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Abstract

Transport optical networks form the backbone of the information infrastructure

worldwide. Current systems use wavelength division multiplexing (WDM) technol-

ogy to accommodate large tra�c volumes. In the near future elastic optical networks

(EON) are expected to replace WDM networks to further increase the network ca-

pacity. This dissertation examines the problem of assigning physical and spectral

resources to WDM networks and EON for e�cient design and use of these systems.

The physical resource assignment problem, often referred to as the routing and

wavelength assignment (RWA) problem, is very important part of the design of fiber

optic WDM networks. Objectives of this problem include minimizing the total cap-

ital investment in the static design phase and maximizing the throughput in the

dynamic operation phase. We develop strategies both in heuristic algorithms and

in mixed-integer linear programming (MILP) not just for RWA but also to include

considerations of physical impairments, tra�c grooming for both static and dynamic

networks. For heuristic algorithms, we develop both centralized and distributed al-

gorithms based on the information sharing and assignment decision making. The

distributed heuristic algorithms are based on ant colony optimization (ACO) which

is a meta-heuristic method that is inspired by the foraging behavior of ants and

has been widely implemented in solving discrete optimization problems. Simulation

results show although the centralized algorithm shows better e�ciency in terms of

blocking probability, our ACO shows great robustness and adaptivity to varying net-

work and tra�c conditions. We also show implementing technologies such as tra�c

grooming and signal regeneration will greatly reduce the blocking probability of calls.

Elastic optical networks (EON) have added flexibility to network deployment and

management. We propose a link-based MILP formulation for EON to implement

signal regeneration as well as wavelength conversion and modulation conversion. We

then propose a recursive model in order to either augment existing network deploy-
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ments or speed up the resource allocation computation time for larger networks with

higher tra�c demand requirements than can be solved using an MILP. We show

through simulation that systems equipped with signal regenerators or wavelength

converters require a notably smaller total bandwidth, depending on the topology of

the network. We also show that the suboptimal recursive solution speeds up the

calculation and makes the running-time more predictable, compared to the optimal

MILP. We compare the two approaches, namely path-based (PB) and link-based (LB)

MILP formulations, in their implementation, optimality, and complexity for EONs.

We show using simulation that it is beneficial to use LB formulation when including

the signal regeneration and that the network topology and tra�c demand a↵ect the

di↵erence in performances between the two formulations. We combine the MILP for-

mulation for static network and time-slot concept to solve a real-time tra�c scenario

so the overall network throughput is maximized. The throughput is maximized given

the current network state.

Impact of technologies such as signal regeneration, wavelength conversion, and

modulation conversion on network performance metrics such as the amount of spec-

trum needed is also investigated by analytical modeling. Analytical modeling provides

the desirable method for network designers to begin with a fast coarse estimate of net-

work performance implementing such technologies without requiring computationally-

burdensome and detailed algorithms.
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Chapter 1

Introduction

Our society’s ability to access the massive amounts of information which needs to

grow and prosper depends on the availability of technically and economically e�cient

optical networks. This dissertation examines the problem of assigning physical and

spectral resources to large-scale optical networks to improve the design and use of

future generations of these systems.

The routing and wavelength assignment (RWA) problem for WDM networks is a

problem in the field of network design. It is often approached as a multi-commodity

flow problem with unique constraints such as wavelength continuity, etc., for wave-

length routing networks. The unique problem caused by physical impairments for

long-haul transport network requires a RWA algorithm to consider signal regeneration

and also regeneration resource assignment. Di↵erent design stages require di↵erent

problem definition and design objectives. For example, for static design problems the

network tra�c matrix is given, and the objective is to minimize the resources require-

ment; for the dynamic operation problem, resources have already been allocated, and

the objective becomes to minimize the call blocking probability. The network con-

trol mechanism handling the RWA algorithms can either be centralized or distributed,

di↵ering in their information collection and decision making functions.

1



As other technologies for fiber optic networks emerge, the RWA also evolves.

Mixed-line-rate networks allow di↵erent wavelength channels in WDM network to

support di↵erent bit rate transmission, which implies di↵erent physical impairments

situations. Elastic optical networks (EON) break down the fixed-grid wavelength

deployment into a finer and more flexible spectrum deployment, and require new re-

source allocation strategies (referred to as routing and spectrum assignment, RSA).

The di↵erence lies in the constraints imposed on the spectrum assignment. Additional

functionality such as wavelength conversion, multiple modulation schemes, modula-

tion conversion, etc., also impose new constraints on the design.

In this thesis, we develop a set of solutions to cover all aforementioned issues.

These types of problems can be approached using di↵erent methods. Based on knowl-

edge of the relationship between network resources and problem objectives, many

heuristic algorithms have been developed, as discussed below. The problem can also

be framed as a mixed-integer linear programming (MILP) problem with constraints,

where the objective function states the design goal. Finally, analytical models are

sometimes used to investigate the relationship between network parameters and pro-

vide a coarse estimation of network performance. From Chapters 3 to 8, we examine

the full RWA/RSA problem from these di↵erent perspectives and develop novel pow-

erful solutions.

1.1 Fiber Optic Networks

Optical fibers, introduced decades ago, only became an acceptable channel for long-

haul communications after the fiber manufacturing technology matured and overcame

the large attenuation of early systems [2]. Through this advancement and the advent

of low-loss optical amplifiers, optical signals are now able to travel through fibers for

distances of thousands of kilometers without being severely degraded [3].
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Fiber optic networks have the advantage of high speed, low attenuation, and

stronger resilience to interference, compared to other systems such as copper and

wireless communication systems. They have quickly become the only reasonable

choice for long distance, backbone communication. Copper networks are still being

used for end-user access, such as home access networks deployed by cable television

companies. Still, they are all connected to the optical fiber backbone. Almost every

cable in the telephone system is fiber-optic, and the internet is all fiber. For mobility

purposes, wireless networks have become the technology of choice as access networks

for commercial buildings, campuses, etc. As the cost of optical devices continues to

decrease, fiber optic networks become more available directly to end-users, creating

fibre-to-the-x (FTTx) networks, where x can be a neighborhood curb, a business, or

even an individual home. Fibers are also expected to penetrate into more aspects of

our daily networking usage, such as for household appliances management systems,

surveillance systems, etc. [4].

1.2 Spectrum Partitioning

The available spectrum of a single fiber strand can be as much as ten terahertz

(THz). For such a huge bandwidth to be assigned a single user is very wasteful.

WDM separates the whole bandwidth into channels and assign them to di↵erent

users, thereby improving the spectrum usage e�ciency.

Compared with the older coarse WDM standard, dense WDM (DWDM) has a

much tighter channel spacing, usually 50 or 25 GHz per channel. DWDM allows

more channels to be packed into a single fiber and therefore further improves the

usage e�ciency. Each user is usually assigned one wavelength channel, occupying the

channel exclusively from the source node to the destination node. This is called the

wavelength continuity constraint. Switching the signal from one wavelength channel
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to another mid-path is only possible if wavelength conversion is performed along

the path, which is an expensive operation typically requiring optical-electrical-optical

conversion.

Current communication tra�c consists of a diverse set of bit rate requests. To han-

dle such diversity, fiber optic networks can be designed to handle various wavelength

channel capacities, called mixed-line-rate (MLR) networks. Yet as the tra�c becomes

more heterogenous, chunky fixed-grid spectrum assignment becomes ine�cient. Ex-

clusive channel occupancy causes wavelength channels to quickly become congested

with tra�c streams carrying bit rates much smaller than the channel capacity. EONs,

as compared to legacy fixed-grid WDM, have the advantage of finer and more flex-

ible spectrum granularity, together with more sophisticated signal processing such

as bandwidth-variable modulation. Thanks to new bandwidth-variable transponders

(which are devices that send and receive the optical signal from a fiber) that allow

flexible spectrum tuning and bandwidth allocation, flexible spectrum assignment has

become available. For example, implementation using orthogonal frequency-division

multiplexing (OFDM) allows expanding and shrinking spectrum allocation simply by

assigning or terminating subcarriers to new tra�c.

1.3 Resource Allocation Problem

Our research interests focus on the design of fiber optic network infrastructure, such

as component allocation and managing physical resource assignment.

Algorithms that plan and manage the assignment of physical resources to tra�c

demands in wavelength routing networks are called RWA algorithms. With an ex-

pansion that allows low bit-rate sub-streams to be multiplexed into higher bit-rate

streams (i.e., tra�c grooming), the algorithm is referred to as grooming, routing and

wavelength assignment (GRWA). Tra�c grooming introduces a cost-e�cient balance
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between network capacity increase and initial capital expenditure (CapEx). It also

exhibits a dramatic improvement in adaptivity for heterogeneous tra�c patterns.

Much research has been devoted to addressing the GRWA problem [5, 6, 7, 8].

Solutions can be categorized from several perspectives. For the design phase, a de-

terministic tra�c matrix is assumed to reflect current and foreseen future evolving

trends and GRWA aims to minimize the total CapEx of the networks, the so-called

o✏ine or static design problem. For the network operation phase, in which a certain

existing network structure and deployment of equipment are assumed, GRWA aims

to minimize the tra�c demand that cannot be served due to shortage of network

resources (or maximize the total accepted tra�c demand).1 The network operational

algorithms are important because, unlike assumptions made for static design where

tra�c arrives synchronously, in real-time networks tra�c is highly dynamic, which

then leads to a highly dynamic network state (e.g., channel availability, optical equip-

ment usage, etc.). Based on the network state, dynamic GRWA optimization needs

to accommodate new and unpredictable connection requests.

Increasing tra�c volume and growing heterogeneity of bandwidth requirements

have pushed the development of optical transport networks. Using WDM technol-

ogy, spectrum usage has greatly increased by allowing multiple-line-rates and tra�c

grooming, which is discussed in Chapter 3. Yet WDM is unable to handle increas-

ing tra�c heterogeneity because of the coarse wavelength grid employed. EONs [9]

provide flexibility in both bandwidth assignment (using sub channel granularity and

super channel assignments) and lightpath reconfigurability not available in WDM.

The problem of assigning route and spectrum to calls in EON is called the RSA prob-

lem [10, 11]. As the technology matures, additional functionality such as modulation

selection and conversion can be added, with the hope of further increasing the spec-

1Connection blocking probability is an important measure for quality of service for network
operators. Although the practical requirement of blocking probability is quite strict, for the purpose
of examining GRWA algorithms, a comparison over a relatively wider range of blocking probabilities
shows performance di↵erences.
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tral e�ciency. When major additions in physical layer features are being considered,

the networks design should be re-examined to determine the realized benefit gained

by their implementation.

1.4 Thesis Contribution

Our research acknowledges that for RWA to be realistic for our targeted long-haul

fiber optic networks, the consideration of physical impairments is important. We then

develop our algorithms (from heuristics to MILP formulations) around the incorpo-

ration of physical impairments.

In our RWA algorithms for WDM networks, we also incorporate tra�c groom-

ing and mixed-line-rate transmission to bridge the gap between legacy fixed-grid

WDM networks and ever increasingly heterogeneous tra�c. Numerical results show

the improvement in network performance obtained by implementing these technolo-

gies. We develop two categories of algorithms based on the management and control

mechanism, namely centralized algorithms and distributed algorithms. We first ac-

knowledge that both mechanisms have advantages and disadvantages that make one

of them more preferable than the other in certain scenarios. Then we test our de-

signs through numerical simulation and support our conclusions by comparing many

aspects, such as call blocking probability, call setup delay, network control overhead,

RWA decision domain, information sharing domain and computational complexity.

We then build an MILP formulation for the implementation of technologies men-

tioned in our heuristics such as wavelength conversion, multiple modulation, modu-

lation conversion for EON networks. The simulation results show the di↵erences in

network performance under di↵erent technology setups. We also acknowledge that

although MILP provides an optimized RSA solution, it is highly un-scalable with

the size of the network and tra�c matrix. Therefore, we develop a recursive model
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of the same formulation and greatly reduce and stabilize the calculation time, al-

beit sacrificing some performance. By doing this, we provide a way to balance the

need of complexity and performance for algorithm users and also a way to investigate

problems such as dynamic resource assignment and network expansion over existing

structures.

We investigate the popular acceptance of path-based MILP formulations in RWA

and RSA problems. We use our link-based formulation to compare the existing path-

based formulation and show that when it comes to networks that involve signal re-

generation and multiple modulation schemes, path-based formulations are ine↵ective

in optimizing regeneration resources, and therefore often lead to poor spectrum usage

e�ciency.

In order to explore the intrinsic relationship between network parameters such as

network order, size, scale, network regeneration resources availability, and network

performance metrics such as total spectrum usage, highest link spectrum require-

ment, and network capacity, we develop an analytical model based on probabilistic

assumptions and mathematics enumeration. Our analytical model readily shows the

dependence of the network performance on resource availability and network struc-

ture. We also use our model to test technologies such as signal regeneration and

modulation conversion.

1.5 Thesis Organization

The thesis is organized as follows. Chapter 2 introduces the network topology and

tra�c profile based on the networks we consider in our research. In Chapter 3 we

propose a centralized GRWA algorithm. In Chapter 4 we propose a distributed GRWA

algorithm based on ant colony optimization. Chapter 5 solves the RSA problem using

mixed-integer linear programming for EON. Chapter 6 compares the link-based MILP
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formulation with the path-based MILP formulation. In Chapter 7 we implement a

similar MILP model on a dynamic WDM network. We approximate the impact

of several technologies with an analytical model in Chapter 8. We summarize the

dissertation in Chapter 9.
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Chapter 2

Network Description

In this chapter we introduce the network topologies and characteristics that we con-

sider in our research work. The scale of the network and practical physical-layer

constraints (physical impairments, wavelength capacities) and technologies (mixed-

line-rates, regeneration, tra�c grooming) a↵ect many aspects of the network design.

2.1 Network Topology

Most of our work is illustrated by implementation on the NSF-24 network, shown in

Fig. 2.1. It is a cross country scale network with 24 nodes and 43 bi-directional links

(each consists of two uni-directional links in opposite directions). The physical length

of the links are shown next to the links, yielding a graph diameter of 6650 km. An

earlier variant of this topology is the NSF-14 network, shown in Fig. 2.2, which has

14 nodes and 21 bi-directional links (i.e., 42 uni-directional links). We consider one

of the two topologies as our more realistic scenario, which among the two is tested

depending on calculation complexity concerns.

