitectural structures where the devices within them are

spatially proximate. The analytical model we develop accounts for the combined effect

of workload and temporal variation due to NBTI in the presence of RDF.

6.2 An analytical model for NBTI and PV

As mentioned in Chapter3, there have been several efforts in developing an analytical

model for NBTI based on the reaction-diffusion model [5, 24]. These models have

been extended to address dynamic temperature and voltage variations in [48, 16] and

are suitable for use in circuit-level simulations. However, these models cannot be

6.2 An analytical model for NBTI and PV 89

directly used for architecture-level simulations. This isbecause these models assume

continuous stress on the PMOS devices in a circuit and do not capture scenarios where

there are multiple sequences of varying stress/recovery times, which is the case when

real workloads run on the processor. We present a compact analytical model that is

suitable for both circuit and architecture simulations andalso takes into account the

effect of PV. In order to consider the effect of PV, we use the analytical model for

NBTI developed in Chapter3 as our baseline.

6.2.1 Capturing the impact of Workload Variation, Temporal Vari-

ation, and PV

The NBTIVt model (3.7and3.8) presented in Chapter3 assumes the nominal or static

degradation for each device without considering the workload variation or temporal

variation. As described in the introduction, in a realisticscenario, the nominal NBTI

for each structure is impacted by the workload execution dueto the variation in the

utilization of the structure and its bit patterns. While executing a workload, for a given

structure, we track the stress/recovery patterns for each device within that structure.

Using the model presented in the previous section, we get aVt distribution (Standard

Deviation =σARCH). This results in multiple groups of devices where all the devices

within each group experience similar stress/recovery patterns and have similar finalVt

values.

Moreover, as mentioned in the introduction, the temporal variation in the underly-

ing degradation process due to RCF causes additional variation on top of the workload

variation. From [49], if a group of devices are stressed in a similar way, the variation

Chapter 6 Modeling and Analyzing NBTI in the Presence of PV 90

caused by RCF is:

σRCF =

√

K.tox.∆Vtf

Ag

where,σRCF is the standard deviation of theVt distribution,Ag is the gate area of

the device,tox is the oxide thickness,∆Vt is the nominal degradation due to NBTI

andK is a constant. Since workload variation results in multiplegroups of devices

experiencing similar kinds of stress patterns, temporal variation within each group of

devices results in severalVt distributions. After combining all the distributions, we get

a finalVt distribution which captures the effect of both workload andtemporal variation

(Standard Deviation =σ(ARCH+RCF)).

Furthermore, to combine the effect of PV, we know from [49]:

σRDF =
α

√

Ag

where,σRDF is the standard deviation of theVt distribution due to RDF,Ag is the gate

area of the device, andα is a constant.

Finally, combining the effect of NBTI (static, workload andtemporal variation) and

PV, we get the following standard deviation:

σ(PV +NBTI) =
√

σ(ARCH+RCF)
2 + σRDF

2 (6.1)

This completes the model. From the equations3.7 and3.8, we get the meanVt

degradation and equation6.1gives theVt standard deviation.

6.3 Experimental Setup 91

6.3 Experimental Setup

To carry out the architecture simulations, we use the M5 simulator [29]. We simulate

a 4-wide issue core, which runs at a 3 GHz clock frequency and is representative of

cores that is used in multicore processors today. We use the 32nm process with a sup-

ply voltage of 0.9V. We assume the initial threshold voltageof the PMOS devices to

be 0.2 V and the service life of the processor to be 7 years [15]. Our workloads consist

of benchmarks from the SPEC CPU2000 benchmark suite [30]. We present simulation

results for 8 representative benchmarks - 4 integer and 4 floating-point. The bench-

marks are compiled for the Alpha ISA and use the reference input set. We perform

detailed simulation of the first 100-million instruction SimPoint for each benchmark

[41]. Our circuit-level simulations are performed using the Cadence Virtuoso Spectre

circuit simulator [28] taking the technology parameters of 32nm process from the Pre-

dictive Technology Model [31]. In this chapter, we focus on the impact of NBTI and

PV on one memory structure - the register file (RF) and one logic structure - the Kogge-

Stone Adder (KSA). The RF is a 128x64 size SRAM array made up of6T bitcells and

the KSA is implemented for 64-bit inputs.

