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Abstract  

Hydrological natural disasters, such as floods, droughts, and hurricanes, historically result 

in significant social, economic, and environmental loss. With predictions that climate change will 

likely increase the intensity and frequency of hydrological hazards, there is a need to improve 

understanding of hydrological extremes and their associated risk to society. The objectives of this 

dissertation are to advance the applications of space-based Earth Observations for monitoring 

components of the terrestrial water cycle and to assess risk of hydrological disasters with attention 

to societal priorities. The following five interdisciplinary studies are investigated in this 

dissertation. First, a foundational comparison of optical versus radar Earth Observations is 

demonstrated for delineation of inland waterbodies, a vital storage component of the hydrological 

cycle. Second, recent hydrometeorological extremes are spatially and temporally examined in the 

Lake Victoria Basin, a data-sparse region particularly vulnerable to climate extremes. Third, risk 

of hurricane scenarios is quantified and mapped as the disruption of system order using social 

vulnerability indices and hydrology data from disparate sources. Fourth, resilience of vulnerable 

populations to multidecadal climate change is modeled for examination of environmental justice 

priorities in a region of the southeastern USA. Fifth, basins that face current and/or future water 

scarcity risk are identified and mapped in Iraq and transboundary regions. Methodologies and 

findings of this dissertation serve as an important step in supporting global efforts aimed to 

increase decision maker accessibility to timely and accurate Earth Observations in support of 

hydrological disaster risk reduction, particularly for the most vulnerable communities.   
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Chapter 1: Introduction 

1.1 Motivation  

Floods, droughts, and tropical cyclones are naturally occurring hydrological phenomena. 

However, communities across the globe are continually disrupted by the complex and 

interconnected challenges of society, economy, and environment due to hydrological extremes. 

There is an urgent need to effectively decrease the loss of life and property to hydrological 

disasters, particularly for the most vulnerable communities.  

 The United Nations Office for Disaster Risk Reduction (UNDRR) defines a disaster as, “a 

serious disruption of the functioning of a community or a society at any scale due to hazardous 

events interacting with conditions of exposure, vulnerability, and capacity, leading to one or more 

of the following: human, material, economic, and environmental losses and impacts.” Thus, the 

intersection of hydrological extremes and populations (whether resilient or vulnerable) is vital to 

the understanding of disaster prediction, response, and management.   

 Climate change is predicted to likely exacerbate the challenges of hydrological disasters 

by increasing the frequency and intensity of hydrological extremes (Lavell et al., 2012; UNDRR, 

2015). Given this, the United Nations Sendai Framework for Disaster Risk Reduction has 

identified the need for improved understanding of both climate-related disasters and the risk 
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associated with these extreme events (UNDRR, 2015). These are vital steps to support sustainable 

development of resilient communities (UNDRR, 2015).  

 Evidence-based decision making is a highly effective tool for supporting sustainable 

resources management and promoting risk-informed societies (Kavvada et al., 2022). However, 

many locations of the world still suffer from insufficient in-situ hydrological observations which 

limits the ability for evidence-based sustainable water management. Satellite-based Earth 

Observations, from public and commercial entities, can be used to fill data gaps in data-sparse 

regions by providing high-resolution hydrological data collected at regular temporal scales across 

the globe. These data can be used to inform and improve hydrological disaster preparation, 

monitoring, forecasts, models, and risk analysis.  

 This dissertation aims to support global efforts of disaster risk reduction by demonstrating 

applications of Earth Observations research to improve understanding of the spatial and temporal 

variability of hydrological extremes, as well as the risk associated with hydrological disasters. We 

define and quantify risk as the disruption of system order (Bonato et al., 2022; Eddy et al., 2022; 

Hamilton et al., 2013; Hassler et al., 2019; Sambo et al., 2023; You et al., 2014). Five chapters in 

this dissertation discuss timely challenges of hydrological extremes and risk for study areas within 

the United States (Chapters 2, 4, and 5), Eastern Africa (Chapter 3), and the Middle East (Chapter 

6).  

 

1.2  Purpose and Scope  

 This section describes the purpose and scope of the dissertation as research questions and 

brief literature reviews of each chapter. Section 1.2.1 describes the two chapters focused on 

hydrological monitoring (corresponding with Chapter 2 and Chapter 3). Section 1.2.2 describes 
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the three chapters focused on hydrological risk analysis (corresponding with Chapter 4, Chapter 5, 

and Chapter 6).  

 

1.2.1 Hydrological Monitoring 

Research Question #1: Chapter 2 

To what extent do inland waterbody masks derived from optical versus radar sensors agree 

or disagree on the extent and location of inland water, which are important storage components 

of the hydrological cycle?   

 Inland waterbodies (defined as lakes, rivers, streams, reservoirs, and wetlands for purposes 

of this chapter) play a critical role in terrestrial water storage and hydrological processes 

(Bronmark & Hansson, 2002; Bullock & Acreman, 2003). Accurate and timely inland waterbody 

extent and location data are foundational information to support a variety of hydrological 

applications and water resources management. Space-based Earth Observations are a reasonable 

method for remotely generating inland water masks (Asadzadeh Jarihani et al., 2013; Palmer et 

al., 2015; Soman & Indu, 2022). This has been demonstrated by two widely accepted global inland 

water mask products: 1) the Landsat (Pekel) water mask (Pekel et al., 2016), and 2) the Moderate 

Resolution Imaging Spectroradiometer (MODIS) (Sulla-Menashe et al., 2019). However, these 

water masks are constrained by their dependence on optical sensors which are impeded by cloud 

cover and limited temporal revisit intervals. This is concerning because the maximum inland 

waterbody extent likely occurs during rainy/cloudy conditions. Recently, NASA’s Cyclone Global 

Navigation Satellite System (CYGNSS) mission has emerged as a new opportunity to delineate 

inland water using a constellation of eight microsatellites with passive bistatic radars to receive 

reflected L-band signals from the Global Positioning System (GPS) constellation (Al-Khaldi et al., 
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2021; Chew & Small, 2020; Gerlein-Safdi & Ruf, 2019; Ghasemigoudarzi et al., 2022; Morris et 

al., 2019; C. Ruf et al., 2021; C.S. Ruf et al., 2018; Wang et al., 2022). However, there is currently 

no standard method for generating a CYGNSS-based inland water mask. In this chapter, we 

contribute a foundational comparison of a 1-km CYGNSS water mask to Landsat and MODIS 

water masks, by employing a mosaic of surface reflectivity signal-to-noise ratio (SNR) thresholds 

at the sub-basin level.  

 

Research Question #2:  Chapter 3 

In data-sparse regions of the world lacking in-situ observations, how can we map 

components of the hydrological cycle? 

 Africa’s largest lake, Lake Victoria, provides valuable ecosystem services to five Eastern 

African countries within its basin: Burundi, Kenya, Rwanda, Tanzania, and Uganda. As a source 

of the White Nile River and a sub-basin of the greater Nile watershed, the Lake Victoria Basin 

plays a critical role in supplying freshwater locally to an estimated 35 million people and indirectly 

to 340 million people in downstream countries (Ramilien et al., 2014; Mugu et al., 2020; Awanage, 

2020; Awange, 2006; Awange, 2005). Over the previous decades, hydrometeorological extremes 

such as floods and droughts have proven to be continual and recurrent in the Lake Victoria Basin 

(Nyeko-Ogiramoi et al., 2013). Furthermore, previous research has identified the Lake Victoria 

Basin as a significant hotspot for population-climate burdens (Lopez-Carr et al., 2014). As with 

many regions in Africa, the Lake Victoria Basin lacks sufficient in-situ hydrological observations 

for accurate and continual hydrological monitoring to support sustainable water resources 

management (Alsdorf et al., 2016; Paris et al., 2022). In this chapter, satellite remote sensing is 

leveraged to obtain spatial and temporal estimates of components of the hydrological cycle, 
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including identification and quantification of the recent extreme flood and drought events in the 

Lake Victoria Basin.  

 

1.2.2 Hydrological Risk Analysis   

Research Question #3: Chapter 4 

How does risk spatially vary across sub-basins given exposure to hydrological extremes 

during major hurricanes and in combination with existing social vulnerability factors? 

 Compared to other disasters in the United States, hurricanes generate the greatest damages 

and highest number of fatalities per year, averaging approximately $30.9 billion in damages and 

157 fatalities per year since 1980 (NOAA, 2023; Smith, 2023). The Southeastern United States is 

a hotspot for disproportionately high losses due to climate-sensitive hazards because of its elevated 

exposure and high concentration of socially vulnerable populations (Cutter et al., 2003; Emrich & 

Cutter, 2011). Social vulnerability of an individual or community refers to their “capacity to 

anticipate, confront, repair, or recover from the effects of a disaster” (Flanagan et al., 2018). 

Previous studies have shown that communities of high social vulnerability face significant short 

and long-term challenges following disasters which adversely affect their ability to recover 

(Bakkensen et al., 2017; Flanagan et al., 2011, 2018; Fothergill & Peek, 2004; Highfield et al., 

2014; Karimiziarani & Moradkhani, 2023; Meyer et al., 2018; Yarveysi et al., 2023). Disparities 

of social vulnerability have even been found within neighboring blocks, meaning communities 

with varying social vulnerability will likely suffer different impacts if exposed to the same tropical 

cyclone conditions (Bakkensen et al., 2017; Yarveysi et al., 2023). Often during major hurricanes, 

it is not possible to collect sufficient in-situ observations due to instrument failure and dangerous 

collection conditions. Thus, Earth Observations using satellite sensors serve as a valuable tool to 
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obtain hydrology data with sufficient spatial and temporal resolution to characterize extreme 

events. In this chapter, satellite-derived hydrological observations are compared with social 

vulnerability data in a risk register of basins which can serve as a tool for improving understanding 

of basin-level risk as change in baseline order.   

 

Research Question #4: Chapter 5 

What is the resilience of system order considering long-term hydrological conditions and 

social vulnerability? 

 Resilience of vulnerable populations to environmental extremes is a concern for 

policymaking across environmental justice, economic development, technology innovation, etc. 

The multidisciplinary perspective of environmental justice can improve understanding of the 

extent that environmental conditions disproportionately impact vulnerable populations, such as the 

socially vulnerable (Mohai et al., 2009). As climate change is predicted to increase the frequency 

and intensity of hydrological and environmental extremes, criteria of environmental conditions are 

expected to further exacerbate environmental justice concern in the future (Brinkley & Wagner, 

2024; Mohai et al., 2009). To support priorities aimed to address environmental justice, there is a 

need to improve understanding of system risk when multidisciplinary criteria of society and the 

environment are jointly considered. In this chapter, a demonstration is provided for a region of the 

Southeastern United States, which previous studies have identified as a hotspot for concerns of 

vulnerable populations with high exposure to extreme environmental conditions (Cutter et al., 

2003; Emrich & Cutter, 2011; Flanagan et al., 2011, 2018). Criteria of social vulnerability 

examined include socioeconomic status, household composition and disability, minority status and 

language, and housing type and transportation (Flanagan et al., 2011, 2018). In this chapter, we 
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demonstrate methods of modeling resilience of system order given priorities of environmental 

justice by considering criteria of long-term hydrological and environmental conditions in 

combination with criteria of social vulnerability.  

 

Research Question #5: Chapter 6 

How do interdisciplinary factors of water scarcity (i.e., social, hydrological, and 

environmental) contribute to basin-level risk of population and water scarcity in Iraq and 

transboundary basins? 

The arid and semi-arid basins of Iraq and transboundary regions are highly vulnerable to 

both climate change and upstream water management of riparian countries of the Euphrates and 

Tigris Rivers (US NIE, 2022; Al-Ansari et al., 2014; Ethaib et al., 2022). In the Middle East, factors 

compounding the severity of drought on society include, but are not limited to, development of 

upstream countries, population growth, food insecurity, economic insecurity, decreased power 

availability, insufficient health and sanitation systems, slow-onset disaster events (i.e., prolonged 

drought), and rapid-onset disaster events (i.e., floods and earthquakes) (Chumky et al., 2022; Jaime 

et al., 2022; McAuliffe & Triandayfllidou, 2022; Peters, 2021; UNICEF, 2021). Despite the need 

for cooperative water management in the region, international disagreements prevent the 

ubiquitous sharing of in-situ hydrology data to support sustainable development (Albarakat & 

Lakshmi, 2019; Amini et al., 2023). Thus, Earth Observations through satellite remote sensing and 

publicly available global model outputs presents a valuable opportunity to improve the spatial and 

temporal understanding of hydrological conditions in the region. In this chapter, scenarios of water 

scarcity in Iraq and transboundary regions are modeled and quantified as the disruption of system 

order using criteria of remotely sensed hydrological observations and population data.  
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1.3 Organization 

The remainder of this dissertation is organized as follows. Chapter 2 describes a spatial 

comparison of inland water observations from CYGNSS, MODIS, Landsat, and commercial 

satellite imagery. Chapter 3 describes observing the recent floods and droughts in the Lake Victoria 

Basin using Earth Observations and hydrological anomalies. Chapter 4 describes a risk comparison 

of hurricane scenarios as disruptions of hydrological basin order with criteria of social 

vulnerability. Chapter 5 describes modeling resilience of system order for investments in 

environmental justice and social vulnerability. Chapter 6 describes uncertainty and sensitivity of 

development goals to water scarcity of Iraq and transboundary regions. Chapter 7 provides a 

summary of contributions, concluding remarks, and future work.  
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Chapter 2: Spatial Comparison of Inland Water 

Observations from CYGNSS, MODIS, Landsat, and 

Commercial Satellite Imagery1  

 

2.1 Abstract  

Accurate and timely inland waterbody extent and location data are foundational 

information to support a variety of hydrological applications and water resources management. 

Recently, the Cyclone Global Navigation Satellite System (CYGNSS) has emerged as a promising 

tool for delineating inland water due to distinct surface reflectivity characteristics over dry versus 

wet land which are observable by CYGNSS’s eight microsatellites with passive bistatic radars that 

acquire reflected L-band signals from the Global Positioning System (GPS) (i.e., signals of 

opportunity). This study conducts a baseline 1-km comparison of water masks for the contiguous 

United States between latitudes of 24°N-37°N for 2019 using three Earth observation systems: 

CYGNSS (i.e., our baseline water mask data), the Moderate Resolution Imaging 

 
1 The work presented in this chapter resulted in the following journal article:   

 

Pavur, G. K., Kim, H., Fang, B., Lakshmi, V. Spatial comparison of inland water observations from CYGNSS, 

MODIS, Landsat, and commercial satellite imagery. Geosci. Lett. 11, 12 (2024). https://doi.org/10.1186/s40562-024-

00321-1   

https://doi.org/10.1186/s40562-024-00321-1
https://doi.org/10.1186/s40562-024-00321-1
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Spectroradiometer (MODIS) (i.e., land water mask data), and the Landsat Global Surface Water 

product (i.e., Pekel data). Spatial performance of the 1-km comparison water mask was assessed 

using confusion matrix statistics and optical high-resolution commercial satellite imagery. When 

a mosaic of binary thresholds for 8 sub-basins for CYGNSS data were employed, confusion matrix 

statistics were improved such as up to a 34% increase in F1-score. Further, a performance metric 

of ratio of inland water to catchment area showed that inland water area estimates from CYGNSS, 

MODIS, and Landsat were within 2.3% of each other regardless of the sub-basin observed. 

Overall, this study provides valuable insight into the spatial similarities and discrepancies of inland 

water masks derived from optical (visible) versus radar (Global Navigation Satellite System 

Reflectometry, GNSS-R) based satellite Earth observations.   

 

2.2 Introduction  

Inland waterbodies (defined as lakes, rivers, streams, reservoirs, and wetlands for purposes 

of this study) play a critical role in terrestrial water storage and hydrological processes (Brönmark 

& Hansson, 2002; Bullock & Acreman, 2003). The extent and location of inland waterbodies are 

key inputs for hydrological models that inform water resources management for a variety of 

agricultural, industrial, climate applications, and algorithm development for soil moisture 

retrievals (Papa et al., 2010; Vörösmarty et al., 2022). Water masks convey this information by 

classifying inland areas as either water or non-water (land, vegetation, impervious surface, etc.). 

While water masks may be derived from fieldwork, drone observations, or aerial surveillance, 

these methods tend to be labor-intensive, time consuming, and difficult to replicate at frequent 

timescales for continuous monitoring.  
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 Space-based Earth observations have emerged as a reasonable method for remotely 

generating inland water masks (Asadzadeh Jarihani et al., 2013; Palmer et al., 2015; Soman & 

Indu, 2022). This has been demonstrated by two widely accepted global inland water mask 

products: 1) the Landsat (Pekel) water mask which aggregated 3 million optical Landsat images 

to categorize water occurrence from 1984-2020 at 30 m spatial resolution (Pekel et al., 2016) and 

2) the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the NASA 

Terra and Aqua satellites through land cover classifications from 2001-02021 at 250 m spatial 

resolution (Sulla-Menashe et al., 2019). However, these water masks are constrained by their 

dependence on optical sensors which are impeded by cloud cover and limited temporal revisit 

intervals, such as one day for MODIS and over 10 days for Landsat, contingent on latitude. For 

example, King et al. (2013) estimates MODIS-observed cloud fraction over land to be ~55% (King 

et al., 2013). This is concerning because the maximum inland waterbody extent likely occurs 

during rainy/cloudy conditions. Furthermore, these water masks are only available at annual 

timescales because a year’s worth of data are required to obtain sufficient cloud-free observations 

at a global scale (Pekel et al., 2016; Sulla-Menashe et al., 2019).  

 Recently, the Cyclone Global Navigation Satellite System (CYGNSS) has proven to be a 

useful Earth observation system for delineating inland waterbodies. This constellation of 

microsatellites, developed by the University of Michigan and the Southwest Research Institute, 

was launched by the National Aeronautics and Space Administration (NASA) for the primary 

research objective of monitoring tropical cyclone intensification via constellations of eight 

microsatellites using passive bistatic radars to observe signals of opportunity from reflected Global 

Positioning System (GPS) L-band signals (Ruf et al., 2018; see Appendix 2.4 for a summary table 

of CYGNSS).  
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Several approaches have been proposed for detecting inland waterbodies using CYGNSS 

via Global Navigation Satellite System Reflectometry (GNSS-R) using properties of coherent 

surface reflectivity which is greater over inland water than over land (Al-Khaldi et al., 2021; 

Gerlein-Safdi & Ruf, 2019; C. Ruf et al., 2021). These methods include binary thresholding 

prediction (Al-Khaldi et al., 2021; Morris et al., 2019; Wan et al., 2019), forward modeling (Chew 

et al., 2018), random walker algorithms (Gerlein-Safdi & Ruf, 2019; Wang et al., 2022), and 

machine learning (Ghasemigoudarzi et al., 2022).  

Three relevant studies which compared a CYGNSS-derived water mask to either Landsat 

or MODIS products are described as follows. First, Gerlein-Safdi and Ruf (2019) used a random 

walker algorithm to delineate inland water based on the standard deviation of CYGNSS surface 

reflectivity data (Gerlein-Safdi & Ruf, 2019). It performed well when compared with MODIS-

derived water masks and handdrawn water masks for select regions (Gerlein-Safdi & Ruf, 2019). 

A need was identified to develop and validate a reliable long-term CYGNSS-based water mask, 

such as the annual map demonstrated in this study, to serve as a basemap which CYGNSS data 

could then be used to identify anomalous variations in inland waterbody extent at sub-annual 

temporal scales (Gerlein-Safdi & Ruf, 2019). Second, Al-Khaldi et al. (2021) used a method of 

binary signal-to-noise ratio (SNR) thresholding to delineate inland waterbodies within the 

maximum CYGNSS spatial coverage (Al-Khaldi et al., 2021). A comparison was conducted with 

the Landsat (Pekel) water mask and regional uncertainties were identified from relying on a single 

SNR threshold at a global scale, such as missing waterbodies which were obstructed by vegetation 

(Al-Khaldi et al., 2021). Third, Wang et al. (2022) used a similar method as Gerlein-Safdi and Ruf 

(2019) by using a random walker algorithm to delineate inland water based on the power ratio of 
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CYGNSS data (Wang et al., 2022). The accuracy of the method was high when compared with 

Landsat-derived water masks for the Congo Basin and Amazon Basin.  

Currently, there is no standard method (i.e., a procedure which is widely used and accepted) 

for generating a CYGNSS-based inland water mask as shown through previous studies by the 

variety of methods such as binary thresholding prediction, forward modeling, random walker 

algorithms, and machine learning. The novelty of this study is to provide a foundational 

comparison of CYGNSS-based water masks to Landsat and MODIS water masks to improve 

understanding of the spatial agreement and disagreement of these products, specifically by 

employing a mosaic of surface reflectivity SNR thresholds at the sub-basin level. This is a 

necessary step toward achieving a standardized CYGNSS water mask. 

 This study aims to improve understanding of the spatial extent by which three water masks 

independently derived from Landsat, MODIS, and CYGNSS agree or disagree on the extent and 

location of inland water. Specifically, the main research goals of this study are to:  

1. Derive a 1-km comparison water mask for Landsat, MODIS, and CYGNSS data for 2019 

over the contiguous United States between latitudes of 24°N-37°N.  

2. Compare the regional performance of CYGNSS, MODIS, and Landsat water masks at a 

watershed level via quantifiable statistics derived from confusion matrices.  

3. Assess the 1-km comparison water mask performance using high-resolution optical 

commercial satellite imagery collected in 2019 for diverse locations within the study 

area.  

Results from this study will serve as a foundational reference for future studies by improving 

understanding of the relative utility and robustness of CYGNSS, MODIS, and Landsat-based 

inland water classifications. This contributes valuable insight into the spatial and regional strengths 
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and limitations of each observation system which is important to understand prior to applying these 

data to real-world hydrological applications.  

 

2.3 Data and Methods  

Three satellite-based Earth observation systems were used to derive a single comparison 

water mask: 1) CYGNSS, 2) MODIS, and 3) Landsat. Each product was pre-processed, as 

described in the corresponding sections 2.3.1 – 2.3.3, to derive a bivariate water mask where each 

pixel was either classified as inland water or non-inland water. The bivariate water mask was re-

gridded to a common spatial resolution and projection of the 1-km National Snow and Ice Data 

Center (NSIDC) Equal-Area Scalable Earth (EASE) Grid 2.0 using nearest neighbor interpolation 

which was selected because it maintains the original data values (0 and 1) and performs well for 

categorical data (Brodzik et al., 2012). Due to uncertainty in inland water classification of coastal 

areas, data collected within 25-km of coastlines from all three observation systems were excluded 

for the analyses.  A comparison of the three bivariate water masks was then performed to generate 

a single comparison water mask where each pixel is 1) classified as inland water or non-water, and 

2) indicates which of the three observation systems classified it as such (i.e., Landsat, MODIS, or 

CYGNSS; see section 2.4 for further details). Examples of high-resolution satellite imagery were 

overlayed on the comparison water mask to investigate performance. A flow chart of this 

methodology is provided in Appendix 2.1.  

 The study area was defined as the contiguous United States between approximate latitudes 

of 24°N to 37°N and was determined by the spatial coverage of CYGNSS (Fig. 2.1A). A singular 

annual timestep of 2019 CYGNSS data was used to match the annual temporal resolution of the 

MODIS and Landsat water mask products. This data was made available in the pre-released 
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CYGNSS v3.2 ocean/land merged L1 data which are publicly available upon request to the 

CYGNSS Science Team.  

 

2.3.1 Cyclone Global Navigation Satellite System (CYGNSS) Data  

CYGNSS, an eight-microsatellite constellation, uses a passive bistatic radar to observe 

reflected GPS signals within L-band frequencies to obtain a reduced revisit time of 2.8 (median) 

and 7.2 (mean) hours per day between observations with a spatial coverage of ±38° (Ruf et al., 

2018). For this study, the area of interest was covered by 348 days (95% of the year) of usable 

CYGNSS data in 2019 which were obtained from 8 microsatellites, each equipped with 4 delay 

doppler maps.  

A sensitivity analysis was conducted to determine that the 50th percentile of CYGNSS 

observations was optimal by maximizing the F1-score relative to a reference dataset (see 

Supplemental Information for further details). Additionally, sub-basins of the study area were 

individually considered to determine the optimal surface reflectivity signal-to-noise ratio (SNR) 

threshold within a given sub-basin which maximized F1-score, a balance between precision and 

recall, relative to the reference dataset. This is useful when there is an imbalance of classes within 

the dataset, such as many land pixels and few water pixels across the total study area, because it 

takes both false positive and false negative errors into account. Small changes in the threshold 

window change both precision and recall, resulting in either an increased or decreased F1-score. 

A higher F1-score indicates a better balance between precision and recall, meaning the predicted 

water mask makes fewer false positive and false negative classifications. However, a high F1-score 

may also indicate low confidence in the reference dataset as there is high disagreement between 



36 

 

the products.  For further details on the sensitivity analysis and a table summarizing SNR 

thresholds used for each sub-basin, please see the Supplemental Information.  

To derive the CYGNSS 1-km water mask, the 50th percentile CYGNSS SNR data were 

resampled to a 1-km NSIDC EASE Grid 2.0 and then classified as either inland water or non-

inland water using the SNR thresholds (Appendix 2.7). SNR values within the threshold were 

classified as inland water whereas SNR values greater than or less than the threshold values were 

classified as non-inland water. 

Additional information and data from CYGNSS can be accessed here in 2024: 

https://podaac.jpl.nasa.gov/CYGNSS.  

 

2.3.2 Moderate Resolution Imaging Spectroradiometer (MODIS) Data  

MODIS is a sensor onboard NASA’s Terra and Aqua satellites in sun-synchronous polar 

orbit which captures 36 spectral bands ranging from the visible (0.4 μm) to thermal infrared (14.4 

μm) regions of the electromagnetic spectrum, enabling them to image the Earth’s surface every 1 

to 2 days (Sulla-Menashe et al., 2019). In this study, the 250 m Land Water Mask (MCD12Q1) for 

2019 was used. This product defines inland water as follows using the International Geosphere-

Biosphere Program (IGBP) classification scheme: 1) permanent wetlands (30-60% water cover 

and greater than 10% vegetation cover), 2) permanent snow and ice (at least 60% of the area 

covered by snow and ice for at least 10 months of the year), and 3) waterbodies (at least 60% of 

the area covered by permanent water (Friedl et al., 2010). To derive the MODIS 1-km water mask, 

the Land Water Mask was resampled to a 1-km EASE Grid 2.0. All pixels classified as inland 

water using the IGBP classification scheme were classified as inland water in the MODIS 1-km 

water mask. Otherwise, the pixels were classified as non-inland water. 

https://podaac.jpl.nasa.gov/CYGNSS
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 Additional information and data from MODIS can be accessed here in 2024: 

https://lpdaac.usgs.gov/products/mcd12q1v006/.  

 

2.3.3     Landsat (Pekel) Data  

The Landsat Global Surface Water product (commonly referred to as the Pekel water mask) 

shows surface water occurrence since 1984 at a spatial resolution of 30 m using three million 

archival image scenes from the Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic 

Mapper-plus (ETM+), and Landsat 8 Operational Land Imager (OLI) which have an over 10-day 

temporal resolution (Pekel et al., 2016). In this study, the Pekel Seasonality Map was used which 

classifies both permanent water (areas inundated for 12 months) and seasonal water (areas 

inundated for less than 12 months), so long as the inland water is open to the sky, larger than 30 

m, and unobstructed by vegetation (Sulla-Menashe et al., 2019). To derive the Landsat 1-km water 

mask, the Pekel Seasonality Map was resampled to a 1-km EASE Grid 2.0 and pixels which were 

classified as inland water by the Pekel Seasonality Map were also classified as inland water in the 

Landsat 1-km water mask. Otherwise, the pixels were classified as non-inland water.  

 Additional information and data from the Landsat Global Surface Water product can be 

accessed here in 2024: https://global-surface-water.appspot.com/#data.  

 

2.3.4     Confusion Matrices and Related Statistics  

To quantifiably compare the three bivariate water masks, confusion matrices and related 

statistics were used by defining the CYGNSS water mask as the predicted water mask and the 

other products (either Landsat, MODIS, or a combination of Landsat and MODIS) as the reference 

water mask. Additionally, Landsat and MODIS were directly compared by assuming each as the 

https://lpdaac.usgs.gov/products/mcd12q1v006/
https://global-surface-water.appspot.com/#data
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reference and predicted water masks. For each comparison, confusion matrix values were 

calculated for the number of true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN). The following statistics were then calculated for each sub-basin and results were 

visualized as heatmaps: precision (P, Eq. 1), recall (R, Eq. 2), specificity (SP, Eq. 3), miss rate (M, 

Eq. 4), false detection rate (FDR, Eq. 5), F1-score (F1, Eq. 6), and accuracy (A, Eq. 7).  
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2.3.5     High-Resolution Optical Commercial Satellite Data  

Commercial imagery obtained from Planet Labs, Inc. and DigitalGlobe (a subsidiary of 

Maxar Technologies) were used for visual assessment of the comparison water mask for select 

locations. Multispectral observations collected by Planet Labs were obtained from the Dove R and 

Dove Classic satellite constellations (spatial resolution of approximately 3 m and temporal revisit 

period of 1-day). Multispectral observations collected by DigitalGlobe were obtained from 
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GeoEye-1 (spatial resolution of approximately 1.65 m and temporal revisit period of 1-3 days) and 

WorldView-3 (spatial resolution of 0.31-30 m and temporal revisit period of 1-4.5 days).   

 Additional information of the commercial satellite imagery can be accessed here in 2024: 

https://www.planet.com/ and https://www.maxar.com/.  

2.4 Results and Discussion  

2.4.1     CYGNSS Observations and Bivariate Water Masks 

In Fig. 1A., the 50th percentile CYGNSS surface reflectivity SNR values for 2019 were 

spatially plotted and varied between 138-223 dB with a mean of 150 dB, a median of 149 dB, and 

a standard deviation of 6.65 dB. A CYGNSS bivariate water mask (Fig. 1B) was derived using the 

sub-basin SNR thresholds defined in section 2.2.1. The bivariate water masks for MODIS and 

Landsat are respectively shown in Fig. 2.1C and 2.1D. Overall, MODIS classified the smallest 

percentage of the study area as inland water at just 1.1%. CYGNSS classified 1.3% of the study 

area as inland water. Lastly, Landsat classified the greatest percentage of the study area as inland 

water at 1.4%. To improve understanding of these differences in inland water area estimates, an 

evaluation indicator of the ratio of inland water to catchment area is provided for sub-basins within 

the study area. This reveals the spatial variabilities of the CYGNSS, MODIS, and Landsat water 

masks which had the highest disagreement in regions of wetlands and branching inland waterways 

(see section 2.3.3 for further details). Additionally, the number of daily 1-km pixel observations 

by CYGNSS, MODIS, and Landsat were calculated for 2019 within the study area (Appendix 2.8). 