In Chapter 5 we compare the NSF-24 network with a same scale but more con-

nected and symmetric network shown in Fig 2.3, which we call the Symmetric-24

network. The diameter is the same as the NSF-24 network. All links are of the same
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Figure 2.1: NSF-24 network map, Edge labels are physical link lengths in km [1]

length, 1330 km. In Chapter 8, we demonstrate our analytical model first on a larger

mesh network shown in Fig. 2.4, with 36 nodes and 60 bi-directional links (i.e., 120

uni-directional links). The link length is set to 800 km, chosen for transmission reach

considerations.

The reason that we test our algorithms on many topologies is that the impact on

the network performance of networking technologies di↵ers between topologies. This

e↵ect becomes obvious, for example, in Chapters 5 and 6. When path-based routing

algorithms are implemented, the improvement gained by increasing the number of

candidate paths is not the same for a symmetric topology and for an asymmetric

topology. In Chapter 5, the improvement obtained by allowing modulation conversion

is also di↵erent between topologies.

2.2 Channel Spacing and Modulation Techniques

For classic systems where the transmission rate is 10 Gbps, a simple modulation called

on-o↵ keying (OOK) is used. Each symbol encodes 1 bit of data. In order to increase
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Figure 2.2: NSF-14 network, shaded circles represent signal regeneration nodes
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Figure 2.4: 36-node mesh network

the transmission rate, if the transmitting symbol rate cannot be increased, we can

increase the amount of data carried on each symbol by implementing more advanced

modulation techniques. For example, di↵erential phase shift keying (DPSK) and dif-

ferential quaternary phase shift keying (DQPSK) are used for transmission rates of 40

and 100 Gbps, typically one stream per polarization. (Note that for such high speeds,

OOK would require much more spectrum than is allowed by the 50 GHz channel spac-

ing). For data rates of 100 Gbps and higher, coherent modulation and detection is

used, based on some form of quadrature amplitude modulation (QAM). Future sys-

tems could either use higher symbol rate QAM, lower-rate channels multiplexed into

super-channels, or OFDM modulation [12, 13, 14, 15].

Early generation fiber optic networks with channel capacity of 10 Gbps had chan-

nel spacing of 50 or 100 GHz. As networks evolved, one important requirement was

to make networks backward compatible. The legacy 10 Gbps fiber optic networks are

well equipped. So the process of increasing channel data-rates therefore leads to the

coexistence of several line-rates on a single fiber. Such networks are called mixed-line-
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rate (MLR) networks [16, 17, 1]. In MLR networks, di↵erent channels have di↵erent

susceptibility to physical impairments, as discussed below.

In EON, the central frequency and spectrum allocation is more flexible than WDM

network. We model our EON with channel capacity of any real value within the limit.

This is a relaxation of the current standards for EON, which have a frequency slotted

model where each channel consists of one or more frequency slots with fine granularity,

such as 12.5 GHz.

2.3 Physical Impairments

Long-haul optical fibers su↵er degradations originating from many di↵erent physical

e↵ects, as described here.

Signal attenuation refers to signal loss from fiber absorption and signal scattering.

Attenuation makes signals more susceptible to noise by decreasing the signal to noise

ratio (SNR) at the receiver. In order to increase the signal strength, optical ampli-

fication is employed. The most common optical amplifier is the Erbium doped fiber

amplifier (EDFA). Signal amplification, however, has its own issues. The spontaneous

emission from the amplifiers behaves as noise, named amplified spontaneous emission

(ASE) noise, to the original signal.

Linear distortion can degrade the quality of transmission (QoT), including disper-

sion and crosstalk. Dispersion simply means “to spread out” and in fibers is mainly

from two e↵ects. The first is called chromatic dispersion, which is caused by di↵erent

frequencies of light propagating at di↵erent speeds. The second is called polarization

dispersion and this is due to the imperfect shape of the fiber that causes one polar-

ization of light propagating faster than the other. Dispersion causes optical pulses

to become indistinguishable from overlapping with neighboring pulses. Dispersion

compensation can be used by including a piece of fiber with opposite dispersion char-
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acteristics along the path. Linear cross-talk often occurs at the multiplexer found in

intermediate nodes and at the receiver. It is due to leakage from neighboring channels

and is caused by imperfect channel isolation.

Nonlinear e↵ects mainly include self-phase modulation (SPM), cross phase mod-

ulation (XPM), and four-wave mixing (FWM). A nonlinear phase shift occurs from

the dependency of the refractive index on optical intensity. As the pulse propagates

along the fiber, its spectrum changes because of SPM. Similarly, as signals of two

neighboring channels propagate in parallel, the refractive index also depends on the

optical intensity of the other wave. FWM is a third-order nonlinear process that

transfers energy of one signal to another. SPM causes pulse broadening, while XPM

and FWM cause inter-channel cross-talk. Nonlinear e↵ects depend on the intensity

of the signal, which implies that as signal launch power increases, so does the nonlin-

ear degradation. Although increasing the launch power augments the SNR, beyond

certain threshold the nonlinear e↵ects are so strong that they become the dominant

e↵ects that limits the QoT [2].

As degradation of the signal increases, it starts to cause bit errors. The signal

quality is then measured by the bit error rate (BER). The targeted BER before

forward error correction (FEC) is 10�3. FEC adds redundant information to the

transmission so that the receiver can correct a small number of errors.

Once the optical signals are distorted, measures need to be taken to restore the

signal quality, called signal regeneration. The aforementioned signal amplification is

part of this process. In addition to increasing the signal strength, the original pulse

shape and timing between pulses needs to be restored. Re-amplification, re-shaping

and re-timing together are called 3R regeneration. Since re-timing is done in the

electrical domain, it usually involves an optical-electrical-optical (OEO) conversion.

This implies that for optical signals to be fully regenerated, they have to undergo
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OEO conversion along the path, usually at intermediate nodes. In this thesis we

consider regeneration to be implemented only at the network nodes.

In all topologies shown above, all nodes are considered as edge nodes, meaning

tra�c arrive at those nodes, and also intermediate nodes, meaning transient traf-

fic traverses them. They are then divided into two types of nodes: nodes equipped

with and without OEO conversion circuits. As 3R regeneration involve OEO con-

version, and since OEO conversion requires costly high speed electronic devices, it

is not economical to have all nodes perform 3R regeneration. Therefore, a sparsely

regenerated network (also called a translucent network) only selects a few nodes to

equip with OEO conversion. We call such nodes regeneration nodes (RN). In Fig. 2.2

we illustrate the selection of RN by marking them with a darker shade.

The physical impairments are complicated to predict because they depend on

many factors such as signal power, modulation techniques, neighboring channel state,

etc. In order to design the fiber optic network taking these impairments into consid-

eration, a conservative measure is often made assuming the worst case degradation.

Taking all the e↵ects as a single entity, we can quantify the physical layer e↵ects in

term of one measure: the need for regeneration after a certain propagation distance.

The transmission reach (TR) measures the distance that optical signals can travel

without needing 3R regeneration [1]. Obviously, for any tra�c, the TR is not fixed,

and can be optimized for achieving best overall performance.

In Chapters 3 and 4, we incorporate the physical impairments (PI) into our GRWA

algorithm by imposing the same limits on the TR as were proposed in [1]. Using

a heuristic method, they estimate the optimal TRs for di↵erent data rate signals:

TR = 1 for 10 Gbps calls, TR = 2500 km for 40 Gbps calls, and TR = 2000 km

for 100 Gbps calls. We use their regeneration algorithm, which is optimized for when

the TR’s are fixed for channel bandwidth and regeneration is performed as needed.
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Figure 2.5: Transmission reach based on bit rate and spectral e�ciency using poly-
nomial fitting over experimental result data from [18].

In later chapters, we acknowledge that the transmission reach for a tra�c demand

d depends on many factors such as bit rate of the demand Rd and its spectral e�ciency

⌘d (⌘d = Rd/B, where B is the bandwidth needed). We formulate a linear relationship

between transmission reach and these two factors as

Tr = ↵R�1
d + �⌘�1

d + � (2.1)

where, ↵ = 18600, � = 8360, � = �250 are coe�cients derived from polynomial curve

fitting based on experimental data in [18] when Tr is in unit of km, Rd is in unit Gbps

and ⌘d in unit b/s/Hz.

2.4 Wavelength and Modulation Conversion

Wavelength continuity requires that each tra�c demand only use one wavelength

for the whole lightpath. As the network load increases, when wavelength continuity

is enforced the spectrum becomes fragmented causing ine�cient wavelength usage.
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Sometimes, in order to defragment the spectrum, we want to convert wavelength

along the lightpath, so that it can be re-used by other demands. Such conversion is

usually done in the electrical domain, implying OEO conversion. In this thesis we

assume that wavelength conversion can only be implemented at the RNs.

In EON, each node is equipped with bandwidth variable transponder which sup-

port multiple modulation schemes. It is then possible to convert the modulation

scheme to fit the TR requirement. (We discuss this further in Chapter 5.) Modula-

tion conversion is also assumed to be performed only at the RNs.

2.5 Tra�c Profile

When designing fiber optic networks, tra�c can be categorized in several ways. For

static networks, the tra�c is described as a demand matrix representing the statistical

tra�c demand between node pairs. For dynamic networks, the tra�c can be an

arrival-termination model where call demands arrive at the network edge nodes, and

last for a period of time before termination. It can also be in the form of a lasting

data stream with variable volume.

In our work we assume a uniformly distributed tra�c demand assignment through-

out the nodes. Unless stated otherwise, each demand has bit rate uniformly dis-

tributed from 1 to 100 Gbps. For static tra�c, all demands are assumed to arrive

at the same time and hold forever. For dynamic tra�c, we use a Poisson arrival-

termination model and each demand arrives at a particular time and lasts for an

exponentially-distributed period of time. The network load for dynamic networks is

measured in Erlangs, which is the product of the mean arrival rate and the mean call

duration time, assuming the call arrivals are Poisson distributed and call durations

are exponential distributed. For simplicity, we set the mean call duration to be one

second and adjust the load by adjusting the arrival rate.
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2.6 Tra�c Grooming for Optical Networks

We point out that optical networks have a huge bandwidth: a single optical fiber

strand has over ten THz bandwidth and a single wavelength channel has 50 GHz.

Assigning a single wavelength channel exclusively to tra�c with a low bit-rate such

as several Gbps or lower causes a waste of optical spectrum.

Tra�c grooming is an operation that merges low bit-rate new tra�c with other

new tra�c or existing tra�c into higher bit-rate stream that can be accommodated

as a single lightpath using a RWA algorithm. By grooming new tra�c onto exist-

ing lightpaths, the available spectrum in the wavelength channel can be better used,

thereby increasing the spectrum usage e�ciency and reducing the blocking proba-

bility. Another benefit of tra�c grooming is to reduce the number of costly optical

transponders.

Tra�c grooming has also attracted research interest in EON architectures (dis-

cussed in the later chapters) [19]. In EON the spectrum allocation is flexible and

can be tuned small enough to fit ’small’ tra�c requests. Nevertheless, if too many

lightpaths are established, spectrum is wasted on guard bands that separate the

neighboring channels. Tra�c grooming is realized by assigning separate subcarriers

assuming an orthogonal frequency-division multiplexing (OFDM) modulation at the

optical transponders used by existing lightpaths. In [19], the authors assign di↵er-

ent weights to the optical spectrum, transponders, and existing lightpaths in their

weighted Dijkstra’s shortest-path algorithm for grooming, routing, and spectrum as-

signment.

Common tra�c grooming is performed in the electrical domain at nodes in the

network. This implies that tra�c grooming can be done at either the source and

destination of the lightpath, or at any intermediate node where tra�c undergoes

OEO conversion. For other transparent intermediate nodes, tra�c grooming is not

possible. Tra�c grooming is also presumably not allowed to a↵ect existing tra�c:
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those signals do not undergo new OEO conversion for the sole purpose of grooming

new tra�c. New tra�c, however, can be configured to purposely undergo OEO

conversion at certain points to groom with other new tra�c.

When implementing tra�c grooming in RWA (we call it grooming, routing and

wavelength assignment, GRWA), depending on the location of the tra�c grooming, it

can be categorized as source grooming, destination grooming and intermediate node

grooming. Note that a connection may go through multiple new and existing light-

paths, and each lightpath can go through several fiber links with spectrum continuity,

which is called multi-hop tra�c grooming in [20]. If the grooming is not between traf-

fic demands that share the same source and destination pair, rerouting of the new

demand is necessary. In order to balance the excessive spectrum usage from rerout-

ing and the saved spectrum from grooming, certain strategies have to be adopted, as

discussed in Chapter 3 where we design a heuristic GRWA algorithm that takes this

into account.
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Chapter 3

Centralized Heuristic GRWA

Algorithm for Translucent WDM

Networks

3.1 Introduction

Routing and wavelength assignment (RWA) algorithms for dynamic networks aim to

reduce the blocking probability of call demands often caused by the lack of available

network resources and unacceptable signal quality. As the tra�c volume on fiber optic

networks continues to increase, the RWA becomes more important, since adding more

fibers and devices is not economically attractive.

Tra�c also becomes increasingly heterogeneous and low bit-rate tra�c reduces

the spectrum utilization e�ciency for traditional fixed-grid optical networks. Even

with wavelength division multiplexing (WDM) and mixed line rates (MLR), channel

resources may still be poorly utilized, i.e., some call requests may be blocked due to

unavailable high-quality channels when the network is congested. For the 10-100 GHz
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bandwidth on each channel to be e�ciently used, lower rate tra�c must be combined

into higher rate transmissions, a process called tra�c grooming.

Grooming allows several calls to share a channel when their data rate requests

combined is less than the channel capacity. Therefore, network resources are more

e�ciently used and the overall throughput is increased. Using currently deployed tech-

nology, grooming can only be done in the electrical domain, so regeneration-capable

nodes (RNs), where signals undergo regeneration, have the added functionality of

providing opportunities for grooming. We present an algorithm that jointly performs

the grooming, routing, and wavelength assignment (GRWA) functions for dynamic

tra�c, where call requests arrive and must be configured in real-time, to improve the

overall throughput of the physically impaired translucent optical networks.

In this chapter we consider a heterogeneous network using multiple data rates,

depending on the transceiver equipment that has been installed at the nodes. These

types of networks have been the subject of several studies [16, 17, 1]. Our work

addresses this joint GRWA for dynamic networks with physical impairments.

3.2 Regenerator Placement and GRWA Algorithm

We incorporate the physical impairments (PI) into our GRWA algorithm by imposing

a limit on the transmission reach (TR), as was proposed in [1]. Using a heuristic

method, they estimate the optimal TR’s for di↵erent data rate signals: TR = 1 for

10 Gbps calls, TR = 2500 km for 40 Gbps calls, and TR = 2000 km for 100 Gbps

calls. We use their regeneration algorithm, which is optimized for when the TR’s are

fixed for channel bandwidth and regeneration is performed as needed.