RF Reliability Metric: NBTI and PV affect the read and write delays and the read

Static Noise Margin (SNM) of the SRAM cells. Previous work [18] has shown that the

SNM is the one that is most heavily affected by NBTI. Therefore we use SNM as the

reliability metric for the RF.

KSA Reliability Metric: Since NBTI affects the threshold voltages of PMOS devices

in the KSA, the delay of the KSA increases, which could potentially cause a timing

violation. Therefore we use delay as the reliability metricfor the KSA.

Chapter 6 Modeling and Analyzing NBTI in the Presence of PV 92

Before exercising the RF and the KSA with workloads, the SNM and the delay of

the RF and KSA respectively are already degraded because of PV. We calculate this

degraded SNM distribution and delay by using the Spectre circuit simulator. The SNM

and delay degrades further after the structures get exercised by the workloads, due to

NBTI. We capture this impact by tracking the stress and recovery cycles on all the

PMOS devices in the RF and the KSA over the course of the architecture simulation

and extrapolate the statistics to calculate the final degradation in Vt after the 7-year

service life. We calculate the meanVt and the different standard deviation values due

to temporal, workload, and the combined variations for boththe RF and the KSA. We

then feed these values into the Spectre circuit simulator, and calculate the degraded

SNM distributions of the RF and delays of the KSA.

6.4 Results

We now quantitatively analyze the effect of NBTI in the presence of PV in RF and

KSA. We evaluate four different conditions: i)RDF: considering only the impact of

RDF without the effect of NBTI, ii)RCF+RDF: considering the impact of NBTI only

with the temporal variation on top of the RDF effect, iii)ARCH+RDF: considering the

impact of NBTI only with the workload variation on top of the RDF effect, and finally,

iv) ARCH+RCF+RDF: considering the impact of NBTI with both the temporal and

workload variation on top of the RDF effect.

6.4 Results 93

6.4.1 RF Results

We now explain the impact of NBTI and PV on the RF by means of an example. We

first show theVt distributions under different conditions. From the simulations, we

calculate the following standard deviations: (σRDF , σ(RCF+RDF), σ(ARCH+RDF) and

σ(PV +NBTI)). Figure6.2shows theVt distributions of the RF for one of the benchmarks

we evaluate -mcf . Initially, before the workload is executed, theVt distribution is due

to RDF (the leftmost distribution in the figure). But once theworkload is executed

and the stress/recovery statistics on the RF are extrapolated to 7 yrs, theVt distribution

shifts to the right due to NBTI. As the figure indicates, the effect of temporal variation

in the presence of RDF merely causes a shift in the mean of the distribution, but once

the workload variation is factored in, the distribution widens. In order to understand

why the width increases, we need to understand how theVt of the PMOS devices get

affected by workload and temporal variation. As mentioned in Section6.2.1, workload

variation results in multiple groups of devices which experience similar stress patterns,

leading to similarVt values. However, because of the temporal variation, each group

of devices ends up in aVt distribution. Therefore, when we take into account all theVt

values in the structure, we get a wider distribution. It is important to note that without

considering the effect of RDF, the distributions due to NBTIwith temporal, workload,

and the combined variations would be much narrower. Hence itis important to consider

the effect of NBTI in the presence of PV along with temporal and workload variation

to avoid any significant error in the lifetime estimation of the structure. Now we show

how theVt distributions affect the yield of the RF, using the RDF as thebaseline.

Chapter 6 Modeling and Analyzing NBTI in the Presence of PV 94

Figure 6.2:Vt distributions of the RF due to RDF, temporal, workload and combined
variation for themcf benchmark.

The required design coverage (Nσ) of a memory is a function of the target yield

and the memory density and is expressed by the following equation [50]:

Nσ = φ−1(Ymem

1
Nbits)

whereφ−1 is the inverse standard normal cumulative distribution,Ymem is the yield of

the memory, andNbits is the total number of bitcells in the memory. Once the design

coverage is calculated, from the expected SNM distribution(baseline:µSNM−RDF ,

σSNM−RDF), the minimum allowed SNM can be calculated as:

SNMmin = µSNM−RDF − Nσ ∗ σSNM−RDF

6.4 Results 95

Under each NBTI and PV condition, we count the number of bitcells whose SNM

values are less thanSNMmin. We denote this number as#bitfail.

