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Abstract

Deep learning on graphs has received increasing attention in recent years, and

Graph Neural Networks (GNNs) have achieved remarkable performance across vari-

ous tasks on graphs like node classification and link prediction, etc. However, recent

studies show that GNNs can be vulnerable to adversarial graph structure pertur-

bations. To address this issue, we propose GalNN, a GNN architecture based on

adaptive aggregator selection and long-range dependency modeling, which is robust

to poisoning attack on both homophily graphs and heterophily graphs. The general

principle of adaptive aggregator selection is to learn each neighborhood’s profile via

the centering node’s degree and neighborhood feature variance to guide the aggrega-

tion with a set of aggregators. Long-range dependency modeling adopts the manifold

learning idea to locate similar nodes in the neighboring regions of a 1D manifold

and simulates the aggregation operation with 1D convolution. Our results show that

the learned neighborhood profiles can differentiate perturbed neighborhoods from

clean neighborhoods on attacked homophilic graphs, and the long-range dependency

modeling can make the original heterophily graphs more homophilic. Fusing the in-

formation from adaptive aggregator selection and long-range dependency modeling

realizes robust node embedding learning.
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Chapter 1

Introduction

Graph-structured data are ubiquitous in the real world, ranging from social net-

works to chemical molecules [14]. The ubiquity has attracted research attention to

analyze graphs and conduct data mining on graphs. Currently, the most popular

graph mining method is through Graph Neural Networks (GNNs) like GCN [20],

GAT [34], and GraphSAGE [13]. GNNs are extended from traditional Deep Neural

Networks (DNNs), and their power lies in their ability to leverage node features and

graph topology simultaneously. Many GNNs follow a message-passing, aggregate,

and update paradigm, allowing nodes on graphs to exchange information with their

neighboring nodes and then use the information to update their node embeddings. By

stacking GNN layers, each node on the graph can potentially exchange information

with neighbors a few hops away from it. Due to the powerful representation learn-

ing ability on graphs, GNNs have gained remarkable success across a wide range of

applications in computer vision [30], natural language processing [24], social network

analysis [29], recommender systems [38], physics [31], chemistry [12], and other fields

[8, 5, 15, 21].

However, machine learning methods can suffer from vulnerabilities of adversarial

attacks [1, 11, 3], which means unnoticeable perturbations may compromise the mod-

els and significantly degrade the performance on downstream tasks. Recent studies

indicate that Graph Neural Networks are not immune to adversarial attacks as well

[36, 17]. Adversarial attacks on graphs often focus on manipulating the connectiv-
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ity of the graphs. That is, adding, deleting, or rewiring edges among the nodes in

an imperceptible way. For example, as is shown in Figure 1-1, slightly rewiring the

connectivity around node 5 by deleting the edge to node 4 and adding the edge to

node 3, a GNN can misclassify node 5 from an orange node to a blue node. Besides,

the effectiveness of adversarial attacks on graphs often inherit transferability, which

indicates that an effective attack aiming at one GNN victim model is also very likely

to compromise other GNN models or other graph mining methods [25]. The fragility

of GNNs and the transferability of attacks make GNNs less robust in the adversar-

ial setting, leading to huge trustworthiness issues when applying them to real-world

problems, especially problems requiring high-security guarantees. For instance, in the

finance credit-scoring system, a fraud user may pretend to be a normal user by in-

creasing its connectivity with high credit normal users to evade fraud detectors based

on GNNs. In social media, a fake news reporter may associate himself/herself with

high-impact Internet influencers to facilitate the spread of fake news. Therefore, it’s

urgent to study adversarial attacks on graphs and the according countermeasures to

increase the robustness of GNNs.

Figure 1-1: Illustration of the adversarial attacks on graph topology and the possible
effects. The GNN model deals with a node classification task. The GNN model can
correctly classify node 5 as an orange node on the clean graph. However, after an
adversary deletes the edge between node 4 and node 5 and adds an edge between
node 3 and node 5, node 5 is wrongly classified as a blue node.

To tackle the attackers’ behavior and prevent potential harmful effects, plenty of
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efforts have been devoted to improving GNNs’ adversarial robustness. Existing meth-

ods can be categorized into 3 classes. Namely, graph purification, GNN architecture

modification, and adversarial training [25]. Some representative methods for graph

purification are GCN-SVD [9], GCN-Jaccard [35], and Pro-GNN [18]. GCN-SVD [9]

vaccinates GNNs by preprocessing the suspicious graph’s adjacency matrix using the

singular-value-decomposition-based low-rank approximation. Unlike GCN-SVD [9],

which utilizes the low-rank property of clean graph’s adjacency matrix, GCN-Jaccard

[35] prunes the graph based on the neighboring nodes’ Jaccard similarity score. To

exploit information from graph structure and node features at the same time, based

on the sparse and low-rank assumption for the adjacency matrix and feature smooth-

ness assumption, Pro-GNN [18] adds regularizations to the objective function, aiming

to learn the graph structure and robust node representations jointly. Some methods

also specify the vulnerabilities in GNN architecture and modify the architecture ac-

cordingly. GNNGuard [39] learns to assign higher weights to edges connecting similar

nodes while pruning edges between unrelated nodes in the message-passing stage to

mitigate potentially harmful effects of adversarial edges. RGCN [41] tries to absorb

the effects of adversarial attacks in the aggregation stage by modeling latent node

representations as gaussian distributions. It also applies attention mechanism to pe-

nalize nodes with high neighborhood feature variance in the message-passing stage.

Adversarial training-related methods generally model the defense as a min-max op-

timization problem, which inserts adversarial edges during training while minimizing

the task-specific training loss [37, 7, 16]. More details about adversarial attacks and

defenses will be discussed in section 2.3 and section 2.4.

Nevertheless, many existing defense methods have limitations such as partially

leveraged information (e.g., GCN-SVD: topology information only, GCN-Jaccard:

node feature information only), tuning difficulty (e.g., Pro-GNN), unsatisfactory scal-

ability (e.g., Pro-GNN, GCN-SVD), impractical input assumption (e.g., adversarial

training), and performance compromise on clean graphs (e.g., GCN-SVD). Besides,

few works consider defense for real-world heterophily graphs since most of them focus

on defense for homophily graphs.
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To bridge the aforementioned gap, in this work, we propose GalNN, a GNN archi-

tecture based on adaptive aggregator selection and long-range dependency modeling,

which is robust to poisoning graph structure attacks on both homophily graphs and

heterophily graphs. GalNN consists of 3 phases: long-range dependency modeling,

adaptive aggregator selection, and robust information fusion. Long-range dependency

modeling aims to build an auxiliary graph and provide a set of node embeddings only

learned from node features. By ignoring the observed graph’s topology, the con-

structed auxiliary graph and the learned node embeddings can ideally ignore any

topology perturbations. For adaptive aggregator selection, GalNN learns neighbor-

hood profiles for centering nodes based on the neighborhood’s degree and the node

feature variance. In each layer of GalNN, a given node’s neighborhood profile con-

sists of weights for 4 aggregators: the mean aggregator, the maximum aggregator,

the minimum aggregator, and the median aggregator. The final aggregated output is

the weighted average of the outputs from the 4 aggregators guided by the centering

nodes’ neighborhood profiles. The key insight here is that each aggregator is capable

of aggregating helpful information from the neighborhood for updating the centering

node’s representation, and the effects of adversarial edges can be mitigated by adap-

tively reweighting the aggregated outputs from each aggregator since it’s less likely

for adversarial edges to compromise all the aggregators. Robust information fusion

revolves around how to combine the information from long-range dependency mod-

eling and adaptive aggregator selection. After we have the auxiliary graph topology

and node embeddings from long-range dependency modeling, we have 3 information

fusion schemes: neighborhood fusion, embedding fusion, and neighborhood fusion

plus embedding fusion. By fusing the information, we can learn node embeddings

with robustness guarantees suitable for downstream tasks. We will elaborate more on

our proposed method in Section 3. Our contributions can be summarized as follows:

• Contaminated neighborhoods on homophily graphs can be differenti-

ated from clean neighborhoods by the learned neighborhood profiles,

and harmful effects of adversarial edges can be mitigated by the adap-

tive aggregator selection of GalNN.
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• Malign damage of adversarial attacks on heterophily graphs can be

alleviated by long-range dependency modeling, which also helps con-

struct graphs that are more homophilic to leverage the power of

GNNs.

• Robust information fusion provides a new defense paradigm that is

effective for graphs across the whole homophily score spectrum.

The rest of the Thesis is organized as follows: In Chapter 2, we introduce the

necessary background of this work, in which we will cover the math notations, back-

ground for GNNs, related adversarial attacks, and defenses for graph-structured data.

Followed by Chapter 3, in which we will elaborate on the details of GalNN’s design.

We will show GalNN’s effectiveness through the experiments and analysis in Chapter

4. In the end, we will discuss the limitations of GalNN and shine a light on some

future directions for robust GNNs in Chapter 5.
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Chapter 2

Background

In this chapter, we will briefly cover the preliminaries of the Thesis. In Section

2.1, we will cover the necessary math notations of machine learning on graphs for

the following discussion. Section 2.2 introduces the background of Graph Neural

Networks. Adversarial attacks and defenses on graphs will be outlined in Section 2.3

and Section 2.4.

2.1 Notations

A graph can be represented as 𝒢 = (𝒱 , ℰ) where 𝒱 is the set of nodes, and ℰ is the

set of edges connecting nodes. Each node in 𝒱 can be denoted as 𝑣𝑖 ∈ 𝒱 and each

edge connecting node 𝑣𝑖 and 𝑣𝑗 can be denoted as 𝑒𝑖𝑗 ∈ ℰ . 𝐴 ∈ R𝑁×𝑁 represents

the adjacency matrix of graph 𝒢, where 𝑁 is the total number of nodes on graph.

If there exists an edge 𝑒𝑖𝑗, then A𝑖𝑗 = 1, otherwise A𝑖𝑗 = 0. Note that we only

discuss undirected graphs in this work, so 𝑒𝑖𝑗 = 𝑒𝑗𝑖 and A𝑖𝑗 = A𝑗𝑖. We define the

1-hop neighborhood of 𝑣𝑖 as 𝒩 (𝑣𝑖) = {𝑣𝑗|𝑒𝑖𝑗 ∈ ℰ}. The summation of elements in

the i-th row of A or the number of nodes in 𝒩 (𝑣𝑖) is defined as the degree of 𝑣𝑖,

which is denoted as 𝑑𝑖. Therefore, we can construct the degree matrix as a diagonal

matrix D, where D𝑖𝑖 = 𝑑𝑖. Nodes on the graph may be associated with node features,

which can be represented as a feature matrix X ∈ R𝑁×𝐹 , where 𝐹 is the feature

dimensions, and the i-th row of X, x𝑖, represents the node feature vector for node
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𝑣𝑖. For node classification tasks, each node has a label 𝑦𝑖. With node labels, we can

use homophily scores to describe the relationship between graph topology and node

labels. The most widely used homophily scores are edge homophily score [43] and

node homophily score [28]. Edge homophily score 𝐻𝑒𝑑𝑔𝑒(𝒢) measures the proportion

of edges connecting nodes with the same labels:

𝐻𝑒𝑑𝑔𝑒(𝒢) =
|{𝑒𝑖𝑗|𝑒𝑖𝑗 ∈ ℰ ∧ 𝑦𝑖 = 𝑦𝑗}|

|ℰ|
(2.1)

Local node homophily score 𝐻𝑛𝑜𝑑𝑒(𝒢) focuses on a given node 𝑣𝑖 and evaluates the

proportion of 𝑣𝑖’s edges connecting nodes with the same labels as 𝑣𝑖’s:

𝐻𝑛𝑜𝑑𝑒(𝑣𝑖) =
|{𝑒𝑖𝑗|𝑒𝑖𝑗 ∈ 𝒩 (𝑣𝑖) ∧ 𝑦𝑖 = 𝑦𝑗}|

|𝒩 (𝑣𝑖)|
(2.2)

With the local node homophily score, the global node homophily score can be easily

extended as the average of all the nodes’ homophily score on a graph 𝒢:

𝐻𝑛𝑜𝑑𝑒(𝒢) =
1

|𝒱|
∑︁
𝑣𝑖∈𝒱

|{𝑒𝑖𝑗|𝑒𝑖𝑗 ∈ 𝒩 (𝑣𝑖) ∧ 𝑦𝑖 = 𝑦𝑗}|
|𝒩 (𝑣𝑖)|

(2.3)

All the homophily scores range from 0 to 1. A homophily score close to 1 indicates

strong homophily, while a score close to 0 indicates strong heterophily. Figure 2-1

Figure 2-1: Illustration of homophily/heterophily graphs. (a) is a homophily graph
with 𝐻𝑒𝑑𝑔𝑒(𝒢) = 0.8. (b) is a heterophily graph with 𝐻𝑒𝑑𝑔𝑒(𝒢) = 0.2. (c) is a het-
erophily graph with 𝐻𝑒𝑑𝑔𝑒(𝒢) = 0.2, but it has more heterophilic patterns compared
to (b).
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Including the upcoming ones, all the math notations for the Thesis are summarized

in Table 2.1.

2.2 Graph Neural Networks

Inspired by Convolutional Neural Networks (CNNs) in computer vision and natural

language processing domain, Graph Neural Networks (GNNs) extend the convolution

operations from grid-like Euclidean data to non-Euclidean graph data. The essential

idea of Graph Neural Networks is iteratively learning and updating the node embed-

dings using the information from its neighbors and itself. Though GNNs have many

variants like GCN [20], GAT [34], and GraphSAGE [13], the general framework of

GNNs’ each layer consists of 3 stages: message passing, aggregation, and update.

Message passing: Given a neighborhood 𝒩 (𝑣𝑖) centered at 𝑣𝑖, message pass-

ing defines how each neighboring node in 𝒩 (𝑣𝑖) communicates with or how to send

message to centering node 𝑣𝑖:

{m𝑙
𝑖𝑗} = MESSAGE({h𝑙

𝑗|𝑣𝑗 ∈ 𝒩 (𝑣𝑖)}) (2.4)

Here, MESSAGE(·) denotes the message passing function. 𝑘 denotes the GNN’s layer

index. m𝑙
𝑖𝑗 denotes the message sent to 𝑣𝑖 from 𝑣𝑗 at layer 𝑙. h𝑙

𝑗 is the node embedding

of 𝑣𝑗 at layer 𝑙. If 𝑘 = 1, then h𝑙
𝑗 = x𝑗. Message passing is a per-edge operation.

