

Page 1 of 31

Pitch Shifting Audio Sampling Instrument

A Technical Report submitted to the Department of Electrical and Computer Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Frederick Thomas Scotti

Spring, 2023

Technical Project Team Members

Cooper Grace

Lucia Hoerr

Quinn Ferguson

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Harry Powell, Department of Electrical and Computer Engineering

Page 2 of 31

OK Computer Engineering

Lucia Hoerr, Cooper Grace, Frederick Scotti, and Quinn Ferguson

December 13, 2022

Capstone Design ECE 4440 / ECE 4991

Signatures

Lucia Hoerr

Frederick Scotti

Page 3 of 31

Statement of Work:

Cooper Grace

Cooper was primarily responsible for system integration and elements of the software

development and design. He wrote the code to interface with the microphone allowing for

samples to be recorded. He also designed the finite state machine for the system and integrated

the lights and button into the code. Additionally, he collaborated with Quinn on the MIDI

interface and playback of processed sounds. Cooper was also responsible for everything relating

to the setting up of our microcontroller, code repository, and shared development environment.

Lucia Hoerr

Lucia was primarily responsible for the pitch shifting and audio algorithm in software. She wrote

the code to implement a pitch synchronous overlap and add algorithm in Python which allowed

for the input audio to be shifted up and down and mapped to the MIDI keyboard. Lucia was also

responsible for the design, 3D-printing process, and assembly of the case for the Samplisizer.

Lucia also assisted Frederick in finding and ordering the parts for the hardware portions of the

project.

Quinn Ferguson

Quinn primarily worked on the MIDI interface and optimizing MIDI response time. He wrote

code that would immediately respond to MIDI inputs and interpret them to quickly playback the

correct sounds. He also wrote a program that would detect the first jump amplitude in a recorded

sound and trim out all the dead space before it. This prevented any pauses in playback of sounds

that did not start immediately, overall increasing responsiveness. He also made some

modifications to raspberry pi files to make the program run on boot, and then debugged the main

code so that it would run smoothly in that environment. He also worked on the basic GPIO

functionality before it was integrated into the main program.

Frederick Scotti

Frederick was primarily responsible for the PCB. He designed the block diagram of the header

board as well as the layout for manufacturing. This board was used to record audio using an

ADC and control the volume of the output signal with a potentiometer. It also communicated

with the Raspberry Pi through GPIO. He also ordered all the necessary parts and created all of

the assembly documentation to send to WWW Electronics, Inc. (WWW). Frederick’s secondary

responsibility was assisting with integrating the GPIO drivers for the switches and LEDs.

Page 4 of 31

Table of Contents

Capstone Design ECE 4440 / ECE 4991 ...2

Signatures ...2

Statement of Work: ..3

Table of Contents ...4

Abstract ..6

Background ...6

Physical Constraints ...7

Design Constraints .. 7

Cost Constraints .. 7

Tools Employed .. 8

Societal Impact Constraints ...9

Environmental Impact ... 9

Sustainability... 9

Health and Safety .. 9

Ethical, Social, and Economic Concerns .. 10

External Considerations ...10

External Standards .. 10

Intellectual Property Issues ... 11

Detailed Technical Description of Project ...11

Software Design .. 13

Hardware Header Board ... 14

Project Time Line ..22

Test Plan...23

Software .. 23

Hardware ... 24

Integration ... 24

Final Results...25

Costs .. 26

Future Work ...26

References ..27

Appendix ..30

Page 5 of 31

Table of Figures

Figure 1 Basic Block Diagram .. 12

Figure 2 High Level System Design ... 13

Figure 3 Header Board Block Diagram .. 15

Figure 4 ADC Schematic .. 16

Figure 5 Logarithmic Volume Control Circuit ... 17

Figure 6 Modified Log Volume Control Circuit... 17

Figure 7 Schematic of Button Handling Circuit ... 18

Figure 8 PCB Layout .. 19

Figure 9 Finished PCB on the Raspberry Pi ... 20

Figure 10 Assembled Case.. 21

Figure 11 Case Ports ... 21

Figure 12 Proposal Gantt Chart .. 22

Figure 13 Updated Gantt Chart ... 22

Figure 14 Final Setup .. 25

Page 6 of 31

Abstract

The Samplisizer is a Musical Instrument Digital Interface (MIDI) controlled electronic musical

instrument that records and plays back sampled audio at different tones [1]. Each tone

corresponds to a certain MIDI signal allowing the user to play music using different pitches of

any sound recorded. This instrument takes the form of a box that has a microphone for recording

audio, a circuit board that controls the volume with a potentiometer as well as handles button

inputs and LEDs, and a Raspberry Pi to process the audio in digital and control what sounds are

being output. These separate parts form a system that can create a user-friendly and accessible

piece of music production equipment.

Background

The invention of digital audio samplers in the mid-1970s drastically altered the music industry

and helped shape it into what we know today. Most modern pop, hip-hop, and electronic artists

rely heavily on samplers in their songs. In today's music world, a sampler is just as important as

any other instrument. Audio samplers allow for the creation of music from any recorded sound,

be it a user’s voice or the clicking of computer keys, for people with any level of musical ability.

Our group members' musical talent ranges significantly, yet we will all be able to play the

finished sampler box to make fun, catchy tunes that everyone will enjoy.

A similar project was created by the company YellowNoiseAudio [2] and is posted online under

open source and open hardware licenses. The SamplerBox [3], as they call their product, is

similar to our idea in that the actual bulk of the project is contained in a central box that can be

hooked up to a MIDI keyboard and speakers. Their sampler does not allow for input through a

microphone, however, so you must upload audio files using a Secure Digital (SD) card to the

Raspberry Pi [4]. Our audio sampler will take the technology further by including a microphone

for recording user sounds and with amplification of the sample.