�������
��������

����������	
����
��
�����	
�����
���������

��������	

��
���
 �������
 �������
���

Figure 6.3: Number of bits experiencing SNM below the minimum allowed value in a
RF due to temporal, workload and the combined variation for the different benchmarks.

Figure6.3shows the#bitfail in the RF under three different conditions (RCF+RDF,

ARCH+RDF, andARCH+RCF+RDF) for different benchmarks.#bitfail ranges from

5 to 17 for theRCF+RDF condition where only the temporal variation is considered

in the presence of PV. It ranges from 8 to 45 for theARCH+RDF condition, whereas

it ranges from 26 to 117 for theARCH+RCF+RDF condition. As expected from the

Vt distributions, this result shows that the impact of the temporal variation alone is less

than the impact of the workload variation, whereas the combined effect is much greater

than the sum of the individual effects. This is due to the widening of theVt distribution,

as explained before. It is also important to note that the effects of the variations vary

Chapter 6 Modeling and Analyzing NBTI in the Presence of PV 96

significantly across the benchmarks.mcf , lucas andswim benchmarks have large

#bitfail values (117, 108 and 92 respectively) under theARCH+RCF+RDF condition.

The reason behind this is due to workload variations.mcf , lucas andswim experience

much higherσARCH as compared to the other benchmarks because of the bit patterns

and the long residence times of the bits in each register. Generally, we find that most

of the registers tend to have more 0’s in the higher order bitsand a random mix of 0’s

and 1’s in the lower order bits, which contribute to the variability of the stress/recovery

patterns of the register bits. Also, these benchmarks experience high L2 cache miss

rate which causes stalls in the processor pipeline. Therefore, the contents of the regis-

ter files do not get updated often. As a result, some bits tend to experience more stress

whereas others experience less stress. Because of this, thebits in the RF experience

high workload variation. The impact of workload variations, combined with temporal

and process variations leads to a higher failure rate.

6.4.2 KSA Results

To explain the impact of NBTI and PV on the KSA, we again begin with theVt distri-

butions under different conditions. Figure6.4 shows theVt distributions of the KSA

for mcf . The leftmostVt distribution in the Figure is due to the RDF and this distribu-

tion gets shifted to the right because of NBTI. Similar to theRF, the effect of temporal

variation and the workload variation in the presence of RDF is less than their combined

impact. However, unlike the RF, the curves for the temporal variation and the work-

load variation are close to each other. The reason why the workload variation does not

contribute toVt changes significantly beyond the temporal variation is because of the

6.4 Results 97

circuit design of the KSA. Based on the inputs to the KSA, bitspropagate through the

internal nodes of the circuit. The inherent design of the circuit generates internal node

values of 0’s and 1’s within the structure in a balanced manner, which produces a com-

paratively smaller workload variation. Overall, the combined effect of NBTI and RDF

is significant, similar to the RF. We now show the implicationof theVt distributions on

the delay of the KSA.

Figure 6.4:Vt distributions of the KSA due to RDF, temporal, workload and combined
variation for themcf benchmark.

As before, we use theRDF condition as our baseline. We calculate the percentage

increase in delay with respect to the baseline for the other three conditions to analyze

the impact of different variations due to NBTI.

Figure6.5 shows the percentage increase in delay in the KSA with respect to the

Chapter 6 Modeling and Analyzing NBTI in the Presence of PV 98

baseline due to NBTI in the presence of PV for three differentconditions for different

benchmarks. The increase in delay ranges from 9% to 15% for the RCF+RDF condi-

tion, 11% to 20% for theARCH+RDF condition, whereas it ranges from 18% to 28%

for theARCH+RCF+RDF condition. Just like the RF behavior, this result also shows

that the impact of the temporal variation is less than the impact of the workload vari-

ation. Unlike RF, in this case the combined effect is not higher than the sum of the

individual effects. This is because of the cancelling effect of the variations in the same

timing paths of the logic structure. Each timing path of the structure consists of many

PMOS devices which have different threshold voltages and the effect of the slower de-

vices gets offset to some extent by the faster devices. Although, the combined effect

of the workload and temporal variation causes an increase inthe delay for each bench-

mark, this impact does not vary significantly across the benchmarks. Again, the reason

behind this relates to the circuit design of the KSA which balances the values of 0’s

and 1’s within the structure and reduces the impact of the variability in the utilization

and bit patterns on the KSA across the different benchmarks.