Fewer MODIS and Landsat observations occurred from May to October, likely due to seasonal 

precipitation and cloud cover. CYGNSS daily observation counts were relatively consistent 

throughout the year due to its usage of GNSS-R.  

https://www.planet.com/
https://www.maxar.com/
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Fig. 2.1: CYGNSS observations and bivariate water mask products for the contiguous United 

States between latitudes of approximately 24-37°N for 2019. (A) Spatial plot of CYGNSS 1-km 50th 

percentile surface reflectivity signal-to-noise-ratio (SNR) data. (B) CYGNSS bivariate water mask 

at 1-km spatial resolution derived from basin-specific binary thresholding of SNR values. (C) 

MODIS bivariate water mask at 1-km spatial resolution derived from the Land Water Mask 

(MCD12Q1) for 2019. (D) Landsat bivariate water mask at 1-km spatial resolution derived from 

the Landsat Global Surface Water product (commonly referred to as the Pekel water mask) for 

2019. 

 

2.4.2     Comparison Water Mask  

The three bivariate water masks from CYGNSS, MODIS, and Landsat were compared at 

a pixel-by-pixel level to generate a 1-km comparison water mask. A given pixel was classified as 

non-inland water in the comparison water mask only if all three bivariate water masks concurred 

that the pixel was land. If one or more of the bivariate water masks classified a given pixel as 

water, the comparison water mask designated the pixel as inland water and the observation 

system(s) that classified it as such were indicated: Landsat only, MODIS only, CYGNSS only, 

MODIS and Landsat, CYGNSS and MODIS, CYGNSS and Landsat, or all three systems 

(CYGNSS, MODIS, and Landsat). Because the purpose of the comparison water mask is to 

spatially investigate the extent by which the three water mask products agree or disagree on the 

classification of inland water, it is important to note that the comparison water mask is not intended 

to serve as a stand-alone water mask itself. 
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Fig. 2.2: Comparison Water Mask derived from CYGNSS, Landsat, and MODIS for the contiguous 

United States between latitudes of approximately 24-37°N for 2019. (A) 1-km Comparison Water 

Mask across the study area for 2019 derived from the CYGNSS, Landsat, and MODIS bivariate 

water masks. (B) The 1-km Comparison Water Mask subdivided into USGS Hydrological Unit 

Code-02 Watersheds. The watersheds are referred to as the South Atlantic Gulf basin (B03), the 

Tennessee basin (B06), the Lower Mississippi basin (B08), the Arkansas-White River basin (B11), 

the Texas-Gulf basin (B12), the Rio Grande basin (B13), the Lower Colorado (B15), and the 

California basin (B18). 
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 As shown in the comparison water mask (Fig. 2.2A), the observation systems collectively 

classified 2.3% of the study area as inland water. Of the pixels classified as inland water, 14.2% 

were classified by all three observation systems. 30.6% were classified by at least two observation 

systems: 18.2% by Landsat and MODIS, 6.5% by Landsat and CYGNSS, and 5.9% by CYGNSS 

and MODIS. The remaining 55% of inland water pixels were classified by only one system: 29% 

by CYGNSS, 19.4% by Landsat, and 6.8% by MODIS. While this indicates a relatively high level 

of false positives and thus disagreement between the three inland water masks, it is important to 

note that the disagreements vary spatially across the study area. This is further discussed in section 

3.3. 

 In the comparison water mask, red pixels indicate locations where CYGNSS did not 

classify inland water which both Landsat and MODIS agreed were water (18.2%). High 

concentrations of red pixels are observed along outlets of waterways to the Gulf of Mexico and 

Atlantic Ocean and may be explained by the lower dielectric constant of brackish water than 

freshwater due to its salat content (Lang et al., 2016). Additionally, red pixels are in the middle of 

expansive lakes, such as Lake Okeechobee in Florida, even though CYGNSS tends to correctly 

classify the boundary between the lake and land (i.e., the perimeter of the lake). Green pixels 

indicate locations where CYGNSS and Landsat classified inland water while MODIS did not 

(6.5%). These instances are primarily concentrated within the Mississippi River basin. Orange 

pixels indicate locations where CYGNSS and MODIS classified inland water while Landsat did 

not (5.9%). The highest concentration of orange pixels can be found in wetland regions of southern 

Louisiana and Florida.  

 Pixels classified as inland water by only CYGNSS are represented as dark purple (29.0%) 

and are scattered across the study region but are particularly prevalent in the Mississippi River 



44 

 

basin and the Western USA. The abundance of false positive classifications in dry and densely 

vegetated areas may be due to the high SNR of CYGNSS in these regions. Dry soil or sand could 

have erroneously high SNR because the individual grains reflect a significant amount of GPS 

signals due to their rough, irregular surfaces. Additionally, the spaces between the grains allow for 

L-band signals to penetrate and reflect off the underlying surface, which further contributes to the 

coherent scatterings. In densely vegetated areas, water on the canopy can reflect signals and 

increase the SNR, which may not be suitable for detecting waterbodies using the CYGNSS SNR 

threshold set in the present study. As a result, it may be necessary to consider alternative 

approaches to detect waterbodies in these areas in future studies. To address this issue, other 

proxies such as soil moisture or vegetation indices from other microwave satellite systems may be 

used to more accurately classify these pixels as waterbodies assuming that independence from 

Landsat and MODIS land cover products is not required. By incorporating thresholds for these 

values with CYGNSS SNR, dry and densely vegetated areas can be effectively masked out in the 

future. 

 Instances of inland water classification solely by MODIS are represented in yellow (6.8%) 

and are primarily concentrated in the wetlands of Louisiana and southern Florida. Lastly, 

occurrence of Landsat only inland water classifications are depicted in pink (19.4%) and tend to 

be located within networks of branching waterways. In these instances, CYGNSS frequently 

captured portions of the waterways but was discontinuous, which lead to classifications made only 

by Landsat. 

 

2.4.3     Confusion Matrix Statistics of Bivariate Water Masks  
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To further investigate region-specific variability in the comparison water mask 

performance, the study area was sub-divided into 8 smaller regions via the United States 

Geological Survey (USGS) Hydrologic Unit Code-02 (HUC-02) watershed boundaries (Fig. 

2.2B). For each region, the results of the confusion matrix statistics (Eq. 1-7) were visualized as 

heatmaps which are shown in Fig. 2.3. F1-score was determined to the be most applicable to this 

study (Fig. 2.3G). A high F1-score indicates a high level of agreement between the predicted and 

reference water mask. A low F1-score may indicate low confidence in the reference dataset as there 

is a high disagreement between the products. The remaining confusion matrix statistics (R, P, SP, 

M, FDR, and A) are discussed in detail in the Supplemental Materials.  

A higher F1-score was generally obtained when the SNR threshold was tailored for each 

basin as opposed to using a singular threshold for the entire study area. This indicates high 

variability in inland water surface reflectivity due to geographical differences such as vegetation 

and topography, meaning that a single threshold to define inland water over a large study area 

introduces bias. The lowest F1-scores were observed in the Rio Grande Basin (B13), the Lower 

Colorado basin (B15), and the California basin (B18), indicating a high level of disagreement 

between all three datasets. CYGNSS obtained the highest F1-scores in B03, B06, and B08 which 

had up to a 34% increase in F1-score compared to the total study area (Fig. 2.3G). In most 

scenarios, the F1-score was improved when CYGNSS was combined with either Landsat or 

MODIS. 

Lastly, a ratio of the inland water area to catchment area was calculated for each sub-basin 

Appendix 2.10). These results demonstrated that the ratio of inland water to sub-basin area varies 

across the study area with the highest ratio in the Mississippi River Basin (B08) and the lowest 
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ratio in the Rio Grande Basin (B13). MODIS tended to estimate the lowest ratio, however, all three 

datasets had comparable ratios within 2.3% of each other regardless of the sub-basin observed. 

 

Fig. 2.3: CYGNSS, Landsat, and MODIS bivariate water mask confusion matrix statistics 

visualized as heat maps for (A) Recall (R), (B) Precision (P), (C) Specificity (SP), (D) Miss Rate 

(M), (E) False Detection Rate (FDR), (F) Accuracy, and (G) F1-score (F1). For each, the total 

study area (AOI) or sub-basin of interest (USGS HUC-02) is indicated. The assumed reference 

water mask is indicated as either Landsat or MODIS. The predicted water mask is indicated as 

either CYGNSS, MODIS, Landsat, a combination of MODIS and CYGNSS, or a combination of 

Landsat and CYGNSS.   
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2.4.4     Comparison Water Mask with High-Resolution Commercial 

Satellite Imagery  

To assess our confidence in the water mask product, the comparison water mask was 

overlayed with high-resolution commercial satellite imagery for select locations including 

manmade reservoirs, natural lakes, wetlands, and rivers. A qualitative assessment of the 

Comparison Water Mask compared to the commercial satellite imagery is shown in Fig. 2.4. A 

quantitative assessment of the percentage of commercial image scene classified by each 

observation system is provided in Appendix.12. 

The highest disagreement between classification systems was often observed along the 

shorelines, particularly since CYGNSS tended to estimate a wider lake extent which encompassed 

surrounding vegetated areas. Additionally, CYGNSS did not continuously classify large lakes, 

which may be explained by salinity (such as for the Salton Sea (Fig. 2.4A) and Lakes Maurepas 

and Pontchartrain (Fig. 2.4B)) and/or the expansive nature (such as for the freshwater Lake 

Kissimmee (Fig. 2.4E), which concurs with the results of Al-Khaldi et al., 2021).  

 In Fig. 2.4A and 2.4B, MODIS and CYGNSS concurred on classifications of wetlands, 

exposed salt deposits, and sediment along lakebeds, whereas Landsat did not. This is likely due to 

violation of the conditions required to classify inland water by the Landsat product, such as the 

area must be open to the sky, larger than 30 m, and unobstructed by vegetation. Lake Hartwell 

(Fig. 2.4C) and the Tennessee River (Fig. 2.4D) demonstrate two examples where there were no 

instances of only MODIS and Landsat classification of a pixel as water (indicated by red pixels). 

For these locations, a noticeable enhancement in the waterbody continuity was observed when 

CYGNSS is combined with both Landsat and MODIS.  
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Fig. 2.4: Comparison water mask overlayed onto high-resolution commercial satellite imagery 

from Planet Labs, Inc. and DigitalGlobe for select locations: (A) Salton Sea, CA, (B) Lake 

Maurepas and Pontchartrain, LA, (C) Lake Hartwell, GA/SC, (D) Tennessee River, TN, (E) Lake 

Kissimmee, FL, (F) Sam Rayburn Reservoir, TX. (G) Reference locations for the commercial 

images are provided on the comparison water mask. Hand drawn water masks are displayed in 

light blue for visual purposes. For additional information on the high-resolution imagery, 

including date of acquisition and image identification number(s), see Appendix 2.11. 
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2.5 Future Research and Limitations  

As the utility of CYGNSS data for land-based applications is increasingly realized, it is 

important to understand its relative strengths and limitations compared to existing Earth 

observation systems. The comparison water mask reveals various levels of 

agreement/disagreement across the study area between the observation products of CYGNSS, 

Landsat, and MODIS. Caution should be exercised when applying these data across varying 

geographic regions for inland waterbody identification. Additionally, the optical high-resolution 

commercial satellite imagery revealed numerous instances of FP occurrence over waterbodies. 

Thus, FP indicated disagreements between the systems should not be dismissed as land but rather 

as indications of disagreement. Further, the CYGNSS water mask resulted in discontinuous 

waterways when portions of the waterbody had SNR values outside of the basin’s defined 

threshold. Gap-filling, random walkers, or other algorithms may be appropriate methods to 

improve continuity. For example, data collected within 25-km of coastlines were excluded from 

this study due to the uncertainty of classifying this interface using the MODIS, Landsat, and 

CYGNSS products. In combination with other data products, fuzzy logic could be used to decrease 

the uncertainty of CYGNSS-based inland water classification of coastal regions (Demir et al., 

2016). Lastly, the study was limited by the temporal confinement of a single annual timestep 

(2019). Future research should explore the capability of CYGNSS to reliably observe sub-annual 

inland waterbody dynamics, which is challenging to observe using MODIS and Landsat due to 

their reliance on cloud-free observations.  

In addition to inland waterbody delineation (Al-Khaldi et al., 2021; Gerlein-Safdi & Ruf, 

2019; Ghasemigoudarzi et al., 2020; Loria et al., 2020; Ruf et al., 2021), CYGNSS has proven to 
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be a useful observation system for other land-based applications including but not limited to soil 

moisture retrievals (Kim & Lakshmi, 2018), enhancement of soil moisture estimates from land 

surface models through data assimilation (Kim et al., 2021), flooding (Chew et al., 2018; 

Ghasemigoudarzi et al., 2020; Rajabi et al., 2020; Wan et al., 2019), lake height estimates (Li et 

al., 2018), and wetland dynamics (Downs et al., 2021; Morris et al., 2019).  Temporally and 

spatially accurate inland waterbody mapping using CYGNSS will support future research in these 

CYGNSS land-based application areas as well. 

2.6 Conclusions  

A 1-km CYGNSS-based bivariate water mask was compared with two widely accepted 

Earth observation water masks derived from MODIS and Landsat for 2019 over the contiguous 

United States between latitudes of approximately 24-38°N. A mosaic of binary thresholds using 

sub-basins defined by the USGS HUC-02 codes was used to classify inland water with CYGNSS 

SNR values. This approach accounted for the varying thresholds required in different regions, such 

as the dry areas of the Midwest USA versus the wet Southeast USA, and performed better than a 

singular binary threshold for the entire study area. This approach of using a mosaic of binary 

thresholds increased F1-score up to 34% for sub-basins within the study area. Confusion matrices 

and related statistics revealed that the performance of the comparison water mask varied regionally, 

with particularly high disagreements along the Lower Mississippi basin (B08), brackish or 

saltwater regions, extensive lakes, and wetlands. Additionally, the performance metric of ratio of 

inland water to catchment area revealed that CYGNSS, MODIS, and Landsat were within 2.3% of 

each other regardless of the sub-basin observed.  

 To assess performance of the comparison water mask, high-resolution optical satellite 

imagery from commercial companies (Planet and DigitalGlobe) were used. This improved 
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understanding of each water mask product’s performance over natural lakes, manmade reservoirs, 

wetlands, and rivers. In multiple instances, CYGNSS successfully identified inland water which 

both MODIS and Landsat failed to classify.  

 Overall, this study contributes a valuable foundational comparison of CYGNSS versus 

optical-sensor-based inland water masks. It provides a straightforward method for spatially 

comparing water masks derived from Earth observations, particularly in conjunction with optical 

high-resolution commercial satellite imagery. This work can guide future exploration of algorithms 

and data processing techniques to continually improve the performance of inland waterbody 

delineation using CYGNSS to support water resources management and a variety of hydrological 

applications.   
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Chapter 3: Observing the Recent Floods and Drought in 

the Lake Victoria Basin Using Earth Observations and 

Hydrological Anomalies2  

 

3.1 Abstract  

The Lake Victoria Basin, home of Africa’s largest freshwater lake, experienced extensive 

floods in 2019–2020 and anomalous drought conditions in early 2022. Both antithetical 

hydrological events raised concerns for an estimated 35 million people within the basin who are 

vulnerable to these continually recurrent hydrometeorological extremes. While there is a need for 

high resolution spatial and temporal hydrological monitoring, in-situ observations are limited and 

insufficient within the basin. This study assesses the capability of publicly available Earth 

observations and models to capture the occurrence of recent hydrological extremes within the Lake 

Victoria Basin. Spatial and temporal comparisons of the following hydrological variables are 

conducted within the Lake Victoria Basin from June 2002 – June 2022: precipitation, 

 
2 The work presented in this chapter resulted in the following journal article:  

 

Pavur, G., Lakshmi, V. Observing the recent floods and drought in the Lake Victoria Basin using Earth observations 

and hydrological anomalies. J. of Hydrology: Regional Studies, 46 (2023). 

https://doi.org/10.1016/j.ejrh.2023.101347  

https://doi.org/10.1016/j.ejrh.2023.101347
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evapotranspiration, runoff, soil moisture, lake height, and total water storage anomaly (TWSA). 

Results from the time series and spatial analyses confirm that the anomalous wet and dry events 

respectively occurred from October 2019 – March 2020 and November 2021 – March 2021. The 

observations also indicated a quick recovery from the drought event by June 2022. Additionally, a 

comparison of 9-km soil moisture and 1-km downscaled near-surface soil moisture products 

improves understanding of wetness spatial variability within the basin. These results were 

validated using in-situ soil moisture data available through the International Soil Moisture 

Network, making this the first study to validate the downscaled 1-km soil moil moisture product 

within the African continent. Methods from this study demonstrate the utility of a diverse array of 

publicly available Earth observation and model data to improve understanding of recent 

hydrological anomalies and extreme events within the Lake Victoria Basin. This can be applied to 

water resources management, particularly in regions lacking sufficient in-situ hydrological data. 

3.2 Introduction 

Africa’s largest lake, Lake Victoria, provides valuable ecosystem services to five East 

African countries within its basin: Burundi, Kenya, Rwanda, Tanzania, and Uganda. Freshwater 

from Lake Victoria supports domestic use, diverse aquatic and terrestrial ecosystems, and 

economic industries including agriculture, livestock, fisheries, and hydropower production 

(Awange, 2006, 2020). Tourism, recreation, and transportation of goods via inland waterways are 

further supported by the lake (Awange, 2020; Reynolds, 2005). As the source of the White Nile 

River and a subbasin of the greater Nile watershed, the Lake Victoria Basin plays a critical role in 

supplying freshwater locally to an estimated 35 million people and indirectly to 340 million people 

in downstream countries (Mugo et al., 2020; Ramillien et al., 2014).  
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 Over the previous decades, hydrometeorological extremes such as floods and droughts 

have proven to be continual and recurrent in the Lake Victoria Basin (Nyeko-Ogiramoi et al., 

2013). Historically, devastating floods in this region occur practically every year during the 

October-December rainy season and cause substantial loss of life and property (Nyeko-Ogiramoi 

et al., 2013). Periods of extreme drought are equally concerning because decreased or delayed 

rainfall can lead to crop failure, widespread famine, and food insecurity (Agutu et al., 2021; 

Coughlan de Perez et al., 2019; FEWS NET, 2021). As the frequency and severity of hydrological 

extremes is predicted to increase due to climate change, accurate and continual monitoring of 

hydrological conditions at the basin level is vital for sustainable water resources management 

(Alsdorf et al., 2016; Paris et al., 2022; Wainwright et al., 2021). This is particularly true for the 

Lake Victoria Basin, particularly given that previous research has identified it as a significant 

hotspot for population-climate burdens which are exacerbated by recurrent droughts and flooding 

due to variable rainfall (López-Carr et al., 2014). Since the populations of Burundi, Kenya, 

Rwanda, Tanzania, and Uganda are respectively forecasted to increase by 114%, 68%, 77%, 117%, 

and 114% between mid-2020 and mid-2050, there is further motivation to improve water resources 

management to support such population growth and demands (Table 3.1) (Kaneda et al., 2020). 

 

Table 3.1: Population forecasts for Burundi, Kenya, Rwanda, Tanzania, and Uganda for mid-

2020 to mid-2050 (Kaneda et al., 2020).  

Country Mid-2020 

population 

(millions) 

Mid-2035 

population 

(millions) 

Mid-2050 

population 

(millions) 

Percent population 

change from 2020 – 

2050 (%) 

Burundi 11.9 18.3 25.5 + 114% 

Kenya 53.5 71.9 89.7 + 68% 

Rwanda 13.0 17.9 23.0 + 77% 

Tanzania 59.7 90.4 129.4 + 117% 

Uganda 45.7 69.5 97.7 + 114% 
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 As with many regions in Africa, the Lake Victoria Basin lacks sufficient in-situ, public, and 

ground-based hydrological observations to meet these needs (Hu et al., 2021; Khan et al., 2011; 

Ndehedehe et al., 2016). While discharge data from Uganda’s hydropower dam located at Lake 

Victoria’s outlet is collected, this data is not publicly available. This is likely due to political 

concerns regarding the Agreed Curve, which is an international treaty between Uganda and Egypt 

through which Uganda agrees to operate its hydropower dams in a way that reflect the natural 

outflows of Lake Victoria (Getirana et al., 2020; Kull, 2006; Shamsudduha et al., 2017; Swenson 

& Wahr, 2009; Vanderkelen et al., 2018). Similarly, the few ground-based rainfall stations within 

the Lake Victoria Basin are unreliably operated and sparsely distributed, making it an insufficient 

data source for basin-wide hydrological analyses (Awange et al., 2019). Therefore, there is a need 

for publicly available and remotely observed hydrological data at sufficient spatial and temporal 

resolutions in the Lake Victoria Basin to monitor the recent hydrological extreme events. 

 Satellite remote sensing has proven to be a useful tool to obtain hydrological observations 

in regions limited by sparse temporal and spatial coverage of ground-based in-situ data. This is 

particularly true for comparisons of satellite sensor precipitation with gauge observations 

(Hashemi et al., 2018; H. Le et al., 2018; Mondal et al., 2018). Numerous studies have relied on 

remote sensing and land surface models to reliably estimate components of the hydrological cycle 

within the Lake Victoria Basin and other African basins (Awange et al., 2019; Grippa et al., 2011; 

Kansara et al., 2021; Khan et al., 2011; Lakshmi et al., 2018; Ndehedehe et al., 2016; Shamsudduha 

et al., 2017; Vanderkelen et al., 2018). Other studies in the Lower Mekong River Basin have also 

demonstrated the synergistic utility of satellite remote sensing observations within hydrological 

models (Le et al., 2020, 2022; Mohammed et al., 2018a, 2018b, 2018c). These techniques, 

particularly the utilization of a wide array of publicly available hydrological Earth observations, 
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can be applied to the Lake Victoria Basin to update previous studies and to compare the recent 

hydrological extreme events. Additionally, this is a valuable method for collecting hydrological 

data across country borders since Lake Victoria is geopolitically divided between Kenya (6%), 

Uganda (43%), and Tanzania (51%) (Awange, 2020). Thus, Earth observations are a promising 

method for obtaining uniform and publicly available hydrological observations at sufficient spatial 

and temporal resolutions across the international boundaries of this basin. 

 In this paper, we examine components of the hydrological water balance (precipitation, 

evapotranspiration, runoff, and change in total water storage) and additional hydrological variables 

(soil moisture, lake level height, and lake extent) for the Lake Victoria Basin from June 2002 – 

June 2022 with particular focus on the 2019–2020 flood events and the 2021–2022 drought period. 

This is accomplished by leveraging publicly available data from seven satellite-based Earth 

observations and one land surface model, which is necessary given the limited in-situ data 

available in this region. Since previous studies identified the Lake Victoria Basin as an area where 

populations are particularly vulnerable to seasonal hydrological variabilities, we conducted a 

hydrological anomaly analysis at monthly timescales to identify periods of anomalous positive and 

negative hydrological conditions. Our analysis includes monthly basin-wide averaged time series 

of precipitation, evapotranspiration, runoff, total water storage anomaly, soil moisture, and lake 

level height from June 2002 – June 2022. Spatial anomaly plots at spatial resolution up to 0.1◦ are 

provided for precipitation, evapotranspiration, runoff, total water storage anomaly, and soil 

moisture for two months of interest: the local maxima and minima monthly anomalies between 

January 2019 – June 2022. These represent a wet and dry month which respectively occurred 

during the identified flood and drought events. To our knowledge, this is the first study to conduct 
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a hydrological spatial anomaly comparison for the 2019–2020 flood and 2021–2022 drought 

events in the Lake Victoria Basin. 

 Additionally, to improve understanding of wetness spatial variability during the flood and 

drought periods, a spatial comparison of 9-km near-surface soil moisture and 1-km downscaled 

near-surface soil moisture products is included for the basin. These spatial plots are displayed for 

the wet and dry months identified in the root zone soil moisture anomaly time series as local 

maxima and minima between January 2019 – June 2022. The 1-km downscaled near-surface soil 

moisture data was validated using 28 ground soil moisture stations available via the International 

Soil Moisture Network. This is the first study to validate the 1-km downscaled near-surface soil 

moisture product within the African continent. Because the Lake Victoria Basin and other areas in 

the Greater Horn of Africa lack sufficient in-situ soil moisture observations for widespread 

analysis, validation and assessment of remotely sensed and modeled soil moisture data are vital 

for determining the utility of these data for future studies and operational usage (Agutu et al., 

2021). This is especially necessary for soil moisture due to the region’s dependence on rain-fed 

subsistence agriculture (Agutu et al., 2021). 

 Methods from this study for observing hydrological anomalies as time series and spatial 

plots demonstrate a simple tool for monitoring hydrological variables using publicly available 

datasets in a region that is traditionally limited by insufficient ground observations. These methods 

could be applied to inform water management and agricultural planning within the Lake Victoria 

Basin, as well as other regions lacking sufficient ground-based hydrological observations. Further 

research could be conducted to assess applications of this work for water management. Here, we 

show that Earth observations can monitor hydrological variables during extreme and anomalous 

events, such as the 2019–2020 flood and 2021–2022 drought. This work aims to support ongoing 
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efforts to decrease the community’s vulnerability to anomalous hydrological conditions, such as 

extreme floods and droughts, by improving monitoring of components of the hydrological cycle 

(precipitation, evapotranspiration, runoff, and change in total water storage) and other hydrological 

variables (soil moisture, lake level height, and lake extent) within the Lake Victoria Basin. 

3.3 Study Area  

Lake Victoria, locally called Lake Nulabale, is the largest tropical lake and the second 

largest freshwater lake in the world with an approximate surface area of 65,295 km2 (Awange, 

2020). Despite its large spatial extent, Lake Victoria is relatively shallow with a maximum depth 

of 80 m and an average depth of 40 m (Nyeko-Ogiramoi et al., 2013). The basin has a catchment 

surface area of approximately 229,815 km2 and encompasses portions of Uganda, Kenya, 

Tanzania, Rwanda, and Burundi (Hamilton, 2016). A singular outlet of Lake Victoria is found at 

Ripon Falls near Jinja, Uganda. Here, the Lake Victoria Basin directly contributes to the White 

Nile River. Thus, as shown in Fig. 3.1A, the Lake Victoria Basin is a subbasin of the Nile 

Watershed. 

 A digital elevation model (DEM) of the Lake Victoria Basin derived from the Shuttle Radar 

Topography Mission (SRTM) is shown in Fig. 3.1B (USGS, 2018). Tectonic and volcanic activity 

within the Great Rift Valley contribute to the basin’s varying topography which ranges in altitude 

from approximately 1109 – 4309 m above mean sea level (MSL). The highest elevations are found 

in the northeastern mountainous regions in Kenya and along the southwestern edge of the basin in 

Burundi and Rwanda. The lowest elevations are found directly along the perimeter of Lake 

Victoria. 

 Approximately 25 major rivers within the basin contribute directly to Lake Victoria 

(Vanderkelen et al., 2018). However, precipitation accounts for approximately 86% of the input 
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into Lake Victoria (Nyeko-Ogiramoi et al., 2013). The humid, tropical climate in combination with 

Lake Victoria’s large extent contributes to a distinct diurnal meteorological pattern within the 

basin. During afternoons, intense convective thunderstorms typically form over the land due to a 

nocturnal lake-land breeze system (Shamsudduha et al., 2017; Thiery et al., 2016). On seasonal 

timescales, the long rains and short rains respectively occur from May – March and September – 

November. Hydrological patterns within the basin are further influenced on seasonal and 

interannual scales by the Intertropical Convergence Zone (ITCZ), the Indian Ocean Dipole (IOD), 

and the El-Nino Southern Oscillation (ENSO) (Becker et al., 2010; FEWS NET, 2020, 2021; 

Wainwright et al., 2021). 

3.3.1 Land cover of the Lake Victoria Basin  

Land cover classifications derived from MODIS Terra and Aqua reflectance data at a 

spatial resolution of 500 m are shown for the Lake Victoria Basin in Fig. 3.2. For purposes of this 

study, land cover is assumed to be constant between June 2019 to June 2022 since analysis of land 

cover change were outside the scope of this study. 

Inland waterbodies, including Lake Victoria, make up 25% of the basin’s total area. 

Grasslands are 35% of the basin area and are predominately located in Tanzania. Croplands 

(including natural vegetation mosaics) are collectively 21% of the basin extent and include 

portions of all five countries. The main crops produced within the basin are maize, beans, sorghum, 

millet, paddy rice, sugarcane, tea, coffee, cotton, and meats (Mugo et al., 2020; Reynolds, 2005). 

Only 0.2% of the basin area is classified as urban and built-up lands even though an estimated 35 

million people live within a 100 km buffer zone of Lake Victoria (Mugo et al., 2020). A study 

conducted by Mugo et al. (2020) used optical imagery from Landsat and field data to assess land  
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Fig. 3.1: (A) Map of watershed delineations for the Nile and Lake Victoria watersheds. Lake 

Victoria is the source of the White Nile River and thus plays a critical role in the hydrology of 

downstream countries within the Nile watershed. Country boundaries are provided to give context 

to the watershed at the continental scale (ESRI, 2021; World Bank, 2019; WWF, 2019). (B) 

Digital elevation model (DEM) for the Lake Victoria Basin, derived from the Shuttle Radar 

Topography Mission (SRTM). Delineation of the basin includes portions of Uganda, Kenya, 

Tanzania, Rwanda, and Burundi. Major lakes are displayed in light blue. The highest topography 

is found in the northwestern portion of the basin in Kenya and along the southwestern rim in 

Burundi and Rwanda. The lowest topography is found along the perimeter of Lake Victoria (ESRI, 

2021; USGS, 2018; World Bank, 2019; WWF, 2019). 
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use changes between 1985 and 2014 in the Lake Victoria Basin and found an 800% increase in 

urbanized areas between 1985 and 2020 (Mugo et al., 2020). Human-centric activities were found 

to be the primary motivation for land use land cover changes during this period, particularly 

through the conversion of forests, woodlands, grasslands, and wetlands to farmlands and 

settlements (Mugo et al., 2020). 

 

 

Fig. 3.2: Land cover classifications for the Lake Victoria Basin in 2019 derived from 

MODIS/Terra + Aqua Yearly L3 Global 500 m SIN GRID (MCD12Q1 V006). The classifications 

are based on the Annual International Geosphere-Biosphere Program (IGBP) classification 

scheme.  

3.4 Data  

 A summary table of the satellite-based Earth observations and model outputs used in this 

study for precipitation, evapotranspiration, runoff, soil moisture (root zone and near-surface), lake 

height, and total water storage anomaly (TWSA) are summarized in Table 3.2. Each variable was 

averaged at a monthly timescale in the native resolution of the source data. Monthly spatial 

averages were calculated across the basin extent to construct time series for each variable. For 
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spatial mapping purposes, precipitation, evapotranspiration, runoff, and root zone soil moisture 

were re-gridded to a common spatial resolution. The near-surface soil moisture observations were 

not gridded to allow for spatial comparison of the 9-km and 1-km products. Similarly, TWSA was 

not re-gridded to avoid misleading visual representation of these data given the coarse spatial 

resolution of GRACE. Lake height is assumed to be constant across the extent of Lake Victoria 

and thus is not spatially mapped. Further details concerning each data product can be found in 

Sections 3.4.1–3.4.6.  