Aggregation: Having all the m𝑖𝑗 from 𝒩 (𝑣𝑖), 𝑣𝑖 needs to further process them

to prepare for the update of its embedding. This process can be generalized as the

aggregation operation:

a𝑙
𝑖 = AGGREGATE({m𝑙

𝑖𝑗}) (2.5)

Here, AGGREGATE(·) denotes the aggregation operation, and a𝑙
𝑖 denotes the aggre-

gated output for 𝑣𝑖 at layer 𝑙. Aggregation is a per-neighborhood operation.

Update: The update operation calculates the node embeddings at the next layer
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Table 2.1: Notations used throughout the Thesis

Notations Descriptions
𝒢 = (𝒱 , ℰ) or 𝒢 = (A,X) Graph

𝒱 Node set
𝑣𝑖 Node i
ℰ Edge set
𝑒𝑖𝑗 Edge from node i to node j

A ∈ R𝑁×𝑁 Adjacency matrix of graph
Ā ∈ R𝑁×𝑁 Adjacency matrix of graph with self loop

𝑁 Number of nodes
𝑑𝑖 Degree of node i

D ∈ R𝑁×𝑁 Degree matrix of graph
D̄ ∈ R𝑁×𝑁 Degree matrix of graph with self loop

𝒩 (𝑣𝑖) 1-hop neighborhood of node i
𝒩̄ (𝑣𝑖) 1-hop neighborhood of node i with self loop

X ∈ R𝑁×𝐹 Node feature matrix
𝐹 Node feature dimensions
x𝑖 Node feature of node i
𝑦𝑖 Node label of node i

𝐻𝑒𝑑𝑔𝑒(𝒢) Global edge homophily score of graph
𝐻𝑛𝑜𝑑𝑒(𝑣𝑖) Local node homophily score of node i
𝐻𝑛𝑜𝑑𝑒(𝒢) Global node homophily score of graph

MESSAGE(·) Message passing function
m𝑙

𝑖𝑗 Message sent to node i from node j at layer l
AGRREGATE(·) Aggregation function

a𝑙
𝑖 Aggregation output for node i at layer l

UPDATE(·) Update function
h𝑙
𝑖 node embedding of node i at layer l

H𝑙 ∈ R𝑁×𝐹 ′ node embedding matrix at layer l
𝐹 ′ Node embedding dimensions
𝜎(·) Nonlinear activation function
W𝑙 Learnable weights at layer l

𝒢 = (Â,X) Perturbed graph
Â Perturbed adjacency matrix
𝒱𝑡 Victim node set
∆ Attack budget
ℒ𝑎𝑡𝑘 Attack objective function
ℒ𝑡𝑟𝑎𝑖𝑛 Training objective function
𝑓𝜃(·) GNN model

22



using the aggregated output and the old node embeddings:

h𝑙+1
𝑖 = UPDATE(a𝑙

𝑖,h
𝑙
𝑖) (2.6)

The update is a per-node operation.

Therefore, the node embedding update paradigm can be generalized as follows:

h𝑙+1
𝑖 = UPDATE(AGGREGATE({MESSAGE({h𝑙

𝑗|𝑣𝑗 ∈ 𝒩 (𝑣𝑖)}}),h𝑙
𝑖) (2.7)

Different GNNs instantiate this paradigm in different ways. For GCN [20], the

node embedding update process for each node is as follows:

h𝑙+1
𝑖 = 𝜎

⎛⎝ ∑︁
𝑣𝑗∈𝒩̄ (𝑣𝑖)

1√︀
D̄𝑖𝑖D̄𝑗𝑗

h𝑙
𝑗W

𝑙

⎞⎠ (2.8)

In (2.8), 𝒩̄ (𝑣𝑖) is 𝑣𝑖’s neighborhood with "self loop" where we consider 𝑣𝑖 as its

neighbor as well. Therefore, 𝐷̄𝑖𝑖 = 𝑑𝑖 + 1. 𝜎(·) is the nonlinear activation function

and W𝑙 is the learnable weights at layer 𝑙. Adopting the adjacency matrix with self

loop Ā, (2.8) has the equivalent matrix form:

H𝑙+1 = 𝜎
(︁
D̄− 1

2 ĀD− 1
2H𝑙W𝑙

)︁
(2.9)

2.3 Graph Adversarial Attacks

Similar to other machine learning methods, Graph Neural Networks are also suscep-

tible to adversarial attacks [32, 36, 17]. What makes adversarial attacks on graphs

unique and more challenging is that graph structure is discrete, and connecting nodes

depend on each other. In this Thesis, we only discuss adversarial attacks on the

graph structure, so by default, node features are not perturbed in any case. Thus,

the node-level graph adversarial attacks can be formulated as the general form below.

Given a graph 𝒢 = (A,X) and a subset of nodes as victim nodes 𝒱𝑡 ⊆ 𝒱 , we

use 𝑦′𝑖 to denote the label of 𝑣𝑖, and 𝑦′𝑖 can either be the ground truth label or the
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predicted label. The goal of the attacker is to find a perturbed graph 𝒢 = (Â,X)

that minimizes the attack objective ℒ𝑎𝑡𝑘:

𝑚𝑖𝑛 ℒ𝑎𝑡𝑘(𝑓𝜃(𝒢)) =
∑︀

𝑣𝑖∈𝒱𝑡

ℒ𝑎𝑡𝑘

(︁
𝑓𝜃*(𝒢)𝑖, 𝑦′𝑖

)︁
𝑠.𝑡., 𝜃* = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝜃
ℒ𝑡𝑟𝑎𝑖𝑛(𝑓𝜃(𝒢 ′))

(2.10)

where ℒ𝑎𝑡𝑘 is the loss function for attack and can be set as ℒ𝑎𝑡𝑘 = −ℒ𝑡𝑟𝑎𝑖𝑛. ℒ𝑡𝑟𝑎𝑖𝑛 can

be any training loss function such as cross entropy function. 𝒢 ′ can either be 𝒢 or 𝒢.

Note that 𝒢 should be close to 𝒢 since attackers usually constrain their behavior to

be unnoticeable with a budget ∆, so that:

||Â−A||0 ≤ 2∆ (2.11)

where || · ||0 is the 𝑙0 norm, and attack budget ∆ is a small number or proportion of

edges the attackers aim to perturb.

Based on different settings, existing graph adversarial attacks can be put into

different categories:

• Poisoning attack or evasion attack: Based on "when to attack", graph

adversarial attacks can be divided into poisoning attack and evasion attack. A

poisoning attack happens before the applied GNN model is trained, so it tries to

attack the GNN model by perturbing the training data. This is the case when

𝒢 ′ = 𝒢 in (2.10). An evasion attack, on the other hand, happens in the test

phase. This means the applied GNN model is fixed, and the attacker is not able

to change the applied GNN model’s parameter. Evasion attack is performed

when 𝒢 ′ = 𝒢 in (2.10).

• Untargeted global attack or targeted attack: Based on "which set of

nodes the attackers attack", graph adversarial attacks can be categorized into

untargeted global attack or targeted local attack. When 𝒱𝑡 = 𝒱 in (2.10), the

attack is considered to be an untargeted global attack, and it aims to make

the trained model have bad overall performance. When 𝒱𝑡 ⫋ 𝒱 in (2.10), a
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targeted attack is performed, and the attacker aims to let the applied GNN

model misclassify a limited number of test nodes.

