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Abstract

We are in the era of multicore processors and it is expectdlie number of the pro-
cessing cores on a chip will steadily increase over the nesade, driven by Moore’s
Law. While technology scaling has benefitted high perforoeathe scaling has a dark
side too: a degradation in the reliability of silicon dedceéProcessors have become
highly susceptible to a variety of reliability problems ihion, such as particle induced
soft errors and hard errors. Therefore, processors have tiesigned to provide ade-
guate protection against these reliability problems wmigéntaining high performance
and energy efficiency. Designing a reliable computer systeanlarge and complex
multi-dimensional and multi-level problem, comprisingdifferent hardware blocks,
reliability phenomena, design layers, metrics, and o#atmon techniques. This disser-
tation considers a key emerging reliability phenomenongdtiee Bias Temperature
Instability (NBTI). This dissertation develops NBTI mitijon techniques for the logic
and memory structures in the processor that impose vdgy/ptrformance, power, and
area overheads. This research also creates the foundatianderstanding NBTI in

the context of one other important processor reliabiligtjpem: process variations.
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Chapter 1

| ntroduction

The key drivers in processor design are high performancera@dyy efficiency. Moore’s
Law has been key in enabling the design of processors withieeeeasing perfor-
mance, for example, by facilitating multicore design. Aaially, the processor also
has to operate reliably and continue to do so over a long gefitme, what is usually
referred to as th&ervice Life of the processor. The service life target of a high perfor-
mance processor is typically 7-10 years. While technolagyisg has benefitted high
performance, the scaling has a dark side too: degradatitreinreliability of silicon
devices. Processors have become highly susceptible teedywvat reliability problems
in silicon, such as particle induced soft errors and hardrerrA key emerging hard
error problem facing the microprocessor industry todayegdive Bias Temperature
Instability (NBTI), which affects the lifetime of PMOS traistors. Providing protec-
tion for the processor against declining silicon reliapiln order to meet service life
guarantees can entail significant performance, power axal@rerheadslhe overall

goals of this dissertation are to improve our understanding of NBTI and to develop mit-

1



Chapter 1 | Introduction 2

igation techniques that impose little performance, power, and area overheads to meet
the service life target to combat thisreliability problem.

NBTI occurs when a negative bias is applied at the gate of a 8k&@nsistor, which
causes an increase in the threshold voltage of the devic@l Afiects both the cycle
time and the stability of storage structures within the pesor. In terms of its impact
on microprocessor circuits, the increase in the thresholkdge degrades the speed of
the transistors and therefore degrades the speed and #eemargin of the circuit in
which they are used, eventually causing the circuit to wetaming constraints. Such
timing violations due to NBTI will cause the circuit to belencorrectly and cause the
processor itself to fail. NBTI is typically addressed vieagdbanding. Guardbanding
accounts for the degradation in cycle time and the stahilitthe storage structures
over the lifetime by reducing the operating frequency armtdasing the minimum
voltage of the storage elements,(,,). Typically, 20% of the cycle time is reserved as a
guardband for the logic structures. Similanl,;, is increased by 10% as a guardband
to handle 10% increase in threshold volta§g for the storage structures. However,
reducing the frequency and increasirg, have a detrimental impact on performance
and power respectively and therefore it is desirable tocedoe guardband via the use
of NBTI mitigation techniques.

NBTI mitigation techniques can be implemented at diffedentls of the system
stack (device, circuit, microarchitecture). There arespmad cons to providing the
protection at each of these levels. A hierarchical apprahahhandles reliability at
various levels across the hierarchy can enable the dedigryat the best of each of
the worlds by being able to optimally address issues at te & the system stack

where they are most naturally handled well. The main coumtidin of this disserta-
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tion is to develop and characterize NBTI mitigation tecluag at different levels and
guantify their impact on metrics, such as, guardband reésluchrea, delay, and appli-
cation performance. While NBTI itself is well charactedz&IBTI is just one of the
physical phenomena that affect the reliability of the pesee. It is also important to
understand NBTI in the context of other key physical phenwemi@ order to arrive
at optimal design decisions. This dissertation lays thediation for such an under-
standing of NBTI by examining the interaction of this reildp phenomenon with
Process Variation (PV). PV is the variation in the transistitributes (length, width,
oxide thickness) caused during the fabrication of the irategl circuits and manifests
itself as threshold voltage variation, which results iniaaitity in circuit performance
and power. It is important to realize how NBTI is affected By iR order to come up
with energy-efficient mitigation techniques. Therefores meed a deep and accurate

understanding of how NBTI interacts with this physical pbeenon.

To summarize, this dissertation develops NBTI mitigatieahniques for the mi-
croarchitectural structures in a microprocessor and esetiite foundation for under-
standing NBTI in the context of other physical phenomena #fi@ct the processor.
This dissertation consists of tasks that involve modeling aptimization related to
NBTI. The modeling tasks involve developing models for NBfiat are usable at the
architecture level and capture the interaction between INB@ PV described previ-
ously. The optimization tasks involve developing NBTI métion techniques for both
the logic and memory structures within the processor antbexpultiple levels in the

design stack.

The specific contributions of this dissertation are:



Chapter 1 | Introduction 4

1. Modeling NBTI at the Architecture-level: There have been several efforts in
developing analytical models for NBTI at the circuit-levellowever, these mod-
els are suitable only for analyzing NBTI effects over a vergrs time span and
are not readily usable for architecture simulations. Smaeresearch involves
exploring NBTI mitigation at multiple levels of the desigmeharchy, our first
contribution is an analytical NBTI model that is suitable foicroarchitecture

and architecture-level evaluations. This work has beetighdd in ISQED 2011
[1].

2. NBTI Mitigation Techniques for Memory Structures. With the architecture-
level NBTI model, our next contribution is mitigation teéhnes that can com-
bat NBTI to meet the service life guarantee with minimal parfance, power,
and area overheads. Modern processor cores are composededd|ritical
SRAM-based structures, such as the register file and the seue. We de-
velop mitigation techniques for the memory structures mphocessor core to
maximize their lifetimes. We develop and evaluate mitigiatechniques at both
the circuit and microarchitecture levels. This work is psiéd has been ISVLSI

2010 ] and in the IEEE Transactions on VLSI 2017

3. NBTI Mitigation Techniques for Functional Units: Our next contribution is
mitigation techniques that can combat NBTI in the logic stwes in the pro-
cessor with minimal performance, power, and area overhedds present a
guantitative analysis of NBTI recovery techniques at tlmeuit and microarchi-

tecture levels for the functional units (FUs) in the coresadfigh-performance
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multicore processor that can facilitate reducing the deléwel guardband re-

guirements. This work has been published in GLSVLSI 2610 [

4. Modeling and Analyzing NBT1 in the Presence of PV: Both NBTI and PV
affect the threshold voltage of the devices and these twiol@nus should not be
addressed in isolation. Therefore, an analytical modelgsired which captures
the impact of both NBTI and PV in a coherent way and which isadlé for use
in architecture level analyses. Leveraging the prior netean NBTI and PV
modeling from the circuits community as the starting poivet,develop a model
that captures the interaction between these two religipienomena. This work

has been published in ISQED 20111.[

The organization of the rest of this dissertation is as fefloThe next chapter pro-
vides a brief overview of NBTI and discusses the related wGithkapter3 presents the
NBTI model for architecture simulations. NBTI mitigatiogchniques for memory and
logic structures are presented in the Chagtand5 respectively. Chapted discusses

the analysis of NBTI in the presence of PV. Lastly, Chagteonludes this dissertation.



Chapter 2

Overview of NBTI and Related Wor k

Negative Bias Temperature Instability (NBTI) is a growirgncern for CMOS technol-
ogy and affects the lifetime of PMOS transistors. NBTI irages the threshold voltage
of PMOS devices, which in turn degrades the speed of circliisbetter understand
how to develop optimization techniques to combat NBTI, w&t fireed to look at how
NBTI occurs and how it affects a circuit. During the fabrioat process, hydrogen
atoms form aSi — H bond along the5i/SiO, interface. Water molecules are often
present during the contact and via formation of the IC fairon process, which can
increase the effects of NBTI by donating hydrogen to theailioxide interface. Al-
though many engineers feel that this is a fabrication prablentil it can be resolved,
it is important to be able to design around the issue.

When a logic input of “0” is applied to the gate of a PMOS trati (V, = -Via),
NBTI occurs due to the generation of interface traps atthe':0O, interface. When
silicon is oxidized, most of th&i atoms at the surface of the wafer bond with oxygen

while a few atoms bond with hydrogen. When the transistoreisdp stressed, an

6



Chapter 2 | Overview of NBTI and Related Work 7

Oxide
. Si--—)H H
o)
7 Si+ - H — H —:
“ sidH H -

Figure 2.1: NBTI Stress Phenomena.

electric field is placed across the oxide layer. When a negyatas (i.e., a logic input
of “0”) is applied at the gate of a PMOS transistor, the rekd{i weakS: — H bonds
get disassociated as shown in Fig@r& These hydrogen atoms enter the oxide layer.
The longer a hydrogen atom is in the electric field, the deeygerthe oxide layer it
will penetrate. Eventually the hydrogen atoms can reacloxide/poly interface and
cluster there. By introducing positively charged ion®ifdce traps (hydrogen atoms)
into the oxide layer, the part of the field that inverts thesiator channel is weakened.
Over time, this reduces the number of hydrogen atoms thabozak free. These
interface traps cause the threshold voltagg 6f the PMOS transistor to increase,
which in turn degrades the speed of the device and the noisgmtd the circuit. This

is known as the Stress phase for the PMOS. The incredgedine to stress is given by

the equation] :

Qlog\ 3 —Bq | 2(Vgs —Vi)

)2 K1y Con(Vys — V). W8 T toror - T;0-25 40.25 (2.1)

stress

A‘/ts:(

eOSE

wheret,;, .. IS the time under stress,, is the oxide thickness and,, is the gate
capacitance per unitaref,, £,, Ty, Fy, and k are constants equal to T5%%nm =25,

0.49 eV,107® slim?, 0.08V/nm and8.6174 10~°eV/K respectively.
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Oxide Poly
_SiH
3sil H m— H
% silH A

Figure 2.2: NBTI Recovery Phenomena.

When a logic input of “1” is applied to the gat&, = 0), the H atoms released in
the stress process can anneal the broken bonds, or the H atayndiffuse (or drift)
away from the interface toward the oxide/poly interfaceisTf illustrated in Figure
2.2 Therefore, this process helps in eliminating some of thpsr This is known
as the Recovery phase. During the recovery phase a podietie field is placed
accross the oxide layer. The field removes the inverted aiamd hydrogen is free to
reconnect with the available silicon by annealing{, 8, 9, 10]. This process, much
like stressing, can be exacerbated by increased temper@tsmentioned earlier, the
hydrogen can move all the way to the Si/Poly interface malktimmpssible that not
all of the hydrogen can return to th&/SiO, interface. This effect creates a state
of hysteresis, leaving behind a residugl; after annealing. The effects on transistor
instability around the5i/Si0, interface have been studied for many years and were
recognized as early as the 1970is.,[ 17]. Most research on NBTI was developed
by device and reliability physics groups. Alam and Mahagpaleveloped one of the
first comprehensive models to explain PMOS NBTI using a steshcbaction-diffusion
model [L3]. Later, Wang et al. presented a compact model that couldée for circuit

simulation f]. The final increase o¥; after considering both the stress and recovery
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phases isf]:

261t 0r + 1/ €26 7" Tot e
A= AVL(1 - e I ) (2.2)

(1 + 5)t050 + \/e_ki?a (tstress + trec)

wheret,.. is the time under recoverg,, £ andj are constants equal to 0.5, 0.9 and 0.5
respectively. From the equations, it is observed that NBExponentially dependant
on the difference betweelj,, andV;, temperature and stress/recovery time. A lower
V,s, temperature and stress time improves the lifetime wheréasgherl, and recovery
time improves it. A lowelV,; (which eventually lowers the temperature) will have an

impact on performance.

2.1 Related Work

Several recent studies have proposed techniques for timiggBTI to improve pro-
cessor lifetime. There are two basic approaches to mitigaiBTI: (i) reduce the
stress on the PMOS transistors; (ii) enhance the recovepeps. Stress reduction tech-
niques aim to reduce the aging rate by controlling, V;, and temperature, whereas
recovery enhancement techniques aim to increase the mydowe for the PMOS de-

vices.

2.1.1 Stressreduction techniquesfor NBTI:

Srinivasan et al. 4] propose the use of Dynamic Reliability Management (DRM) to

stay within the reliability budget. They describe an arettitire-level model RAMP,
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that can dynamically track lifetime reliability, respondito changes in application be-
havior. RAMP is based on device models for different wearroechanisms including
NBTI. Using RAMP, they show that dynamic voltage scalingnsedfective response
technique for DRM, and that dynamic thermal managemenheegubsumes nor is
subsumed by DRM. Tiwari and Torrellas propose a techniqlleccéFacelift” [15]

to hide the effects of aging through temperature-basedsgbieduling to individual
cores of a multicore processor. Facelift hides the effetsgimng by steering high-
temperature jobs to the fast cores and low-temperaturegabe slow cores. The chip
appears to age less by keeping the slow cores cooler. Alseliftaslows down aging
by making chip-wide changes 1g,; or V; at key times to balance the impact of the
changes on the aging rate and on the critical path delayallfifacelift configures a
chip for a short service life by shifting performance frone tlnused lifetime portion
to the used one. Basoglu et alf] propose a low-cost NBTI-Aware DVFS framework
to reduce energy consumption and increase the lifetimeeoptbcessor. They utilize
real-time degradation data and employ a technique thatatéethis problem through
core-level DVFS control and OS-controlled workload mapgpiased on core status.
If the OS is informed of the degradation status of each commuld map threads so
that sturdy cores (those with Iolf) work more than the weaker cores (those with high
V;). This equalizes core lifetimes, and thereby extends dyaacessor life. All these
works aim to reduce the stress on the devices but make nogtterteverage the re-
covery process to combat NBTI and therefore their effeotags is limited. Our goal is
to leverage the recovery phenomenon to extend the lifetimagotocessor. In general,

the use of stress reduction techniques is orthogonal toveeg@nhancement.
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2.1.2 Recovery enhancement techniquesfor NBTI:

Abella et al. [L7] propose to feed specific bit patterns into the devices toeamse
the recovery time for PMOS transistors in logic structureg( adders) during idle
periods. They also propose to balance the degradation &NH@S devices in SRAM-
based memory structures by storing appropriate data vatagehie SRAM cells when
they hold invalid data. Kumar et al1§] propose a similar technique to periodically
flip the contents of SRAM cells to balance the wear on the PM@Sststors. The cost
of such a technique comes from the extra XNOR gates requrgnért/deinvert data
with the invert bit (global signal indicating the current d&), which has an impact
in cycle time. However, invertion is not a suitable solutfon combinational blocks
because inverted and non-inverted inputs may stress the BM®S transistors. Shin
et al. [L9] propose a recovery enhancement technique for caches \BiR®/1 cells
are proactively put into the recovery mode via the use of aespeemory array. They
reverse biasl(,; = V4 ) the PMOS devices to put them into a deep recovery state.
When an array is put into the recovery mode, the PMOS devioaéof the inverters
of each cell is put into the recovery mode followed by thosthanother inverters and
this recurring pattern is continued throughout the recpperiod for the array. Gunadi
et al. [20] proposes Colt, which balances the utilization of devicea processor by
equalizing the duty cycle ratio of the internal nodes ofwit€and the usage frequency
of devices. It relies on alternating true- and complemeatenoperations to equalize
the duty cycle ratio of signals. These approaches mitig&@&INby balancing the
degradation of the PMOS devices within the cell. They aimctieve a 50% lifetime

degradation for the PMOS devices. Our approach does natiliseif to achieving
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a balance in the degradation of the PMOS devices. Our app@tsempts to extend
the recovery process of all the PMOS devices beyond 50% tmdxhe lifetime of
the processor. For the SRAM structures, we propose a new SB&Miesign thats
facilitates simultaneous recovery process for both the BMi@vices in the memory
cell. Similarly, power-gating is utilized to introduce giltaneous recovery process for
all the PMOS devices in the functional units along with nestinction scheduling

techniques that extend their idle time.