3.4.1 Precipitation data from the Integrated Multisatellite Retrievals for 

Global Precipitation Measurement (GPM IMERG)  

The Integrated Multisatellite Retrievals for Global Precipitation Measurement (GPM 

IMERG) is a joint mission between the National Aeronautics Space Administration (NASA) and 

the Japan Aerospace and Exploration Agency (JAXA) which uses a constellation of satellites with 

passive microwave and infrared sensors to provide high spatial and temporal resolution 

precipitation measurements (Huffman et al., 2015a, 2015b). For regions lacking ground-based in-

situ precipitation measurements, remotely sensed precipitation observations are commonly used 

from GPM IMERG, the Tropical Rainfall Measurement Mission (TRMM), and the Climate 

Hazards Group InfraRed Precipitation with Station data (CHIRPS) (Dezfuli et al., 2017; Hou et 

al., 2014; Huffman et al., 2015b). For purposes of this study, GPM IMERG Final Precipitation L3 

V06 and GPM IMERG Late Precipitation L3 V06 were used to obtain monthly precipitation data 

at 0.1◦ spatial resolution from June 2002 – June 2022. This was used to construct time series and 

spatial plots of monthly precipitation anomalies. More information about the GPM IMERG data 

set can be found at https://gpm.nasa.gov/documents/IMERGV06-Technical-Documentation.  
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Table 3.2: Summary of hydrological data used in this study.  

Hydrological 

Variable 

Sensor/Model Spatial 

Resolution 

Temporal 

Resolution 

Study 

period 

Sources 

Precipitation GPM IMERG Final 

Precipitation L3 

V06 

0.1° 1 month Jun. 2002 

– Oct. 

2021 

Huffman 

et. al. 

(2019) 

GPM IMERG Late 

Precipitation L3 

V06 

0.1° 1 day Nov. 

2021 – 

Jun. 2022 

Huffman et 

al. (2019) 

Evapotranspiration MODIS 

MOD16A2.006 

0.05° 8 days Jun. 2002 

– Jan. 

2022 

Running et 

al. (2017) 

Land Cover MODIS 

MDC12Q1.006 

0.05° 1 year 2019 Friedl et al. 

(2019) 

Runoff GLDAS Noah Land 

Surface Model L4 

V2.1 

0.25° 1 month Jun. 2002 

– Apr. 

2022 

Rodell et al. 

(2004) 

GLDAS Noah Land 

Surface Model L4 

Early Product V2.1 

0.25° 1 month May. 

2022 – 

Jun. 2022 

Rodell et al. 

(2004) 

Root Zone Soil 

Moisture  

(0 – 2 m depth) 

GLDAS Noah Land 

Surface Model L4 

V2.1 

0.25° 1 month Jun. 2002 

– Apr. 

2022 

Rodell et al. 

(2004) 

GLDAS Noah Land 

Surface Model L4 

Early Product V2.1 

0.25° 1 month May. 

2022 – 

Jun. 2022 

Rodell et al. 

(2004) 

Near-surface Soil 

Moisture  

(0 – 5 cm depth)  

SMAP 0.09° 1 day Jan. 2015 

– Jan. 

2022 

Entekhabi 

et al. (2010) 

SMAP 0.01° 1 day Jan. 2015 

– Jan. 

2022 

Fang et al. 

(2022) 

Lake Height Jason-1/USDA G-

REALM 

>100 km2 10 days Jun. 2002 

– 2008 

USDA G-

REALM 

(2022) 

Jason-2/USDA G-

REALM 

>100 km2 10 days 2008 – 

2016  

USDA G-

REALM 

(2022) 

Jason-3/USDA G-

REALM 

>100 km2 10 days 2016 – 

Jun. 2022 

USDA G-

REALM 

(2022) 

Total Water 

Storage Anomaly 

GRACE/GRACE-

FO Tellus L3 V02 

0.5° 1 month Jun. 2002 

– May. 

2022 

Landerer & 

Swenson 

(2012) 
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3.4.2  Evapotranspiration and land cover data from the Moderate 

Resolution Imaging Spectroradiometer (MODIS)  

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a sensor onboard the 

sun-synchronous polar orbiting satellites, Terra and Aqua. In this study, MODIS was used to obtain 

monthly evapotranspiration data from June 2002 to June 2022 and one year of land cover data 

(2019). The global MODIS evapotranspiration product is based on the Penman-Monteith equation 

(Mu et al., 2007, 2011). This product has a temporal repeat of 8 days and a spatial resolution of 

0.05◦ (Running et al., 2017). For this study, the MODIS MOD16A2.006 evapotranspiration data 

were averaged at monthly timescales to construct a time series and spatial plots of monthly 

evapotranspiration anomalies. It is important to note that the MODIS MOD16A2.006 

evapotranspiration product masks inland water. Thus, a limitation of this observation data source 

is that no evapotranspiration data is available directly over Lake Victoria. The MODIS 

MCD12Q1.006 product was used to construct a map of land cover type for the Lake Victoria Basin 

in 2019 using the annual International Geosphere-Biosphere Program (IGBP) classification 

scheme (Friedl et al., 2019). Additional information about MODIS evapotranspiration and land 

cover products can be found at https://modis.gsfc.nasa.gov. 

 

3.4.3 Runoff and root zone soil moisture data from the Global Land Data 

Assimilation System (GLDAS)  

The Global Land Data Assimilation System (GLDAS) is a global, high resolution (0.25◦), 

publicly available hydrological model that assimilates ground and satellite-based observations in 

offline land surface models to output land surface states and fluxes (Rodell et al., 2004). For 
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hydrological basins lacking continual and extensive in-situ observations, GLDAS model outputs 

have performed well when estimating hydrological variables for water balance studies (Hu et al., 

2021; Kansara et al., 2021; Lakshmi & Fang, 2023; Ndehedehe et al., 2016; Shamsudduha et al., 

2017). For purposes of this study, the GLDAS Noah land surface model was used to obtain monthly 

runoff and root zone soil moisture (0 – 2 m depth) data. These data were used to construct time 

series and spatial plots of monthly runoff and root zone soil moisture anomalies. The GLDAS 

Noah Land Surface Model L4 V2.1 was used from June 2002 – April 2022 and the GLDAS Noah 

Land Surface Model L4 Early Product V2.1 was used from May 2022 – June 2022. Further details 

about GLDAS and the Noah land surface model can be found at https://ldas.gsfc.nasa.gov/gldas. 

 

3.4.4 Soil moisture data from the Soil Moisture Active Passive (SMAP) 

mission  

The Soil Moisture Active Passive (SMAP) mission launched in 2015 to estimate near-

surface soil moisture (0–5 cm depth) using a 1.41 GHz L-band radiometer (Chan et al., 2016; 

Entekhabi et al., 2010). SMAP overpasses occur at 6:00AM and 6:00PM local time every 2–3 days 

with a spatial resolution on 0.09◦. For this study, monthly 9-km SMAP soil moisture data from the 

6:00PM overpasses were used from January 2015 – January 2022. A 1-km soil moisture product, 

which was downscaled from the 9-km SMAP data using correlations between surface temperature 

differences and vegetation, were averaged to a monthly timescale (Fang et al., 2022). Validation 

of the 1-km soil moisture product were performed using data available from 28 ground stations 

via the International Soil Moisture Network (https://ismn.geo.tuwien.ac.at). Additional 

information about SMAP and the 1-km downscaled soil moisture product can be found at 

https://smap.jpl.nasa.gov and Fang et al. (2022). Due to the limited observation record of SMAP 

https://ldas.gsfc.nasa.gov/gldas
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of 8 years, this study uses observed monthly values of 9-km and 1-km near-surface soil moisture 

data as opposed to monthly anomalies. These data were used to construct time series and spatial 

plots of monthly near-surface soil moisture at 9-km and 1-km resolutions. 

 

3.4.5 Lake level height data from satellite radar altimetry (Jason-1, Jason-

2, Jason-3)  

Satellite radar altimetry has proven to be a reliable method for monitoring inland waterbody 

elevation over large lakes, rivers, and wetlands, particularly in regions lacking adequate stream 

gage data (Becker et al., 2010; Birkett & Beckley, 2010; Ndehedehe et al., 2016; Ramillien et al., 

2014). To calculate lake surface height, a nadir-pointing antenna onboard the satellite emits 

microwave pulses and measures the elapsed time between emission and receiving of the reflected 

pulse. Altitude, elapse time, and geophysical corrections are used to estimate lake surface height. 

The microwave spectra enable measurements regardless of day/night or cloudy conditions. 

 Since stream gage data at Lake Victoria’s outlet is not publicly available, satellite radar 

altimetry data obtained from the United States Department of Agriculture (USDA) Foreign 

Agricultural Service Global Reservoir and Lake Monitor (G-REALM) were used to estimate lake 

level height in millimeters relative to MSL (USDA, 2022). Previous studies have also utilized G-

REALM altimetry data for analysis within the Lake Victoria Basin (Becker et al., 2010; Reynolds, 

2005; Swenson & Wahr, 2009). A validation study was conducted by Reynolds in 2005 that 

compared Lake Victoria gage data from 2000 to 2004 to G-REALM and found very similar 

agreement (better than 10 cm RSM) (Reynolds, 2005). In our study, the following satellites and 

sensors with an approximate repeat period of 10 days were used from the G-REALM Lake Victoria 

height product to construct a time series of monthly lake height anomalies: Jason-1 GDR 20 Hz 
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from 2002 to 2008, Jason-2/OSTM GDR from 2008 to 2016, and Jason-3 Interim GDR 20 Hz 

from 2016 to 2022. Further details about G-REALM can be found at 

https://ipad.fas.usda.gov/cropexplorer/global_reservoir/. 

 

3.4.6 Total water storage anomaly data from the Gravity Recovery and 

Climate Experiment (GRACE/GRACE-FO)  

Satellite gravimetry via the Gravity Recovery and Climate Experiment (GRACE) and 

Follow-On (GRACE-FO) missions has proven to be a reliable method for observing changes in 

total water storage with a geoid height accuracy of one centimeter (Ramillien et al., 2014). Changes 

in catchment storage from aquifers, soil moisture, groundwater, surface water, etc. are observable 

as GRACE-derived total water storage anomaly (TWSA). Previous studies have utilized GRACE 

TWSA for hydrological balance analysis in the Lake Victoria Basin and surrounding African basins 

(Agutu et al., 2021; Awange et al., 2008; Grippa et al., 2011; Kansara et al., 2021; Khaki & Awange, 

2021; Lakshmi et al., 2018; Ndehedehe et al., 2016). In this study, the GRC Tellus JPL Monthly 

Mass Grid Global Mascons (JPL RL06 V02) data with 0.5◦ spatial resolution were used (please 

see the GRACE-FO L3 Handbook: https://podaac-tools.jpl.nasa. 

gov/drive/files/allData/gracefo/docs/GRACE-FO_L3_Handbook_JPL.pdf). While the GRC 

Tellus JPL Monthly Mass Grid Global Mascon data is provided at this spatial resolution of 0.5◦, it 

is important to note that the size of a single mascon is 3◦ and neighboring 0.5◦ grid cells may not 

be independent of each other. However, it is common to use the GRC Tellus JPL Monthly Mass 

Grid Global Mascon dataset at 0.5◦ resolution (Bonsor et al., 2018; Kansara et al., 2021; 

Shamsudduha et al., 2017). Thus, a scale factor derived from land surface models was applied to 

the GRACE land water equivalent (LWE) thickness data by multiplying the raw GRACE LWE 

https://ipad.fas.usda.gov/cropexplorer/global_reservoir/


68 

 

thickness by the scale factor. This is necessary to obtain a spatial resolution of 0.5◦ and it is not 

pre-applied to the GRC Tellus JPL Monthly Mass Grid Global Mascon data. Additionally, a gap in 

GRACE/GRACE-FO observations occurred in 2017–2018 due to mission lifespan and battery 

complications (Landerer et al., 2020). For purposes of this study, linear interpolation is used to fill 

the missing monthly TWSA data. These data were used to construct time series and spatial plots 

of monthly TWSA. Further information about the GRACE mission and the GRC Tellus JPL 

Monthly Mass Grid Global Mascon dataset can be found at https://gracefo.jpl.nasa. gov and 

https://podaac-tools.jpl.nasa.gov/drive/files/allData/gracefo/docs/GRACE-

FO_L3_Handbook_JPL.pdf. 

 

3.5 Methodology  

3.5.1 Hydrological components of the water balance equation  

 The water balance equation is as follows:  

𝑃 − 𝐸𝑇 − 𝑅 =  ∆𝑆                                                             (1)  

where 𝑃 is precipitation, 𝐸𝑇 is evapotranspiration, 𝑅 is runoff, and ∆𝑆 is change in total water 

storage. For purposes of this study, 𝑃 and 𝐸𝑇 are derived from Earth observations (GPM IMERG 

and MODIS, respectively) while 𝑅 is a model output (GLDAS). GRACE/GRACE-FO was used 

to estimate ∆𝑆. Assessment of water balance closure in the Lake Victoria Basin using these datasets 

are limited by the MODIS ET observations because this dataset masks out lakes. Given the large 

spatial extent of Lake Victoria which makes up approximately 25% of the basin, it is unreasonable 

to assess water balance closure of the basin without evapotranspiration data over the lake itself. 

Thus, in this study we have chosen to examine individual hydrological components of the water 

balance equation (specifically precipitation, evapotranspiration over land, runoff, and change in 

https://podaac-tools.jpl.nasa.gov/drive/files/allData/gracefo/docs/GRACE-FO_L3_Handbook_JPL.pdf
https://podaac-tools.jpl.nasa.gov/drive/files/allData/gracefo/docs/GRACE-FO_L3_Handbook_JPL.pdf
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water storage). Additional hydrological variables examined in this study include soil moisture, lake 

level height, and lake extent. 

 

3.5.2 Hydrological anomalies  

Monthly climate anomalies for precipitation, runoff, evapotranspiration, and root zone soil 

moisture were calculated using the difference between the monthly value and the monthly 

climatology. Monthly climate anomaly (henceforth referred to as ‘anomaly’) represents the 

difference between the actual monthly value and the monthly climatology. For example, a positive 

anomaly represents more rainfall than the climatological average. Likewise, a negative anomaly 

represents less rainfall than the climatological average. It is important to note that by international 

standards, climatology calculations should use a record of at least 30 years (WMO, 2017). 

However, this was not feasible for our study due to the availability and mission durations of Earth 

observations used for the analysis. Thus, a limitation of our study is that only a record of 20 years 

(June 2002 – June 2022) was used to calculate monthly climatology. Ideally, an equal time span of 

observations should be used for each month when calculating monthly climatology, but since the 

number of years of available observations is below the 30-year threshold, all available data is used 

for the analysis. Thus, 20 years of observations were used for all months except June, which had 

21 years of observations. 

Time series and spatial plots of monthly climate anomalies were constructed for each 

hydrological variable. For visual purposes, linear interpolation was used to re-grid precipitation, 

evapotranspiration, runoff, and root zone soil moisture to the same spatial scales for the spatial 

anomaly plots. TWSA was not re-gridded as this would be an overextension of the coarse native 

spatial resolution. 
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3.6 Results and Discussion  

 

 

Fig. 3.3: Time series of average monthly anomalies for hydrological variables (precipitation, 

evapotranspiration, runoff, root zone soil moisture, total water storage anomaly (TWSA), and lake 

height) in the Lake Victoria Basin. The local maxima positive anomaly during the 2019 – 2020 

flood period is indicated by a blue vertical line (representing the wet month). The local minima 

negative anomaly during the 2021 – 2022 drought period is indicated by a red vertical line 

(representing the dry month). Geospatial anomaly plots of the indicated wet and dry months for 

each hydrological variable are shown: (A) Time series of average monthly precipitation anomalies 

from Jan. 2002 – Jun. 2022 derived from GPM IMERG. (B) Time series of average monthly 

evapotranspiration anomalies from Jun. 2002 – Jun. 2022 derived from MODIS abord the Terra 

mission. (C) Time series of average monthly runoff anomalies from Jun. 2002 – Jun. 2022 derived 

from GLDAS. (D) Time series of average monthly root zone soil moisture (0 – 2 m depth) 

anomalies from Jun. 2002 – Jun. 2022 derived from GLDAS. (E) Time series of total water storage 

anomaly (TWSA) from Jun. 2002 – May 2022 derived from GRACE. (F) Time series of average 

monthly lake height anomalies relative to mean sea level (MSL) derived from Jason-1, Jason-2, 

and Jason-3. 
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3.6.1 Time series of hydrological anomalies  

Time series of hydrological anomalies for precipitation, evapotranspiration, runoff, root 

zone soil moisture, TWSA, and lake height from June 2002 – June 2022 are shown in Fig. 3.3A–

E. A key objective of this study is to examine the recent flood and drought periods in the Lake 

Victoria Basin, so our results and discussion are focused on hydrological anomalies between 

September 2019 – June 2022. However, the extended period of record provides valuable context 

for the magnitude and duration of the recent flood and drought events. The highest positive 

anomalies within this time period of June 2002 – June 2022 were observed during the 2020–2021 

flood event for evapotranspiration, runoff, TWSA, and lake height. Negative anomalies during the 

2021–2022 drought event, however, were not the most extreme negative anomalies that the Lake 

Victoria Basin has experienced in the past 20 years. In Fig. 3.3, the local maxima and minima 

hydrological anomalies are respectively indicated by vertical blue and red lines which show 

months where the Lake Victoria Basin experienced anomalous wet and dry conditions. Table 3.3 

summarizes months within the period of interest that were identified as positive anomalies (wet 

month) and the negative anomalies (dry month), as well as their respective anomaly values where 

applicable. Spatial plots corresponding to these identified wet and dry months for precipitation, 

evapotranspiration, root zone soil moisture, and TWSA are discussed in Section 3.6.2. 

In the precipitation anomalies time series shown in Fig. 3.3A, October 2019 was identified 

as the anomalous wet month with a value of + 73 mm. November 2021 was identified as the 

anomalous dry month with a value of − 32 mm. While the positive precipitation anomaly during 

October 2019 was not the most extreme observed within the basin between 2002 and 2022, it was 

followed by 8 months of persistently positive precipitation anomalies from September 2019 – April 
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Table 3.3: Summary of wet/dry months and positive/negative anomaly values for hydrological 

variables during the recent flood and drought events. These were determined from the time series 

of monthly basin-averaged anomalies constructed from 20 years of Earth observations or model 

data (see Fig. 3).  

Hydrological Variable 
Positive Anomaly (Wet 

Month) 

Negative Anomaly 

(Dry Month) 
Spatial Plot 

Precipitation 
Oct. 2019 

+ 73 mm 

Nov. 2021 

-32 mm 
Yes 

Evapotranspiration 
Feb. 2020 

+ 29 mm 

Mar. 2022 

-12 mm 
Yes 

Runoff 
Mar. 2020 

+ 27 mm 

Nov. 2021 

-10 mm 
Yes 

Root Zone Soil 

Moisture 

Mar. 2020 

+ 120 kg/m2 

Nov. 2021 

-71 kg/m2 
Yes 

Near-surface Soil 

Moisture: 9-km* 

Mar. 2020 

n/a 

Nov. 2021 

n/a 
Yes 

Near-surface Soil 

Moisture: 1-km* 

Mar. 2020 

n/a 

Nov. 2021 

n/a 
Yes 

Lake Height 
May 2020 

+ 1481 mm 

Feb. 2022 

+ 972 mm 
No 

Total Water Storage 

Anomaly (TWSA) 

May 2020 

+ 62 cm 

Dec. 2021 

+ 36 cm 
Yes 

*: The wet and dry months for near-surface soil moisture were assumed to be the same as those 

identified by the root zone soil moisture anomaly time series, since there is not a sufficient 

observation record of near-surface soil moisture data to independently calculate climatology. 

 

2020, which is one of the longest periods of positive precipitation anomalies experienced in the 

basin. 

The increase in TWSA during the same period (shown in Fig. 3.3E) concurs with the 

precipitation anomaly time series. TWSA reached its local maximum positive anomaly of + 62 cm 

in May 2020, which is one month later than the precipitation anomaly peak. This was the highest 
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TWSA value observed within the Lake Victoria Basin since 2002. During the 2021–2022 drought 

event, TWSA remains positive. In the past however, the Lake Victoria Basin has experienced dry 

periods with strong negative anomalies which indicates the relative magnitude of the early 2022 

drought in comparison to previous droughts. 

Lake height anomalies (shown in Fig. 3.3F) also increased substantially during the flood 

event. In September 2019, the lake height anomaly was + 340 mm. By May 2020, the lake height 

anomaly increased to + 1380 mm. At the time, lake level heights in May 2020 were record-

breaking (BBC News, 2020). However, the lake height proceeded to reach a higher positive 

anomaly in February 2021 with a value of + 1470 mm. During the 2021–2022 drought period, lake 

height anomalies remained positive while decreasing to + 972 mm. The TWSA in late 2021 and 

early 2022 remained relatively constant, despite the steady decrease in lake height anomalies at 

this time. 

Root zone soil moisture anomalies (shown in Fig. 3.3D) fluctuate from positive to negative 

between the 2019–2020 flood and 2021–2022 drought events. A maximum root zone soil moisture 

anomaly of + 120 kg/m2 was observed in March 2020. A minimum root zone soil moisture anomaly 

of − 71 kg/m2 was observed in November 2021, which was then followed by five months of 

persistently negative root zone soil moisture anomalies. By June 2022, however, the root zone soil 

moisture anomalies recovered and were positive. This captures the quick recovery of the recent 

drought event. 

Similar to the root zone soil moisture anomalies, runoff anomalies (shown in Fig. 3.3C) 

fluctuate from positive values in March 2020 of + 27 mm to negative values in November 2021 of 

− 10 mm. The runoff anomalies are persistently negative from June 2021-May 2022, before 

recovering to a positive anomaly in June 2022. In conjunction with the root zone soil moisture 
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anomalies during June 2022, the runoff anomalies in June 2022 also capture the basin’s quick 

recovery from the recent drought event. 

 

3.6.2 Spatial variability of hydrological anomalies  

Spatial anomaly plots of precipitation, evapotranspiration, runoff, root zone soil moisture, 

and TWSA are shown in Fig. 3.4A-E. For each hydrological variable, the previously identified wet 

and dry months from the hydrological anomalies time series are spatially plotted. Scalebar ranges 

were manually selected to ensure average variabilities over the basin are visually apparent by 

displaying outliers as the maximum and minimum colors. 

Precipitation anomalies during October 2019 (wet month) and November 2021 (dry month) 

are shown in Fig. 3.4A1-2. During the wet month, positive precipitation anomalies were dominant 

across the basin with most regions experiencing anomalies of + 100 mm or greater. This concurs 

with media and journal articles which reported heavy and atypical rainfall in the Eastern Horn of 

Africa due to one of the strongest Indian Ocean Dipole (IOD) events on record (FEWS NET, 2020; 

Wainwright et al., 2021). The greatest precipitation anomaly of + 472 mm was observed directly 

over Lake Victoria. In the dry month, precipitation anomalies were as severe as approximately − 

160 mm over the northeastern and southwestern shores of Lake Victoria. A few patches of positive 

anomalies were observed throughout the basin such as directly over Lake Victoria. This is likely 

explained by local meteorology in the nocturnal lake-land breeze system of Lake Victoria which 

makes precipitation directly over the lake 25 – 30% greater than precipitation over the surrounding 

land (Shamsudduha et al., 2017; Thiery et al., 2016). 
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Fig. 3.4: Average monthly geospatial anomalies of hydrological parameters during the 

anomalously high (wet) and low (dry) months between Sept. 2019 – Jan. 2022. These months are 

the local maxima and minima in the basin-averaged monthly time series of hydrological anomalies 

shown in Figure 3 as the vertical blue and red lines to indicate wet and dry anomalies. For visual 
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purposes, the scalebar was manually selected to represent variability within the basin by 

displaying outliers as the maximum/minimum colors. (A1) Monthly precipitation anomalies in Oct. 

2019 (wet month). (A2) Monthly precipitation anomalies in Nov. 2021 (dry month). (B1) Monthly 

evapotranspiration anomalies in Mar. 2020 (wet month). (B2) Monthly evapotranspiration 

anomalies in Jan. 2022 (dry month). (C1) Monthly runoff anomalies in Mar. 2020 (wet month). 

(C2) Monthly runoff anomalies in Nov. 2021 (dry month). (D1) Monthly root zone soil moisture 

anomalies in Mar. 2020 (wet month). (D2) Monthly root zone soil moisture anomalies in Dec. 

2021 (dry month). (E1) Monthly total water storage anomaly (TWSA) in May 2020 (wet month). 

(E2) Monthly total water storage anomaly (TWSA) in Dec. 2021 (dry month) 

Evapotranspiration spatial anomaly plots for February 2020 (wet month) and March 2022 

(dry month) are shown in Fig. 3.4B1–2. As previously discussed, an unfortunate limitation of this 

MODIS evapotranspiration product is that lakes and permanent waterbodies are masked out. 

However, one would expect that a significant portions of the basin’s overall evapotranspiration 

occurs directly over Lake Victoria due to the lake’s large surface area, shallow depth, and the 

region’s tropical climate. Previous studies have found that evaporation accounts for 80% of the 

water leaving Lake Victoria while precipitation accounts for approximately 86% of the total water 

input into Lake Victoria (Nyeko-Ogiramoi et al., 2013). However, it is not possible to assess these 

results with the public Earth observations utilized in this study. In Fig. 3.4B1–2, less extreme 

anomalies (± 10 mm) were observed in the western portion of the basin compared to the eastern 

regions ( ± 40 mm). When compared alongside land cover type (Fig. 3.2), permanent wetlands are 

highlighted as positive anomalies during the wet month and the Kenyan forested areas are 

highlighted as negative anomalies during the dry month. Similar spatial anomaly patterns were 

observed for runoff (Fig. 3.4C1–2) and root zone soil moisture (Fig. 3.4D1–2). During the wet 

month (March 2020), the most extreme runoff and root zone soil moisture anomalies were 

observed in the lower elevations (up to +120 mm for runoff and +254 kg/m2 for root zone soil 
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moisture anomalies). In the dry month (November 2021), root zone soil moisture anomalies ≤ − 

100 kg/m2 were observed across most of the eastern portion of the basin. Additionally, there is a 

clear division between positive/negative runoff and root zone soil moisture anomalies in Burundi 

and Rwanda. This pattern follows the boundary of cropland versus grassland/savanna land cover 

types shown in Fig. 3.2. 

TWSA spatial plots for May 2020 (wet month) and December 2021 (dry month) are shown 

in Fig. 3.4E1–2. For both periods, an overall positive TWSA was observed within the basin with 

regions experiencing peak TWSA greater than or equal to + 60 cm. However, December 2021 has 

lower positive anomalies than May 2020 in the eastern and southwestern portions of the basin. 

Observed changes in TWSA are more extreme over land as opposed to the lake itself between the 

wet and dry months. Additionally, highly negative TWSA are observed in Uganda near Lake 

Victoria’s outlet which is a highly populated urban area. Because the native resolution of GRACE 

is coarse, it is possible that these observed patterns are indicative of limitations of the enhanced 

spatial resolution of the GRC Tellus Global Mascon Monthly Mass Grid data. Further research 

should be conducted to assess the accuracy and limitations of this data product with regard to 

extreme hydrological events in the Lake Victoria Basin. 

Overall, the spatial plots of hydrological anomalies capture significant variability within 

the Lake Victoria Basin and between periods of flood and drought. This provides valuable spatial 

hydrological information which complements the previously discussed temporal anomaly analysis. 

This level of spatial hydrological analysis would not otherwise be obtainable given the region’s 

limited in-situ hydrological observations. 

 

3.6.3 Comparison of 9-km and 1-km soil moisture products  
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Spatial plots of monthly soil moisture observations (0–5 m depth) are shown in Fig. 3.5. 

Due to the limited mission duration of SMAP (launched in 2015), a sufficient period of record was 

not available to conduct an anomaly analysis. Additionally, no soil moisture data is collected over 

Lake Victoria or other waterbodies within the basin. 

Consistent with the root zone soil moisture anomaly analysis, March 2020 and November 

2021 were selected as wet and dry months of interest. The 9-km SMAP soil moisture observations 

for the wet month show higher soil moisture values, ranging from approximately 0.34 to 0.44 

kg/m2 in the northeastern, southern, and southwestern regions of the basin (Fig. 3.5A1). During 

the dry month, the 9-km SMAP soil moisture observations showed that the lower elevations in the 

northeast maintained higher soil moisture values than the higher elevations in Kenya. The 

southeastern regions of the basin in Rwanda and Burundi also maintained higher soil moisture than 

the surrounding regions. Based on the land cover classifications, this spatial pattern may be 

explained by human intervention to maintain soil moisture conditions suitable for agriculture. 

The 1-km downscaled soil moisture observations are shown in Fig. 3.5B1–2 for March 

2020 and November 2021 as well. Overall, the 1-km soil moisture product demonstrated higher 

soil moisture values in the southern region compared to the 9-km SMAP product (Fig. 3.5B1). 

Similarly, in the dry month, the 1-km soil moisture product demonstrated lower soil moisture 

values (0.05 kg/m2) than the 9-km SMAP product (0.13 kg/m2) in the eastern edge of the basin in 

Kenya and Tanzania (Fig. 3.5B2). Qualitatively, the 1-km soil moisture product seems to capture 

more extreme soil moisture values than the 9-km SMAP product. 
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Fig. 3.5: Spatial plots of monthly soil moisture (0–5 cm depth) observations derived from SMAP. 

March 2020 and November 2021 were respectively selected as the wet and dry months, based on 

the time series of monthly root zone soil moisture anomalies (Fig. 4 C1 and C2). The spatial plots 

are shown at both 9-km and 1-km resolutions. (A1) 9-km monthly soil observations in Mar. 2020 

(wet month); (A2) 9-km monthly soil moisture observations in Nov. 2021 (dry month); (B1) 1-km 

monthly soil moisture observations in Mar. 2020 (wet month); (B2) 1-km monthly soil moisture 

observations in Nov. 2021 (dry month). 

A quantitative validation analysis was performed with 28 ground-based soil moisture 

stations through the Trans-African HydroMeteorological Observatory (TAHMO) and the 

International Soil Moisture Network (ISMN) which is accessible at https://ismn.geo. 

tuwien.ac.at/en/. Validation statistics, plots, and time series are shown in Figs. 3.6 and 3.7 and the 

Appendix (3.1− 3.22). It is important to note that this validation is limited by the short period of 

in-situ observations primarily from mid-2018 to present. Additionally, no ISMN in-situ 

observations were available in Tanzania. 
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Fig. 3.6: Results of validation of in-situ near-surface soil moisture observations from the 

International Soil Moisture Network with the 1-km and 9-km Soil Moisture Active Passive (SMAP) 

observations at 6:00AM overpasses. 