For the sake of consistency in TRs, we use as an example for our technique the

same network topology as used in [21], shown in Fig. 3.1. This topology consists of 24

nodes and 43 bidirectional links, each of which is marked in the figure with its physical
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Figure 3.1: NSF-24 network with marked regeneration nodes

length in km. RNs are marked using a shadowed circle. The network contains no other

regeneration except for standard periodic amplification and dispersion compensation.

OEO resources are available to each wavelength for each port at the RNs.

Due to their high cost, regenerators typically cannot be used at every node. How-

ever, a network without any RNs (such a network is called opaque) cannot satisfy the

QoT requirement for long-distance high-data-rate tra�c. We consider a translucent

network, where only a selected few nodes have regeneration capability. For these

networks two problems exist: the regenerator placement problem (choosing which

nodes to assign regenerators) and the regenerator allocation problem (if and which

regenerator to use for a call’s regeneration needs). In [21], four di↵erent regenerator

placement algorithms are compared. The most powerful is a heuristic algorithm called

signal quality prediction based (SQP), which takes the TR as a constraint to search for

regenerator locations. We use this algorithm in our work, and, for consistency, also

use their QoT constraint (TRs). For example, if we assign 40% of the nodes as RNs,

using this algorithm nodes {6, 7, 9, 10, 12, 13, 16, 17, 21, 22} in Fig. 3.1 are selected as

RNs. To solve the regenerator allocation problem, [22] uses a distance-hop shortest
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path (DH-SP) for routing, and regenerates calls as needed. In addition to the DH-SP,

our work also considers rerouting the call to an alternate path if there is no available

regeneration resources along its shortest path. In this case, the algorithm searches

for all RNs and reroutes to one for which there is an available wavelength and the

TR is satisfied. Rerouting allows calls to be serviced that would otherwise be blocked

either by regenerator shortage or PIs.

Grooming must typically be done electrically so that di↵erent calls can be multi-

plexed into (groomed onto) one signal channel and travel (through one or more links)

as one call by, for example, time division multiplexing (TDM). They can eventually

be de-multiplexed at either another RN or at the receiving node.

The grooming algorithm we propose is as follows:

Step 1. Look for existing calls that share the same source and destination with the

new call. Merge the two calls if the free capacity is larger than the data rate

request of the new call.

Step 2. If Step 1 fails, look for existing calls that regenerate (or groom) at RNs with

enough free capacity (same criteria as in Step 1). If there is one, then adjust the

link distance of those links that connect to the RN to Dadj = D ⇤ (µr

a�µr

b

µr

a

) to

encourage rerouting to the grooming link in the shortest-path algorithm. Dadj

is the adjusted link distance, D is the original link distance in km, µr
a is a cost

assigned to the lightpath that the new call is being groomed on, µr
b is the same

cost assigned to the lowest-rate lightpath for the new call. The costs capture

the cost of interfaces and, based on industry trends, the volume discount (large

data rate interfaces cost less per Gbps than low data rate interfaces). We use

µ = 1 for 10 Gbps, µ = 3 for 40 Gbps, and µ = 5 for 100 Gbps links. Note that

Dadj is only a temporary setting (used to calculate the shortest path), and is

reset to its original value D for new calls.
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Step 3. Calculate the DH-SP for the call. If the DH-SP travels through one of the

RNs that was adjusted in Step 2, then grooming occurs on that node.

Step 4. Tra�c is groomed on all or part of the lightpath (from an RN to the desti-

nation). For the non-groomed part, we look for a RN with available resources,

so we can groom on those segments (from RN to RN).

Step 5. After exhausting all possible grooming opportunities, we look for a new

wavelength for the not-yet-groomed portion of the route, using a successive

first fit (FF) scheme. TR is checked, rerouting the call if the TR constraint is

not satisfied.

A call is accepted if it is groomed (partially or entirely) and ungroomed segments are

assigned a new wavelength. It is blocked if neither grooming nor a new wavelength

is available.

3.3 Numerical Results

In our simulations, we generate 10,000 call requests between each node pair randomly

using a uniform distribution. The call requests are Poisson distributed in time. In

order to simulate di↵erent network applications’ requirements for data rates, we model

20% of the calls requesting 10 Gbps, 60% requesting 11 Gbps, and the remaining 20%

requesting 60 Gbps. We use the network shown in Fig. 1, with 8 wavelength channels

in each fiber. In order to meet di↵erent tra�c volume needs, two of the eight channels

can support 10 Gbps, four channels support 40 Gbps, and the remaining two can carry

up to 100 Gbps.

The goodput is defined as the data rate successfully admitted onto the network

divided by the data rate requested. In Fig. 3.2, the goodput of the networks is given

for both grooming and no-grooming cases, for di↵erent loads. As the load increases,

the goodput decreases due to the system becoming congested; yet the goodput for
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Figure 3.2: Goodput using grooming and no grooming versus load

the grooming case decreases slower than for the no-grooming case. Grooming avoids

wasting free channel capacity by allowing new calls access to it. In Fig. 3.3 we show

that for any given time slot, the grooming case can fit more calls into the network than

the non-grooming case. Instead of simply blocking a new call because all channels are

being used, the grooming algorithm looks for available free capacity in used channels,

so the blocking probability decreases, as shown in Fig. 3.4.

In Figs. 3.5 and 3.6, we investigate the e↵ect of the number of RNs on goodput

and blocking probability, respectively. As the number of RNs increases, the goodput

increases because more grooming opportunities are created and regeneration require-

ments are being satisfied. But marginal improvement decreases when the number of

RNs reaches around 10 nodes (10% of the maximum goodput). The remaining nodes

not selected as RNs are used by few lightpaths, and would therefore rarely be selected

for grooming and regeneration.
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Figure 3.3: Ongoing calls during simulation using grooming
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Figure 3.4: Blocking probability using grooming and no-grooming versus load
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Figure 3.6: The e↵ect of number of regeneration-capable-nodes on the blocking prob-
ability, load is 100 Erlangs
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3.4 Summary

In this chapter, we propose an algorithm to dynamically make grooming and RWA

decisions for real-time tra�c so that the goodput (overall throughput) of the network

is maximized and the blocking probability is minimized. The benefits of grooming are

quantified. The sensitivity of these metrics to the number of regeneration nodes is also

discussed. This approach can be used by networks designers to trade-o↵ regenerator

cost with network performance.
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Chapter 4

Distributed GRWA for Dynamic

WDM Networks Using Ant Colony

Optimization

4.1 Introduction

In the previous chapter, we propose a centralized GRWA algorithm. Although cen-

tralized algorithms often benefit from global information and yield better GRWA

solutions, a distributed algorithm may be preferable when information sharing is lim-

ited (e.g., multi-domain information segregation). Because distributed algorithms do

not require a central node or control message flooding (current popular routing algo-

rithms require network state information disseminated throughout the entire network

whenever its state changes), they benefit from quick connection setup and control

information isolation. Also, distributed algorithms show improved scalability in case

of network expansion or multiple domains. In this chapter, we compare a highly op-

timized distributed algorithm to a centralized algorithm and show the di↵erence in

their blocking performance.
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Ant colony optimization (ACO) is a meta-heuristic method inspired by ants’ for-

aging behavior in nature. ’Real’ ants are able to find the shortest path between

their nest and a food source. This behavior is a fundamental combinatorial opti-

mization problem – optimization based on varying certain parameter(s) to maximize

the goodness of the solution. Ant colonies achieve this goal with simple individual

agent complexity and limited indirect interaction. Colorni and Dorigo first proposed

the ACO algorithm for solving the traveling salesman problem after noticing ant

colonies’ capability [23]. ACO has been widely applied to solving RWA problems in

optical networks. For optical packet-switched networks, Di Caro et al. proposed an

algorithm named AntNet [24]. Pedro et al. proposed an ACO algorithm that solves

the RWA problem for optical burst-switched networks [25]. Garlick et al. [26] and

Ngo et al. [27] implemented an ACO on the dynamic RWA problem, in which path

length and wavelength availability are used to measure the goodness of lightpaths.

Bhaskaran also solved the dynamic RWA problem using ACO with separate ants dur-

ing the RWA selection phase to test if the previously collected information is still

up-to-date [28]. Kim designed an ACO model to include multiple virtual sub-colonies

of ants where each sub-colony holds a di↵erent quality-of-service (QoS) requirement

[29]. Mapisse et al. created a variation of ACO that launches additional child ants to

perform a local search based on the solutions found at that point [30]. Wang et al.

implemented an ACO to solve the routing and spectrum assignment (RSA) problem

for elastic optical networks [31]. Pavani et al. proposed to extend AntNet in order to

solve network restoration problems for WDM networks [32].

To the best of our knowledge, no ACO algorithm has been proposed to handle

tra�c grooming and physical impairment issues. In Li et al. [33], although they claim

their ACO includes tra�c grooming, it is not included in the ACO mechanism but

only considered when lightpaths are constructed. Physical impairments, which are not

considered in the previous literature, are critical in long-haul fiber optic networks since
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they a↵ect the quality of transmission (QoT); therefore, they should be included in the

ACO as well. In this chapter we show physical impairments and tra�c grooming can

be incorporated directly in ACO; dynamically varying parameters can adapt to the

tra�c characteristics, and the optimization of parameters shows the desired balance

between performance and control overhead.

In most previous ACO work such as [24, 25, 26, 27, 28], shortest path routing (SP)

and adaptive shortest path routing (ASP) are used to compare with ACOs. Since a

centralized algorithm that includes physical impairments and tra�c grooming does

not seem to exist in the literature, we also propose an algorithm that we call the

grooming-adaptive shortest path algorithm (GASP). It incorporates the network state

(with tra�c grooming information) into a dynamic logical topology and optimizes over

global information.

In order to deploy ACO, a comprehensive analysis of the e↵ect of various pa-

rameters is necessary. Our simulations show insight into the performance of ACO in

solving GRWA for fiber optic networks. Although a great amount of research has been

done on how to implement ACO in solving the RWA problem for optical networks,

not much work has been done on how to configure the ACO system to optimize the

process itself. Despite the fact that there are some general guidelines on how di↵erent

configurations a↵ect ACO behavior, when implementing ACO for a particular task,

such as GRWA, the problem needs to be put into that unique perspective to deter-

mine how the eventual solution is a↵ected by various configurations. This chapter

aims to investigate this relationship in depth.

The chapter is organized as follows: Section 4.2 explains the details of our ACO al-

gorithm and its innovation over previous ACO algorithms. In Section 4.3 we propose

the ASP algorithm with tra�c grooming. Section 6.4 includes comprehensive simula-

tion results that compare the algorithm with other algorithms and show how di↵erent
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system configurations a↵ect network performance. Finally, Section 4.5 summarizes

the chapter.

4.2 Ant Colony Optimization

Ant colony optimization is a meta-heuristic algorithm that is inspired by ants in na-

ture. An ant colony is seen as being able to find the shortest path between the nest

and a food source in food foraging behavior, without either sophisticated individual

or central control units. Such behavior also shows high adaptivity to changes in the

environment, such as a sudden obstacle along its path. Because of the simple pro-

cessing of each individual ant, no direct contact and exchange of information between

them is supported. Instead, ants communicate with each other indirectly by chang-

ing the environment using pheromones (such behavior is called “Stigmergy”). Ants

sense the pheromones left by other ants and make their movement decisions based on

this information. In algorithm design, this movement is modeled as a probabilistic

behavior [23].

In communication systems, agents mimicking the ants can be used to survey net-

work state information, which is then used for GRWA decisions. The simplicity of

ACO agents along with their simple method of communication reduces the complex-

ity of the control and management mechanism compared with centralized algorithms

and is therefore preferable for designing a transport-sized network GRWA algorithm.

Throughout network operation, ants travel through the network between neighboring

nodes. At each node, the ants leave a numeric marker mimicking the pheromone

that indicates the quality of its last move, such as the physical length, free spectrum,

available regeneration resources, etc. The pheromone then a↵ects the movement of

ants that arrive in the future.
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The pheromone levels are represented by ⌧ (k)i,j where, k is the node that the ant

is currently located at, i is a neighboring node of k, and j is the ant’s destination

node. The value of ⌧ (k)i,j represents the goodness of choosing link (k, i) on its path to

destination j. In Table 4.1, a pheromone table is shown for node 8 in Fig. 5.2. The

column indices refer to the destination of the path from node 8, and the row indices

are the neighboring nodes of node 8. Since the ant’s movement follows a probabilistic

behavior, for each destination the probability of choosing neighboring nodes should

sum to one, which means the sum of each column in the pheromone table is one.

Table 4.1: Pheromone Table at Node 8 of Fig. 3.1.

1 2 . . . 24

5 ⌧ (8)5,1 ⌧ (8)5,2 . . . ⌧ (8)5,24

7 ⌧ (8)7,1 ⌧ (8)7,2 . . . ⌧ (8)7,24

10 ⌧ (8)10,1 ⌧ (8)10,2 . . . ⌧ (8)10,24

4.2.1 General ACO Approach to RWA

We begin by describing a general ACO used for RWA [28, 34], which does not consider

tra�c grooming and physical impairments, and then describe our enhanced design

that takes these factors into consideration.

In ACO, ants are sent from each node to each destination simultaneously. The

ants follow di↵erent paths by making a statistical decision from one node to the

next. They collect network state information, including wavelength usage, grooming

opportunities, etc., along the way. Using this network state information to calculate

the ’goodness’ of the solution lightpath they find when they arrive at the destination,

they then travel back to their sources and update the pheromone levels according to

this ’goodness’. Pheromone levels at each node also evaporate after all ants finish
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their round-trip. This multi-ant round-trip process is considered as one ACO launch

cycle and is performed many times before an optimal solution emerges.

At the start of the algorithm, an initial pheromone level ⌧0 is given to each node

as ⌧0 = 1/(ND), where N is the total number of the nodes and D is the diameter

of the network (the length of the longest shortest-path among all node pairs). This

initial pheromone is chosen because the new pheromone laid by ants is based on the

physical distance of the lightpaths. At time t an ant heading for node j that arrives

at node k makes its next move decision using

pij = ⌧ (k)ij (t) (4.1)

as the probability that the ant picks node i for its next move. Prior research has

included instantaneous wavelength usage information at node k to help the ant decide

on its next move, mimicking ants’ limited visibility [23, 33]:

pij = (1� �)⌧ (k)ij (t) + �!k,i (4.2)

where, !k,i is the fraction of wavelengths that are free on link (k, i), and � is a

parameter used to weigh the importance of wavelength usage information.