2.1.3 Process Variation:

There are several studies whose goal is to design PV tolsyatems and do not look
at the impact of NBTI in the presence of PV. Tiwari et ak1] present an architec-
tural framework that applies cycle-time stealing to theepiie to tolerate PV. Chun

et al. [22] propose a scheme of adjusting the clock speed of a processed on

the instruction-level parallelism of the program phasesctuieve overall performance
improvement to address PV. Sarangi et al3][propose a framework called EVAL
(Environment for Variation-Afflicted Logic) to understahdw processors can tolerate
and mitigate variation-induced errors. They present atiggcte to maximize processor
performance and minimize power in the presence of varidtidoced timing errors

by adapting the processor frequency, multiple voltaged,ta@ processor structures.
Even though these techniques provide effective solutimtesdkle PV, the effectiveness

of these techniques might reduce in the presence of NBTI.
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2.1.4 |Interaction of NBTI and Process Variation:

All the aforementioned studies concentrate on NBTI or PVhaitt considering the
interaction between them. There have been several studiggeeccombined effect of
NBTI and PV. There are different sources of variation inhera NBTI and PV that
affect the PMOS threshold voltage. One source of variatiothé threshold voltage
due to NBTI is workload variation which is caused by exeaytifferent workloads on
the processor. This variation is due to changing patterngilifation of the microar-
chitectural structures and changes in the bit patternsirwitie structures. Another
factor lies in the silicon process, known as the Random Ghé&igctuation (RCF),
which causes a temporal variation in threshold voltage pnofathe workload varia-
tion. Kang et al 4] propose a compact circuit-leve] model that captures the impact
of temporal NBTI variations in the presence of PV and shows temporalV; vari-
ations can affect the lifetime and performance of differ@rntuit topologies. Basu et
al. [25] present a methodology to develop PV and NBTI tolerant robtandard cells
which can be used in timing critical sections of the circuiteey model the combined
effect of PV and NBTI on intrinsic gate delay using a reducedeshsion modeling
technique to optimize the standard cells with a targetififetof 10 years. Lu et al.
[26] design a comprehensive IC reliability analysis framewatth respect to NBTI
and PV. This work is capable of characterizing the overatiust lifetime reliability, as
well as efficiently quantifying the vulnerabilities of inddual circuit elements. This
analysis framework has been integrated into an iteratiggddlow for circuit lifetime
reliability analysis and optimization. Finally, Fu et al27] propose NBTI and PV

tolerant micrarchitecture design techniques to improeegssor lifetime. They show
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that just combining PV mitigation techniques and NBTI remgvmechanisms lacks
the capability of exploiting the opportunity to optimizesthinteraction. They propose
microarchitecture designs that exploit the positive ipley between PV and NBTI that
improve the trade-offs among different metrics. While laéige prior works study some
combinations of NBTI (static, or temporal variation, or \Wimad variation) with PV,
no prior work has holistically analyzed the combined eff@fdiemporal and workload

variations on top of static NBTI with process variation.



Chapter 3

Modeling NBTI at the

Architecture-leve

Analytical models provide guidance for assessing thebiig impact of a design de-
cision. There have been several efforts in developing déicalynodels for NBTI at
the circuit-level p, 24]. However, these models are suitable only for analyzing NBT
effects over a very short time span and are not readily usabkrchitecture simula-
tions. Architects, on the other hand, study microprocess@bility by executing dif-
ferent program benchmarks and extrapolate the collectéidtsts over a much longer
timescale (typically, 7-10 years). Throughout the benatkneaecution, utilizations of
the microarchitectural structures vary. Also, the intéoacs among the structures, the
inputs to each structure, and bits stored within them change the course of execu-
tion of a benchmark. An analytical model for NBTI should béeato factor-in these
“variations” to be usable in architecture simulations tongarrect and holistic insight

into these inter-related reliability problems in silicdn.this work, we aim to leverage

15
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the prior research on NBTI modeling from the circuits comityuto develop a model

that is usable at the architecture-level.

3.1 Challenges Posed by Existing NBTI models for Ar-

chitecture Simulation

Existing circuit-level models cannot be directly used faohdatecture-level simulations.
The existing NBTI models capture an analog process and a&ssantinuous stress on
the PMOS devices in a circuit. They do not capture scenariesevthere are multiple
sequences of varying stress/recovery times, which is the when real workloads run
on the processor. Typically architecture-level simulagi@apture the real workload
behavior on the processor in a cycle-by-cycle basis anthatt® use the NBTI models
in a quantized way. As a result of this quantized usage,iegi®tBTI models cannot
be used directly in architecture-level simulations. Tolaxpthe problems with the
existing NBTI models in details, we choose the model preskimt Chapte which

is widely used in the circuit literature. However, the perbk we discuss apply to the
use of other circuit-level NBTI models too. This model has tinitations when used
in an architecture simulation:

i) The problem of discretization of the continuous model:

Let us consider a hypothetical scenario where a PMOS devsedssed far, ¢, and

t3 units of time and the degradations in threshold voltage duledse stress events are
Vi(t1), Vi(t2) andV;(t3) respectively. If the device is stressed fptime units followed

by t5, andts is equal to {; + t3), then we expect(t3) = V;(t1) + Vi(t2). Figure3.1
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describes this behavior. The x-axis is the time and y-axisaghreshold voltage. In
the figure, once stress time Qfis applied initially, the model computes the threshold
voltage to reach A. At this point, if stress time @fis applied, instead of reaching
a value of B, the model computes it to be C, whereas the valoeldlbe B after {;

+ t5) units of time. The reason for this problem is becaidg, has an exponential
relationship with the stress time and we know tftat- t5)" # (t1* +t»”). This model
is meant to represent the continuous process of stress aaderg phenomena and
it breaks down whenever we discretize this continuous m®Rc&herefore, using the
model, we do not achieve the expected valu&;f;) which should be equal td/f(¢;)

+ Vi(t2)]. However, this limitation will exist in the circuit-levesimulations as well if
we want to use the model in a discretized way.

A
Vi

— .. — model
expected

\

Figure 3.1: The existing circuit-level NBTI model breaksasowith discretization.

i) The model isnot usable with multiple stress/recovery events:
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To understand this problem, let us consider another hygo#teexample where a
PMOS device gets stressed followed by a single sequencesesstnd recovery events.
Figure3.2illustrates this situation. From the figure, with the first gkstress and re-
covery events, th&; reaches a value of B and A respectively. At this point of time,
with a subsequent stress event, the threshold voltageadbdgra pattern should follow
the pattern of the first stress event starting from point A¢siboth instants havela
value of A. Therefore, after applying the second stresg faime units, the final/;
value should be, B whereas the model provides a differeaewvail C. Thus, the model
is not able to capture multiple sequences of stress/regevents properly. The reason
for this problem is because the model uses the instantangmasue as the history of
degradation. From the stress phase equation, we can sdleglvatue ofAV,, depends
on the value o¥;. For a fixed stress time, the model would produce differ®vit, val-
ues for different/; values. In this hypothetical scenario, the first stress tewses the
nominal V; value and the second stress event uses the degiadedue. Therefore,

the two stress events of time unit starting from point A produce two different values

Both these properties need to be modeled correctly for dntaoture level analy-
sis of NBTI degradation. Since the architecture simulatiopdate thé’; values of the
devices due to NBTI at different points of time throughow &xecution of a workload,
the lack of the ability to discretize in the model resultsinarrect estimation of thg,
degradation. Also, real workloads show varying patternstiss/recovery for differ-
ent structures within the processor. Hence, the assumgtioontinuous stress on the
PMOS devices does not capture the realistic scenario. Tttesaetion discusses how

to modify the model to address these two limitations.
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A
Vi

— .. — model
expected

Figure 3.2: The existing circuit-model NBTI model does napture multiple se-
quences of stress and recovery events.

3.2 Adaptingthe NBTI model for Circuit and Architec-
ture Simulation

From the original model described in Chapgme know thatAV;, is a function of
voltage, temperature, instantanedgs andt,;...s, whereas AV; after recovery is a

function of AV, t...ss andt,... We can rewrite the original model as:

A‘/ts = fstress(v7 Ta V;f)-fOQS (31)

“stress

AV;S - A‘/ts'frec(tstress; trec) (32)

In this model, thel; value represents the history of stress and recovery events

(the total degradation). The main idea behind our proposediefrs to represent the
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degradation history in terms of the equivalent stress tirpeeenced by the PMOS
device. Since the existing model is applicable for a singless/recovery event, we
transform the previous multiple stress/recovery evertts ansingle stress event and
use that equivalent stress time with the new stress/reg@axant. Note that in this
case, we always use the nominalvalue. After the aforementioned modification, we

get the following model:

A‘/ts = fstress(va T)~(tequi—stress + tstress)o‘%’ (33)

A‘/t - Av;fs‘frec[(tequi—stress + tstress)a trec] (34)

wheret.,.i—siress 1S the equivalent stress time resulting from previous stessd
recovery events anl,,;_.-.ss = 0 att = 0. Now we discuss how to calculate the value
Of Lequi—stress-

From equatior8.1, we getAV;,, which is the increase in threshold voltage due to

the stress time,;,.,. If we reorganize equatioBd.1, we find the following:

A‘/;fs ]4

Lstress = 3.5
' [fstress(‘/a T7 ‘/t) ( )

This equation expresses the stress time experienced cheeficevious stress/recovery
events when the increase in threshold voltage is known. dJsguation3.5 with the

nominalV; and the given\V;, which is a result of previous stress and recovery events,
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we can calculate the,;siress:

AN

te wi—stress — | 7 /17 rov 3.6
! ! [fstress(‘/a T)] ( )

After combining equation8.3, 3.4and3.6, we get the following final model:

A‘/t ! 0.25
A‘/ts = fstress(V> T){[m] + tstress} ’ (37)
AV, 4
A‘/tf = A‘/ts-frec({[m] + tstress}; trec) (38)

where AV,; is the final threshold voltage degradation ahdl; is the threshold
voltage degradation due to previous stress and recoventeaadAV; = 0 att = 0.
Equations3.7and3.8together completes the model and they represent the stréss-a
covery phenomena respectively. This model can be readggt wsth any architectural

simulator to characterize the NBTI degradation of a PMOSagev

Note that, this model captures the effect of voltage and &atpre variation as
well. Since the equivalent stress time is also a functionalfage and temperature,
whenever there is a variation in either voltage or tempegabn both, the equivalent

stress time gets calculated under the new stress condition.
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3.3 Summary

In this chapter, we develop an analytical model that capttdBTI for use in circuit
and architecture simulations. Existing models cannot bectly used for architecture-
level simulations. This is because these models assumi@gouns stress on the PMOS
devices in a circuit lacking the additive property and do cegtture scenarios where
there are multiple sequences of varying stress/recovegsti which is the case when
real workloads run on the processor. To address these prebtaur proposed model
represents the degradation history in terms of the equivakeess time experienced
by the PMOS device instead of tHé value used by the existing models. Using
this architecture-level NBTI model, we develop NBTI mitigen techniques for the
microarchitectural structures in a microprocessor andterthe foundation for under-
standing NBTI in the context of PV, which we discuss in thédeing chapters.

This chapter covers work published in ISQED 2011L [



Chapter 4

Enhancing NBT| Recovery in SRAM

Arraysthrough Recovery Boosting

Memory arrays that use Static Random Access Memory (SRANY aee especially
susceptible to NBTI. SRAM cells consist of cross-coupleeiters that contain PMOS
devices. Since each memory cell stores either a ‘0’ or a ‘Hlatimes, one of the
PMOS devices in each cell always has a logic input of ‘0’. 8intodern processor
cores are composed of several critical SRAM-based strestguch as the register file
and the issue queue, it is important to mitigate the impabt®T| on these structures
to maximize their lifetimes. Previous work on applying reery techniques to SRAM
structures aim to balance the degradation of the two PMOg&eein a memory cell
by attempting to keep the inputs to each device at a logictiopt®’ exactly 50% of
the time [L7, 18, 19]. However, one of the devices is always in the negative boaslic
tion at any given time. In this chapter, we propose a novéiripie calledrecovery

Boosting that allowsboth PMOS devices in the memory cell to be put into the recovery

23
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mode. The basic idea is to raise the ground voltage and thieesito 1, when the
cell does not contain valid data. In this chapter, we deednitwv SRAM cells can be
modified to support recovery boosting and discuss sevetalitand microarchitecture
level design considerations when using such cells to blRAM arrays. We present
the circuit-level design of two large SRAM arrays in a 4-wistgue processor core - the
physical register file and the issue queue - that use the raddiélls to provide recov-
ery boosting. We verify the functionality of these designd guantify their area and
power consumption through SPICE-level simulation usirggGladence Virtuoso Spec-
tre circuit simulator 28] for the 32nm process technology. We show that the modified
SRAM structures impose only a 3-4% area overhead over thelibasion-recovery
boost designs and that their maximum power consumptionsss tlean 2% over the
baseline. We then evaluate the performance and reliabilirea-neutral designs of
these modified structures at the architecture-level vizw@i@n-driven simulation us-
ing the M5 simulator29] and the SPEC CPU2000 benchmark suié] in nominal
operating condition. We show that recovery boosting presid 56% improvement in
the static noise margin of the register file cells and a 48%avgment for the issue

gueue across the benchmark suite while having a negligiig@ct on performance.

The organization of the rest of this chapter is as followse méxt section discusses
the recovery boosting technique. The circuit-level desiga evaluation of the register
file and issue queue are given in SecttbA The experimental methodology used for
the architecture-level evaluation is given in SectdbBand the corresponding results

in Sectiond.4. Sectiord.5concludes this chapter.
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4.1 Basicsof Recovery Boosting

Before we discuss recovery boosting, we first review thegieand operation of a
conventional 6-transistor (6 T) SRAM cell. The design of @ecell is given in Figure
4.1 The cell is composed of a wordline (WL), a pair of bitlined.(BLB), two cross-
coupled invertersif, I;), and two access transistord, /N;). The cross-coupled
inverters store one bit of data. There are three basic apesathat one can perform
on this SRAM cell: read, write and hold. To read and write dtita cell is selected by
raising WL to high. This activates the access transistodscamnects the inverters in
the cell to the bitlines. During a read operation, both gt are first precharged high.
Based on the data stored in the cell, one of the bitlines ishdiged. This change
is detected by a sense amplifier (which is not part of the telfetermine the value
stored in the cell. During a write operation, one of the bés is raised high and the
other is lowered depending on the value to be written to tle \dhen the cell is not
selected (WL = 0) for read or write, it is expected to hold tla¢adstored in it and is

said to operate in the hold mode.

Since the SRAM cell has cross-coupled inverters, eacht@nvenharges the gate of
the PMOS or NMOS device of the other inverter. Therefore,ngtgven time, one
PMOS device will always be in the stress mode. The goal ofuegoenhancement is
to put the PMOS devices into the recovery mode by feedingtivgdues to the cell that
will transition them into that mode. However, due to the srosupled nature of the
inverters, only one of the PMOS devices can be put into thevesy mode. Therefore,
previously proposed recovery enhancement techniquasatite balance the wearout

of the two PMOS devices by putting each PMOS into the recowarge 50% of the
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BLB VDD BL

—IN_OI NodeO Node1 IN_1I—

A4

Figure 4.1: Conventional 6T SRAM cell

time by feeding appropriate input values3[ 17, 19. We propose a 6T SRAM cell
design shown in Figurd.2 which is capable of normal operations (read, write, and
hold) as well as providing an NBTI recovery mode (when thé deés not contain
valid data) that we call theecovery boost mode where both PMOS devices within the
cell undergo recovery at the same time. We refer to the pevizeh the cell does not
contain valid data that is never used by any other microtechiral structure in the
processor as “invalid period”.

