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Abstract

We introduce and study a generalization of martingales with the following self-

averaging property: at each time, the conditional expectation of future random vari-

ables given the past, is a weighted average of all the random variables comprising the

past. We assume only that more recent random variables are weighted no less than

older random variables. We investigate conditions under which important properties

satisfied by martingales, such as maximal inequalities and convergence, are present

in an appropriate form.
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Chapter 1

Background

A martingale is a sequence of integrable random variables {Xn} with the property

that, conditional on knowing the values of the first n variables X1, . . . ,Xn, the ex-

pected value of Xn+1 equals the most recent known value Xn. That is, for each

n = 1,2, . . . ,

E[Xn+1∣Fn] =Xn,

where Fn = σ(X1, . . . ,Xn) is the σ-algebra generated by the first n random variables.

Recall that in the above display, the conditional expectation E[Xn+1∣Fn] is the unique

(up to null sets) random variable Y such that E[Y 1A] = E[Xn+11A] for all A ∈ Fn,

where 1A denotes the indicator function on the event A. Informally, E[Xn+1∣Fn] is the

best guess for Xn+1 given the information Fn, which in this case consists of the values

of X1, . . . ,Xn. So if one observes 5,2,−11,7,9 as the first five values of a martingale,

the best guess for X6 would be 9.

A basic example of a martingale is simple symmetric random walk: let {ξi} be

an independent and identically distributed (iid) sequence of random variables with
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P (ξi = 1) = P (ξi = −1) = 1/2, and define the random walk

Sn =
n

∑
i=1
ξi, (n ≥ 1),

the location at time n of the random walker who, independently at each step, takes

a step up or down with equal probability. Since Sn+1 = Sn + ξn+1, and since Sn is

Fn-measurable but ξn+1 is independent of Fn with mean zero, we easily verify that

E[Sn+1∣Fn] = Sn +E[ξn+1] = Sn,

and so {Sn} is a martingale. This is intuitive – since the walker steps up or down

with equal probability, the expected value of his next location is simply his current

position.

Martingales were introduced in 18th century France to study the properties of

certain gambling strategies popular at that time. In fact the term martingale is be-

lieved to derive from a gambling strategy of the same name, a strategy so absurd, that

gamblers employing it were said to be playing like Martigals (“jouga a la martegalo”),

residents of the Provençal town of Martigues, who had a reputation for näıveté or

foolishness [4].

The martingale strategy is played against a fair game, such as coin flips, in which

you lose your bet on tails and double it on heads. To play, you first bet one dollar. If

you win, you walk away with an extra dollar; if you lose you play again, betting double

your last bet, or two dollars. If you win the second game, you are one dollar ahead

and walk away. If not you play again, doubling down with four dollars. Proceeding in
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this way, you bet 2k−1 on the kth game until you win, which on the nth game yields

winnings of 2n−1 = ∑
n−1
k=1 2k−1 + 1, recovering all of your losses and netting one dollar

profit. Moreover, since the probability of losing forever is limn→∞ 1/2n = 0, you are

guaranteed with probability one to win in finite time and make a $1 profit each time

you play this way.

This situation can be described mathematically as follows. If {ξi} are as above

and represent the sequence of coin flips (1 for heads, −1 for tails), we can define B1 = 1

and for k ≥ 2 the kth bet as

Bk =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2Bk−1, ξk−1 = −1,

0, ξk−1 = 1.

Notice that the Bk are eventually all zero after the first time a ξk equals one, meaning

that betting stops at that point. The total profit after n games is given by

Mn =
n

∑
k=1

Bkξk.

Letting Fn = σ(ξ1, . . . , ξn) we see that Bn+1 as well as Mn are Fn-measurable and ξn+1

is independent of Fn with mean zero. So since Mn+1 =Mn +Bn+1ξn+1, we have

E[Mn+1∣Fn] =Mn +E[Bn+1ξn+1∣Fn] =Mn +Bn+1E[ξn+1] =Mn,

and so {Mn} is a martingale with respect to {Fn}.

In fact it is the “original” martingale and we have already seen that almost surely

(i.e. with probability one) Mn → 1 in finite time as n → ∞. Consequently, playing
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“martingale” seemed a sure thing in 18th century gambling circles, as long as you had

the courage to wait for that first win. On the other hand, experience showed more

than the occasional gambler ruined while trying, so many considered it a strategy of

fools.

Even then it must have been clear that some aspects of the strategy are unrealistic:

casinos typically limit the maximum bet, no gambler can play for arbitrary lengths of

time, and most importantly, no gambler can fund arbitrarily high bets. Nevertheless

these restrictions may seem unimportant, as they are only relevant on events with

very small probability. It took some time for the development of the mathematical

theory of martingales to fully explain these seeming paradoxes.

To complete the above story, to motivate the importance of martingale theory,

and to motivate the generalization that is the main topic of this work, we now briefly

review a few of the most famous results concerning martingales, which are due to J.L.

Doob [1]. An excellent introduction to the theory can be found in [7].

We first provide a slightly more formal definition than was given above.

Definition 1.0.1. A filtration {Fn} on a probability space (Ω,F , P ) is a sequence of

increasing sub-σ-algebras of F ,

F0 ⊂ F1 ⊂ ⋯ ⊂ F .

A sequence of integrable random variables {Xn} on (Ω,F , P ) is called a submartingale
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with respect to {Fn} if for each n, Xn is Fn-measurable and

E[Xn+1∣Fn] ≥Xn. (1.0.1)

If the inequality is reversed, then {Xn} is a supermartingale. A sequence that is

both a sub- and supermartingale (that is, with the inequality replaced by equality) is a

martingale.

Sub(super)martingales are weaker notions than that of a martingale in that they

only require the expected future to be above(below) the current value of the process.

Submartingales drift upwards; supermartingales drift downwards, and martingales

are in a sense constant on average. Note that for a martingale (i.e. using (1.0.1) with

equality), the tower property of conditional expectation immediately implies that for

all n ≥m

E[Xn∣Fm] =Xm. (1.0.2)

That is, the expected value of any future random variable, given the information Fm,

still equals the most recent known variable Xm. A martingale is called bounded in Lp

if supn ∣∣Xn∣∣p <∞. We define the running maximum X∗
n at time n as X∗

n = max
1≤k≤n

Xk.

The first result we highlight is in a sense a generalization of Chebyshev’s inequality

to the running maximum of a martingale.

Theorem 1.0.2. (Doob’s maximal inequality) If {Xn} is a non-negative martingale,

then for all n and a > 0,

aP (X∗
n ≥ a) ≤ E[Xn;X∗

n ≥ a] ≤ E[Xn].
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The nice thing about this theorem is that it not only bounds the probability in

terms of an expectation, but the expectation is just of the terminal random variable

Xn (and thus easier to compute), as opposed to of the running maximum as Chebyshev

would give.

There is also an Lp version of this inequality.

Theorem 1.0.3. (Doob’s Lp inequality) If {Xn} is a non-negative martingale bounded

in Lp for p > 1, then for all n,

∣∣X∗
n ∣∣p ≤

p

p − 1
∣∣Xn∣∣p.

The following two results are perhaps the most famous, and are the key to finishing

the gambling story above.

Theorem 1.0.4. (Doob’s convergence theorem) Let {Xn} be a submartingale whose

positive part X+
n =Xn ∨ 0 is bounded in L1. Then almost surely limn→∞Xn exists and

is finite. Moreover, if {Xn} are uniformly integrable, that is

lim
C→∞

sup
n
E[∣Xn∣; ∣Xn∣ > C] = 0,

then there exists an integrable random variable X such that Xn →X a.s. and in L1.

There is also the L2 version.

Theorem 1.0.5. (L2 convergence) Let {Xn} be a martingale and define εn = Xn −

E[Xn∣Fn−1]. Then {Xn} is bounded in L2 if and only if ∑E[ε2n] <∞. If either (and

thus both) of these conditions holds, then Xn converges almost surely and in L2.



7

A way to interpret Theorem 1.0.4 is as a stochastic analogue to the following

well-known fact: a monotone nondecreasing sequence of real numbers that is bounded

above must converge to a finite limit. Indeed the above theorem states that a sequence

of random variables that is “monotone nondecreasing on average,” in the sense of

(1.0.1), and is “bounded above on average” must converge to a finite random limit.

Of course the behavior is somewhat richer and the mode of convergence can vary

depending on the aforementioned uniform integrability condition.