When an ant reaches its destination, it then traverses backwards following the

reverse route back to its source. As the ants return home, they update the pheromone

table at each node as (subscripts representing the nodes are omitted here):

⌧(t+ 1) := ⇢⌧(t) + (1� ⇢)�⌧ (4.3)

where

�⌧ =
1

L
(1 + ↵!) (4.4)
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is the pheromone modification made by ants, L is the distance of the route in 100 km,

! is the percentage of free wavelengths on that route, and (⇢,↵) are design parameters

that can be tuned to optimize the system performance. Equation (4.4) captures the

main metrics of “goodness” of a lightpath, which are the physical distance L of the

lightpath and the wavelength availability !, and shows that a lightpath becomes more

preferable if it has a shorter length and more free wavelengths compared to others. If

a uniform link length is assumed, using L is equivalent to using the number of hops in

the lightpath. In our study, the physical distance has greater importance because we

consider physical impairments, which depend on the distance that the optical signal

traverses. In WDM networks, wavelength availability measures the congestion level

of a path.

After all ants finish their trip back to their source nodes and perform (4.3), the

pheromones evaporate at all nodes according to:

⌧(t+ 1) := (1� ⇢)⌧(t) + ⇢⌧0 (4.5)

to avoid stagnation. Equation (4.3) is called the global pheromone update and is

carried out at only those nodes along the ants’ paths. It has the e↵ect of reinforcing

the pheromone for each successful path for future ants to follow. Equation (4.5) is

called the local pheromone update and is carried out on all nodes. It has the e↵ect of

lowering the pheromone towards the initial level so that ants have a chance to explore

new paths. These two pheromone update processes combined with the exploration

of ants compose one cycle of the ACO algorithm. It takes a number of cycles for the

ants to cover the entire network and find the best solution.

In addition to updating the pheromone levels at the nodes, each surviving ant

also stores its successful path at its source node and all intermediate nodes to form

a candidate route list. The order of this list is based on �⌧ in (4.4), which depends
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on the distance and free wavelengths on the route. As the network state changes this

list is updated continuously by the ants.

With the general structure of the ACO algorithm established, we modify the

pheromone update mechanism to consider physical impairments and tra�c grooming

next. The performance of ACO is also improved by modifying the ants’ behavior.

4.2.2 Proposed Enhancements

Based on the general ACO structure described above, we extend the algorithm to fit

our problem requirements and increase its e�ciency. We make the following changes

to the general structure:

Mixed line rates

In our MLR network model, each wavelength is assigned a di↵erent fixed line-rate (10,

40, or 100 Gbps). This fact is addressed by having three sub-colonies of ants, with each

sub-colony representing one line-rate. This also means that we have three di↵erent

pheromone tables, one for each line-rate, and eventually three di↵erent candidate

route lists. Ants belonging to di↵erent sub-colonies are launched separately, and they

do not a↵ect and are not a↵ected by other sub-colonies.

Physical impairments

Ants representing di↵erent line-rates enforce di↵erent TR requirements. Each ant

keeps a record of the distance it has traveled since its last regeneration, and chooses

only among those neighbors that do not exceed its TR for its next move. At inter-

mediate nodes that are equipped with 3R regenerators, the ants by default consider

themselves regenerated, and therefore their distance traveled is reset. This assump-

tion is reasonable as OEO converters are usually available; we showed in Chapter 7

that for a network with a similar scale as in Fig. 3.1, the number of regenerators

needed is reasonably low.
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Random walk

To further increase the randomness of the ants’ movement to avoid pheromone stag-

nation, we allow ants to make a uniform selection for its next hop from neighboring

nodes with a given probability. The probability that an ant chooses any neighbor

node i for next move at node k becomes:

pij = (1� r)[((1� �)⌧ (k)ij (t) + �!] +
r

Nk
(4.6)

instead of (4.2), where Nk is the number of nodes neighboring k without counting the

node the ant just visited, and r is a parameter denoting the probability that an ant

makes a random walk.

Backtracking

During its exploration, an ant may reach a dead-end such that all choices for the

next move have already been visited, there are no available wavelengths towards

any neighbor, or no next move can satisfy the TR requirement. In such situations,

we can either simply remove the ant from the network or allow it to backtrack to

its previously visited node and choose a di↵erent path. In [25] no backtracking is

allowed. In [32] a random next hop is selected when a dead end is formed by a

loop. In our study, we consider the launching of ants as a costly operation since it

introduces control overhead, and try to make each launched ant successfully reach its

destination. Therefore we encourage ants to search for a viable solution by introducing

backtracking, a method similar to [32] but with some critical di↵erences. Whenever

an ant encounters a dead end, it backtracks to the previously visited node and makes

a new next-hop decision without considering the node that it moved back from. This

process repeats until a viable path is found or all options are exhausted. In the latter

case, it then retreats one step further to the next upstream node, until it either finds a

viable solution, moves back to its source node, or surpasses its time-to-live (TTL); in
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the latter two cases, the ant is removed. Note that pheromone values are considered

even after backtracking, which shows an e↵ort to use long-term information as much

as possible. By doing this, we reduce the number of ants being wasted and improve

our algorithm’s e�ciency. It may be argued that backtracking may lead to ’bad’

solutions with unnecessarily long paths. We show that this does not happen because

the pheromone update depends on the goodness of the path, so long paths do not

greatly a↵ect pheromone tables.

Tra�c grooming

When ongoing tra�c is being transmitted in the network, resource usage information,

such as wavelength and routing assignment and connection duration, is recorded

at each node that is on the lightpath. Each node keeps a list of ongoing tra�c

that includes connections initiated at that node and transient tra�c. Since this

information is essential to tra�c grooming, ants can consider this information when

exploring the network.

If the ant is at a regeneration node, grooming opportunities can be noted and

picked up by the ant through the following steps:

Step 1 : Before performing (4.6), the ant first checks for destination grooming oppor-

tunities (i.e., an existing lightpath that has the same destination and enough

free capacity). The segment that leads the ant directly to its destination is

always chosen for its next move, which is e↵ectively destination grooming.

Step 2 : In order to introduce randomness for exploration purposes, ants make a

random choice to either perform this step or not at each regeneration node.

If step 1 fails, the ant randomly chooses a lightpath segment that leads to a

regeneration node which is not its destination for grooming opportunities. If the

available capacity of the chosen segment fits the connection request’s bit-rate

requirement and no nodes along that segment have been visited by the ant (to
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avoid loops, which cause a waste of physical resources by re-visiting the same

node), it picks that segment as its next move.

Step 3 : If no grooming opportunity is found, the ant looks for a non-grooming move

according to the probability assignment in (4.6).

Since tra�c grooming does not assign new resources to the newly groomed connection,

it is highly desirable when performing GRWA. Therefore, the ability of grooming

new tra�c with our existing connections should count towards the goodness of a

lightpath. Recall in (4.4) the goodness is measured based on the lightpath length

and the number of free wavelengths on it. In order to include grooming into our

calculation of goodness, we add two modifications to the calculation of how much

pheromone to deposit: 1) a grooming segment is considered as having all wavelengths

free (i.e., ! = 1), due to the capability of wavelength conversion, and 2) a grooming

segment is considered to have zero length, i.e., L = 0 (if the whole lightpath is a

grooming opportunity, its length is set to be the length of its shortest link). Based

on (4.4) these two modifications greatly encourage the selection of lightpaths with

grooming opportunities.

4.2.3 Algorithms

To summarize our ACO algorithm we show the pseudo-code, which consists of two

parts. Algorithm 1 shows an ant foraging cycle, made up of a lightpath exploration

stage followed by a pheromone update stage. In the first stage, ants follow the rules

described above to explore the surrounding network state; in the second stage, ants

travel back to their source nodes, update pheromone levels along the way based on the

lightpaths’ goodness measure, and store route information in the GRWA candidate

lists. Foraging is performed repeatedly with an ant launch rate that depends on the

tra�c load. Since the ant foraging process takes a short time compared to the interval
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between connection request arrivals, during this process the network state is assumed

to be unchanged.

Algorithm 2 shows what happens when a connection request arrives. A GRWA

decision for the connection request is made based on the network state information

provided by the ACO in the previous section. The grooming and routing approach

uses the candidate list provided by the ACO. The wavelength assignment employed

is the first fit algorithm (FF), where the lowest indexed wavelength available is tried

first. Lower line-rate channels are given lower wavelength indices, which is important

because assigning an unused channel of a high line-rate to to low data-rate connection

is both a waste of resources and introduces unnecessary TR constraints. When a

connection request arrives, the source node picks the route from the top (highest

�⌧) of the candidate route list created by the ants and inquires from the nodes

along that path whether physical resources (wavelength and OEO circuits) are still

available. If so the lightpath is reserved and the connection request is accepted. If

the first solution is not available at that time for any wavelength, the next route is

checked. If a route is found to be unavailable, it is removed from the list so that

the list can be repopulated by future ant foraging cycles. If a connection chooses a

route that is marked as containing grooming opportunities, it tries grooming first. If

the grooming opportunities no longer exist, it then tries a non-grooming solution. If

a non-grooming route is chosen, then wavelength assignment proceeds, favoring the

lower-indexed (lower line-rate) channels first.

4.3 Grooming Adaptive Shortest Path Algorithm

Since we have not seen a dynamic centralized algorithm that incorporates regener-

ation, physical impairments and tra�c grooming published in the literature, in this

section we propose one that we call the grooming adaptive shortest path algorithm
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Algorithm 1: Ant Foraging Cycle;
for each line-rate wavelength (total of 3, i.e., 10/40/100 Gbps) of each node
pair in network (s, d) do

Launch one ant from s to d with probability PL;
end
for each ant (in parallel) do

while current node i 6= d and TTL > 0 do
if found a next hop then

Move to next hop and decrease TTL;
else

Backtrack to its previous visited node;
end
if TTL=0 or i = s then

Kill ant, exit loop;
end

end
After i = d, travel back to s
while current node i 6= s do

Follow the same route back;
Update the pheromone at node i using (4.3);
Store sub-route information at i;

end
Update the pheromone at node s using (4.3) and store route information at
node s.

end
for each line-rate wavelength at each node do

Evaporate pheromone using (4.5);
end

(GASP). This centralized algorithm requires complete current network state informa-

tion, so must be computed on-line as call requests arrive.

In the Dijkstra shortest path (SP) routing algorithm [35], a shortest path tree is

created for each node towards all other nodes in the network. The branches of the tree

are the routes connecting the node pairs. The SP branches are created by following

the rule that only the shortest route is kept, and thus the shortest path between all

node pairs can be found. When used in a dynamically changing topology, the shortest

path routing algorithm becomes the adaptive shortest path (ASP) algorithm.

Unlike the traditional ASP algorithms, where one shortest path is calculated for

each wavelength based on the current network state and then a shortest path among
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Algorithm 2: GRWA;
for each demand request do

while no lightpath found do
Select route stored at the top of the candidate list;
if resources available on chosen route then

if grooming lightpath is chosen then
groom tra�c if grooming opportunity still available

else
Select the first available wavelength;
Set up a lightpath;

end
else

Remove route from candidate list;
end

end
if all routes have been tried then

Consider the request blocked;
end

end

all wavelengths is used, our GASP algorithm considers all wavelength at once in order

to account for wavelength conversion functionality (a side e↵ect of regeneration). For

dynamic systems, not all wavelengths are available, and grooming opportunities need

to be represented. We modify the Dijkstra algorithm by introducing additional checks

for wavelength continuity, as well as TR and grooming opportunities. In each step of

the Dijkstra algorithm, the distance between a leaf node and the root is only updated

if all three criteria are met for the new route:

1: It has a shorter distance compared to the previous one.

2: It has at least one free wavelength (including possibly a grooming wavelength).

3: It does not violate the TR constraint.

The first criterion is the same as the traditional SP except that the portions of

the lightpath groomed onto existing tra�c are assigned zero length; the second is

implemented by having each node keep a record of the current wavelength mask with

respect to the root. When a new route is about to be created, the mask of the previous
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branch node and mask for the link that connects to it are used to make sure there

exists an available wavelength. Once a regeneration node is selected, the mask is

reset. Finally the third criterion is implemented by having each node keep a record of

the current TR distance since the last regeneration. The TR distance is the length of

the link that connects to this node plus the TR distance of the previous branch node.

The TR distance is the path distance over a transparent segment (no regeneration),

so it is reset to zero once a regeneration node is traversed. Only transparent segments

with TR distance within the TR limit are selected.

After a route is selected using GASP, wavelength selection for each transparent

segment follows the FF rule. Note that the wavelength could vary along the route

depending on the wavelength conversion operation at regeneration nodes.

The static shortest path (SP) and fixed-alternate (FA) algorithms [36] are often

used to compare with newly proposed ACO algorithms [24, 25, 26, 27, 28]. Since

no existing dynamic algorithm includes TR constraints and tra�c grooming, we also

provide a comparison with these two algorithms. In SP, the shortest path (in number

of hops) between each node pair is always used for tra�c between them; in FA, while

using the shortest path as the first choice, a second path (usually link-disjoint) is

used as the alternative choice if the shortest path is unavailable because it is fully

occupied by existing tra�c. Although we consider regeneration and tra�c grooming

in both algorithms, we show below that they underperform against the two proposed

algorithms due their lack of flexibility compared to adaptive routing.

4.4 Numerical Results

We test our ACO algorithm using the NSF-24 network shown in Fig. 3.1. There are

24 nodes; links are considered as a pair of uni-directional fibers. Each fiber carries

32 wavelengths (eight 10 Gbps, sixteen 40 Gbps, and eight 100 Gbps channels).
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Figure 4.1: Blocking probability of ACO with implementation of tra�c grooming and
TR (NR = 3, NC = 1, PL = 1, TL = 30, ⇢ = 0.7).

The 10 shaded nodes in the topology are chosen as regeneration nodes following

the algorithm in [21]. During our simulation, connection arrivals are modeled as a

Poisson process. The bit-rate of the requests ranges from 1 to 60 Gbps uniformly.

The connection duration is exponentially distributed with an average of one arbitrary

time unit (h = 1). The tra�c load (E, in Erlang) then is adjusted by changing the

connection request arrival rate, �, with the formula E = �h. In this section we first

show the dependence of the ACO performance on various parameters to optimize it

for our topology, then compare it with the centralized GASP algorithm.