The basic idea behind recovery boosting is to raise the noliages (NodeO and
Nodel in Figure4.1) of a memory cell in order to put both PMOS devices into the
recovery mode. This can be achieved by raising the groun@g®lto the nominal
voltage through an external control signal. The modified SR#ell has the ground
connected to the output of an inverter, as shown in Figu2eCR is the control signal

to switch between the recovery boost mode and the normahtipgrmode. During
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WL

BLB VDD BL

L

L Jpy 9L L

CR4|>O

Figure 4.2: SRAM Cell Design for Recovery Boosting

the normal operating mode, CR has a value of 1 ,§, which in turn connects the
ground of the SRAM cell to a value of ‘0’. With this connectjoihe SRAM cell
can perform normal read, write, and hold operations. Toyamsovery boosting, CR
has to be changed to a ‘0’ in order to raise the ground voltdgeeoSRAM cell to
Vaa- This circuit configuration puts both PMOS devices in the $Réeell into the
recovery mode. A cell can be put into the recovery boost medardless of whether
its wordline (WL) is high or low. Unlike read and write opaaats on a cell, putting
a cell into the recovery boost mode does not require an atodsswordline. The
operations of the modified SRAM cell are shown in Table

However, the drawback of this approach is that it can takeg tioe to raise both
the node voltages to;, in a high-performance processor that operates at a highk cloc
frequency. This is illustrated in Figuee3, which presents the achieved PMOS gate

voltages of a bitcell over time due to recovery boosting. Sineulation is performed
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CR | WL | BL | BLB | NodeO | Nodel Operation
1 0 X X 0/1 1/0 Hold
1 1 1 1 0/1 1/0 Read
1 1 1 0 0 1 Write ‘1’
1 1 0 1 1 0 Write ‘0’
0 X X X 1 1 Recovery Boost

Table 4.1: Modified SRAM cell operation

Impact of recovery boosting over PMOS gate voltage
over time
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Figure 4.3: PMOS gate voltages of an SRAM bitcell due to recpboosting using
the modified SRAM cell shown in Figure 2 (V,,=0.9V, T=90C)

using the Cadence Virtuoso Spectre circuit simulatéf for the 32nm process using
the Predictive Technology Modet[]. The operating temperature is 90C which is the
average temperature in which high-performance procesgmsate $2]. We use this
temperature value throughout the chapter for all the expents. We can observe that
this approach achieves the desired gate volt&gg (vithin 3.33 ns. For a processor
which operates at 3GHz frequency, it will take 10 cycles taawo the recovery boost
mode. Similarly, it takes around 10 cycles to go back to thenab operating mode
from the recovery boost mode. However, our goal is to be abgavitch between the

recovery boost mode and the normal operating mode withimglesicycle which is
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critical for a high-speed SRAM structure, such as the issieeig, where instructions
need to be woken up and selected within a single clock cynl@rder to expedite
the execution of dependent instructions. As mentionedrbefecovery boost mode
is applied when an entry of the structure holds data that msidered “invalid” at
the architecture-level. Entries in the high-speed stnestahange their status between
valid and invalid very frequently. For example, we find fronstatecture simulations
that an issue queue entry stays invalid for about 50 cyclesdé changes its status
to valid. In such scenario, the cell shown in Figdr@ will take 20 cycles of the 50
cycles (40% of the invalid period) to shift between modesegithat shifting to the
normal operating mode takes place during the end of theichgakiod. Thus, only 30
cycles could be utilized for the recovery process. On therottand, if extra cycles
are allocated to shift to the normal operating mode afterrtaid period, that would
have negative consequences on the processor performamegefdre, single-cycle
switching is required for the high-speed structures in tteeg@ssor for the maximum
utilization of the invalid states for the recovery procesghaut any performance loss.
Such single-cycle switching can be achieved by raising itimés along with the
ground voltage td/y;. There are various ways of incorporating such cells into BRA

arrays, which we will discuss shortly.

Recovery boosting can be provided at a fine granularity, siscfor individual
entries/rows of a memory array, or at a coarser granulatyh as for an entire array.
We now discuss how the modified high-speed recovery booSRWM cells can be
used in each of these scenarios and then discuss additiacralanchitectural issues

related to implementing recovery boosting.
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4.1.1 Fine-Grained Recovery Boosting

WL
BLB VDD BL
e ) O~ O i
_I_l Node0 [ N Node1 |_|_
of o ]
\
L
CR {>o )
VDD

Figure 4.4: Modified SRAM cell with connection to thg, rail of an adjoining row

In the normal operating mode, the state of the bitlines caahging read and write
operations. Since a pair of bitlines is shared by all the mgroells in a given column
in the array, even those memory cells that are not being meawl 6ér written to will
have the voltage on their bitlines changing. In an ordind®ABI array, these bitline
transitions do not affect the normal operation of the céliswever, in order to perform
recovery boosting of a memory cell, both bitlines of the cgléd to be raised to,.
Therefore, we need to be able to isolate the bitlines of theomng cells that are in the
recovery boost mode from the bitlines that are used for aaogsther cells in the array.
To provide this isolation, we extend the memory cell in Feyu2 with connections to

theV/,, rail of an adjoining row or column via two PMOS access devidds design of
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the modified SRAM cell is shown in Figuke4 and an SRAM array that uses this cell
for controlling individual entries to operate either in @l or recovery boost mode is

shown in Figures.5.

BL, BLB, BL, BLB, BLy BLBy

MBC MBC —_ - — MBC

Entry 1

CRo {>O
MBC MBC - = - MBC

Entry 2

CR, {>c
MBC MBC _ _ MBC

Entry N

CRu {>c

Figure 4.5: SRAM Array for Fine-Grained Recovery Boostihggntries, M-wide)

In the memory cell design given in Figuded, the CR signal serves the same pur-
pose as before. When a value of ‘0’ is input to the CR line togit#on the cell into the
recovery boost mode, in addition to raising the ground gaidhe two extra PMOS
devices connected to thé, rail are also turned on. Therefore, by raising the ground
and connecting the bitcell to,, the cell can be transitioned into the recovery boost
mode without affecting cells in other rows of the array.

We make the extra PMOS devices resilient against NBTI bygusigh-V; transis-
tors. Although highV; devices are slower, these devices are used only when transi-
tioning the cell into the recovery boost mode and not whemsiteoning to the normal

operating mode. Therefore, these devices do not impacinesice but may delay the
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transition into the recovery boost mode. Moreover, sinesétdevices do not lie on the
performance critical path, they are sized so as to minintigeotverall area. However,
the PMOS devices do consume leakage power. We quantify thergmnsumption in

Section4.2

4.1.2 Coarse-Grained Recovery Boosting

In this approach, we use the SRAM cell design shown in Figuganstead of the
one for fine-grained control. Here, a single control signaisghe entire array into
the recovery boost mode. The control signal CR with a valu®’ohises the ground
connection of each entry tg;;. In this design, connections to thg, rail via the

PMOS devices are not required. Instead we merely need @ adithe bitlines in the

array toV,, to transition all the cells in the array to the recovery banetle.

Tradeoffs Between Fine-Grained and Coarse-Grained Recovery Boosting: Going in
for the fine-grained approach entails an area overhead aidiéwo additional PMOS
devices for each memory cell which can be prohibitive fogéga5RAM arrays such as
caches. On the other hand, the fine-grained approach prosidgle-cycle switching
with greater flexibility in managing NBTI by exploiting thesage characteristics of
individual entries in the structure. In this chapter, weleate the use of recovery
boosting for the register file and issue queue. Due to thévelasmall size of these

structures (compared to caches), we use the fine-grainedaagp
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Impact of recovery boosting and power gating over
PMOS gate voltage over time

- Recovery Boosting = =Power Gating
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Figure 4.6: PMOS gate voltages of an SRAM bitcell due to recpwoosting and
power gating {;4=0.9V, T=90C)

4.1.3 Other Issues

Difference Between Recovery Boosting and Power Gating: Similar to recovery boost-
ing, power gating also involves a small change to the dediginedSRAM cell and can
also be used to combat NBT3§]. As shown in Figuret.6, we can observe that recov-
ery boosting achieves the desired gate voltagg) (within a very short interval of time
(195 ps), whereas power gating achieves only about 11%,0Power gating requires
several thousand nanoseconds to reghto provide recovery to the SRAM bitcell.
Therefore, it can be used as a stress reduction approachefdrigh-speed structures
since the duration of the invalid phases of these structerasto be smaller than thou-
sand nanoseconds. When a memory cell stores valid datagnegcovery boosting
nor power gating can be applied and the PMOS devices in thew#l be stressed in
a similar way. However, when the memory cell is idle and th&adia the cell is no

longer needed, it would be more beneficial to take advantbgeeovery boosting.
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I mpact of Process Variation on Correct Functionality: In deep submicron technolo-
gies, intra-die process variation is an important issudfef@nt transistor parameters,
including V;, are affected by process variation and can impact circuaydeharac-
teristics. V; is affected by variations in the device geometry, randomadbpumber
flucations, and mobile charges in the gate oxi@l§.[ Process variation will affect the
delay characteristics of the 6T SRAM cell inherent in boté thiginal and modified
bitcells in a similar way. Process variation can also imphet/; of the twoV/,-rail
access transistors and the devices in the inverter corthexthe CR line. If thé/, of
theV,, rail transistors is high, then transitioning the bitcelthe recovery boost mode
may be slower. This could reduce the amount of time for whielcan apply recovery
boosting but will not affect the correctness of the SRAM oglération. On the other
hand, if theirV; is lower, the bitcell will transition into the recovery baasode faster
and the access devices will consume higher leakage poweiilbagain not affect cor-
rectness. A delay in the PMOS device of the CR line invertdragain merely slow
the transition into the recovery boost mode. However, aydeldhe NMOS device
in the inverter could affect the speed at which the cell titeorss out of the recovery
boost mode and into a normal operating mode, which can aftecéctness. In order
to handle this situation, we need to set the clock frequenci hat this delay can be

accomodated within a single cycle.

Recovery Boosting Does Not Exacerbate PBTI: Putting the PMOS devices into the
recovery mode does not increase the stress on the NMOS deritdge memory cell.
Stresses on the NMOS devices can lead to a phenomenon timaiigs 80 NBTI called
PBTI (Positive Bias Temperature Instability), which occwhen a positive biad/,

= Vy4) is applied to the NMOS device. As with NBTI, PBTI also geriesainterface



4.2 | Designing Microarchitectural Structures that Supportdvecy Boosting 35

traps and increases the threshold voltage. PBTI is expézteecome more important
in future deep submicron technologiess]. While in the recovery boost mode, both
the ground and node voltages of the cell are raisdd,toConsequently, th&, of the
NMOS devices in the inverters becomes zero and therefoee tN&1OS devices do
not experience any positive bias. The access transisteralsm not accessed during
the recovery boost mode. Therefore recovery boosting doesexacerbate PBTI on

the NMOS devices in the memory cell (and may in fact provid@ RBcovery [35)).

4.2 Designing Microarchitectural Structuresthat Sup-

port Recovery Boosting

Having discussed the basics of recovery boosting, we now dur attention to de-
signing SRAM-based microarchitectural structures thatthss technique to provide
resilience against NBTI. In this section, we present anduata the circuit-level de-
sign of two large SRAM-based structures within a 4-wideégstocessor core, namely,
the physical register file and the issue queue, which we maddisupport recovery
boosting. We study the design of a 128-entry multi-portegsptal register file with 8
read-ports, 4 write-ports, and 64-bit entries. The issi@iguses a non-data-captured
design B6] and consists of 64 entries with 4 read-ports, 4 write-p@isl 65 bits per-

entry. The choice for the entry-size is based on the issuaeydescriptions given in

[17].
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4.2.1 Physical Register File

Superscalar processors attempt to exploit InstructiorellBarallelism (ILP) by fetch-
ing, decoding, executing, and retiring multiple instroos each clock cycle. In order
to eliminate false dependences and support a large numbarflafht instructions,
superscalar processors make use of register renaminge @&reea number of microar-
chitectural options for implementing register renaming.tHis chapter, we model a
microarchitecture that uses a separate architected eediist and a physical register
file. Instructions whose source operand values are to bdiedfdyy a physical regis-
ter have their architected source register mapped to theoppate physical register
during renaming. These mappings from architected registephysical registers are
maintained in a Register Alias Table (RAT). The physicalisty is returned to the
free list of registers when the next instruction that writeghe same architected regis-

ter commits.

A physical register goes through a sequence of four statesrsin Figure4.7: (i)
itis not mapped to any producer instruction and is ftéenfapped), (i) it is mapped to
an instruction but it has not yet been written into by thatringtion (Mapped-Invalid),
(iii) it holds a valid value that has been written to M#pped-Valid), and (iv) it holds
a valid value but the value is not read by any instruction teefbis released to the
pool of free registersRost Last-Read). Once the register completes tRest Last-
Read state, the register returns to tb@mapped state and remains in that state till the

register-renaming logic chooses it again for a mapping.

There are three candidate states that one could use foremgcbwosting: Un-

mapped, Mapped-Invalid, andPost Last-Read. When a physical register is in thén-
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—~
/7 \ \
{ Un- l Mapped Mapped t:::
\\rI\apped \ Invalnd Valid \ Read /»_‘
-

Figure 4.7: Register states. The candidate states for eegtwosting are shown in
dashed circles.

Current unmapped | completed Control Switch to
State bit bit Signal (CR) | Recovery Boost?
Mapped/invalid 0 0 0 Yes
Mapped/valid 0 1 1 No
Unmapped 1 0 0 Yes
Unmapped 1 1 0 Yes

Table 4.2: Control signal truth-table for a register

mapped and Mapped-Invalid states, it does not hold valid data and therefore we can
put its cells into the recovery boost mode without affectamghitectural correctness.
The cells will need to be transitioned into the normal opegatnode when moving
from theMapped-Invalid to the Mapped-Valid state, which occurs when the producer
instruction has completed its execution and forwards thesvi the register filePost

Last-Read is a more complex situation. Several cycles may elapse leetwe last

RAT_Entryy, - - - - IUMOICMO Register,

|
|
CR,
| RAT _Entry, - - - - IUMHICM" Register, |

Figure 4.8: Control Logic for generating Control Signal R\, = ‘unmapped’ bit
for registerz andC' M, = ‘completed’ bit for register)
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time that the physical register is read and when the registegleased. This time
period could potentially be exploited for recovery boogtout it is challenging to pre-
cisely determine when the last-use of a register is comphdteough there have been
proposals to exploit this time window to speculatively esle registers early for the
sake of performance and power/[ 3], these techniques entail additional complexi-
ties of tracking/predicting the last-use of registers awarfaintaining and restoring the
old state of the early-released registers if needed. Toceethe complexity of imple-
menting recovery boosting, we put registers into the regolkeost mode only when
they are in theJnmapped andMapped-Invalid states. As we will show in Sectich4,
putting registers into the recovery boost mode just dultiregé two states still provides

substantial improvements in reliability.

Since the register renaming logic tracks whether a physegbter is in theJn-

mapped or Mapped-Invalid state, the control signal for the recovery boost mode is
set by the renaming logic. Each RAT entry has an ‘unmappéddird a ‘completed’
bit that denotes whether the given physical register th@tRAT entry points to has
been mapped and whether it has been written to respectivysiygg these two bits, we
can implement the control signal for recovery boosting gghre truth-table and the

corresponding logic shown in Figurds2 and4.8respectively.

