
Competitive Learning: Successes and Pitfalls from Two Years of the University of
Virginia’s High School Programming Contest

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Nicholas James Winschel

Spring, 2025

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Competitive Learning: Successes and Pitfalls from Two Years of the
University of Virginia’s High School Programming Contest

CS4991 Capstone Report, 2025

Nicholas Winschel
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
pvz6tx@virginia.edu

ABSTRACT
The task of introducing Computer Science and
problem-solving skills to high school students is
an open-ended one with a multitude of
approaches. One such approach is to run
programming contests, in which students
compete to solve short-form algorithmic
problems. One such contest, the University of
Virginia (UVA) High School Programming
Contest (HSPC) is run in-person, yearly with
novel problems on identically-configured
machines. Organizing this event poses several
technical challenges: provisioning machines,
designing and implementing network
architecture, generating test cases, preparing
environments for problem statement
development, and—most importantly—
designing the problems themselves. Over the
past two years of leading a team to solve these
challenges, I learned a great deal about the
intricacies of problem design and later applied
the lessons from provisioning infrastructure to a
project at my internship. Future work consists of
measuring the impact of this contest on former
competitors, streamlining problem development
infrastructure, and continuing to run the contest
in years to come.

1. INTRODUCTION
UVA’s HSPC mirrors the format of the
International Collegiate Programming Contest
(ICPC), the oldest, largest and most well-known
international programming contest (Bloomfield
and Sotomayor, 2016). ICPC contests are 5-hour
contests in which contestants solve problems in
3-person teams (sharing one computer) by

writing code to solve 10-15 challenges. While
ICPC is a contest for college students, who may
have already had a formal introduction to
programming and computer science, HSPC is
targeted at high school students, many of whom
do not have a formal computer science program
at their school. At the same time, many HSPC
competitors come from strong schools and may
already have extensive experience competing in
programming contests. From a problem-design
perspective, creating a problem set that all
students find engaging and informative is quite
difficult.

The desired outcome of hosting an event like this
is, primarily, to improve the skills of all
participants, giving those early in their computer
science career skills, knowledge, and a feeling of
success (Kenderov, 2017). Competitions like
these also give students important chances to
communicate with peers and give some students
“models to follow,” “motivating [them] to work
harder” (Kenderov, 2017). Some authors note
that there is merit in the development of
interesting problems themselves, with Knuth
(2017) calling that task “the most critical thing.”

2. RELATED WORKS
There are two in-person competitions of note:
ICPC and the International Olympiad in
Informatics (IOI). IOI is of a different format
than ICPC, following an “Olympiad” style
instead (Kenderov, 2017). High schoolers
compete individually over two days to solve
around six total problems. Another notable
difference in format is that high schoolers

represent their country of origin, rather than (as
in ICPC), their school (Kenderov, 2017;
Bloomfield and Sotomayor, 2016). Our choice
of problem topics is partially informed by the
IOI Syllabus (Verhoef, et al., 2025).

ICPC has an extensive focus on teamwork.
Different contest strategies largely differ only in
roles of team members. Teamwork is critical for
solving later problems and managing keyboard
time effectively (Bloomfield and Sotomayor,
2016). Our choice of format is copied from that
of ICPC, as we believe ICPC’s emphasis on
teamwork makes for a fun, collaborative
experience for high schoolers.

3. PROJECT DESIGN
Effectively running the contest requires solving
several technical challenges.

3.1 Challenges and Background
Generally, we wish to motivate students to solve
problems, and we wish not to drag students down
with unfamiliar systems or difficult-to-use
infrastructure. To this end, we keep systems as
standard as possible (that is, our competition
systems should be like those of other high school
programming competitions) and to give less-
experienced competitors a chance to use the
systems before the actual competition starts. We
achieve this by using a well-known judging
server (DOMJudge, see 3.2), a well-known
competitor host image (ICPC World Finals
Linux Image, see 3.3), and by running a
“practice contest.”

The practice contest introduces some challenges
of its own. The computers are all to be reset in a
short window between the practice contest and
the actual contest. To do this, we add
management infrastructure (see 3.3, 3.4).

The problems themselves are constructed so that
as many teams as possible find the problems
interesting and rewarding, but not frustrating.
We address this by proposing more problems
than would be necessary and cutting from the set
to make it so that our whole committee finds it
satisfying (see 3.6). Setting and repairing

problem statements as quickly as possible
requires some infrastructure (see 3.5), and this
task can be unified with the task of testcase
construction (see 3.7).