 

In Fig. 3.6, data collected at four ISMN soil moisture observation sites were validated with 

the 1-km and 9-km SMAP observations. The 1-km downscaled soil moisture observations 

performed better than the 9-km soil moisture product for each site. Fig. 3.7 shows time series of 

the same four ISMN soil moisture observation sites in comparison with the 1-km and 9-km soil 

moisture SMAP observations from 2015 to 2021. Here, it is possible to see how the performance 

of both the 1-km and 9-km soil moisture products vary over time in comparison with the in-situ 
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soil moisture observations. In general, the 1-km data performed comparably or better than the 9-

km SMAP observations with lower unbiased RMSE. Both the 1-km and 9-km data had low p-

values and were statistically significant. From this validation (Figs. 6 and 7) and the Appendix, it 

is clear that the downscaled 1-km soil moisture compares better to the available in-situ 

observations than the original 9-km soil moisture data. Along with the 1-km global validation 

conducted by Fang et al. (2022), this validation forms a good basis for acceptance of use of the 

SMAP downscaled 1-km soil moisture data set for analyses in this basin. Future research should 

be conducted to continue validation efforts across the African continent. 

 

 

Fig. 3.7: Time series of in-situ near-surface soil moisture observations from four TAHMO stations 

compared with 1-km and 9-km SMAP soil moisture observations from 2015 to 2021. 



82 

 

3.6.4 Change in lake volume  

To further quantify the relative hydrological variations in this region between hydrological 

extremes, change in the volume of Lake Victoria were calculated from the identified wet month 

(May 2021) and dry month (Feb. 2022) in lake level height using the following equation:  

∆𝑉 =  ∆𝐴 ∗ ∆𝐻                                                          (2)  

where ∆𝑉 is change in volume, ∆𝐴 is change in surface area, and ∆𝐻 is change in lake level height. 

The change in surface area between May 2021 and Feb. 2022 were calculated by identifying the 

total area of inundated pixels over Lake Victoria in Sentinel-1 synthetic aperture radar (SAR) 

imagery during the two months. Changes in lake level height were derived from the G-REALM 

altimetry data. Between May 2021 and Feb. 2022, the lake level decreased by 1.19 m and the 

surface area decreased by approximately 9,270 km2. Thus, the overall change in lake level volume 

was -11.03 km3. This large decrease in lake volume concurs with the results derived from the other 

hydrological variables which also experienced large decreases (represented as negative anomalies) 

during this time period.  

 

4.6.6 Relationship between TWSA, precipitation, and lake height  

A time series of monthly climatology for precipitation, lake height, and TWSA are shown 

in Fig. 3.8 (see Section 3.2, equation 2 for more details on the calculation of monthly climatology). 

This depicts the seasonality of precipitation, lake height, and TWSA based on the period of 

available data (June 2002 – June 2022 for precipitation and lake height; June 2002 – May 2022 for 

TWSA). The precipitation monthly climatology captures the distinct short rainy season and long 

rainy season which respectively occur between March – May and September – November. April 

has the highest average rainfall of 118 mm/month. July has the lowest average rainfall of 56 
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mm/month. Lake height follows similar seasonality as precipitation with a slight lag 

(approximately 1–2 months). May has the highest average lake height with an elevation of 1136 

m above MSL. October has the lowest average lake height with an elevation of 1134 m above 

MSL. As previously discussed, Lake Victoria is sensitive to human management of hydropower 

dam operations at its outlet so these seasonal changes may be a result of both anthropogenic and 

natural factors. TWSA depicts similar seasonality as precipitation with a lag of 1–2 months. May 

has the highest average monthly TWSA value of + 7 cm/month. September has the lowest average 

monthly TWSA value of − 8 cm/month. 

 

 

Fig. 3.8: Variability of monthly climatological values of precipitation, lake height, and total water 

storage anomaly (TWSA) which were calculated from the duration of the study period from June 

2002 – January 2022 using equation 2. This graph shows the seasonality of precipitation, lake 

height, and TWSA within the basin. It is important to note that lake height is managed by 

hydropower dams at Lake Victoria’s outlet near Jinja, Uganda. 

  

Fig. 3.9 shows a longer time series comparison from January 2019 – January 2022 for 

monthly TWSA (purple bars), observed basin averaged monthly precipitation (blue solid line), and 

monthly climatology of precipitation (dashed gray line). From October 2019 to May 2020, the 
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average observed monthly precipitation exceeded the monthly precipitation climatology by 13–75 

mm. This means the basin experienced a positive precipitation anomaly and was wetter than the 

climatological average. From media articles, it is documented that extensive flooding occurred 

during this period in the Lake Victoria Basin and East Africa (BBC News, 2020; FEWS NET, 

2020; Khaki & Awange, 2021; Kisumu, 2020; Wainwright et al., 2021). 

 

 

Fig. 3.9: Time series of monthly total water storage anomaly (TWSA, shown as purple bars), 

observed basin-averaged monthly precipitation (shown as solid blue line), and climatological 

monthly precipitation (black dashed line) from Jan. 2019 – Jan. 2022. If the monthly precipitation 

is greater than the climatological precipitation, the basin experienced a positive anomaly meaning 

it was wetter than the climatological average. Likewise, if the monthly precipitation is less than 

the climatological precipitation, the basin experienced a negative anomaly meaning it was drier 

than the climatological average. Note, TWSA data was not yet published for Nov. 2021-Jan. 2022 

when this analysis was conducted. 

Similarly, March 2021 – December 2021 had average observed monthly precipitation 

below the monthly climatology by − 6 mm to − 31 mm. This indicates a negative precipitation 

anomalies and drier conditions than the climatological average. These observations concur with a 

report from the Famine Early Warning Systems Network which documented this period as having 
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a failed rainy season and high risk for crop failure and food insecurity in East Africa (FEWS NET, 

2021). 

 

3.7 Conclusions 

Over the previous decades, hydrometeorological extremes like floods and droughts have 

been continual and recurrent in the Lake Victoria Basin. Recently, the Lake Victoria Basin 

experienced extreme floods in 2019–2020 and drought conditions in early 2022. High-resolution 

spatial and temporal monitoring of hydrological variables are vital for improving understanding of 

hydrology within the Lake Victoria Basin, particularly given the region’s dense population and 

vulnerability to sub-seasonal hydrological anomalies which can lead to the loss of life and property, 

crop failure, food insecurity, and increased poverty. However, there are insufficient in-situ 

hydrological observations in the Lake Victoria Basin to fill this need. Thus, in this study, we 

leverage publicly available Earth observations and model data to capture occurrence of the recent 

flood and drought events in the Lake Victoria Basin. We examined and discussed components of 

the hydrological water balance (precipitation, evapotranspiration, runoff, and change in total water 

storage) and additional hydrological variables (soil moisture, lake height, and lake extent) with 

specific regard to the recent hydrological extreme events. This was accomplished through 

construction of time series and spatial plots of monthly anomalies for each variable. Our results 

improve understanding and documentation of the severity and duration of the recent flood and 

drought events. 

The innovation of this work is that it offers a simple method of using publicly available 

Earth observations and model data to improve spatial and temporal analyses of hydrological 

anomalies at sub-seasonal time scales within a region lacking in-situ data. To our knowledge, this 

is the first study to conduct a hydrological spatial anomaly comparison for the 2019–2020 flood 
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and 2021–2022 drought events in the Lake Victoria Basin. Thus, this is a novel contribution to the 

existing record of hydrological research in this region because it updates previous studies and is 

among the first to integrate such a diverse array of publicly available datasets for the Lake Victoria 

Basin. Further work could assess this method for informing water resources management in this 

region, particularly for informing scheduling, planting, irrigation, and harvesting of crops. This 

would be valuable given the Lake Victoria Basin’s growing population and economic reliance on 

rain-fed subsistence agriculture. 

Additionally, a comparison of 9-km and 1-km near-surface soil moisture products derived 

and downscaled from SMAP was conducted to improve spatial resolution of soil moisture 

observations in the Lake Victoria Basin. The 1-km near-surface soil moisture product was 

validated with ground station near-surface soil moisture data available through the International 

Soil Moisture Network and performed either better or comparably to the 9-km SMAP observations. 

This was the first validation of the 1-km near-surface soil moisture product in the continent of 

Africa. Further research should continue validation efforts of soil moisture data derived from Earth 

observations in the Lake Victoria Basin and Africa in the limited regions where ground-based 

observations are available. 

Methods and findings from this study can be used to advance understanding and monitoring 

methods of sub-seasonal hydrological anomalies within the Lake Victoria Basin, particularly 

through publicly available Earth observations. By demonstrating a simple method for improved 

monitoring of hydrological variables including precipitation, evapotranspiration, runoff, soil 

moisture, lake height, and TWSA, this study supports the continual effort to decrease the Lake 

Victoria Basin community’s vulnerability to hydrological anomalies during extreme floods and 

droughts. 
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Chapter 4: Risk Comparison of Hurricane Scenarios as 

Disruptions of Hydrologic Basin Order with Criteria of 

Social Vulnerability3  

 

4.1 Abstract 

Economic damages of hurricanes and tropical cyclones are increasing faster than 

populations and wealth of many coastal areas. There is urgency to update priorities of agencies 

engaged with risk assessment, risk mitigation, and risk communication across hundreds or 

thousands of water basins. This paper evaluates hydrology and social vulnerability factors to 

develop a risk register at a sub-basin scale for which the priorities of agencies vary by storm 

scenario using publicly available satellite-based Earth observations. The novelty and innovation 

of this approach is the quantification and mapping of risk as a disruption of system order, while 

using social vulnerability indices and sensor data from disparate sources. The results assist with 

allocating resources across basins under several scenarios of hydrology and social vulnerability. 

 
3 The work presented in this chapter resulted in the following journal article accepted for publication in ASCE-ASME 

Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:  

 

Pavur, G. Lambert, H., Lakshmi, V. “Risk Comparison of Hurricane Scenarios as Disruptions of Hydrologic Basin 

Order with Criteria of Social Vulnerability.”  
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The approach is in several parts as follows: First, a baseline order of basins is defined using the 

CDC/ATSDR Social Vulnerability Index (SVI). Next, a set of storm scenarios is defined using 

Earth Observations and modeled data. Next, a swing-weight technique is used to update factor 

weights under each scenario. Lastly, the importance order of basins relative to the baseline order 

is used to compare risk of scenarios across the study area. The risk is thus quantified (by least 

squares difference of order) as a disruption to the ordering of basins by social and hydrologic 

factors (i.e., SVI, precipitation, wind speed, and soil moisture), with attention to the most 

disruptive scenarios. An application is described with extensive mapping of hydrologic basins for 

Hurricane Ian to demonstrate a versatile method to address uncertainty of scenarios of storm nature 

and extent across coastal mega-regions.   

 

4.2 Introduction  

Tropical cyclones historically result in social, economic, and environmental losses in 

coastal mega-regions such as the southeastern United States. Compared to other disasters in the 

USA, tropical cyclones result in the most damages and fatalities, averaging approximately $30.9 

billion in damages and 157 fatalities per year since 1980 (NOAA, 2023). The southeastern USA is 

a hotspot for disproportionately high losses from climate-sensitive hazards because of elevated 

exposure and concentrations of socially vulnerable populations (Cutter et al., 2003; Emrich & 

Cutter, 2011). With predictions that climate change will increase the frequency and intensity of 

future tropical cyclones, there is a need to reduce tropical cyclone risk and improve system 

resilience (Lavell et al., 2012; UNDRR, 2015). Evidence-based decision making has been 

identified as an essential tool to support sustainable, resilient, and risk-informed societies across 

organizational boundaries during disasters (Kavvada et al., 2022; Shittu et al., 2018). To support 

this, there is a need to quantity risk using social and environmental data.   
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Social vulnerability of an individual or community refers to their “capacity to anticipate, 

confront, repair, or recover from the effects of a disaster” (Flanagan et al., 2018). Previous studies 

have shown that communities of high social vulnerability face significant short and long-term 

challenges following disasters which limits their ability to recover ( Flanagan et al., 2011, 2018; 

Fothergill & Peek, 2004; Yarveysi et al., 2023). Disparities of social vulnerability are observable 

within neighboring blocks, meaning communities with varying social vulnerability will likely 

suffer different impacts if exposed to the same tropical cyclone conditions (Bakkensen et al., 2017; 

Yarveysi et al., 2023). For example, the overall economic cost of repairs may be larger within an 

affluent community, but the losses are disproportionately higher for the socially vulnerable 

community (Flanagan et al., 2011). Examples of tropical cyclone disaster challenges associated 

with social vulnerability during each phase of the disaster cycle (mitigation, preparedness, 

response, and recovery) are provided in Appendix 4.1.  

Previous research quantified the relative social vulnerability of the United States at various 

spatial resolutions including the county level, Census-tract level, and block level (Cutter et al., 

2003; Flanagan et al., 2011; Yarveysi et al., 2023). These datasets have been applied to natural and 

anthropogenic hazards to show the spatial and temporal variability of social vulnerability across 

the United States. Three social vulnerability indices are described below:  

1. County-level Social Vulnerability Index (SoVI): Cutter et al., 2003 developed the 

county-level SoVI by using principal components analysis with socioeconomic and 

demographic data that were identified as influential to natural hazards vulnerability (Cutter 

et al., 2003; Emrich & Cutter, 2011). Findings included observable variations in SoVI 

across widespread regions, such as neighboring states, and the need for higher spatial 

resolution data to resolve hazard vulnerabilities at the sub-county level (Cutter et al., 2003; 
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Emrich & Cutter, 2011). Due to the coarse county-level resolution, SoVI was not used in 

this study. 

2. Block-level Socio-Economic-Infrastructure Vulnerability Index (SEIV): Yarveysi et 

al., 2023 developed the SEIV by leveraging machine learning algorithms to provide high-

resolution vulnerability data at the block-level (Yarveysi et al., 2023). This allows for 

analyses at finer spatial resolutions compared to SoVI and SVI. It showed significant 

inequities among neighboring blocks (Yarveysi et al., 2023). However, SEIV is not 

currently recommended to be applied to disasters with high levels of damage (> $250 

million) since losses at the fine resolution of SEIV are unreasonable to distinguish 

(Yarveysi et al., 2023). Since this study provides a demonstration of the methodology for 

a hurricane with damages of over $114 billion, SEIV was not used.   

3. Census-tract level Social Vulnerability Index (SVI): The Centers for Disease Control 

(CDC) and Prevention Agency for Toxic Substances and Disease Register (ASTDR) 

constructed a Census-tract level SVI designed to support disaster management (Flanagan 

et al., 2011). The index is available for multiple years (2000, 2010, 2014, 2016, 2018, and 

2020) using sixteen (16) variables to calculate SVI at national and state levels (see 

Appendix 4.2; Flanagan et al., 2011). SVI has been validated and applied to natural and 

anthropogenic disasters including tropical cyclones, wildfires, sea level rise, rural/urban 

studies, migrant and refugee population studies, etc. (Flanagan et al., 2018). For this study, 

we have chosen to use SVI as it is the finest resolution social vulnerability data appropriate 

for disasters with extensive damage greater than $250 million.  

A factor of tropical cyclone damage is exposure to intense hydrometeorological conditions. 

Generally, adequate spatial and temporal ground-based in-situ observations are not possible to 
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collect during tropical cyclones due to widespread instrument failures (Bucci et al., 2022). 

Satellite-based Earth observations can fill this data gap by collecting high-resolution spatial and 

temporal data during the disaster which may have otherwise been unobservable. For this study, 

precipitation, wind speed, and soil moisture estimates were obtained from Earth observations and 

models. Since hurricane damages can occur from exposure to a single extreme environmental 

variable as well as a combined exposure to multiple environmental variables, this study considers 

both individual and multiple variables (Clark et al., 2022). 

With the above motivation, this paper will address a need for regularly updated disaster risk 

maps, as outlined in the United Nations Sendai Framework for Disaster Risk Reduction, by 

providing a methodology to combine disparate sources of information in a risk register at a sub-

basin scale (Bonato et al., 2022; Hamilton et al., 2015; Karvetski et al., 2009; UNDRR, 2015; You 

et al., 2014). Within this risk register of basins, hydrological and social vulnerability factors 

(specifically SVI, cumulative precipitation, maximum hourly precipitation, maximum hourly wind 

speed, and five-day antecedent soil moisture) are combined in several storm scenarios that disrupt 

the system order relative to a baseline scenario of SVI. A swing-weight technique is used to 

calculate new ordering functions for each basin under a given scenario (Karvetski et al., 2009). 

The swing-weight technique allows for tradeoffs of higher consideration of one or more variables 

in exchange for lower consideration of other variables (Karvetski et al., 2009). This is 

advantageous for risk analysis of hydrological disasters because the relative importance of one 

variable (social or hydrological) over another is uncertain. Thus, comparison of storm scenarios 

derived from a swing-weight technique reveals the sensitivity of the system to both single and 

multiple variables input into the model. 
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The disruption of tropical cyclone disaster scenarios compared to the baseline order are 

mapped to identify basins of top priority and basins of greatest change in priority. The sum of 

squares of differences in order of basins relative to the baseline order is used to identify scenarios 

that are most and least disruptive. A regional demonstration of this approach with features of 

Hurricane Ian is provided. The approach is an example of multidisciplinary innovation toward 

providing high-resolution risk communication to disaster managers and policymakers for systems 

analysis and resource allocation. The maps and other results can inform priorities and strategies 

aimed to decrease or transfer tropical cyclone risk and improve system resilience within basins of 

high tropical cyclone exposure and high social vulnerability.   

4.2.1 Hurricane Ian Damages  

In September 2022, Hurricane Ian became the 3rd costliest hurricane in USA history with over 

$114 billion in estimated damage (Smith, 2023; Smith & Katz, 2013). Hurricane Ian caused 156 

direct and indirect fatalities, 150 of which occurred in Florida, making this the deadliest storm in 

Florida since 1935 (Bucci et al., 2022; Karimiziarani & Moradkhani, 2023).  

Conditions for Hurricane Ian were described by the National Oceanic and Atmospheric 

Administration (NOAA) National Hurricane Center and the media as catastrophic, life-

threatening, and deadly (Bucci et al., 2022). Damages included, but were not limited to, storm 

surge up to 15 ft above ground level, extensive flooding, destruction and damage to infrastructure, 

multiple tornadoes, and tropical-storm force winds (Bucci et al., 2022). Hundreds of water rescues 

were necessary and an estimated 9.62 million people were without power (Bucci et al., 2022). In 

the aftermath of Ian, receding stormwater transported pollutants and debris to the Gulf of Mexico 

which caused harmful algal blooms off the Florida coast (Bucci et al., 2022).  
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4.2.2 Hurricane Ian Meteorology  

Ian originated off the west coast of Africa, rapidly intensified in warm Atlantic Ocean water, 

and made its first landfall in western Cuba as a Category III hurricane on the Saffir-Simpson 

Hurricane Wind Scale on September 27 (Bucci et al., 2022). The system continued into the Gulf 

of Mexico where it strengthened to a brief peak intensity of a Category V hurricane (Bucci et al., 

2022). Ian weakened slightly to a Category IV hurricane before making landfall near Punta Gorda, 

Florida on September 28 (Bucci et al., 2022). As Ian slowly traversed Florida, it weakened to 

tropical storm status before re-entering the Atlantic Ocean near Cape Canaveral, Florida on 

September 29 (Bucci et al., 2022). Once in the Atlantic Ocean, Ian intensified to a Category I 

hurricane and made its final landfall near Georgetown, South Carolina. Ian gradually weakened in 

the Carolinas and dissipated on October 1 (Bucci et al., 2022).  

 

4.2.3 Hurricane Ian Data Collection  

Numerous data collection methods were employed before, during, and after Hurricane Ian to 

support forecasting, response, and recovery efforts. For example, data were collected using 

ground-based weather radars, networks of buoys, dropwindsonde observations, satellite 

observations, Hurricane Hunter flights, and meteorological/environmental models (Bucci et al., 

2022). It is important to note that during Hurricane Ian’s landfall in the USA, many in-situ 

observation stations suffered instrument failures due to their exposure to the hurricane and were 

unable to capture the peak meteorological conditions (Bucci et al., 2022). Thus, satellite-based 

Earth observations provide a valuable contribution to hurricane data collection by providing high-

resolution spatial and temporal data during the disaster that could have been unobservable 

otherwise.  
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4.2.4 Hurricane Ian Social Vulnerability Challenges  

Forecast and warnings for Hurricane Ian were issued 39-48 hours in advance of its landfall in 

both Florida and South Carolina (Bucci et al., 2022). Even with relatively good forecasting and 

early issues of warnings, as was the case with Hurricane Ian, previous studies have shown that 

social vulnerability factors decrease the ability of individuals to safely evacuate (Anand et al., 

2023; Flanagan et al., 2011, 2018; Meyer et al., 2018). Social vulnerability may explain the high 

number of fatalities during Hurricane Ian, particularly considering that reports of indirect causes 

of death included lack of access to timely medical care, accidents (such as falling during power 

outages), cardiac events, etc. (Bucci et al., 2022). Additionally, the elderly composed the highest 

proportion of fatalities during Hurricane Ian, which is generally observed during disasters (Bucci 

et al., 2022; Flanagan et al., 2011).  

 

4.3 Geographic Area of the Demonstration  

The NOAA National Weather Service estimates of Hurricane Ian’s path and wind swath over 

the contiguous United States were used to define a study area of 922 sub-basins within and 

traversing portions of the following five southeastern states: Alabama, Florida, Georgia, North 

Carolina, and South Carolina (Fig. 4.1). The sub-basins were defined using the Level 08 

HydroBASINS product (Lehner & Grill, 2013a). The study area encompassed approximately 

700,000 km2. 

A digital elevation model (DEM) for the study area is shown in Fig. 1A and was derived from 

the National Aeronautics and Space Administration (NASA) Shuttle Radar Topography Mission 

(SRTM). Due to the variability of low-lying terrain and the Appalachian Mountains, elevation 
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within the study area ranged from approximately -29 m to +1977 m relative to mean sea level 

(MSL). The mean elevation was +145 m MSL.  

 

Fig. 4.1: Area of demonstration within the southeastern United States. (A) Digital elevation 

model (DEM) and HydroBASINS Level 08 sub-basins. (B) Hurricane Ian track and wind swath 

estimates from NOAA National Weather Service and HydroBASINS Level 08 sub-basins. 

 

4.4 Sources of Data for the Demonstration  

Descriptions of data used in this study for social factors (i.e., SVI) and hydrology factors (i.e., 

precipitation, wind speed, and soil moisture) are provided in the following sub-sections. Table 4.1 

summarizes the temporal resolution, native spatial resolution, resampled resolution, resampling 

method, study period, and source for each dataset. 
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Table 4.1: Summary of hydrology and social vulnerability data used in this study, including the variable, 

sensor/model, native spatial resolution, resampled resolution, resampling method, temporal resolution, 

study period, and sources. 

Variable Sensor/ 

Model 

Native 

Spatial 

Resolutio

n 

Resample

d 

Resolution 

Resamplin

g Method 

Temporal 

Resolutio

n 

Study 

Period 

Sources 

Social 

Vulnera

bility 

Index 

(SVI) 

CDC/ATS

DR Social 

Vulnerabili

ty Index 

2020 

Database, 

USA 

Census 
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4.4.1 Sub-basin delineations from HydroBASINS 

HydroBASINS, a secondary dataset of the World Wildlife Fund’s HydroSHEDS product, 

provides hierarchical sub-basin boundaries at a global scale  (Lehner & Grill, 2013a). For this 
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demonstration, the Level 08 HydroBASINS product is used because it is the finest sub-basin 

resolution which guarantees at least one unique Earth observation pixel per sub-basin. In total, the 

study area has 922 sub-basins with a mean area of 748 km2 and a median area of 533 km2. 

Additional details of HydroBASINS are available in Appendix 4.3 and in 2023 at: 

https://www.hydrosheds.org/products/hydrobasins..  

 

4.4.2 CDC/ASTDR Social Vulnerability Index (SVI)  

Social vulnerability data are obtained from the Center for Disease Control and Prevention 

Agency for Toxic Substances and Disease Registry Social Vulnerability Index (CDC/ASTDR SVI, 

henceforth referred to as SVI). This dataset provides vulnerability estimates at the United States 

Census Tract level for select years between 2000 – 2020 (CDC/ATSDR, 2023). The US wide SVI 

product for 2020 is used to allow for multi-state analyses and since it was the most up-to-date 

version available at the time of this study.  

A summary of sixteen (16) variables contributing to overall SVI calculations is provided in 

Appendix 4.I. SVI indices range from 0 – 1, with 1 indicating the most vulnerable and 0 indicating 

the least vulnerable regions. The SVI data and additional details are available at 

https://www.atsdr.cdc.gov/placeandhealth/svi/index.html as accessed in 2023 and in Appendix 4.2. 

 

4.4.3 Precipitation Data from GPM IMERG  

Precipitation data are derived from the Integrated Multi-satellitE Retrievals for Global 

Precipitation Measurement (GPM IMERG) missions which provides up to half-hourly 

precipitation observations at a spatial resolution of 0.1° (Huffman et al., 2020).  

https://www.hydrosheds.org/products/hydrobasins
https://www.atsdr.cdc.gov/placeandhealth/svi/index.html
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For this study, the GPM IMERG Late Precipitation V06 Half Hour Precipitation dataset from 

September 27 – October 2, 2022, is used to calculate maximum hourly precipitation (i.e. 

precipitation intensity) and cumulative precipitation (i.e. precipitation duration). Additional 

information and the technical documentation for GPM IMERG is available in Appendix 4.3 and 

in 2023 at: https://gpm.nasa.gov/documents/IMERG-V06-Technical-Documentation.  

 

4.4.4 Wind speed data from ECMWF ERA5  

Wind speed data were obtained from the Copernicus Climate Change Service (C3S) European 

Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis Version 5 (ERA5). For this 

study hourly wind speed data from September 27 – October 2, 2022 are calculated using Eq. 1 

where u is the u-component of wind in the longitudinal direction 10 m above the surface of the 

Earth and v is the v-component of wind in the latitudinal direction 10 m above the surface of the 

Earth. Both u and v are utilized at hourly temporal resolutions. 

𝑊𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = √𝑢2 + 𝑣2               (1) 

Additional information and the technical documentation of ERA5 are available in 

Appendix 4.3 and in 2023 at: 

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation. 

 

4.4.5 SMAP-Derived 1-km Downscaled Surface Soil Moisture Product  

The Soil Moisture Active Passive (SMAP) Derived 1-km Downscaled Surface Soil 

Moisture Product is used to calculate the 5-day antecedent near-surface soil moisture (0 – 5 cm 

depth below the surface of the Earth) (Lakshmi & Fang, 2023). For this study, antecedent soil 

moisture is examined because of fallen tree damage reports during Hurricane Ian attributed to 

https://gpm.nasa.gov/documents/IMERG-V06-Technical-Documentation
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
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saturated soil, high winds, and widespread flooding (Bucci et al., 2022). The study period of 

September 23 – 27, 2022 provided five-day antecedent soil moisture data prior to landfall of 

Hurricane Ian in Florida. This was the shortest antecedent period with sufficient observational 

coverage since the dataset is limited by cloud cover.  The data and additional details on the SMAP-

Derived 1-km Downscaled Surface Soil Moisture Product are available in Appendix 4.3 and in 

2023 at: https://doi.org/10.5067/U8QZ2AX5V7B.  

4.5 Methods  

This section describes the methodology in several parts as follows: First, all variables are 

resampled to a sub-basin scale as defined by the Level 08 HydroBASINS dataset. Second, the sub-

basins are characterized from highest to lowest order for each variable. Third, the basin order using 

SVI is defined as the baseline scenario, which represents initial conditions of the study area prior 

to the hurricane disturbance. Fourth, storm scenarios are defined based on the hydrology and SVI 

variables. Fifth, a swing-weight technique is used to update factor weights for each scenario. Sixth, 

risk is calculated for each scenario as the difference in basin order of the baseline scenario versus 

a given scenario. Seventh, a score of disruptiveness is calculated for each scenario using the 

normalized sum of squares of differences in order. Further details of each step are provided in the 

subsequent paragraphs.  

Hydrology and social vulnerability variables are first resampled to each sub-basin (defined by 

the Level 08 HydroBASINS dataset) to allow for comparisons regardless of the native resolution 

of each dataset. For SVI and five-day antecedent soil moisture (SM), a spatial average is used. For 

cumulative precipitation (P1), a spatial sum is used. For maximum hourly precipitation (P2) and 

maximum hourly wind speed (W), a spatial average of maximum observed values is used. Fig. 2 

provides spatial plots of the original resampled variables.  

https://doi.org/10.5067/U8QZ2AX5V7B
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Fig. 4.2: Spatial maps of the observed social vulnerability and hydrology variables resampled per sub-

basin for (A) Social Vulnerability Index, (B) cumulative precipitation, (C) maximum hourly precipitation, 

(D) five-day antecedent soil moisture, and (E) maximum hourly wind speed. 

 The sub-basins are then characterized by ordering from highest to lowest value and 

assigning an integer value from 1 to the total number of basins using Eq. 2:  

𝑆𝑛(𝑏𝑖) = 100 ∗  ∑ 𝑤𝑗𝑣𝑖𝑗

𝑘

𝑗=1

                                   (2) 

𝑤ℎ𝑒𝑟𝑒 {𝑤𝑗| ∑ 𝑤𝑗 = 1, 0 ≤ 𝑤𝑗 ≤ 1, 𝑗 = 1, … , 𝑘

𝑘

𝑗=1
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 Here, the basin order for the 𝑖𝑡ℎ basin (𝑏𝑖) under the 𝑛𝑡ℎ scenario (𝑆𝑛) is defined as the 

summation of 𝑗 to 𝑘 variables for the 𝑖𝑡ℎ basin (𝑣𝑖) multiplied by the 𝑗𝑡ℎ defined weight (𝑤𝑗). For 

example, the basin with the most observed cumulative precipitation during Hurricane Ian has an 

order value of 1 whereas the basin with the least observed cumulative precipitation will have an 

order of 922 (the maximum value of 𝑖). 

Then, the swing-weight technique is used to update factor weights for each of the twenty 

(20) scenarios for the study. As previously mentioned, the swing-weight technique allows for 

tradeoffs of higher consideration of one or more variables in exchange for lower consideration of 

other variables within a scenario. Table 2 summarizes the scenarios and weights for each hydrology 

and social vulnerability variable. Scenarios using a single variable are S1-S5. Scenarios using a 

combination of variables (up to five in total) are S6-S20. The uncertainty is addressed by the 

identification of the several scenarios, without assessing probabilities. Subsequently the risk is 

quantified as of the degree of disruption of system order by each of the scenarios (Hassler et al., 

2020). Since the motivation of this study is to understand the extent by which hydrological 

extremes disrupt social vulnerability, S1 is defined as the baseline order as it exclusively uses SVI 

and is assumed to represent conditions prior to the hurricane disturbance. For S6-S20, a constant 

SVI weight of 0.5 was used. This ensures a balance between SVI and the hydrological 

contributions within each new order calculation, as well as equal contributions of SVI across the 

remaining scenarios.  

 

Table 4.2: A swing-weight technique is used to update factor weights for each of the twenty (20) scenarios 

of the contributing hydrology and social vulnerability variables. These include Social Vulnerability Index 
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(SVI), cumulative precipitation (P1), maximum hourly precipitation (P2), maximum hourly wind speed (W), 

and five-day antecedent soil moisture (SM). 

