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Introduction 

In the last few years, generative artificial intelligence (GenAI) has metamorphosed from 

a technology that professionals rely on to optimize and support infrastructure, products, and 

academic research (Jordan, 2015) to being synonymous with chat bots and homework help. This 

transformation entered the public eye in 2022 when OpenAI, the current AI technology leader, 

released ChatGPT, the first free and public-facing Large Language Model (LLM). However, this 

transformative event was predated by years of technological and infrastructural development 

behind the scenes which laid the groundwork for the capabilities seen in today’s GenAI 

applications. Since the release of ChatGPT, LLMs have been applied across a broad range of 

applications, which in turn has driven unprecedented interest and investment in AI technology. 

With companies competing to push the limits of AI’s capabilities, the focus has predominantly 

been on scaling model sizes and enhancing performance, often with limited attention to the 

environmental costs. This rapid pace has exacerbated infrastructure strain, as AI workloads now 

account for a significant portion of global data center energy use, contributing to broader 

concerns around sustainability (Patterson et al., 2022; Wu et al., 2022). 

Fortunately, there exist a multitude of potential avenues to improving AI sustainability, 

the most promising of which involve designing novel computing hardware with efficiency as its 

primary focus. This research project combines original research on the challenges faced by 

current AI computing hardware, along with a sociotechnical exploration of the exigence and 

trajectory of GenAI, in an effort to develop practical recommendations for engineers to develop 

and implement these systems sustainably. 
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Relative Performance and Efficiency of Apple Silicon for Training Deep Neural Networks 

 Most industry professionals believe there are multiple avenues through which GenAI 

could become more sustainable (Patterson et al., 2022; Wright et al., 2023; Wu et al., 2022). 

These include selecting efficient model architectures like sparse models to decrease computation 

time, leveraging cloud computing for better energy management, sourcing energy more locally 

and sustainably, and developing specialized processors which can compute the calculations 

needed for large models while using less energy. There is evidence to suggest that a combination 

of these strategies can be applied to great effect even with current technology; Google began 

applying all of them in its data centers starting in 2019 and by 2021 was able to reduce its carbon 

footprint per training iteration per server by a factor of 747 (Patterson et al., 2022). However, this 

holistic strategy is only achievable when designing a self-contained system. Google builds its 

own data centers to train its own models on its own data and has control over every stage of the 

pipeline. Most organizations wishing to research or implement GenAI technology must rely on 

many outside factors. They do not have the resources to design a custom sparse model and must 

rely on a large general-purpose baseline, cannot move their datacenters to a location with more 

sustainable energy sources, and must purchase computing hardware from a third party. With 

such constraints, attempting to balance economic, compute, carbon, and energy efficiencies 

becomes extremely difficult even with the optimistic assumption that every organization has 

sustainable intentions (Wright et al., 2023). 

 I believe the most pragmatic path to widespread progress is improving the efficiency of 

computing hardware by designing it from the ground up with AI in mind. A chip which can 

perform the same computation while using less energy is inherently more compelling to those 
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who pay for that energy. It can be implemented at scale without requiring social or political 

pressure. 

 While AI hardware has evolved extremely rapidly in recent years, the driving force 

behind progress has been increasing speed, not reducing energy cost (Wright et al., 2023). A 

notable exception is Apple Silicon, a proprietary architecture developed by Apple which is 

primarily designed and marketed around efficiency (see Figure 1) (Vena, 2022).  

 

Figure 1: Apple marketing graph highlighting the efficiency of Apple Silicon vs. its competitors (Apple, 2022) 

 

The design details of Apple Silicon are not public, and it is not clear what makes it so efficient 

nor how it compares to other prevailing AI accelerators across the wide variety of tasks required 

for AI training and inference. Answering this question could give engineers valuable insight 

when designing their own efficiency-focused chips.  

The goal of this technical project is to explore the potential and limitations of current 

processor architectures for generative AI training, to determine the limiting factor of the training 

pipeline, and to suggest specific hardware design principles for maximum efficiency. The project 

will begin with review of current leading hardware (Muralidhar et al., 2022; Wang et al., 2020) 
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as well as existing model design principles (Patterson et al., 2021; Wu et al., 2022). It will then 

proceed to original research measuring the relative performance and efficiency of Apple Silicon 

against its competitors across a variety of tasks to determine its specific strengths and 

weaknesses at a hardware level. These findings, along with a thorough analysis of the reverse 

salients preventing existing designs from achieving similar efficiency, will be compiled in a 

peer-reviewed academic research paper and published in spring 2025.  

 

The Rise of Generative Artificial Intelligence as A Technological System 

 In 2017, Google released a landmark paper detailing a novel machine learning model 

architecture, the “transformer,” which was the first sequential model capable of effectively 

translating text between languages without requiring an impractical amount of computing power 

(Vaswani et al., 2023). Researchers quickly began to discover that this efficiency could be 

leveraged to build much larger models capable of a broader range of language tasks. In 2018, 

OpenAI released GPT-1, the first LLM, which could be trained to a high level of language 

proficiency with very little data and then finetuned to a specific task (Radford et al., 2018). 