6.4.3 Implications of the Results

• As the results indicate, both PV (RDF) and NBTI have a significant impact onVt.

More importantly, as Figures6.2and6.4show, if we consider only the impact of

RDF or only Static NBTI (as is the case in a large number of architecture studies

[17, 15, 4, 2, 21, 22]), then one does not get an accurate picture of the impact of

these related reliability phenomena on theVt distributions. For example, if only

RDF is considered, then the shift in the mean of theVt distribution due to NBTI is

6.4 Results 99

��������
����

��������	��
������
����
���	��
��

��������	

��
���
 �������
 �������
���

Figure 6.5: Percentage increase in delay in a KSA due to temporal, workload and the
combined variation for different benchmarks.

not captured. Even within NBTI, unless both temporal and workload variations

are accounted for, the widening of theVt distribution will not be captured. It

is important to capture these behaviors accurately in orderto select appropriate

guardbands and also develop effective mitigation techniques.

• While RDF and RCF depend on the underlying process, we can observe that

the combined impact of RCF (temporal variation) and workload variation on

lifetime reliability is significant. Since both temporal variation and workload

variation strongly depend on the stress and recovery patterns on microarchitec-

tural structures and also the bits that flow through them, there is large scope for

NBTI mitigation at the architecture-level. However, it is important to develop

and evaluate such mitigation techniques in way that is cognizant of the interac-

tion between PV, temporal variation, and workload variation. The model that we

have presented in Section6.2can be used to carry out such studies.

Chapter 6 Modeling and Analyzing NBTI in the Presence of PV 100

6.5 Summary

NBTI and PV are very important reliability problems in silicon facing processor de-

signers. In this chapter, we develop an analytical model that captures both NBTI and

PV for use in circuit and architecture simulations. We capture the following aspects

in the model: i) variation in NBTI due to workloads, ii) temporal variation in NBTI

and iii) process variation. We use this model to analyze the combined impact of NBTI

and PV on a memory structure (register file) and a logic structure (Kogge-Stone adder).

We show that the impact of the threshold voltage variations due to NBTI and PV both

need to be captured in order to get an accurate view of siliconreliability.

This chapter covers work published in ISQED 2011 [1].

Chapter 7

Conclusions and Future Work

NBTI is one of the most important reliability problems in silicon devices facing proces-

sor designers. This dissertation looks at NBTI mitigation techniques for the microar-

chitectural structures in a microprocessor and creates thefoundation for understanding

NBTI in the context of other physical phenomena that affect the processor. Chapter

3 described an analytical model that captures NBTI for use in circuit and architecture

simulations. Existing models cannot be directly used for architecture-level simulations.

This is because these models assume continuous stress on thePMOS devices in a cir-

cuit and lack the additive property. Also these models do notcapture scenarios where

there are multiple sequences of varying stress/recovery times, which is the case when

real workloads run on the processor. To address these problems, this chapter presented

a model that represents the degradation history in terms of the equivalent stress time

experienced by the PMOS device instead of theVt value used by the existing models.

With the architecture-level NBTI model, our next research developed techniques

that can combat NBTI to meet the service life guarantee with minimal performance,

101

Chapter 7 Conclusions and Future Work 102

power, and area overheads. Modern processor cores are composed of several critical

SRAM-based structures, such as the register file and the issue queue. Chapter4 de-

scribed mitigation techniques for the memory structures inthe processor core to maxi-

mize their lifetimes. SRAM memory cells are especially vulnerable to NBTI since the

input to one of the PMOS devices in the cell is always at a logic‘0’. In this chapter,

we proposed recovery boosting, a technique that allows bothPMOS devices in the cell

to be put into the recovery mode by raising the ground voltageand the bitline toVdd.

We showed how fine-grained recovery boosting can be used to design the physical reg-

ister file and issue queue and evaluated their designs via SPICE-level simulations. We

then showed that area-neutral designs of these two structures can provide significant

reliability benefits with very little impact on power consumption and negligible loss in

performance.