Thus we see that sub- and supermartingales are simply the stochastic analogues

of the well-known monotone sequences. And so martingales are the analogues of the

constant sequences. Just as monotone sequences play a very basic role in the proofs of

mathematical statements in a deterministic setting, martingales (and sub/supermartingales)

play the analogous role in the proofs of myriad results in random settings. That

is, although they were historically introduced in the context described earlier, their

properties are so fundamental to describing relationships among random variables

that they have become basic building blocks of modern probability theory.

Theorem 1.0.4 provides the explanation for the properties of the martingale bet-

ting strategy. Note that Mn is a martingale (so in particular a submartingale) that

is bounded above by 1. So the mean of its positive part is also bounded by 1 and

thus it must converge a.s. to a finite limit. Indeed we already could see that Mn → 1

a.s. as n→∞. However, because Mn = −∑
n
k=1 2k−1 with probability 1/2n, we see that

{Mn} are not uniformly integrable, and so they do not converge in mean to 1. In
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fact E[Mn] = 0 for all n, as is easily seen. So while a majority of gamblers playing

martingale will walk away with $1, these will be balanced on average by a number of

gamblers who lose big for long periods of time.

It gets worse. As mentioned earlier, no gambler has the funds to actually play

martingale. A gambler who thinks he will play martingale is actually playing a slight

modification in which the earnings M̃n are bounded below by −C (the maximum

allowable debt). Since {M̃n} is uniformly integrable, by the martingale convergence

theorem M̃n will actually converge a.s. and in mean to a limiting random variable

equal to 1 with high probability and equal to −C with small positive probability. This

makes explicit the risk and reward faced by any player with finite funds, and shows

that it is not true that a gambler will always reach a profit of $1.



Chapter 2

Generalized Self-Averaging

Processes

In this chapter we introduce the main object of study for this work, which is a new and

substantial generalization of the concept of a martingale. Our primary motivation for

this stems not from a particular application, but rather from the observation that the

martingale property is a particular way of imposing a simple structure on a collection

of random variables (in particular a monotone structure) that despite its simplicity

can be used to prove many additional properties.

To expand on this observation a little, consider that a martingale {Xn} is a collec-

tion of possibly very correlated random variables. It is exactly the complex correlation

structure of families of random variables that inserts difficulty into probability theory.

The martingale property is a way to characterize a correlation structure through a

9
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family of conditional expectations of a variable given the values of some of the others.

Specifically, the structure is imposed by requiring that

E[Xn+1∣σ(X1, . . . ,Xn)] = fn(X1, . . . ,Xn), (n ≥ 1),

where for a martingale, the function fn(x1, . . . , xn) = xn.

Since this formulation proves so useful, a natural question is whether one can

effectively study other dependence structures by choosing different functions fn to

describe them. This is the question taken up here, where we consider a family of

functions fn that gives rise to processes that are more general than martingales, but

still include martingales as a special case and still exhibit some analogous behaviors.

We consider functions of the from f(xn, . . . , x1) = τnxn +⋯ + τ1x1 where the right

side is a convex combination such that τk+1 ≥ τk. This defines a process {Xn} with

the property that the conditional expectation of Xn+1 given the past is a decreasing

weighted average of the entire past. Here decreasing means that variables further into

the past cannot have more weight than more recent variables. Rather than exhibiting

a monotone structure, these processes have a self-averaging structure and are defined

formally below.

Although our primary motivation is to explore the extent to which the above

perspective generalizes, we note that there are already interesting examples that fall

within the scope of our definition and thus provide a supply of applications for our

results. For example, consider modeling an individual’s credit score X1,X2, . . . as

it evolves in time. Imagine the customer was very unreliable 5 years ago but quite
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reliable recently. One might like a model in which his next credit score, although

random, is highly correlated to his recent scores, but also retains some dependency

on the old, poor score, even if that dependency is weak. One can easily define such

a model that fits neatly into the class considered here, while clearly not being a

martingale. Some other simple examples will be described further down.

We also note that there have been other generalizations of martingales proposed.

Hammersley [3] considers the natural extension of the martingale property to collec-

tions of random variables indexed by the integer lattice, which he calls a harness.

There is also the notion of quasi-martingale introduced by Fisk, see [2]. Other gener-

alizations such as amart, martingale in the limit, game fairer with time, progressive

martingale, and eventual martingale have been defined as well; a nice review and

analysis of some properties appears in Tomkins [6]. None of these generalizations

allow for the long term dependence considered here.

We now formally define our objects of study.

Definition 2.0.1 (Self-averaging Triangular Array).

Let T be a triangular array of real numbers

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ 2,11

τ 3,22 τ 3,21

⋮ ⋮ ⋱

τn,n−1n−1 τn,n−1n−2 ⋯ τn,n−11

⋮ ⋮ ⋮ ⋮ ⋱

(2.0.1)
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We call T self-averaging if for n ≥ 2,

τn,n−1n−1 ≥ τn,n−1n−2 ≥ ⋯ ≥ τn,n−11 ≥ 0,

and

τn,n−1n−1 + τn,n−1n−2 +⋯ + τn,n−11 = 1.

A good example to keep in mind is to first choose a sequence of non-negative

numbers {cn}n≥1 such that for all n, cn ≥ cn+1, and then let

τn+1,nn =
c1

∑
n
i=1 ci

,⋯, τn+1,n1 =
cn

∑
n
i=1 ci

. (2.0.2)

Definition 2.0.2 (Generalized self-averaging process).

Let T be a self-averaging triangular array. We say a process {Xn}n≥1 is a generalized

self-averaging process (GSAP) with respect to T if for n ≥ 2

E[Xn∣Fn−1] = τ
n,n−1
n−1 Xn−1 + τ

n,n−1
n−2 Xn−2 +⋯ + τn,n−11 X1. (2.0.3)

where {Fn}n≥1 is a filtration.

Observe that if the first column of the self-averaging array contains all 1’s and all

other coluns are zero,

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 0

⋮ ⋮ ⋱

1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱
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then (2.0.3) defines a martingale. Thus GSAP is a generalization of the classic mar-

tingale process. Also note that if we choose {cn} = {1,0,0,⋯}, we can use (2.0.2) to

build this T .

A few other simple examples are useful to keep in mind.

Example 2.0.1. If we choose the sequence {cn} = {1,1,0,0,0,⋯}, then using (2.0.2),

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1/2 1/2

1/2 1/2 0

⋮ ⋮ ⋮ ⋱

1/2 1/2 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

Then for n ≥ 3, the conditional expectation is the average of the previous two terms:

E[Xn∣Fn−1] =
1

2
Xn−1 +

1

2
Xn−2.

Example 2.0.2. If we choose the sequence {cn} = {1,1,1,1,⋯}, then by (2.0.2),

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1/2 1/2

⋮ ⋮ ⋱

1/n 1/n ⋯ 1/n

⋮ ⋮ ⋮ ⋮ ⋱
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Then for n ≥ 3, the conditional expectation is the average of the entire history:

E[Xn∣Fn−1] =
1

n − 1
Xn−1 +

1

n − 1
Xn−2 +⋯ +

1

n − 1
X1.

Example 2.0.3. If we use a general non-negative non-increasing sequence {cn}, then

using (2.0.2) and the definition of GSAP, we have

E[Xn∣Fn−1] =
c1

∑
n
i=1 ci

Xn−1 +
c2

∑
n
i=1 ci

Xn−2 +⋯ +
cn

∑
n
i=1 ci

X1.

At first glance, especially in light of Example 2.0.1, the GSAP may appear similar

to the well-known autoregressive (AR) models commonly used in time series analysis

and signal processing. An autoregressive model of order p is defined as

Xn = φ1Xn−1 + φ2Xn−2 +⋯ + φpXn−p + en

where {en} are i.i.d mean 0 random variables. When compared to the AR model,

we can see GSAP as a generalization in one sense and specialization in another. The

generalization comes from the fact that in our model the recursion formula allows

a different set of weights to be used in each step. Moreover, the AR model uses a

fixed history window of p terms while a GSAP can depend on the entire history as

in Example 2.0.2. One might think of a GSAP as an AR model of infinite order in

some sense, although the weights need to also change at each step in this case. The

specialization, on the other hand, comes from the non-negativity of the τ ’s, while in

the AR model, the coefficients can be positive or negative.
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Chapter 3

Basic Properties of GSAPs

In this chapter, we will establish some basic properties of GSAPs that are important

for their analysis.