This project brings together much of the knowledge we have gained during the last three years of

engineering including embedded systems, hardware design, and software development. From the

Computer Engineering Fundamentals courses (ECE 2630, ECE 2660, ECE 3750), all of the

group members have experience designing and assembling Printed-Circuit-Boards (PCBs) for

various projects as well as signal processing skills. Frederick has more previous experience with

hardware design and electrical engineering, so we relied more heavily on him for the hardware

portions of the project. Lucia, Cooper, and Quinn have embedded systems experience from the

Embedded Computing and Robotics I and II courses (ECE 3501 and ECE 3502) which centered

around an MSP432 microcontroller [5] and writing code for it in the C programming language

[6]. Frederick took Introduction to Embedded Computing Systems (ECE 3430) which also lent to

this. Finally, both Quinn and Frederick possess musical abilities and knowledge of pitches and

scales that were useful for understanding sampling and shifting the audio. These skills and

Page 7 of 31

experiences together helped the group successfully navigate the hardware and software system

requirements for the Samplisizer.

Physical Constraints

Design Constraints

Our design was relatively straightforward to manufacture as the PCB and casing were the only

custom components involved in the design. Most of the design consisted of off-the-shelf

components which minimized complexity. Additionally, the use of standardized interfaces for

the MIDI input and auxiliary (aux) output allowed for customizability on the user’s end while

also reducing the complexity of constructing the device. The PCB manufacturing process, carried

out by the contract manufacturing firm WWW Electronics [7], was a significant time constraint:

one week to print the board plus several days to solder on the components. Our team had to go

through this process twice because the first PCB had issues with the audio jack layout and the

components were too small to be hand-soldered. The general PCB components were available in

large quantities from multiple vendors and did not contribute as constraints other than longer-

than-expected shipping times. The only parts that were not interchangeable were the analog to

digital converter (ADC) and the Raspberry Pi. The ADC we used (TI PCM1808) was available

in large supply from multiple sellers (Digikey, TI, Mouser) [8]. The Raspberry Pi was in short

supply because it is not currently in production due to supply chain issues. This forced us to

purchase a Pi from a 3rd party vendor via Amazon.com for far above the manufacturer’s

suggested retail price. Because of this, obtaining the Raspberry Pi was one of the largest

obstacles to manufacturing the device.

Cost Constraints

The biggest economic concern was acquiring our main microcontroller, a Raspberry Pi Model 4

B. Due to shortages and supply-chain issues, Raspberry Pi’s were in extremely short supply,

causing price gouging on the few boards in stock. The boards were only available from third-

party sellers for around $160 while the manufacturer’s retail price on an industry website such as

Digikey is $45 [9]. The fabrication and assembly costs for the custom printed circuit board

(PCB) were also one of the main expenses, running at approximately $55 per board. The first

PCB had component soldering issues, so the board was redesigned and reprinted, doubling the

cost. Lucia had access to a 3D printer and was able to print the Samplisizer case for free. For

demo and testing purposes a microphone was purchased for $10, and a piano and speaker were

sourced for free. The microphone, piano keyboard, and speakers would not be included with the

Samplisizer if it were to be sold on the market, so they are not included in market cost

consideration. All board components were either significantly less expensive or freely sourced

from past projects and we were able to stay well within the $500 constraint. Overall, the total

costs came to just under $350. If the Raspberry Pi could have been purchased at the regular retail

price the expenses would be reduced to $235.

Page 8 of 31

Tools Employed

Several different software and hardware tools were utilized throughout the semester to design

and test the project. The tools are detailed below.

Hardware:

To create the custom header board schematics and PCB layout, our team used KiCad software

[10]. This was extremely useful because it allowed for the creation of schematics, layout, and

Gerber files [11] all in one program. In order to simulate the volume circuit, Multisim was used

[12]. Finally, the Advanced Circuits FreeDFM tool was used to check that the board was

possible to manufacture [13].

Software:

The code for this project was written in the Python programming language [14] due to the

previous knowledge and comfort level of all group members with the language as well as the

abundance of pre-built libraries available. The code was written, edited, and debugged using the

Visual Studio Code integrated development environment (IDE) [15] with the Pylint [16]

extension to assist with writing clean code. To collaborate on a shared codebase we used Git [17]

for version control and GitHub [18] to host our repository. Additionally, to ensure high-quality

code standards, automated code quality scans were implemented for all pull requests in our

repository using Sonarcloud [19].

We used Raspberry Pi OS (also known as Raspbian) [20] as the operating system (OS) on the

Raspberry Pi. This OS was designed specifically for use on Raspberry Pi and as such comes with

the appropriate drivers while also being lightweight enough to run on a Raspberry Pi. We utilized

the PSOLA Python library [21] as well as the Python Pitch Shifter repository [22] and the Python

Pianoputer repository [23] to implement the audio processing in software. The user-recorded

Waveform Audio File Format (WAV) file will be pitch-shifted by various steps to correspond to

each of the keys on the keyboard. These will then be individually exported to WAV files for each

key without changing the speed or length of the recording [24].

In order to ensure that the audio samples were shifted by the correct pitch, the digital audio editor

and recording application software Audacity was used to measure the frequencies [25].

3D Modeling:

To design the case for our device we used 3D modeling in Fusion 360 [26] because our group

had previous experience using the software. We printed the case using an Ultimaker S3 printer

with Ultimaker-brand polylactic acid (PLA) filament which Lucia has free access to in the

Introduction to Engineering laboratory [27].

Page 9 of 31

Societal Impact Constraints

Environmental Impact

Our team’s personal impact on the environment includes the amount of electricity we used to

power our personal computing devices as well as the project itself during research and testing.

