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ABSTRACT 

In response to COVID-19, states such as Virginia 

have deployed mobile vaccination centers to 

distribute vaccines targeting two key values for 

improved pandemic response: accessibility and 

equity. We formulate a combinatorial problem that 

captures these factors, study the inherent hardness of 

the problem through strong impossibility results, and 

then develop efficient computational algorithms with 

theoretical guarantees on both of these factors. 

Finally, we run computational experiments on 

synthetic real-world population movement data from 

two different Virginia municipalities to show the 

efficacy of our algorithms. From our experiments, we 

conclude that our proposed algorithms generally 

yield a significant improvement over natural 

baselines. Additionally, we demonstrate that our 

algorithms compute a tradeoff between the maximum 

distance to a vaccination clinic and the number of 

clinics; this naturally enables us to give a 

recommendation to the government on the most cost-

effective budget policy with important implications 

for the future of public health decision-making. 

Having demonstrated the significance of our problem 

formulation, we suggest that a natural next step for 

future work is to extend other variants of the facility 

location problem to this setting as well. 

 

1. INTRODUCTION 

As of February 2022, only 64% of the eligible 

population is fully vaccinated in the United States [2]. 

Furthermore, there is a significant disparity in 

vaccination rates between demographics—the rate 

among Whites was 1.2 times that of African 

Americans and 1.1 times that of Hispanic people. The 

reasons why some people have not been vaccinated 

include distrust and skepticism regarding COVID-19, 

accessibility issues, and concerns about the cost [1]. 

Lottery schemes, mandates, vaccine clinics, and other 

strategies have been implemented to increase the 

vaccination rate with varying levels of success. Since 

cost and accessibility remain a challenge for a 

fraction of the population, especially minorities and 

people in poorer neighborhoods, mobile vaccine 

clinics have been an important part of the public 

health response strategy of government agencies. In 

this paper, we study the problem of deploying mobile 

vaccine administration sites with the goal of 

improving the accessibility of vaccines to individuals. 

Deploying vaccination clinics is a form of a facility 

location problem [5, 9], referred to as the 𝑘-supplier 

problem, in which a limited set of 𝑘 facilities needs to 

be placed so that every person (i.e., a client) is “close” 

to a facility; a common metric to measure closeness 

is the maximum distance between a client and their 

closest facility, though many other notions have been 

studied. Facility location problems are well 

understood, and efficient approximation algorithms 

and practical heuristics exist. However, deploying 

vaccine clinics leads to a novel facility location 

problem (referred to as the MobileVaccClinic 

problem) since people (clients) are mobile rather than 

stationary. Suppose each person 𝑝 visits a set 𝑆𝑝 of 

locations during the day; then it suffices to deploy a 

clinic close to at least one location in 𝑆𝑝. Our 

contributions are the following: 

 

• We formalize the MobileVaccClinic problem for 

modeling the deployment of mobile vaccine clinics in 

a way that takes into account human mobility 

patterns (by considering the distance to a facility 

from any of the locations visited by a person), 

fairness (by requiring that at least a fraction of people 

in each demographic group have a nearby clinic), 

outliers (by allowing partial coverage), and capacity 

constraints (by restricting the number of people 

assigned to each clinic). We show that this problem is 

much harder than the standard 𝑘-supplier problem 

and getting any bounded polynomial-time 

approximation to the minimum distance is not 

possible, thus motivating bicriteria algorithms. 
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• We design two approximation algorithms and 

extend our algorithms to have fairness guarantees in 

both the original and the outliers formulation of the 

problem. 

 

• We evaluate our algorithms for a realistic 

population of two municipalities in Virginia. The 

shortcomings of only considering a client’s home 

(rather than their entire traveling route) emphasize 

the importance of our problem formulation. 

Additionally, our algorithms allow us to compute a 

tradeoff between the maximum distance to a clinic 

and the number of clinics; this naturally enables us to 

give a recommendation to the government on the 

most cost-effective budget policy. 

 

2. RELATED WORKS 

Due to its applications in a large number of 

domains, facility location and broader location theory 

is a very well-studied area; see, e.g., the surveys by 

[3, 5, 9]. The general goal in this family of problems 

is to deploy facilities to provide the best possible 

service to a set of clients. A huge number of 

objectives have been considered, along with a 

plethora of variations such as fairness variants and 

online or stochastic versions. The MobileVaccClinic 

problem we study here is a generalization of the well-

known 𝑘-center problem, where the goal is to open at 

most 𝑘 centers while minimizing the maximum 

distance of a point to its closest center. For this 

simple clustering setting, there exist efficient 2-

approximation algorithms [10, 12]. Furthermore, it is 

shown that unless P=NP this is the best achievable 

approximation ratio [13]. Location theory problems 

have also been considered in the area of healthcare, 

e.g., [3, 8, 17, 18]. A lot of this work has been 

focused on placing mobile clinics or temporary 

facilities to ensure good service, especially in 

resource-poor countries. As mentioned in [3], the 

healthcare domain poses new challenges for location 

theory, such as uncertainty, reliability, operation 

efficiency, patient safety, and cost-effectiveness. 