• White-box attack, gray-box attack, or black-box attack: Based on the

attacker’s knowledge of the victim model, graph adversarial attacks have three

settings: white-box attack, gray-box attack, and black-box attack. If all the

information about the victim model and training data is visible to the attacker

(e.g, model parameters, clean adjacency matrix, node features, training node

labels), the attack is the white-box attack. Black-box attack is the attack when

the attacker does not have access to the applied GNN model’s parameters or

training node labels. If the attacker’s knowledge lies within black-box attack

and white-box attack, then it is considered to be the gray-box attack.

Based on the above taxonomy, some of the widely studied graph adversarial at-

tacks are categorized in Table 2.2. PGD attack or Min-max attack [37] is a white-box,

untargeted attack that can be applied to both poisoning and evasion attack settings,

the core idea is the "projected gradient decent". It relaxes the adjacency matrix from

discrete {0, 1}𝑁×𝑁to [0, 1]𝑁×𝑁 during the gradient-based optimization, and the re-

sulting weighted change indicates the probability of manipulating an edge. To make

sure that the attack budget holds in expectation ||E[Â]−A||0 ≤ 2∆. Metattack [45]

is a gray-box untargeted attack that can be applied to a poisoning attack setting.

It generates the poisoning edges or deletes existing edges based on the largest meta-

gradient. DICE [45] is a gray-box untargeted attack that can be applied to a poisoning

attack setting. It has the knowledge of all the node labels and randomly connects

nodes with different labels and disconnects nodes with the same labels. Nettack [44]

is a gray-box targeted attack that can be applied to both poisoning and evasion attack

settings. It generates perturbations by preserving degree distribution and imposing

constraints on feature co-occurrence. RL-S2V [6] is a black-box untargeted attack

that can be applied to an evasion attack setting. It employs reinforcement learning

to generate edge perturbations which result in the maximum attack utility.

Considering the fact that poisoning attack is more challenging for transductive
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Table 2.2: Categorization of some existing attack methods

Attack methods Evasion or poisoning Targeted or untargated Attacker’s knowledge
PGD, Min-max [37] Can be both Untargated White-box

Nettack [44] Can be both Targated Gray-box
Metattack [45] Poisoning Untargated Gray-box

DICE [45] Poisoning Untargated Gray-box
RL-S2V [6] Evasion Untargated Black-box

learning, untargeted attack provides more possibilities for the attacker, and white-

box attack allows for optimal knowledge of the attacker, we focus on PGD attack [37]

in this Thesis. But our method can be used to defend against poisoning attacks in

general.

2.4 Graph Adversarial Defenses

Plenty of efforts have been devoted to improving GNNs’ adversarial robustness to

tackle the attackers’ behavior and prevent potential harmful effects. Existing methods

can be categorized into 3 classes. Namely, graph purification, GNN architecture

modification, and adversarial training [25].

• Graph purification: Some representative methods for graph purification are

GCN-SVD [9], GCN-Jaccard [35], and Pro-GNN [18]. GCN-SVD [9] vacci-

nates GNNs by preprocessing the suspicious graph’s adjacency matrix using

the singular-value-decomposition-based low-rank approximation. This method

is effective when the graph is heavily attacked, but it is harmful when facing a

slightly perturbed graph since it will drop many useful edges and thus sacrifice

the GNN’s performance. Unlike GCN-SVD [9], which utilizes the low-rank prop-

erty of the clean graph’s adjacency matrix, GCN-Jaccard [35] prunes the graph

based on the neighboring nodes’ Jaccard similarity score. When two connected

nodes are dissimilar based on the threshold, GCN-Jaccard will drop the edge

between them. Though it leverages the information from node features, the po-

tential information from graph topology is ignored. To exploit information from
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graph structure and node features at the same time, based on the sparse and

low-rank assumption for the adjacency matrix and feature smoothness assump-

tion, Pro-GNN [18] adds regularizations to the objective function, aiming to

learn the graph structure and robust node representations jointly. However, it’s

hard to tune the hyperparameters to regularize the objective function of Pro-

GNN, and it has quadratic space and time complexity, which is not scalable for

large graphs.

• GNN architecture modification: Some methods also specify the vulnera-

bilities in GNN architecture and modify the architecture accordingly. GNN-

Guard [39] learns to assign higher weights to edges connecting similar nodes

while pruning edges between unrelated nodes in the message-passing stage to

mitigate potentially harmful effects of adversarial edges. RGCN [41] tries to

absorb the effects of adversarial attacks in the aggregation stage by modeling

latent node representations as gaussian distributions. It also applies attention

mechanism to penalize nodes with high neighborhood feature variance in the

message-passing stage.

• Adversarial training: Adversarial training-related methods generally model

the defense as a min-max optimization problem, which inserts adversarial edges

during training while minimizing the task-specific training loss [37, 7, 16]. How-

ever, this requires knowing the clean graph topology, or it will reinforce the

poisoning attack if only the perturbed graph topology is observed, making it an

impractical defense method.

The categorization of the above defense methods is summarized in Table 2.3.

Table 2.3: Categorization of some existing defense methods

Category Defense methods
Graph purification GCN-SVD [9], GCN-Jaccard [35], Pro-GNN [18]

GNN architecture modification GNNGuard [39], RGCN [41]
Adversarial training Xu et al. [37], Deng et al. [7], Jin et al. [16]
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Chapter 3

Proposed Method

In this chapter, we introduce the proposed GalNN model in detail. In section 3.1, we

will cover the adaptive aggregator selection. Then in section 3.2, we will explain the

long-range dependency modeling. Followed by section 3.3, in which we will elaborate

on how to conduct robust information fusion. Each section is organized with the

motivation and design of the corresponding module in GalNN.

3.1 Adaptive Aggregator Selection

3.1.1 Motivation of Adaptive Aggregator Selection

The widely adopted weighted average aggregation can make GNNs vul-

nerable to graph structure adversarial attacks. Due to the popularity of GCN,

most white-box and gray-box attackers tend to hijack GCN as the victim model to

generate perturbations since this is the most cost-effective option to transfer attacks

to other GNN models. Therefore, it’s crucial to understand GCN’s vulnerabilities

to design countermeasures to improve the robustness of GNNs. Recall GCN’s node

embedding update process in (2.8):

h𝑙+1
𝑖 = 𝜎

⎛⎝ ∑︁
𝑣𝑗∈𝒩̄ (𝑣𝑖)

1√︀
D̄𝑖𝑖D̄𝑗𝑗

h𝑙
𝑗W

𝑙

⎞⎠ (3.1)
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It’s obvious that the new centering node embedding is learned based on the weighted

average of its neighboring nodes’ old node embeddings. The weight 1√
D̄𝑖𝑖D̄𝑗𝑗

is spec-

ified by the centering node’s degree D̄𝑖𝑖 and the neighboring node’s degree D̄𝑗𝑗. If

D̄𝑗𝑗 is large, centering node 𝑣𝑖 will be less affected by 𝑣𝑗. However, if D̄𝑗𝑗 is small,

centering node 𝑣𝑖 will be largely affected by 𝑣𝑗, indicating that sparse neighborhood is

more likely to be compromised by an outlier. This has been verified in the empirical

studies that attackers tend to manipulate edges among low-degree neighborhoods on

homophily graphs [4]. What’s more, every neighboring node has an influence on the

output of the 𝑚𝑒𝑎𝑛(·) aggregator for the centering node, indicating that even only one

extreme outlier in a neighborhood would contribute to a harmful aggregation output

for 𝑣𝑖. This harmful effect in the adversarial setting is illustrated in Figure 3-1. After

the attacker connects node 3 with node 5, the output of the 𝑚𝑒𝑎𝑛(·) aggregator is

compromised since the output deviates from the original output by a large distance

in the embedding space. This harmful effect can be more significant when attackers

have a large attack budget. This is because attackers tend to conduct heterophilic

attacks on homophily graphs, adding more edges connecting nodes with different la-

bels or deleting edges between nodes with the same labels, where more outliers for

the original neighborhoods are incorporated [42].