The first one is in analogy to the property (1.0.2) for martingales, and states that

E[Xn∣Fm] is still a decreasing weighted average of the history up to time m. It also

follows from the tower property for conditional expectation.

Lemma 3.0.1. Let {Xn} be a GSAP for the array T . Then for all n ≥ m ≥ 1, there

exists constants τn,mm ,⋯, τn,m1 such that

E[Xn∣Fm] = τn,mm Xm +⋯ + τn,m1 X1.

In particular, τn,nn = 1, τn,nk = 0 for k = 1,2,⋯, n − 1. Moreover, {τn,mk } satisfy

τn,mm ≥ ⋯ ≥ τn,m1 ≥ 0,

and

τn,mm +⋯ + τn,m1 = 1,

and the relations

τn,m−1k = τn,mk + τn,mm τm,m−1k , (3.0.1)
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for k = 1,2,⋯, n − 1.

Proof. We proceed by induction. When m = n, this is trivial and when m = n−1, this

is just (2.0.3). Suppose for some m < n we have

E[Xn∣Fm] = τn,mm Xm +⋯ + τn,m1 X1

with τn,mm ≥ ⋯ ≥ τn,m1 ≥ 0 and τn,mm +⋯ + τn,m1 = 1.

Then by the tower property,

E[Xn∣Fm−1] = E[E[Xn∣Fm]∣Fm−1] = E[τn,mm Xm +⋯ + τn,m1 X1∣Fm−1]

Since all but the first term on the right is Fm−1-measurable,

E[Xn∣Fm−1] = τ
n,m
m E[Xm∣Fm−1] + τ

n,m
m−1Xm−1 +⋯ + τn,m1 X1.

We can again apply (2.0.3) to get

E[Xn∣Fm−1] = (τn,mm−1 + τ
n,m
m τm,m−1m−1 )Xm−1 +⋯ + (τn,m1 + τn,mm τm,m−11 )X1

= τn,m−1m−1 Xm−1 +⋯ + τn,m−11 X1

where the second equality serves as the definition of the constants τn,m−1m−1 ,⋯, τn,m−11 .

It is easy to see that

τn,m−1m−1 ≥ ⋯ ≥ τn,m−11 ≥ 0

since τn,mm ≥ τn,mm−1 ≥ ⋯ ≥ τn,m1 ≥ 0, and τm,m−1m−1 ≥ ⋯ ≥ τm,m−11 . Also we have

τn,m−1m−1 +⋯ + τn,m−11 = (τn,mm−1 + τ
n,m
m τm,m−1m−1 ) +⋯ + (τn,m1 + τn,mm τm,m−11 )

= τn,mm−1 +⋯ + τn,m1 + τn,mm (τm,m−1m−1 +⋯ + τm,m−11 )

= τn,mm−1 +⋯ + τn,m1 + τn,mm = 1
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If instead of the previous proof we use forward induction on n, we obtain an

alternative recurrence formula for τn,mk .

Lemma 3.0.2. For m < n and k = 1,2,⋯,m, τn,mk is uniquely determined by τn,n−1l

and τ j,mk for l = 1,2,⋯, n − 1 and j =m + 1,m + 2,⋯, n − 1.

Proof. We have

E[Xn∣Fm] = E[E[Xn∣Fn−1]∣Fm] = E[τn,n−1n−1 Xn−1 +⋯ + τn,n−11 X1∣Fm]

Since the last m terms are Fm-measurable,

E[Xn∣Fm] = τn,n−1n−1 E[Xn−1∣Fm] +⋯ + τn,n−1m+1 E[Xm+1∣Fm] + τn,n−1m Xm +⋯ + τn,n−11 X1

= τn,n−1n−1

m

∑
i=1
τn−1,mi Xi +⋯ + τn,n−1m+1

m

∑
i=1
τm+1,mi Xi + τ

n,n−1
m Xm +⋯ + τn,n−11 X1

= (τn,n−1n−1 τn−1,mm +⋯ + τn,n−1m+1 τm+1,mm + τn,n−1m )Xm

+⋯ + (τn,n−1n−1 τn−1,m1 +⋯ + τn,n−1m+1 τm+1,m1 + τn,n−11 )X1

So for k ≤m < n,

τn,mk = τn,n−1n−1 τn−1,mk +⋯ + τn,n−1m+1 τm+1,mk + τn,n−1k

We can represent the coefficients given in Lemma 3.0.1 using matrix operations.
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For each n ≥ 1, define a family of n × n matrices {Mk ∶ k = 2,⋯, n} by

Mk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 τ k,k−11

⋱ ⋮

1 τ k,k−1k−1

0

1

⋱

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where only the kth column is different from that of an identity matrix. Then Mk is

the operation that splits Xk according to the conditional expectation with respect to

Fk−1. That is, E[Xn∣Fm] is a weighted average of X1,X2,⋯,Xm with weights given

by the first m coordinates of Mm+1Mm+2⋯Mnen

Note the family of matrices have three properties coming from the underlying condi-

tional expectations:

1. Each Mk is idempotent.

2. The sum of every column is 1. This is also true for arbitrary products of the

matrices.

3. For i < j: MiMj =MiMjMi.
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Chapter 4

Constructing GSAPs

A natural question is how to construct a GSAP. Similar to martingales, they can be

constructed as sums of independent mean-zero random variables like in (1.0.1).

4.1 Sums of independent random variables

We first show that any GSAP has a representation as a weighted sum of mean-zero

random variables.

Theorem 4.1.1. If {Xn} is a GSAP, then for all n ≥ 2,

Xn = εn + τ
n,n−1
n−1 εn−1 +⋯ + τn,11 ε1 + µ (4.1.1)

where εi is Fi-measurable such that E[εi∣Fi−1] = 0 and µ = E[X1]. The τn,mk are as in

(3.0.1).

Proof. Take µ = E[X1] and εn =Xn −E[Xn∣Fn−1]. Then

Xn = E[Xn∣Fn−1] + εn = τ
n,n−1
n−1 Xn−1 + τ

n,n−1
n−2 Xn−2 +⋯ + τn,n−11 X1 + εn
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Replacing Xn−1 = E[Xn−1∣Fn−2] + εn−1 gives

Xn = (τn,n−1n−2 + τn,n−1n−1 τn−1,n−2n−2 )Xn−2 +⋯

+ (τn,n−11 + τn,n−1n−1 τn−1,n−21 )X1 + τ
n,n−1
n−1 εn−1 + εn

= τn,n−2n−2 Xn−2 +⋯ + τn,n−21 X1 + τ
n,n−1
n−1 εn−1 + εn

Iterating this process gives the result.

Corollary 4.1.2. For m < n and εi as in the previous theorem,

E[Xn∣Fm] = τn,mm εm +⋯ + τn,11 ε1 + µ.

Proof. We have Xn = εn + τ
n,n−1
n−1 εn−1 + ⋯ + τn,11 ε1 + µ. Note that for m + 1 ≤ i ≤ n,

εi =Xi −E[Xi∣Fi−1] satisfies E[εi∣Fi−1] = 0 and hence E[εi∣Fm] = 0.

So

E[εn + τ
n,n−1
n−1 εn−1 +⋯ + τn,m+1m+1 εm+1∣Fm] = 0

and this gives the result.

We can also prove the converse of Theorem 4.1.1.

Theorem 4.1.3. Let the triangular array T be self-averaging, and suppose {εi} are

random variables such that E[εi∣Fi−1] = 0 where Fi = σ(ε1,⋯, εi). Then

Xn = εn + τ
n,n−1
n−1 εn−1 +⋯ + τn,11 ε1 + µ (4.1.2)

is a GSAP, where τn,mm are the coefficients associated with T given by (3.0.1).
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Proof. Consider the vector space generated by {ε1,⋯, εn−1}. Then it is easy to see

{X1 − µ,⋯,Xn−1 − µ} generates the same vector space. If we use {ε1,⋯, εn−1} as a

basis, then by definition of {Xn},

E[Xn∣Fn−1] − µ has coordinates (τn,11 , τn,22 ,⋯, τn,n−2n−2 , τn,n−1n−1 )
T

,

Xn−1 − µ has coordinates (τn−1,11 , τn−1,22 ,⋯, τn−1,n−2n−2 , τn−1,n−1n−1 )
T

,

Xn−2 − µ has coordinates (τn−2,11 , τn−2,22 ,⋯, τn−2,n−2n−2 ,0)
T

,

⋯

X1 − µ has coordinates (τ 1,11 ,0,⋯,0)
T

.