Prior work has generally not considered the mobility 

of clients at a detailed scale, which provides more 

flexibility in deploying facilities. Our formulation of 

MobileVaccClinic explicitly models human mobility, 

thus providing a realistic framework for public health 

agencies in their response efforts. 

 

3. PROJECT DESIGN 

In our paper, we introduce a new variant of the 

facility location problem that follows a recent line of 

work on integrating the mobility patterns of the 

population into disease models [6, 20]. We will use 

the distance from a vaccination center as the metric 

for defining accessibility. The key change, however, 

is that clients will be represented by a set of locations 

that they visit (within a time period) instead of just 

one point. Though this will make the problem much 

harder to solve efficiently, it will more strongly 

correlate with the likelihood of a person going to a 

vaccine center. 

 

 
Figure 1. An example of MobileVaccClinic. The 
different colors represent different people and the 
circles represent the locations they visit (with the 
bottom three being their homes). Only considering 
homes in the problem formulation would result in the 
vaccination center being placed on the star. This 
would require people to deviate from their normal 
travels much more when getting a vaccine. 
 

Problem Statement: We are given a set of 

locations C in a metric space characterized by the 

distance function 𝑑: C×C ↦ R≥0. We additionally 

have a set of 𝑛 clients P. Each individual 𝑝 ∈ P is 

associated with a set 𝑆𝑝 ⊆ C, which we can interpret 

as the set of locations 𝑝 visits throughout the day. 

Finally, the input also includes a positive integer 𝑘 

constraining the number of facilities we can place, 

and a set S ⊆ C containing the locations where we 

are allowed to place facilities. The goal of 

MobileVaccClinic is to choose a set 𝐹 ⊆ S with |𝐹 | ≤ 

𝑘 to place facilities, such that for every 𝑝 ∈ P we 

have 𝑑 ( , 𝐹) ≤ 𝑅, for the minimum 𝑅 possible. Here, 

we use the standard notation where (𝑆, 𝐹) =min𝑗∈𝑆,′∈𝐹 

𝑑( 𝑗, 𝑗′). Intuitively, this objective tries to minimize 

the maximum distance between the set of facilities 

placed and the locations visited by any client. We 

also consider three natural extensions: 

• Outliers: To achieve herd immunity, we only 

need to vaccinate a large portion of the population 

(rather than every single person). To model this, we 

can take as input a parameter 𝑞, and seek to provide 



for only ⌊𝑞𝑛⌋ of the clients. Formally, the new 

objective is to minimize 𝑅 such that |{𝑝 ∈ P: 𝑑(𝑆𝑝,𝐹) ≤ 

𝑅}| ≥ ⌊𝑞𝑛⌋. 
 

• Fairness: Many studies have shown that 

COVID-19 disproportionately affects some 

demographic groups [19]. To counteract this, we seek 

to guarantee that different demographic groups have 

similar access to vaccines. As an example, when we 

solve the outliers formulation, we can guarantee that 

we are covering the same proportion of each 

demographic group when deciding the facility 

placements. 

• Capacity: It is natural to assume that the 

number of vaccines that can be stored in each mobile 

facility is limited, say at most 𝐿. In this setting, we 

need to guarantee that every chosen facility will be 

assigned at most 𝐿 people. 
 

3.1. Hardness Result 

For our hardness result, we use the following 

problem studied in [4], called 𝛾-Colorful 𝑘-Center or 

𝛾C𝑘C for short. This problem is a generalization of 

the outliers version of 𝑘-center—in addition to the 

classical constraints, colors (representing 

demographic groups) are assigned to each client and 

the problem requires that a sufficient number of 

points of each color is covered. We use their work as 

a basis to prove a hardness result for our problem. 

Please refer to the proof in the complete paper [15] 

for more details. 
 

Corollary 3.1. Even when the metric space is the 

Euclidean line, we have the following for 

MobileVaccClinic (unless P=NP): 

(1) No approximation algorithm exists. 

(2) Any bicriteria approximation algorithm must 

use at least 𝑘 ln 𝑛 facilities. 
 