We must also acknowledge all the negative environmental impacts accrued from before the

products reached our hands. The pre-recycling design lifecycle of all the electronic components

in our project includes these steps: raw material collection, manufacturing, transportation, and

finally usage. Each of these steps involves some new materials to be harvested, some energy

expenditure, and some waste creation [28]. In order for companies to make the electronic

components for our project, including the printed circuit board and Raspberry Pi, many raw

materials must be mined or otherwise collected. These materials include but are not limited to

plastics, copper, tin, silver, palladium, lithium, and gold [28]. Mining is detrimental to the

environment and nearby ecosystems, and the mining process requires an inordinate amount of

freshwater [29]. All of this also requires electricity and the drilling of fossil fuels which releases

greenhouse gases into the atmosphere and often pollutes water sources [30]. After the production

of these materials into components is complete, there is also the transportation of the goods to

retailers and to us that further negatively impacts the environment due to fossil fuel usage.

Sustainability

The long-term costs of using this device will be low as the Raspberry Pi only consumes 6 Watts

of electricity while utilizing all four cores under load [31]. Additionally, the device will only be

plugged in while in use and therefore it won’t be consuming electricity most of the time. As

described in the Environmental Impact section above, there are still cases of before and after our

product usage that must be considered. Once our instrument becomes obsolete in the future or if

a part breaks and the product must be disposed of. If a consumer is extremely sustainability-

conscious, they could go through and open the entire box and dispose of the parts individually.

Parts of the metal and plastic in each of the electronic parts could be recycled, depending on the

local waste management company offerings, which still uses a small amount of electricity. More

likely though, the entirety of the plastic, electronics, and wood will be thrown away and

contribute to the waste in landfills, potentially leaking harmful chemicals into the ground or

releasing harmful toxins into the air if burned [32].

Health and Safety

If we are to market our product to consumers, then all of the aspects of our instrument will need

to be evaluated according to the Consumer Product Safety Act [33] and any addendums as

outlined by the United States Consumer Product Safety Commission [34]. These include safety

standards required of all consumer products. As our product will only be for consumers aged 13

and older, we are not required to conform to the additional safety standards for children’s

products [35]. The products and parts we are purchasing have already passed all of the consumer

product safety tests, and the board we are creating will be manufactured to meet these standards

Page 10 of 31

as well. All of the parts we are creating and combining will be housed in a central plastic box

that will be permanently sealed at production. The user will only be able to interact with the

standard connectors to plug in the consumer products (USB-C power, microphone, keyboard,

and speaker) to the box. The user will also be able to view the LEDs on the box top and interact

with the knobs but will not be able to see or mess with any of the electrical connections or

components, therefore eliminating the majority of the potential risk for the user.

Ethical, Social, and Economic Concerns

While creating a useable device, accessibility has to play a large role. We hope our device can be

used by individuals with a wide range of abilities, and therefore we are using a standard input

interface (MIDI) which will allow a user to plug in any input device of their choice preventing

our device from being restricted to individuals with the dexterity to play a

keyboard. Additionally, we are creating a device that can create loud and repetitive noises and

therefore could be uncomfortable for people especially children with Autism [36]. Ideally, the

user of our device would be cognizant of those around them so as not to make others

uncomfortable. The device will also allow for the volume of the output to be adjusted and it will

be able to be outputted to headphones so only those who want to hear can.

External Considerations

External Standards

We wanted our project to be as accessible and versatile as possible, which means we needed to

interface with many standardized protocols to ensure compatibility. Namely, our project needed

to work within the specifications of MIDI, aux connectors, and USB-C standards. For MIDI

compatibility we used a standard USB-A jack and communicated at the given 31.25 (+/- 1%)

Kbaud rate [37] over a USB cord. A library was also installed to interpret MIDI signals on the

software side. For aux output, our hardware was made to handle input impedance of 10 or higher

in accordance with the standards of using a 3.5mm audio jack. Furthermore, most aux inputs

expect a nominal voltage input of -10 dBV so we tuned our hardware to output voltage around

that range [38]. Since the microcontroller we are using for our project takes power input via a

USB-C connection, we will simply need to use a standard USB-C power adapter to provide

power to the system. We also used a customized PCB, so to ensure good manufacturability and

functionality, all circuit board standards for all phases of the PCB design process were

followed. Most notably we followed the standards laid out in the IPC-2581 [39] and IPC-2221

[40] codes. IPC-2581 outlines the standard way of organizing the PCB design information for

communication with manufacturers. We followed these standards to ensure that our design could

be understood and manufactured consistently. IPC-2221 gives standards for the basic PCB

acceptance. Our board followed these standards to ensure optimal manufacturability of our

design.

Page 11 of 31

Furthermore, our project deals with potentially hazardous voltages so all electronics are

contained in a Class 1 National Electrical Manufacturers Association (NEMA) enclosure [41].

The container will be sturdy and tight with openings only for necessary user interfaces. This

enclosure will protect the electronics from potential water exposure and general physical wear to

help prevent malfunction, but in the event of an unexpected short or voltage surge, the insulating

container will also protect the user from dangerous shocks.

Intellectual Property Issues

A very similar patent is from Intel and describes a portable hand-held music synthesizer and

networking method and apparatus [42]. This encompasses material extremely similar to our

project and would likely cause intellectual property issues if we attempted to patent The

Samplisizer. This pocket music synthesizer resembles ours in that it also utilizes a MIDI

connection and the WAV file audio format.