Then since {Xn−1 − µ,⋯,X1 − µ} is another basis, we can apply the change of basis

formula. So E[Xn∣Fn−1]−µ has coordinates (τn,n−1n−1 ,⋯, τn,n−11 )
T

under the basis {Xn−1−

µ,⋯,X1 − µ} given by

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τn,11

⋮

τn,n−2n−2

τn,n−1n−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τn−1,11 τn−2,11 ⋯ τ 2,11 1

τn−1,22 τn−2,22 ⋯ 1

⋮ ⋮ ⋰

τn−1,n−2n−2 1

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τn,n−1n−1

⋮

τn,n−12

τn,n−11

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.1.3)

Note that in the above theorem, we require specific coefficients τn,mm associated

with the self-averaging array T . We have to calculate them to construct the GSAP.

The change of basis matrix on the right hand side of (4.1.3) depends on the array T

up to the (n − 1)st row.
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4.2 Constructing processes that are almost GSAP

As Theorem 4.1.3 makes clear, we have to calculate the coefficients τn,mm to construct

a GSAP. And that requires a fair amount of computation. Here we will give a con-

struction of a process that is much easier to compute, but it is not quite a GSAP.

However, it yields a process that behaves almost like a GSAP.

Suppose we have a sequence of numbers {a0 = 1, a1, a2,⋯} and a sequence of

random variables {εi}, satisfying E[εi∣Fi−1] = 0, where Fi = σ(ε1,⋯, εi). For all n,

define

Xn = a0εn + a1εn−1 +⋯ + an−1ε1. (4.2.1)

If we posit that {Xn} might behave somewhat like a GSAP, we can change coordinates

to write the {εn} in terms of the {Xn}. That is, since X1,⋯,Xn is another basis for

the space span{ε1,⋯, εn}, we can write

εn = b0Xn + b1Xn−1 + b2Xn−2 +⋯ + bn−1X1, (4.2.2)

with b0 = 1, bi ∈ R.

Then by taking the conditional expectation of (4.2.2) given Fn−1,

0 = E[εn∣Fn−1] = E[b0Xn + b1Xn−1 + b2Xn−2 +⋯ + bn−1X1∣Fn−1].

Since b0 = 1 and Xn−1,⋯,X1 are all Fn−1-measurable, we have

E[Xn∣Fn−1] = − (b1Xn−1 + b2Xn−2 +⋯ + bn−1X1) . (4.2.3)
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We will use this below to construct processes that almost satisfy (2.0.3) without the

need for much computation.

We will need the following result about power series; see [5] for a proof.

Lemma 4.2.1. Let f(x) = ∑n≥0 anx
n and g(x) = ∑n≥0 bnx

n be two power series. Then

f(x)g(x) ≡ 1 if and only if

bn
b0

= (−a0)
−ndet

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 a0

a2 ⋱ ⋱

⋮ ⋱ ⋱ a0

an ⋯ a2 a1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We employ this result to prove the following.

Theorem 4.2.2. Given sequences of numbers {v1, v2, . . .} and {a0, a1, a2,⋯} with

a0 ≠ 0, define un = a0vn + a1vn−1 + a2vn−2 +⋯ + an−1v1 for n ≥ 1, and let

An =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0

a1 ⋱

⋮ ⋱ ⋱

an−1 ⋯ a1 a0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then A−1
n has the form

A−1
n =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0

b1 ⋱

⋮ ⋱ ⋱

bn−1 ⋯ b1 b0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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and vn = b0un + b1un−1 + b2un−2 +⋯+ bn−1u1 for each n ≥ 1, where the coefficients {bn}

satisfy (∑
∞
n=0 anx

n) (∑
∞
n=0 bnx

n) ≡ 1.

Proof. We have

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u1

u2

⋮

un

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= An

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1

v2

⋮

vn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

for each n ≥ 1. Since A−1
n = 1

det(An)adj(An) where adj(An) is the adjugate matrix of

An, it is easy to see A−1
n has the stated form and thus the given representation for vn

holds. It remains to show

(
∞
∑
n=0

anx
n)(

∞
∑
n=0

bnx
n) ≡ 1.

For the (n,1) entry of A−1
n ,

bn−1 =
(−1)n+1

det(A)
det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 a0

a2 ⋱ ⋱

⋮ ⋱ ⋱ a0

an−1 ⋯ a2 a1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (−a0)
1−ndet

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 a0

a2 ⋱ ⋱

⋮ ⋱ ⋱ a0

an−1 ⋯ a2 a1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Apply the previous lemma, we have the result.

We can apply the Theorem 4.2.2 to construct processes {Xn} that behave almost

like a GSAP. If {Xn} are defined as in (4.2.1), then they also satisfy (4.2.3). We now

give some examples of this construction.
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Example 4.2.1. Suppose we want to build a process {Xn} such that

E[Xn∣Fn−1] =
1

2
Xn−1 +

1

2
Xn−2.

Then b1 = b2 = −
1
2 and bi = 0 for i ≥ 3. So the corresponding power series becomes

∑
n≥0

bnx
n = 1 −

1

2
x −

1

2
x2.

Then the complementary power series is

∑
n≥0

anx
n =

1

1 − 1
2x −

1
2x

2
=

∞
∑
n=0

1

3
(2 + (−

1

2
)n)xn = 1 +

1

2
x +

3

4
x2 +

5

8
x3 +

11

16
x4 +⋯

So the sequence {an}n≥0 is given by an =
1
3
(2 + (−1

2)
n). Thus if we let Xn = ∑

n−1
i=0

1
3
(2 + (−1

2)
i) εn−i,

where {εi} are i.i.d mean-zero random variables, we have a process {Xn} such that

for n ≥ 3,

E[Xn∣Fn−1] =
1

2
Xn−1 +

1

2
Xn−2.

Of course, this is not technically a GSAP because for n = 2,

E[X2∣F1] =
1

2
X1,

which does not satisfy (2.0.3). But (2.0.3) is satisfied for all n > 2 and so the process

{Xn} eventually behaves like a GSAP.

Thus one can easily construct processes {Xn} that satisfy (2.0.3) except for the

first several terms.

We now give another example of construction (4.2.1).
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Example 4.2.2. Suppose we accumulate some input from time t = 0 on. εi is the

input at t = i and its influence will decrease with time. Let’s assume the εi are i.i.d

mean 0 and their influence is inversely proportional to the time difference, and Xi is

the cumulative effect at time t = i. Then

Xi = εi +
1

2
εi−1 +⋯ +

1

i
ε1. (4.2.4)

Then compared with (4.2.1), we can see ai =
1
i+1 so the power series is

∑
n≥0

anx
n =∑

n≥0

1

n + 1
xn =

− ln(1 − x)

x
.

By the previous theorem, the power series

∑
n≥0

bnx
n =

−x

ln(1 − x)
.

We will later show

b1 < b2 < b3 < ⋯ < bn < ⋯ < 0 (4.2.5)

and

∞
∑
n=1

bn = −1 (4.2.6)

So by (4.2.3),

E[Xn∣Fn−1] = −b1Xn−1 − b2Xn−2 −⋯ − bn−1X1.

We will show the conditional expectation is not a weighted average but it is in a

limiting sense.
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We first prove a lemma for later use.

Lemma 4.2.3. If f(x) = − ln(1−x)
x . Then we can write

1

f(x)
=

x

− ln(1 − x)
= ∫

1

0
(1 − x)tdt

Proof. When 0 < x < 1,

∫

1

0
(1 − x)tdt = ∫

1

0
et ln(1−x)dt =

1

ln(1 − x)
et ln(1−x)∣10 =

x

− ln(1 − x)

We can see when x→ 0 or x→ 1, the result still holds.

Now we can show the following.

Lemma 4.2.4. b1 < b2 < b3 < ⋯ < bn < ⋯ < 0 and ∑
∞
n=1 bn = −1 for bn given in

h(x) =∑
n≥0

bnx
n =

−x

ln(1 − x)

Proof. For the negativity of {bn}, it suffices to show every order derivative of the

function h(x) is negative. From the previous lemma,

h(x) =
−x

ln(1 − x)
= ∫

1

0
(1 − x)tdt.