During the contest, only teams should be able to
submit to the problems, but everyone should be
able to view the scoreboard. To ensure the
integrity of the contest, we firewall hosts and
have them submit only via a VPN to the judging
server (see 3.4). We proxy the scoreboard over a
public Nginx server (see 3.4). The judging server
isolates submissions from the internet, the
filesystem, and each other without additional
setup.

3.2 Judging Infrastructure
We use DOMJudge to judge competitor
submissions and display the contest scoreboard.
DOMJudge requires a “DOMServer” to manage
all the contest information, and “judgehosts” to
judge submissions. If judgehosts are not
provisioned in sufficient number or with
sufficient resources, submissions will take too
long to judge, making it more difficult for teams
to know if their code works. We address this by
running our instance of DOMJudge in a
hypervisor, with stock judgehost templates
configured for quick construction if necessary.
During the competition, we monitor the
submission queue. If it gets too long, we
initialize additional judgehosts.

3.3 Competitor Hosts
Competitor hosts are designed to maximize the
chance that teams will be able to use an IDE they
are familiar with. Competitor hosts are
preloaded with popular IDEs such as VSCode,
IntelliJ IDEA, Eclipse, PyCharm, etc.
Competitors are made aware of the existence of
the ICPC World Finals Contest Image ahead of
the competition, so that they may practice with it
if they wish. Language references are available
on competitor hosts.

Competitor hosts are cleared (when necessary)
via an Ansible playbook from a management
host. The Ansible playbook kills the X session
and clears out all directories writable by the user.

The Ansible playbook does not restart the
computer.

3.4 Networking
Competitor hosts are connected to a publicly
accessible virtual machine via a [formerly
OpenVPN, now WireGuard for ease-of-
configuration reasons] VPN. Competitor hosts
are configured with host-based firewalls to only
be able to communicate with the VPN host, the
DOMServer and the management host.

An Nginx instance on another publicly
accessible virtual machine is set to proxy the
scoreboard, and only the scoreboard, from the
DOMServer. This is so that even if credentials
are leaked, outside individuals could not log in
to submit problems for teams.

3.5 Typesetting Infrastructure
We typeset problems in LaTeX, using Kattis’
problem tools to keep sample test cases
consistent with statements. We use a custom
script to regenerate individual problem
statements/the whole problem packet when
necessary.

3.6 Problemset Construction
Problemset construction is difficult. There is
usually a great disparity between the team that
finishes first and the team that finishes last at
HSPC. We generate problem ideas from as many
sources as possible: experienced competitive
programmers provide interesting insights that
they have seen before and interesting
setups/games that give ideas for problems. We
construct problems forward from these ideas.
When we are lacking problems that can be
solved with a specific topic, we also construct
problems backward by targeting those topics.

We then sort these problems by estimated
difficulty and select a subset of these to appear
on the final problemset, choosing 1-2 each of
“very easy” and “very hard” problems, and
targeting equal proportions of “easy,”
“medium,” and “hard” problems. Generally, we
take “easy” to mean that many high schoolers
with programming experience could eventually

solve the problem. We take “medium” to mean
that many university students with an algorithms
class or two could eventually solve the problem.
We take “hard” to mean that solving the problem
usually requires a good amount of experience
with competitive programming. We make sure
that no desired topic is overrepresented or
underrepresented. Finally, we change the
problem statements to match the theme of the
contest.

3.7 Testcase Generation
We design test cases in an adversarial fashion,
developing solutions that we want to accept and
solutions that we do not want to accept. We
analyze the structure of the problem. Depending
on the problem, it may take a specific class of
test case to break certain solutions. We develop
individual test case randomizers for each class of
test case. We test (desired correct and desired
incorrect) solutions against the testcases by
using Kattis’ problem tools.

We develop custom judging scripts when a given
input could correspond to more than one correct
output.

For problems where the user’s submission
interacts with an adversary (such as in a game),
we develop interactors that use one or multiple
strategies.

We generally seek to provide deterministic
inputs; that is, if the user submits the same code
(and that code is deterministic), the input to the
program should always be the same. For
interactive problems, the input can depend on
previous outputs by the program.

4. RESULTS
We have run two competitions using this general
strategy. We have scaled from <20 competitors
in the first to >30 competitors in the second. In
both, the judging, competitor hosts (except some
physical issues), networking (except some
physical issues), and typesetting infrastructure
have worked flawlessly. We developed
additional DHCP-based automated imaging

capabilities for the second, as the number of
hosts increased significantly.