Scenario (𝑺𝒏) Swing Weights (𝒘𝒋) of contributing 

variables (𝒗𝒋) 

𝒗𝟏: 

SVI 

𝒗𝟐: 

P1 

𝒗𝟑: 

P2 

𝒗𝟒: 

W 

𝒗𝟓: 

SM 

𝑺𝟏: SVI (baseline order) 1 0 0 0 0 

𝑺𝟐: Hurricane Ian cumulative precipitation  0 1 0 0 0 

𝑺𝟑: Hurricane Ian maximum hourly precipitation 0 0 1 0 0 

𝑺𝟒: Hurricane Ian maximum hourly wind speed 0 0 0 1 0 

𝑺𝟓: Hurricane Ian 5-day antecedent soil moisture  0 0 0 0 1 

𝑺𝟔: SVI and Hurricane Ian cumulative precipitation 0.5 0.5 0 0 0 

𝑺𝟕: SVI and Hurricane Ian maximum hourly precipitation 0.5 0 0.5 0 0 

𝑺𝟖: SVI and Hurricane Ian maximum hourly wind speed 0.5 0 0 0.5 0 

𝑺𝟗: SVI and Hurricane Ian 5-day antecedent soil moisture 0.5 0 0 0 0.5 

𝑺𝟏𝟎: SVI, Hurricane Ian cumulative precipitation and 

maximum hourly precipitation 

0.5 0.25 0.25 0 0 

𝑺𝟏𝟏: SVI, Hurricane Ian cumulative precipitation and 

maximum hourly windspeed 

0.5 0.25 0 0.25 0 

𝑺𝟏𝟐: SVI, Hurricane Ian cumulative precipitation and 5-day 

antecedent soil moisture 

0.5 0.25 0 0 0.25 

𝑺𝟏𝟑: SVI, Hurricane Ian maximum hourly precipitation and 

maximum hourly wind speed 

0.5 0 0.25 0.25 0 

𝑺𝟏𝟒: SVI, Hurricane Ian maximum hourly precipitation and 

5-day antecedent soil moisture 

0.5 0 0.25 0 0.25 

𝑺𝟏𝟓: SVI, Hurricane Ian maximum hourly wind speed and 

5-day antecedent soil moisture 

0.5 0 0 0.25 0.25 

𝑺𝟏𝟔: SVI, Hurricane Ian cumulative precipitation, 

maximum hourly precipitation, and maximum hourly wind 

speed 

0.5 0.167 0.167 0.167 0 

𝑺𝟏𝟕: SVI, Hurricane Ian cumulative precipitation, 

maximum hourly precipitation, and 5-day antecedent soil 

moisture 

0.5 0.167 0.167 0 0.167 

𝑺𝟏𝟖: SVI, Hurricane Ian cumulative precipitation, 

maximum hourly wind speed, and 5-day antecedent soil 

moisture 

0.5 0.167 0 0.167 0.167 

𝑺𝟏𝟗: SVI, Hurricane Ian maximum hourly precipitation, 

maximum hourly wind speed, and 5-day antecedent soil 

moisture  

0.5 0 0.167 0.167 0.167 

𝑺𝟐𝟎: SVI, Hurricane Ian cumulative precipitation, 

maximum hourly precipitation, maximum hourly wind 

speed, and 5-day antecedent soil moisture 

0.5 0.125 0.125 0.125 0.125 
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For each scenario, we define risk (𝑅) as the difference between the baseline order and 

scenario order for a given basin using Eq. 3:  

𝑅𝑛(𝑏𝑖) = 𝐵(𝑏𝑖) − 𝑆𝑛(𝑏𝑖)                (3) 

In Eq. 3, risk of a given scenario and basin 𝑅𝑛(𝑏𝑖) equals the difference between the 

baseline order of the basin 𝐵(𝑏𝑖) and the scenario order of the basin 𝑆𝑛(𝑏𝑖). A positive value for R 

indicates the basin increased in order due to the disruption. A negative R indicates the basin 

decreased in order following the disruption. For the demonstration of Hurricane Ian, a positive 

value for R would occur for a basin with low SVI and high hydrological exposure. A negative value 

for R would occur for a basin with high SVI and low hydrological exposure. A near-zero R would 

occur for a basin either with high SVI and high hydrological exposure or a basin with low SVI and 

low hydrological exposure. Spatial plots of scenario basin orderings 𝑆𝑛(𝑏𝑖) and risk 𝑅𝑛(𝑏𝑖) are 

used to examine spatial patterns of social vulnerability and hydrology across the study area.  

Lastly, the most and least disruptive scenarios were determined using the normalized sum 

of squares of differences in order, as in Eq. 4 and Eq. 5:  

𝑥(𝑆𝑛) = ∑(𝐵(𝑏𝑖) − 𝐷(𝑏𝑖))
2

=  ∑ 𝑅(𝑏𝑖)
2

𝑁

𝑖

             (4)

𝑁

𝑖

 

𝑋(𝑆𝑛) =
𝑥(𝑆𝑛) − 𝑥(𝑆)𝑚𝑖𝑛.

𝑥(𝑆)𝑚𝑎𝑥. − 𝑥(𝑆)𝑚𝑖𝑛.
                                       (5) 

 In Eq. 4, 𝑥(𝑆𝑛) represents the score of disruptiveness for a given scenario (𝑆𝑛) as the sum 

over the basins of the squared differences of the baseline order and disrupted order. This calculation 

quantifies risk as an influence of each scenario to the system order (Bonato et al., 2022; Karvetski 

et al., 2009; You et al., 2014a). The normalized score of disruptiveness (𝑋(𝑆𝑛)) is calculated (Eq. 

5) as the score of disruptiveness for a given scenario 𝑥(𝑆𝑛) minus the minimum score of 

disruptiveness (𝑥(𝑆)𝑚𝑖𝑛.) divided by the maximum score of disruptiveness (𝑥(𝑆)𝑚𝑎𝑥.) minus the 
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minimum score of disruptiveness (𝑥(𝑆)𝑚𝑖𝑛.). The least disruptive scenario had the lowest 

normalized score of disruptiveness. The most disruptive scenario had the highest normalized score 

of disruptiveness.  

4.6 Sample of Results  

The results and discussion are organized into the following sub-sections: 1) single variable 

basin order results, 2) scenario results, 3) basin ordering for select scenarios, and 4) basin risk for 

select scenarios. For each of the variables and scenarios, lower order/percentiles indicate greater 

concern and thus might be prioritized for near-term disaster recovery, response, and future 

mitigation efforts. 

 

Fig. 4.3: Histograms of the observed social vulnerability and hydrology variables resampled per sub-

basin in the area of demonstration for (A) Social Vulnerability Index (SVI), (B) total precipitation, (C) 

hourly maximum precipitation, (D) hourly maximum wind speed, and (E) five-day antecedent soil moisture. 
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4.6.1 Single variable basin order results  

4.6.1.1 Social Vulnerability Index (SVI) order  

As previously discussed, the SVI order shown in Fig. 4.4A was defined as the baseline 

order for this study. Even though SVI is based on a national scale, a wide distribution of SVI was 

observed in the study area with a minimum of 0.005, maximum of 0.974, mean of 0.548, and 

median of 0.576 (Fig. 4.3A). The spatial plot of SVI order in Fig. 4.3A shows that the lowest order 

SVI basins are concentrated in the southeastern portions of Alabama, Georgia, South Carolina, and 

North Carolina.  

Coastal basins tended to have higher order compared to adjacent inland basins. This 

indicates inland basins have populations with more social vulnerability than coastal basins. This is 

particularly apparent in Florida and may be explained by recent trends of increased demand for 

‘coastal lifestyle housing’ observed by Florida real estate agents (Palm & Bolsen, 2023). 

4.6.1.2 Precipitation (P1 and P2) orders  

Precipitation is separately analyzed as cumulative precipitation (mm, P1) and maximum 

hourly precipitation rate (mm/hr, P2) to account for both precipitation intensity and duration.  

Fig. 4.3B shows a histogram of total precipitation within the study area. Fig. 4.3B shows 

the spatial distribution of basin ordering based on cumulative precipitation. While little to no 

precipitation is observed in the western portion of the study area, basins located within the path of 

Hurricane Ian were exposed to extreme precipitation amounts of up to 500 mm within the six-day 

period. The mean and median cumulative precipitation are respectively 31 mm and 104 mm. The 

highest prioritization of basins follows the path of Hurricane Ian over Central Florida and South 

Carolina.  Cumulative precipitation order is higher in Florida than in the Carolinas. This is likely 
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due to the duration of the hurricane’s presence over Florida because the system was relatively 

slow-moving and took approximately 16 hours for the eyewall to pass from Florida’s Gulf Coast 

to Atlantic Coast (Bucci et al., 2022). In the Carolinas, it took approximately 6 hours for the system 

to transition to an extratropical cyclone after making landfall (Bucci et al., 2022).  

 

 

Fig. 4.4: Maps of the ordered percentiles within the area of demonstration at the sub-basin level for the 

following social vulnerability and hydrology variables: (A) Social Vulnerability Index (SVI), (B) 

cumulative precipitation, (C) maximum hourly precipitation, (D) five-day antecedent 1-km soil moisture, 

and (E) maximum hourly wind speed.   
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Hourly maximum precipitation (P2) exhibited a similar distribution as the cumulative 

precipitation, particularly with western basins of the study period observing little to no 

precipitation rates (Fig. 4.3C). A wide distribution of precipitation rates was observed with a 

maximum of 69 mm/hr, mean of 12 mm/hr, and median of 10.6 mm/hr (Fig. 4.3C). The spatial 

order plot of maximum hourly precipitation showed the highest prioritization of basins in the 

Carolinas, followed by Florida (Fig. 4.4C). This indicates that the Carolinas were exposed to more 

intense rainfall than Florida, despite the greater cumulative precipitation observed in Florida.  

4.6.1.3 Wind speed (W) order  

The distribution of maximum hourly wind speed in Fig. 4.3D shows the study area was 

exposed to varying wind speeds from a minimum of 4.2 m/s to a maximum of 26.1 m/s. The median 

and mean wind speeds are respectively 9.0 m/s and 10.3 m/s. In the spatial order plot of maximum 

hourly wind speed shown in Fig. 4.4E, coastal basins tend to be higher priority than inland basins. 

This is expected because of coastal convection processes. However, the inland basins of Florida 

and the Carolinas tended to exhibit higher prioritization over other basins outside of the path of 

Hurricane Ian.  

4.6.1.4 Soil Moisture (SM) order  

Fig. 4.3E shows the distribution of 5-day antecedent soil moisture which had a minimum 

of 0.8 m3/m3, a maximum of 0.59 m3/m3, a mean of 0.25 m3/m3, and a median of 0.24 m3/m3. In 

this study, higher soil moisture is prioritized because soil with a high degree of water saturation 

has less pore space readily available to store additional water. When exposed to extreme 

precipitation events, the decreased pore capacity to store water can result in flooding because the 

volumetric water content of the soil increases to its porosity, rendering it saturated.  



109 

 

The spatial plot of ordered 5-day antecedent soil moisture shown in Fig. 4.4D reveals that 

the highest priority soil moisture values are observed in Florida and coastal basins. Notably, the 

lowest soil moisture values are opposite to the spatial distribution of SVI order; basins of high SVI 

tend to be co-located with basins of low soil moisture in the non-coastal basins of southern 

Alabama, Georgia, South Carolina, and North Carolina. Future research should be dedicated to 

comparing the spatial and temporal distributions of SVI and soil moisture using a longer study 

period and national scale. This would improve understanding of if the inverse relationship of SVI 

and soil moisture observed in this study are correlated or coincidental. 

4.6.2 Scenario results  

To further investigate basin sensitivity to each scenario, the average order of the top 10% of 

basins (92) from S20 are plotted across all scenarios (S1 - S20) in Fig. 5. When only one variable 

was used to define a scenario (S1 – S5), a wide distribution of average orders was observed. As 

more variables contributed to a given scenario (three variables for S10 – S15, four variables for S16 

– S19, and five variables for S20), the overall average basin orders stabilized and exhibited less 

variability of order compared to scenarios with one to two variables.  

Notable peaks in order occurred during S5 and S9, both of which relied on the five-day 

antecedent soil moisture data for ordering. This indicates the soil moisture data contributes 

different ordering priorities compared to the other variables, likely because it was the only 

hydrology variable observed prior to the hurricane event. However, when two or more variables 

contribute to a scenario in combination with the five-day antecedent soil moisture data, the peaks 

are not pronounced. Thus, incorporating multiple hydrology variables into a given scenario is 

important to reduce basin sensitivity to an individual variable and to improve representation of 

exposure to the extreme hydrological event.  
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Fig. 4.5: Average order of the top 10% of basins from Scenario S20 across all scenarios (S1 – S20). The 

overall ordering stabilizes as more hydrology and social vulnerability variables contribute to a given 

scenario.   

Fig. 4.6 shows a bar graph of the normalized score of disruptiveness for each scenario which 

was calculated using Eq. 4 – 5. The most disruptive scenarios were S5 (Hurricane Ian five-day 

antecedent soil moisture), S3 (Hurricane Ian maximum hourly precipitation), and S2 (Hurricane 

Ian cumulative precipitation) because they exhibited the highest normalized scores of 

disruptiveness. Each of these scenarios had only one contributing variable with different spatial 

orderings compared to the baseline order, resulting in the highest disruption. The least disruptive 

scenarios, exhibiting the lowest normalized scores of disruptiveness, were S19 (SVI, Hurricane 

Ian maximum hourly precipitation, maximum hourly wind speed, and five-day antecedent soil 

moisture) and S14 (SVI, Hurricane Ian maximum hourly precipitation and five-day antecedent 

soil moisture). These scenarios accounted for three and four hydrology and social vulnerability 

factors, resulting in basin ordering that were least different from the baseline order compared to 

the other scenarios. 
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Fig. 4.6: Normalized score of disruptiveness for scenarios (S2 – S20) to determine the most and least 

disruptive scenarios compared to the baseline SVI order (S1). 

Table 4.3 describes the disruption of order of basins across scenarios compared to the baseline 

order, using 10% increments of disruption. Similar to Fig. 4.5 and Fig. 4.6, the most disruptive 

scenarios are S2, S3, S4, and S5 since each hydrology variable individually orders the basins 

dissimilarly to SVI. Scenario S5 has the fewest number of basins in the 0 – 10% disruption category 

indicating that antecedent soil moisture ordering differed the greatest from the SVI order. As 

previously noted, this disruption may indicate that low soil moisture corresponds to regions of high 

social vulnerability but would require additional research to confirm whether this is correlated or 

coincidental.  
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Table 4.3: Summary of the number of basins within 10% increments of disruption across scenarios S2 – 

S20 compared to the baseline order (S1). 

Scenario 

(𝑺𝒏) 

Number of basins within a percentage of disruption (%) compared to 𝑺𝟏 

0 – 

10% 

10 – 

20% 

20 – 

30% 

30 – 

40% 

40 – 

50% 

50 – 

60% 

60 – 

70% 

70 – 

80% 

80 – 

90%  

90 – 

100% 

𝑺𝟐 196 176 127 101 107 70 53 39 33 20 

𝑺𝟑 196 169 128 111 97 80 49 39 34 19 

𝑺𝟒 210 178 122 109 109 63 52 31 29 19 

𝑺𝟓 166 130 115 118 113 92 75 53 42 18 

𝑺𝟔 308 269 167 94 84 0 0 0 0 0 

𝑺𝟕 300 274 165 110 70 3 0 0 0 0 

𝑺𝟖 322 262 173 104 59 2 0 0 0 0 

𝑺𝟗 263 217 182 144 104 12 0 0 0 0 

𝑺𝟏𝟎 289 297 154 117 65 0 0 0 0 0 

𝑺𝟏𝟏 326 249 166 126 55 0 0 0 0 0 

𝑺𝟏𝟐 368 269 164 69 51 1 0 0 0 0 

𝑺𝟏𝟑 327 254 181 117 43 0 0 0 0 0 

𝑺𝟏𝟒 371 271 180 71 29 0 0 0 0 0 

𝑺𝟏𝟓 387 259 168 69 38 1 0 0 0 0 

𝑺𝟏𝟔 312 271 174 108 57 0 0 0 0 0 

𝑺𝟏𝟕 320 308 186 80 28 0 0 0 0 0 

𝑺𝟏𝟖 348 294 176 66 38 0 0 0 0 0 

𝑺𝟏𝟗 343 310 179 61 29 0 0 0 0 0 

𝑺𝟐𝟎 335 274 203 80 30 0 0 0 0 0 

 

Across all scenarios, disruptions of basin order are at least 50% (Table 4.3). Scenarios S19 and 

S14 were previously identified as the least disruptive scenarios (Fig. 4.6) with no basin disruptions 

greater than 50% (Table 4.3). For S19, 37% of the study area (343 basins) had 0 – 10% disruption, 

33% (310 basins) had 10 – 20% disruption, 19% (179 basins) had 20 – 30% disruption, 6% (61 

basins) had 30 – 40% disruption, and 3% (29 basins) had 40 – 50% disruption. For S14, 40% of the 

study area (371 basins) had 0 – 10% disruption, 29% (271 basins) had 10 – 20% disruption, 20% 

(180 basins) had 20 – 30% disruption, 8% (71 basins) had 30 – 40% disruption, and 3% (29 basins) 

had 40 – 50% disruption. 
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4.6.3 Basin ordering for select scenarios  

Spatial plots of the basin ordering are provided in Fig. 4.7 to investigate spatial patterns of the 

following three selected scenarios: 1) the most disruptive scenario which includes both social 

vulnerability and hydrology (S9), 2) the most disruptive scenario which includes social 

vulnerability and three or more hydrology variables (S16), and 3) the least disruptive scenario (S19). 

Even though each scenario has a unique basin ordering spatial map, these three selected scenarios 

(S9, S16, S19) adequately represent the range of basin orders and risk across the scenarios and thus 

are provided in this manuscript.  

 

Fig. 4.7: Spatial plot of the basin ordering for the following scenarios: (A) S9 – SVI and Hurricane Ian 5-

day antecedent soil moisture, (B) S16 – SVI, Hurricane Ian maximum cumulative precipitation, maximum 

hourly precipitation, and maximum hourly wind speed, and (C) S19 – SVI, Hurricane Ian maximum hourly 

precipitation, maximum hourly wind speed, and 5-day antecedent soil moisture. 

Fig. 4.7A shows the basin ordering of the most disruptive scenario, S9, which was defined as 

equal contributions of SVI and 5-day antecedent soil moisture. Basins of the lowest order are found 

in western Alabama and inland Florida because they had both high soil moisture and social 

vulnerability. 
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For scenarios S16 (Fig. 4.7B) and S19 Fig. 4.7C), the lowest order basins were found in Central 

Florida and the southeastern portions of the Carolinas. This is consistent with the first landfall of 

Hurricane Ian in Florida and its second landfall in South Carolina. Conversely, the highest order 

basins occurred safely beyond the path of Hurricane Ian in Alabama, northern Georgia, and the 

northwestern portions of the Carolinas.  

Surprisingly, coastal basins within the path of Hurricane Ian exhibited higher order than their 

adjacent inland basins, even though the single variable basin ordering (Fig. 4.4) reveals that coastal 

basins tend to exhibit the lowest order. Thus, this pattern is due to SVI which is the only variable 

to prioritize inland basins more than coastal basins.  

Table 4.4 shows the top-20 basins (2%) of prioritization based on the basin ordering of 

scenario S16. A reference map of the basin locations is shown in Fig. 4.9A. This serves as a 

conservative estimate of which basins should be prioritized because it had the lowest score of 

disruptiveness. Basins in Florida, South Carolina, and North Carolina are all represented in the top 

2% of prioritization. Moreover 20% (4) were coastal basins and 80% (16) were inland. The 

baseline orders of these basins are within the top 16% of the overall SVI order of the study area. 

Since these basins ordered in the top 2% of the S16 order, it indicates they were also exposed to 

extreme hydrological conditions due to Hurricane Ian.  
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Table 4.4: Summary of top-20 basins (2% of the study area) which prioritized highest in the disrupted 

order (D) for scenario S16. The HydroBASINS Level-08 basin name, state, basin type (coastal or inland), 

and baseline order (S1) are provided. A reference map of the basin locations is available in Fig. 9A. 

S16 

Order 

Basin 

Name (𝒃𝒊) 

State Basin 

Type 

Baseline 

Order 

(𝑺𝟏) 

1 7080044390 FL Coastal 10 

2 7080044450 FL Coastal 1 

3 7080789240 FL Inland 4 

4 7080696960 SC Inland 45 

5 7080791760 FL Inland 2 

6 7080791840 FL Inland 20 

7 7080684980 SC Inland 35 

8 7080791630 FL Inland 11 

9 7080684850 SC Inland 73 

10 7080691080 SC Inland 25 

11 7080791790 FL Inland 6 

12 7080676370 SC/NC Inland 36 

13 7080667100 SC/NC Inland 97 

14 7080677550 SC/NC Inland 69 

15 7080043160 SC Coastal 135 

16 7080675620 SC Inland 98 

17 7080684690 SC Inland 96 

18 7080690650 SC Inland 39 

19 7080043100 SC Coastal 147 

20 7080675700 SC Inland 142 

 

4.6.4 Risk as the Disruption of Basin Order  

Figure 4.8 provides a map of the risk basin order results (calculated using Eq. 3) for the 

three scenarios previously examined in section 5.3: S9, S16, and S19. It is important to note that if a 

basin experienced high order in both the baseline map and the disrupted order map, it is reflected 

as low risk in Fig. 4.8; the order did not significantly change. The greatest increases in order are 

found in basins with low social vulnerability but high hydrological exposure. Conversely, the 

greatest decreases in order are found in basins with high social vulnerability but low hydrological 

exposure. Thus, this tool is intended to be used in conjunction with the disrupted basin order map 
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(Fig. 4.7) to identify basins which were disrupted due to exposure to the extreme hydrological 

conditions.  

 

Fig. 4.8: Spatial plot of the basin risk for the following scenarios: (A) S9 – SVI and Hurricane Ian 5-day 

antecedent soil moisture, (B) S16 – SVI, Hurricane Ian maximum cumulative precipitation, maximum 

hourly precipitation, and maximum hourly wind speed, and (C) S19 – SVI, Hurricane Ian maximum hourly 

precipitation, maximum hourly wind speed, and 5-day antecedent soil moisture. Basins which increased 

in order are depicted in red. Basins which decreased in order are depicted in green. 

In Fig. 4.8A, the risk map of scenario S9 had approximately 466 basins (51%) experience 

an increase in order and thus positive risk (depicted in red). Conversely, 454 basins (49%) decrease 

in order (depicted in green). Only 2 basins (less than 1%) have no change in order. This indicates 

that few basins have both low social vulnerability and low soil moisture conditions.   

Similar to the disrupted basin order maps shown in Fig. 4.7, the risk basin maps are 

consistent with the path of Hurricane Ian in Fig. 4.8B and Fig. 4.8C. The highest risk basins are 

found in the Carolinas while the lowest risk basins are found in Alabama and Georgia. For scenario 

S16 (Fig. 4.7B), 458 basins (~50%) increase in order while 462 (~50%) decrease in order. Few 

basins had no change in order (2 basins, less than 1%). 312 basins (33%) have less than a 10% 

increase or decrease in order. In scenario S19 (Fig. 8C), approximately 422 basins (45%) increase 
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in priority and 496 basins (54%) decrease in priority. Only 4 basins (less than 1%) have no change 

in order. However, 343 basins (37%) experience less than 10% increase or decrease in order. 

The largest increase in prioritization for the top 10 basins (1%) occurs under scenarios of 

only one hydrological variable (S2, S3, S4, S5), with the majority occurring during S5 (Table 4.5A). 

The minimum order under these scenarios are all within the top 2%, indicating these basins had 

high hydrological exposure. However, the social vulnerability of these basins are within the bottom 

95-100% of the baseline order (i.e., low social vulnerability). The reference map in Fig. 4.9B 

shows that these basins correspond to areas of protected national parks, national and state 

preserves, and wildlife management areas and have low populations. Thus, these basins experience 

large increases in prioritization since their baseline order was low (SVI) but their exposure to 

hydrological conditions during Hurricane Ian was high.  

Similarly, the largest decrease in prioritization for the top 10 basins (1%) occurs under 

scenarios of only one hydrological variable (S2, S4, and S5), with the majority occurring during S2 

(Table 4.5B). The baseline order of all 10 basins are within the top 9% of the baseline order. This 

indicates these basins are among the most socially vulnerable in the study area. However, the 

scenario results indicate how these regions had low exposure to hydrological extremes. The 

reference map shown in Fig. 4.9C shows the basins were located outside of the hurricane path. For 

the two basins located within the path of Hurricane Ian in the Carolinas, the S5 scenario was 

responsible for the highest order, indicating that these basins had very low antecedent soil moisture 

conditions.  
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Table 4.5: Summary of top 10 basins (1%) with (A) largest increase and (B) largest decrease in priority 

across scenarios compared to the baseline order (S1). The rank of largest increase/decrease in priority, 

HydroBASINS Level-08 basin name, increase/decrease in prioritization percentage, baseline order (S1), 

scenario of minimum order, and minimum order are provided for each basin. Reference maps for Table 5A 

and 5B are respectively shown in Fig. 9B and 9C. 

(5A) Top 10 basins (1%) with largest increase in priority across scenarios compared to the baseline 

order (S1). See Fig. 9B for a reference map of basins. 

Rank of 

largest 

increase in 

priority 

Basin Name 

(𝒃𝒊) 

Increase in 

prioritization 

(%) 

Baseline 

Order (𝑺𝟏) 

Scenario of 

Minimum 

Order (𝑺𝒏) 

Minimum 

Order 

1 7080044540 99.35 921 5 5 

2 7080044200 98.16 912 3 7 

3 7080044210 98.05 913 2 9 

4 7080044520 97.94 922 5 19 

5 7080044600 97.94 920 5 17 

6 7080044460 97.61 901 5 1 

7 7080044610 97.51 906 4 7 

8 7080044910 96.96 896 2 2 

9 7080796400 95.88 893 5 9 

10 7080042770 95.01 877 3 1 
 

(5B) Top 10 basins (1%) with largest decrease in priority across scenarios compared to the baseline order 

(S1). See Fig. 9C for a reference map of basins.  

Rank of 

largest 

decrease in 

priority 

Basin Name 

(𝒃𝒊) 

Decrease in 

prioritization 

(%) 

Baseline 

Order (𝑺𝟏) 

Scenario of 

Maximum 

Order (𝑺𝒏) 

Maximum 

Order 

1 7080649710 -97.40 23 4 921 

2 7080719300 -95.23 18 2 896 

3 7080719830 -94.47 26 2 897 

4 7080659420 -93.49 33 5 895 

5 7080676370 -93.49 36 5 898 

6 7080719170 -93.28 34 2 894 

7 7080715300 -93.17 14 5 873 

8 7080705670 -91.97 17 2 865 

9 7080703900 -91.87 8 2 855 

10 7080743880 -90.67 85 5 921 
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Fig. 4.9: Reference maps for the following: (A) Top 20 basins (2%) with highest prioritization in the 

disrupted order for scenario 𝑆16. A table summary of these basins can be found in Table 4. (B) Top 10 

basins (1%) with greatest increase in priority across any scenario compared to the baseline order 𝑆1. A 

table summary of these basins can be found in Table 5A. (C) Top 10 basins (1%) with greatest decrease in 

priority across any scenario compared to the baseline order 𝑆1. A table summary of these basins can be 

found in Table 5B. 

4.7 Discussion  

4.7.1 Machine Learning for Basin-Level Risk Assessment  

One might consider machine learning, a subset of artificial intelligence, in the theory part 

of this paper. Machine learning has emerged as a technology to support disaster management given 

its ability to efficiently process large volumes of data (Reda Taha et al., 2021; Sreelakshmi & Vinod 

Chandra, 2022). This is valuable for supporting disaster predictions, early warnings, response, and 

recovery efforts (Sreelakshmi & Vinod Chandra, 2022).  
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 Theoretically, basin-level risk management could work in partnership with machine 

learning by using the methodology of this study as a foundational framework. One opportunity for 

future work is using machine learning to increase the number of factors and complexities of 

scenarios. However, it is important to ensure any additional data input into the model are derived 

from reliable, accurate, and spatially complete data (Sreelakshmi & Vinod Chandra, 2022). Human 

supervision may be necessary to avoid unintended algorithm bias, discrimination, and unfairness 

(Köchling & Wehner, 2020).   

4.7.2 Validation  

Validation of the new approach of this paper has the following considerations. The 

quantification of risk as a disruption of system order (following Hassler et al., 2020) is an artifact 

of an importance model that is grounded in part in the social sciences (social vulnerability) and 

in part in the physical sciences; the disruption of basin order is not a quantity that is observable 

either in a storm instance or as a frequency over time. It is useful rather for an integrated 

comparison of hurricane scenarios and for the allocation of resources to basins in anticipation of 

hurricane scenarios. 

4.8 Conclusions  

This study developed a methodology to quantify risk as the disruption of basin order by 

combining social and hydrology factors derived from disparate sources. A swing-weight technique 

was used to update factor weights of scenarios. This is advantageous for risk analysis using 

multidisciplinary factors because the relative importance of one variable over another is uncertain. 

Spatial plots at a sub-basin scale of the most and least disruptive scenarios (defined by sum of 

squares of differences in order) and risk (calculated as the difference in baseline and scenario order) 
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showed geographic distribution of basin priority. Stakeholders may use the results as a tool for 

allocating resources at a basin level to decrease risk and increase resilience.  

An application to Hurricane Ian was demonstrated using publicly available data derived from 

census, models, and Earth observations. A qualitative summary of key findings is provided in Table 

4.6. Scenarios of only hydrology factors identified coastal basins as high-risk areas. However, 

scenarios of both social vulnerability and hydrology factors identified inland basins as higher risk 

than coastal basins. Basins of except to these patterns included protected wildlife management 

areas within the hurricane path (basins of greatest increase in priority) and basins of high social 

vulnerability outside the hurricane path (basins of greatest decrease in priority).  

Table 4.6: Summary of qualitative results of this study including descriptions and figures/tables 

to references within the manuscript.  

Types of 

Results 

Specific Results Comments Sources 

Most 

disruptive 

scenarios 

S5 – Hurricane Ian 5-day 

antecedent soil moisture,  

S3 – Hurricane Ian maximum 

hourly precipitation,  

S2 – Hurricane Ian 

cumulative precipitation 

Scenarios of only one 

contributing variable exhibited 

the disruptive spatial patterns, 

relative to the baseline order 

(S1). 

Fig. 4.6 

Table 4.3 

Least 

disruptive 

scenarios 

S19 – SVI, Hurricane Ian 

maximum hourly 

precipitation, maximum 

hourly wind speed, and 5-day 

antecedent soil moisture  

S18 – SVI, Hurricane Ian 

cumulative precipitation, 

maximum hourly wind speed, 

and 5-day antecedent soil 

moisture 

Scenarios of four hydrology and 

social variables resulted in 

spatial patterns that were least 

disruptive to the baseline order 

(S1). 