Figure 3-1: Illustration of the potential harmful effects of the 𝑚𝑒𝑎𝑛(·) aggregator
under attack. After the attacker connects node 3 with node 5, the output of the
𝑚𝑒𝑎𝑛(·) aggregator is compromised.

Our proposed adaptive aggregator selection aims to protect sparse neighborhoods

and mitigate the potentially harmful effects of the mean aggregator under attack on
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homophily graphs.

3.1.2 Design of Adaptive Aggregator Selection

Adaptive aggregator selection focuses on the aggregation stage of GNN and has 2

phases: neighborhood profile learning and aggregator weight assigning. Each neigh-

borhood profile is a vector, and each element in the vector serves as a weight for

a corresponding aggregator. The sum of all the elements in a neighborhood profile

equals to 1:

p𝑖
.
= [𝑤1, 𝑤2, ..., 𝑤𝑔] ∈ R1×𝐺 (3.2)

𝑠𝑢𝑚(p𝑖) = 1 (3.3)

where p𝑖 is the profile for 𝑣𝑖. 𝐺 is the number of aggregators used in the aggregator

selection, and 𝑤𝑔 is the learned weight that will be assigned to aggregator 𝑔.

Ideally, a desirable neighborhood profile should contain information from local

graph topology and neighboring node features that can help differentiate perturbed

neighborhoods from clean neighborhoods so that different weights can be assigned to

different aggregators to absorb harmful effects from attackers. According to former

studies, attackers change the degree distribution of sparse neighborhoods [4] and

leveraging neighborhood node feature variance can help improve the robustness of

GNNs [41]. Therefore, we learn each neighborhood’s profile using MLP based on the

centering node’s degree and neighborhood node embedding variance:

p𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑀𝐿𝑃 (𝑐𝑜𝑛𝑐𝑎𝑡(𝑑𝑖, 𝑣𝑎𝑟({h𝑗|𝑣𝑗 ∈ 𝒩̄ (𝑣𝑖)})))) (3.4)

where 𝑐𝑜𝑛𝑐𝑎𝑡(·) is the concatenation operation, 𝑀𝐿𝑃 (·) is the MLP model, and

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(·) is the softmax function.

We prepare 4 independent aggregators for aggregator selection, which are the

𝑚𝑒𝑎𝑛(·) aggregator, 𝑚𝑎𝑥(·) aggregator, 𝑚𝑖𝑛(·) aggregator, and 𝑚𝑒𝑑𝑖𝑎𝑛(·) aggregator.

Given a message matrix M𝑖 ∈ R|𝒩̄ (𝑣𝑖)|×𝐹 ′of 𝑣𝑖 gained from the message passing stage,

the aggregation outputs of each aggregator are as follows:
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• Mean aggregator: Mean aggregator 𝑚𝑒𝑎𝑛(·) calculates the arithmetic mean

of M𝑖 along each embedding dimension, so the output of it can be denoted as:

a𝑚𝑒𝑎𝑛
𝑖 = 𝑚𝑒𝑎𝑛(M𝑖) ∈ R1×𝐹 ′

(3.5)

• Max aggregator: Max aggregator 𝑚𝑎𝑥(·) calculates the maximum value of

M𝑖 along each embedding dimension, so the output of it can be denoted as:

a𝑚𝑎𝑥
𝑖 = 𝑚𝑎𝑥(M𝑖) ∈ R1×𝐹 ′

(3.6)

• Min aggregator: Min aggregator 𝑚𝑖𝑛(·) calculates the minimum value of M𝑖

along each embedding dimension, so the output of it can be denoted as:

a𝑚𝑖𝑛
𝑖 = 𝑚𝑖𝑛(M𝑖) ∈ R1×𝐹 ′

(3.7)

• Median aggregator: Median aggregator 𝑚𝑒𝑑𝑖𝑎𝑛(·) calculates the median of

M𝑖 along each embedding dimension, so the output of it can be denoted as:

a𝑚𝑒𝑑𝑖𝑎𝑛
𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(M𝑖) ∈ R1×𝐹 ′

(3.8)

Therefore, for each node 𝑣𝑖, the final aggregation output is:

a𝑖 = p𝑖

⎡⎢⎢⎢⎢⎢⎢⎣
a𝑚𝑒𝑎𝑛
𝑖

a𝑚𝑎𝑥
𝑖

a𝑚𝑖𝑛
𝑖

a𝑚𝑒𝑑𝑖𝑎𝑛
𝑖

⎤⎥⎥⎥⎥⎥⎥⎦ (3.9)

Thus, the final aggregated output is a weighted average of the 4 outputs from each

aggregator. By doing so, we can achieve adaptive aggregator selection for node em-

bedding learning.
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3.2 Long-range Dependency Modeling

3.2.1 Motivation of Long-range Dependency Modeling

The observed graph topology is less trustworthy or less useful. In the real-

world scenario, given a graph 𝒢 ′ = (A′,X), we have no idea whether the observed

graph is the original clean graph: 𝒢 ′ = 𝒢, or in the worst case the observed graph

is already under attack: 𝒢 ′ = 𝒢. Therefore, we may not trust the observed graph

topology and apply the GNN model to it directly. Besides, even if the observed

graph is the original clean graph: 𝒢 ′ = 𝒢, GNN’s performance may be hindered by

the "homophily assumption" since not all the original graphs are homophily graphs

[23, 22]. Various methods have been proposed to improve the performance of GNNs

on heterophily graphs, and many of them focus on how to make GNNs use a more

homophilic graph to learn node embeddings [40].

Ignoring the observed graph topology provides the best robustness

guarantee. Though in most cases, the observed graph topology provides a satis-

fying regularization for node embedding learning, it can also be manipulated by the

attackers to achieve their goals, making the observed graph topology a bad regular-

ization for the original downstream tasks. Methods do not use the observed graph

topology like MLP ignore the observed graph topology and only use the node features

to learn the node embeddings. Hence, methods similar to MLP are immune to any

adversarial graph structure attacks.

The most informative nodes for a given node might not be the closest

neighbors; instead, they might be far away from the given node based

on the observed graph topology. Theoretically, although the receptive field of

GNNs can be enlarged by stacking GNN layers which potentially can help capture

informative nodes far away from the centering node, stacking GNN layers can induce

the over-smoothing issue of GNN [26]. They may also include more noisy nodes in

the receptive field as well.