Development on GPT models continued at a rapid rate, and they began to be applied throughout 

the industry – for example, Google Translate switched to a transformer architecture in 2020 

(Caswell & Liang, 2020). However, LLMs did not enter the public eye until the release of 

ChatGPT, a free online tool that allowed anyone to interface with a powerful LLM in a familiar 

“chat” interface. ChatGPT became an overnight sensation, gaining over 100 million users in two 

months and becoming the fastest-growing web application in history (Milmo, 2023). Tech 

corporations were quick to jump on this trend, and LLMs are now integrated into everything 

from Google search to the iPhone. 
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 According to the theory of technological momentum as defined by Hughes (1987), a 

newly born technology is plastic, able to be shaped and controlled by society to suit our needs. 

Gradually, as the technology grows and becomes entrenched in a wider system, it begins to 

harden, and becomes more and more difficult to steer. Eventually it gains such momentum that 

no one can shift it from the path it now lies on, and it begins to influence society in turn, often in 

unforeseen ways. I believe the rise of GenAI reflects this shift. Before the release of ChatGPT, 

when LLMs were open source, abstracted behind the tools they powered, and trained for specific 

tasks, their applications could be much more varied. Since the models themselves were smaller 

and free to use they could be tweaked and tuned for any purpose. The model behind ChatGPT in 

contrast, the largest of its kind and first with its design kept secret, was trained specifically to 

become a chatbot, with a rigid “prompt to answer” pipeline (OpenAI, 2022). Whoever used it 

must abide by the same interface, making it more difficult to design novel applications. 

However, this chat-based design was far easier to use and more capable than anything before and 

was the first to truly break into public culture. It quickly spread across the tech world and 

remains the only lens through which most people understand LLMs.  

 Just as technological momentum dictates, GenAI has developed more deterministic 

effects on society as its trajectory has become more rigid. Some believe there is a growing 

disconnect between the capabilities being developed and the practical, ethical, and social needs 

of the broader population (Weidinger et al., 2021) and that a constant thirst for progress has 

encouraged the industry to prioritize rapid development over risk management and 

environmental sustainability (Wu et al., 2022).  A 2024 survey of the UK public showed a 

generally optimistic view of the technology’s potential, but many participants reported feeling 

uncertain or uninformed about the risks associated with AI (Bright et al., 2024). This uncertainty 
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is just as prevalent among AI developers. In June 2024, current and former OpenAI employees 

published an open letter condemning the company’s reckless disregard of ethical and safety 

concerns (Field, 2024). Additionally, the AI industry has begun to attract the attention of national 

governments, which are incentivized to bend the rules and suppress discourse even further in 

pursuit of becoming the leader in the space. A large-scale analysis of China’s public sphere 

found that AI-related discourse was being manipulated by its government to create a more 

positive image of the technology and shut down criticism (Jing Zeng & Schäfer, 2022), and 

experts in and out of government have argued that the US should leverage its AI dominance to 

gain a foreign-policy advantage (Frank, 2024). 

 Even without the ethical risks involved, there exists a gargantuan environmental cost of 

building and operating so much AI infrastructure. As an example, Microsoft reported a 2.5-fold 

increase in its overall energy consumption between 2018 and 2023, an increase it attributes 

mostly to GenAI (see Figure 2). 

 

Figure 2: Microsoft Energy Use Over Time (Microsoft, 2024) 

This rate of increase in power consumption, on an international level, is unprecedented, and its 

effects are already being felt. Grids are being strained, resources are being redirected, and 

retirement of fossil fuel power plants is being delayed. (Halper, 2024). Global data center water 
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consumption is likely to reach more than half that of the entire United Kingdom by 2027 (Li, 

2023). It is clear that the prioritization of speed and expansion over environmental and long-term 

economic stability has put the GenAI industry on a destructive and unsustainable path. 

 
Research Question and Methods 

 GenAI has transcended its original bounds to become a political weapon, the driving 

factor behind growth of the AI industry as a whole, and a major influence on society. This begs 

the question: Why did GenAI take on this greater purpose? What makes it unique from other 

technological trends, and how will it shape the future of computing? Most importantly, how can 

politicians and engineers work together to minimize its social and environmental harms and 

work toward a sustainable future of AI for everyone? 

 To investigate this problem, I will conduct a meta-review on the rise of GenAI in the 

United States, looking at public sphere heuristics such as Google search trends and social media 

engagement alongside industry messaging (AI product releases, venture capital investment) and 

infrastructure expansion (financial reports, energy consumption data). By considering these 

statistics through the lens of technological momentum, how they shaped the trajectory of GenAI 

at its inception and how it now influences them in turn, I hope to gain valuable insight into the 

past, present, and future of this technology. To determine whether social and political factors 

might become increasingly more influent, I will compare public and private perception and 

adoption between the United States and China, evaluating the potential for GenAI to become a 

techno-political artifact as defined by Langdon Winner (Dyson et al., 2021). 
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Conclusion 

Generative Artificial Intelligence has expanded rapidly in both technical capabilities and 

public impact, requiring massive infrastructure and resource inputs for training and deployment. 

This growth, if unchecked, risks imposing significant environmental costs, exacerbating social 

divides, and potentially overlooking broader ethical and public concerns. The objective of my 

research is to investigate how generative AI can be developed sustainably by exploring both the 

technical challenges of AI efficiency and the social imperatives that must be addressed to guide 

responsible AI adoption. By evaluating the problem from both sides, I hope to develop a 

grounded and nuanced perspective from which to draw potential solutions. These may take the 

form of social change, ways we can change our perception or application of this technology to 

reduce its potential harm, or technological change, avenues to more robust and efficient AI 

infrastructure. Through this research, I aim to make a meaningful contribution to a sustainable 

future of AI for everyone. 
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