Fig. 4.6 

Table 4.3 

Highest 

priority 

basins in 

disrupted 

orders 

Inland basins of Florida and 

South Carolina followed by 

coastal basins of Florida, 

South Carolina, and North 

Carolina 

Basins of high social 

vulnerability located within the 

hurricane path were exposed to 

the most extreme hydrological 

conditions and may be 

Figure 4.7 

Table 4.4 

Figure 4.9A 
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prioritized for near-term 

recovery, response, and future 

mitigation efforts.  

Lowest 

priority 

basins in 

disrupted 

orders 

Alabama and North Georgia 

basins 

Basins of low social 

vulnerability located outside the 

hurricane path had low priority. 

Figure 4.7 

Figure 4.8 

Greatest 

increase in 

basin 

priority 

Coastal basins of Florida These basins had very high 

exposure to hydrological 

conditions during Hurricane Ian 

but low social vulnerability in 

the baseline order. They are 

protected wetlands, nature 

preserves, parks, and affluent 

communities with low social 

vulnerability.  

Figure 4.8 

Table 4.5A 

Figure 4.9B  

Greatest 

decrease in 

basin 

priority 

Inland basins of Alabama, 

South Carolina, and North 

Carolina 

These basins had the highest 

social vulnerability in the 

baseline order but were located 

outside the hurricane path 

meaning they had low 

hydrological exposure 

Figure 4.8 

Table 4.5B 

Figure 4.9C  

 

It is important to note how the model results can be sensitive to the baseline scenario. For 

example, medical first responders tasked with selecting locations for temporary medical tents 

could define the baseline scenario as the SVI sub-variable “Aged 65 and Older” (see Appendix 

4.1). The differences of system order from the baseline to each of the other scenarios are the focus 

of interest, and modelers should thus remind the source(s) of the baseline scenario in interpreting 

the results to stakeholders (see, e.g., Hassler et al., 2020).  

Future work includes using this study as a framework to explore the capacity of machine 

learning to increase the number of factors considered and the complexities of scenarios. For the 

application to major tropical cyclones, future work should explore the relationship of multiple 

hydrological disasters and social vulnerability over an extended period of time. This would 
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improve understanding of the spatial and temporal patterns of hurricane exposure and social 

vulnerability in climate-sensitive-hazard regions. 

Given the disproportionate impacts of major tropical cyclones and hydrological disasters on 

socially vulnerable communities, this study provides a tool for risk assessment at the basin level 

to order basins considering multidisciplinary factors. As demonstrated by the application to 

Hurricane Ian, results of this work can be used by policymakers and disaster managers to inform 

future investments designed to decrease the impacts of future major tropical cyclones for 

vulnerable populations. 
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Chapter 5: Modeling Resilience of System Order for 

Investments in Environmental Justice and Social 

Vulnerability4  

 

5.1 Abstract 

Resilience of vulnerable populations to environmental extremes is a concern for 

policymaking across environmental justice, economic development, technology innovation, etc. 

This study models the resilience of system order for a portfolio of investments, focusing on the 

spatial distributions of risk exposure, social vulnerability, and environmental stressors. The 

approach quantifies risk as a disruption of baseline order under each of several scenarios that 

combine social and environmental factors, with attention to vulnerable populations. Scenarios of 

the greatest and least disruption of system order are identified using the normalized sum of 

differences in a priority order of investments. The spatial distributions of scenario impacts to order 

 
4 The work presented in this chapter resulted in a journal article in preparation:  

 

Pavur, G., Trump, B.D., Linkov, I., Polmateer, T.L., Lambert, J.H., Lakshmi, V. “Modeling Resilience of System 

Order for Investments in Environmental Justice and Social Vulnerability.” 
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are highlighted in maps of the relevant water basins. A realistic example is described with features 

of a southeastern region of the USA. The results of this study are a rationale and evidence for the 

allocations of investments for economic development and system resilience, balancing among 

several criteria of social vulnerability and environmental justice. 

 

5.2 Introduction  

Environmental justice has a multidisciplinary perspective that can improve understanding 

of the extent that environmental conditions disproportionately impact vulnerable populations, such 

as the socially vulnerable (Brinkley & Wagner, 2024; Mohai et al., 2009). As climate change is 

predicted to increase the frequency and intensity of hydrological and environmental extremes, 

criteria of environmental conditions are expected to further exacerbate environmental justice 

concerns in the future (Brinkley & Wagner, 2024; Lavell et al., 2012). To support priorities aimed 

to address environmental justice, there is a need to improve understanding of system risk when 

multidisciplinary criteria of society and the environment are jointly considered. 

This study develops and demonstrates a methodology to quantify system risk as the 

disruption of basin order across scenarios of social and environmental stressors. The methodology 

is as follows: First, criteria of society and the environment are individually sorted from highest to 

lowest in importance. Second, a baseline scenario of only societal criteria is defined to represent 

system order prior to consideration of environmental criteria. Third, scenarios are defined by 

considering both social and environmental criteria. Fourth, a swing-weight technique is used to 

update factor weights of criteria (Karvetski et al., 2009). Fifth, risk is quantified as the disruption 

of order between the baseline and each other scenario (Bonato et al., 2022; M. C. Hamilton et al., 

2015; Hassler et al., 2019a; You et al., 2014b). Sixth, the normalized sum of difference in order is 
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used to calculate scores of disruption to identify the scenarios that are most and least disruptive to 

system order (Bonato et al., 2022; Eddy et al., 2022; M. C. Hamilton et al., 2015; Hassler et al., 

2019a; Loose et al., 2022a, 2022b, 2023; Pennetti et al., 2021; Sambo, Bonato, et al., 2023; Sambo, 

Sano, et al., 2023; Thekdi & Lambert, 2015; Thorisson & Lambert, 2017; You et al., 2014b). 

Seventh, spatial plots of scenario order and scenario risk at a basin-level telemetry are used to 

improve understanding of the spatial distribution of disruption to system order.  

 A demonstration is provided for a region of the southeastern USA, which previous studies 

have identified as a hotspot for concerns of vulnerable populations with high exposure to extreme 

environmental conditions (Flanagan et al., 2011; Tate et al., 2021). The social criteria data (i.e., 

social vulnerability, socioeconomic status, household composition and disability, minority status 

and language, housing type and transportation) is derived the Social Vulnerability Index (SVI) 

which is based on societal data collected via the United States Census Bureau (Flanagan et al., 

2011, 2018). The environmental criteria data (i.e., precipitation, soil moisture, temperature, and 

elevation) is derived from satellite-based Earth Observations and global models (Farr et al., 2007; 

Huffman et al., 2015a; Rodell, Houser, Jambor, Gottschalck, Mitchell, Meng, Arsenault, Cosgrove, 

Radakovich, Bosilovich, Entin, Walker, Lohmann, et al., 2004).  

 For the systems engineering community, a principal innovation of the methodology of this 

paper is its use of data from disparate sources in a risk register of water basins, featuring an analysis 

of the spatial distribution of the disruption of system order. Results, rationale, and methodologies 

of this study can inform decision makers in the allocation of resources for system resilience. A 

particular concern is to understand the potential for disruption of system order of basins with 

attention to both environmental justice and social vulnerability.  
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5.3 Data 

 This section describes the criteria datasets (i.e., social or environmental) and pre-

processing steps used for the demonstration. Each criterion is spatially resampled to the Level 08 

HydroBASINS product to allow for basin-level analysis regardless of the native resolutions of the 

datasets (Lehner & Grill, 2013b). The HydroBASINS data is available in 2024 at: 

https://www.hydrosheds.org/products/hydrobasins.  

 Social vulnerability data were derived for the census-track level CDC/ATSDR SVI for 

2020 [25]. In addition to a spatially averaged SVI for each sub-basin, the following four sub-

components of SVI were considered: 1) socioeconomic status, 2) household composition and 

disability index, 3) minority status and language index, and 4) housing type and transportation 

index. The data is available in 2024 at: 

https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html.    

 The annual average precipitation (considering 2001 – 2022) was derived from the Global 

Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) Final 

Precipitation L3 V07 product (Huffman et al., 2015a). The data is available in 2024 at: 

https://gpm.nasa.gov/data/imerg.   

 Annual average surface temperature and root zone soil moisture (depth of 0 – 2 m below 

the surface) for 2001 – 2022 were derived from the Global Land Data Assimilation System 

(GLDAS) Noah Land Surface Model L4 V2.1 (Rodell et al., 2004). The data is available in 2024 

at: https://ldas.gsfc.nasa.gov/gldas.   

 Average elevation for the sub-basins was derived from the NASA Shuttle Radar 

Topography Mission (SRTM) (Farr et al., 2007). The data is available in 2024 at: 

https://www.earthdata.nasa.gov/sensors/srtm.    

https://www.hydrosheds.org/products/hydrobasins
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
https://gpm.nasa.gov/data/imerg
https://ldas.gsfc.nasa.gov/gldas
https://www.earthdata.nasa.gov/sensors/srtm
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5.4 Methodology  

This section describes the framework methodology in several parts as follows. Elements of the 

methodology include the following:  

1) Sc = {c1, …, cj}: the set of j performance criteria, 

2) Sn = {So, …, Sn}: the set of n scenarios containing one or more performance criteria, with 

S0 representing the baseline order, 

3) bi = {b1, …, bi}: the set of i basins in the area of demonstration, 

4) wj: the weight assigned to criterion cj in scenario sn. 

 

Table 5.1: Sample of importance criteria and sorting methods in modeling disruption of system 

order. 

Index Criterion / Sorting Method 

𝑐1 Social Vulnerability Index (SVI) / descending 

𝑐2 Socioeconomic status index / descending 

𝑐3 Household composition and disability index / 
descending 

𝑐4 Minority status and language index / descending 

𝑐5 Housing type and transportation index / 
descending 

𝑐6 Annual average precipitation / descending 

𝑐7 Annual average precipitation / ascending 

𝑐8 Elevation / descending 

𝑐9 Elevation / ascending 

𝑐10 Annual average root zone soil moisture / 
descending 

𝑐11 Annual average root zone soil moisture / 
ascending 

𝑐12 Annual average temperature / descending 

𝑐13 Annual average temperature / ascending 
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 Table 5.1 summarizes criteria used for the demonstration. Social criteria are represented by 

c1 – c5. Environmental criteria are represented by c6 – c13.   

 First, the criteria are each characterized from highest to lowest order using Eq. 1. This 

prioritization for is henceforth referred to as the ‘basin order.’ The baseline order is defined using 

scenario s.00, which is the SVI basin order. This represents the system prior to consideration of 

environmental criteria. A variety of scenarios are defined which consider both social criteria and 

environmental criteria.       

𝑆𝑛(𝑏𝑖) = 100 ∗ ∑ 𝑤𝑗𝑐𝑖𝑗
𝑘
𝑗=1                                                                 (1) 

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑤𝑗 ≤ 1 ∀𝑗 ∈ 𝐽 𝑎𝑛𝑑 ∑ 𝑤𝑗 = 1

𝑗∈𝐽

 

 Second, a baseline order is defined using scenario s.00, SVI, to represent the system order 

prior to consideration of environmental criteria. For example, the basin with the highest SVI is 

assigned the highest order (a value of one). Conversely, the basin with the lowest SVI is assigned 

the lowest order (a value of i).  

 Third, a variety of scenarios are defined through consideration of both social and 

environmental criteria. Table 5.2 summarizes the scenarios and the contributing criteria. As 

previously mentioned, scenario s.00 represents the baseline order. Scenarios s.01 – s.08 represent 

SVI and one other criteria. Scenarios s.09 – s.12 represent one social criteria and four 

environmental criteria prioritized as ‘wet’ conditions. Scenarios s.13 – s.16 represent one social 

criteria and four environmental criteria prioritized as ‘dry’ conditions. 
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Table 5.2: Sample of scenarios and criteria in modeling of disruption of system order. 

Scenario  Criteria 

s.00: baseline, SVI 𝑐1 

s.01: SVI + precipitation (max.) 𝑐1, 𝑐6 

s.02: SVI + elevation (max.) 𝑐1, 𝑐8 

s.03: SVI + root zone soil moisture 
(max.) 

𝑐1, 𝑐10 

s.04: SVI + temperature (max.) 𝑐1, 𝑐13 

s.05: SVI + precipitation (min.)  𝑐1, 𝑐7 

s.06: SVI + elevation (min.) 𝑐1, 𝑐9 

s.07: SVI + root zone soil moisture 
(min.) 

𝑐1, 𝑐11 

s.08: SVI + temperature (min.) 𝑐1, 𝑐12 

s.09: socioeconomic status + wet 
environmental conditions 

𝑐2, 𝑐6, 𝑐8, 𝑐10, 𝑐13 

s.10: Household composition and 
disability + wet environmental 
conditions 

𝑐3, 𝑐6, 𝑐8, 𝑐10, 𝑐13 

s.11:  Minority status and language + 
wet environmental conditions 

𝑐4, 𝑐6, 𝑐8, 𝑐10, 𝑐13 

s.12: Housing type and transportation + 
wet environmental conditions 

𝑐5, 𝑐6, 𝑐8, 𝑐10, 𝑐13 

s.13: socioeconomic status + dry 
environmental conditions 

𝑐2, 𝑐7, 𝑐9, 𝑐11, 𝑐12 

s.14: Household composition and 
disability + dry environmental 
conditions 

𝑐3, 𝑐7, 𝑐9, 𝑐11, 𝑐12 

s.15: Minority status and language + 
dry environmental conditions 

𝑐4, 𝑐7, 𝑐9, 𝑐11, 𝑐12 

s.16: Housing type and transportation + 
dry environmental conditions 

𝑐5, 𝑐7, 𝑐9, 𝑐11, 𝑐12 

 

Fourth, the swing-weight technique is used to update the factor weights for each scenario. 

This allows for tradeoffs of the relative considerations of each criteria within a given scenario, 

which is advantageous considering that the importance of social versus environmental criteria is 
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unknown. However, for all scenarios, the combined criteria weights of all social and environmental 

criteria is maintained as 0.5. This ensures equal contributions from both social and environmental 

criteria within a given scenario.   

 Fifth, scenario risk (Rn) at the basin-level (bi) is defined as the difference in basin order 

between the baseline order and the scenario order using Eq. 2:  

𝑅𝑛(𝑏𝑖) = 𝑆0(𝑏𝑖) − 𝑆𝑛(𝑏𝑖)                                                                (2)  

 In Eq. 2, a positive R indicates an increase in basin order compared to the baseline scenario. 

A negative R indicates a decrease in basin order compared to the baseline scenario. 

 Sixth, the most and least disruptive scenarios are determined by calculating the normalized 

sum of squares of differences in order using Eq. 3 and 4. X(Sn) is henceforth referred to as the 

normalized score of disruption for scenario n. These calculations defines the influence of each 

scenario to the system order as a quantification of risk (Alsultan et al., 2020; Bonato et al., 2022; 

Eddy et al., 2022; Hassler et al., 2019b; Karvetski et al., 2009; Loose et al., 2022a, 2023; Pennetti 

et al., 2021; Sambo, Bonato, et al., 2023; Thekdi & Lambert, 2015; Thorisson & Lambert, 2017; 

Xu & Lambert, 2013; You et al., 2014a).  

𝑥(𝑆𝑛) = ∑ (𝑆0(𝑏𝑖) − 𝑆𝑛(𝑏𝑖))
2

   𝑁
𝑖                                                       (3) 

𝑋(𝑆𝑛) =
𝑥(𝑆𝑛)−𝑥(𝑆)𝑚𝑖𝑛.

𝑥(𝑆)𝑚𝑎𝑥.−𝑥(𝑆)𝑚𝑖𝑛.
                                                           (4) 

  Seventh, spatial plots of scenario basin order and risk are examined. This is used to 

improve understanding of the spatial distributions of priority and risk within the area of 

demonstration.  
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5.5 Sample of Results of Demonstration  

For the demonstration, the study area is defined as the Level 08 HyroBASINS product in 

Alabama, Florida, Georgia, North Carolina, and South Carolina. Fig. 5.1 shows the spatial plot of 

basin order for the baseline scenario, s.00 (SVI). Basins of the highest priority (i.e., an order value 

equal to or near one) are depicted in black and are generally located in inland Florida and 

southeastern Georgia, South Carolina, and North Carolina. Conversely, basins of lowest priority 

(i.e., an order value equal to or near 920) are depicted in white and are generally located in coastal 

Florida and northwestern Georgia, South Carolina, and North Carolina.  

 

Fig. 5.1: The basin order for scenario s.00: Social Vulnerability Index. This is described as the 

baseline order in the demonstration. 

 Fig. 5.2 shows the normalized score of disruption for the scenarios. When only SVI and 

one environmental criterion are considered (s.01 – s.08), the most disruptive scenario is s.02: SVI 
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+ elevation (max.) and the least disruptive scenario is s.06: SVI + elevation (min.). This indicates 

that generally, populations of high social vulnerability are co-located in basins of low elevation.  

 

Fig. 5.2: Summary of normalized score of disruption for each of the scenarios, s.01 – s.16, in the 

demonstration.  

 Across scenarios, disruption was generally greater when considering social criteria in 

combination with wet environmental variables than dry environmental variables (Fig. 5.2). This 

suggests populations of high SVI are generally found in basins of drier environmental conditions. 

The overall most disruptive scenario is s.11: minority status and language + wet environmental 

conditions (Fig. 5.2). The overall least disruptive scenario is s.13: socioeconomic status and dry 

environmental conditions (Fig. 5.2). To further examine these scenarios of interest, spatial plots of 

scenario basin order and risk are provided in Fig. 5.3.  

 



134 

 

 

Fig. 5.3: The maps describe the disruptions to system order across water basins for the following 

scenarios: (A) the most disruptive scenario, s.11, and (B) the least disruptive scenario, s.13. 

In Fig. 5.3A, the basin order spatial plot of the most disruptive scenario, s.11, is shown. 

Basins of very high priority are primarily located in inland Florida, southeastern Georgia, South 

Carolina, and North Carolina. These basins have highest order due to the combined high priority 

of criteria c4 (minority status and language) and wet environmental conditions (c6, c8, c10, c13). 

 In Fig. 5.3B, the basin order spatial plot of the least disruptive scenario, s.13, is shown. 

Basins of highest priority are found in central Alabama, Georgia, South Carolina, and North 

Carolina. These basins have highest order due to the combined high priority of criteria c2 

(socioeconomic status) and dry environmental conditions (c7, c9, c11, c12). Low priority is found in 

most basins of Florida.  

To improve understanding of the spatial changes in order between the baseline scenario, 

s.00, and the scenarios of interest (s.11 and s.13), spatial plots of risk are provided (Fig. 5.4). Fig. 

5.4A shows the spatial plot of risk of the most disruptive scenario, s.11. Fig. 5.4B shows the spatial 

plot of risk for the least disruptive scenario, s.13. Generally, greater changes in basin order (and 

thus risk) are observed in the most disruptive scenario, s.11. 
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In Fig. 5.4B, basins of the northwestern portion of the study area have increased order and 

are depicted in red to represent increased risk. Basins in Florida and southeastern Georgia, South 

Carolina, and North Carolina have decreased order and are depicted in green to represent decreased 

risk. This indicates that the social and environmental criteria of scenario s.11 leads to an increase 

in priority for northwestern basins and a decrease in priority for southern/southeastern basins 

compared to the baseline scenario, s.00.  

 

Fig. 5.4: The maps describe the disruption to system order across basins for the following 

scenarios: (A) the most disruptive scenario, s.11, and (B) the least disruptive scenario, s.13. 

5.6 Discussion and Conclusions 

In this study, a methodology is demonstrated to quantify risk as the disruption of system 

order at a basin-level telemetry given consideration of multi-disciplinary criteria (i.e., social and 

environmental) derived from disparate sources. Scenarios of the most disruption and least 

disruption are identified and spatially plotted as basin order and risk.  

 A demonstration for the southeastern USA is provided. The most and least disrupted 

scenarios when SVI is considered in combination with one environmental criterion both included 
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elevation (c8 and c9). This indicates populations of high SVI are generally co-located in basins of 

low elevation. Across scenarios, disruption was generally greater when considering social criteria 

in combination with wet environmental variables than dry environmental variables. This suggests 

populations of high SVI are generally found in basins of drier environmental conditions. The 

overall most and least disruptive scenarios were identified as s.11 (most disruptive) and s.13 (least 

disruptive). This revealed that criteria of wet environmental conditions in combination with social 

criteria of minority status and language greatly disrupt system order compared to the baseline 

order. Conversely, criteria of dry environmental conditions in combination with socioeconomic 

status depict the least disruption compared to the baseline order. This suggests that populations of 

concerning socioeconomic status are located in basins of the driest environmental conditions 

within the study area.  

 Methodology and results of this study demonstrate the ability to combine multi-

disciplinary criteria in a risk register of basins to improve understanding of system order and risk. 

The scenario-based risk analysis and spatial plots of order and risk provide insights into the system 

resilience to societal and environmental conditions. Findings of this study can be used to support 

allocation of resources at a basin-level for environmental justice priorities.  

 

5.7 Acknowledgements  

This work was supported by the National Science Foundation Graduate Research 

Fellowship Program (NSF GRFP) under Grant No. 182490. The authors are grateful to the 

Commonwealth Center for Advanced Logistics Systems, the US Army Corps of Engineers, and 

the US Agency for International Development for insights from related sponsored efforts at the 

University of Virginia.  



137 

 

 

 

 

 

 

 

 

Chapter 6: Uncertainty and Sensitivity of Development 

Goals to Water Scarcity of Iraq and Transboundary 

Regions5 

 

6.1 Abstract 

Iraq and its transboundary regions have significant challenges from water scarcity in 

combination with other social and environmental factors. There are short- and long-term 

implications for vulnerable demographics, such as youth. With Iraq’s dependence on upstream 

water management, there is a need to address several critical factors of transboundary watersheds 

such as the Haditha, Mosul, Dokan, and Euphrates-Tigris basin. This paper develops the use of 

particular social, hydrological, and other environmental factors in a risk register of basins and 

vulnerable populations, where societal priorities vary across scenarios of hydrology and water. 

Social data (i.e., gridded youth population data) and hydrological observations (i.e., precipitation, 

 
5 The work presented in this chapter resulted in a journal article in preparation:  

 

Pavur, G., Marcellin, M., Loose, D.C., Cardenas, J.J., Trump, B.D., Linkov, I., Waheed, S.Q., Almashhadani, M., 

Polmateer, T.L., Lambert, J.H., Lakshmi, V. “Uncertainty and Sensitivity of Development Goals to Water Scarcity of 

Iraq and Transboundary Regions.”  
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temperature, root zone soil moisture, and Normalized Difference Vegetation Index (NDVI)) are 

obtained from publicly available satellite-based Earth observations and global models. The 

methods are as follows. First, a baseline order of basins is defined using demographic population 

data in 2020. Second, a variety of water scarcity scenarios are analyzed using the swing-weight 

method to update factor weights. Third, risk is quantified as the disruption of basin order. Fourth, 

the disruption of scenarios to the baseline order is compared using sum of least square difference 

to identify basins of highest water scarcity risk given societal priorities and other factors. Fifth, 

spatial maps of basin order and disruption are provided to improve understanding of the spatial 

distribution of water scarcity challenges in the region with regard to vulnerable populations. The 

results feature identification of the most and least disruptive scenarios including: 1) population 

density is lowest in basins exposed to the highest air temperatures, 2) an urban-to-rural migration 

pattern (such as prompted by a public health crisis) would significantly disrupt basin order, and 3) 

populations with greatest exposure to extreme hydrological conditions of water scarcity are found 

in the southern basins of Iraq in or near the Al-Muthanna governorate. The impacts of this work 

are to steer future investments that mitigate risk of disrupted system orders and to increase system 

resilience of vulnerable populations to water scarcity. 

6.2 Introduction 

The Middle East is one of the most water scarce regions of the world (UNICEF, 2021). 

Globally, Iraq is ranked as the fifth most vulnerable country to water and food shortages and 

extreme temperatures (UNICEF, 2023). The combination of decreased water availability in the 

region and high dependence on surface water of the Tigris and Euphrates Rivers makes Iraq 

increasingly vulnerable to water scarcity (Jaff, 2023; UNICEF, 2021). There is a need to improve 
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system resilience in the region to disruptions in water supply (Linkov et al., 2022; Linkov & 

Trump, 2019). 

 Challenges of water scarcity and society are closely intertwined and multidisciplinary (Van 

Loon et al., 2016). In the Middle East, factors compounding the severity of drought on society 

include, but are not limited to, development of upstream countries, population growth, food 

insecurity, economic insecurity, decreased power availability, insufficient health and sanitation 

systems, slow-onset disaster events (i.e., prolonged drought), and rapid-onset disaster events (i.e., 

floods and earthquakes) (Chumky et al., 2022; Jaime et al., 2022; McAuliffe & Triandayfllidou, 

2022; Peters, 2021; UNICEF, 2021).  

An example of the complex relationship between water scarcity and societal priorities was 

evident in Basra, Iraq in 2018 when the combination of severe drought and decreased streamflow 

of the Euphrates-Tigris Rivers led to prolonged saltwater intrusion (UNICEF, 2018, 2021). The 

lack of water availability, adverse health impacts, and public dissatisfaction in the region led to 

unrest and violent protests (UNICEF, 2018, 2021). Similarly, high concentrations of saltwater have 

been found moving further upstream in the Shatt Al-Arab River as the amount of freshwater flow 

declines (Al-Asadi et al., 2023). This is concerning for sustainable development, as this is an 

important water source for domestic and industrial usage in southern Iraq (Al-Asadi et al., 2023).   

 Climate change, however, is predicted to continue exacerbating water scarcity challenges 

in Iraq and surrounding Middle Eastern countries through decreased precipitation, increased 

temperatures, increased desertification, and more frequent and intense hydrological extremes 

(Lavell et al., 2012; UNDRR, 2015). An adaptation method to climate change is climate migration, 

or the physical movement of populations due to the environment resulting in Internally Displaced 

Peoples (IDPs) or international migrants (McAuliffe & Triandayfllidou, 2022; Šedová et al., 2021). 
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In 2018, an estimated 630 families were displaced in southern Iraq due to water scarcity (UNICEF, 

2021). Similarly, approximately, 20,000 Iraqis were displaced in 2021 due to water scarcity when 

only 10 governorates were analyzed (IOM, 2020; IOM Iraq, 2022). 

Previous studies have reported that severe climate change prevents IDPs from returning to 

their homes in Iraq and the number of climate migrants is likely underestimated in the region due 

to identification and reporting challenges (Chumky et al., 2022; Jaff, 2023). Given future climate 

change projections, the number of climate refugees, migrants, and IDPs are expected to increase 

within the region (Mazhin et al., 2020). For example, four million Iraqis are predicted to be 

internally displaced due to water scarcity in the next eight years (UNICEF, 2021). Furthermore, 

the most vulnerable populations living in high-risk areas will likely lack the physical or financial 

means to migrate without external assistance and aide (McAuliffe & Triandayfllidou, 2022). 

 With limited water availability in Iraq, cooperative international water management in the 

transboundary basins of the region is vital for sustainable development (UNICEF, 2021, 2023). 

However, political disagreements prevent the ubiquitous sharing of in-situ hydrology data between 

countries in the region (Albarakat et al., 2018, 2022; Albarakat & Lakshmi, 2019). One method to 

mitigate this data gap is through the use of satellite-based Earth Observations collected at high 

spatial and temporal resolutions to observe hydrological factors of water scarcity such as 

precipitation, air surface temperature, root zone soil moisture (depth of 0 – 2 m below the surface), 

and Normalized Difference Vegetation Index (NDVI) (Albarakat et al., 2018, 2022; Albarakat & 

Lakshmi, 2019; Besnier et al., 2024; Marcellin et al., 2023; Pavur & Lakshmi, 2023; Waheed et 

al., 2020, 2022, 2023). 

 In this study, we combine a variety of interdisciplinary factors of water scarcity (i.e., social, 

hydrological, and environmental) in a risk register to examine the basin-level risk of population 
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and water scarcity in transboundary basins of Iraq. Hydrological observations are obtained from 

approximately 19 years of free and publicly available satellite-based Earth Observations. By 

defining a baseline scenario of youth population density in 2020, particular attention is given to 

youth populations (defined as persons less than twenty years of age for purposes of this study) who 

are a vulnerable demographic to water scarcity on both short and long-term timescales (UNICEF, 

2021, 2023). Then, a variety of scenarios which disrupt the system order are considered including 

1) economic insecurity, 2) food insecurity, 3) current population density, 4) future population 

growth, 5) health crisis (such as the COVID-19 pandemic), and 6) distance from disaster (such as 

the 2023 Türkiye/Syria earthquake). To update the new ordering functions for each basin in the 

scenarios, the swing-weight technique is used to change the factor weights across scenarios 

(Karvetski et al., 2009). This allows for tradeoffs of greater weighting of one or more variables in 

exchange for less consideration of other variables, which is advantageous for this study since the 

relative importance of one variable (social, hydrological, or environmental) over another is 

uncertain (Bonato et al., 2022; M. C. Hamilton et al., 2015; Karvetski et al., 2009; You et al., 

2014a). Risk at the sub-basin scale is quantified as the disruption of the scenarios to the baseline 

order using the least square difference of order (Hassler et al., 2019b). Spatial maps of the most 

and least disruptive scenarios are provided to improve understanding of the spatial distribution of 

societal priorities and water scarcity. Results from this study can be used to inform priorities and 

future investments aimed to decrease risk and increase resilience to water scarcity in transboundary 

basins of Iraq, particularly with regard to societal priorities. 

 

6.2.1 Geographic Area of Demonstration 

 



142 

 

 

Fig. 6.1: (A) Digital elevation model (DEM) derived from NASA Shuttle Radar Topography 

Mission (SRTM) for the geographic area of demonstration with basin delineations shown for the 

Haditha, Mosul, Dokan, and Euphrates-Tigris River basins. (B) Sub-basin delineations for the 

geographic area of demonstration, as defined by the Level 05 HydroBASINS dataset. (C) Land 

use/land cover map of Iraq and surrounding countries derived from Sentinel-2 data. 

The study area is defined using the Level 05 HydroBASINS dataset within the following 

major river basins which are transboundary with Iraq: the Euphrates-Tigris River basin, the Mosul 

basin, the Dokan basin, and the Haditha basin (Albarakat et al., 2022). Fig. 6.1A shows a digital 

elevation model (DEM) with basin delineations for the Haditha, Mosul, Dokan, and Euphrates-

Tigris River basins. The Haditha, Mosul, and Dokan basins were delineated using dam locations, 

as described in Albarakat et al., 2022. Fig. 6.1B shows the 43 sub-basins delineated by the Level 
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05 HydroBASINS dataset. Nineteen of the sub-basins of Iraq are transboundary, crossing borders 

into other countries, while an additional four sub-basins are transboundary across borders of other 

countries. Fig. 6.1C shows a land use/land cover map derived from Sentinel-2 for the study area 

for 2022. Built area in Iraq is predominately located between and northeast of the Euphrates and 

Tigris Rivers (Fig. 6.1C). 