4.4.1 Optimizing ACO configuration

In order to implement ACO with a certain confidence, we should understand its many

configurations and how they a↵ect the overall system performance collectively and

separately. We perform tests to show the impacts of several aspects of the design on

system performance.
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In this chapter our main goal is to include new mechanisms such as a TR limit and

tra�c grooming into the design of ACO. TR limits guarantee the QoT for all node

pairs and can be enforced by allowing the signal to be regenerated along the chosen

lightpath whenever necessary. However, this also requires the candidate lightpaths

provided by ACO to include the necessary regeneration nodes. Tra�c grooming im-

proves the physical resource usage e�ciency but also requires the candidate lightpaths

to include such opportunities.

In Fig. 4.1 we see the necessity of implementing new mechanisms into ACO by

comparing our algorithm with previously proposed ACO approaches. When ACO

does not check for TR and tra�c grooming in the foraging cycle, the figure shows

clearly that although the system still tries to find regeneration sites and tra�c groom-

ing opportunities along candidate lightpaths in the GRWA step, without such in-

formation considered in the ants’ exploration, ACO cannot provide good candidate

lightpaths to the GRWA to deploy these mechanisms. Note that the TR limit has

a much greater impact on network performance compared to tra�c grooming (the

curves representing the cases where ACO ignores the TR and where it ignores both

the TR and grooming are indistinguishable). Without knowledge of the TR, candi-

date lightpaths are often those with shortest end-to-end physical distance and many

will fail the TR requirement, thereby blocking requests. Due to this e↵ect, certain

node pairs appear to be unreachable and cause a non-negligible blocking probability

even when the load is low and wavelength blocking is rare (shown as the flat region

of the graph when the load is less than 100 Erlangs). Even though tra�c grooming

opportunities are searched in all cases, candidate lightpaths with tra�c grooming in-

formation tend to provide more chances of enabling tra�c grooming, as shown from

the improvement achieved between not checking tra�c grooming and checking tra�c

grooming. If grooming is not considered by the ACO, those lightpaths often do not

make the candidate list because they tend to be longer.
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Figure 4.2: Blocking probability of ACO with backtracking (NR = 3) and without
backtracking (NR = 1-5).

As mentioned in Section 4.2, backtracking may be considered undesirable in that

it can lead to poor solutions. We argue that such poor solutions, if poor in quality

at all, do not a↵ect the system performance because the pheromone update rule is

based on the goodness of solutions. We also argue that by allowing backtracking,

we can keep the number of ants low, thereby reducing the control overhead (which

is often measured as the ratio of control and management message exchanges to real

tra�c) thanks to the e↵ort to help each ant find a solution. In Fig. 4.2 we show the

comparison between algorithms with backtracking and without. In this figure we also

show the e↵ect of having di↵erent numbers of candidate routes (NR) in the solution

pool on each source node. If no backtracking is allowed, by increasing the numbers of

candidate routes, we increase our options for connection requests, and therefore lower

the chances of having the requests blocked. We can see that due to the improved

e�ciency of having ants backtrack, the blocking performance is improved, even with

a smaller solution pool.
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Algorithm 1 in Section 4.2 is carried out multiple times every fixed time interval,

denoted as T . The number of cycles (NC) determines the level of convergence to

an optimal solution. The duration of T measures how frequently the network state

information is collected and determines how up-to-date the information is. Since

for a given tra�c load the average number of connections that arrive in T is fixed

to be ET/h, we establish this average number of connections as the relative launch

repetition interval (TL, e.g., when E = 100, h = 1, TL = 2 leads to T = 0.02 time unit,

which means on average, two connections arrive before the next launch; Given fixed

tra�c load, by adjusting the average of number of connection arrivals, we can adjust

the interval between two launches, therefore reflecting the launching frequency). The

launch probability (PL) determines the number of ants launched per cycle. These

three parameters together determine the number of ants in the network, which is a

measure of control overhead of ACO. The average number of ants per source node is

calculated using:

Average number of ants = NC ⇥ PL ⇥ E

TLh
(4.7)

In Fig. 4.3 we show the blocking probability with di↵erent NC for each ACO launch,

TL, as well as PL, while keeping the total number of ants launched fixed. Intuitively,

if the tra�c load is high, the network state changes rapidly and requires ants to be

launched more frequently to keep the information up-to-date. When we use many

cycles, we allow pheromones to converge to an optimal solution. TL and PL show the

tradeo↵ between performance and control overhead.

As can be seen in Fig. 4.3, in general, the blocking probability decreases with

more ants in the system. Also, if we set two of the three parameters (NC , PL, TL) fixed

(shown as connected lines in the figure), increasing the number of ants by changing

only the third parameter, we can lower the blocking probability. This shows that no

matter how one chooses to do it, increasing the number of ants decreases the blocking
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Figure 4.3: Blocking probability of ACO with di↵erent ants behavior parameters:
number of cycles NC , launch interval TL and launch probability PL (E = 100 Erlangs,
h = 1 time unit).

probability. We also show in the inset that for a fixed number of ants, foraging can

be organized di↵erently to achieve di↵erent performance. It suggests ACO is more

sensitive to launch interval and launch probability than to the number of cycles.

Since the ants foraging step is a process of exploring possible solutions, in order

to avoid the emergence of sub-optimal (i.e., locally optimal) solutions, certain ran-

domness is preferred. We test the ants survey with di↵erent levels of randomness, as

measured by the probability of ant choosing uniformly among neighboring nodes from

an intermediate node (parameter r) rather than following the pheromones. Note that

this parameter only a↵ects the ants’ movement but does not a↵ect the pheromone

update or the relationship between the pheromones and the GRWA decision. In Fig.

4.4 we show the blocking probability of ACO with di↵erent random walk probabilities.

We test di↵erent launch probabilities to have di↵erent numbers of ants in the system.

We notice that a fairly large level of randomness is preferable since it reduces the
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Figure 4.4: Blocking probability of ACO with di↵erent random walk probabilities r
for various ant launch probabilities PL (NR = 3, NC = 1, E = 400 Erlangs)

blocking probability. For example, for PL = 1, the blocking probability is minimized

for r = 0.8. A total random movement (r = 1) leads to worse performance.

In the previous literature, there are two other di↵erent implementations of ACO,

one assuming a single ant per cycle [25, 26, 27], and the other using multiple ants per

cycle per source node [23]. Both implementations can have the same control overhead

in terms of total number of ants in the network; for example, one cycle of ACO with

three ants per cycle uses the same number of ants as three cycles of ACO with one

ant per cycle. We compare the two implementations with the same number of ants

in the network in Fig. 4.5 where we show the blocking probability of the network.

There is no discernible di↵erence between the implementations. This is because we

model our ACO to have no network state changes between cycles for each launch. It

also shows that NC = 1 with a single ant per cycle is enough to minimize the blocking

probability, especially at high loads.

The performance of ACO is also a↵ected by the rules used for updating the

pheromone levels. In (4.3) and (4.5) we give global and local pheromone update
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Figure 4.5: Blocking probability of ACO with di↵erent configurations: 1 ant per
node pair with NC = 1 and NC = 3; 3 ants per cycle and NC = 1 (NR = 3, PL = 1,
TL = 20, ⇢ = 0.7)

rules, which are both a↵ected by the parameter ⇢. Intuitively, if ⇢ is large, the

pheromone changes slowly; when ⇢ = 1 the pheromone does not update at all. If ⇢ is

small, the pheromone changes drastically, and when ⇢ = 0 the pheromone is always

replaced by the newly deposited amount. In Fig. 4.6 we show the dependence of the

ACO performance on the parameter ⇢. Note that for di↵erent numbers of ants in the

system, as determined by the launch probability PL, the best choice for ⇢ is di↵erent:

for PL = 1, the best ⇢ is 0.8, for PL = 0.1, the best ⇢ is 0.1. We also notice that for

some ⇢, launching more ants does not guarantee better performance. This is due to

a rapid convergence to a suboptimal solution.

4.4.2 Comparison to Centralized Algorithms

After optimizing our ACO over the algorithm’s parameters, we compare it with the

proposed GASP algorithm, which is a centralized optimization algorithm. In Fig.

4.7 we show that GASP benefits from more network state information and provides

50



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.16

0.165

0.17

0.175

0.18

0.185

0.19

0.195

ρ

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y 

 

 

PL=0.1

PL=0.5

PL=1

Figure 4.6: Blocking probability of ACO vs. parameter ⇢ (PL =[0.1,0.5,1], NR = 3,
NC = 1, TL = 30 E = 400 Erlangs)

better GRWA decisions, which causes its blocking probability to be lower than that

of ACO. The ACO’s blocking probability is higher, which shows that with limited

information, the ACO provides worse blocking performance. However, the tradeo↵

of blocking performance and complexity of control mechanism should be considered

by network providers. We also show the blocking probabilities of static shortest path

(SP) routing and static fixed alternate (FA) routing (with one alternate route) for

comparison. The paths in the SP and FA algorithms do not necessarily naturally

satisfy the TR constraints. Therefore, even when regeneration is performed whenever

possible, some node pairs are still unreachable due to the limited routing choices.

When global state information is not available (such as in multi-domain networks)

when GASP cannot be used, ACO should be used instead of SP or FA routing.

In Fig. 4.8, we test both algorithms with varying tra�c load, which simulates

the scenario of a changing tra�c pattern throughout the day. The figure shows

ACO can adapt to the tra�c load change quickly even without a strategy specifically
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Figure 4.7: Blocking probability of ACO vs. GASP and static SP, static FA (NR = 3,
NC = 1, PL = 0.5, TL = 10, ⇢ = 0.5)

defined for such a change. Again, GASP, relying on complete and accurate instantly-

updated global information, shows larger capacity and equally fast adaptivity to

tra�c changes.

The robustness of ACO in case of failure is also an important criterion. In Fig.

4.9 we show a scenario in which link (7, 9) in the network topology of Fig. 3.1 is cut

during operation. This fiber cut a↵ects connections in both directions. The a↵ected

connections are fed back to the system in the incoming queue and assigned possible

alternative routes. As we can see from Fig. 4.9, at the moment of the fiber cut

(time 50) the number of ongoing connections drops abruptly due to the removal of

the a↵ected connections. Then the inset graph details the recovery of the network,

including the reassignment of a↵ected connections and new connections. The ACO is

able to adapt to the failure immediately without a separate restoration mechanism.

Fig. 4.9 also shows several di↵erent configurations of ACO, such as di↵erent launch

probabilities and whether to restrict candidate routes to be link-disjoint. It shows
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Figure 4.8: One realization of real-time ongoing connections using ACO vs. GASP
(NR = 3, NC = 1, PL = 0.5, TL = 10, ⇢ = 0.5, averaged over 60 trials)

again that with higher launch probability, the number of ongoing connections is larger

and recovery is faster due to more ants in the system. It also shows that with a link-

disjoint candidate route pool, there is a better chance for ACO to find an alternative

route that is not a↵ected by the fiber cut, and it therefore recovers faster.

Finally we evaluate the computational complexity and the control overhead of

the ACO algorithm by comparing with the proposed GASP algorithm. Suppose

network state information is collected at each node using ants survey for ACO and

link state advertisement (LSA) for GASP. Upon connection request arrival, each

source node needs perform GRWA decision based on certain algorithm. For GASP

the complexity is similar to traditional Dijkstra shortest path algorithm which is

derived as O(L+N logN) [37], where L is the number of links and N is the number

of nodes. For ACO, however, the solution set is already populated and source node

simply needs to look up this table. Control overhead of an algorithm is defined as the

bandwidth occupied by control messages for GRWA purposes. Control messages can
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Figure 4.9: Ongoing tra�c when fiber cut occurs (NR = 3, NC = 1, PL = 0.5,
TL = 10, ⇢ = 0.5, average over 60 trials)

be separated into two categories: routing messages and connection setup messages.

Since both algorithms use a similar connection setup messaging mechanism, we do

not consider its impact here. Assume link state advertisement (LSA) flooding is

used to update routing information for GASP. For the whole network status to be

updated once, it takes on the order of N2 hops. The time interval between exchanging

messages is TF . The ACO routing message depends on the time the ants spend on

surveying the network, the ant life-time h. The ratio of control overhead is:

⇥ =
hhiPLN(N � 1)

N2

Packet SizeACONC

Packet SizeLSA

TF

TL
(4.8)

where hi means average value. The size of LSA packet is around h�iW excluding

packet header, where h�i is the average node degree, which is 3.5 for the NSF-24

network; the packet size of ACO packet is larger, around hhiW . So the ratio can be

expected to be approximately hhi2P
L

N
C

T
F

h�iT
L

when the number of nodes is large. We show

that the ratio of control overhead between ACO and GASP depends on the relative
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Figure 4.10: Life time of ants, average trip length ⇡ 10

launch interval (TL/TF ), number of cycles per launch (NC), and launch probability

(PL). Fig. 4.10 shows a histogram of h, which ranges from 1 to 50 hops, with an

average hhi ⇡ 10 hops. If we assume LSA is updated whenever a connection is

created and we set ACO as launching ants every 20 connection requests which means

TL = 20TF , one cycle per launch which means NC = 1, and launch probability of 50%

which means PL = 0.5, the ratio is approximately 0.71.

Although not shown in the simulation, ACO reduces the connection setup delay

by performing the route optimization calculation in the foraging process before a

connection request even arrives. When a new request arrives, the edge node simply

looks up the candidate solution table to assign the optimized lightpath. On the other

hand, GASP needs to calculate the best lightpath based on the instantaneous network

state information and this computation introduces a setup delay.
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4.5 Summary

In this chapter we introduce an ACO algorithm for GRWA on a real-time dynamic-

tra�c fiber-optic network considering features such as mixed-line-rate, physical im-

pairments and tra�c grooming. We show the necessity of implementing TR and

tra�c grooming into the ACO foraging cycle. We discuss in detail how di↵erent

configurations of the model a↵ect the overall performance of the system. We also

compare our ACO to a centralized heuristic method. We validate the robustness

of our ACO by testing it on several scenarios, such as non-stationary tra�c statis-

tics and device failures. In the future, we plan to include considerations of limited

hardware resources at nodes, such as transponders and wavelength switches into the

ACO algorithm, implement it for elastic optical networks, and optimize it for energy

e�ciency as well.