Differentiating under integral we have

h′(x) = ∫
1

0
(−t)(1 − x)t−1dt,

hence h′(0) < 0.

Differentiate again we have

h′′(x) = ∫
1

0
(−t)(1 − t)(1 − x)t−1dt,
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hence h′′(0) < 0.

Repeating the process we can show every derivative of h at x = 0 is negative.

Note the monotonicity of bn is equivalent to every higher-than-1 order derivative of

the function (1 − x)h(x) is positive.

Note that around x = 0,

(1 − x)h(x) =
−x(1 − x)

ln(1 − x)
= ∫

2

1
(1 − x)tdt

which follows by similar arguments. Also note h(1) = 0 hence ∑
∞
n=1 bn = −1.

So (4.2.4) constructs a process {Xn} such that the conditional expectation is a

linear combination of the entire history with more recent terms getting higher weights.

And the linear combination is a weighted average in limit sense.
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Chapter 5

Maximal Inequalities

5.1 GSAPs that are bounded below

Analogous to Theorem 1.0.2 and Theorem 1.0.3, we can show a maximal inequality

for GSAPs. Throughout this section, we assume Xn is a non-negative GSAP. In

general if {Xn} is bounded below by l then we could consider the GSAP Xn − l.

Recall that X∗
n = max1≤k≤nXk.

Theorem 5.1.1. (Maximal Inequality) If {Xi} is a non-negative GSAP, then for all

x > 0,

xP (X∗
n ≥ x) ≤MnE[Xn;X∗

n ≥ x] ≤MnE[Xn] (5.1.1)

where Mn is a constant depending only on the triangular array T up to the (n − 1)st

row.

Proof. Let Ak = {X∗
k−1 < x ≤ Xk} ∈ Fk be the event that the process exceeds level x

at time k for the first time. Then {X∗
n ≥ x} is the disjoint union of all the Ak’s for
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k = 1,2,⋯, n. Hence

xP (X∗
n ≥ x) = x

n

∑
k=1
P (Ak) ≤

n

∑
k=1

E[Xk;Ak].

Since

τn,kk Xk ≤ E[Xn∣Fk] = τ
n,k
k Xk +⋯ + τn,k1 X1 (5.1.2)

on Ak,

n

∑
k=1

E[Xk;Ak] ≤
n

∑
k=1
E[
E[Xn∣Fk]

τn,kk

;Ak] =
n

∑
k=1

1

τn,kk

E[Xn;Ak].

Let Mn = max{ 1

τn,k
k

∶ k = 1,2,⋯, n}, and note that τn,kk ≠ 0 for all k = 1,2,⋯, n since

τn,kk ≥ τn,kk−1 ≥ ⋯ ≥ τn,k1 and their sum is one. Then

n

∑
k=1

1

τn,kk

E[Xn;Ak] ≤
n

∑
k=1
MnE[Xn;Ak] =MnE[Xn;X∗

n ≥ x] ≤MnE[Xn].

Theorem 5.1.2. (Other Forms of the Maximal Inequality)

Suppose {Xi} is a non-negative GSAP and let p > 0. Then for all x > 0,

xpP (X∗
n ≥ x) ≤M

p
nE[Xp

n],

where Mn is the same constant as above.

Proof. Take Ak = {X∗
k−1 < x ≤Xk} ∈ Fk as before. Then letting Yk = E[Xn∣Fk],

xpP (X∗
n ≥ x) = x

p
n

∑
k=1

P (Ak) ≤
n

∑
k=1
E[Xp

k ;Ak] ≤
n

∑
k=1

E[Mp
nY

p
k ;Ak]

=
n

∑
k=1
Mp

nE[Y p
k ;Ak] ≤M

p
nE[Y p

n ] =M
p
nE[Xp

n]
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Since the constant Mn depends on n, it would be useful to have condition under which

supnMn is finite.

Theorem 5.1.3. If
τn,n−1
i−1

τn,n−1
i

< q < 1 for all n and i < n (that is if every row of the

triangular array T decreases exponentially fast) then M = supnMn <∞.

Proof. We first show by induction that
τn,k
j−1

τn,k
j

≤ q, for all n > k ≥ j > 1. In other words

τn,kk , τn,kk−1,⋯, τ
n,k
1 is still decreasing exponentially fast. Fix n > 1, clearly it is true

when k = n − 1 by assumption. Suppose τn,kk , τn,kk−1,⋯, τ
n,k
1 is decreasing exponentially

fast. Since τn,k−1i = τn,ki + τn,kk τ k,k−1i , the relative ratio

τn,k−1i−1

τn,k−1i

=
τn,ki−1 + τ

n,k
k τ k,k−1i−1

τn,ki + τn,kk τ k,k−1i

=

τn,ki

τn,k
i−1

τn,k
i

+ τn,kk τ k,k−1i

τk,k−1i−1

τk,k−1i

τn,ki + τn,kk τ k,k−1i

is a weighted average of
τn,k
i−1

τn,k
i

and
τk,k−1i−1

τk,k−1i

, both of which are ≤ q so
τn,k−1
i−1

τn,k−1
i

≤ q.

Moreover observe that for all n > 1,

1 = τn,kk +⋯ + τn,k1 ≤ τn,kk + qτn,kk + q2τn,kk +⋯ + qk−1τn,kk <
1

1 − q
τn,kk .

Hence τn,kk > 1 − q, and Mn = max
k

{ 1

τn,k
k

} < 1
1−q . Thus M = supnMn ≤

1
1−q .

Corollary 5.1.4. If the array T in given by {cn} as in (2.0.2), and if for all n,

cn+1
cn

≤ q < 1,

then the condition of the previous theorem holds directly from (2.0.2), and hence Mn

has a uniform bound.



32

For the next result, we need the following dimple generalization of a standard formula

for moments of positive random variables.

Lemma 5.1.5. Let W,Z be positive random variables. Then for all r > 0,

E[WZr] = r∫
∞

0
xr−1E[W ;Z > x]dx

Proof. Letting Fzw denote the joint law of W and Z,

E[WZr] = ∫
[0,∞]×[0,∞]

wzrdFzw

= ∫
[0,∞]×[0,∞]

w[∫

z

0
rxr−1dx]dFzw

= ∫

∞

0
rxr−1[∫

[x,∞]×[0,∞]
wdFzw]dx

= ∫

∞

0
rxr−1E[W ;Z > x]dx,

where we changed the order of integration by Tonelli’s Theorem since all terms are

positive.

We now prove on Lp version of the maximal inequality for GSAP. Recall that Xn ≥ 0

for all n.

Theorem 5.1.6. (Lp Maximal Inequality)

For p > 1, ∣∣X∗
n ∣∣p ≤

p
p−1Mn∣∣Xn∣∣p.
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Proof. By the previous lemma using W = 1, the maximal inequality (5.1.1), and

Holder’s inequality,

∣∣X∗
n ∣∣

p
p = E[(X∗

n)
p] = p∫

∞

0
tp−1P (X∗

n > t)dt

≤ p∫
∞

0
tp−1

MnE[Xn;X∗
n > t]

t
dt

= pMn∫

∞

0
tp−2E[Xn;X∗

n > t]dt

=
pMn

p − 1
E[Xn(X

∗
n)

p−1] ≤
pMn

p − 1
∣∣Xn∣∣p∣∣(X

∗
n)

p−1∣∣q

=
pMn

p − 1
∣∣Xn∣∣p(E[(X∗

n)
(p−1)q])1/q =

pMn

p − 1
∣∣Xn∣∣p(E[(X∗

n)
p])1/q

=
pMn

p − 1
∣∣Xn∣∣p∣∣X

∗
n ∣∣

p/q
p ,

where 1
p +

1
q = 1. So considering the leftmost and rightmost expression, we have

∣∣X∗
n ∣∣p = ∣∣X∗

n ∣∣
p−p/q
p ≤

pMn

p − 1
∣∣Xn∣∣p.

The proof of the following is directly analogous to the proof of Theorem 5.1.1.

Theorem 5.1.7. (Exponential Bound) If {Xn} is a non-negative GSAP, then

P (X∗
n ≥ a) ≤ e

−λaE[eλMnXn]

for all n > 1, λ > 0 and all a > 0.

Proof.