Testcase generation saw some inaccuracies, and
we caution any future organizers to dedicate
additional time to double-checking testcase
generation. One particularly malevolent instance
occurred when an organizer inserted an
additional line break in a certain class of
generated cases. C++ solutions (including our
primary judge solution) ignored these line
breaks, as Java solutions likely would have.
Most Python solutions were broken by these
testcases, causing issues for some teams. This
was resolved quickly in contest. Custom
verifiers also saw some errors. Generally,
however, no incorrect solutions were accepted,
which is an improvement over previous years’
competitions.

Problem set construction saw significant
difficulty in the first of the two competitions. We
had very little data about the skills of
competitors, and we had very little
understanding of which problems competitors
would find frustrating to code. Generally, we
found that we consistently underestimated the
difficulty of “easy” problems when said
problems had complex implementations. For the
second instance of the competition, we posited
that teams would care the most about the
problems that they last worked on, and we paid
special attention to problems that we expected to
appear at “difficulty breakpoints.” In particular,
we chose an interesting problem with the
specific intention that 50% of teams would solve
it. Our understanding of the difficulty of this
problem and of the other problems was informed
by the results of the previous year. This strategy
proved very successful, and we found that many
contestants found the problems engaging.

5. CONCLUSION
Successfully running the programming contest is
vital: a smooth event is substantially more likely
to engage students and promote further
participation in Computer Science-related
activities. Care must be taken to ensure that all
components (technical and nontechnical)

function in a correct and intuitive manner. A
successful contest depends on working
problems, problem statements, contestant
systems, judging infrastructure, networking, and
non-technical logistics to function. Our work
over the last two years has helped future
organizers understand what is necessary for each
of these components. In doing so, we aim to keep
the quality of future UVA HSPCs high, thereby
inspiring a generation of high schoolers to
pursue Computer Science.

6. FUTURE WORK
Future work consists primarily of continuing to
run the contest at the same standard of quality.
New effort should focus on expanding the team
capacity by developing the logistics necessary to
serve multiple rooms. Future instances of the
competition should attempt to use some of the
submission queue visualization utilities used by
ICPC. Also, if printing does not return this year,
next year’s contest organizers should prioritize
the return of printing as a contest feature.

7. ACKNOWLEDGMENTS
Thanks to Edward Lue, Richard Wang, and
Miya Livingston for help with problemsetting.
Thanks to Shreyas Mayya, Chase Hildebrand,
Arjun Rao, Lulu Han, Ratik Mathur, Vincent
Zhang, Jacob Rice, Vix Clotet, and all others
who helped with systems and networking.
Thanks to Param Damle, Jialin Tso, Edward
Lue, and others for helping organize the
nontechnical aspects of the event. Thanks to
MetaCTF and the UVA Department of
Computer Science for helping provide
contestant computers for the event. Thanks to the
UVA Computer and Network Security Club for
providing hosting for central infrastructure for
the event. Thanks to the UVA Department of
Computer Science for helping provide funding
for the event. Thanks to Rich Nguyen for acting
as our Faculty Sponsor for this event. Thanks to
the UVA Association for Computing Machinery
and all other volunteers that provided support
during the event. Thanks to all coaches and
teams who attended the event and provided
helpful feedback. Thanks to the creators of
DOMJudge, the creators of Kattis, and the ICPC

judging staff for helping provide software used
at the event.

REFERENCES
Bloomfield, A., & Sotomayor, B. (2016). A

Programming contest strategy guide.
Proceedings of the 47th ACM Technical
Symposium on Computing Science
Education, 609–614.
https://doi.org/10.1145/2839509.2844632

Kenderov, P. S. (2017). Three decades of

International Informatics competitions: How
did IOI start. OLYMPIADS IN
INFORMATICS, 11(2), 3–10.
https://doi.org/10.15388/ioi.2017.special.01

Knuth, D. (2017). International Olympiad in

informatics: Roads to algorithmic thinking.
OLYMPIADS IN INFORMATICS, 11(2),
11–20.
https://doi.org/10.15388/ioi.2017.special.02

Verhoef, T., Horvath, G., Diks, K., Cormack, G.,

Forisek, M., Lacki, J., & Peng, R. (2025).
The International Olympiad in Informatics
syllabus. International Olympiad in
Informatics.
https://ioinformatics.org/files/ioi-syllabus-
2025.pdf