4.2.2 IssueQueue

The issue queue houses instructions that have been fettdamtjed, and renamed and
are pending execution. Instructions are dynamically seleetdfrom the issue queue

based on the availability of their source operands and fomak units. Instruction is-
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sue consists of two steps - wakeup and select - which bothtodezicompleted within

a single clock cycle for high performance. Instructiong thave finished execution
broadcast their result tags to all the instructions in tlseiesqueue. Each instruction
in the issue queue compares the broadcasted tags with itS@wnoe tags for a pos-
sible match. Once both the source operand tags of an insinutave matched, the
instruction is ready to be issued to a functional unit (instion wakeup). A subset of
the ready instructions are then selected to be issued tatietidnal units (instruction

select). These instructions obtain their source inputamas from the register file or

the bypass network and then proceed to use the functional gmasinted to them.
tag. tagw

OR OR
. Rdy SRC1 SRC2 Rdy |Dest.]|,,.
valid | opcode (SRC1) tag tag (SRC2)| tag Misc.

l— rRAM —sf— cAM —sf— RAM —]

Figure 4.9: An issue queue entry.

We model a non-collapsing issue queue that is organized msudac FIFO with
head and tail pointers similar to the design proposed bygralei and Gonzalez}).
We design the issue queue entry to be similar to the one tesichy Palacharla et al.
[40]. Conventional issue queues have a CAM/RAM structure whieeeCAM holds
the source operand tags and the RAM holds the remainingnraeon. The structure
of the issue queue entry is shown in Figdr8. Each entry has a valid-bit to indicate its
status. The valid-bit is set when the entry is allocated fdispatched instruction and

is reset when the instruction is issued and leaves the iaga1eeq We put invalid entries
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into the recovery boost mode. (The valid-bit itself is not pio the recovery boost
mode to ensure correct operation of the instruction scleedulThe CAM performs
tag-matching operations against all the broadcasted tags @ock cycle. In order
to do this, each CAM entry has a set of comparators and the aeuoflcomparators
required depends on the issue width of the processor. Thgrdekthe CAM part of
the issue queue for a single bit is shown in Figdir&Q In each cycle, each matchline
is precharged. If there is a mismatch between the tag dataeimiemory cell and
the broadcasted result tag in any of the CAM cells in the igsgiee entry, then the
corresponding matchline is discharged; otherwise the miatcstays high. If any of
the matchlines for a given operand tag entry stays highpitesponding ready signal

(RDY) is asserted high via the OR-block shown in the figure.

precharger TAGw TAG: DATA DATA TAG; TAGw
PaN R P P R

e

_I_—| |_—|—I__| |_—|_|__| Matchline,

S v |\

e . 4 —4 1 OR |—RDY

A [T =11

g < Matchlinew

Figure 4.10: CAM structure of an issue queue entry (IW = isgigkh)

To provide recovery boosting, the memory cells of the RAM @#&M structures
are composed of the modified SRAM cells shown in Figlie The modified issue
gueue entry is shown in Figude1ll The valid-bit works as the control signal (CR)

for the entry. When the memory cells in the entry transitoithie valid state, the CR
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signal becomes high which pulls the ground down to low andetitey works in the
normal operating mode. When the entry transitions to thalidstate, the CR signal
becomes low and puts the memory cell into the recovery boastem When in the
recovery boost mode, both nodes of the memory cells in b&RtM and the CAM
parts are raised tb,,. Due to the high node voltages, the comparators in the CAM
will be triggered leading to a discharge of the matchline.aVoid this unnecessary
precharging and discharging of the matchline (which wasteger), we further modify
the issue queue entry so that the prechargers of the mashdire connected to the
CR signal. When CR is high in the normal operating mode, theeihtiaes will be
precharged td/,, and the tag-matching process will continue each cycle. WERn

is low during the recovery boost mode, the matchlines staydod therefore do not

discharge.
precharger TAGw TAG; DATA DATA TAG; TAGw
MBC —
11 |_ —l 7 |_ L —l Matchline,
$ \/ é | \
o 1I- 1 -1 —_ | OR [—RDY
|
N I s el P AN e el
47 \ 47 Matchlinew
[~~o
cR L7

Figure 4.11: Modified CAM Structure (IW = issue width). MBCtlse Modified Bit-
Cell for recovery boosting.
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4.2.3 Circuit-Level Smulation Results

We now present the results from a circuit-level analysifiefdesigns discussed in Sec-
tions4.2.1and4.2.2 We perform SPICE-level simulation using the Cadence Ustu
Spectre circuit simulato?[] to verify the functionality of our designs and determine
their area and power consumption. Our experiments areedaorit for the 32nm pro-
cess using the Predictive Technology Mod&l][ Our bitcell device sizes are: PMOS
=58nmx 33nm, NMOS = 87nmx 33nm, Access Transistor = 58nm41inm. The
supply voltage {,;;) and the operating temperatufE)(are 0.9V and 90C respectively.
For each structure, we simulate two designs: the baselsigméat uses conventional
6T SRAM cells (which do not provide recovery boosting) anel design that uses the

modified SRAM cells discussed in Sectidri to provide fine-grained recovery boost-

ing.
Write delay
= Node0 (Modified Cell) = =Nodel (Modified Cell)
——=Node0 (Conventional Cell)= =Nodel (Conventional Cell)
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Figure 4.12: Write delay of the modified bitcell. Node0O anddsb are the node volt-
ages of the bitcell\(;,=0.9V, T=90C).
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Functionality

We evaluate two aspects of the functionality: (i) whetheroaa perform read, write,
and hold operations on the modified SRAM cells, and (ii) weethe modified cells

correctly switch between the normal operating modes ancettw/ery boost mode. To
evaluate these, we looked at the waveforms of the voltagatiars at the nodes and
bitlines of the cell in one clock cycle. We examine these i@wes for the read, write,

and hold operations and also for the transitions betweerett@very boost mode and
the normal operating modes. We take into account the exteaiter delay required for

changing the ground voltage of the cell during these traomst

In Figure4.12 we show that the node voltages (NodeO and Nodel) of the raddifi
cell for recovery boosting takes 160 ps to reach desiredgelivalues whereas, the
conventional 6T cell takes 140 ps. Even though the writeydelancreased by 20
ps because of the increased capacitance in the modifiedtlusllpperation can be
done within a single cycle of a high performance processorceSthe read and hold
operations behave in a similar way for both modified and cotigeal 6T cells, we do

not present the waveforms for these operations.

Figure4.13a) shows that the required time to switch to recovery boasdens
190 ps. To switch to the recovery boost mode, both node edtagve to rise td,.
NodeO stays ii/;,; and Nodel takes 190 ps to riseltg;. Since a bitcell transitions
from recovery boost mode to normal operating mode on a wwigeran simulation
to confirm that we can succesfully write to the cell after ttansition within a cycle.
Figure4.13b) shows the required time to switch to normal operating enfsdm re-

covery boost mode with a write operation. In recovery boastiey both node voltages
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(NodeO and Nodel) stays Iny;. Therefore, with a write operation, NodeO has to stay
in V33 and Nodel has to be pulled down to GND. As we can see from theefijlode1
reaches the desired value (GND) within 140 ps. Therefor&jrginto the recovery
boost mode and to come back to the normal operating mode fréaka 190 ps and

140 ps respectively.

Transition time to recovery boost mode
= =Node0 =——Nodel
— 1000 -
> e — —— —— —— —— —— ——
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(a) Transition to recovery boost mode
Transition to normal operating mode with write
operation
— = =Node0 =——Nodel
>
£ 1000
& 8o
[+]
% 600
> a00
b
© 200
©
0 4 : r r r .
0 50 100 150 200 250 300
Time (ps)

(b) Transition to normal operating mode

Figure 4.13: Transition between recovery and normal motlkesle0 and Nodel are
the node voltages of the bitcell{;=0.9V,7=90C).
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Our simulations indicate that we can correctly perform reaite, and hold opera-
tions on the registers and the issue queue entries that esedtified SRAM cells in
the register file and the issue queue. The extra circuitrygfoovery boosting is not ac-
tive during the normal operating mode and therefore theyalamerfere with normal
operations on the cells. Since a register transitions fioenrécovery boost mode to
the normal operating mode (i.&lapped-Invalid state to theMapped-Valid state) on a
write, our simulations confirm that we can successfully eviit the cells after the tran-
sition. The same holds true for an issue queue entry. We alsualfthat the matchlines
for the CAM cells that are in the recovery boost mode are nethirged so that they
never trigger a match for those cells.

Clock Frequency Setting: In our simulations, we found the smallest possible cycle-
time for the modified SRAM cell to be 220ps (a clock frequenty® GHz). We
choose a more conservative cycle-time of 333ps, which spaomds to a clock fre-
guency of 3 GHz. We found the delay of the highaccess transistors that connect
to the V,, rail to be small enough to transition the cell into the recgusost mode

within a single cycle for the 3 GHz clock frequency.

Area

We designed our structures for both the baseline and regdasting cases to oc-
cupy the minimum area required to provide correct functibmaCare was taken to
size the devices so that they are of minimal size while mgetie 3 GHz clock fre-
guency requirement. We calculate the area of the struch&esd on the device sizes
in their respective netlists. We assume that the area ozxdrthee to any new routing

or interconnect can be minimized by an optimized layout. tgmcal SRAM array,
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the cells are laid out in the array in a mirrored fashion sa@ tha same interconnect
could be shared by adjacent rows and columns. Under theemp8ens, the extra
PMOS devices and the inverters would dominate the area eadréind accounting for
the extra devices would give a first order approximation efSfRAM array area with
the modified cells. The overheads for the multi-ported tegile and issue queue are

given in Figure4.14

Area Overhead
l Conventional Cell @O Modified Cell
425

400
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Area (1Um?2)
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200

I

register file issue queue

Microarchitectural Structures

Figure 4.14: Area of the register file and the issue queuedsigas that use conven-
tional 6T cells and cells modified to support recovery bamgti

Since the register file has 8 read-ports and 4 write-ports) bacell has 20 tran-
sistors: 4 transistors for the inverter-pair and 8 transsseach for the write and read-
ports (for supporting single-ended reads). Similarly, igsie queue has 4 read and
write-ports respectively and has 16 transistors per bitdel support recovery boost-
ing, we add 2 extra transistors of minimal size to each ceall@me extra inverter for

an entire row of 64 bitcells, in the case of the register file§® bitcells for the issue
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gueue. Therefore, adding the extra transistors for regdveosting to these heavily
multi-ported structures is expected to add only a small athofiarea. Indeed, we
can see that the area of the physical register file and issigeghat use the modified
cells are 4% and 3% respectively more than their baselingmkesThis overhead is
roughly equivalent to the area occupied by three registetisd modified register file
and two entries in the modified issue queue. We can theretmig the register file
and issue queue to be area-neutral with respect to the hageé., occupy the same
area as the baseline design) by having their capacitiexeedoy three registers and
two entries respectively. The rationale behind going indmga-neutral structures is
to minimize the impact of designing structures that empbkxowrery boosting on the
processor floorplan. Going for the area-neutral designeo$tructures could affect the
performance of the processor. The performance impact sethesa-neutral designs

are evaluated in Sectieh4.

Dynamic and L eakage Power Consumption

Figure 4.15 gives the power consumption of a single register for bothlthgeline
design and the one that uses the modified SRAM cell. Simjl&ityure4.16 gives

the power consumption of a single issue queue entry. Fordtjister, we show the
power consumed for the read, write, and hold operations disawevhen the cells
are in the recovery boost mode. For the issue queue entrgditi@n to the power
consumed in the recovery boost mode, we quantify the poweswuoed in each of
the three normal operating modes. For each of these modepresent the power
consumption for two scenarios: (i) when both source tagsarary mismatch with

the ones broadcast down the issue queue in the same cyctd iwhihe highest power
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Figure 4.15: Power consumption of a single register entfy=0.9V, 7=90C).

consumption scenario since all the matchlines dischange,(i® when both source

tags match in the same cycle, which consumes the least arnbpaoiver.

We can see that the power consumed by the designs that usettiech SRAM
cells for the read, write, and hold operations are nearlyakguthose of the baseline
designs. The maximum increase in power is less than 1% faoetfister and less than
2% for the issue queue entry. The power consumption of the iggeue entry is higher
than the register because of its CAM/RAM structure. Thehsligcrease in power for
the recovery boost designs is due to leakage in one of the PRO&ss transistors
that connect to th&, rail. The sources of the PMOS access transistors are cathect
to V,, and the drains are connected to the nodes. Therefore, basgbather a cell
holds a ‘0’ or a ‘1’, one of the two PMOS devices will leak. Stnwe use high4

PMOS devices as the access transistors for the cells (teedtie impact of NBTI),
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Figure 4.16: Power consumption of a single issue queue €¥ityy0.9V, 7=90C).

the leakage power of these transistors is also reduced.

In memory arrays that use conventional SRAM cells, the agilsnormally be
operating in the hold mode when they house invalid data. Wewe&vhen the modified
cells are used, cells that hold invalid data can operateemgbovery boost mode. We
can see that the power consumed in the recovery boost moddassmf magnitude
less than in the hold mode. This is because the recovery bpesation raises NodeO
and Nodel (shown in Figure4) and the ground td;;, which cuts off the path from
V4q to ground and significantly reduces the leakage currentgllly there is a small
power benefit at the structure level since we use area-nelesegns for the physical

register file and the issue queue that are slightly smaléer the baseline designs.
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4.3 Experimental Methodology for the ArchitectureL evel
Analysis

Having seen the circuit-level design of the physical regifite and the issue queue to
support recovery boosting, we now evaluate the impact ofgusiese techniques at the
architecture level. We carry out our architecture-levelleations via execution-driven
simulation using the M5 simulatof§]. We use the system-call emulation mode of
M5. Our workloads consist of all 26 benchmarks from the SPEOZ000 benchmark
suite [30]. The benchmarks are compiled for the Alpha ISA and use tlegerce input
set. We perform detailed simulation of the first 100-milliostruction SimPoint for
each benchmark4[l]. We model a 4-wide issue core, which is similar to those in
multicore processors. We assume the initial thresholcagelof the PMOS devices in
the memory cells to be 0.2 V and the service life of the promessbe 7 years based
on the work by Tiwari and Torrellas. f].

Reliability Metric - Read Static Noise Margin (SNM): NBTI causes an increase in
the threshold voltage of the PMOS transistors. In the cassR#M cells, this shift

in V; could increase the time needed for reading from and writnipé cells. NBTI
could also decrease the read SNM (SNM) of the cells. The SN nseasure of
the stability of the cell and specifies the maximum amounidiage noise that can be
tolerated at the nodes of the memory cell before the contémite cell get flipped4?).
Previous work [ 8] has shown that, of these three metrics, the SNM is the ortegha
most heavily affected by NBTI and therefore we use SNM as ¢habhility metric in
this chapter.

Initially, before the processor is used for executing wogkls, the bitcells in the
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register file and the issue queue are designed such thasthi®iris not limited by the
strength of the PMOS devices. But after these structuresxaeised by workloads,
their SNM gets limited by the strength of the PMOS devices ttieempact of NBTI
on V;. We capture this impact by tracking the stress and recowales on all the
PMOS devices in the register file and the issue queue (basaat @ircuit-level designs
of these structures) over the course of an architecturelation and extrapolate the
statistics to calculate the degradatiofvjrafter the 7-year service life. We then feed the
V, values of these PMOS devices into the Cadence Virtuoso &peictuit simulator
to calculate the SNM of all the cells in a structure at the ehithe 7-year period and

use the smallest value to denote the SNM for that structure.