56



Chapter 5

RSA for Elastic Optical Networks

using MILP

Compared to legacy wavelength division multiplexing networks, elastic optical net-

works (EON) have added flexibility to network deployment and management. EONs

can include previously available technology, such as signal regeneration and wave-

length conversion, as well as new features such as finer-granularity spectrum assign-

ment and modulation conversion. Yet each added feature adds to the cost of the

network. In order to quantify the potential benefit of each technology, we present a

link-based mixed-integer linear programming (MILP) formulation to solve the opti-

mal resource allocation problem. We then propose a recursive model in order to either

augment existing network deployments or speed up the resource allocation computa-

tion time for larger networks with higher tra�c demand requirements than can be

solved using an MILP. We show through simulation that systems equipped with signal

regenerators or wavelength converters require a notably smaller total bandwidth for

a given data rate, depending on the topology of the network. We also show that the

suboptimal recursive solution speeds up the calculation and makes the running-time

more predictable, compared to the optimal MILP.
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5.1 Introduction

Increasing tra�c volume and growing heterogeneity of bandwidth requirements have

pushed the development of optical transport networks. Using wavelength division

multiplexing (WDM) technology, spectrum usage has greatly increased by allowing

multiple-line-rates and tra�c grooming, which we discussed above. We have intro-

duced several algorithms to implement tra�c grooming for WDM in Chapters 3 and

4. Yet WDM is unable to handle increasing tra�c heterogeneity because of the coarse

wavelength grid employed. Elastic optical networks (EONs), on the other hand, pro-

vide flexibility in both bandwidth assignment (using sub channel granularity and

super channel assignments) and lightpath reconfigurability not available in WDM.

As the technology matures, additional functionality such as modulation selection and

conversion can be added, with the hope of further increasing the spectral e�ciency.

When major additions in physical layer features are being considered, the networks

design should be re-examined to determine the realized benefit gained by their im-

plementation. This chapter presents an optimal routing, regeneration, and spectrum

allocation formulation that is then used to evaluate the merit of wavelength and

modulation conversion on EONs a↵ected by physical layer impairments.

The design of transport networks includes the placement and assignment of all

physical resources, such as optical fiber and electronic devices (transponders, high

speed optical-electrical-optical conversion circuits, etc.). The goal is usually to min-

imize the capital expenditure while fulfilling certain tra�c accommodation expecta-

tions. One common way to solve this problem is to address it as a multi-commodity

assignment by pairing the physical resources with tra�c demands in order to minimize

the resources used by each demand. For example, the tra�c demand can be assigned

the shortest route in order to reduce the cost. Such design principles have been used

to develop many heuristic algorithms for network design [38, 39, 40]. Although these

algorithms are computationally simple, they often yield poor performance when the
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problem becomes complex and consideration cannot be given to all influencing factors.

Another approach is to formulate the resource allocation as an optimization problem

with physical and network layer constraints and use linear programming (LP) to solve

it. The available network resources become the LP design variables. Unlike arbitrary

multi-commodity assignment problems, network design often requires its variables to

be integer or Boolean, which leads to a mixed-integer linear programming (MILP)

formulation. This significantly increases the computational complexity, not providing

an approach that can scale to address larger networks. However, for small networks

and few tra�c demand, the MILP can be solved in reasonable time, and results in

an optimal solution, unlike heuristic algorithms. It does this without requiring a

complete understanding of the relationship between the multiple design factors, as

heuristic algorithms often do [11].

In this chapter we develop an MILP design method for EONs. Our formulation can

implement modulation scheme selection, mid-lightpath modulation conversion (MC)

and/or wavelength conversion (WC), and regeneration circuit allocation (to satisfy

either a quality of service constraint or conversion function). MILP has previously

been used to solve the resource assignment optimization problem in optical networks

[10, 41, 42] and many other optical networking’s key issues, such as: minimizing

capital investment [1], [43], the regenerator placement problem [44], [45], network

restoration [46], and network service capability maximization [47]. However, to the

best of our knowledge, no published MILP solution has included these flexibilities in

an optimal way for designing EONs.

Acknowledging the limitations of the MILP approach for solving realistically

scaled problems due to its computational complexity, we envision the following two

direct uses for our model. The MILP can be solved for a small network to quantify

the potential benefit that can be obtained by implementing a particular feature, such

as modulation conversion, without introducing artificial limitations imposed by a sub-
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optimal resource allocation algorithm. Our approach can also be used on realistic-size

networks to solve for the optimal resource allocation of only a few tra�c demands at

a time. For the o↵-line resource allocation problem (static network), we can partition

the whole tra�c matrix into small sub-matrices, and solve the assignment problem for

the sub-matrices in a sequential manner. By doing this, we are able to greatly reduce

the overall execution time, in exchange for obtaining a suboptimal solution. In the

chapter we discuss the tradeo↵ between complexity and optimality for this approach

that we call the recursive solution. For dynamic networks, we can use the recursive

MILP to allocate resources for one or a few new connection requests given the current

state of the deployed network, as we introduce for WDM systems in Chapter 7.

The rest of the chapter is organized as follows: Section 5.2 explains how we im-

plement the new functionalities with our MILP formulation; Section 5.3 develops our

recursive MILP implementation that balances optimality and complexity; Section 6.4

presents numerical simulation results collected by solving the design problem using

our formulation. Finally, conclusions are given in Section 7.5.

5.2 MILP

In this section, we first introduce a basic link-based MILP formulation that solves a

simple routing and spectrum assignment (RSA) problem, and then extend it to im-

plement signal regeneration and multiple modulation schemes. Lastly we implement

wavelength and modulation scheme conversion. Our general objective is to minimize

the spectrum required by the system, as measured by the maximum frequency allo-

cated over all links. We also examine the impact of simultaneously optimizing the

spectral use and regeneration resources using a multi-objective function.

The network is modeled as a graph G(N ,L) with N nodes and L uni-directional

links. We summarize the set notation used by our model in Table 5.1. The model also
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Table 5.1: Sets used by Basic ILP

N Set of nodes in the network.
L Set of unidirectional links in the network. Each link Lij is repre-

sented by its source and destination node, Lij 2 L.
D Set of unidirectional tra�c demands. Each demand Dsd is repre-

sented by its source node s and destination node d, Dsd 2 D.

Table 5.2: Parameters used by Basic ILP

bsd Bit rate requested by demand Dsd.
⌘sd Spectrum e�ciency according to particular modulation scheme (e.g.,

2 for QPSK).
Sn,sd Relationship between nodes and demands: Sn,sd = �1 if node n is

the source node of demand Dsd (i.e., n = s); Sn,sd = 1 if node n is
the destination node of demand Dsd (i.e., n = d); Sn,sd = 0 otherwise
(i.e., n 6= s, n 6= d).

G Guard band in GHz.

depends on parameters specific to the network configuration and the tra�c demands.

The notation for the independent parameters needed is given in Table 5.2.

The objective function of the MILP is to minimize the highest frequency required

to support the network tra�c:

min
F
sd

,V
ij,sd

,�
sd,s

0
d

0
c, (5.1)

where the optimization variables are defined in Table 7.3. The optimization requires

several constraints, listed below:

• Highest required spectrum:

c � Fsd +Bsd 8Dsd 2 D, (5.2)

where Bsd is the bandwidth required by Dsd for a given ⌘sd, Bsd = bsd ⇥ ⌘�1
sd .
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• Flow conservation constraints:

X

L
ij

2L,j=n

Vij,sd �
X

L
ij

2L,i=n

Vij,sd = Sn,sd

8n 2 N , Dsd 2 D (5.3)

• No spectrum overlap constraints, 8Dsd, Ds0d0 2 D :

�sd,s0d0+�s0d0,sd = 1 (5.4)

Fsd�Fs0d0  T (1��sd,s0d0+2�Vij,sd�Vij,s0d0) (5.5)

Fsd�Fs0d0+Bsd+G  (T+G)

⇥ (1��sd,s0d0+2�Vij,sd�Vij,s0d0) (5.6)

where T is the total spectrum required by the network tra�c, T =
P

D
sd

2D bsd⇥

⌘�1
sd .

Eqs. (5.1) to (5.6) define a general link-based RSA formulation for EON. Together

(5.4)-(5.6) enforce a contiguous spectrum assignment to each demand. Eq. (5.4) says

that for any two demands sd and s0d0 that share a link, one demand has to have a

starting frequency lower than the other, and therefore one of the ordering variables

is zero and the other is one. Eq. (5.5) enforces the necessary relationship between

starting frequencies of the two demands based on the variable �sd,s0d0 . Then (5.6)

forces the starting frequency of the demand with the higher starting frequency to

be far enough away from the starting frequency of the lower adjacent channel, i.e.,

provides room for the signal bandwidth and guard band. These expressions can be

modified to implement the more sophisticated signal processing we consider in this

paper. Each functionality is discussed below, together with the additional variables

and constraints needed.
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Table 5.3: Variables used by Basic ILP

Fsd Starting frequency index of demand Dsd.
Vij,sd Link assignment: Vij,sd = 1 if link Lij is assigned to demand Dsd;

Vij,sd = 0 otherwise.
�sd,s0d0 Order of the starting frequency index of demand Dsd and

Ds0d0 .1�sd,s0d0 = 1 if Fsd  Fs0d0 , �sd,s0d0 = 0 if Fsd > Fs0d0 .
c Highest frequency index required by the network tra�c.

Table 5.4: Parameters Used by transmission reach constraint

`ij Length of link Lij in km.
Rsd Transmission reach of demand Dsd according to particular spectral

e�ciency, e.g., in (2.1)
N r Set of regeneration nodes.

5.2.1 Multiple Modulation Schemes

When each demand has di↵erent spectral e�ciency, their transmission reach also

varies. This is implemented by making ⌘�1
sd , the inverse spectral e�ciency of demand

Dsd according particular a modulation scheme, a variable instead of a constant pa-

rameter. In our model we relax this value from its normal discrete nature to be a

real number bounded by the largest and smallest inverse spectral e�ciencies allowed:

⌘�1
sd,MIN  ⌘�1

sd  ⌘�1
sd,MAX.

5.2.2 Signal Regeneration

Signal regeneration can be used to increase the length of a lightpath beyond the

transmission reach. The following constraints, using additional parameters and vari-

ables defined in Tables 5.4 and 5.5, respectively, must be satisfied so that the QoT

requirements are fulfilled for all demands.

1This relationship between two demands is only of interest if they share a link. We use this
relationship in the following constraints to guarantee no overlapping between spectra assigned to
multiple demands.
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Table 5.5: Variables used by transmission reach constraint

Yn,sd Yn,sd = 0 if node n is not on the lightpath assigned to demand Dsd.
Otherwise, Yn,sd is the physical distance from node n on the lightpath
to the beginning of that transparent segment for demand Dsd.

Uij,sd Uij,sd = 0 if the entire link Lij is not assigned to demandDsd (Vij,sd =
0). Otherwise, Uij,sd is the physical distance from node i to the
beginning of the transparent segment for demand Dsd. Equivalently,
if we were not restricted to linear functions, we could have defined
Uij,sd = Vij,sdYi,sd.

We consider two cases. In the first case, the nodes in the network that are equipped

with regeneration circuits has been pre-selected. There has been quite some research

recently on how to select regeneration nodes, including [45]. The constraints that the

MILP must satisfy for all Dsd 2 D and Lij 2 L are as follows:

Uij,sd  Vij,sdR (5.7)

Uij,sd  Yi,sd (5.8)

Yi,sd � Uij,sd  R(1� Vij,ld) (5.9)

Yn,sd =

8
>>>><

>>>>:

P
L
ij

2L:j=ǹ ijVij,sd if 9Lij, i 2 N r

and Vij,sd = 1
P

L
ij

2L:j=nUij,sd + `ijVij,sd otherwise

(5.10)

where R = R(bsd, ⌘sd) from (2.1). For cases when node i is an intermediate node but

link Lij is not an intermediate link for demand Dsd (i.e., Vij,sd = 0), the distance

Uij,sd = 0 but Yi,sd is not necessarily zero but has to be less than the reach. In this

case Eq. (8) reduces to Yi,sd  R.

The second case we consider is one where the regeneration nodes are not pre-

selected. We then use the MILP to optimize the placement of regeneration equipment

on the network. We treat the regeneration node assignments as binary variables In
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Figure 5.1: Illustration used to explain the variables defined for constraining the
transmission reach

and, with the help of additional variables defined in Table 5.6, we use Eqs. (5.7)-(5.9)

from above and replace (5.10) by (5.11):

We consider Fig. 5.1 to illustrate the TR constraints. There is a demand Dsd

and a path from node s to node d, while link Lia does not belong to the path of

demand Dsd. Assume node i is the only regeneration node on the path. Inequality

(5.7) says that for any link on the path (e.g., Lij), Uij,sd  R. Since node i is the

only regeneration node, Uij for link Lij and Yi,sd both represent the distance from

node s to node i. Since link Lia is not on the path for demand Dsd (i.e., Via,sd = 0),

Uia,sd = 0. Eq. (5.10) says that, for node i, since no link that leads to it starts with a

regeneration node, Yi,sd is the sum of U ’s for all links that lead to node i plus the link

length of the link that is on the path. Since all links except for link Lhi have U equal

to zero, Yi,sd is the sum of Uhi,sd and link length of link Lhi. But, for node j, since

node i is a regeneration node, Yj,sd is just the link length of link Lij. Inequalities (5.8)

and (5.9) say that Yi,sd < R, Uia,sd < Yi,sd, and Uij,sd = Yi,sd. When the allocation

of regeneration nodes is unknown, we use the variable Xij,sd to di↵erentiate the cases

when node i is a regeneration or not, as in (5.11):

Yn,sd =
X

L
ij

2L:j=n

Xij,sd + `ijVij,sd, (5.11)
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Table 5.6: Variables used for Regenerator Circuit Assignment

In Regeneration nodes: In = 1 if node n is used as a regeneration node;
In = 0 otherwise.

Nn,c Number of regeneration circuits used on node n.
In,sd Regeneration at node n: In,sd = 1 if demand Dsd is regenerated at

node n, In,sd = 0 otherwise. For In,sd = 1, node n has to be a
regeneration node, i.e., In = 1, but also its regeneration circuit has
to be used by demand Dsd.

Xij,sd Distance used to calculate Yn,sd based on whether regeneration oc-
curs at node i: Xij,sd = Uij,sd if Ii,sd = 0, Xij,sd = 0, otherwise.

Constraints that limit the number of OEO circuits per regeneration node can also

be included using:

Nn,c =
X

D
sd

2D

In,sd (5.12)

InNn,cMAX � Nn,c (5.13)

where Nn,cMAX is the largest number of regeneration circuits that can be equipped on

a regeneration node.

When the cost of regeneration resources is a concern, we can build a multi-

objective function to balance the cost of regeneration and spectrum resources:

min

(
ac+ (1� a)

X

n2N

In

)
(5.14)

where the coe�cient a 2 [0, 1] represents the cost relationship between using the two

resources. This objective function minimizes the total cost of all resources together,

according to their relative costs. While we do not presume to know the exact cost

relationship among the two, a network designer can base their objective function on

realistic requirement, and use (5.14) to determine what resources are needed and

where.
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Table 5.7: Variables used by Wavelength and Modulation Conversion

Fij,sd Starting frequency index of demand Dsd on link Lij.
⌘�1
sd,ij Inverse spectral e�ciency of demand Dsd on link Lij.