6.3 Sources of Data for the Demonstration  

This section describes the open data (i.e., free and publicly available data) used for social 

factors (i.e., youth population density and population growth rate), hydrology observations (i.e., 

precipitation, air temperature, root zone soil moisture, and NDVI), and other environmental factors 

(i.e., land use/land cover and distance from earthquake epicenters). To allow for dataset 

comparisons regardless of the native resolutions, all datasets are resampled to a sub-basin scale 

defined by the World Wildlife Fund’s Level 05 HydroBASINS dataset (Lehner & Grill, 2013a). 

Table 6.1 summarizes each dataset used in this study by temporal resolution, native spatial 

resolution, resampled resolution, resampling method, study period, and sources. Appendix 6.2 

shows annual time series from 2003 – 2022 for all social and hydrology factors with data available 

over this period. Brief dataset descriptions and pre-processing steps are provided in the remainder 

of this section. 

 

 

 

Table 6.1: Summary of open data used in this study including variable, sensor/model, native 

spatial resolution, resampled resolution, resampling method, temporal resolution, study period, 

and sources.  
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Variable Sensor/Mode

l 

Native 

Spatial 

Resolution 

Resample

d 

Resolutio

n 

Resamplin

g Method 

Temporal 

Resolutio

n 

Study 

Perio

d 

Sources 

Sub-basins HydroBASIN

S 

Level 05 N/A N/A N/A N/A Lehner & 

Grill, 2013 

Youth 

Population 

Density 

WorldPop, 

Age and sex 

structures, 

constrained 

individual 

countries 

2020 UN 

adjusted 

100 m  Level 05 

HydroBA

SINS 

Spatial 

average 

Yearly 2020 Bondarenk

o et al., 

2020    

Population 

Growth 

Rate 

LandScan 

Global 

1 km Level 05 

HydroBA

SINS 

Spatial 

average 

Yearly 2003 

– 

2022 

Sims et al., 

2023 

Land Use 

Land 

Cover 

Sentinel-2 10 

m Land Use 

Land Cover 

10 m  Level 05 

HydroBA

SINS 

Spatial 

sum 

Yearly 2022 Karra & et 

al., 2021 

Precipitatio

n 

GPM 

IMERG Final 

Precipitation 

L3 V06 

 

GPM 

IMERG Late 

Precipitation 

L3 V06 

0.1° 

 

 

 

 

0.1° 

 

 

Level 05 

HydroBA

SINS 

Spatial 

average 

Yearly 2003 

– 

2022 

Huffman 

et al., 2020 

Surface Air 

Temperatur

e 

GLDAS 

Noah Land 

Surface 

Model L4 

V2.1 

 

GLDAS 

Noah Land 

Surface 

Model L4 

Early Product 

V2.1 

0.25° 

 

 

 

 

0.25° 

 

Level 05 

HydroBA

SINS 

Spatial 

average 

Yearly 2003 

– 

2022 

Rodell et 

al., 2004 

Root Zone 

Soil 

Moisture 

(0 – 2 m 

depth) 

GLDAS 

Noah Land 

Surface 

Model L4 

V2.1 

0.25° 

 

 

 

 

Level 05 

HydroBA

SINS 

Spatial 

average 

Yearly 2003 

– 

2022 

Rodell et 

al., 2004 
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GLDAS 

Noah Land 

Surface 

Model L4 

Early Product 

V2.1 

 

0.25° 

 

Normalize

d 

Difference 

Vegetation 

Index 

(NDVI) 

MODIS/Terr

a Surface 

Reflectance 

Daily L2G 

500 m Global 

V006 

500 m  Level 05 

HydroBA

SINS 

Spatial 

average 

Yearly 2003 

– 

2022 

Vermote 

& Wolfe, 

2015 

Distance 

from 

Earthquake 

Epicenter 

to Basin 

Centroid 

The Global 

Centroid-

Moment-

Tensor 

(CMT) 

Project 

N/A Level 05 

HydroBA

SINS 

Spatial 

distance  

N/A 2023 Dziewons

ki et al., 

1981; 

Ekström et 

al., 2012 

 

6.3.1 Social Factors Data 

Two social factors considered in this study are (1) youth population density and (2) population 

growth rate. Youth population density is calculated at the basin-level using Eq. 1 and the WorldPop 

“age and sex structures constrained individual countries 2020, UN Adjusted” dataset for the 

following countries: Armenia, Azerbaijan, Georgia, Iran, Iraq, Jordan, Kuwait, Saudi Arabia, 

Syria, and Türkiye (Bondarenko et al., 2020). In Eq. 1, youth population density for a given basin 

(𝑌𝑃𝐷(𝑏𝑖)) equals the total youth population within the basin (𝑌𝑃(𝑏𝑖)) divided by basin area 

(𝐴(𝑏𝑖)). For purposes of this study and due to the availability of WorldPop data, youth is defined 

as persons less than twenty years of age. The WorldPop data is available in 2024 at: 

https://hub.worldpop.org/doi/10.5258/SOTON/WP00698.  

𝑌𝑃𝐷(𝑏𝑖) =
𝑌𝑃(𝑏𝑖)

𝐴(𝑏𝑖)
                                                                                     (1) 

https://hub.worldpop.org/doi/10.5258/SOTON/WP00698
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Population growth rate from 2003 – 2022 is calculated at the basin-level using Eq. 2 and the 

Oak Ridge National Laboratory “LandScan Global” product (Sims et al., 2023). In Eq. 2, the 

population growth rate of a basin (𝑃𝐺𝑅(𝑏𝑖)) equals the ratio of the difference in basin population 

density in 2022 (𝑃𝐷𝑡2
(𝑏𝑖)) and 2003 (𝑃𝐷𝑡1

(𝑏𝑖)) and the change in time (𝑡2 − 𝑡1). The LandScan 

Global product is available in 2024 at: https://landscan.ornl.gov/.  

𝑃𝐺𝑅 =
𝑃𝐷𝑡2

(𝑏𝑖) − 𝑃𝐷𝑡1
(𝑏𝑖)

𝑡2 − 𝑡1
∗ 100%                                                             (2) 

 

6.3.2 Hydrology Factors Data 

Four hydrology factors considered in this study are (1) precipitation, (2) air surface 

temperature, (3) root zone soil moisture, and (4) NDVI. All hydrological observations are derived 

from publicly available Earth observations and modeled data. The factors are resampled as basin-

level annual spatial averages using monthly observations from 2003 – 2022. Precipitation data is 

available in 2024 at: https://gpm.nasa.gov/data/imerg. Air surface temperature and root zone soil 

moisture data are available in 2024 at: https://ldas.gsfc.nasa.gov/gldas. NDVI data is available in 

2024 at:  https://lpdaac.usgs.gov/products/mod09gav006/.  

 

6.3.3 Other Environmental Factors Data 

Two additional environmental factors considered in this study are (1) land use/land cover and 

(2) distance from the 2023 Türkiye/Syria earthquake epicenters. The land use/land cover data for 

2022 was obtained using the Sentinel-2 10 m Land Use Land Cover product (Karra & et al., 2021). 

From this dataset, the percentage of urbanized basin area (URB) and percentage of agriculture 

basin area (AGR) are calculated using Eq. 3 and Eq. 4, respectively, where 𝐴(𝑏𝑖) is the basin area. 

https://landscan.ornl.gov/
https://gpm.nasa.gov/data/imerg
https://ldas.gsfc.nasa.gov/gldas
https://lpdaac.usgs.gov/products/mod09gav006/
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Sentinel-2 10 m Land Use Land Cover data is available in 2024 at: 

https://www.arcgis.com/home/item.html?id=cfcb7609de5f478eb7666240902d4d3d. 

𝑈𝑅𝐵 =
𝐴𝑢𝑟𝑏𝑎𝑛(𝑏𝑖)

𝐴(𝑏𝑖)
∗ 100%                                                                   (3) 

𝐴𝐺𝑅 =
𝐴𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒(𝑏𝑖)

𝐴(𝑏𝑖)
∗ 100%                                                              (4) 

Distance from the 2023 Türkiye/Syria earthquake epicenters was calculated as the Euclidean 

distance from the epicenter to each basin centroid. The latitude/longitude coordinates of the two 

earthquake epicenters were obtained from the Global Centroid-Moment-Tensor (CMT) Project and 

is available in 2024 at: https://www.globalcmt.org/.  

 

6.4 Methods  

This section describes the methodology in several parts as follows: (1) the sub-basins of 

the study area are characterized for each social, hydrology, and environmental factor from highest 

to lowest order based on priorities of stakeholders; (2) a baseline scenario is defined using the 

basin ordered youth population density data to represent initial conditions of the study area prior 

to disturbances; (3) a variety of scenarios are defined using the social, hydrology, and 

environmental factors and stakeholder feedback; (4) the swing-weight technique is used to update 

factor weights for each scenario; (5) risk is calculated as the difference in basin order of a given 

scenario compared to the baseline scenario; (6) a normalized score of disruptiveness is calculated 

using the sum of squares of differences in order to identify the most and least disruptive scenarios; 

(7) results are mapped for select scenarios to improve understanding of the spatial distribution of 

basin-level priority and risk. Additional details of each step are provided in the remainder of this 

section.  

https://www.arcgis.com/home/item.html?id=cfcb7609de5f478eb7666240902d4d3d
https://www.globalcmt.org/
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 In the first step, sub-basins of the study area are ordered from 1 to i according to their level 

of concern to stakeholders, with sub-basins of greatest concern being the highest order. This is 

calculated using Eq. 5 where the basin order for a given scenario is 𝑆𝑛(𝑏𝑖) is the summation of j 

to k factors (𝑓𝑖𝑗) multiplied by the jth defined weight (𝑤𝑗). For each factor, basins are ordered as 

either ascending or descending values depending on the priorities of stakeholders. A summary of 

ordering methods for each factor is provided in Appendix 6.1.  

𝑆𝑛(𝑏𝑖) = 100 ∗ ∑ 𝑤𝑗𝑓𝑖𝑗

𝑘

𝑗=1

                                                                                         (5) 

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑤𝑗 ≤ 1 ∀𝑗 ∈ 𝐽 𝑎𝑛𝑑 ∑ 𝑤𝑗 = 1

𝑗∈𝐽

 

Second, the baseline scenario is defined using the basin ordered youth population density 

data. This represents the initial conditions of the study area prior to consideration of water scarcity 

and other disturbances. Third, a variety of scenarios are defined using the social, hydrological, and 

environmental factors. While an infinite number of scenarios are theoretically possible, this study 

considers fifteen main scenarios aimed to improve understanding of youth vulnerability to water 

scarcity under conditions of current youth population density, projected future youth population 

density, economic security, food security, public health security, and natural disaster. Fourth, the 

swing-weight technique is used to update factor weights for each scenario. As previously 

described, the swing-weight technique allows for tradeoffs of higher consideration of one or more 

variables in exchange for lower consideration of other variables in the scenario (Karvetski et al., 

2009). When a scenario considers multiple factors, the combined weighting of hydrology factors 

and non-hydrology factors is defined as 0.5 for each. Table 6.2 summarizes the fifteen scenarios 

and respective factor weights. Results of the basin order for select scenarios are spatially plotted 



149 

 

to map the distribution of basin order. Additionally, basins of the greatest increase and decrease in 

priority for scenarios considering water scarcity (𝑆10 − 𝑆15) are identified and spatially plotted. 

 

Table 6.2: Scenario descriptions and swing weights for each of the fifteen scenarios using social, 

hydrological, and other environmental factors. These include youth population density (YPD), 

population growth rate (PGR), percentage of urbanized basin area in 2022 (URB), percentage of 

agricultural basin area in 2022 (AGR), distance from earthquake epicenters to basin centroids 

(D), annual average precipitation (P), annual average air surface temperature (T), annual 

average root zone soil moisture (RZSM), and annual average normalized difference vegetation 

index (NDVI).  

Scenario (𝑺𝒏) Swing weights (𝒘𝒋) of contributing factors (𝒇𝒋) 

𝒇𝟏: 

YPD 

𝒇𝟐: 

PGR 

𝒇𝟑: 

URB 

𝒇𝟒: 

AG

R 

𝒇𝟓: 

D 

𝒇𝟔: 

P 

𝒇𝟕: 

T 

𝒇𝟖: 

RZSM 

𝒇𝟗: 

NDV

I 

𝑺𝟏: Youth population 

density in 2020 (baseline 

order) 

1 0 0 0 0 0 0 0 0 

𝑺𝟐: Population growth 

rate from 2003 – 2022 

0 1 0 0 0 0 0 0 0 

𝑺𝟑: Percentage of 

urbanized basin area in 

2022 

0 0 1 0 0 0 0 0 0 

𝑺𝟒: Percentage of 

agriculture basin area in 

2022 

0 0 0 1 0 0 0 0 0 

𝑺𝟓: Distance from 

disaster to basin centroid 

0 0 0 0 1 0 0 0 0 

𝑺𝟔: Annual average 

precipitation 

0 0 0 0 0 1 0 0 0 

𝑺𝟕: Annual average air 

surface temperature 

0 0 0 0 0 0 1 0 0 

𝑺𝟖: Annual average root 

zone soil moisture 

0 0 0 0 0 0 0 1 0 

𝑺𝟗: Annual average 

NDVI 

0 0 0 0 0 0 0 0 1 

𝑺𝟏𝟎: Current youth 

population vulnerability 

to hydrological 

0.5 0 0 0 0 0.12

5 

0.12

5 

0.125 0.125 
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conditions of water 

scarcity 

𝑺𝟏𝟏: Future youth 

population vulnerability 

to hydrological 

conditions of water 

scarcity 

0.25 0.25 0 0 0 0.12

5 

0.12

5 

0.125 0.125 

𝑺𝟏𝟐: Youth population 

vulnerability to 

hydrological conditions 

of water scarcity when 

migrating to urbanized 

areas for economic 

security 

0.25 0 0.25 0 0 0.12

5 

0.12

5 

0.125 0.125 

𝑺𝟏𝟑: Youth population 

vulnerability to 

hydrological conditions 

of water scarcity and 

agricultural stress for 

food security and 

economic security 

0.25 0 0 0.25 0 0.12

5 

0.12

5 

0.125 0.125 

𝑺𝟏𝟒: Youth population 

vulnerability to 

hydrological conditions 

of water scarcity when 

migrating away from 

urbanized areas for public 

health security (such as 

pandemic) 

0.25 0 0.25

* 

0 0 0.12

5 

0.12

5 

0.125 0.125 

𝑺𝟏𝟓: Youth vulnerability 

to hydrological 

conditions of water 

scarcity when nearby 

natural disaster (such as 

2023 Türkiye/Syria 

earthquakes) 

0.25 0 0 0 0.2

5 

0.12

5 

0.12

5 

0.125 0.125 

*: sorted in opposite order (ascending) to prioritize basins with least urbanized areas 

Fifth, risk is quantified for each scenario as the degree of disruption of system order 

(Hassler et al., 2019). This is calculated as the difference in basin order of a given scenario 

compared to the baseline scenario (𝑆1) using Eq. 6 where 𝑅𝑛(𝑏𝑖) is the basin risk in scenario n, 

𝑆1(𝑏𝑖) is the basin order in the baseline scenario, and 𝑆𝑛(𝑏𝑖) is the basin order in scenario n. The 

results are spatially plotted to map the basin-level risk for select scenarios.    

𝑅𝑛(𝑏𝑖) = 𝑆1(𝑏𝑖) − 𝑆𝑛(𝑏𝑖)                                                                    (6)   
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 Sixth, a score of disruption is calculated for each scenario using the normalized sum of 

squares of differences in order (Eq. 7 and 8). This metric quantifies the influence of each scenario 

to the system order (Bonato et al., 2022; Hassler et al., 2019b; Karvetski et al., 2009; You et al., 

2014a). Thus, the least disruptive scenario has the lowest normalized score of disruption and the 

most disruptive scenario has the highest normalized score of disruption. 

𝑥(𝑆𝑛) = ∑(𝑆1(𝑏𝑖) − 𝑆𝑛(𝑏𝑖))
2

                                                            (7)

𝑁

𝑖

 

𝑋(𝑆𝑛) =
𝑥(𝑆𝑛) − 𝑥(𝑆)𝑚𝑖𝑛.

𝑥(𝑆)𝑚𝑎𝑥. − 𝑥(𝑆)𝑚𝑖𝑛.
                                                              (8) 

 In Eq. 7 and 8 above, 𝑥(𝑆𝑛) is the sum of squares of differences in order for scenario n. 

𝑋(𝑆𝑛) is the normalized sum of squares of differences in order, which is also referred to as the 

score of disruption. 

 

6.5 Results and Discussion  

 This section is organized as follows: section 6.5.1 describes results of the basin ordered 

spatial plots for scenarios; section 6.5.2 describes results of risk as the disruption of basin order; 

section 6.5.3 describes results of the most and least disruptive scenarios.  

 

6.5.1 Basin Ordered Spatial Plots for Scenarios  

The basin order for each scenario is represented in Fig. 6.2 with values of 1 indicating the 

highest priority and values of 43 indicating the lowest priority. The baseline scenario (𝑆1) shows 

that youth population density tends to be highest outside of Iraq, particularly in the northern sub-

basins of Türkiye and Syria (𝑆1, Fig. 6.2A). An exception to this is a high youth population basin 

located in the Kurdistan Region of Iraq (𝑆1, Fig. 6.2A), which concurs with the spatial variation of 

population in the region published by Jaafar Alnajm (2023). Population growth rate from 2003 –  
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Fig. 6.2: Basin ordered spatial plots for single variable scenarios (𝑆1 − 𝑆9) and multiple variable 

scenarios (𝑆10 − 𝑆15). Basins in black are low order values (near or equal to 1) representing high 

priority/high concern. Basins in white are high order values (near or equal to the maximum 

number of basins) representing low priority/little concern. 
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2022 shows that basins of Iraq tend to be higher priority (i.e., greater population growth rates) than 

elsewhere in the study area (𝑆2, Fig. 6.2B).  

Basins of the greatest percentage of urbanized area tend to be in the northern half of the 

study area (𝑆3, Fig. 6.2C), whereas basins of the greatest percentage of agricultural area tend to be 

in southwestern Iraq and to the northeast of Iraq (𝑆4, Fig. 6.2D). These results concur with the land 

use/land cover changes from 2000 – 2022 documented by Al-Taei et al. (2023).  

Fig. 6.2E (𝑆5) shows distance from the Türkiye/Syria earthquake epicenters to the basin 

centroid. Basins near the epicenters have highest priority and basins furthest from the epicenters 

have lowest priority (𝑆5, Fig. 6.2E). The basins of highest priority concur with regions of extensive 

damage to infrastructure and loss of life due to the earthquakes reported by the media (Robles et 

al., 2023). 

Annual average precipitation is highest priority (i.e., lowest precipitation) in the southern 

portions of Iraq (𝑆6, Fig. 6.2F). Annual average air surface temperature is highest priority at the 

outlet of the study area, near the Gulf (𝑆7, Fig. 6.2G). Annual average soil moisture is highest 

priority in southern Iraq (𝑆8, Fig. 6.2H), which corresponds to the regions of least precipitation 

(𝑆6, Fig. 6.2F). Similarly, annual average NDVI is highest priority (i.e., lowest observed values) 

in the southern portions of Iraq with low soil moisture and low precipitation (𝑆9, Fig. 6.2I). These 

results concur with previous studies that examine the spatial distribution of precipitation, 

temperature, soil moisture, and NDVI in Iraq and the Middle East (Al-Taei et al., 2023; Al-Timimi 

& Al-Khudhairy, 2018; Karakani et al., 2021; Yehia et al., 2023). 

Scenarios 𝑆10 − 𝑆15 consider social/other environmental factors in combination with water 

scarcity. In all six scenarios, basins of lower order (i.e., higher priority/concern) are generally 

found in Iraq. The spatial distribution of priority is similar for current youth population with 
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exposure to water scarcity (𝑆10, Fig. 6.2J) and youth population and agricultural water scarcity 

(𝑆13, Fig. 6.2M). The southern basins of Iraq generally have the lowest order (i.e., higher 

priority/concern) when considering future youth population growth and water scarcity (𝑆11, Fig. 

2K) and youth migration away from urbanized areas and water scarcity (𝑆14, Fig. 6.2N). 

Conversely, basins of southern Iraq have higher order when youth migration to urbanized areas 

and water scarcity is considered (𝑆12, Fig. 6.2L). Lastly, basins of western Iraq generally have 

lower order when youth distance from the 2023 Türkiye/Syria earthquakes are considered, as these 

basins were closest to the disaster and have high water scarcity concerns (𝑆15, Fig. 6.2O). 

 

6.5.2 Risk as the Disruption of Basin Order  

Fig. 6.3 shows spatial maps of basin-level risk for scenarios 𝑆10 − 𝑆15 (i.e., scenarios of 

three or more factors) to improve understanding of where sub-basins increased or decreased in 

priority compared with the baseline scenario (defined by 𝑆1).  The greatest increase in basin order 

was approximately +36 while the greatest decrease in basin order was approximately -36. 

Generally, the greatest increase in order was observed in Iraq sub-basins south of the Euphrates-

Tigris Rivers, regardless of the scenario, indicating the basins have the greatest youth population 

density exposed to extreme conditions of water scarcity. However, the relative increase/decrease 

in orders varies between the scenarios, with 𝑆11 (Fig. 6.3B) depicting the greatest range in change 

in order and 𝑆10 (Fig. 6.3A) depicting the smallest range in change in order.   

Appendix 6.3 summarizes the top five basins with the largest increase and decrease in 

priority across the scenarios, with a reference map shown in Appendix 6.4. Sub-basins south of the 

Euphrates and Tigris Rivers in Iraq were generally identified as the highest priority basins when 

at least two factors were considered, indicating the basins have high youth population densities 
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with exposure to extreme conditions of water scarcity. Southern basins of Iraq, in or near the Al-

Muthanna governorate, were identified as basins of the greatest increase in priority when both 

water scarcity and youth population density are considered. Coincidentally, previous studies have 

identified this region as the highest rate of poverty in Iraq (Vishwanath & Krishnan, 2015).   

 

 

Fig. 6.3: Spatial maps of basin-level risk for scenarios of three or more factors (i.e., 𝑆10 − 𝑆15). 

Basins in red indicate increased risk (i.e., a positive change in basin order). Basins in green 

indicate decreased risk (i.e., a negative change in basin order). 
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6.5.3 Most and Least Disruptive Scenarios  

Fig. 6.4A shows a bar graph of the sum of least square difference calculated for scenarios 

𝑆2 − 𝑆15 using Eq. 7. Fig. 6.4B shows a bar graph of the normalized score of disruption calculated 

for scenarios 𝑆2 − 𝑆15 using Eq. 8.  

Generally, scenarios of two or more factors (𝑆10 − 𝑆15) exhibited less disruption compared 

to scenarios of one factor (𝑆2 − 𝑆9). Scenario 𝑆10 (current youth population and water scarcity) 

had the least disruption across all scenarios, indicating youth population density generally tends to 

be highest in basins of greatest water availability. When considering only one factor, Scenario 𝑆5 

(distance from earthquake) had the least disruption. This indicates that basins of high youth 

population density were located close to the disaster. Thus, the priorities (i.e., basin order) showed 

little change.  

Scenario 𝑆14 (youth migration away from urbanized areas and water scarcity) had the most 

disruption when two or more factors were considered. This suggests that even though youth 

population density is low in basins of high agricultural area, an urban-to-rural migration pattern 

(such as caused by a public health crisis like the COVID-19 pandemic) would significantly disrupt 

basin priorities.  

When only one factor was considered, Scenario 𝑆7 (annual average air temperature) had 

the most disruption. This may reflect that populations have been detracted from development in 

these basins due to the high temperatures.  
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Fig. 6.4: (A) Sum of least square difference in order for scenarios 𝑆2 − 𝑆15 and (B) normalized 

score of disruption in order for scenarios 𝑆2 − 𝑆15. Both metrics are used to determine the most 

and least disruptive scenarios compared to the baseline order (𝑆1). 

6.6 Conclusions 

In this study, we examine the spatial distribution of priority and risk at a sub-basin level 

with attention to water scarcity for transboundary basins of Iraq and the Middle East. Given that 

the region faces complex challenges of international water management and lacks extensive in-

situ hydrological observations, this study leverages publicly available satellite-based Earth 

Observations to obtain hydrology data with sufficient spatial coverage of the transboundary basins, 

regardless of political borders. A qualitative summary of key findings is provided in Table 3 and 

described below.   

 Scenario order and risk spatial plots may be used by stakeholders to climate-conscious 

decisions when allocating resources to basins for sustainable development. For example, 

stakeholders may choose to invest in basins of the greatest overall risk (i.e., decrease risk) and 

greatest overall basin order (i.e., increase resilience). Conversely, stakeholders may decide to 

allocate resources aimed to incentivize climate migration away from basins of the greatest 
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risk/priority during scenarios of water scarcity and towards basins of low risk (i.e., the most water 

resources). Preparation sudden-onset disasters in combination with water scarcity priorities, such 

as the 2023 Türkiye/Syria earthquake, may be challenging as the location of the future disaster is 

unknown. However, the spatial maps of basin order and risk could be used to support informed 

decisions on refugee relocation to the nearest basins with maximum water availability, as opposed 

to closest basins to the disaster (which may or may not have severe water scarcity challenges).   

 As previously noted, water scarcity and population are intertwined and multidisciplinary. 

While the scenarios demonstrated in this study make meaningful progress towards analyzing the 

combination of priorities using social, hydrological, and environmental factors, a limitation of this 

study is that it does not account for all potential factors influencing the system. For example, we 

did not consider factors of policy, religion, or conflict. Future work may build upon this research 

to continue identifying and incorporating factors which disrupt basin order considering both social 

priorities and water scarcity in the region.  

 Overall, the results of this paper improve understanding of the spatial distribution of basin-

level priorities and risk considering social priorities, particularly for youth populations, and water 

scarcity in transboundary basins of Iraq and the Middle East. Findings from this study can support 

decision makers tasked with allocating resources aimed to decrease water scarcity risk and increase 

resilience in the region, particularly for vulnerable populations.  
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Table 6.3: Qualitative summary of results from this study including descriptions of figures/tables 

to reference within the manuscript and appendix.  

Types of Results Specific Results Comments Sources 

Most disruptive 

scenarios 
𝑆14 – youth migration 

away from urbanized 

areas and water 

scarcity 

 

 

 

 

 

 

𝑆7 – annual average 

air temperature 

Youth population 

density is relatively 

low in agricultural 

areas. A public health 

crisis, like COVID-

19, which causes 

urban-to-rural 

migration would 

significantly disrupt 

priorities.  

 

Youth population 

density is relatively 

low in the basins of 

highest air 

temperature, which 

may indicate that 

temperature extremes 

detract from 

development in these 

basins. 

Fig. 6.2 

Fig. 6.4  

Least disruptive 

scenarios 
𝑆10 – current youth 

population and water 

scarcity 

 

 

 

 

𝑆5  - distance from 

earthquake 

Youth population 

density generally 

tends to be highest in 

basins with the most 

water availability in 

the region.  

 

Basins of high youth 

population density 

were located closely 

to the 2023 

Türkiye/Syria 

earthquake 

epicenters.  

Fig. 6.2 

Fig. 6.4  

Highest priority 

basins in disrupted 

orders of at least two 

factors 

Iraq sub-basins south 

of the Tigris and 

Euphrates rivers 

Basins of youth 

population with 

relatively high 

exposure to extreme 

hydrological 

conditions of water 

scarcity. 

Fig. 6.2 

Fig. 6.3 
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Lowest priority 

basins in disrupted 

orders of at least two 

factors 

Sub-basins north of 

Iraq 

Basins of youth 

population with 

relatively low 

exposure to extreme 

hydrological 

conditions of water 

scarcity. 

Fig. 6.2 

Fig. 6.3 

Greatest increase in 

basin priority  

Southern basins of 

Iraq in or near the Al-

Muthanna 

governorate 

Basins of youth 

population with the 

greatest exposure to 

extreme hydrological 

conditions of water 

scarcity. 

Appendix 6.3A 

Appendix 6.4 

Greatest decrease in 

basin priority  

Northwestern basins, 

generally outside of 

Iraq 

Basins of youth 

population with the 

least exposure to 

extreme hydrological 

conditions of water 

scarcity. 

Appendix 6.3B 

Appendix 6.4 
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Chapter 7: Conclusions  

 

7.1 Overview  

This section is organized as follows. Section 7.2 provides a summary of the dissertation 

research. Section 7.3 provides a summary of key research contributions. Section 7.4 describes 

future work in natural disasters hydrology and risk. Section 7.5 provides final remarks.  

7.2 Research Summary  

 This dissertation describes five interdisciplinary studies of monitoring hydrological natural 

disasters and risk associated with these extreme events. Throughout each, space-based Earth 

Observations were leveraged to obtain high-resolution spatial and temporal hydrological data. This 

was advantageous in regions traditionally limited by insufficient in-situ hydrological observations 

such as the Lake Victoria Basin of Africa, Iraq and transboundary regions of the Middle East, and 

hurricane regions of the Southeastern United States.  

 Two studies demonstrated methodology for hydrological monitoring using space-based 

Earth Observations (Chapters 2 and 3). This supports efforts to improve the accuracy and reliability 

of foundational hydrological data, such as the extent and location of inland waterbodies (Chapter 
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2) and the spatial and temporal variability of components of the water balance equation (Chapter 

3).  

 Three studies demonstrated methodology for hydrological risk analysis using space-based 

Earth Observations and societal data (Chapters 4, 5, and 6). In each, we define risk as the disruption 

of system order. A risk register of basins was used to consider scenarios with criteria of hydrology 

and society, such as population and social vulnerability. Results of these chapters support efforts 

to improve understanding of basin-level risk given scenarios of hurricanes and social vulnerability 

(Chapter 4), multidecadal hydrological conditions and social vulnerability (Chapter 5), and water 

scarcity and population dynamics (Chapter 6). 

 Results and findings of this dissertation support the advancement of applications of remote 

sensing for hydrological monitoring, particularly in data-sparse regions of the world, and risk 

assessment of hydrological natural disasters where complex systems of society and the 

environment challenge the resilience of populations. This supports ongoing global efforts to 

decrease risk and increase resilience to hydrological disasters including floods, droughts, 

hurricanes, and water scarcity.  

 

7.3  Summary of Key Contributions  

Key contributions of this dissertation include the following:  

 

Chapter 2: This study provided a foundational comparison of CYGNSS versus optical-

sensor-based inland water masks. We found that a mosaic of binary thresholds using sub-basins 

and SNR improved performance compared to a singular binary threshold for the study area. A 

performance metric of ratio of inland water to catchment area revealed that CYGNSS, MODIS, 

and Landsat were within 2.3% of each other regardless of the sub-basin observed.  
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Chapter 3: This study was the first to validate the 1-km downscaled SMAP soil moisture 

dataset within the continent of Africa for describing hydrological extremes of floods and droughts. 

To our knowledge, this was the first study to conduct a hydrological spatial anomaly comparison 

for the 2019 – 2020 flood and the 2021 – 2022 drought events in the Lake Victoria Basin.  

 

Chapter 4: This study was among the first to demonstrate a hydrological risk assessment 

for Hurricane Ian. The results indicated that while coastal basins had the most extreme 

hydrological exposure, inland basins tended to have higher priority due to social vulnerability.  