4.4 Architecture-Level Smulation Results

We now study the impact of putting memory cells of registerd Bsue queue entries
into the recovery boost mode when they hold invalid data. i8sussed earlier, we put
registers into the recovery boost mode when they are itJtlmaapped and Mapped-
Invalid states. We present results only for the integer registeidiilevo reasons. First,
the integer benchmarks have very few floating-point instons and therefore rarely
exercise the floating-point register file. Second, severéhe floating-point bench-
marks have a large number of integer instructions in theit i00-million instruction
SimPoint and therefore significantly exercise the integgrster file. (9 out of the 14
floating-point workloads have more integer than floatingapmstructions in their first

SimPoint). As a result, the integer register file is exetigea greater extent than the
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Vt and SNM Degradation for Register File
[JBaseline Vt CJRecovery Boosting Vt EJBalancing Vt =A—Baseline SNM =&=Recovery Boosting SNM =@=Balancing SNM

400
Initial Vt = 200 mV

Initial SNM =171 mV
350

300

250

Voltage (mV)

200

150

Benchmarks

Figure 4.17:V; and SNM degradation for the RF for tiBaseline, Recovery Boosting
andBalancing configurations {;;,=0.9V, T=90C).

the floating-point register file for most of the benchmarlssuke queue entries are put

into the recovery boost mode when they no longer hold valid.da

We evaluate three different processor configurations, kivihie denote asBase-
line, Recovery Boosting, andBalancing. Baseline models 4-wide issue core that do not
use any NBTI mitigation techniqueRecovery Boosting replaces the integer register
file and the issue queue of the baseline configuration witin do&interparts that sup-
port recovery boosting. We assume that the modified strestior Recovery Boosting
are designed to be area-neutral with respe@aseline by trading off a small amount
of storage capacity to accommodate the extra area requr@dpglement recovery
boosting. Based on our area evaluations in Secti@hwe assume that the modified
integer register file and issue queue have 125 registers 2edtéies respectively. In

all our simulations, we find that this reduction in capacias la negligible impact on
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performance and therefore we do not present detailed peafuce resultsBalancing
denotes a recovery enhancement scheme similar to the opesaain [ 7] that uses
the same time intervals th&ecovery Boosting exploits to balance the degradation of
the two PMOS devices in the memory cell. As pointed out by kbet al. [L7], flip-
ping the contents of the memory cells only when they holdlidata instead of when
they hold both valid and invalid data, for which additionataitry is required ., is
the preferable approach for high-speed SRAM structuresdardo not increase their
delay significantly. Since the access times of the physewgikter file and the issue
gueue have a strong impact on processor performanc8&athacing technique is ap-
plied only when the memory cells hold invalid data. We opsitically assume that
Balancing does not impose any additional area overheads over tharmdekign and
that it can keep the inputs to each PMOS device at a logic ‘@t#y 50% of the time

whenever the cells are in this mode.

For the remainder of this chapter, we will refer to the integmgister file and the

issue queue as RF and 1Q respectively.

4.4.1 Physical Register File Results

Figure 4.17 shows theV; degradation and the resultant SNM for the RF across the
benchmarks due to NBTI after the 7 year service life forBaseline, Recovery Boost-

ing and Balancing configurations. As mentioned earlier, the initialis 200 mV and
using this value, we get the initial SNM of the RF to be 171 m\fobe the RF is
stressed by the benchmark. For Baseline, on an average, the degrades to 305 mV

across the benchmarks, which leads to an average SNM of 109 h@vefore Base-
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Figure 4.18: Breakdown of time spent by the registers ired#ifit states. The lowest
part of each stacked bar is thimmapped state.

line causes about 37% degradation in SNM. To improve the SNM teBaseline,
Recovery Boosting takes advantage of the invalid periods of the RF to applyveso
to the registers. A breakdown of the time spent by the registethe four different
states given in Figurd.7is shown in Figured.18 The values given in the graph are
an average over all the registers and over the entire Sihfwsieach benchmark. As
we can see, the registers are in themapped and Mapped-Invalid states for a large
fraction of time for most of the benchmarks. Therefore, weehsignificant opportu-
nities to apply recovery boosting for the RF. The impact o& 8NM as a result of
using recovery boosting is given in Figudel?7. As Figure4.17 shows, the average
degraded/; stays close to 245 mV because of the applied recovery to thieiteélls.

This causes the SNM to degrade to an average value of 144 mthughabout 15%
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Figure 4.19: Improvement in the Static Noise Margin for thHe &er theBaseline
processor configuratiovf,;=0.9V, 7=90C).

degradation in SNM over the initial condition. Similarlprfthe Balancing approach,
the average degradéd stays close to 265 mV and the SNM degrades to an average
value of 133 mV.

In Figure4.19 each pair of bars shows the improvement in the SNM ®zse-
line for Recovery Boosting and Balancing respectively. As Figurd.19shows, while
Balancing provides a good improvement in the SNRkcovery Boosting provides sig-
nificantly higher reliability benefits by virtue of its alijito put both PMOS devices
into the recovery mode. Across all the benchmaBalancing provides a 40% im-
provement in the SNM whil&®ecovery Boosting provides a 56% improvement. These
results clearly highlight the benefits of recovery boostisga technique to mitigate

NBTI in the RF.
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4.4.2 |ssueQueue Results

Vt and SNM Degradation for Issue Queue
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Figure 4.20:V; and SNM degradation for the IQ for ti&aseline, Recovery Boosting
andBalancing configurations {;3=0.9V, T=90C).

Figure4.20shows thé/; degradation and the resultant SNM for the 1Q across the
benchmarks due to NBTI for tHgaseline, Recovery Boosting andBalancing configu-
rations. Similar to the RF, the initidf, and the SNM are 200 mV and 171 mV respec-
tively. On an average, thg degrades to 305 mV and the SNM degrades to 109 mV
for the Baseline. Unlike the RF, thé/; and the SNM of the IQ varies across different
benchmarks for th&®ecovery Boosting configuration. Specially, th&; and the SNM
varies a lot for the floating-point benchmakrs. The reasdmrakthis is illustrated in
Figure4.21where the breakdown of the time spent by the IQ entries inhiel and
Invalid states for each benchmark is shown. The time-breakdownasemage over all
the entries in the IQ and over the entire SimPoint of each tmack. The duration of

the Invalid state is much shorter for some floating-point benchmarkfiasrs in the
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figure. On an averag®; degrades to 254 mV and the resultant average SNM becomes
140 mV for theRecovery Boosting configuration. SimilarlyV; degrades to 272 mV

and the resultant average SNM becomes 131 mV foB#iancing configuration.

While the RF results show th&ecovery Boosting is consistently superior tBal-
ancing, the 1Q shows a more varied trend. The reliability resules given in Figure
4.22 For the integer benchmarks, which are in the left-handgideap in the graphs in
Figure4.2], the IQ entries are in thiewalid state for a large fraction of the time (over
76% on average) and therefore enjoy significant benefits femovery boosting. The
exception to this isrcf , where the 1Q entries spend only 34% of the time in lihe
valid state. The difference in the SNM improvement betwBalancing andRecovery
Boosting is much smaller for this benchmark and so is the overall beoeér Base-
line. This is because 37% of the instructiongynf are memory instructions (33.5%
are loads and 3.5% are stores). Given the large number ofihsadictions and the
fact that load values are consumed by subsequent instngatiats dependence-chain
that wait in the 1Q, they have a significant impact on the oenigy characteristics of
the 1Q. We find that the L1 data-cache miss ratenfof is high (54.5%), which leads
to these dependent instructions occupying 1Q entries fongdr period of time. As
a consequence, there are fewer opportunities to applyre®l@ncing or Recovery
Boosting to the 1Q forntf compared to the other integer benchmarks. Note that al-
though the IQ entries are in thalid state while these instructions wait, the destination
register of a producer instruction remains in Mapped-Invalid state in the RF till the
value is actually ready to be written to the register. We @mis Figure4.18that the
registers spend a longer time in thapped-Invalid state forncf than for the other

integer benchmarks. Therefore, the RF still benefits frooovery boosting during
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this period.

The floating-point workloads exhibit a range of behavidtecovery Boosting pro-
vides significant improvements in the SNM for more than hiaéf benchmarks and
the benefits provided are much better tiBahancing. However, for certain workloads
(swi m equake, f ma3d) the benefits provided bigecovery Boosting andBalancing
are nearly the same. Most interestingly, $arxt r ack, | ucas, andappl u, Balanc-
ing provides slightlybetter improvementin the SNM thaRecovery Boosting. We now
explain why this happens.

First, as we expect, there is a relationship between thdiketietRecovery Boost-
ing provides and the amount of time that the 1Q entries spendemnifalid state, as
Figure4.2lindicates. There are several factors that influence the at@fdime that
various workloads spend in tHevalid state, such as the percentage of high-latency
instructions in the instruction mix of the benchmark and tfemory system perfor-
mance (both the hit-rates of the L1 instruction and dataesels well as the average
miss latencies). For workloads that have a significant nurableigh-latency floating-
point instructions, the instructions data-dependent asdhigh-latency instructions
will occupy IQ entries for a longer timesi xt r ack, | ucas, andappl u contain
a significant number of floating-point instructions in thi@struction-mix (65%, 64%,
and 52% respectively). These three workloads also havadhest fraction of floating-
point multiply instructions among all the floating-point iktbads (36%, 23%, and
24% of the overall mix respectively). Since a floating-pomiltiply takes 4 cycles
to execute, instructions on their dependence-chains wailtd 1Q for a long time in
the Valid state. Similarly, for workloads that have a high percentaig®ad instruc-

tions, the 1Q entries occupied by the loads and their depaedehains will remain in
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the Valid state for a longer time if the loads frequently miss in theheadn general,
the 1Q occupancy behavior depends on both the charactsritithe application and
the exact microarchitectural configuration of the procegdowever, since we do not
optimize either of these factors fBalancing andRecovery Boosting, it is more impor-

tant to understand when one scheme will be more beneficialtbteother in terms of
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Figure 4.21: Breakdown of time spent by the 1Q entries indled andlnvalid states..

To achieve a good SNM, it is important to minimize the inceei@s/; due to NBTI
of both PMOS devices in the memory cell. Additionally, it is@important to ensure
that thedifference in the threshold voltages between the two PMOS devices isdsep
small as possibleRecovery Boosting addresses the first condition wher&atancing

addresses the second. When an 1Q entry holds valid data émgapleriod of time, as
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Figure 4.22: Improvement in the Static Noise Margin for tikge dver the baseline
processor configuratiovf,;=0.9V, 7=90C).

is the case fosi xt rack, | ucas, andappl u, one of the PMOS devices in each
memory cell stays in the stress phase while the other in t®vezy phase. This in-
creases the difference in thgbetween the two PMOS devices and therefore degrades
the SNM. When the 1Q entry is in thevalid state for a short period of tim&ecov-

ery Boosting reduces thé/; of both PMOS devices all the memory cells. However,
Balancing flips the bits stored in those cells so that the PMOS devicewha in the
recovery phase while the IQ entry was valid now enters tlessiphase and vice-versa,
which tends to reduce the differencelinbetween the two PMOS devices. As a re-
sult, for workloads where the 1Q entries spend very litttediin thelnvalid state, the
SNM for the Balancing scheme is better than fé&tecovery Boosting. The difference

is especially evident for ucas, whose IQ entries spent the least amount of time in
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thelnvalid state (5% of the time) as shown in Figwt21 However, when thénvalid
periods are even slightly longer, the difference betweenwo schemes becomes less
evident and it starts becoming more beneficial to redgcdan to try maintaining a
small threshold voltage difference for londevalid periods. For example, we can see
in Figure4.21thatsi xt r ack andappl u spend successively longer periods in the
Invalid state (13% and 21% respectively) and consequently the dejgbeBalancing
andRecovery Boosting diminishes andRecovery Boosting provides more benefit than

Balancing for workloads with longefnvalid times.

In general, we find thaRecovery Boosting is more beneficial thaBalancing for a
wide range of IQ entrynvalid-state occupancy time$ecovery Boosting provides a
48% improvement in the SNM ové@aseline whereasBalancing provides only a 37%

improvement for the entire SPEC CPU2000 benchmark suite.

45 Summary

SRAM memory cells are especially vulnerable to NBTI since itiput to one of the
PMOS devices in the cell is always at a logic ‘0’. In this cleaptve propose recovery
boosting, a technique that allows both PMOS devices in tlieta@de put into the
recovery mode by raising the ground voltage and the bitin&;;. We show how
fine-grained recovery boosting can be used to design theqathysgister file and issue
gueue and evaluate their designs via SPICE-level simulaitid/e then show that area-
neutral designs of these two structures can provide signifieliability benefits with

very little impact on power consumption and negligible losperformance.
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This chapter covers work published in ISVLSI 2014) &nd in the IEEE Transac-
tions on VLSI 2011 §].



Chapter 5

Mitigating the Impact of NBT| on

Processor Functional Units

NBTI affects both the cycle time and the stability of storagreictures within the pro-
cessor. These problems are typically addressed via guadtdita Guardbanding ac-
counts for the degradation in cycle time and the stabilitthefstorage structures over
the lifetime by reducing the operating frequency and ingiregathe minimum voltage
of the storage elementg)(;,,). Typically, 20% of the cycle time is reserved as a guard-
band for NBTIl and a 10% increase in threshold voltage ¢an be handled with a 10%
increase inV,,,;,, [17]. However, reducing the frequency and increasi)g, have a
detrimental impact on performance and power respectivehtiaerefore it is desirable
to reduce the guardband via the use of NBTI mitigation tegphes. In this chapter, we
look into guardband reduction techniques to address theadation in cycle time.
Techniques for putting PMOS devices into the recovery magebe implemented

at both the circuit and microarchitecture levels in the pssor. The goal of circuit-

63
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level techniques is to design the structures such that ag RM@S devices as possible
in the structure can be put into the recovery mode whenevssilple. Circuit-level
techniques typically attempt to tackle NBTI at the granityaof a single structure.
Microarchitecture level techniques, on the other hand,mnanage NBTI for several
structures within the processor core using techniques asdistruction fetch and
scheduling policies. There are tradeoffs in implementirgjTNrecovery at each of
these levels in the system in terms of area, power, perfaceyaomplexity, and, their

effectiveness in reducing the guardband.

In this work, we present a quantitative analysis of NBTI reag techniques at
the circuit and microarchitecture levels for the functiomaits (FUs) in the cores of a
high-performance multicore processor. We choose to stidytfecause of the general
trend in multicore processor design, where more cores tggriated onto the die each
sucessive generation but the cores themselves tend todieebl simple and have
only a small number of FUs. In this scenario, the failure afreene FU could seri-
ously jeopardize the ability of that core to provide highfpenance. We characterize
the effectiveness of NBTI mitigation at both the circuit amitroarchitecture levels
and quantify their impact on other important figures of mesttch as, area, delay, and
application performance. The objective of this chractdion study is to identify those
techniques that can effectively reduce the guardband wat the least amount of per-
formance impact on applications, as well as impose minimalleeads in terms of area,
power, and delay. We then show that lightweight optimizatiat each level is more
effective in reducing the guardband without adverselyddiifg the other figures of
merit than applying more extensive changes at any one [€@e¢he best of our knowl-

edge, this is the first study to systematically analyze NEBEtbrery techniques at each
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of these levels for FUs and develop multi-level optimizatiechniques to tackle this
important reliability problem. In this chapter, we prop@s®l evaluate three different
NBTI-aware FU designs in terms of guardband reduction, arehdelay. We show
that, on an average, the three different designs provideedgand reduction of 42%,
46% and 47% over the baseline configuration. We then propwee tifferent NBTI-

aware scheduling policies and evaluate their impact oropmdnce and guardband
reduction. We show that, on average, the three policiesgea guardband reduction
of 43%, 54% and 63% over the baseline FU configuration. Binale analyze the

effectiveness of combining lightweight optimizations atlke level and show that this
approach provides a 56% guardband reduction with minimphichon other figures

of merit.

The outline of the rest of this chapter is as follows. The rs&dtion discusses the
NBTI mitigation techniques we consider. The experimentathnndology is described
in Section5.2 The results are presented in SecttoBand Sectiorb.4 concludes this

chapter.

5.1 Approachesto NBTI Mitgation at the Circuit and

Microarchitecture Levels

In this section, we describe how degradation due to NBTI @areduced at the circuit
and microarchitecture levels for the functional units (JFdsd describe the specific
designs and policies we evaluate. While our circuit desagesoptimized versions of

a previously proposed technigu&/], the microarchitecture level schemes we propose



Chapter 5 | Mitigating the Impact of NBTI on Processor Functional Units 66

are novel.