P (X∗
n ≥ a) = P (eλX

∗

n ≥ eλa) =
n

∑
k=1
P (Ak)
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where Ak ∈ Fk is the event that the process eλXn first exceeds eλa at time k. Then

n

∑
k=1
P (Ak) =

n

∑
k=1

E[1;Ak] ≤
n

∑
k=1

E[
eλXk

eλa
;Ak] = e

−λa
n

∑
k=1

E[eλXk ;Ak]

Let Yk = E[Xn∣Fk] then Yk is a martingale and Yn =Xn.

From (5.1.2) we can see Xk ≤MnYk on Ak. So

e−λa
n

∑
k=1
E[eλXk ;Ak] ≤ e

−λa
n

∑
k=1
E[eλMnYk ;Ak].

Since y ↦ eλMny is convex, eλMnYk is a submartingale. So

e−λa
n

∑
k=1
E[eλMnYk ;Ak] ≤ e

−λa
n

∑
k=1
E[eλMnYn ;Ak]

≤ e−λaE[eλMnYn] = e−λaE[eλMnXn]

5.2 GSAPs with bounded increments

If the GSAP {Xn} has bounded increments, we can establish similar results.

Theorem 5.2.1. (Maximal Inequality) Suppose {Xn} is a GSAP with bounded in-

crements, namely ∣Xn −Xn−1∣ ≤ δ for all n, then for all x > 0,

xP (X∗
n ≥ x) ≤ E[Xn] +Nnδ (5.2.1)

where Nn ≤
n
2 depends on T up to the (n − 1)st row.
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Proof. Again let Ak = {X∗
k−1 < x ≤ Xk} ∈ Fk be the event that the process exceeds

level x at time k for the first time. Then {X∗
n ≥ x} is the disjoint union of all the Ak

for k = 1,2,⋯, n. Hence

xP (X∗
n ≥ x) = x

n

∑
k=1
P (Ak) ≤

n

∑
k=1

E[Xk;Ak].

Since

τn,kk Xk + τ
n,k
k−1(Xk − δ) +⋯ + τn,k1 (Xk − (k − 1)δ)

≤ τn,kk Xk + τ
n,k
k−1Xk−1 +⋯ + τn,k1 X1 = E[Xn∣Fk],

we have on Ak

Xk − (τn,kk−1 +⋯ + (k − 1)τn,k1 ) δ ≤ E[Xn∣Fk]

on Ak. Let

Nn = max{τn,kk−1 +⋯ + (k − 1)τn,k1 ∶ k = 1,2,⋯, n}.

By Lemma 3.0.1, τn,ki are non-increasing and sum to one. So

τn,kk−1 +⋯ + (k − 1)τn,k1 ≤
k

2
,

and hence Nn ≤
n
2 . Then

n

∑
k=1
E[Xk;Ak] ≤

n

∑
k=1
E[E[Xn∣Fk] + (τn,kk−1 +⋯ + (k − 1)τn,k1 ) δ;Ak]

≤
n

∑
k=1
E[E[Xn∣Fk] +Nnδ;Ak] ≤ E[Xn] +Nnδ.
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Note that in the previous proof we use the rough bound

τn,kk−1 +⋯ + (k − 1)τn,k1 ≤
k

2
.

So if the τ ’s decrease exponentially fast, then we can get a uniform bound for Nn.

Theorem 5.2.2. (Ratio Test) If
τn,n−1
i−1

τn,n−1
i

< q < 1 for all n and all i < n (namely if every

row of the triangular array T is decreasing exponentially fast) then N = supnNn <∞.

Proof. As in the proof of Theorem 5.1.3, we know τn,kk , τn,kk−1,⋯, τ
n,k
1 is decreasing

exponentially fast. Then

τn,kk−1 +⋯ + (k − 1)τn,k1 ≤ τn,kk−1 + 2qτn,kk−1 +⋯ + (k − 2)qk−1τn,kk−1

= τn,kk−1[1 + 2q +⋯ + (k − 2)qk−1] ≤ τn,kk−1
1 − qk

(1 − q)2

Also we know if τn,kk , τn,kk−1,⋯, τ
n,k
1 is decreasing exponentially fast then the second term

τn,kk−1 ≤ q and hence

τn,kk−1 +⋯ + (k − 1)τn,k1 ≤ q
1 − qk

(1 − q)2
.

Then we have

Nn = max{τn,kk−1 +⋯ + (k − 1)τn,k1 ∶ k = 1,2,⋯, n} ≤
q

(1 − q)2
.

So N = supnNn ≤
q

(1−q)2 <∞

Corollary 5.2.3. Again if the array T is given by {cn} as in (2.0.2), and for all n,

cn+1
cn

≤ q < 1,
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then the condition of the previous theorem holds directly from (2.0.2), and hence Nn

has a uniform bound.

For classic martingales with bounded increments, the following theorem is well known.

Theorem 5.2.4. (Azuma Inequality) Suppose {Xk} is a martingale with ∣Xk−Xk−1∣ ≤

ak for each k. Then

P (∣Xn −X0∣ ≥ t) ≤ 2 exp(
−t2

2∑
n
1 a

2
k

).

We can prove a similar result for GSAPs.

Theorem 5.2.5. (Azuma Inequality for GSAPs) Suppose {Xk} is a GSAP with ∣Xk−

Xk−1∣ ≤ ak for each k. Then

P (∣Xn −X0∣ ≥ t) ≤ 2 exp(
−t2

2∑
n
1 b

2
k

),

where

bk = τ
n,k
k [ak + (1 − τ k,k−1k−1 )ak−1 +⋯ + (1 − τ k,k−1k−1 −⋯ − τ k,k−12 )a2].

Proof. Take Yk = E[Xn∣Fk] so that Yk is a martingale. In particular Y0 =X0, Y1 =X1,
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Yn =Xn. For k ≥ 2,

∣Yk − Yk−1∣ = ∣E[Xn∣Fk] −E[Xn∣Fk∣Fk−1]∣

= ∣τn,kk Xk +⋯ + τn,k1 X1 − (τn,kk−1 + τ
n,k
k τ k,k−1k−1 )Xk−1 −⋯ − (τn,k1 + τn,kk τ k,k−11 )X1∣

= ∣τn,kk Xk − τ
n,k
k τ k,k−1k−1 Xk−1 −⋯ − τn,kk τ k,k−11 X1∣

= τn,kk ∣Xk − τ
k,k−1
k−1 Xk−1 −⋯ − τ k,k−11 X1∣

= τn,kk ∣(Xk −Xk−1) + (1 − τ k,k−1k−1 )(Xk−1 −Xk−2)

+⋯ + (1 − τ k,k−1k−1 −⋯ − τ k,k−12 )(X2 −X1)∣

≤ τn,kk [ak + (1 − τ k,k−1k−1 )ak−1 +⋯ + (1 − τ k,k−1k−1 −⋯ − τ k,k−12 )a2] = bk,

where the last equality serves as the definition of bk. Define b1 = a1 then apply the

classic Azuma inequality to the martingale {Yk}.
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Chapter 6

Convergence of GSAPs

For convenience, we still write

E[Xn∣Fm] = τn,mm Xm +⋯ + τn,m1 X1

for n <m, in which case only τn,mn = 1, and for i ≠ n, τn,mi = 0. (Note that in this case

the non-increasing property is no longer true.)

If {Xn} is a GSAP with respect to T , then by tower property, we have for n ≥ k:

E[Xn+1∣Fk] = E[Xn+1∣Fn∣Fk]

= E[τn+1,nn Xn +⋯ + τn+1,n1 X1∣Fk]

= τn+1,nn E[Xn∣Fk] +⋯ + τn+1,n1 E[X1∣Fk]

= τn+1,nn (τn,kk Xk +⋯ + τn,k1 X1) +⋯ + τn+1,n1 (τ 1,kk Xk +⋯ + τ 1,k1 X1)

and as in Lemma 3.0.1,

E[Xn+1∣Fk] = τ
n+1,k
k Xk +⋯ + τn+1,k1 X1.
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By comparing terms we can see for i ≤ k,

τn+1,ki = τn+1,nn τn,ki +⋯ + τn+1,n1 τ 1,ki . (6.0.1)

So for fixed k, i, the sequence of numbers {τn,ki }n≥1 has the property that the next

term is a weighted average of the previous terms.

In general consider a sequence of numbers {an} with

an+1 = τ
n+1,n
n an +⋯ + τn+1,n1 a1 (6.0.2)

We will first show the sequence converges. We begin with a result needed later.