There is also a patent filed by Yamaha Guitar Group detailing a stringed instrument (guitar) for

connection to a computer to implement DSP modeling [43]. The patent describes using this

guitar plugged into a laptop as a synthesizer for mimicking other instruments and noises and

manipulating the audio. This is similar to our Samplisizer except that instead of having the

hardware in a separate case with standard MIDI instrument ports to allow for interchangeability,

the hardware is built into the electric guitar and must be controlled through a computer. If we

chose to demonstrate our capstone with a guitar instead of a piano this would be slightly more

similar.

Finally, there is a patent for the pitch synchronous overlap and add algorithm (PSOLA) that

allows for an audio file to be shifted up or down in pitch without changing the length of the

sound [44]. This algorithm is used in our Python code for pitch shifting.

Detailed Technical Description of Project

The project is a fun and interactive instrument that allows a user to play a recording of their own

making as notes with a MIDI-compatible instrument of their choice. The device is powered off

of a Universal Serial Bus Type-C (USB-C) [45] cable and controlled by a Raspberry Pi 4 Model

B. Audio is recorded via a microphone when a button labeled “Record” is pressed and passed

into the Raspberry Pi via a USB compatible microphone. The Raspberry Pi runs the 32-bit

Raspberry Pi OS which is a Debian-based [46] version of Linux [47] designed for the Raspberry

Pi.

In software, the recording is pitch-shifted up and down in increments of a half step for 43 notes

and then stored in an SD card via the built in SD card reader in the Raspberry Pi. This is done

using the Pitch Synchronous Overlap and Add algorithm (PSOLA) [21]. The PSOLA algorithm

was chosen because can modulate an audio sample without changing the playback speed. The

Page 12 of 31

user can then play these notes via any MIDI over USB compatible instrument (a keyboard will

be used for our testing). The MIDI messages trigger the Raspberry Pi to send the correct stored

audio sample to a digital-to-analog converter (DAC) which then goes into a knob-controlled

analog volume control [48]. Finally, the analog signal is output to a powered speaker via an aux

cable.

Figure 1 Basic Block Diagram

For usability, there are three Light Emitting Diodes (LEDs) placed centrally on the case of the

device. The first LED is red and labeled “Recording”. which blinks three times after the record

button is pressed and then illuminates for three seconds while the device is actively recording.

The second LED is yellow and labeled “Processing”. It is illuminated after the user finishes

recording, while the audio is being processed. The last LED is green and labeled “Ready” and is

illuminated when the device is ready to be played. When the record button is pressed again it

overwrites the old sample and the new sampled audio can be played after it has finished

processing.

Page 13 of 31

Figure 2 High Level System Design

Software Design

The business logic for the Samplisizer exists in one python program. This program’s code is split

into distinct sections to handle the different elements of the device’s functionality. The sections

are the pitch shifting logic, the audio recording logic, the general-purpose input/output (GPIO)

logic, and the MIDI handling.

The pitch shifting works by first breaking up the audio wave file input into very small segments.

When a higher pitch is desired, first the small segment is stretched while conserving the pitched

and then sped up so that the sound is the same length as when recorded. Conversely, in order to

lower the pitch the sound is overlapped and then slowed down so the sound file is also still the

same duration.

The program is able to record audio through a USB connected microphone. This was

implemented using the PyAudio [49] and Wave [50] Python libraries. The program first sets the

parameters for the recording such as the resolution, the sampling rate, and the length of the

recording (set to 3 seconds). Then it creates a PyAudio instantiation before it creates a PyAudio

stream with the aforementioned parameters. Subsequently the recording starts. It records by

looping through the audio stream and appending audio chunks to a frame array. Then once 3

seconds from the start of the recording pass the stream is stopped, and closed, and the PyAudio

instantiation is terminated. Once the sample has been recorded, the program trims off any dead

space at the start of the WAV file setting the start of the file to be the start of the audio chunk

with an absolute value over 500.

The GPIO is handled using the RPi GPIO library [51]. The GPIO is responsible for turning the

status LEDs on and off as well as registering button clicks for the record button. The GPIO

functionality in the programs works first by initializing the pins via the library’s setup function.

The pins being used for the LEDs are set to outputs and the pin being used for the button is set to

an input with a pullup resistor. The way the GPIO is used to indicate the status of the device via

LEDs during operation is through the use of four functions called recording, processing, ready to

record, and ready. These functions correspond to the states of the finite state machine shown in

Figure 2 above. Each function is responsible for turning on the correct LED and turning off all

other LEDs. The recording state has just the red LED on. The processing state has just the yellow

Page 14 of 31

LED on. The ready state has just the green LED on. Finally, the ready to record state blinks the

red LED three times with all of the other LEDs off. The blinks happen every quarter second and

the delay after the last blink is 0.22 seconds to account for the execution time of the program as it

transitions to the recording state.

To interface with the MIDI controller, the program made use of the python library rtmidi [52].

This library allowed the programmers to set a callback function that would execute immediately

on MIDI input, which would have access to the MIDI message as well as any one user variable.

The MIDI message would contain the number corresponding to the note played and whether it

was a press event or a release event. The program passed in a list of sound objects to this

function and used the note number to map the played note to the index of its corresponding

sound object in the list. That sound would then either be played or stopped depending on whether

the note was pressed or released. Whenever a new sound was recorded, the sound objects would

be regenerated from the new WAV files and the list would be passed again to the callback

function to keep it up to date.

Hardware Header Board

The PCB header, or Pi Hat, had multiple functions. These include generating an Inter IC-Sound

(I2S) signal that encodes the analog microphone audio, controlling the volume output of the

device with a potentiometer, and housing spots for the button and LEDs that were controlled by

GPIO. The PCB header board interfaced with the Raspberry Pi through a 2x20 pin jack that

plugs directly into the pi’s GPIO. The entire board has 3.3 V electrostatic discharge (ESD)

protection diodes on any node that may come into contact with a static shock.