5.1.1 Circuit Level Techniques

Fu et al. P7] proposed a circuit-level technique where a FU is dividei imulti-
ple segments and instructions with narrow-width operamdssteered into one of the
segments based on the delay of each segment due to NBTI. Tdeafea segment
depends on the level of stress experienced by the PMOS dtarssin that segment.
Higher the stress, more would be the increas&}imnd hence higher would be its
delay. The specific design considered 27][is a 64-bit FU that is divided into four
segments of 16 bits each. An instruction with 16-bit or serabperands uses the seg-
ment with the smallest delay while the other segments areputhe recovery mode.

Instructions with operand-widths greater than 16 bits medesof the entire FU.

There are two drawbacks to the design proposed by Fu et at, Each segment in
the FU is built as a Carry Lookahead Adder (CLA) and the sedswe connected as
a multi-level CLA to form a 64-bit FU. CLAs are seldom used ighhperformance mi-
croprocessors due to their low speed. Instead, most praceasslay use some form of
a high-speed prefix adder. Second, to put PMOS devices inkhségments into the
recovery mode, they feed in special input vectors. Sincelarsia complex combina-
tional circuit, a single vector of bits input to the FU canpat all the PMOS devices in
it into the recovery mode and instead a sequence of inpubrgeate necessary, which
takes multiple clock cycles. Therefore, the PMOS devicesotutilize the entire
duration of an idle period to recover from NBTI. We addresthlibese limitations as

follows.
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In this chapter, we model the FU to be a 64-bit Kogge-StoneafdSA) which
is a high-speed prefix addetd] for the purpose of estimating NBTI. KSA is a widely
used FU design due to its regular structure and its speeddér to put all the PMOS
devices in the FU into the recovery mode during an idle pemagimake use of power
gating [A4]. Power gating reduces leakage power in the circuit by uaitgader or
footer device which connects the entire circuififg or ground. Whenever the circuit
is idle, turning off this transistor disconnects the citdaom V,,; or ground. In our
model, we use footer devices to connect the circuit to groubwking power gating,
we find that the gate voltages of the PMOS devices in the FUrsgonably close to

a logic value of ‘1’, thereby putting the FU into the recovemgde.

We design the KSA such that it consists of segments that gt of processing
narrow-width operands while the idle segments undergovergausing power gating.
We profiled the SPEC CPU2000 benchmark suitd fo determine the distribution of
narrow-width operands. We find that there are a large nunfbeswuctions with 8-bit,
16-bit, and 32-bit operands. Therefore, there is signifisaape for NBTI recovery by
partitioning the 64-bit FU into 2, 4, or 8 segments, wherehesegment is 32 bits, 16
bits, or 8 bits respectively. Each such segment can opesaad independent FU on
operands of the given width and multiple such segments caimbined to operate
on wider operands. For example, if the FU is partitioned #higarts, an instruction
with two 16-bit input operands needs to utilize only one périle the other three can
be put into the recovery mode. An instruction with 32-bit @guels can use either the
first two or last two consecutive segments while the otherdveoput into the recovery
mode. Figuré.1shows an FU that has two segments. To ensure that all pahts Bft

experience roughly an equal amount of wear, we scheduleigtgins to the segments
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in a round-robin fashion.
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Figure 5.1: Partitioned Kogge-Stone Adder Design to Sud@dBiT| Recovery.

It is important to note that the KSA is fast because the camie computed in
parallel, a feature that we retain in the partitioned desigme delay of the FU, when
operating in the 64-bit mode, should not be significantheetiéd by the partitioned
nature of the design. In order to achieve this property, weduce a set of MUXes be-
tween adjacent segments, as shown in FiguteThe selection input to these MUXes
depend on the width at which the FU will be used. For examplé)e case of Figure
5.1, the input to the MUXes will determine whether the FU will beed as a 64-bit FU
or a 32-bit FU. Each segment is connected to ground via arfdetgce. The gates of

the footer devices are controlled by zero detectors and ebre®unter output. The
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purpose of the zero detectors is to decide whether the sigiruhas narrow-width
operands or not. The one-bit counter is incremented everg & narrow-width op-
eration is performed. If the operands are narrow-widthy thee steered towards a
particular segment using a round-robin policy based on éheevof the counter. The
footer for the left segment is shared with the MUXes sinceNtéXes provide the

input to the left segment.

There are tradeoffs in designing the FU in a partitioned reamm support recov-
ery. The more segments that a FU has, greater are the oppieduor recovering
the PMOS devices and reducing the guardband, since thdrbendl better matching
between narrow-width operands and the number of segmenuiged to operate on
them. However, such a design comes at the cost of increasaddelay, and higher
power consumption when it is used for operating on wide amgaWe analyze these

tradeoffs in Sectio®.3.

5.1.2 Microarchitecture Level Techniques

There are opportunities to reduce the guardband by cayehdhaging the hardware
resources within the core at the microarchitecture levéle Uisage characteristics of
different FUs can be controlled through various instrutscheduling policies. The
dynamic instruction scheduler decides which instructiares executed and at what
times on a given set of FUs and therefore has a strong impaitteoutilization char-
acteristics of the FU. The scheduler consists of two key aomepts: wakeup logic
and select logic. The wakeup logic is responsible for asggan instruction as being

‘ready’ in the issue window by updating the source depengentinstructions waiting
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for their source operands to become available. Every tinesaltris produced by a FU,
the tag of the result is broadcast to the waiting instrudiornthe issue window. Each
waiting instruction compares the result tag with the tagaafieof its source operands.
Once both operand tags have matched, the instruction iy teakecute (instruction
wakeup) and the ready instructions signal the select lagieguest execution on a
given type of FU. Once a FU becomes available, the select ldigects a suitable
instruction to that unit for execution by asserting the esponding grant signal (in-
struction select). Since multiple instructions could waken a given cycle and the
processor typically has multiple FUs of the same type, thesls to be a policy to se-
lect a subset of the ready instructions and assign them tifigdeUs based on resource
availability. Modern instruction schedulers typicallyeus form of prioritized schedul-
ing where instructions are selected in an oldest-first cirden the issue window and
each instruction is issued to the lowest-numbered FU thiates We call this policy
Prioritized Scheduling (PS). In this approach, an instruction will be allocated to,FU
if it is available; if FU, is busy, then FY will be checked for availability and so on.
This non-uniform assignment leads to the case where FUsswitlller sequence num-
bers get utilized more than those with higher sequence nigvéel hence degrade
faster. This is illustrated in Figurg.2, which presents the utilization of the integer
ALUs (in terms of the number of cycles that the FU is busy oherdntire execution
time of the workload) of a 4-wide issue processor core fortao§&PEC CPU2000
benchmarks. As we can observe from the figure, the lower-euneddfunctional units
tend to be heavily utilized and therefore will wear out sadhan the higher-numbered
ones. We propose instruction scheduling policies thatraitdéo extend the recovery

times for the FUs so that their degradation due to NBTI can bemized. We make
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Figure 5.2: Utilization of the Integer ALUs in a 4-wide isspicessor core using the
PS policy.

use of power gating to put idle FUs into the recovery mode. g present a brief

overview of the instruction scheduling policies that weleate.

i) Priority Rotation Scheduling (PR): The PR policy is geared towards achieving a
balanced utilization of the FUs in order to level the weartwam. This policy modifies
the conventionaPS scheduling policy so that the priorities of the FUs are cleahg
in a round-robin fashion, after a fixed number of cyclegql e »z) have elapsed. In
the PR policy, we start with FiJ having the highest priority and assign lower priorities
to the other FUs based on their sequence numbers (i.g.jrfi&lly has the highest
priority whereas FU)_; has the lowest). Afte€ycl epy cycles, FU gets the highest
priority, FU, gets the second highest priority and so on ang ks the lowest priority.
The select logic is similar to the PS policy but with addedctionality to change the

priorities of the FUs afte€ycl ey cycles. A key advantage of tHR policy is that
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it does not degrade performance in the sense that no FU ikigescfrom being used
because it is in the recovery mode.

ii) Time-Dependent Scheduling (TD): Time-Dependent Scheduling extends the con-
ventional policy to include an explicit fixed recovery petion theTD policy, whenever
the wakeup logic flags an instruction to be ready, the setggt lallocates the lowest
numbered FU that is available. After a FU is used, no othdruoton is assigned to
that particular FU for a fixed number of cycledy(cl e+p). This policy allows the FU

to undergo recovery fo€ycl erp cycles after each stress phase. We can implement
this in hardware by keeping the busy signal of the FU assdéaie@ycl e cycles
after the FU is used. However, since the FU cannot be usedgdlthis time, there
could be a detrimental impact on performance.

iii) Prioritized Time-Dependent Scheduling (PTD): Prioritized Time-Dependent Schedul-
ing combines th&R andTD policies to include an explicit fixed recovery period to the
highest priority FU. In this scheme, similar BR policy, the priorities of the FUs are
changed in a round-robin fashion after a fixed humber of syDycl e pr-) have
elapsed. Whenever an FU gains the highest priority, it alasgthe priviledge of
an extended recovery period after it is used. When this higirity FU is used, no
other instruction is assigned to this particular FU for &eotfixed number of cycles
(Cycl erpe), allowing it to undergo recovery after each stress phaskerd-Us can

be continued to be used as usual. O6gel e prc cycles have elapsed, the priorities
are rotated. This transition in priorities does not affée tesidual time for which an
FU can remain in the recovery mode. Any FU that enters thevesganode is guar-
anteed to be in that mode f@ycl erpc cycles. Since th&TD policy prevents an

FU that is in the recovery mode from being used till the redgisumber of cycles
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elapse, this policy could also have a detrimental impacterfopmance. However, if
Cycl epre is chosen to be significantly larger th@&gcl erpe, only one FU would
tend to be in the recovery mode at any one time and thereferddggradation in per-
formance would tend to be less severe thanTibgolicy. We evaluate these policies

in Section5.3.

5.2 Experimental Setup

Our circuit-level modeling is performed via SPICE-levehsilation using the Cadence
Virtuoso Spectre circuit simulato? §] for the 32nm process using the Predictive Tech-
nology Model B1]. Our architecture-level evaluations are carried out wacetion-
driven simulation using the M5 simulatdiq]. We simulate a 4-wide issue core, which
is representative of cores used in multicore processosytdidat runs at a 3 GHz clock
frequency and has a supply voltage of 0.9V. We use all 26 beadts from the SPEC
CPU2000 benchmark suite in our evaluatiof§]] The benchmarks are compiled for
the Alpha ISA and use the reference input set. We performilddtsimulation of the
first 200-million instruction SimPoint for each benchmatk]|

We focus on the impact of NBTI on the integer ALUs only. Altlgbuwe consider
both integer and floating-point benchmarks in our evaluatigeveral of the floating-
point benchmarks have a considerable number of integeucigins in their instruc-
tion mix and therefore make heavy use of the the integer Al43% [We present our
results for only the integer ALU with the lowest sequence hansince this ALU tends
to be the most heavily utilized of all the ALUs with convemta instruction schedul-

ing, as explained in Sectidn1.2 Since NBTI affects the threshold voltages of PMOS
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devices in the FUs, the delay of the FU hardware increaseshmdaiuses a potential
danger to meet the timing constraints. Guardbanding is tespdbtect a circuit from
failure, which entails both performance and power peraltieall our experiments, we
assume that the baseline processor uses the unpartitibhéedign, thd>S instruction

scheduling policy, and a guardband of 20%3][

In our evaluations, we use the percentage reduction in taedgand with respect
to the baseline as the figure of merit to quantify the extemthiwh a particular design
mitigates the impact of NBTI. To compute guardband reductiee track the stress and
recovery cycles of the FUs in the architectural simulatiddsing these statistics, we
estimate the degradationn after a 7-year service lifeL[], using which we calculate
the delay degradation in the structures and finally the dngard reduction. We also
guantify the impact on other important figures of merit, sasharea, delay, and appli-
cation performance (in terms of IPC), to study the effectess of NBTI mitigation at

both the circuit and microarchitecture levels.

Our goal is to evaluate the extent to which optimizations rdy dhe circuit or
microarchitecture level can reduce the guardband andtastéhne costs incurred in
applying these optimizations on the other figures of metiese results are presented
in Sections.3.1and5.3.2 Based on this analysis, in Sectibr8.3 we study whether
less aggressive optimizations at each level, which impese dverheads, can be com-

bined to provide an effective means to reduce the guardband.
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5.3 Reaults

5.3.1 Circuit-Level Optimization

We now study the tradeoffs between different circuit-leeehniques. We partition the
FU into 2, 4 and 8 segments and analyze the guardband redsicicea overheads,

and the increases in delay with respect to the baseline.

Circuit-level Approach: Guardband Reduction
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Figure 5.3: Guardband reduction for the FUs with 2, 4 and &seds.

Guardband Reduction: Figure5.3presents the guardband reduction (as a percentage)
due to the modified FU designs. The FU with 2 segments proddgsardband reduc-
tion of 30%-55% whereas a 4-Segment FU and a 8-Segment FUdpr8%%-60%

and 40%-60% guardband reductions respectively. Thistrekaivs that the more par-
titions that a FU has, the higher would be the guardband temucHowever, we see
that the guardband reduction achieved by going from thelinage the 2-segment de-

sign is much higher than going from the 2- to 4-segments and 8-segments. Also,
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the integer benchmarks, which are the left-hand side gréujars in the figures.3,
experience less guardband reductions than the floating-penchmarks.

In order to understand how the modified FU design impacts N®&&Ineed to ana-
lyze how the FUs are utilized and the distributions of themarwidth operands. The
instruction mix gives an indication of how frequently eagphd of FU gets accessed.
For example, the higher the number of integer instructidims,higher is the proba-
bility of accessing integer FUs. A previous study by Siddicat al. [I5] gives the
breakdown of the instruction mix of these benchmarks. Wetfiad the lowest guard-
band reductions are observed for those benchmarks whiahdaigh percentage of
integer instructions. Similarly, to understand the beradfithe segmented designs, it
is important to look at the distribution of the narrow-widiperands. We find that, on
average, the percentage of 32-bit operands is about 48%eadhéris 8% for 16-bit
operands and 27% for 8-bit operands across the benchmaek s$ince the 32-bit
operand sizes occur most frequently, we get a higher guaddtegluction when we go
in for the 2-segment partition from the baseline, whereasitisegment to 8-segment
designs provide diminishing returns.

Area and Power: We design the FU for the baseline case to occupy the minimum
area required to provide correct functionality. The ovadsefor the partitioned FU
designs are given in Figute4 (a). We can see that the area overhead of the 2-segment,
4-segment and 8-segment FUs are 3%, 7% and 12% respectiVhb.increase in
area is due to the number of sets of MUXes required for theettesigns (1, 3 and 7
respectively). These MUXes increase the power consumpfitiee FU and therefore

the designs with more segments will consume more power.

Delay: We evaluate the delay to measure the highest clock frequanashich the
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Figure 5.4: Percentage increase in area and delay for thevit/g, 4 and 8 segments
wrt. the unpartitioned FU design.

FU can operate reliably. Figuf4 (b) shows the increase in delay with respect to
the baseline design. In our simulations, we find that theei®e in delay for the
2-segment, 4-segment and 8-segment FU designs due to thiemadardwares are

5%, 11% and 18% respectively. However, these increasesdp dan be accomodated
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within a 333ps clock cycle time (which corresponds to the Z@ldck frequency) and
therefore all these FU designs can provide a single-cycdessdatency for instructions
using the FUs.

Summary: There are merits and demerits to using the aforementioneddsigns.
The higher the segment count in the FU, the higher is the dpaaudireduction. How-
ever, the area, power, and delay overheads also increasécsigtly. Each segment
introduces a set of extra circuitry which adds area and asa® power consumption.
For 64-bit operand computations, the FU would consume tglkdsit power since all
the MUXes will be active and this power consumption will bgher with more parti-
tions. Overall, we find that we get higher guardband redunotith least area, power
and delay overheads for the 2-segment design. Thereforeha@se the 2-segment

FU design for use in the multi-level approach in Sect&od.3

5.3.2 Microarchitecture-L evel Optimization

We evaluate the guardband reduction and performance &Rh€D andPTD policies.