3.2. Algorithms 

In this section, we introduce efficient methods 

which give (approximately) optimal facility 

placements, despite the hardness results. We also 

show how to extend each of our algorithms to ignore 

outliers, incorporate fairness constraints, and restrict 

the capacity of each facility. Please refer to the 

complete paper [15] for more details. 
 

3.2.1. Fixed-Parameter Tractability 

Let 𝑈 = ∪𝑝∈P𝑆𝑝 denote the set of all the locations 

visited by the set of clients and 𝑢 = |𝑈| be the number 

of locations in this set. Due to potential privacy 

concerns, we can assume that the client locations we 

have access to only include large public areas in the 

county such as malls, shopping centers, etc. Hence, it 

is reasonable to conclude that 𝑢 is a fixed parameter, 

which we assume ranges from 15 − 30. Given this 

fixed parameter, we develop an efficient algorithm 

for our problem. 
 

Theorem 3.2. Algorithm 1 yields a 3-

approximation algorithm for MobileVaccClinic and 

runs in time 2𝑢 poly(𝑛, |C|). 
 

Algorithm 1: FPT 

1: for 𝐴 ∈ 2𝑈: |𝐴 ∩ 𝑆𝑝 | ≠ 0, ∀𝑝 ∈ P do 

2: Obtain locations 𝐹𝐴 by running the 𝑘-supplier 

algorithm on the appropriate instance discussed 

above. 

3: Calculate the objective value for 𝐹𝐴. 

4: end for 

5: Pick the 𝐹𝐴 with the smallest objective value. 
 

Moving forward, we see that the same approach 

of guessing the correct set of client locations 𝐴 will 

also apply in different settings. In fact, the only thing 

that may differ is the need for an alternative 𝑘-

supplier algorithm that can incorporate the specific 

constraints of each unique setting; we survey some of 

these settings below. 

Outliers: To modify our algorithm so that it only 

considers some fraction 𝑞 of the population, we only 

need to change the objective value evaluated in line 3 

of Algorithm 1. If we then feed 𝐴 to the revised 𝑘-

supplier algorithm, we will get a 3-approximation. 

Fairness: Although our algorithm provides an 

upper bound guarantee for the maximum distance to 

a facility, the facility placement may significantly 

differ between individuals, with some having a 

facility right next to them, while others need to travel 

the whole 3𝑅∗ guarantee. Luckily, the vaccine 

centers can vary from week to week. Thus, we can 

use a randomized algorithm such as the one given in 

[11], to guarantee that the reprovisioning of facilities 

over time will provide an improved per-point 

guarantee on expectation. Hence, we treat the clients 

stochastically fairly. 

Capacity: In this case, we assume that each 

facility we use has a capacity 𝐿, i.e., at most 𝐿 clients 

can be assigned to it in any solution. As we did for 

the regular case, we can create an instance of 𝑘-

supplier where each location of Y for the 𝑘-supplier 

instance will have a capacity 𝐿. In other words, this 

will be an instance of capacitated 𝑘-supplier. 
 

3.2.2. Covering Algorithm 

In Corollary 3.1, we show that any bicriteria 

algorithm needs to open at least 𝑘ln(𝑛) facilities in 



order to give a bounded approximation guarantee. 

Here, we show that this is essentially tight: we give 

an algorithm influenced by the standard Set Cover 

problem that outputs a set of locations of size at most 

(ln 𝑛 + 1), while guaranteeing that the objective value 

is at most that of an optimal solution. 
 

Algorithm 2: ClientCover Search 

1: Binary search on the sorted list {(𝑖, 𝑗): 𝑗 ∈ C, 𝑖 ∈ 

S}, and let the current guess be 𝑅: 

2: Use 𝑅 to create the proper instance of ClientCover. 

3: Obtain 𝛼-approximate solution 𝐹𝑅 for that instance. 

4: If |𝐹𝑅 | > 𝛼 · 𝑘, increase 𝑅; else, decrease 𝑅. 

5: Output 𝐹𝑅 for the minimum 𝑅 such that 𝐹𝑅 ≤ 𝛼 · 𝑘. 
 

Theorem 3.3. Given an 𝛼-approximation 

algorithm for set cover, Algorithm 2 gives an (1, 𝛼)-

bicriteria algorithm for MobileVaccClinic. 

As in the case of our FPT algorithm, we can 

easily extend Algorithm 2 to accommodate different 

settings. The only difference here lies in step 3, 

where instead of a classic Set Cover algorithm we 

can run a different algorithm. 
 