Inspired by the insights above, long-range dependency modeling aims to construct

an auxiliary graph that can be more homophilic and learns a set of robust node
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embeddings based on the node features.

3.2.2 Design of Long-range Dependency Modeling

The core idea of long-range dependency modeling is borrowed from semi-supervised

learning on Riemannian manifolds, with the manifold assumption that data points on

the same low-dimensional manifold should have the same label [33, 2]. We learn a set

of node embeddings based on node features and project them to a low-dimensional

underlying manifold, and then use the relative locality of node embeddings to cali-

brate the node embeddings and iteratively repeat the whole process until the down-

stream classifier indicates the convergence. To guarantee the adversarial robustness

of long-range dependency modeling, we use MLP and 1d convolution to perform node

embedding learning, manifold locality projection, and simulated graph convolution to

achieve the long-range dependency modeling.

There are 4 stages in long-range dependency modeling, which are warming-up node

embedding learning, 1-d manifold locality projection, simulated graph convolution,

and embedding calibration.

• Warming-up node embedding learning: In this stage, we use an MLP to

learn the warming-up node embeddings Z for the upcoming stages:

Z* = 𝑀𝐿𝑃 (X) ∈ R𝑁×𝐹 ′
(3.10)

• 1-d manifold locality projection: In this stage, we utilize the warming-

up node embeddings to get each node’s locality on the manifold. Here we

choose the simplest manifold, 1-d manifold along the number axis, to facilitate

the clustering process. The first step for 1-d manifold locality projection is

embedding projection, where we use an MLP to project each warming-up node

embedding to a scalar:

S = 𝑀𝐿𝑃 (Z*) ∈ R𝑁×1 (3.11)

The second step is to cluster the nodes based on the value of scalars. For
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manifolds above 2-d, this usually requires calculating the pair-wise distance,

selecting top-k least distant nodes, and considering them on the same manifold.

However, for a 1-d manifold, clustering can be achieved by sorting the scalars

since nodes with similar scalars would be clustered automatically and treat the

nearest k nodes as the centering node’s neighbors.

• Simulated graph convolution: Having the relocated warming-up node em-

beddings from 1-d manifold locality projection, we can simulate the graph con-

volution with a sliding 1-d convolution. This is because, after 1-d manifold

locality projection, we actually get a knn graph along the 1-d manifold where

closer nodes share similar information and may come from the same class. Based

on this characteristic, 1-d convolution can be used to extract common patterns,

and we call it simulated graph convolution and get another set of node embed-

dings Z′:

Z′ = 1𝐷𝐶𝑜𝑛𝑣(Z*
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑) ∈ R𝑁×𝐹 ′

(3.12)

where Z*
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 denotes the clustered warm-up embeddings based on the value

of corresponding scalars.

• embedding calibration: After getting Z′ we can conduct embedding calibra-

tion on the warming-up node embeddings and get the final node embeddings

for downstream tasks by:

Z = 𝑐𝑜𝑛𝑐𝑎𝑡(Z*,S𝑇Z′) ∈ R𝑁×2𝐹 ′
(3.13)

After long-range dependency modeling, we will have an auxiliary k-nn graph 𝒢*

and a set of robust node embedding Z that is ready for robust information fusion.
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3.3 Robust Information Fusion

3.3.1 Motivation of Robust Information Fusion

Fusing the information from aggregator selection and long-range depen-

dency modeling may help to take advantage of the strength of both mod-

ules and at the same time avoid their weaknesses of them. Based on the

homophily assumption, adaptive aggregator selection can handle poisoning attacks

on homophily graphs by effectively capturing the local topology dependency. How-

ever, it may not fit into the heterophily pattern well. On the other hand, long-range

dependency modeling ignores graph topology and captures node feature dependency

well, and thus can handle heterophily patterns well. Still, it does not leverage the

informative local topology under the homophily setting, so that the performance may

be less satisfying on homophily graphs.

3.3.2 Design of Robust Information Fusion

According to the inputs and outputs of the adaptive aggregator selection and long-

range dependency modeling, we have 3 schemes to conduct robust information fusion,

which are neighborhood fusion, embedding fusion, and neighborhood plus embedding

fusion.

• Neighborhood fusion: Given an observed graph 𝒢 ′ = (A′,X), long-range

dependency modeling can offer an auxiliary k-nn graph 𝒢* = (A*,X). Neigh-

borhood fusion combines these two graphs:

𝒢𝑛𝑒𝑤 = 𝒢 ′ + 𝒢* = (A′ +A*,X) (3.14)

and then make the new graph 𝒢𝑛𝑒𝑤 as the input for adaptive aggregator selection

to learn the node embeddings for the downstream tasks.

• Embedding fusion: Using the observed graph 𝒢 ′ = (A′,X) as the input

for both modules, long-range dependency modeling can provide a set of node
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embeddings Z, and adaptive aggregator selection can provide another set of

node embeddings H, we can initialize two learnable weights 𝑤1+𝑤2 = 1 to fuse

these two sets of node embeddings and get the final node embeddings for the

downstream tasks:

H𝑛𝑒𝑤 = 𝑤1H+ 𝑤2Z (3.15)

where a bigger 𝑤1 indicates that local topology is more important than infor-

mation from long-range dependencies, and vice versa.

• Neighborhood fusion plus embedding fusion: For this fusion scheme, the

input of long-range dependency modeling is the observed graph 𝒢 ′, while the

input for adaptive aggregator selection is 𝒢𝑛𝑒𝑤 defined in the neighborhood

fusion. After getting the two sets of node embeddings Z and H, embedding

fusion is performed in the same manner as above.

GalNN’s variants are illustrated in Figure 3-2. If the observed graph is only

passed to the long-range dependency modeling module, GalNN is instantiated as

GalNN-LDM. If the observed graph is only passed to the adaptive aggregator selection

module, GalNN is instantiated as GalNN-AAS. If the observed graph is passed to the

adaptive aggregator selection module with the neighborhood fusion module activated,

GalNN is instantiated as GalNN-NF. If the observed graph is passed to both the long-

range dependency modeling module and the adaptive aggregator selection module

without activating the neighborhood fusion module, GalNN is instantiated as GalNN-

EF. If all the modules are activated, GalNN is instantiated as GalNN-both.
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Figure 3-2: Illustration of GalNN’s variants. If the observed graph is only passed to
the long-range dependency modeling module, GalNN is instantiated as GalNN-LDM.
If the observed graph is only passed to the adaptive aggregator selection module,
GalNN is instantiated as GalNN-AAS. If the observed graph is passed to the adaptive
aggregator selection module with neighborhood fusion module activated, GalNN is
instantiated as GalNN-NF. If the observed graph is passed to both the long-range
dependency modeling module and the adaptive aggregator selection module without
activating the neighborhood fusion module, GalNN is instantiated as GalNN-EF. If
all the modules are activated, GalNN is instantiated as GalNN-both.
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Chapter 4

Experiments

In this section, we investigate the effectiveness and robustness against the poisoning

attack of our proposed GalNN on node classification tasks. We conduct experiments

on 9 real-world datasets across the whole homophily score spectrum. We compare

GalNN’s variants against a set of state-of-the-art baselines to illustrate its advan-

tage. In addition, we also did an ablation analysis to study the importance of each

component in GalNN.