Lemma 6.0.1. For 1 ≥ u, v ≥ 0, and all a, b, c ∈ R

∣ua + (1 − u)b − va − (1 − v)c∣ ≤ max{1 − v,1 − u} ⋅max{∣b − c∣, ∣a − c∣, ∣a − b∣}

Proof. If u ≥ v,

∣ua + (1 − u)b − va − (1 − v)c∣ = ∣(u − v)a + (1 − u)b − (1 − v)c∣

= ∣(1 − u)(b − c) + (u − v)(c − a)∣

≤ (1 − u)∣b − c∣ + (u − v)∣c − a∣

≤ (1 − v)max{∣b − c∣, ∣a − c∣}

≤ max{1 − v,1 − u} ⋅max{∣b − c∣, ∣a − c∣, ∣a − b∣}

When u < v, we can use the same argument.

Now we prove the sequence in (6.0.2) converges.
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Theorem 6.0.2. (Convergence of Weighted Average Sequences) Let T be a self-

averaging array and set a1, a2,⋯, ak as initial conditions. Then for n ≥ k, if

an+1 = τ
n+1,n
n an +⋯ + τn+1,n1 a1,

then the sequence {an} converges.

Proof. Let An be the set of monotone weighted averages of {a1,⋯an}:

An = {w1an +w2an−1 +⋯wna1},

where w1 ≥ w2 ≥ ⋯ ≥ wn and w1 +w2 +⋯ +wn = 1. Let

Dn = sup{∣x − y∣ ∶ x, y ∈ An}.

We can see An is a convex set and an+1 ∈ An by definition. Also

an+2 = τ
n+2,n+1
n+1 an+1 +⋯ + τn+2,n+11 a1

is a weighted average of an+1 and τn+2,n+1n

τn+2,n+1n +⋯+τn+2,n+11

an + ⋯ +
τn+2,n+11

τn+2,n+1n +⋯+τn+2,n+11

a1, so

an+2 ∈ An. Recursively we can show an+i ∈ An for i = 1,2,3,⋯.

Take any two elements in An (n ≥ k): w1an+w2an−1+⋯wna1 and w′
1an+w

′
2an−1+⋯w

′
na1.

Then by Lemma 6.0.1, using u = w1 and v = w′
1,

∣w1an +w2an−1 +⋯wna1 − (w′
1an +w

′
2an−1 +⋯w

′
na1)∣

≤ max{1 −w1,1 −w
′
1} ⋅max{∣an −

w2

w2 +⋯ +wn
an−1 −⋯ −

wn
w2 +⋯ +wn

a1∣,

∣an −
w′

2

w′
2 +⋯ +w′

n

an−1 −⋯ −
w′
n

w′
2 +⋯ +w′

n

a1∣,

∣
w2

w2 +⋯ +wn
an−1 +⋯ +

wn
w2 +⋯ +wn

a1 −
w′

2

w′
2 +⋯ +w′

n

an−1 −⋯ −
w′
n

w′
2 +⋯ +w′

n

a1∣}
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Note that w1 and w′
1 are the largest among {w1,⋯wn} and {w′

1,⋯w
′
n} respectively so

max{1 −w1,1 −w
′
1} ≤

n − 1

n
.

Also note that all of the three terms

an,
w2

w2 +⋯ +wn
an−1 +⋯ +

wn
w2 +⋯ +wn

a1,
w′

2

w′
2 +⋯ +w′

n

an−1 +⋯ +
w′
n

w′
2 +⋯ +w′

n

a1

are elements of An−1. So ∣w1an+w2an−1+⋯+wna1−(w′
1an+w

′
2an−1+⋯+w

′
na1)∣ ≤

n−1
n Dn−1

and hence Dn ≤
n−1
n Dn−1. So we have Dn → 0.

For m > n large enough, am and an are both in An so

∣am − an∣ ≤Dn → 0 so the sequence is Cauchy thus convergent.

Armed with this theorem we can prove a result for the conditional expectations

of a GSAP.

Theorem 6.0.3. (Convergence of conditional expectations)

Fix k and i ≤ k. Then {τn,ki }n≥0 in (6.0.1) is convergent by Theorem 6.0.2. Denote

the limit by τ∞,ki . Let {Xn} be a GSAP for the array T . Then for each k, there exist

constants τ∞,k1 ,⋯, τ∞,kk such that

lim
n→∞

E[Xn∣Fk] = τ
∞,k
k Xk +⋯ + τ∞,k1 X1 a.s.

Proof. Since τn,ki → τ∞,ki , then

E[Xn∣Fk] = τ
n,k
k Xk +⋯ + τn,k1 X1 → τ∞,kk Xk +⋯ + τ∞,k1 X1 a.s.
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Now we consider convergence of a GSAP {Xn}.

Take εn = Xn −E[Xn∣Fn−1]. Recall in Theorem 1.0.5, a classical martingale {Xn} is

bounded in L2 if and only if ∑E[(Xn −Xn−1)
2
] = ∑E∣εn∣2 < ∞. We can prove an

analogous theorem for GSAPs.

Observe that for n >m,

E∣Xn −Xm∣2 = E∣Xn −E[Xn∣Fm]∣2 +E∣E[Xn∣Fm] −Xm∣2. (6.0.3)

So for a GSAP to converge in L2, it suffices to show both terms on the right hand side

converge to zero. We show the first term converges to zero in the following theorem.

Theorem 6.0.4. Let {Xn} be a GSAP for the array T . If εn = Xn − E[Xn∣Fn−1]

satisfies ∑E∣εn∣2 <∞, then E∣Xn −E[Xn∣Fm]∣2 → 0 for n ≥m→∞.

Proof. Since εn =Xn −E[Xn∣Fn−1], it is Fn-measurable and E[εn∣Fn−1] = 0.

By Theorem 4.1.1,

Xn = E[Xn∣Fm] + εn + τ
n,n−1
n−1 εn−1 +⋯ + τn,m+1m+1 εm+1.

We can see the terms on the right hand side are orthogonal to each other and hence

E∣Xn −E[Xn∣Fm]∣2 = E∣εn∣
2 + (τn,n−1n−1 )2E∣εn−1∣

2 +⋯ + (τn,m+1m+1 )2E∣εm+1∣
2

≤ E∣εn∣
2 +E∣εn−1∣

2 +⋯ +E∣εm+1∣
2 → 0

as n ≥m→∞.
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From the proof above we can see that a necessary condition for {Xn} to converge

in L2 is ∑ 1
n2E∣εn∣2 <∞. Indeed, the right side of the first equality above is bounded

below by

E∣εn∣
2 + (

1

n − 1
)2E∣εn−1∣

2 +⋯ + (
1

m + 1
)2E∣εm+1∣

2.

In order to prove the second term in (6.0.3) converges to zero, we first prove the

following.

Lemma 6.0.5. If an → 0 then 1
n(a1 +⋯ + an)→ 0.

Proof. Fix ε > 0. Then there exists N such that ∣an∣ < ε for n > N . Then

1

n
∣a1 +⋯ + an∣ =

1

n
∣a1 +⋯ + aN + aN+1 +⋯ + an∣

≤
1

n
∣a1 +⋯ + aN ∣ +

1

n
∣aN+1 +⋯ + an∣

the first term 1
n ∣a1 +⋯ + aN ∣→ 0 and the second term 1

n ∣aN+1 +⋯ + an∣ < ε, so

1

n
(a1 +⋯ + an)→ 0.

Now we can prove the L2 convergence.

Theorem 6.0.6. (L2 Convergence)

Let {Xn} be a GSAP for the array T , and suppose εn = Xn − E[Xn∣Fn−1] satisfies

∑E∣εn∣2 < ∞. Then for n ≥ m → ∞, E∣Xm − E[Xn∣Fm]∣2 → 0 and hence {Xn}

converges in L2
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Proof. Define An = {w1Xn +⋯wnX1 ∶ w1 ≥ w2 ≥ ⋯ ≥ wn and w1 +w2 +⋯+wn = 1} and

let Dn = sup{E∣Y −Z ∣2 ∶ Y,Z ∈ An}. It is easy to see that D2 = E∣ε2∣2. Take any two

elements in An: w1Xn +w2Xn−1 +⋯+wnX1 and w′
1Xn +w′

2Xn−1 +⋯+w′
nX1. Without

losing generality, suppose w1 ≥ w′
1, then

E∣w1Xn +w2Xn−1 +⋯ +wnX1 − (w′
1Xn +w

′
2Xn−1 +⋯ +w′

nX1)∣
2

= E∣(w1 −w
′
1)Xn +w2Xn−1 +⋯ +wnX1 − (w′

2Xn−1 +⋯ +w′
nX1)∣

2

= (1 −w′
1)

2E∣
(w1 −w′

1)Xn

1 −w′
1

+
w2Xn−1 +⋯ +wnX1

1 −w′
1

−
w′

2Xn−1 +⋯ +w′
nX1

1 −w′
1

∣2

= (1 −w′
1)

2E∣
(w1 −w′

1)(E[Xn∣Fn−1] + εn)

1 −w′
1

+
w2Xn−1 +⋯ +wnX1

1 −w′
1

−
w′

2Xn−1 +⋯ +w′
nX1

1 −w′
1

∣2.