The basic flow of the board can be seen in Figure 3. First, the analog microphone signal is input

onto the board through a 3.5 mm headphone jack. This signal gets filtered through a basic low

pass filter before entering into the ADC circuit. The schematic of the ADC can be seen in Figure

4. This particular ADC is a PCM1808 which is able to sample stereo audio at up to 100 kHz at

24-bit resolution [8]. For WAV file standards, we configured the ADC to sample at 44.1 kHz and

set the PCM1808 to run in master mode. This can be changed after the board is printed with

jumpers to change FMT, MD0, and MD1 from high to low. Because we are recording in mono,

the left and right channels of the ADC receive the same analog signal. Master mode means that

the PCM1808 only needs a clock signal input into it from SCKL and it will then generate the

different I2S channels to be read by the RPi (DOUT, LRCK, BCK). The schematic used was

based off of the TI documentation for the PCM1808 and also a datasheet for a TI development

board that included the PCM1808 [53]. The I2S signals from the ADC go directly into the GPIO

of the RPi to be read and converted into a WAV file. Unfortunately, this ADC circuit ended up

being redundant in the final product because we switched from a 3.5 mm cable microphone to a

USB microphone.

Page 15 of 31

Figure 3 Header Board Block Diagram

Page 16 of 31

Figure 4 ADC Schematic

When a keyboard key is pressed after the RPi is finished processing it outputs an analog audio

signal back into the board through another audio jack. This signal then passes into an analog

volume control circuit based on the one seen in Figure 4. This circuit has a roughly logarithmic

response versus the percentage of the potentiometer that is turned. One change that was made in

our design was changing the value of R3 so that the maximum gain of the circuit is 0 dB so that

we would not over volt the speakers. Because our board did not have access to negative voltage,

our rails could only go from 0 to 5 V. This required that we biased the input up by 2.5 V DC and

then referenced 2.5 V instead of ground. The reference voltage was created with an op amp

voltage follower and the signal was biased with the capacitor and resistor network made of C18,

R15, and R16. This also necessitates the need for high pass filtering after the volume circuit to

return the DC bias to 0 V which can be seen in C19 and R17 in Figure 6. After the volume

control circuit, the analog sound is output to a third audio jack that goes to the speakers.

Page 17 of 31

Figure 5 Logarithmic Volume Control Circuit

Figure 6 Modified Log Volume Control Circuit

The board also houses a pull up circuit to protect the button inputs. The schematic is shown in

Figure 7. Five button handling circuits were put onto the board to accommodate the potential

need for more inputs but in the end only one button was needed. When a button is pressed, the

corresponding GPIO signal flips from high to low. This GPIO button signals the RPi to start

recording a new sample.

Page 18 of 31

Figure 7 Schematic of Button Handling Circuit

After the schematics were designed, the circuits were laid out on a PCB template from Adafruit

[54] for making Pi hat PCBs. An overview of the layout with top and bottom traces can be seen

in Figure 8. It is important to note that there is a top and bottom copper ground plane. This is to

reduce noise on the ADC by having a ground trace between the channels to minimize signal

coupling. There are also many ground vias dispersed across the board to equalize voltage

between the planes and eliminate islanding that occurs from the traces. All of the resistors,

capacitors, and diodes use 0603 packaging [55] in order to save space while still being capable of

hand assembly.

Page 19 of 31

Figure 8 PCB Layout

The above figure is the second version of the board that we had printed. The original board had a

couple of issues. The first was that one of the 3.5 mm headphone jacks was facing towards a

USB port meaning that it was impossible to plug a cable in while the board was seated in the

GPIO port. The second issue was that the ESD chips used had 0201 packaging which WWW

was not able to hand solder. They also were unipolar meaning they could only prevent discharges

with either positive or negative voltages but not both. These were swapped for bipolar diodes

that used 0603 packaging. The last issue was islanding in the bottom ground plane under the

ADC chip. This not only caused there to be drifting between the two different ground planes but

also nullified the noise reducing effect between the audio input channels.

Page 20 of 31

Figure 9 Finished PCB on the Raspberry Pi

Casing

In order to encase all the hardware elements into one product, a 3D-printed box was designed

using Fusion 360 and printed using an Ultimaker S3 printer. The box consists of two halves

where the top half can slide completely over the bottom half for a clean, simple aesthetic. The

top half was printed in black plastic and the bottom half in white plastic to match the black and

white keys on a piano. The two halves also allowed the case to be opened and the components

inside to be inspected while testing. The USB and audio out ports were left exposed in the case

so that the user can plug in their own microphone, MIDI instrument, and speakers or

headphones. The remainder of the ports were covered and inaccessible to the user except for the

ethernet port which was left exposed for group testing and debugging. If the Samplisizer were

marketed, the ethernet port would be covered. The power cord goes through the back of the box

so that the user can access the wall plug but cannot disconnect the power from the board. The

case had holes for the volume control potentiometer, the record button, and the three LEDs to

show recording, processing, and ready status. Each of these components were labeled for the

user’s understanding. The name of the product was also displayed on the top of the case.

Page 21 of 31

Figure 1010 Assembled Case

Figure 1111 Case Ports

Page 22 of 31

Project Time Line

Included below are a previous version and a current version of the team’s Gantt Chart.

Figure 1212 Proposal Gantt Chart

Figure 1313 Updated Gantt Chart

Page 23 of 31

Serial tasks included the initial brainstorming of the idea for the Capstone project. Once the

group knew we were going to create a sampling instrument, most work was completed in

parallel. Frederick worked on designing the PCB while Lucia, Cooper, and Quinn focused on

software-related tasks. Cooper set up the code management platforms and researched the I2S

software requirements. Lucia researched pitch shifting algorithms and wrote the initial Python

code to change the pitch of a hard-coded audio wave file up and down as well as mapping the

transposed notes to a digital keyboard. Cooper assisted with integrating this code with a physical

MIDI piano keyboard. Quinn focused on the real time MIDI library and helped with this

integration as well. Frederick designed the PCB and sent it to WWW for manufacturing and

finished assembling it returned from soldering. All of this was done in parallel throughout the

semester.