5.2.3 Wavelength and Modulation Conversion

When WC is available, the frequencies used for a demand can be di↵erent on the

links entering a regeneration node and exiting it. In order to represent this flexibility

we define the starting frequency on a link-by-link basis, as shown in Table 5.7, and

re-write (5.5) and (5.6), the constraint that guarantees no spectrum overlap, for all

n 2 N as:

X

L
ij

2L:j=n

Fij,sd �
X

L
ij

2L:i=n

Fij,sd � �T ⇥ (In,sd + |Sn,sd|)

X

L
ij

2L:j=n

Fij,sd �
X

L
ij

2L:i=n

Fij,sd  T ⇥ (In,sd + |Sn,sd|) (5.15)

This constraint requires that if node n is an intermediate node for demand Dsd,

i.e., n 6= s, n 6= d and n is not used as a regeneration node for demand Dsd, then

the starting frequency assignments entering node n equals the starting frequency

assignments exiting node n. For other cases, this constraint does not apply.

Similar to WC, when MC is available the spectral e�ciency of each demand on

each link can be di↵erent than its immediate uplink or downlink if the joining node is

used as a regeneration node. We must define the spectral e�ciency on a link-by-link

basis, as listed in Table 5.7. The MC constraint can be written as:

X

L
ij

2L:j=n

⌘�1
sd,ij �

X

L
ij

2L:i=n

⌘�1
sd,ij � �⌘�1

sd,MAX ⇥ (In,sd + |Sn,sd|)

X

L
ij

2L:j=n

⌘�1
sd,ij �

X

L
ij

2L:i=n

⌘�1
sd,ij  ⌘�1

sd,MAX ⇥ (In,sd + |Sn,sd|)

(5.16)
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Similar to the WC constraint, this constraint requires that spectral e�ciency only be

converted at nodes n where the demand is regenerated, i.e., where In,sd = 1.

5.3 Recursive MILP

The computational complexity of the MILP formulation for EON restricts its imple-

mentation to o✏ine calculation only. And even then, it does not scale well as the size

of the network or the number of tra�c demands increase. An e↵ective alternative

would be to reduce the problem size to such an extent that the result can be found

in acceptable time and with reasonable computational resources. Many works have

attempted to break the whole RSA problem into sub-problems with or without losing

some degree of optimality [48], [49]. In this section, we propose a di↵erent way to

reduce the problem size by splitting the tra�c matrix into sub-matrices and solving

them sequentially, a technique we call recursive MILP.

The recursive MILP approach is motivated by the understanding that the com-

plexity of the problem is greatly a↵ected by the number of tra�c demands that need

to be accommodated at once. By separating them into subsets and allocating those

in sequential iterations, the overall runtime as well as other computational resources,

such as memory, can be reduced. The solution from the previous iteration forms

new MILP constraints for the new iteration. In particular, the first iteration can be

viewed as a subproblem with the same constraints but with fewer demands. In the

new iterations, the constraints (e.g., non-overlapped spectrum assignment) apply to

both the assigned and unassigned resources. In this manner, the original problem can

be solved, albeit not optimally, after all iterations are done.

Another advantage of using recursive MILP is that the complexity is easy to

estimate. For example, in the aforementioned MILP formulation, the complexity-

dominating variable is �sd,s0d0 , which grows with the number of demands |D| squared,

68



Table 5.8: Complexity of One Iteration of Recursive and Non-recursive Basic MILP

Number of Variables
non-recursive recursive

(1 + L+ |D|)⇥ |D|+ 1 (1 + L+ |D|/S)⇥ |D|/S
Number of Constraints

non-recursive recursive
|D|+N |D|+ (1 + 2L)⇥ |D|2 |D|/S +N |D|/S + (1 + 2L)⇥ (|D|/S)2

i.e., O(|D|2). By solving the same problem recursively, the number of variables of

each calculation is reduced. If the number of subsets is S, the last subproblem (which

has the highest number of variables) has about |D|2
S2 many �sd,s0d0 . Running the MILP

in recursive mode does not require reformulating the problem: the constraints remain

the same but the variables that represent demands from previous iterations become

constants.

It can be expected that the recursive MILP su↵ers loss of optimality compared to

the non-recursive counterpart. The gap between the sub-optimal solution from the

recursive MILP and the optimal solution depends on the size of the subset and the

grouping and ordering of tra�c demands. Since the complexity is easy to estimate,

network designers can base the implementation of the formulation on the complexity

they can accept. In Table 5.8 we show a comparison between the order of computa-

tional complexity for non-recursive (single-run) and recursive MILP solutions.

The complexity and optimality are a↵ected not just by the size of the demand

subsets, but also the selection of demands in each iteration. The grouping of demands

can be done in many ways such as sorting them randomly or based on their char-

acteristics such as volume, locality etc. In Section 6.4 we show a comparison of the

required spectrum using di↵erent ordering schemes.

Another use for the recursive MILP implementation is to help accommodate net-

work expansion with existing infrastructure. The existing assignments of physical
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resources (links, regeneration devices, spectrum) can be input into the MILP as con-

straints, in the same way as was done for results from earlier iterations of the recursive

MILP. In our simulation results below we show a progressively increasing number of

tra�c demands, each demand set including the same demands from previous sets.

The spectrum predicted shows the resources required for network expansion. This

problem is similar to the so-called dynamic resource allocation problem [50], [51], the

di↵erence being whether connections are also torn-down. In that scenario, the above

MILP can also be used as a similar recursive way as was shown for WDM systems in

Chapter 7.

5.4 Numerical Results

We test our MILP formulations on the NSF-24 mesh network, shown in Fig. 5.2,

which is often used as a benchmarking topology in literature. In addition, to gauge

the sensitivity of our results on network topology we simulate a symmetric network

illustrated in Fig. 2.3, with 24 edge nodes that also serve as intermediate nodes for

routing tra�c. The NSF-24 network has 43 by-directional links (or uni-directional

link pairs of 86 links), while the symmetric-24 network has 55 by-directional links

(or 110 uni-directional links). In our simulation, we assume tra�c demands are

generated between random selected node pairs and have random bit-rate requests

ranging uniformly from 1 to 100 Gbps in order to represent the heterogeneity of

Internet tra�c. The tra�c is assumed static, and no tra�c grooming or reverse

grooming (i.e. tra�c splitting) is considered. In all cases we collect simulation results

over 20 independent random demand sets and report on the average among them.

In the numerical results, we investigate one or two features at a time in each

section. Unless otherwise stated, the algorithm tested is an optimum MILP (non-

recursive) assuming multiple modulations are available with ⌘sd 2 [1, 10] and signal
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Figure 5.2: NSF-24 network

regeneration capability at all nodes, but no modulation or wavelength conversion is

used so that each demand uses the same modulation and spectrum from source to

destination.

5.4.1 Recursive and Non-recursive MILP

We first verify the applicability of the MILP solution to the network sizes we have

chosen, and compare the optimality and computational complexity between the re-

cursive and non-recursive approaches. We do not consider physical impairments here

(no transmission reach constraint); therefore, there is no need for signal regeneration.

In Fig. 5.3 we show the required spectrum for both single and multiple modulation

schemes. We also plot the standard deviation for our results. As the number of de-

mands allocated increases, the spectral usage increases approximately linearly. For

the single modulation case, ⌘sd = 2 8Dsd (QPSK) so that all demands can reach their

destinations with regeneration, while for the multiple modulation case ⌘sd is opti-

mized. When the MILP assigns resources to all demands together (the “single solve”

approach), the performance is notably better than the recursive approach (assuming a
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Figure 5.3: Required spectrum using the recursive MILP and single solve MILP for
a single modulation scheme (⌘ = 2) and multiple modulation schemes (1  ⌘  10)

random partition of the demands into sets of 5), but too computationally burdensome

for more than 30-40 simultaneous tra�c demands. We also conclude that the added

flexibility of optimizing the spectral e�ciency for each demand more than halves the

required spectrum. Both networks show similar results.

We compare of the complexity of the four approaches from Fig. 5.3 in Fig. 5.4.

We show the histogram of running times when the total number of demands is 25.

The running time for the optimal MILP varies considerably between trials (we set

a time limit of 3000 seconds), while the running time for the recursive approach are

uniformly small.

In Fig 5.5 we show that the partitioning and ordering of tra�c demands in the

recursive solution has a small but non-negligible impact on the required spectrum.

When only a few demands have been assigned resources, accommodating high data-

rate demands first leads to a lower required spectrum. Also, assigning demands that
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Figure 5.4: Running time for the recursive MILP and single solve MILP for a single
modulation scheme (⌘ = 2) and multiple modulation schemes (1  ⌘  10)

have the shortest shortest-path routing (labeled “SP”) first typically requires less

spectrum than assigning the longer-distance connections first. The di↵erences are

slightly more pronounced on the symmetric network.

We then investigate the e↵ect of the demand subset size on the required spectrum

obtained by the recursive MILP. The single solve approach, which finds the globally

optimal result for all the tra�c demands together, must always yield the smallest

required spectrum. In Fig. 5.6, we see that as the subset size decreases, the required

spectrum increases. When few demands are assigned per iteration, the required spec-

trum appears to be stair-stepped, since new connections can often use gaps in the

allocated spectrum left by fragmentation induced by the sub-optimal resource alloca-

tion.
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5.4.2 Multi-objective Formulation

We investigate the ability of the MILP optimization to e↵ectively trade-o↵ spectral

usage with regenerator usage by including the cost of regeneration resources (namely

the number of regeneration nodes) in our objective function according to (5.14). The

resulting spectrum and regeneration node requirement based on di↵erent values of

the cost coe�cient a are shown in Figs. 5.7 and 5.8, respectively. Assuming a pri-

ori knowledge of the cost relationship between spectrum and regeneration resources,

network designers can choose the cost coe�cients accordingly. The results show that

when the spectrum cost is not considered (i.e., a = 0), the number of regeneration

nodes is minimized and the required spectrum is large.2 The required spectrum in

this case is also highly irregular, as it is entirely unconstrained. On the contrary,

when the regeneration cost is not considered (i.e.: a = 1) the required spectrum is

minimized but the number of regeneration nodes is high. It is interesting to note that

by assigning even a relative small coe�cient to regeneration cost (i.e.: a = 0.99), we

are able to maintain a similar required spectrum but greatly reduce the number of

regeneration nodes needed.

5.4.3 Wavelength and Modulation Scheme Conversion

Since regeneration involves OEO conversion, it can improve the signal quality, so as

to extend the TR, and can also provide an opportunity to change the spectrum and

modulation assigned starting from that node. We run simulations to show the impact

on the spectrum requirements of using the capability to convert the wavelength and/or

modulation at the regeneration nodes. In Fig. 5.9, we solve the resource allocation

problem with our recursive MILP formulation, since the added flexibility of WC and

MC increases the complexity of the problem considerably. Both WC and MC reduce

2By configuring the demand volume and spectral e�ciency, we make sure there is a spectral
e�ciency available so that it is possible that no demand requires regeneration. Therefore, in the
case of a = 0, the number of regeneration nodes is always minimized to zero.
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the amount of spectrum required to support the tra�c demand. WC allows signals

to be re-allocated on some links so as to fill gaps left by other tra�c demands. The

improvement made by wavelength conversion depends on the fragmentation condition

of the network. When one link is heavily congested, it then becomes a bottleneck of

the network creating unnecessary fragmentation on other links. MC takes advantage

of the di↵erence in the length of transparent segments for each lightpath. If they

are significantly di↵erent, the spectrum saved by optimizing the spectral usage based

on each segment becomes significant. The NSF-24 network has well-documented

bottleneck paths, and thus benefits more from WC than a more symmetric topology.

The symmetric network also has equal link lengths, and can therefore not exploit MC

as much as the more heterogeneous NSF-24.

In Fig. 5.9, when we compare theWC case with the case when both wavelength and

modulation scheme conversion are available, we expect the latter to always outperform

the former, since it has more flexibility. However, the results (which are averaged over

20 trials) for the symmetric network show that this relationship is not guaranteed.

Solving the MILP recursively optimizes the solution in each iteration according to

its constraints, yet does not necessarily leads to the optimal solution for the whole

tra�c matrix when looking at multiple iterations together. Each iteration can only

find the local optimum for its sub-problem and the local optimal solution of a sub-

problem may not be one part of the global optimal for the whole problem. To put it

in terms of resource assignment, in the previous iterations resources may be assigned

to demands according to the sub-problem, but such assignment may be not optimal

when one considers the whole tra�c matrix, which leads to an increased spectrum

requirement. The same limitation exists in dynamic real-time RSA where no future

tra�c information is available. The RSA algorithm cannot assign physical resources

to current tra�c demands taking unknown future demands into consideration. One
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Figure 5.9: Spectrum usage comparison using the recursive MILP with and without
wavelength and/or modulation conversion

could introduce a conservative rule based on long-term statistics that prevents over-

assigning physical resources to current demands.

5.4.4 Regeneration Node Placement

When regeneration resources are scarce, careful network planing is important to min-

imize capital expenditure. In order to show the tradeo↵ between the number of

regeneration nodes and the required spectrum, we simulate a case where the network

has a limited number of regeneration nodes. In order to show the change of per-

formance by adding additional regeneration nodes we keep the existing regeneration

nodes unchanged once assigned. We use our results in Fig. 5.7 for cost coe�cient

a = 0.5 to find and rank the most often used regeneration node locations on average

(over 20 trials). After allocating a limited number of nodes as regenerating nodes ac-

cording to this ranking, we minimize the required spectrum. Our results in Fig. 5.10
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Figure 5.10: Spectrum usage with a limited number of regeneration nodes

show that for the NSF-24 network, the required spectrum reaches its minimum when

20 nodes have been allocated as regeneration nodes; for the symmetric 24 network,

the required spectrum is close to minimum already when the number of regeneration

nodes reaches 15. We believe this is due to the symmetric structure of the symmetric

24 node network, where most node pairs share joint intermediate nodes.

5.5 Summary

In this chapter we propose an MILP formulation to investigate the impact of technolo-

gies such as allowing multiple modulation schemes, signal regeneration, wavelength

conversion, and modulation conversion on the required spectrum of the EON. We

show through simulation that equipping systems with signal regeneration that con-

trols physical impairments and allow for modulation and/or wavelength conversion

reduces the amount of spectrum required. Such improvements depend on the topology

of the network. We also show the impact of having a limited number of regenera-
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tion nodes and di↵erent topology structures. In order to balance the optimality and

complexity we propose a recursive MILP formulation that yields a suboptimal yet

comparable solution to the MILP by using a lower and more consistent running time.