Note that εn satisfies E[εn∣Fn−1] = 0 so

E∣w1Xn +w2Xn−1 +⋯ +wnX1 − (w′
1Xn +w

′
2Xn−1 +⋯ +w′

nX1)∣
2

= (1 −w′
1)

2E∣
(w1 −w′

1)(E[Xn∣Fn−1])

1 −w′
1

+
w2Xn−1 +⋯ +wnX1

1 −w′
1

−
w′

2Xn−1 +⋯ +w′
nX1

1 −w′
1

∣2

+(w1 −w
′
1)

2E∣ε2n∣.

Note the terms
(w1−w′1)(E[Xn∣Fn−1])

1−w′1
+ w2Xn−1+⋯+wnX1

1−w′1
and

w′2Xn−1+⋯+w′nX1

1−w′1
are both in An−1

so almost surely

Dn ≤ (1 −w′
1)

2Dn−1 + (w1 −w
′
1)

2E∣εn∣
2 ≤ (

n − 1

n
)2Dn−1 + (

n − 1

n
)2E∣εn∣

2.

Hence recursively we have a.s.

Dn ≤ (
n − 1

n
)2E∣εn∣

2 +⋯ + (
2

n
)2E∣ε3∣

2 + (
2

n
)2D2

= (
n − 1

n
)2E∣εn∣

2 +⋯ + (
2

n
)2E∣ε3∣

2 + (
2

n
)2E∣ε2∣

2
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We will show Dn → 0 a.s. as n→∞.

Let σn = ∑
∞
n E∣εn∣2 then σn → 0. We have

(
n − 1

n
)2E∣εn∣

2 +⋯ + (
2

n
)2E∣ε3∣

2 + (
2

n
)2E∣ε2∣

2 = (
1

n
)2[

n

∑
2

(k − 1)2E∣εk∣
2 +E∣ε2∣

2]

≤ (
1

n
)2[

n

∑
2

(2k − 3)σk +E∣ε2∣
2]

=
1

n
[
2n − 3

n
σn +⋯ +

1

n
σ2 +

1

n
E∣ε2∣

2]

≤
1

n
[2σn +⋯ + 2σ2 +

1

n
E∣ε2∣

2]→ 0

by the previous lemma.

Thus, Dn → 0 as n→∞.

Since Xm and E[Xn∣Fm] are both in Am,

E∣Xm −E[Xn∣Fm]∣2 ≤Dm → 0.

Hence E∣Xn −Xm∣2 = E∣Xm −E[Xn∣Fm]∣2 +E∣Xn −E[Xn∣Fm]∣2 → 0.

So Xn converges in L2

For convergence in Lp, p ≠ 2, we have the following theorem.

Theorem 6.0.7. If ∑
∞
n=1 ∣∣εn∣∣p <∞ then Xn converges in Lp. p ≥ 1

Proof. Take An = {w1Xn +⋯wnX1} where w1 ≥ w2 ≥ ⋯ ≥ wn and w1 +w2 +⋯+wn = 1.

Dn = sup{∣∣Y −Z ∣∣p ∶ Y,Z ∈ An}. Take any two elements in An,

∣∣w1Xn +w2Xn−1 +⋯ +wnX1 − (w′
1Xn +w

′
2Xn−1 +⋯ +w′

nX1)∣∣p

= ∣∣(w1 −w
′
1)Xn +w2Xn−1 +⋯ +wnX1 − (w′

2Xn−1 +⋯ +w′
nX1)∣∣p
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= (1−w′
1)∣∣

(w1 −w′
1)(E[Xn∣Fn−1] + εn)

1 −w′
1

+
w2Xn−1 +⋯ +wnX1

1 −w′
1

−
w′

2Xn−1 +⋯ +w′
nX1

1 −w′
1

∣∣p

≤ (1 −w′
1)∣∣

(w1 −w′
1)E[Xn∣Fn−1]

1 −w′
1

+
w2Xn−1 +⋯ +wnX1

1 −w′
1

−
w′

2Xn−1 +⋯ +w′
nX1

1 −w′
1

∣∣p

+(w1 −w
′
1)∣∣εn∣∣p

by Minkowski Inequality.

Hence

∣∣w1Xn+w2Xn−1+⋯+wnX1−(w
′
1Xn+w

′
2Xn−1+⋯+w

′
nX1)∣∣p ≤ (1−w′

1)Dn−1+(w1−w
′
1)∣∣εn∣∣p

So we have

Dn ≤
n − 1

n
Dn−1 +

n − 1

n
∣∣εn∣∣p

Then by similar argument we can show when ∑
∞
n=1 ∣∣εn∣∣p <∞, Dn → 0.

Thus Xn converges in Lp.

To prove the almost sure convergence of a GSAP, we need the following lemma of

random variables.

Lemma 6.0.8. Suppose Xn → X in probability and ∑
∞
1 P (∣Xn −X ∣ ≥ ε) <∞ for any

ε > 0. Then Xn →X a.s.

Proof. By Borel-Cantelli Lemma, P (∣Xn −X ∣ ≥ ε, i.o.) = 0 so Xn →X a.s.

Theorem 6.0.9. (Almost Sure Convergence)

Let {Xn} be a GSAP for the array T and suppose εn = Xn − E[Xn∣Fn−1] satisfies

∑nE∣εn∣2 <∞. Then {Xn} converges almost surely.
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Proof. We know {Xn} converges in L2 by Theorem 6.0.6 and let the limit be X. By

the Markov inequality, P (∣Xn −X ∣ ≥ ε) ≤ E∣Xn−X ∣2
ε2 , so it suffices to show E∣Xn −X ∣2

is summable by the previous lemma. Let n ≥m:

E∣Xn −Xm∣2 = E∣Xm −E[Xn∣Fm]∣2 +E∣Xn −E[Xn∣Fm]∣2

≤ E∣εn∣
2 +⋯ +E∣εm+1∣

2 + (
m − 1

m
)2E∣εm∣2 +⋯ + (

2

m
)2E∣ε3∣

2 + (
2

m
)2E∣ε2∣

2

Taking n→∞ we have

E∣Xm −X ∣2 ≤ (
∞
∑

k=m+1
E∣εk∣

2) + (
m − 1

m
)2E∣εm∣2 +⋯ + (

2

m
)2E∣ε3∣

2 + (
2

m
)2E∣ε2∣

2.

Then

∞
∑
m=1

E∣Xm −X ∣2 ≤
∞
∑
m=1

[(
∞
∑

k=m+1
E∣εk∣

2) + (
m − 1

m
)2E∣εm∣2 +⋯ + (

2

m
)2E∣ε3∣

2 + (
2

m
)2E∣ε2∣

2]

By Tonelli theorem we can change the order of the summations:

∞
∑
m=1

E∣Xm −X ∣2 ≤ (
∞
∑
i=1

2

i2
)E∣ε2∣

2 +
∞
∑
m=3

(m − 2 +
∞
∑

i=m−1

(m − 1)2

i2
)E∣εm∣2

since ∑
∞
i=m−1

1
i2 < ∫

∞
m−2

1
x2dx =

1
m−2 ,

∞
∑
m=1

E∣Xm −X ∣2 < (
∞
∑
i=1

2

i2
)E∣ε2∣

2 +
∞
∑
m=3

(m − 2 +
(m − 1)2

m − 2
)E∣εm∣2

< (
∞
∑
i=1

2

i2
)E∣ε2∣

2 +
∞
∑
m=3

2mE∣εm∣2 <∞.

So Xn →X almost surely.
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