 

Chapter 5: This study modeled resilience to multidecadal hydrological conditions. The 

results indicated patterns of populations of high socioeconomic concern co-located in basins of 

driest hydrological conditions. Similarly, populations of high SVI were found to be generally co-

located in basins of low elevation.  

 

Chapter 6: This study is among the first to examine the spatial distribution of basin-level 

priorities and risk of water scarcity and youth populations in Iraq and transboundary regions. The 

results indicated that population density is lowest in basins exposed to the highest temperatures. 

Additionally, populations with greatest exposure to extreme hydrological conditions of water 

scarcity are found in the southern basin of Iraq in or near the Al-Muthanna governate, which 

coincidentally has the highest poverty rate in Iraq.  
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7.4 Future Work in Natural Disasters Hydrology and Risk  

Opportunities for future work in the field of natural disasters hydrology and risk are 

numerous, particularly considering the pattern of substantial economic and societal loss observed 

from hydrological disasters each year across the globe.  

Two opportunities for future work related to hydrological monitoring include:  

1) Further validation of hydrological Earth Observations in data-sparse regions of the world, 

especially Africa. 

2) Further development of accurate and timely foundational hydrological data for 

applications of future disasters management.   

Three opportunities for future work related to hydrological risk analysis include:  

1) Increasing the complexity of scenarios by incorporating criteria of additional disciplines 

disrupted by hydrological disasters, such as public health and economy.  

2) Developing scenarios to account for disruption of society due to cascading/compound 

hydrological disasters (For example, a wildfire can destroy vegetation cover, making the 

region at risk for flooding and landslides. Similarly, prolonged drought conditions can 

lead to crop failure, making the region susceptible to dust storms and increased air quality 

health concerns.). 

3) Feasibility assessment of leveraging machine learning to forecast future scenarios and 

assess risk of hydrological disasters and social data with particular attention to ethics and 

algorithm bias.  
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7.5 Final Remarks 

Satellite-based Earth Observations continually collect useful environmental information 

about our planet. As demonstrated in this dissertation, these high-resolution data at regular 

temporal scales can inform and improve hydrological monitoring and risk assessment. Because 

hydrological natural disasters transcend manmade and political boundaries, this perspective from 

space allows research to also cross borders and ensure that vulnerable communities lacking 

extensive ground monitoring are not neglected.  

 Bridging the gap between hydrology and society is necessary to address the complex 

environmental and societal challenges of hydrological natural disasters. Interdisciplinary research 

can catalyze innovative solutions. Increasing decision maker accessibility to timely and accurate 

data obtained through Earth Observations for hydrological monitoring and disaster risk reduction 

is paramount. When applied properly, these data can save lives. 

 This dissertation serves as a framework for further development of applications of Earth 

Observations data for hydrological natural disasters and risk. It supports the global efforts to 

advance the frontier of scientific knowledge to address the environmental and social challenges 

that natural disasters unleash across our planet.   
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Appendices 

Appendix 2.1 

 Methodology Flow Chart: 

The methodology includes the following three steps: 1) derive bivariate water masks from 

Earth Observations (CYGNSS, MODIS, Landsat), 2) compare bivariate water masks in a 

comparison water mask, and 3) overlay comparison water mask with commercial satellite imagery 

for select examples. 
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Appendix 2.2 

HydroLAKES data: 

 HydroLAKES is a global database of over 1.43 million surface water polygons 

representing lakes and human-made reservoirs with surface areas of at least 10 ha (Messager et al., 

2016). The HydroLAKES polygons were derived using a geo-statistical model based on land 

surface topography and includes estimates of lake volume and hydraulic residence time (Messager 

et al., 2016). This dataset was published in 2016 and is co-registered in the HydroSHEDS database. 

For this study, HydroLAKES was used to inform the SNR threshold to classify CYGNSS data as 

inland water (see Appendix 2.3 for further details).   
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Appendix 2.3 

USGS Watershed Boundary data: 

 For this project, the United States Geological Survey Hydrological Unit Code-02 (USGS 

HUC-02) watershed boundaries dataset was used. The USGS HUC-02 basin boundaries are 

obtained from the Watershed Boundary Dataset (WBD) which is a national hierarchical dataset of 

hydrological units at 2- to 16-digit codes. For more information about the USGS WBD, please 

visit https://user.gov/national-hydrography/watershed-boundary-dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://user.gov/national-hydrography/watershed-boundary-dataset
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Appendix 2.4 

Summary Table of CYGNSS: 

This table provides a concise overview of key specifications and characteristics of the 

CYGNSS mission. It includes information about the launch, manufacturer, spacecraft design, 

observation technology, and more (Al-Khaldi et al., 2021; C. S. Ruf et al., 2018).  

CYGNSS Information 

Full mission name: Cyclone Global Navigation Satellite System 

(CYGNSS) 

Launch date: December 15, 2016 

Manufacturer: University of Michigan and Southwest 

Research Institute 

Funding agency: National Aeronautics and Space 

Administration (NASA) 

Launch provider: Orbital ATK 

Number of microsatellites in constellation: 8 microsatellites 

Mass of one microsatellite: 24.7 kg 

Outer dimensions of one microsatellite: 51 x 24 x 159 cm 

Channels of receiver of one microsatellite: 4-channels 

Number of simultaneous measurements of 

constellation (maximum): 

32 simultaneous measurements (4-channels 

on 8 microsatellites) 

Orbit altitude: Low Earth Orbit (~510 km) 

Observation technology: Global Navigation Satellite System 

Reflectometry (GNSS-R) 

Band wavelength of reflected signals: L-band frequency (1.575 GHz) 

Mean revisit between microsatellites: ~ 7 hours 

Median revisit between microsatellites: ~ 3 hours 

Designed spatial coverage to achieve 70% 

coverage within a 24-hour period: 

35°S - 35°N 

Maximum spatial coverage: 38°S - 38°N 

Incoherent (diffuse) bistatic scattering spatial 

resolution: 

~ 10 km (determined by delay and doppler 

filters) 

Coherent (specular) bistatic scattering spatial 

resolution: 

~ 500 m (determined by First Fresnel Zone) 

Total mission cost: $150 million 
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Appendix 2.5 

Sensitivity Analysis: 

 In order to select threshold values of CYGNSS SNR to differentiate between inland water 

and land, a sensitivity analysis was conducted for both the percentile of SNR observations and the 

threshold window sizes for each sub-basin. HydroLAKES data were assumed to be ground-truth 

lake extent and location information for purposes of this study.  

 The sensitivity analyses aimed to maximize F1-score (a balance of P and R) between 

HydroLAKES (the reference water mask) and CYGNSS (the predicted water mask). A 50th 

percentile of CYGNSS observations obtained the maximum F1-score when the entire study area 

was compared to the reference water mask, and thus was used when testing for the threshold 

windows of each sub-basin. The Table below (Appendix 2.7) summarizes the SNR thresholds 

calculated for each USGS HUC-02 basin. Appendix 2.6 shows a graph of how F1-scores of 

CYGNSS surface reflectivity SNR values vary depending on the thresholding interval for each 

basin.  
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Appendix 2.6 

F1-scores versus SNR values: 

F1-scores versus various CYGNSS surface reflectivity signal-to-noise ratio (SNR) values 

to define inland water for each USGS HUC-02 basin. 
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Appendix 2.7 

Table of SNR Threshold Windows: 

 Inland water surface reflectivity signal-to-noise-ratio (SNR) values for various basins 

determined from a sensitivity analysis which maximized F1-score compared to a reference dataset 

(HydroLAKES) 

Study Area SNR Threshold Window 

Total Study Area 

 

158 – 164 dB  

USGS HUC – 02 Basin 03 

South Atlantic Gulf basin (B03) 

158 – 164 dB  

USGS HUC – 02 Basin 06 

Tennessee basin (B06) 

158 – 165 dB 

USGS HUC – 02 Basin 08 

Lower Mississippi basin (B08) 

160 – 165 dB 

USGS HUC – 02 Basin 11 

Arkansas-White River basin (B11) 

159 – 164 dB 

USGS HUC – 02 Basin 12 

Texas-Gulf basin (B12) 

158 – 164 dB 

USGS HUC – 02 Basin 13 

Rio Grande basin (B13) 

159 – 162 dB 

USGS HUC – 02 Basin 15 

Lower Colorado basin (B15) 

159 – 164 dB 

USGS HUC – 02 Basin 18 

California basin (B18) 

159 – 164 dB 
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Appendix 2.8 

Daily Water Pixel Occurrences in 2019 for CYGNSS, MODIS, and Landsat: 

The number of daily 1-km water pixel observations within the study area for 2019 by 

CYNGSS, MODIS, and Landsat are shown below. Fewer MODIS and Landsat observations occur 

from May to October. This is likely due to seasonal precipitation and cloud cover. Conversely, 

CYNGSS observations are relatively consistent throughout the year due to usage of radar 

reflectometry (i.e., GNSS-R).  
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Appendix 2.9 

Basin-level confusion matrix statistics: 

 Results and discussions for the following confusion matrix statistics are provided in 

appendices 2.9.1-2.9.6: Recall (R), Precision (P), Specificity (SP), Miss Rate (M), False Detection 

Rate (FDR), and Accuracy (A). Please refer to the heatmaps in Fig. 3 of the main manuscript.  

  

Appendix 2.9.1: Recall (R) 

 A higher R indicates fewer TP classified than FP, meaning that the predicted water mask is 

more likely to capture positive instances. Thus, R should be maximized. However, this can often 

be at the expense of an increased FDR which may be undesirable for specific applications. The 

heatmap for R is shown in Fig. 2A. The lowest R tended to be observed in the Rio Grande basin 

(B13), regardless of the predicted water mask. This indicates either a low number of TP, a high 

number of FN, or a combination of both. For all basins, the R values tended to improve when 

CYGNSS was combined with either MODIS or Landsat for the predicted water mask.  

 

Appendix 2.9.2: Precision (P) 

 P indicates the level of confidence in positive predictions. Thus, a higher precision is 

desirable, and a lower precision is indicative of many FP. P is often used in combination with R to 

balance the trade-off between FP and FN. As shown in the P heatmap in Fig. 2B, P is generally 

lower across the entire study area and indicates a high percentage of FP predictions and thus 

disagreement between the water masks. The western basins (B13, B15, and B18) have the lowest 

P and the highest disagreement between the CYGNSS, Landsat, and MDOIS water masks.  
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Appendix 2.9.3: Specificity (SP) 

 SP represents the percentage of land pixels classified by the reference water mask that were 

also classified as land by the predicted water mask. A higher SP indicates that fewer negative 

instances were classified as positive, which is desirable for many applications. Like R, a higher SP 

value alone is not always ideal and it is necessary to determine a balance with SN. The heat map 

for SP is shown in Fig. 2C. Here, the Lower Mississippi basin (B08) and the total study area (AOI) 

had the lowest SP and thus the most disagreement of land classifications. The Rio Grande Basin 

(B13) has the highest SP, yet as previously discussed, had one of the lowest R.  

 

Appendix 2.9.4: Miss Rate (M) 

 M indicates the percentage of water pixels in the reference water mask which were 

classified as land by the predicted water mask. Thus, a low M is desirable. Fig. 2D shows the M 

heatmaps for each basin. Generally, M is low across the study area and each basin, indicating that 

relatively few water pixels identified by the reference water mask were classified as land by the 

predicted water mask. However, the Lower Mississippi basin (B08) had the highest M regardless 

of the reference/predicted water mask compared.  

 

Appendix 2.9.5: False Detection Rate (FDR) 

 FDR in this study quantifies the percentage of land pixels in the reference water mask 

classified as water pixels in the predicted water mask. A higher FDR indicates strong disagreement 

between the water masks. Hence, FDR should be minimized for this application. The FDR heatmap 

is shown in Fig. 2E. Generally, FDR is lower in the eastern portion of the study area compared to 

the western portion. This can likely be explained by a high number of FP water pixels classified 
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by the predicted water mask in the western portions of the study area. Additionally, the lowest 

FDR was obtained in the Lower Mississippi basin (B08).  

 

Appendix 2.9.6: Accuracy (A) 

 Accuracy (A) in a confusion matrix indicates that the predicted water mask has few errors 

in its prediction when compared to the reference water mask. Fig. 2F shows the heatmaps for 

accuracy at the basin-level and total study area, which is relatively low regardless of the 

observation region. The lowest accuracy for all predicted water masks was observed in the Lower 

Mississippi basin (B08) which is likely due to disagreements in water classifications along the 

Mississippi River watershed. It is important to note however that accuracy alone may not be a 

sufficient measure of the predicted water mask’s performance, especially when the class 

distribution is imbalanced. For example, a high number of FN would still result in high accuracy 

even if the predicted water mask never predicts TP. In these instances, precision, recall, and F1-

score (a balance between precision and recall) should also be considered to gain a more 

comprehensive understanding of the predicted water mask’s performance.  
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Appendix 2.10 

Table of ratio of inland water area to catchment area for sub-basins: 

 A summary of the performance metric of the ratio of inland water area to catchment area 

for sub-basins is provided in the table below.  

Basin 

 

Ratio of inland water area to sub-basin catchment area (%) 

Landsat CYGNSS MODIS MODIS 

+ CYGNSS 

Landsat 

+ CYGNSS 

B03 1.38 1.44 1.27 2.05 2.24 

B06 1.30 1.96 0.62 2.10 2.48 

B08 5.63 3.37 4.62 6.42 7.37 

B11 0.93 1.16 0.46 1.38 1.77 

B12 0.98 0.90 0.73 1.29 1.53 

B13 0.05 0.13 0.01 0.13 0.16 

B15 0.25 0.68 0.08 0.72 0.85 

B18 0.61 1.29 0.37 1.48 1.65 
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Appendix 2.11 

Summary Table of Commercial High-Resolution Satellite Imagery 

Information for the commercial satellite data used in this study is provided in the table 

below. This includes the name of the location, the commercial company provider, the date of 

acquisition of the image scenes, and the image identification number(s). For additional details of 

the commercial data, please consult the meta-data associated with the image identification 

number(s) via the respective commercial data provider. 

Location Commercial 

Company 

Date of 

Acquisition 

Image Identification 

Number(s) 

Salton Sea, 

California 

DigitalGlobe 02/23/2019 10400100499A8000 

1040010048634500 

Lake Maurepas and 

Lake Pontchartrain, 

Louisiana 

DigitalGlobe 07/04/2019 104001004F688700 

Lake Hartwell, 

Georgia and South 

Carolina 

Planet Labs, Inc. 04/01/2019 20190401_154607_0e0f 

20190401_154606_0e0f 

Tennessee River, 

Tennessee 

Planet Labs, Inc. 11/13/2019 20191113_162215_98_1057 

20191113_162213_96_1057 

20191113_162211_93_1057 

20191113_162209_93_1057 

20191113_162207_87_1057 

Lake Kissimmee, 

Florida  

Planet Labs, Inc. 11/29/2019 20191129_154208_1025 

20191129_154207_1025 

20191129_154206_1025 

20191129_154205_1025 

Sam Rayburn 

Reservoir, Texas 

Planet Labs, Inc. 09/04/2019 20190904_163504_1013 

20190904_163503_1013 

20190904_163502_1013 

20190904_163501_1013 

20190904_163500_1013 
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Appendix 2.12 

Summary table of percent of commercial satellite image scene classified as inland water by 

CYGNSS, Landsat, MODIS, and hand drawn water masks: 

The percentage of commercial satellite image scenes classified as inland water by 

CYGNSS, Landsat, MODIS, and hand drawn water masks is summarized in the table below. The 

commercial image scenes are visually displayed in Fig. 2.4 of the main manuscript. Regional, 

topographic, and vegetative differences of the image scenes may explain the percentage of image 

scene pixel classified by each observation system for the select examples (see section 2.3.4 of the 

main manuscript for further discussion of the commercial satellite imagery and Comparison Water 

Mask). 

 

Classification of pixels Commercial image scene  

(shown in Fig. 4) 

A B C D E F 

Hand drawn water mask 44% 60% 18% 13% 23% 24% 

Non-water (based on hand drawn 

water mask) 56% 40% 82% 87% 77% 76% 

MODIS only water 7% 26% 0% 0% 1% 2% 

Landsat only water 1% 0% 2% 1% 0% 2% 

CYGNSS only water 0% 13% 13% 12% 9% 5% 

MODIS & Landsat water 19% 48% 0% 7% 0% 12% 

CYGNSS & MODIS water 3% 2% 2% 2% 3% 1% 

MODIS & Landsat water 27% 11% 0% 16% 16% 18% 

CYGNSS & Landsat water 1% 5% 5% 7% 0% 3% 

CYGNSS, Landsat, and MODIS 

water 27% 11% 0% 16% 16% 18% 
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Appendix 3.1 

 Summary of four soil moisture stations used for validation from the Trans-African Hydro-

Meteorological Observatory (TAHMO) network. Data was accessed through the International Soil 

Moisture Network (ISMN). 

 

ISMN Station Name Country Observation 

Depth (m) 

Start Date End Date 

Apakope Kayove Rwanda 0.20 10/23/2018 12/31/2021 

Irbaan Primary Kenya 0.20 8/2/2019 12/31/2021 

Nakivubo Blue Primary School Uganda 0.20 8/22/2019 12/31/2021 

Olderkesi Secondary School Kenya 0.2 8/6/2019 12/31/2021 
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Appendix 3.2 

 Metrics and statistics from validation of in-situ near-surface soil moisture observations 

from the International Soil Moisture Network (ISMN) with the 1-km and 9-km Soil Moisture 

Active Passive (SMAP) observations at 6:00AM overpasses. Number of observations, R2, 

unbiased root mean square error (ubRMSE), bias, and p-value are provided for 1-km (table A) and 

9-km (table B) SMAP validation at each site. 

 

A: Validation Statistics of 1-km SMAP Observations 

ISMN Station Name Number of 

Observations 

R2 ubRMSE Bias p-value 

Apakope Kayove 126 0.494085 0.082586 0.082567 4.54E-20 

Irbaan Primary 130 0.505022 0.020658 0.020462 2.79E-21 

Nakivubo Blue Primary 

School 

111 

0.153645 0.004623 -0.00459 2.1E-05 

Olderkesi Secondary 

School 

141 

0.427319 0.019615 0.011919 1.53E-18 

 

 

B: Validation Statistics of 9-km SMAP Observations 

ISMN Station Name Number of 

Observations 

R2 ubRMSE Bias p-value 

Apakope Kayove 126 0.457544 0.146901 0.146819 3.55E-18 

Irbaan Primary 130 0.548914 0.033146 0.032838 7.04E-24 

Nakivubo Blue Primary 

School 

111 

0.159815 0.029315 -0.0293 1.38E-05 

Olderkesi Secondary 

School 

141 

0.477956 0.031178 0.026849 2.33E-21 
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Appendix 3.3 

 Results of validation of in-situ near-surface soil moisture observations from the 

International Soil Moisture Network with the 1-km and 9-km Soil Moisture Active Passive 

(SMAP) observations at 6:00AM overpasses.  

 

 

 

 



183 

 

Appendix 3.4 

 Time series of in-situ near-surface soil moisture observations from four TAHMO stations 

compared with 1-km and 9-km SMAP soil moisture observations from 2015 – 2021.  
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Appendix 4.1 

Examples of tropical cyclone disaster challenges associated with social vulnerability during each 

phase of the disaster cycle: 

• Mitigation: Socially vulnerable individuals are less likely to have the financial means to 

purchase insurance or to live outside of hazard-prone areas (Cutter et al., 2003; Flanagan 

et al., 2011, 2018; Fothergill & Peek, 2004; Yarveysi et al., 2023). Housing structures, such 

as mobile homes, are typically ill-equipped to withstand exposure to tropical cyclone 

conditions (Flanagan et al., 2011; Fothergill & Peek, 2004; Yarveysi et al., 2023). 

• Preparedness: The socially vulnerable are less likely to have the physical or financial 

means to evacuate prior to a tropical cyclone (Anand et al., 2023; Flanagan et al., 2011; 

Meyer et al., 2018). This may stem from a lack of transportation access (i.e., no vehicle, 

no affordable public transportation alternatives, etc.), an inability to afford evacuation costs 

(i.e., hotels/temporary lodging, food, fuel, etc.), or a need for increased evacuation 

assistance (i.e., for the elderly, disabled, and children) (Cutter et al., 2003; Emrich & Cutter, 

2011; Flanagan et al., 2011). 

• Response: Emergency notifications and messaging may not be readily available in 

languages other than English, making it difficult for racial and ethnic minorities to receive 

timely emergency information if they are not proficient in English (Cutter et al., 2003; 

Flanagan et al., 2011). If English is not the first language, cultural and language barriers 

can increase the difficulty of navigating access to post-disaster funding and aid for the 

socially vulnerable (Cutter et al., 2003). 
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• Recovery: Communities of high social vulnerability tend to be the slowest to recover 

following major disasters (Flanagan et al., 2018). Their livelihoods are disproportionately 

affected by post-disaster damages such as water contamination, loss of sewer systems, 

power outages, etc. (Cutter et al., 2003). 
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Appendix 4.2 

Summary of themes and variables contributing to Census-tract level Social Vulnerability 

Index (SVI) calculation (CDC/ATSDR, 2023).  

Overall Vulnerability 

Themes Variables  

Socioeconomic Status I. Below 150% Poverty 

II. Unemployed  

III. Housing Cost Burden  

IV. No High School Diploma 

V. No Health Insurance 

Household Characteristics I. Aged 65 and Older  

II. Aged 17 and Younger  

III. Civilian with a Disability  

IV. Single-Parent Households 

V. English Language Proficiency 

Racial and Ethnic Minority 

Status 

I. Hispanic or Latino (of any race)  

II. Black and African American, Not Hispanic or 

Latino  

III. American Indian and Alaska Native, Not 

Hispanic or Latino  

IV. Asian, Not Hispanic or Latino  

V. Native Hawaiian or Other Pacific Islander, Not 

Hispanic or Latino  

VI. Other Races, Not Hispanic or Latino 

Housing Type and 

Transportation 

I. Multi-Unit Structures 

II. Mobile Homes  

III. Crowding  

IV. No Vehicle  

V. Group Quarters 
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Appendix 4.3 

Additional details on datasets used for demonstration of the methodology for Hurricane Ian: 

HydroBASINS 

HydroBASINS is a global dataset of hierarchical sub-basin boundaries at up to 12 scales 

(Lehner & Grill, 2013). This dataset is derived from NASA SRTM DEMs at a spatial resolution 

of approximately 3 arc seconds. The nested sub-basins are determined by continually delineating 

two sub-basins where two rivers converge, so long as each sub-basin maintains a minimum 

upstream area of at least 100 km2 (Lehner & Grill, 2013). Additional details of HydroBASINS 

are available in 2023 at https://www.hydrosheds.org/products/hydrobasins.  

GPM IMERG 

Precipitation data are derived from the Integrated Multi-satellitE Retrievals for Global 

Precipitation Measurement (GPM IMERG) missions. This satellite constellation of infrared and 

passive microwave sensors is a joint mission between NASA and the Japan Aerospace and 

Exploration Agency (JAXA) which provides up to half-hourly precipitation observations at a 

spatial resolution of 0.1° (Huffman et al., 2020). Previous studies have demonstrated that GPM 

IMERG adequately detects the spatial variability of major hurricanes, albeit tendencies to 

underrepresent precipitation in coastal areas and near the core of hurricanes (Omranian et al., 

2018; Pradhan et al., 2022). However, GPM IMERG remains a useful observation for spatial and 

temporal precipitation estimates during extreme meteorological events because in-situ 

observation systems may suffer instrument failures during hurricanes, as occurred during 

Hurricane Ian (Bucci et al., 2022). The technical documentation for GPM IMERG is available in 

2023 at: https://gpm.nasa.gov/documents/IMERG-V06-Technical-Documentation.  

https://www.hydrosheds.org/products/hydrobasins
https://gpm.nasa.gov/documents/IMERG-V06-Technical-Documentation
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ECMWF ERA5 

Wind speed data were obtained from the Copernicus Climate Change Service (C3S) 

European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis Version 5 (ERA5). 

This global reanalysis product, ERA5, is derived from physics-based modeling using both 

observations and model data as inputs to achieve an atmospheric spatial resolution of 

approximately 0.25° (Hersbach et al., 2020). Recently, ERA5 has demonstrated an improved 

representation of tropical cyclones compared to previous ERA versions (Hersbach et al., 2020; 

Slocum et al., 2022; Zarzycki et al., 2021). The technical documentation of ERA5 is available in 

2023 at: https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation.  

SMAP-Derived 1-km Downscaled Surface Soil Moisture Product  

The Soil Moisture Active Passive (SMAP) Derived 1-km Downscaled Surface Soil 

Moisture Product is used to calculate the 5-day antecedent near-surface soil moisture (0 – 5 cm 

depth below the surface of the Earth) (Lakshmi & Fang, 2023). This global dataset is derived 

from the SMAP L-band radiometer and utilizes the Moderate Resolution Imaging 

Spectroradiometer (MODIS) land surface temperature data to downscale soil moisture to a high 

spatial resolution of 1-km (Fang et al., 2022). This dataset has been validated across various 

biomes and topographies, including within the continental United States, by using networks of 

in-situ soil moisture instruments (Fang et al., 2020, 2022; Pavur & Lakshmi, 2023). The data and 

additional details on the SMAP-Derived 1-km Downscaled Surface Soil Moisture Product are 

available in 2023 at: https://doi.org/10.5067/U8QZ2AX5V7B.  

 

 

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
https://doi.org/10.5067/U8QZ2AX5V7B
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Appendix 4.4 

List of acronyms used in manuscript: 

DEM: Digital Elevation Model  

ERA5: Reanalysis Version 5, produced by the Copernicus Climate Change Service (C3S) 

European Centre for Medium-Range Weather Forecast (ECMWF)   

GPM IMERG: Integrated Multi-satellitE Retrievals for Global Precipitation Measurement mission 

JAXA: Japan Aerospace and Exploration Agency (JAXA) 

MSL: Mean Sea Level  

MODIS: Moderate Resolution Imaging Spectroradiometer  

NASA: National Aeronautics and Space Administration  

NOAA: National Oceanic and Atmospheric Administration  

SEIV: Block-level Socio-Economic-Infrastructure Vulnerability Index developed by Yarveysi et 

al., 2023 

SMAP: Soil Moisture Active Passive 

SoVI: County-level Social Vulnerability Index developed by Cutter et al., 2003  

SVI: Census-tract level Social Vulnerability Index developed by the Centers for Disease Control 

(CDC) and Prevention Agency for Toxic Substances and Disease Register (ASTDR) 

USA: United States of America 
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Appendix 4.5 

List of variables used in manuscript: 

P1: cumulative precipitation  

P2: maximum hourly precipitation  

R: risk; the difference between the baseline order and scenario order of a given basin 

SM: five-day antecedent soil moisture  

SVI: basin order using Social Vulnerability Index data; the baseline order   

u : u-component of wind in the longitudinal direction 10 m above the surface of the Earth  

w: maximum hourly wind speed  

x(𝑆𝑛): score of disruptiveness for a given scenario (𝑆𝑛); the sum over the basins of the squared 

differences of the baseline order and disrupted order  

𝑋(𝑆𝑛): normalized score of disruptiveness for a given scenario (𝑆𝑛); the score of disruptiveness 

for a given scenario 𝑥(𝑆𝑛) minus the minimum score of disruptiveness (𝑥(𝑆)𝑚𝑖𝑛.) divided by the 

maximum score of disruptiveness (𝑥(𝑆)𝑚𝑎𝑥.) minus the minimum score of disruptiveness 

(𝑥(𝑆)𝑚𝑖𝑛.) 
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Appendix 6.1 

Summary of basin ordering methods for each social, hydrological, and environmental 

factor, depending on the priorities of stakeholders. The maximum and minimum order basins are 

indicated as either the basin of lowest order (equal to or near a value of 1, i.e., the greatest water 

needs) or basin of highest order (equal to or near a value of 43, i.e., the least water needs). 

Factor Basin ordering 

method 

Basin of lowest 

order (~1)  

(i.e., greatest 

water needs) 

Basin of highest 

order (~43)   

(i.e., least water 

needs) 

Youth population density (YPD) Descending Maximum  Minimum 

Population growth rate (PGR) Descending Maximum  Minimum  

Percentage of urbanized basin 

area (URB) 

Descending Maximum  Minimum 

Percentage of agriculture basin 

area (AGR) 

Descending Maximum Minimum 

Precipitation (P) Ascending 

 

Minimum  Maximum 

Air surface temperature (T) Descending Maximum Minimum 

Root zone soil moisture (RZSM) Ascending Minimum Maximum 

NDVI Ascending Minimum Maximum 

Distance from earthquake 

epicenter to basin centroid (D) 

Ascending  

  

Minimum Maximum 
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Appendix 6.2 

Annual time series of select social and hydrological factors in the geographic area of 

demonstration from 2003 – 2022 including (a) total population, (b) precipitation, (c) surface 

temperature, (d) normalized difference vegetation index (NDVI), and (e) root zone soil moisture.  
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Appendix 6.3 

Summary of the basins of (a) greatest increase in priority and (b) decrease in priority compared 

to the baseline scenario, 𝑆1. For basins of the largest increase in priority, the regions had high 

baseline order (i.e., relatively low youth population density) but low scenario order due to 

relatively high concerns for water scarcity (Appendix 6.3A). Conversely, basins of the largest 

decrease in priority had low baseline order (i.e., relatively high youth population density) but high 

scenario order due to greater water availability (Appendix 6.3B). A reference map of basin 

locations is provided in Appendix 6.4.  

(A) Top five basins (~1%) with largest increase in priority across scenarios compared to the 

baseline order (𝑆1). See Appendix 6.4 for a reference map of the basins.  

Rank of 

largest 

increase in 

priority 

Basin Name 

(𝑏𝑖) 

Increase in 

Order 

Baseline 

Order (𝑆1)  

Scenario of 

Minimum 

Order (𝑆𝑛) 

Minimum 

Order 

1 2050815450 

 

+36 43 𝑆11 7 

2 2050815450 

 

+35 43 𝑆14 8 

3 2050816590 

 

+34 38 𝑆11 4 

4 2050816590 

 

+33 38 𝑆14 5 

5 2050810230 

 

+33 36 𝑆13 3 

 

(B) Top five basins (~1%) with largest decrease in priority across scenarios compared to the 

baseline order (𝑆1). See Appendix 6.4 for a reference map of the basins.  

Rank of 

largest 

decrease in 

priority 

Basin Name 

(𝑏𝑖) 

Decrease in 

Order 

Baseline 

Order (𝑆1)  

Scenario of 

Maximum 

Order (𝑆𝑛) 

Maximum 

Order 

1 2050668190 

 

-35 3 𝑆11 38 

2 2050668190 -34 3 𝑆12 38 
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3 2050723850 

 

-29 6 𝑆14 35 

4 2050086110 

 

-27 14 𝑆14 41 

5 2050086110 

 

-26 14 𝑆11 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



195 

 

Appendix 6.4 

Reference map of basins of greatest increase and decrease in basin order, as summarized 

in Appendix 6.3. Basins of greatest decrease in order are circled in green. Basins of greatest 

increase in order are circled in red.  
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