4.1 Experimental Setup

Our code for GalNN is implemented with PyTorch [27], PyTorch Geometric [10], and

DeepRobust [17]. We use PGD attack in DeepRobust library with the default setting

and hijack GCN model to launch poisoning attacks on graph topology.

4.1.1 Datasets

All the datasets we use are summarized in Table 4.1. These datasets are obtained from

PyTorch Geometric library. For homophily datasets Cora, Citeseer, and Pubmed, we

randomly select 20 nodes from each class as training nodes, 20 nodes from each class

as validation nodes and select 1000 nodes from the rest of the nodes as test nodes.

For the rest heterophily datasets, we randomly split the train/validation/test set
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with ratio 48%/32%/20%, which is the same split ratio as what’s been adopted in

Geom-GCN [28].

Table 4.1: Statistics of the node classification datasets

Dataset Homophily score Nodes Edges Features Classes
Cora 0.81 2708 5429 1433 7

Citeseer 0.74 3327 4732 3703 6
Pubmed 0.80 19717 44338 500 3
Cornell 0.30 183 295 1703 5
Texas 0.11 183 309 1703 5

Wisconsin 0.21 251 499 1703 5
Chameleon 0.23 2277 36101 2325 4

Squirrel 0.22 5201 198353 2089 5
Actor 0.22 7600 26659 932 5

4.1.2 Baselines

We compare our model with five baselines containing defense methods from the graph

purification category and the GNN architecture modification category. Note that

we don’t compare GalNN’s performance with adversarial training since adversarial

training requires the knowledge of clean graphs, which is not practical in real-world

scenarios. We adopt the same hyperparameter setting as the authors of those baseline

methods.

• MLP: The multi-layer perceptron model for semi-supervised learning, which

only takes the node features as input to learn the node embeddings. Note that

MLP is immune to graph structure attacks.

• GCN: Standard graph convolutional network proposed by Kipf and Welling.

This is the most widely used GNNs in the real world, so attackers always hijack

GCN to generate perturbations and compromise other GNN models.

• GCN-SVD: Graph purification defense method that only leverages the infor-

mation from the adjacency matrix. It tries to recover and approximate the

clean graph using low-rank approximation on the adjacency matrix then use

the approximated adjacency matrix in the training process.
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• GCN-Jaccard: Graph purification defense method that only leverages the

information from the node features. It tries to identify and prune the edges

based on pair-wise Jaccard similarity, therefore, edge connecting nodes with

low Jaccard similarity score will be dropped before the training of GCN.

• RGCN: GNN architecture modification defense method that tries to absorb the

effects of adversarial attacks in the aggregation stage by modeling latent node

representations as gaussian distributions. It also applies attention mechanism to

penalize nodes with high neighborhood feature variance in the message-passing

stage.

4.1.3 Implementation Details

For GalNN’s variants that activate the adaptive aggregator selection module, the

number of hidden units is set as 16, and the MLP for learning the neighborhood is

instantiated as one linear layer. For GalNN’s variants that activate the long-range

dependency modeling, all the MLPs involved are instantiated as two-layer MLPs, and

the embedding size of warming-up node embeddings is 16. The window size of 1-d

convolution used in simulated graph convolution is 5, so each node on the auxiliary

graph will have 5 neighbors. For GalNN’s variants that activate the embedding fusion

module, we initialize the weight for H as 0.8 and the weight for Z as 0.2.

During training, we apply Adam optimizer [19] with a learning rate of 1e-2 and

weight decay 5e-4. We train the model for at most 3000 epochs with early stopping

based on validation loss. We use PGD attack in DeepRobust library with the default

setting and hijack GCN model to launch poisoning attacks on graph topology.

4.2 Performance on Clean Graphs

To investigate the performance of GalNN on clean graphs, we report the node clas-

sification mean accuracy over 5 random seeds on all the 9 datasets and compare the

performance with all the 5 baseline methods. The performance is reported in Ta-
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ble 4.2, and we can see that GalNN’s variants generally perform better compared to

the baselines. For 8 out of 9 datasets, GalNN’s variants can achieve the state of the

art classification accuracy.

Table 4.2: Node classification accuracy on clean graphs. The best performance on
each dataset is in bold font, and the second-best performance is underlined.

Methods
Datasets Cora Citeseer Pubmed Cornell Texas Wisconsin Squirrel Chameleon Actor

MLP 0.5440 0.4940 0.4890 0.7568 0.7838 0.7647 0.3324 0.4561 0.3336
GCN 0.7930 0.6560 0.7870 0.4054 0.6757 0.5098 0.4736 0.6535 0.3066

GCN-SVD 0.6930 0.5430 0.7810 0.6216 0.6757 0.6275 0.3506 0.4671 0.2993
RGCN 0.8030 0.6320 𝑂𝑂𝑀1 0.3514 0.6216 0.5394 0.3833 0.5943 0.3033

GCN-Jaccard 0.7600 0.6640 0.7900 0.3784 0.5405 0.5098 𝑑𝑖𝑣𝑏𝑦𝑧𝑒𝑟𝑜2 𝑑𝑖𝑣𝑏𝑦𝑧𝑒𝑟𝑜2 0.3263
GalNN-AAS 0.7990 0.6930 0.7830 0.4324 0.7027 0.5294 0.5274 0.6557 0.3033
GalNN-LDM 0.4490 0.4610 0.6490 0.7027 0.7838 0.7843 0.3468 0.4956 0.3750
GalNN-EF 0.8110 0.6840 0.7720 0.4865 0.8378 0.7451 0.5264 0.6228 0.3632
GalNN-NF 0.8060 0.6760 0.7900 0.4054 0.6757 0.4706 0.5408 0.6491 0.2803
GalNN-both 0.8060 0.6850 0.7670 0.6216 0.6757 0.7843 0.5082 0.5899 0.3750

1: OOM denotes out of memory.
2: The error of division by zero.

4.3 Performance on Graphs under Poisoning Attack

We launch PGD attack with 20% of edges attack budget on 4 representative datasets:

Cora (large homophily graph), Wisconsin (small heterophily graph), Chameleon (large

heterophily graph), and Actor (large heterophily graph but different from Chameleon

and Squirrel). The performance of GalNN’s variants and baselines is reported in

Table 4.3. We can see that for all the datasets, GalNN’s variants have overall signif-

icantly better performance, especially for GalNN-EF, which can consistently achieve

top-2 performance. Compared to the performance on clean graphs, GalNN’s variants

achieve the most negligible performance degradation, which means GalNN is the most

robust defense model in the benchmarking. We also launch DICE attack with 20%

of edges attack budget on the above 4 datasets. The performance of GalNN’s vari-

ants and baselines is reported in Table 4.4. Compared to baselines, GalNN’s variants

can achieve top-2 performance in most cases. The results listed in the below two

tables indicate GalNN’s effectiveness of defending against both supervised poisoning

attacker (PGD) and unsupervised poisoning attacker (DICE).

42



Table 4.3: Node classification accuracy on perturbed graphs attacked by PGD attack
with the attack budget of 20% of edges. The best performance on each dataset is in
bold font, and the second-best performance is underlined.