The fine-grained recovery boosting approach that we evaluated in this chapter can

be used for small SRAM arrays. This work can be extended to study the use of coarse-

grained recovery boosting, which imposes less area overheads, for designing caches.

Caches pose additional challenges, such as identifying when lines become valid to put

them into the recovery boost mode. Use of techniques such as dead-block prediction

[51] in conjunction with recovery boosting can be explored to mitigate the impact of

NBTI on caches.

Chapter5 evaluated both circuit and microarchitecture level approaches to reduce

the NBTI guardband for the FUs of a high-performance processor core. At the circuit-

level, an optimized version of a partitioned FU design is evaluated with several design

points in terms of their effectiveness in reducing the guardband and also their area,

delay, and power. At the microarchitecture-level, a set of NBTI-aware dynamic in-

Chapter 7 Conclusions and Future Work 103

struction scheduling policies are proposed and evaluated in terms of their impact in

terms of guardband reduction and performance. Finally, this chapter showed that a

multi-level optimization approach, which combines the benefits of both circuit and

microarchitecture level optimizations, is the most effective in reducing the guardband

while imposing little overhead in terms of area, power, delay, and performance.

However, as shown in Chapter5, the mitigation technique results in a guardband

reduction along with an increase in the critical path delay of the FU. Even though the

mitigation technique allows for the guardband reduction which will result in cycle time

reduction (increase in frequency), the increase in critical path delay also impacts the

cycle time in a negative way. Therefore, it is not evident howto estimate the cycle

time or guardband requirement from the results given in thischapter. In addition, not

only the frequency or cycle time gets affected by the processof guardbanding and

mitigation techniques, but also other metrics such as area,power, temperature might

get altered. For example, increase in frequency due to the guardband reduction could

lead to an increase in temperature which is not feasible for the core. Hence, it raises

the question of what would be the ideal frequency given the reliability impacts of the

problems and the benefits of the mitigation techniques and the core condition. Also,

if the mitigation technique introduces power or area overheads, there are questions

about how much overhead can be tolerated to achieve the target guardband reduction.

Thus far, there is no systematic way of setting the guardbandgiven all the metrics and

mitigation techniques. Developing a systematic approach to analyzing these tradeoffs

and deriving appropriate guardbands is future work.

Chapter6 presented an analytical model that captures both NBTI and PVfor use in

circuit and architecture simulations. The following aspects are captured in the model:

Chapter 7 Conclusions and Future Work 104

i) variation in NBTI due to workloads, ii) temporal variation in NBTI and iii) process

variation. This model is used to analyze the combined impactof NBTI and PV on a

memory structure (register file) and a logic structure (Kogge-Stone adder). We show

that the impact of the threshold voltage variations due to NBTI and PV both need to be

captured in order to get an accurate view of silicon reliability.

A number of studies have been conducted to investigate the effect of NBTI on both

digital and analog circuits. However, certain device-level aspects of NBTI have not

been well characterized and modeled. It is important to havean holistic understanding

of NBTI by examining the interaction between this reliability phenomenon with pro-

cess variation, leakage current, and overall power consumption. There are several key

unresolved questions, which must be answered, in order to broaden our understanding

of the problems and to offer solutions to mitigate them. For example, previous efforts

focus on the negative bias caused by the gate-to-source connection (Vgs) of the PMOS

device. Other kinds of negative bias caused by the gate-to-drain (Vgd) or gate-to-body

(Vgb) connections are still unexplored. Also, the effect of temperature on the NBTI re-

covery is not investigated yet. Secondly, since NBTI affects theVt and leakage current

is dependant onVt, it is important to understand the impact of NBTI on the leakage

current. Leakage current causes the processor to consume more power and generates

heat which degrades the processor performance. The leakagecurrent increases with

lowerVt and decreases with higherVt of the device. With continuous technology scal-

ing, transistors end up having thinner insulating layers which translates to lowerVt,

causing more leakage current. On the other hand, NBTI increases theVt of the devices

in a detrimental way which affects the speed of the devices. If NBTI facilitates leakage

power reduction, the effect of NBTI could be utilized as a power management knob

Chapter 7 Conclusions and Future Work 105

and balance between reliability and power consumption. However, if NBTI exacer-

bates the leakage current condition, then it is needed to cope with both reliability and

power, making NBTI mitigation even more critical.