Towards the end, the group came back together and worked in serial on testing the board and

code together once integrated fully. Lucia designed and 3D printed the case for the hardware of

the instrument. Cooper and Quinn configured the code to run on the Raspberry Pi on boot so that

the system could be headless. Quinn added audio trimming functionality to cut out dead space

during this time as well. All group members helped set up for the demo and present the final

capstone project at the final event.

Our schedule changed greatly from our initial projections. Some tasks ended up being slightly

longer than we expected. For instance, we had some issues with our initial PCB design and had

to manufacture it again. Other tasks were far easier than anticipated. Polyphony, for example,

turned out to be a trivial implementation with the right python library. Some tasks we simply did

not anticipate needing. We hadn’t considered the need to trim the audio until we tested a sample

audio that had a pause at the beginning. Even with these unexpected changes, we were able to

stay on task and finish the project satisfactorily.

Test Plan

Our test plan is divided into three main parts: software, hardware, and integration. This is due to

the software and hardware being developed independently until late into production when the

systems are integrated together.

Software

Each section of functionality developed in software was tested individually before being

integrated into the larger system. The first step of our test plan was to ensure that we could read

MIDI inputs to the USB port on the RPi. This was done as soon as we had the RPi and the

keyboard. The RPi was programmed to print out the key press in python. In parallel, we also

tested the PSOLA algorithm’s ability to take an existing WAV file and pitch shift it relative to

the 12-tone chromatic scale while maintaining the original length of the audio. A WAV file of

google translate pronouncing the word goat was used as the place holder sample for the PSOLA

Page 24 of 31

algorithm. This was verified in Audacity using a spectrum analysis and finding the peak of the

fundamental tone. To test the recording functionality sounds were recorded on the RPi and

played back both in audacity and using our software to verify that our software was up to par

with a more traditional recording interface. The MIDI interface was tested by printing the MIDI

messages to a terminal window on the RPi then verifying that the correct information was

outputted for a given keypress.

Hardware

When the hardware board was returned from being manufactured, it was immediately beep

checked. This entailed using an Ohm meter to measure the resistance between different nodes

and ensure they aren’t electrically shorted. It also allowed us to verify that there was no islanding

in the ground plane. After beep checking, the board would be ready for assembly at WWW.

Once the board was assembled, 4 main board systems had to be tested. The first of these was the

power supply. The board was plugged into the RPi and using a voltmeter all of the test points

were checked to ensure that all the chips were receiving the correct voltage and that there were

no unseen shorts. Next was the analog to digital converter, which had to be configured in master

mode using jumpers and fed a clock signal. Using an AD2 as an oscilloscope, the output of BCK,

LRCK, and DOUT was verified. Then, the volume control circuit was tested. The 2.5 V

reference and the DC biasing network were measured to check their voltages were at the correct

values. A network analysis from the input to the output was run from 0 Hz to 20 kHz on the

volume circuit for different rotations of the potentiometer. This ensures there is no filtering, and

the circuit can logarithmically change the volume of all frequencies equally (the plot should be a

perfectly horizontal line at or below 0 dB). Finally, the off board GPIO circuits were tested. This

involved running a 3.3 V source across each color of LED and ensuring their relative intensities

were the same. If they were different, the corresponding resistor would be changed to allow the

desired amount of current to flow through the diode. Also, the button ports were tested to ensure

the GPIO is pulled up to 3.3 V when the button is off, and changes to 0 V when the button is

pressed.

Integration

After the board and software were tested individually, it was time to test them together. The first

test was to verify that a button press could be read by the RPi and then trigger an LED to turn on.

Then, the Pi’s ability to run the analog to digital converter was tested. This requires the Pi to

produce a high frequency clock from GPIO to run the ADC and then detect the ADC as a valid

I2S recording device to read the signal as a WAV file. In our testing, the ADC produced the

correct signals, but the Pi couldn’t identify the ADC as a valid device. Because of time

constraints, we opted to use a USB microphone instead of the ADC I2S. Finally, the total system

was tested from recording to playing. This includes pushing keys at unexpected times, holding

the record button, and playing while the Pi is processing audio.

Page 25 of 31

Final Results

Our final product successfully achieved our goal of creating a fun, versatile, accessible,

instrument. We were able to fulfill almost completely all the requirements we set out for

ourselves at the beginning of the semester. At the final demonstration, the Samplisizer interfaced

with a USB microphone, a piano midi controller over USB, and a speaker over a 3.5mm

headphone jack. The casing for the project included an exposed button labeled “record,” that

when pressed, initiated the recording process. A red LED would blink three times then go solid

for three seconds while the program began recording audio data. A yellow LED would then

illuminate while the audio was shifted up and down the 12-tone chromatic scale. On average the

processing time fluctuates around the required 1 minute to complete, ranging from 50 to 70

seconds. The resulting audio files were clear and consistent, fulfilling our requirements of

minimal audio distortion with no speed variation. With a good recording, the user could then

play the sound responsively on the midi controller with little delay. If a recording was made in a

noisy environment, the trimming program would mistake background noise as the start of the

program causing any pause in the beginning of the recording to hurt responsiveness. Otherwise,

the response latency was barely noticeable with no harm to the instrument's playability.