Outliers: To modify our algorithm to only 

consider some fraction 𝑞 ∈ (0, 1) of the population, 

we can use some 𝛼-approximation algorithm for the 

Partial Set Cover problem, where the goal is to cover 

at least a 𝑞-fraction of the universe elements. Hence, 

we consider a variant of ClientCover, which we call 

Partial ClientCover, that requires only ⌊𝑞𝑛⌋ points to 

be covered by balls of radius 𝑅∗. 

Fairness: When solving MobileVaccClinic with 

outliers, the algorithm may view some demographic 

groups as outliers more often than others. To mitigate 

such possibilities, we can use an algorithm for the 

Partition Set Cover problem [14] to guarantee that a 

large proportion of each demographic group gets 

coverage. For example, we can guarantee that the 

algorithm considers a proportional number of people 

from each (demographic) group when choosing the 

vaccine center locations. 

Capacity: As before, we assume that each facility 

we use has capacity 𝐿. We see that our general 

framework is still applicable: we can modify our 

algorithm to satisfy these capacity constraints by 

replacing the Set Cover algorithm with a Capacitated 

Set Cover algorithm when solving the ClientCover 

problem. 
 

4. RESULTS 

We run our experiments using synthetic data 

constructed from the 2019 U.S. population pipeline 

[7, 16] for Charlottesville City and Albemarle County 

in Virginia (see Table 1). 

 

Table 1. Network Information 
 Clien

ts 

Activit

y 

Locatio

ns 

Resident

ial 

Locatio

ns 

Maxim

um 

Activit

y 

Measur

ed 

Diamet

er (km) 

Charlott

es 

ville 

City 

3315

6 

5660 10038 9952 8.12 

Albema

rle 

County 

7425

3 

9619 32981 24506 61.62 

 

We compare our algorithms with two heuristics: 

HomeCenters and MostActive. We set MostActive 

(opening vaccination centers at the 𝑘 most visited 

locations) as the baseline because it is related to the 

current heuristic used by the Virginia Department of 

Health. In HomeCenters, we run k-supplier to place 

facilities at locations that minimize the maximum 

distance from client homes. We compare with this 

baseline to show the importance of considering 

mobility when placing the vaccination centers. For 

the complete experimental section, see [15] and our 

GitHub. 

 

4.1. Tradeoff between Radius and Budget 

It is important to evaluate the sensitivity of our 

algorithms to an increase in budget. We want to 

know how much the objective value would decrease 

if the county allocated more resources to deploy a 

greater number of mobile facilities. This knowledge 

can influence policy decisions: when an increase in 

budget yields a sharp decrease in objective, the 

government has more incentive to fund another 

vaccination center. 

 

 
Figure 2. Tradeoff between vaccine accessibility and 
the number of vaccine centers placed. 
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As seen in Figure 2, there is generally a sharp 

decrease in the objective value when the budget is 

less than 6 for Charlottesville and 9 for Albemarle. 

As the budget increases past those thresholds, the 

marginal returns become so diminished that 

increasing the budget hardly changes the objective 

value. This is especially prominent in the full 

objective performance of FPT and MostActive. 

Hence, it is natural to recommend budgets of 6 and 9 

clinics to the Charlottesville and Albemarle 

governments, respectively. 

Additionally, we wish to bring attention to the 

overall poor performance of HomeCenters in these 

experiments. Though there is a general downward 

trend in the objective value for HomeCenters as the 

budget increases, there are cases in each county 

where increases in budget result in an increase in the 

objective value. This contradictory phenomenon is 

caused by the limited correlation between the 

distance to homes and our objective; as a result, 

noise/luck has a considerable effect. The noisiness of 

HomeCenters emphasizes the importance of 

modeling mobile populations. 
 

5. FUTURE WORK 

Since we have demonstrated the importance of 

modeling mobile populations, a natural next step is to 

extend other variants of the facility location problem 

to this setting as well. Furthermore, it would be 

valuable to see experimental results for the extended 

algorithmic versions for outliers, fairness, and 

capacity. Motivated by the rise of mobile vaccine 

distribution sites in rural Virginia, another line of 

work is to factor in not only the mobility of the 

population but also consider the mobility of these 

vaccine sites when targeting accessibility and equity. 
 

6. CONCLUSION 

In conclusion, we introduce a generalization of 

the classical 𝑘-supplier problem where we consider 

the mobility of populations when placing facilities. 

We show that designing an approximation algorithm 

for this variant is NP-Hard, so we turn to fixed-

parameter tractability and bicriteria approximation 

algorithms to get around our hardness result. Finally, 

we experimentally show the efficacy of our 

algorithms in comparison to natural baselines. 
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