The current practice in handling NBTI is to employ guardbanding. However, guard-

banding needs to cover the worst case from both PV and NBTI, and can lead to large

area and power overhead. An alternative solution to this problem is to embed on-chip

sensors to dynamically track NBTI [52, 53] and use mitigation techniques to handle

the problem before it manifests as system level failures. Recent efforts propose dedi-

cated sensors for this purpose which comes with the cost of extra area or performance

[52, 53]. In order to reduce this overhead, one could investigate ifpower consumption

of the chip (or components of the chip) changes with the degradation due to NBTI

and if power could be used as a sensor for tracking NBTI. If there is any correlation

between these two metrics, just by monitoring the power consumption, it should be

possible to realize the degradation of the chip (or components of the chip) by using

the correlation. In this case, the extra dedicated NBTI sensors would not be necessary,

rather existing power sensors [54, 55] could be used for this purpose.

Bibliography

[1] T. Siddiqua, S. Gurumurthi, and Mircea Stan. Modeling and Analyzing NBTI
in the Presence of Process Variation. InInternational Symposium on Quality
Electronic Design, March 2011.

[2] T. Siddiqua and S. Gurumurthi. Recovery Boosting: A Technique to Enhance
NBTI Recovery in SRAM Arrays. InIEEE Computer Society Annual Sympo-
sium on VLSI, July 2010.

[3] T. Siddiqua and S. Gurumurthi. Enhancing NBTI Recovery in SRAM Arrays
through Recovery Boosting. InIEEE Transactions on Very Large Scale Integra-
tion Systems, 2011.

[4] T. Siddiqua and S. Gurumurthi. A Multi-Level Approach toReduce the Impact
of NBTI on Processor Functional Units. InGreat Lakes Symposium on VLSI,
May 2010.

[5] W. Wang, V. Reddy, A.T. Krishnan, R. Vattikonda, S. Krishnan, and Y. Cao.
Compact modeling and simulation of circuit reliability for65-nm cmos tech-
nology. InIEEE Transactions on Device and Materials and Reliability, 2007.

[6] G. Chen et al. Dynamic nbti of pmos transistors and its impact on device life-
time. In Reliability Physics Symposium Proceedings, 2003.

[7] M. Denais et al. New perspectives on nbti in advanced technologies: modelling
characterization. InSolid-State Device Research Conference, 2005.

[8] V. Huard and M. Denais. Hole trapping effect on methodology for dc and ac
negative bias temperature instability measurements in pmos transistors. InReli-
ability Physics Symposium Proceedings, 2004.

[9] C. Shen et al. Characterization and physical origin of fast vth transient in nbti of
pmosfets with sion dielectric. InIEDM, 2006.

106

Bibliography 107

[10] R. Vattikonda et al. Modeling and minimization of pmos nbti effect for robust
nanometer design. InDAC, 2006.

[11] B. E. Deal et al. Characteristics of the surface state charge (q[sub ss]) of ther-
mally oxidized silicon. InJournal of The Electrochemical Society, 1967.

[12] A. Goetzberger et al. On the formation of surface statesduring stress aging of
thermal si-sio[sub 2] interfaces. InJournal of The Electrochemical Society,
1973.

[13] M. A. Alam and S. Mahapatra. A comprehensive model of pmos nbti degrada-
tion. In Microelectronics Reliability, 2005.

[14] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The Case for Lifetime
Reliability-Aware Microprocessors. InProceedings of the International Sym-
posium on Computer Architecture (ISCA), pages 276–287, June 2004.

[15] A. Tiwari and J. Torrellas. Facelift: Hiding and Slowing Down Aging in Mul-
ticores. InProceedings of the International Symposium on Microarchitecture
(MICRO), November 2008.

[16] M. Basoglu et al. NBTI-Aware DVFS: A New Approach to Saving Energy and
Increasing Processor Lifetime. InISPLED, 2010.

[17] J. Abella, X. Vera, and A. Gonzalez. Penelope: The NBTI-Aware Processor. In
Proceedings of the 40th IEEE/ACM International Symposium on Microarchitec-
ture, 2007.

[18] S.V. Kumar, C.H. Kim, and S.S. Sapatnekar. Impact of NBTI on SRAM Read
Stability and Design for Reliability. InProceedings of the International Sympo-
sium on Quality Electronic Design, 2006.