We use a value of 10K fo€ycl epr andCycl e prc and a value of 1 foCycl erp
andCycl erpc for the different policies.

Guardband Reduction and Performance: Figure5.5a) presents the percentage guard-
band reduction for the various policies. TRR policy reduces the guardband by 30%-
55% whereas th&D and PTD policies reduce it by 50%-80% and 35%-70% respec-
tively. Since the scheduling policies aim to achieve imgguardband reduction by
increasing idleness to provide NBTI recovery, they may iotgeerformance, as dis-

cussed in SectioB.1.2 Figure5.5b) quantifies the performance loss. As we can see,
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Microarchitecture-level Approach: Guardband Reduction
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Figure 5.5: Impact of the instruction scheduling policies.

the TD andPTD policies achieve a greater guardband reduction at the €ostloced
performance whereas tiRR policy experiences no performance loss. On average, the
TDandPTD policies lead to a performance loss of 17% and 8% respegtivee PTD

policy provides a guardband reduction and experiencesfarp@nce loss that is be-
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tweenPR and TD because the value @ycl e prc is much higher thalCycl erpe.
Therefore, the policies that attempt to increase the regduae of a FU cause a cor-
responding loss in performance for the benchmarks. Sirailtire circuit-level results,
the integer benchmarks have less guardband reduction lieaftoating-point bench-
marks.

The impact of scheduling policies on NBTl is influenced by factors: the instruc-
tion mix and instruction level parallelism. As mentioneddse, the instruction mix is
an indicator of how frequently each type of FU gets acceskedtuction level paral-
lelism also determines the frequency of use of the FUs. Alsdfects how groups of
FUs get used. When the IPC is high, more instructions areutee@@er cycle. Conse-
guently, more FUs will get utilized. Indeed we find the leasaigiband reductions are
observed for those benchmarks which have a high percenfageeger instructions
and higher IPC.

Summary: As the results indicate, there is a clear tradeoff betweéreag higher
guardband reductions and application performance by usistguction scheduling.
Although theTD policy provides large benefits in terms of guardband redugtit
imposes large performance overheads as well, which isracttte for use in high-
performance processors. Although fiED policy reduces the performance overheads
significantly while still providing significant guardbanelductions, the detrimental im-
pact on application performance is still non-trivial. TR policy, on the other hand,
does not cause any performance loss while still providingiardpand reduction of
43% on average. Therefore, althougbandPTD provide large guardband reductions,
we chooseéPR, since it is the most lightweight policy in terms of its parfaance im-

pact, and use it in the multi-level approach.
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5.3.3 Multi-Level Optimization

In the results presented thus far, we have observed thaasioig the effectiveness of
NBTI mitigation techniques at only the circuit or microaitelcture level to improve the
guardband entails penalties in terms of area, power, datayapplication performance.
On the other hand, lightweight optimizationseath level could provide a net increase
in guardband reduction with less overhead. We now evalbhédypothesis.

We choose the 2-segment FU design, which we found to haverthkest overhead
in terms of area, delay, and power in Sectto8.1as our circuit-level optimization and
the PR instruction scheduling policy as our microarchitectuseel optimization. The

result of combining these two optimizations is given in Feyb.6.

Multi-level Approach: Guardband Reduction
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Figure 5.6: Guardband reduction using FUs with 2 segmerdstaPR scheduling
policy.

From the figure, it is evident that we achieve a guardbandatemiuof 45%-75%,
which is a much higher range than the 30%-55% for both cirand microarchitec-

ture levels. It is also important to note that the achieveargiband reduction due to
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the multi-level approach isot merely additive from the individual optimizations at
each level. This is due to the fact that, in the multi-levgbrayach, the overall flow
of bits through the FUs over the course of execution of thekisad is different from
the previous two sets of evaluations. The new FU design asatite stress and re-
covery characteristics on the PMOS devices in the FU, dubda@artitioned nature
of its design, compared to the unpartitioned FU design exatliin Sectiorb.3.2for
the microarchitecture-only optimizations. SimilarlyetRR policy alters the overall
utilization of each FU and increases the idleness of all tdesegments, which al-
lows for greater recovery than thRS policy used in Sectios.3.1for the circuit-only
optimizations.

Overall, we observe that the multi-level approach provigesater reductions in
the NBTI guardband while retaining the low area, power, aakhy benefits of the

2-segment FU design and the high performance oPfReolicy.

5.4 Summary

In this chapter, we evaluate both circuit and microarchiteclevel approaches to re-
duce the NBTI guardband for the FUs of a high-performancegssor core. At the

circuit-level, we use an optimized version of a partitiofédldesign and evaluate sev-
eral design points in terms of their effectiveness in redgithe guardband and also
their area, delay, and power. At the microarchitecturellewe propose and evaluate
a set of NBTl-aware dynamic instruction scheduling pob@ad evaluate their impact
in terms of guardband reduction and performance. Finakysinow that a multi-level

optimization approach, which combines the benefits of bottuit and microarchitec-
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ture level optimizations, is the most effective in reduding guardband while imposing
little overhead in terms of area, power, delay, and perfoicea

This chapter covers work published in GLSVLSI 201 [



Chapter 6

Modeling and Analyzing NBT1 in the

Presence of PV

Process Variation (PV) is the variation in the transisttnlaites (length, width, oxide
thickness) caused during the fabrication of the integratemliits and manifests itself
as threshold voltage variations which results in varigibihi circuit performance and
power. The impact of NBTI is exacerbated by PV. Processors tmbe designed to
provide adequate protection against both these problenosh BBTI and PV have
received attention in the architecture community in regeairs and several mitigation
techniques have been proposed for each [5, 4, 2, 21, 27]. Since both NBTI and
PV affect the threshold voltage of devices, these two prablghould not be addressed
in isolation. To come up with the appropriate mitigationheigues, it is important
to accurately gauge the impact of both NBTI and PV and faictahe impact of the
workloads that run on the processor as well. For this purpas@nalytical model is

required which captures the impact of both NBTI and PV in aeteht way and which

84
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is suitable for use in architecture level analyses.

There have been several efforts in developing analyticaletsofor NBTI and PV
at the circuit-level. However, these models are suitablg for analyzing NBTI and
PV effects over a very short time span and are not readilylegabarchitecture simu-
lations. Architects, on the other hand, study microprooessiability by executing dif-
ferent program benchmarks and extrapolate the collectéidtsts over a much longer
timescale (typically, 7-10 years). Throughout the benatkneaecution, utilizations of
the microarchitectural structures vary. Also, the intéars among the structures, the
inputs to each structure, and bits stored within them change the course of execu-
tion of a benchmark. The analytical model for NBTI and PV dHdae able to factor-in
all these “variations” to be usable in architecture sinmala to gain correct and holis-
tic insight into these inter-related reliability problenmssilicon. In this chapter, we
leverage the prior research on NBTI and PV modeling from traiits community to
develop a model that captures the interactions betweea thegeliability phenomena
and which is usable at the architecture-level.

There are different sources of variation inherent in NBTdl &V that affect the
PMOS threshold voltage. One source of variation in the tiolebvoltage due to NBTI
is workload variation which is caused by executing different workloads on the @sec
sor. This variation is due to changing patterns of util@atof the microarchitectural
structures and changes in the bit patterns within the strest Another factor lies in
the silicon process, known as the Random Charge Fluctug@Gi), which causes a
temporal variation in threshold voltage on top of the workload variation. Alomigh
the variations due to NBTI, each device also has Random DQdgactuations (RDF)

due toprocess variation (details of the sources of these variations are discusstin
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next section). The analytical model we have developed attsdar all these variations.
In this chapter, we develop an analytical model to captute N8BTl and PV for use in
architecture simulations. We use this model to analyze dnebined impact of NBTI
and PV on a memory structure (register file) and a logic stineqKogge-Stone adder).
We show that the impact of the threshold voltage variatiarestd NBTI and PV over
the nominal degradation can hurt the yield of the structubes to the combined effect
of NBTI and PV across different benchmarks, 26 to 117 bitsriea 8Kb size register
file and the execution delay increases by 18% to 28% in a ketmee adder. We then
discuss the implications of these results for architeetewvel reliability techniques.
The outline of the rest of this chapter is as follows. The rs&xdtion gives a brief
overview of the different sources of threshold voltage ation due to NBTI and PV.
The analytical model for NBTI and PV is described in Sec#o® The experimental
methodology is described in SectiéB. The results are presented in Sectéaand

Section6.5 concludes this chapter.

6.1 Overview of NBTI and PV

Figure 6.1 shows the overall picture of the different sources of varrain PMOS
threshold voltage degradation due to NBTI and PV. We nowrilestiow NBTI gets
affected by workloads that run on the processor and thesilcocess.

As shown in Figurés.1, the impact of NBTI is affected by several factors. In a real
processor, different microarchitctural structures eithilifferent utilization patterns
based on the characteristics of the workloads that exettoese. On top of the overall

utilization of the structures, all the PMOS devices withatle processor structure are
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Figure 6.1: Different sources &f variation in PMOS devices.

stressed in different ways throughout the workload exeoutiue to the varying data
bit patterns (gate inputs of the devices) within them. Tioeee workload execution
leads to a variation in the threshold voltage degradatidvciwve callworkload varia-
tion. The third factor lies in the silicon process, known as Ran@harge Fluctuation
(RCF), which causes temporal variation on top of the workload variation. Recent
observations on PMOS devices with small gate areas shovtitdahreshold voltage
degradation is a subject to random fluctuationg [16]. These fluctuations increase
as a function of stress time. The source of this behavioragdgimation of a random
number of trapped charges, which can occur at random latsa#ioross the gate. Such
random fluctuations of trapped charges result in a variatiathe threshold voltage
degradation and needs to be considered when studying NBd lkcalV the impact of

NBTI which considers only the structure utilization and slo®t capture the effect of
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the workload variation and temporal variationstetic NBTI.

Furthermore, the degradation in processor lifetime dueBd INs exacerbated by
Process Variation (PV). Process variations can be broadggorized into two groups:
inter-die and intra-die variationg []. Due to inter-die variations, the same device on
a die can have different characteristics across various dibereas, due to intra-die
variations, transistors can have different charactesstiithin a single die. There are
two more subcategories of intra-die variation: systematid random variations. Due
to systematic variations, transistors close to each otieeexpected to have relatively
similar parameters (channel length and oxide thicknesg€wdompared to those far-
ther away on the die. On the other hand, random variation stlsnoaused by RDF.
Due to RDF, transistors can have mutually independéntariation with respect to
each other, regardless of their spatial location. We censidly the effect of RDF in
this work, for two reasons. First, RDF is expected to be thpn@ontributor to tran-
sistor threshold voltage variations in the sub-65nm teldgyo[47]. Second, we look
at individual processor microarchitectural structuregrelthe devices within them are
spatially proximate. The analytical model we develop aotetor the combined effect

of workload and temporal variation due to NBTI in the preseatRDF.

6.2 An analytical model for NBTI and PV

As mentioned in Chapte3, there have been several efforts in developing an analytica
model for NBTI based on the reaction-diffusion modgl £4]. These models have
been extended to address dynamic temperature and voltaggorss in |48, 16] and

are suitable for use in circuit-level simulations. Howewliese models cannot be
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directly used for architecture-level simulations. Thibecause these models assume
continuous stress on the PMOS devices in a circuit and doapatice scenarios where
there are multiple sequences of varying stress/recovagsti which is the case when
real workloads run on the processor. We present a compalsttisahmodel that is
suitable for both circuit and architecture simulations afgb takes into account the
effect of PV. In order to consider the effect of PV, we use thalgtical model for

NBTI developed in Chapte3 as our baseline.

6.2.1 Capturingtheimpact of Workload Variation, Temporal Vari-

ation, and PV

The NBTIV; model 8.7and3.8) presented in Chapt&assumes the nominal or static
degradation for each device without considering the watlgariation or temporal
variation. As described in the introduction, in a realisitenario, the nominal NBTI
for each structure is impacted by the workload executiontdude variation in the
utilization of the structure and its bit patterns. While exiéng a workload, for a given
structure, we track the stress/recovery patterns for eaultel within that structure.
Using the model presented in the previous section, we getdsstribution (Standard
Deviation =0 4rcy). This results in multiple groups of devices where all theickes
within each group experience similar stress/recoveryepagtand have similar finaf
values.

Moreover, as mentioned in the introduction, the temporehtan in the underly-
ing degradation process due to RCF causes additional ieariat top of the workload

variation. From {9, if a group of devices are stressed in a similar way, theatiam
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caused by RCF is:

K.ty AVy
ORCF — - 1
AQ

where,orcr IS the standard deviation of tHg distribution, A, is the gate area of
the devicey,, is the oxide thicknessAV; is the nominal degradation due to NBTI
and K is a constant. Since workload variation results in multgreups of devices
experiencing similar kinds of stress patterns, temporaatian within each group of
devices results in severt] distributions. After combining all the distributions, wetg
afinalV; distribution which captures the effect of both workload &erdporal variation

(Standard Deviation & 4gc+ror))-

Furthermore, to combine the effect of PV, we know frofa][

«v

ORDF = \/A—g

where,orpr is the standard deviation of the distribution due to RDFA4, is the gate

area of the device, andis a constant.

Finally, combining the effect of NBTI (static, workload atemporal variation) and

PV, we get the following standard deviation:

O(PV+NBTI) = \/U(ARCH+RCF)2 + OrDF? (6.1)

This completes the model. From the equati@ngand 3.8, we get the mea#;

degradation and equati@nl gives thel; standard deviation.
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6.3 Experimental Setup

To carry out the architecture simulations, we use the M5 Eitou[29). We simulate

a 4-wide issue core, which runs at a 3 GHz clock frequency amdgresentative of
cores that is used in multicore processors today. We use2im@ process with a sup-
ply voltage of 0.9V. We assume the initial threshold voltaf¢he PMOS devices to
be 0.2 V and the service life of the processor to be 7 yeais Dur workloads consist
of benchmarks from the SPEC CPU2000 benchmark sgiife YWe present simulation
results for 8 representative benchmarks - 4 integer and 4rfgppoint. The bench-
marks are compiled for the Alpha ISA and use the referencatispt. We perform
detailed simulation of the first 100-million instructionn®Point for each benchmark
[41]. Our circuit-level simulations are performed using thed@ace Virtuoso Spectre
circuit simulator P&] taking the technology parameters of 32nm process from tbe P
dictive Technology Modeld1]. In this chapter, we focus on the impact of NBTI and
PV on one memory structure - the register file (RF) and onelstgucture - the Kogge-
Stone Adder (KSA). The RF is a 128x64 size SRAM array made §¥dditcells and

the KSA is implemented for 64-bit inputs.

RF Reliability Metric: NBTI and PV affect the read and write delays and the read
Static Noise Margin (SNM) of the SRAM cells. Previous woik] has shown that the
SNM is the one that is most heavily affected by NBTI. Therefae use SNM as the

reliability metric for the RF.

KSA Reliability Metric: Since NBTI affects the threshold voltages of PMOS devices
in the KSA, the delay of the KSA increases, which could pag&digtcause a timing

violation. Therefore we use delay as the reliability mefiicthe KSA.
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Before exercising the RF and the KSA with workloads, the SN the delay of
the RF and KSA respectively are already degraded becaus¥. &/ calculate this
degraded SNM distribution and delay by using the Spectoaiitisimulator. The SNM
and delay degrades further after the structures get ererbig the workloads, due to
NBTI. We capture this impact by tracking the stress and regoeycles on all the
PMOS devices in the RF and the KSA over the course of the agathite simulation
and extrapolate the statistics to calculate the final dedi@d in V; after the 7-year
service life. We calculate the medh and the different standard deviation values due
to temporal, workload, and the combined variations for ibéhRF and the KSA. We
then feed these values into the Spectre circuit simulatat,Galculate the degraded

SNM distributions of the RF and delays of the KSA.