Methods
Datasets Cora Wisconsin Chameleon Actor

MLP 0.5440 0.7647 0.4561 0.3336
GCN 0.5810 0.5098 0.3794 0.2500

GCN-SVD 0.6910 0.7255 0.4123 0.2961
RGCN 0.6950 0.4314 0.3618 0.2579

GCN-Jaccard 0.6900 0.5686 𝑑𝑖𝑣𝑏𝑦𝑧𝑒𝑟𝑜1 0.2697
GalNN-AAS 0.7850 0.5294 0.3728 0.2546
GalNN-LDM 0.4490 0.7843 0.4956 0.3750
GalNN-EF 0.7590 0.7647 0.5197 0.3461
GalNN-NF 0.7490 0.4902 0.3750 0.2645
GalNN-both 0.7530 0.7451 0.4737 0.3428

1: The error of division by zero.

Table 4.4: Node classification accuracy on perturbed graphs attacked by DICE attack
with the attack budget of 20% of edges. The best performance on each dataset is in
bold font, and the second-best performance is underlined.

Methods
Datasets Cora Wisconsin Chameleon Actor

MLP 0.5440 0.7843 0.4561 0.3336
GCN 0.7570 0.5098 0.6053 0.2803

GCN-SVD 0.6280 0.6471 0.4627 0.2993
RGCN 0.7450 0.5686 0.5636 0.2645

GCN-Jaccard 0.7340 0.5686 𝑑𝑖𝑣𝑏𝑦𝑧𝑒𝑟𝑜1 0.3007
GalNN-AAS 0.7550 0.5490 0.5921 0.2829
GalNN-LDM 0.5060 0.8039 0.4978 0.3375
GalNN-EF 0.7650 0.7451 0.5943 0.3507
GalNN-NF 0.7540 0.5294 0.5833 0.2783
GalNN-both 0.7670 0.7451 0.5570 0.3526

1: The error of division by zero.
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Due to GalNN-EF’s solid performance listed above, we also performed the ro-

bustness performance benchmarking with the increase of attack budget (from 0 to

25%) under PGD attack on the 4 datasets from the whole homophily spectrum, the

results are shown in Figure 4-1, Figure 4-2, Figure 4-3, and Figure 4-4. We can ob-

serve that GalNN-EF outperforms other baselines under any attack budget. On the

datasets where MLP performs the best, GalNN-EF has relatively the same perfor-

mance. Therefore, GalNN-EF provides a robust node embedding learning strategy

accross the whole homophily spectrum.

Figure 4-1: Robustness benchmarking under PGD attack on cora with the increase
of attack budget.
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Figure 4-2: Robustness benchmarking under PGD attack on wisconsin with the in-
crease of attack budget.

Figure 4-3: Robustness benchmarking under PGD attack on chameleon with the
increase of attack budget.
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Figure 4-4: Robustness benchmarking under PGD attack on actor with the increase
of attack budget.

4.4 Ablation Analysis

In this section, we try to open up the black box and study the contribution of each

component to the superior performance of GalNN.

4.4.1 Contribution of Adaptive Aggregator Selection

From Table 4.2 and Table 4.3 we can observe that GalNN-AAS works extremely

well on homophily graph attacked by a strong attacker PGD, with the performance

degradation less than 2% on Cora even if the graph is heavily perturbed with 20%

of edges. This supremacy comes from adaptive aggregator selection since the learned

neighborhood profiles can help identify perturbed neighborhoods and assign different

weights accordingly. We use t-SNE to project the learned neighborhood profiles to

2D space. Below in Figure 4-5 is the visualization of the clustering of neighborhood

profiles on Cora perturbed by PGD attack with 20% of edges.
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Figure 4-5: Visualization of the clustering of neighborhood profiles on Cora perturbed
by PGD attack with 20% of edges. Each point denotes a neighborhood.

4.4.2 Contribution of Long-range Dependency Modeling

From Table 4.2 and Table 4.3 we can observe that GalNN-LDM has good performance

on many heterophily graphs. This shows the effectiveness of long-range dependency

modeling. By calculating homophily scores of the constructed 𝒢* and comparing

it with the original homophily scores, we draw the conclusion that long-range de-

pendency helps to construct more homophilic graphs and therefore help with better

node embedding learning on heterophily graphs. The homophily score comparison is

summarized in Table 4.5.

Table 4.5: Homophily score comparison between the original heterophily graphs and
constructed graph by long-range dependency modeling.

Graphs
Datasets Cornell Texas Wisconsin Squirrel Chameleon Actor

original graph 0.30 0.11 0.21 0.22 0.23 0.22
constructed graph 0.68 0.72 0.65 0.32 0.42 0.31
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4.4.3 Contribution of Embedding Fusion

As GalNN-EF performs well in defending both homophily graphs and heterophily

graphs, we further investigate the weights GalNN-EF learns. The results in Table 4.6

indicate that GalNN-EF assigns more weight to embeddings from adaptive aggregator

selection when the original graph is a homophily graph and more weight to long-range

dependency modeling when the original graph is a heterophily graph.

Table 4.6: Weghts assigned to different node embeddings by GalNN-EF on perturbed
graphs attacked by PGD attack with the attack budegt of 20% of edges.

Weights
Datasets Cora Wisconsin Chameleon Actor

weight for AAS 0.8019 0.3757 0.4046 0.1717
weight for LDM 0.1981 0.6246 0.5954 0.8283
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Chapter 5

Conclusion and Future Work

In this paper, we present GalNN, a robust Graph Neural Network against poison-

ing adversarial graph structure attacks. It integrates adaptive aggregator selection

and long-range dependency modeling to improve the robustness of GNN across the

whole homophily score spectrum. The adaptive aggregator selection module utilizes

the observed graph topology to capture underlying local node dependencies. The

learned neighborhood profiles for adaptive aggregator selection can help differentiate

perturbed neighborhoods from clean ones and assign weights for different aggregators

accordingly. Long-range dependency modeling provides robustness guarantees and

helps construct more homophilic graphs to leverage when the original graph is het-

erophilic. Finally, we use robust information fusion with 3 options to take advantage

of both modules. Extensive experiments on a wide range of real-world datasets show

the effectiveness of GalNN.

Based on the limitations indicated by our experiment results, we treat the follow-

ing directions as future work:

• More in-depth understanding towards heterophily patterns. Currently,

most GNN’s performance is upper-bounded by the homophily assumption. When

it comes to heterophily, the only description is "a graph with low homophily

score". However, unlike high homophily scores, similar low homophily scores

may not indicate similar heterophily patterns. As is shown in Figure 2-1, graph
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in (b) and graph in (c) have the same homophily score, but they have different

heterophily patterns. This issue poses the difficulty for GNNs to generalize on

heterophily graphs. Besides, in-depth understanding of heterophily patterns can

also help understand the attacks on originally heterophily graphs and help de-

sign better defense in a direct way, instead of trying to transform a heterophily

graph into a more homophilic one.

• More flexible long-range dependency modeling methods based on ob-

served graph. Our long-range dependency modeling method disregards the

observed graph topology. Doing so loses too much information about the origi-

nal graph and thus harms the model’s learning capacity. As attackers only have

a limited budget to perform perturbations, we believe the most useful informa-

tion still exists on the observed graph. Therefore, simply dropping the whole

graph topology is sub-optimal.

• Better aggregator ensemble in the adaptive aggregator selection. We

only prepared 4 aggregators (mean, max, min, and median) for adaptive aggre-

gator selection. There is no theoretical guarantee that the ensemble of these

4 aggregators is the best option. Therefore, there may be better ensembles to

explore.
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