[19] J. Shin, V. Zyuban, P. Bose, and T.M. Pinkston. A proactive wearout recovery
approach for exploiting microarchitectural redundancy toextend cache sram life-
time. InProceedings of the International Symposium on Computer Architecture,
2008.

[20] E. Gunadi, A.A. Sinkar, N.S. Kim, and M.H. Lipasti. Combating Aging with the
Colt Duty Cycle Equalizer. InInternational Symposium on Microarchitecture,
2010.

[21] A. Tiwari et al. ReCycle: Pipeline Adaptation to Tolerate Process Variation. In
ISCA, 2007.

Bibliography 108

[22] E. Chun et al. Shapeshifter: Dynamically Changing Pipeline Width and Speed
to Address Process Variations. InMICRO, 2008.

[23] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas. Utilizing Processors with
Variation-Induced Timing Errors. InInternational Symposium on Microarchi-
tecture, 2008.

[24] K. Kang et al. Estimation of Statistical Variation in Temporal NBTI Degradation
and its Impact on Lifetime Circuit Performance. InICCAD, 2007.

[25] S. Basu and R. Vemuri. Process Variation and NBTI Tolerant Standard Cells to
Improve Parametric Yield and Lifetimes of ICs. InISVLSI, 2007.

[26] Y. Lu et al. Statistical Reliability Analysis Under Process Variation and Aging
Effects. In DAC, 2009.

[27] X. Fu, T. Li, and J. Fortes. NBTI Tolerant Microarchitecture Design in the Pres-
ence of Process Variation. InProceedings of the International Symposium on
Microarchitecture (MICRO), November 2008.

[28] Cadence Virtuoso Spectre Circuit Simulator.
http://www.cadence.com/products/cic/spectrecircuit/.

[29] N.L. Binkert and et al. The M5 Simulator: Modeling Networked Systems.IEEE
Micro, 26(4):52–60, July 2006.

[30] SPEC CPU2000. http://www.spec.org/cpu2000/.

[31] Predictive Technology Model. http://www.eas.asu.edu/ ˜ ptm/.

[32] Y. Li, D. Brooks, Z. hu, and K. Skadron. Performance, Energy, and Thermal
Considerations for SMT and CMP Architectures. InProceedings of the Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), 2005.

[33] X. Yang, E. Weglarz, and K. Saluja. On NBTI Degradation Process in Digital
Logic Circuits. InProceedings of the International Conference on VLSI Design,
pages 723–730, January 2007.

[34] A. Sil, S. Ghosh, N. Gogineni, and M. Bayoumi. A Novel High Write Speed,
Low Power, Read-SNM-Free 6T SRAM Cell. InProceedings of the Midwest
Symposium on Circuits and Systems (MWSCAS), pages 771–774, August 2008.

[35] G. Reimbold and et al. Initial and PBTI-induced traps and charges in Hf-based
oxides/TiN stacks.Microelectronics Reliability, 47(4-5):489–496, April 2007.

Bibliography 109

[36] J.P. Shen and M.H. Lipasti.Modern Processor Design: Fundamentals of Super-
scalar Processors (Beta Edition). McGraw Hill, 2003.

[37] H. Akkary, R. Rajwar, and S.T. Srinivasan. Checkpoint Processing and Recov-
ery: Towards Scalable Large Instruction Window Processors. In Proceedings
of the International Symposium on Microarchitecture (MICRO), pages 423–434,
December 2003.

[38] O. Ergin, D. Balkan, D. Ponomarev, and K. Ghose. Increasing Processor Per-
formance Through Early Register Release. InProceedings of the International
Conference on Computer Design (ICCD), pages 480–487, October 2004.

[39] D. Folegnani and A. Gonzalez. Energy-Effective Issue Logic. InProceedings of
the International Symposium on Computer Architecture (ISCA), pages 230–239,
June 2001.

[40] S. Palacharla.Complexity-Effective Superscalar Processors. PhD thesis, Univer-
sity of Wisconsin - Madison, 1998.

[41] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically Char-
acterizing Large Scale Program Behavior. InProceedings of the International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), October 2002.