6.4 Results

We now quantitatively analyze the effect of NBTI in the pmse of PV in RF and
KSA. We evaluate four different conditions: RDF: considering only the impact of
RDF without the effect of NBTI, iilRCF+RDF: considering the impact of NBTI only
with the temporal variation on top of the RDF effect, ’lRCH+RDF: considering the
impact of NBTI only with the workload variation on top of th&R effect, and finally,
iv) ARCH+RCF+RDF: considering the impact of NBTI with both the temporal and

workload variation on top of the RDF effect.
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6.4.1 RF Results

We now explain the impact of NBTI and PV on the RF by means ofample. We
first show theV; distributions under different conditions. From the sintialas, we
calculate the following standard deviation®:z(r, 0(rcr+rDF), O(aARCH+RDF) N
opv+nBrn)- Figure6.2shows thd/, distributions of the RF for one of the benchmarks
we evaluate mcf. Initially, before the workload is executed, thigdistribution is due
to RDF (the leftmost distribution in the figure). But once therkload is executed
and the stress/recovery statistics on the RF are extragdiat’ yrs, the/; distribution
shifts to the right due to NBTI. As the figure indicates, thieetf of temporal variation
in the presence of RDF merely causes a shift in the mean ofistrbdtion, but once
the workload variation is factored in, the distribution erd. In order to understand
why the width increases, we need to understand howiltd the PMOS devices get
affected by workload and temporal variation. As mentiome8ection6.2.1, workload
variation results in multiple groups of devices which exgece similar stress patterns,
leading to similar; values. However, because of the temporal variation, eaminpgr
of devices ends up in & distribution. Therefore, when we take into account allthe
values in the structure, we get a wider distribution. It iportant to note that without
considering the effect of RDF, the distributions due to NBi/th temporal, workload,
and the combined variations would be much narrower. Hensitportant to consider
the effect of NBTI in the presence of PV along with temporad aworkload variation
to avoid any significant error in the lifetime estimation bétstructure. Now we show

how theV; distributions affect the yield of the RF, using the RDF aslihseline.



Chapter 6 | Modeling and Analyzing NBTI in the Presence of PV 94

1200

T
—6— RDF

—— RCF+RDF
—&— ARCH+RDF
—&— ARCH+RCF+RDF

1000

800

600 -

Occurances

400

200

0 O—O—0aP S 956660 X 2
0.05 . . 0.25 0.3 0.35
)

Figure 6.2:V; distributions of the RF due to RDF, temporal, workload anchbmed
variation for themcf benchmark.

The required design coverag®’() of a memory is a function of the target yield

and the memory density and is expressed by the followingtemu:J]:
Ncr - qb_l(ymemﬁ)

where¢~! is the inverse standard normal cumulative distributidp,,, is the yield of
the memory, andv,;, is the total number of bitcells in the memory. Once the design
coverage is calculated, from the expected SNM distribuftmaseline: ysy - rpr,

osnm—rpr), the minimum allowed SNM can be calculated as:

SNMin = pisNM—rDF — No * OSNM—RDF
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Under each NBTI and PV condition, we count the number of h#aehose SNM

values are less thas\V /,,,;,. We denote this number asbit ;..

B RCF+RDF O ARCH+RDF @ ARCH+RCF+RDF
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Figure 6.3: Number of bits experiencing SNM below the minmmailowed value in a
RF due to temporal, workload and the combined variationferdifferent benchmarks.

Figure6.3shows the#bit ., in the RF under three different conditior®EF+ RDF,
ARCH+RDF, andARCH+RCF+ RDF) for different benchmarks#bit s, ranges from
5 to 17 for theRCF+RDF condition where only the temporal variation is considered
in the presence of PV. It ranges from 8 to 45 for &RCH+ RDF condition, whereas
it ranges from 26 to 117 for thARCH+RCF+RDF condition. As expected from the
V; distributions, this result shows that the impact of the terapvariation alone is less
than the impact of the workload variation, whereas the costdbeffect is much greater
than the sum of the individual effects. This is due to the widg of theV; distribution,

as explained before. It is also important to note that thecesfof the variations vary
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significantly across the benchmarks.cf, lucas and swim benchmarks have large
#bit 1, Values (117, 108 and 92 respectively) underAREH+RCF+RDF condition.
The reason behind this is due to workload variationsf, lucas andswim experience
much highew 4oy as compared to the other benchmarks because of the bitrsatter
and the long residence times of the bits in each registere@éy, we find that most
of the registers tend to have more 0’s in the higher orderanitsa random mix of Q's
and 1’s in the lower order bits, which contribute to the Maitiy of the stress/recovery
patterns of the register bits. Also, these benchmarks eper high L2 cache miss
rate which causes stalls in the processor pipeline. Thexgefioe contents of the regis-
ter files do not get updated often. As a result, some bits eedperience more stress
whereas others experience less stress. Because of thisifghe the RF experience
high workload variation. The impact of workload variatippembined with temporal

and process variations leads to a higher failure rate.

6.4.2 KSA Results

To explain the impact of NBTI and PV on the KSA, we again begiththe V; distri-
butions under different conditions. Figue4 shows thel; distributions of the KSA
for mef. The leftmost/; distribution in the Figure is due to the RDF and this distribu
tion gets shifted to the right because of NBTI. Similar to &€ the effect of temporal
variation and the workload variation in the presence of RDIE$s than their combined
impact. However, unlike the RF, the curves for the tempoaaiation and the work-
load variation are close to each other. The reason why thkl@a variation does not

contribute toV; changes significantly beyond the temporal variation is beeaf the
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circuit design of the KSA. Based on the inputs to the KSA, pitgpagate through the
internal nodes of the circuit. The inherent design of theustrgenerates internal node
values of 0’s and 1's within the structure in a balanced mamwieich produces a com-
paratively smaller workload variation. Overall, the comda effect of NBTI and RDF
is significant, similar to the RF. We now show the implicatadrihe V; distributions on

the delay of the KSA.
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Figure 6.4:V; distributions of the KSA due to RDF, temporal, workload andhdined
variation for themcf benchmark.

As before, we use thRDF condition as our baseline. We calculate the percentage
increase in delay with respect to the baseline for the otireetconditions to analyze
the impact of different variations due to NBTI.

Figure6.5 shows the percentage increase in delay in the KSA with ré$pebe
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baseline due to NBTI in the presence of PV for three diffecamtditions for different
benchmarks. The increase in delay ranges from 9% to 15% édR@+ RDF condi-
tion, 11% to 20% for théARCH+RDF condition, whereas it ranges from 18% to 28%
for the ARCH+RCF+ RDF condition. Just like the RF behavior, this result also shows
that the impact of the temporal variation is less than theaichpf the workload vari-
ation. Unlike RF, in this case the combined effect is not kigian the sum of the
individual effects. This is because of the cancelling éftd¢he variations in the same
timing paths of the logic structure. Each timing path of threcure consists of many
PMOS devices which have different threshold voltages aaceffect of the slower de-
vices gets offset to some extent by the faster devices. Atthpthe combined effect
of the workload and temporal variation causes an increageidelay for each bench-
mark, this impact does not vary significantly across the berarks. Again, the reason
behind this relates to the circuit design of the KSA whichabaks the values of 0's
and 1’s within the structure and reduces the impact of thaity in the utilization

and bit patterns on the KSA across the different benchmarks.

6.4.3 Implications of the Results

e Asthe results indicate, both PV (RDF) and NBTI have a sigaifiémpact ori/;.
More importantly, as Figured.2and6.4show, if we consider only the impact of
RDF or only Static NBTI (as is the case in a large number ofitegcture studies
[17,15,4, 2,21, 27]), then one does not get an accurate picture of the impact of
these related reliability phenomena on hdistributions. For example, if only

RDF is considered, then the shift in the mean ofithdistribution due to NBTI is
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Figure 6.5: Percentage increase in delay in a KSA due to temhpmorkload and the
combined variation for different benchmarks.

not captured. Even within NBTI, unless both temporal andkioad variations
are accounted for, the widening of thé distribution will not be captured. It

is important to capture these behaviors accurately in dalselect appropriate

guardbands and also develop effective mitigation teclesqu

e While RDF and RCF depend on the underlying process, we caanabshat
the combined impact of RCF (temporal variation) and wor#leariation on
lifetime reliability is significant. Since both temporalnation and workload
variation strongly depend on the stress and recovery pattam microarchitec-
tural structures and also the bits that flow through thenrgtieelarge scope for
NBTI mitigation at the architecture-level. However, it lmportant to develop
and evaluate such mitigation techniques in way that is aagmiof the interac-
tion between PV, temporal variation, and workload variatibhe model that we

have presented in Secti@m2 can be used to carry out such studies.
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6.5 Summary

NBTI and PV are very important reliability problems in sdit facing processor de-
signers. In this chapter, we develop an analytical modéldaptures both NBTI and
PV for use in circuit and architecture simulations. We ceptine following aspects
in the model: i) variation in NBTI due to workloads, ii) termab variation in NBTI
and iii) process variation. We use this model to analyze tmelined impact of NBTI
and PV on a memory structure (register file) and a logic stineqtKogge-Stone adder).
We show that the impact of the threshold voltage variatiarstd NBTI and PV both
need to be captured in order to get an accurate view of silielability.

This chapter covers work published in ISQED 2011L [



Chapter 7

Conclusions and Future Wor k

NBTI is one of the most important reliability problems inisdn devices facing proces-
sor designers. This dissertation looks at NBTI mitigatiechiniques for the microar-
chitectural structures in a microprocessor and create®timelation for understanding
NBTI in the context of other physical phenomena that affbet processor. Chapter
3 described an analytical model that captures NBTI for userouit and architecture
simulations. Existing models cannot be directly used fonéecture-level simulations.
This is because these models assume continuous stress BM@®$ devices in a cir-
cuit and lack the additive property. Also these models dacapture scenarios where
there are multiple sequences of varying stress/recovagsti which is the case when
real workloads run on the processor. To address these pnebtkis chapter presented
a model that represents the degradation history in termiseoétjuivalent stress time
experienced by the PMOS device instead oflthealue used by the existing models.
With the architecture-level NBTI model, our next researelveloped techniques

that can combat NBTI to meet the service life guarantee withinmal performance,

101
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power, and area overheads. Modern processor cores are sethpbseveral critical
SRAM-based structures, such as the register file and the pseue. Chaptet de-
scribed mitigation techniques for the memory structurebéprocessor core to maxi-
mize their lifetimes. SRAM memory cells are especially \arbble to NBTI since the
input to one of the PMOS devices in the cell is always at a Idgjicin this chapter,
we proposed recovery boosting, a technique that allowsBB®S devices in the cell
to be put into the recovery mode by raising the ground voltggthe bitline tol/,.
We showed how fine-grained recovery boosting can be usedtgriihe physical reg-
ister file and issue queue and evaluated their designs viaesklvel simulations. We
then showed that area-neutral designs of these two stasctan provide significant
reliability benefits with very little impact on power consption and negligible loss in
performance.

The fine-grained recovery boosting approach that we ewaduatthis chapter can
be used for small SRAM arrays. This work can be extended ttyghe use of coarse-
grained recovery boosting, which imposes less area ovdshéar designing caches.
Caches pose additional challenges, such as identifying uhes become valid to put
them into the recovery boost mode. Use of techniques suckas-lolock prediction
[51] in conjunction with recovery boosting can be explored taigmaite the impact of
NBTI on caches.

Chapters evaluated both circuit and microarchitecture level apghea to reduce
the NBTI guardband for the FUs of a high-performance pramessre. At the circuit-
level, an optimized version of a partitioned FU design id@ated with several design
points in terms of their effectiveness in reducing the ghardl and also their area,

delay, and power. At the microarchitecture-level, a set BfTNaware dynamic in-
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struction scheduling policies are proposed and evaluatédrins of their impact in
terms of guardband reduction and performance. Finallg ¢hapter showed that a
multi-level optimization approach, which combines the dféa of both circuit and
microarchitecture level optimizations, is the most effexin reducing the guardband
while imposing little overhead in terms of area, power, gedad performance.

However, as shown in ChaptBr the mitigation technique results in a guardband
reduction along with an increase in the critical path delaghe FU. Even though the
mitigation technique allows for the guardband reductioicivivill result in cycle time
reduction (increase in frequency), the increase in ctipegh delay also impacts the
cycle time in a negative way. Therefore, it is not evident Hovestimate the cycle
time or guardband requirement from the results given in¢hapter. In addition, not
only the frequency or cycle time gets affected by the procédsguardbanding and
mitigation techniques, but also other metrics such as q@aer, temperature might
get altered. For example, increase in frequency due to thedhand reduction could
lead to an increase in temperature which is not feasiblehticbre. Hence, it raises
the question of what would be the ideal frequency given theliity impacts of the
problems and the benefits of the mitigation techniques aaddne condition. Also,
if the mitigation technique introduces power or area ovadse there are questions
about how much overhead can be tolerated to achieve the targedband reduction.
Thus far, there is no systematic way of setting the guardigareh all the metrics and
mitigation techniques. Developing a systematic approaa@nalyzing these tradeoffs
and deriving appropriate guardbands is future work.

Chapter6 presented an analytical model that captures both NBTI antbPdfse in

circuit and architecture simulations. The following agpeare captured in the model:
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i) variation in NBTI due to workloads, ii) temporal variation NBTI and iii) process
variation. This model is used to analyze the combined imp&diBTI and PV on a
memory structure (register file) and a logic structure (Ke@gone adder). We show
that the impact of the threshold voltage variations due td Nihd PV both need to be

captured in order to get an accurate view of silicon relighbil

A number of studies have been conducted to investigate thetef NBTI on both
digital and analog circuits. However, certain device-laaspects of NBTI have not
been well characterized and modeled. It is important to laveolistic understanding
of NBTI by examining the interaction between this relidyilphenomenon with pro-
cess variation, leakage current, and overall power consamprlhere are several key
unresolved questions, which must be answered, in ordeotden our understanding
of the problems and to offer solutions to mitigate them. B@meple, previous efforts
focus on the negative bias caused by the gate-to-sourcectom (/) of the PMOS
device. Other kinds of negative bias caused by the gateein-@/,;) or gate-to-body
(V) connections are still unexplored. Also, the effect of tenapure on the NBTI re-
covery is not investigated yet. Secondly, since NBTI af¢btV; and leakage current
is dependant of;, it is important to understand the impact of NBTI on the legka
current. Leakage current causes the processor to consunegpmoer and generates
heat which degrades the processor performance. The leakagmt increases with
lower V; and decreases with high&r of the device. With continuous technology scal-
ing, transistors end up having thinner insulating layersctvitranslates to lowev;,
causing more leakage current. On the other hand, NBTI isesethe/; of the devices
in a detrimental way which affects the speed of the devidd$BT | facilitates leakage

power reduction, the effect of NBTI could be utilized as a poywmanagement knob
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and balance between reliability and power consumption. é¥ew if NBTI exacer-
bates the leakage current condition, then it is needed te wagh both reliability and
power, making NBTI mitigation even more critical.

The current practice in handling NBTI is to employ guardiagdHowever, guard-
banding needs to cover the worst case from both PV and NB@ican lead to large
area and power overhead. An alternative solution to thiblpro is to embed on-chip
sensors to dynamically track NBTH?, 53] and use mitigation techniques to handle
the problem before it manifests as system level failurexceReefforts propose dedi-
cated sensors for this purpose which comes with the costtd akea or performance
[52, 53]. In order to reduce this overhead, one could investiggbewer consumption
of the chip (or components of the chip) changes with the dkdian due to NBTI
and if power could be used as a sensor for tracking NBTI. Ifehe any correlation
between these two metrics, just by monitoring the power @anudion, it should be
possible to realize the degradation of the chip (or comptsnehthe chip) by using
the correlation. In this case, the extra dedicated NBTI@ensould not be necessary,

rather existing power sensors/] 55] could be used for this purpose.
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