Figure 1414 Final Setup

Page 26 of 31

Costs

Our project ended up costing $341.88 overall, well below the maximum budget of $500. The

highest cost was the Raspberry Pi 4 Model B bought from Amazon at $160, which was

approximately $115 above regular price due to supply chain shortages and price gouging. The

next highest costs were the manufacturing and assembly costs for the original custom PCB as

well as the fixed reprint, coming in at around $60 each. Following those main expenses, the

microphone was $12.99 from BestBuy. The piano, speaker, and 3D printed case were borrowed

or acquired for free. All of the software and other tools used were freely available. All together

the remaining hardware components, such as resistors and capacitors, cost $48.99. Certain

components were sourced for free from past projects, including the buttons and LEDs. The full

breakdown of costs can be found in the budget spreadsheet in Appendix A.

If 10,000 units were manufactured, there would be significant discounts on most of the

components. The total cost per product would be closer to $110, approximately 1/3 of the price

when making a singular Samplisizer. More specific information can be found in the

manufacturing budget spreadsheet in Appendix B.

Future Work

The Samplisizer provides functionality that can easily be built upon in addition to the ability to

use the device as a component in a larger modular system. The device could be extended in both

hardware and software to add a variety of new features and functionality. For example,

arpeggiation could be added to the software and due to our custom PCB having the capacity to

support 5 buttons a hardware interface could be added as well. Another intuitive next step would

be the ability to store multiple samples. We used approximately 10 Gb of the 32 Gb SD card

used to store the operating system and the samples. Thus, allowing ample storage space for

multiple samples to be stored. Again, more buttons could be added to provide users with the

ability to switch between stored samples.

The Samplisizer uses standardized connectors and protocols for its inputs and outputs meaning

additional devices could be created that could connect with the Samplisizer to enhance and

extend its functionality. The Samplisizer uses the MIDI protocol to interface with the device so

any MIDI-compatible device could be used as a controller. Therefore, any custom or unique

MIDI instruments developed in the future could be used to control the Samplisizer. Additionally,

the Samplisizer outputs audio via an AUX port allowing for to be passed through one or more

effects pedals such as a wah-wah pedal.

Page 27 of 31

References

[1] J. Gibson, “The MIDI Standard,” Introduction to MIDI and Computer Music.

https://cecm.indiana.edu/361/midi.html (accessed Sep. 25, 2022).

[2] “YellowNoiseAudio.” https://www.yellownoiseaudio.com/about (accessed Sep. 25, 2022).

[3] “SamplerBox.” https://www.samplerbox.org/ (accessed Sep. 25, 2022).
[4] “Raspberry Pi,” Raspberry Pi. https://www.raspberrypi.com/ (accessed Sep. 25, 2022).

[5] “MSP430 microcontrollers | TI.com.” https://www.ti.com/microcontrollers-mcus-

processors/microcontrollers/msp430-microcontrollers/overview.html (accessed Sep. 25,

2022).

[6] B. W. Kernighan and D. M. Ritchie, The C Programming Language. Pearson Education,
1991.

[7] “WWW Electronics Incorporated.” https://3welec.com/ (accessed Dec. 09, 2022).

[8] “PCM1808 data sheet, product information and support | TI.com.”

https://www.ti.com/product/PCM1808 (accessed Dec. 13, 2022).

[9] “RASPBERRY PI 4B/2GB,” Digi-Key Electronics.
https://www.digikey.com/en/products/detail/raspberry-pi/RASPBERRY-PI-4B-

2GB/10258782 (accessed Dec. 09, 2022).

[10] “KiCad EDA.” https://www.kicad.org/ (accessed Dec. 09, 2022).

[11] “Official Gerber Format Website,” Ucamco. https://www.ucamco.com/en/gerber

(accessed Dec. 13, 2022).
[12] “Multisim Live Online Circuit Simulator,” NI Multisim Live. https://www.multisim.com/

(accessed Dec. 13, 2022).

[13] “FreeDFM - A Service of Advanced Circuits.”

https://www.my4pcb.com/net35/FreeDFMNet/FreeDFMHome.aspx (accessed Dec. 13,
2022).

[14] “Python.” [Online]. Available: https://www.python.org/doc/

[15] “Visual Studio Code.” [Online]. Available: https://code.visualstudio.com/

[16] “Pylint.” [Online]. Available: https://pylint.pycqa.org/en/latest/

[17] “Git.” [Online]. Available: https://git-scm.com/
[18] “Github.” [Online]. Available: https://github.com/

[19] “Sonarcloud.” [Online]. Available: https://www.sonarsource.com/products/sonarcloud/

[20] G. Hollingworth, “Raspberry Pi OS (64-bit),” Raspberry Pi, Feb. 02, 2022.

https://www.raspberrypi.com/news/raspberry-pi-os-64-bit/ (accessed Sep. 25, 2022).

[21] M. Morrison, “psola: Time-domain pitch-synchronous overlap-add.” Accessed: Sep. 25,
2022. [Online]. Available: https://github.com/maxrmorrison/psola

[22] C. Woodall, “Python Pitch Shifter.” Sep. 08, 2022. Accessed: Sep. 26, 2022. [Online].

Available: https://github.com/cwoodall/pitch-shifter-py

[23] “Python, Pitch shifting, and the Pianoputer - __del__(self).”

http://zulko.github.io/blog/2014/03/29/soundstretching-and-pitch-shifting-in-python/
(accessed Sep. 26, 2022).

[24] K. Iqbal, “WAV - Waveform Audio File Format,” Dec. 13, 2019.

https://docs.fileformat.com/audio/wav/ (accessed Sep. 26, 2022).

[25] “Home,” Audacity ®. https://www.audacityteam.org (accessed Dec. 13, 2022).