[42] E. Seevinck, F.J. List, and J. Lohstroh. Static-Noise Margin Analysis of MOS
SRAM Cells. IEEE Journal of Solid-State Circuits, 22(5), October 1987.

[43] P. Kogge and H. Stone. A Parallel Algorithm for the Efficient Solution of a
General Class of Recurrence Equations. InIEEE Transactions on Computers,
1973.

[44] M. Powell, S-H. Yang, B. Falsafi, K. Roy, and T.N. Vijaykumar. Gated-Vdd: A
Circuit Technique to Reduce Leakage in Deep-Submicron Cache Memories. In
Proceedings of the International Symposium on Lower Power Electronics and
Design (ISLPED), pages 90–95, July 2000.

[45] T. Siddiqua and S. Gurumurthi. Balancing Soft Error Coverage with Lifetime
Reliability in Redundantly Multithreaded Processors. InInternational Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems, September 2009.

[46] M. Agostinelli et al. Random Charge Effects for PMOS NBTI in Ultra-Small
Gate Area Devices. InIRPS, 2005.

Bibliography 110

[47] K. Kang et al. Statistical Timing Analysis Using Levelized Covariance Propaga-
tion Considering Systematic and Random Variations of Process Parameters. In
TODAES, 2006.

[48] B. Zhang and M. Orshansky. Modeling of NBTI-Induced PMOS Degradation
under Arbitrary Dynamic Temperature Variation. InISQED, 2008.

[49] S. Pae et al. Effect of BTI Degradation on Transistor Variability in Advanced
Semiconductor Technologies. InTDMR, 2008.

[50] M. Rahma et al. Reducing SRAM Power Using Fine-Grained Wordline
Pulsewidth Control. InTVLSI, 2009.

[51] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting Generational
Behavior to Reduce Cache Leakage Power. InProceedings of the International
Symposium on Computer Architecture (ISCA), pages 240–251, June 2001.

[52] A.C. Cabe et al. Small embeddable NBTI sensors (SENS) for tracking on-chip
performance decay. InInternational Symposium on Quality Electronic Design,
2009.

[53] J. Keane et al. An On-Chip NBTI Sensor for Measuring pMOSThreshold Volt-
age Degradation. InIEEE Transaction on Very Large Scale Integration, 2010.

[54] M. Ware et al. Architecting for power management: The IBM POWER7 ap-
proach. In International Symposium on Computer Architecture, 2010.

[55] V. Sylvester et al. ElastIC: An Adaptive Self-Healing Architecture for Unpre-
dictable Silicon. InIEEE Design and Test of Computers, 2006.

	Contents
	List of Tables
	List of Figures

	Introduction
	Overview of NBTI and Related Work
	Related Work
	Stress reduction techniques for NBTI:
	Recovery enhancement techniques for NBTI:
	Process Variation:
	Interaction of NBTI and Process Variation:

	Modeling NBTI at the Architecture-level
	Challenges Posed by Existing NBTI models for Architecture Simulation
	Adapting the NBTI model for Circuit and Architecture Simulation
	Summary

	Enhancing NBTI Recovery in SRAM Arrays through Recovery Boosting
	Basics of Recovery Boosting
	Fine-Grained Recovery Boosting
	Coarse-Grained Recovery Boosting
	Other Issues

	Designing Microarchitectural Structures that Support Recovery Boosting
	Physical Register File
	Issue Queue
	Circuit-Level Simulation Results

	Experimental Methodology for the Architecture Level Analysis
	Architecture-Level Simulation Results
	Physical Register File Results
	Issue Queue Results

	Summary

	Mitigating the Impact of NBTI on Processor Functional Units
	Approaches to NBTI Mitgation at the Circuit and Microarchitecture Levels
	Circuit Level Techniques
	Microarchitecture Level Techniques

	Experimental Setup
	Results
	Circuit-Level Optimization
	Microarchitecture-Level Optimization
	Multi-Level Optimization

	Summary

	Modeling and Analyzing NBTI in the Presence of PV
	Overview of NBTI and PV
	An analytical model for NBTI and PV
	Capturing the impact of Workload Variation, Temporal Variation, and PV

	Experimental Setup
	Results
	RF Results
	KSA Results
	Implications of the Results

	Summary

	Conclusions and Future Work
	Bibliography