[26] “Fusion 360 | 3D CAD, CAM, CAE, & PCB Cloud-Based Software | Autodesk.”
https://www.autodesk.com/products/fusion-360/overview (accessed Sep. 26, 2022).

Page 28 of 31

[27] “Ultimaker S3: Easy-to-use 3D printing starts here,” https://ultimaker.com.

https://ultimaker.com/3d-printers/ultimaker-s3 (accessed Dec. 09, 2022).
[28] “Raspberry Pi,” Design Life-Cycle. http://www.designlife-cycle.com/raspberry-pi

(accessed Sep. 26, 2022).

[29] “What Commodities Are the Main Inputs for the Electronics Sector?,” Investopedia.

https://www.investopedia.com/ask/answers/042015/what-commodities-are-main-inputs-

electronics-sector.asp (accessed Sep. 26, 2022).
[30] June 01 and 2022 Melissa Denchak, “Fossil Fuels: The Dirty Facts,” NRDC.

https://www.nrdc.org/stories/fossil-fuels-dirty-facts (accessed Sep. 26, 2022).

[31] “Power Consumption Benchmarks | Raspberry Pi Dramble.”

https://www.pidramble.com/wiki/benchmarks/power-consumption (accessed Sep. 26, 2022).

[32] “Soaring e-waste affects the health of millions of children, WHO warns.”
https://www.who.int/news/item/15-06-2021-soaring-e-waste-affects-the-health-of-millions-

of-children-who-warns (accessed Sep. 26, 2022).

[33] L. M. Benson and K. Reczek, “A Guide to United States Electrical and Electronic

Equipment Compliance Requirements,” National Institute of Standards and Technology, Jun.

2021. doi: 10.6028/NIST.IR.8118r2.
[34] “CPSC.gov,” U.S. Consumer Product Safety Commission. https://www.cpsc.gov/

(accessed Sep. 26, 2022).

[35] “Children’s Products,” U.S. Consumer Product Safety Commission.

https://www.cpsc.gov/Business--Manufacturing/Business-Education/childrens-products

(accessed Sep. 26, 2022).
[36] “Sound Sensitivity and Autism.” https://ei.northwestern.edu/sound-sensitivity-

autism#:~:text=Hyperacusis%20(say%20it%20with%20me,for%20your%20child%20to%20

hear.

[37] “MIDI 1.0 Detailed Specification,” The MIDI Association.

https://midi.org/specifications/midi1-specifications/m1-v4-2-1-midi-1-0-detailed-
specification-96-1-4 (accessed Sep. 27, 2022).

[38] Arthur, “Are AUX (Auxiliary) Connectors & Headphone Jacks The Same?,” My New

Microphone. https://mynewmicrophone.com/are-aux-auxiliary-connectors-headphone-jacks-

the-same/ (accessed Sep. 27, 2022).

[39] “Home,” IPC- 2581 Consortium. http://www.ipc2581.com/ (accessed Dec. 13, 2022).
[40] R. PCB, “What is IPC-2221 Standard?,” Printed Circuit Board Manufacturing & PCB

Assembly - RayMing, Aug. 19, 2022. https://www.raypcb.com/ipc-2221-standard/ (accessed

Dec. 13, 2022).

[41] “NEMA/IEC Enclosure Ratings from Cole-Parmer.” https://www.coleparmer.com/tech-
article/nema-iec-enclosure-ratings (accessed Sep. 27, 2022).

[42] A. T. Wilson, “Portable hand-held music synthesizer and networking method and

apparatus,” US8288641B2, Oct. 16, 2012 Accessed: Dec. 09, 2022. [Online]. Available:

https://patents.google.com/patent/US8288641B2/en?q=music+synthesizer&oq=music+synth

esizer
[43] M. Ryle, M. A. Doidic, P. J. Celi, and A. Zak, “Stringed instrument for connection to a

computer to implement DSP modeling,” US7799986B2, Sep. 21, 2010 Accessed: Dec. 09,

2022. [Online]. Available:

https://patents.google.com/patent/US7799986B2/en?q=audio+sampler+box+microphone+pia

no+instrument&oq=audio+sampler+box+microphone+piano+instrument

Page 29 of 31

[44] O. Rosec and D. Cadic, “Procédé et dispositif de modification d’un signal audio,”

EP1970894A1, Sep. 17, 2008 Accessed: Dec. 09, 2022. [Online]. Available:
https://patents.google.com/patent/EP1970894A1/en?q=psola&oq=psola

[45] “USB Type C Compliance Document.” USB Implementers Forum, Inc. Accessed: Sep.

12, 2022. [Online]. Available: www.usb.org

[46] “Debian -- The Universal Operating System.” https://www.debian.org/ (accessed Sep. 25,

2022).
[47] “Linux.org,” Linux.org. https://www.linux.org/ (accessed Sep. 25, 2022).

[48] “David’s MIDI Spec.” https://www.cs.cmu.edu/~music/cmsip/readings/davids-midi-

spec.htm (accessed Sep. 26, 2022).

[49] “PyAudio.” [Online]. Available: https://pypi.org/project/PyAudio/

[50] “wave.” [Online]. Available: https://docs.python.org/3/library/wave.html
[51] B. Croston, “raspberry-gpio-python.” [Online]. Available:

https://sourceforge.net/projects/raspberry-gpio-python/

[52] C. Arndt, “python-rtmidi: A Python binding for the RtMidi C++ library implemented

using Cython.” Accessed: Dec. 13, 2022. [MacOS :: MacOS X, Microsoft :: Windows,

POSIX]. Available: https://github.com/SpotlightKid/python-rtmidi

Page 30 of 31

Appendix

Appendix A: Project Budget

Page 31 of 31

Appendix B: Hypothetical Manufacturing Budget