The performance of the recursive model depends on factors such as heuristic demand

ordering and iteration size.

80



Chapter 6

Link-based vs. Path-based MILP

formulation for RSA in EON

6.1 Introduction

Elastic optical networks (EON) have brought flexibility to network deployment and

operation compared to traditional wavelength division multiplexing (WDM) net-

works. Although linear programming optimization techniques for resource allocation

common to WDM systems have been applied to EON, the common belief that a

path-based formulation is su�ciently detailed for EONs requires revisiting when sig-

nal regeneration and modulation adaptation are used to combat physical impairments

in the network. In this chapter we compare the two approaches, namely path-based

and link-based mixed-integer linear programming (MILP) formulations, in their im-

plementation, optimality, and complexity for EONs. We show using simulation that

the network topology and tra�c demand a↵ect the di↵erence in performance between

the two formulations.

Designing EONs includes determining physical resource placement and assign-

ment to the system. Such physical resources include optical spectrum as well as
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physical equipment, such as transponders and regenerators. This is often referred

to as the routing and spectrum assignment (RSA) problem. The goal is to minimize

resource usage, implying low capital expenditure and low operational cost, while sat-

isfying expected tra�c needs. The problem can be approached as a mixed integer

linear program (MILP) or via a heuristic algorithm. MILP formulations, compared to

heuristic algorithms, often require longer computation time, limited by their complex-

ity; however, they do not require insight into system behavior assumed by heuristic

algorithms. In this chapter two di↵erent MILP formulations, path-based and link-

based, are evaluated and compared in terms of performance and complexity when

applied to EONs.

MILP approaches have been extensively studied in the literature. Most previous

works use a simple formulation that only considers a subset of viable solutions (e.g.,

a small number of possible paths instead of all source-destination routes). These

algorithms are referred to as path-based (PB), rather than the more general link-

based (LB) approach to resource allocation that finds a globally optimal solution.

The first comprehensive PB MILP formulation for RSA for EON appeared in [52].

In [15], a PB MILP formulation is used to design tra�c grooming for EONs. In

[10], an MILP formulation is proposed in which the contiguous spectrum assignment

is represented by narrow frequency slots. A third approach [53] is to implement a

partial LP relaxation method to handle integer (or Boolean) variables. (Such methods

can also be implemented on LB formulations.) The only LB technique reported in

literature, other than our own, is a low complexity method that considers a localized

subset of all links [54].

All of the above papers ignore physical impairments. In very recent work [55], a

transmission reach constraint was proposed by the authors. Since their formulation

is PB, the location of regeneration nodes (RN) along each candidate path is pre-

determined. They also include transponder costs in their objective function to balance
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the need to minimize spectrum usage with transponder usage. The PB formulation

we use in this article is based on this work. To the best of our knowledge, the only LB

MILP RSA approach for flexible EON that includes physical impairment constraints

is our own work, presented in Chapter 5 and in [56].

It is well understood that with a su�ciently large candidate path list, the PB

MILP solution can approach the optimal solution given by the LB MILP. However,

results given in the literature often use a small candidate pool, which is su�cient

to show the formulation implementation but not enough for comparison with other

methods. Furthermore, when signal regeneration is considered, in PB methods there is

no e↵ective way to include regeneration resource assignment within the optimization.

In this chapter we discuss the e↵ect of the size of the candidate path pool on the

optimality of PB MILP solutions. We then compare PB to LB MILP formulations

and show the advantages of the LB approach when tra�c must be regenerated. Due to

space limitations, only a cursory description of the two MILPs is given here; the whole

formulation can be found in [55] and [56] for the PB and LB algorithms, respectively.

The chapter is organized as follows. Section 6.2 explains the principle of PB and

LB MILP formulations and their complexity and optimality. Section 6.3 shows how

each algorithm addresses the regeneration resource assignment problem. In Section

6.4 we show the advantages and disadvantages of using an LB MILP formulation

through numerical simulations. We conclude the chapter in Section 7.5.

6.2 Path-based and Link-based MILP Formula-

tions

The objective of any RSA algorithm for EONs is to minimize the total physical re-

source cost. Since the optical spectrum is an important investment (determines the

number of optical fibers needed), it is often used to represent the cost. Other costs,

83



such as optical/electronic devices required, can also be added to the objective func-

tion; in this chapter, we consider these instead as design constraints. As variants of

a multi-commodity flow problem, all MILP formulations satisfy common constraints:

the tra�c assigned to physical resources cannot exceed their capacity (capacity con-

straints), tra�c needs to flow from source through intermediate network nodes to

destination (flow conservation constraints), and the tra�c demand matrix has to be

fully accommodated (demand satisfaction constraints).

Although the principles of the formulations are the same for both PB and LB

approaches, their implementations di↵er in their variable setup and constraint ex-

pressions, which directly a↵ect their optimality and complexity. Both approaches

yield a resulting path that connects the source and destination nodes for each tra�c

demand. In PB formulations, the set of candidate paths is often pre-selected based

on metrics such as shortest path or minimal resource cost. A Boolean variable is

assigned as an indicator function to each path for each demand; path assignment and

uniqueness (flow conservation) is then achieved by constraining the sum of these vari-

ables to equal unity. In LB formulations, all legitimate link combinations that form

a loop-free path between source and destination nodes are considered as candidate

paths, which implies a globally optimal solution. Here a Boolean variable is assigned

to each link for each demand, instead of each path. The flow conservation constraints

are satisfied through node input/output flow constraints. The wavelength continuity

constraint is implemented in the same way in both formulations by assigning a vari-

able that represents the starting frequency for each demand throughout the path and

not allowing the bandwidth used by each demand to vary link-by-link. The capacity

and demand satisfaction constraints are also similar in the two approaches.

We compare the number of variables and constraints between the PB and LB

methods in Table 6.1 (ignoring the same constraints that appear in both formula-

tions). L is the number of links, K is the number of candidate paths for each demand
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Table 6.1: Complexity of Formulations

Number of Variables Number of Constraints
PB LB PB LB

KD+D+D2 LD+D+D2 D+2K2D2 ND+2LD2

in the PB formulation, D is the number of demands, and N is the number of nodes.

The number of constraints for the PB formulation is a worst case number, since it

depends on how many lightpaths share a link instead of the total number of demand

pairs. The complexity of the LB formulations depends on the number of links and is

fixed.

6.3 Regeneration Resources Assignment

For long-haul networks, physical impairments make signal regeneration necessary

along the lightpaths. The distance that an optical signal can travel without being

regenerated is called the transmission reach (TR). In order to maintain acceptable

signal quality beyond the TR, regenerators have to be assigned to the lightpath. Sig-

nal regeneration operates in the electrical domain at intermediate nodes, thus costly

optical-electrical-optical converters are needed at these locations. Both the total

number of regenerators needed and the number of nodes that must be equipped with

regenerators, denoted Nr, introduce additional cost. We show that with careful de-

sign an LB MILP formulation can reduce Nr compared with the PB method, thereby

lowering the total cost. The number of converters needed for a demand depends on

the path length, and is therefore di�cult to reduce via RSA optimization.

Transmission reach Tr for a tra�c demand d depends on many factors such as bit

rate of the demand Rd and its spectral e�ciency ⌘d. To fit within our MILP model,

we formulate a linear relationship between transmission reach and these two factors
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as

Tr = ↵R�1
d + �⌘�1

d + � (6.1)

where, {↵, �, �} = {18600, 8360,�250} are coe�cients derived from polynomial curve

fitting based on experimental data in [18]. For computational convenience, we relax

the spectral e�ciency variable ⌘ by allowing it to be a real number.

When determining the assignment of regeneration resources, PB MILP formula-

tions are ine↵ective because candidate lightpaths are pre-determined before solving

the MILP. In order to guarantee that each path meets the TR constraint, a minimum

number of regenerators are assigned to each path to satisfy (2.1), such as in [55]. Then

each candidate path together with its RN becomes one Boolean variable. Although

such assignment is optimal to each lightpath, it might not be optimal for the entire

network in terms of Nr. However, using the LB approach the RN assignments can be

optimized along with routing and spectrum assignment, by treating them as variables

separate from links. By enforcing a constraint on the distance that the signal has

traveled without being regenerated, we can ensure that all resulting lightpaths satisfy

the TR constraint.

6.4 Numerical Results

We implement the PB and LP MILP formulations on the NSF24 topology and a

symmetric 24-node mesh network shown in Fig. 5.2 and 2.3. For the NSF24 network,

the numbers noted on the links are the link lengths (in km), while for the symmetric

24-node network all link lengths are set to 1330 km, resulting in similar network

diameters. The simulation results show the average over 20 instances of each tra�c

demand scenario, ranging from 5 to 25 random source-destination pairs each, as

labeled, with bit-rates uniformly distributed from 1 to 100 Gbps. The PB MILP uses
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Figure 6.1: Required network spectrum for PB and LB MILP formulations, no TR
constraints, ⌘ = 1 bit/symbol.

a link-disjoint (whenever possible) candidate-path-set based on shortest physical path

length.

In Fig. 6.1, we show the spectrum required (maximum over all links in the net-

work) to satisfy all tra�c demands without considering physical impairments when

there is only one modulation scheme available at the transponders with spectral e�-

ciency ⌘ = 1. PB MILP requires significantly more spectrum when K = 1 compared

to larger candidate-set sizes. This is due to many source-destination node pairs shar-

ing the same links for their shortest path, which creates congestion. However, this

phenomenon can be e↵ectively mitigated by adding one additional path, i.e., K = 2.

For the NSF24 network, the spectrum saved by further increasing K is small because

additional candidate paths often share some of the same links, and thus the tra�c

load cannot be e↵ectively balanced. The savings are more obvious with the symmet-

ric 24-node network since the paths are naturally more link-disjoint. The LB MILP

shows the best performance in terms of spectrum requirement,most notable whenD is

large. Network designers need to select which approach to use with network topology

in mind.
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Figure 6.2: Histogram of running time (clock time) for PB and LBMILP formulations,
no TR constraints, ⌘ = 1 bit/symbol.

Figure 6.2 shows the running time (wall clock time) for solving the MILP in Fig.

6.1.1 For the PB method with K = 1, the problem becomes strictly one of spectrum

assignment (SA), which is a sub-problem of RSA and requires less time than when

routing assignment is also involved. The PB MILP shows great scalability: as the

number of demands increases, the running time remains relatively small. The LB

MILP, however, requires much longer running time and does not scale well with an

increase in the number of demands. This is because the algorithm must consider

many alternatives in order to minimize the objective function, even if that decrease

is small. The runtime of LP MILP varies widely as a function of the particular tra�c

demand matrix. The calculation time can be shortened by increasing the tolerance in

accepting a solution as optimal (i.e., when the improvement in the objective function

falls below this tolerance, the algorithm stops and takes the current best solution).

We compare the PB and LB MILP formulations when TR constraints are imposed

and observe the same pattern in terms of required spectrum. Figure 6.3 compares the

1The simulation is run on Matlab with CPLEX v12.51 [57] as MILP solver engine and YALMIP
[58] as interface on a single-core of Intel(R) Xeon(R) CPU X5550 at 2.67GHz with 16 GB of allocated
memory.
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Figure 6.3: Required number of RNs for PB and LB MILP formulations with TR
constraint, ⌘ = 1 bit/symbol.
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Figure 6.4: Required spectrum for PB and LB MILP formulations with optimized
spectral e�ciency 1 < ⌘ < 10 bits/symbol, with TR constraints, Nr = 24

required Nr for the two formulations. We can see that when the tra�c load increases,

the LB approach employs more RNs to reduce the required spectrum, while the PB

approach can only use as many RNs as were preselected for each path (the minimum

number needed to satisfy (2.1), typically).
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Figure 6.5: Required spectrum for PB and LB MILP formulations with limited re-
generation resources, with optimized spectral e�ciency ⌘ = 1 bit/symbol, with TR
constraints (dash lines represent LB MILP)

When multiple modulation schemes are available at the transponders, the LB

formulation can take advantage of this flexibility by adjusting the routing, as seen

in Fig. 6.4. In the PB MILP, for each demand each modulation scheme results in

a separate candidate path, with its pre-set number of RNs. Since the PB method is

limited in the number of candidate paths it can consider, it cannot balance the tra�c

load as e↵ectively as the LB approach.

The LB approach uses more RNs but achieves lower spectrum usage, and the PB

approach results in the opposite (Figs. 6.3 and 6.4). Since it is not clear if spectrum

usage or RNs are more expensive, in the next figure we compare the spectrum usages

of the two approaches with a given number of allowed RNs. Figure 6.5 shows that

when Nr is small, the RSA algorithm chooses a small spectral e�ciency (⌘ = 1) in

order to extend the TR, allowing the signal to travel a longer distance without re-

generation. Therefore, the spectrum required for each demand is large. In addition,

when there are insu�cient RNs the demands are forced to choose paths that require

fewer regenerators (the shorter paths), restricting routing choices, which in turn gen-
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Figure 6.6: Required RN for PB and LB MILP formulations with limited regeneration
resources, with optimized spectral e�ciency ⌘ = 1 bit/symbol, with TR constraints
(dash lines represent LB MILP)

erates congestion and increases the spectrum needed. Nevertheless, the LB MILP

remains more flexible than the PB method. When all nodes are allowed to regenerate

anywhere (Nr = 24), the required spectrum is minimized. Figure 6.6 shows that the

LB MILP uses the maximum number of RN allowed in an e↵ort to decrease the spec-

tral usage, while the PB MILP is less e�cient, often using less than the maximum

number.

6.5 Summary

We compare the current PB MILP formulation to an LB MILP formulation for

impairment-constrained elastic optical networks. The PB MILP formulation is lim-

ited in its ability to optimize the RSA because regeneration resources and modulation

selection are predetermined. In general the LB MILP formulation requires less spec-

trum and fewer regeneration resources. The price paid for this savings is a significant

increase in computation time compared with the PB method.
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Chapter 7

GRWA for Dynamic WDM

Networks using a Time-slotted

MILP

In this chapter we return to WDM systems. Translucent fiber-optic networks have

been carefully planned to achieve high capacity utilization e�ciency as required by so-

ciety’s ever-increasing tra�c demand. Existing research treats the problem of resource

placement largely as a static design problem, which is solved with linear program-

ming (LP) to find the optimal solution. The dynamic operational problem (groom-

ing, regeneration, routing, and wavelength assignment) is approached using heuristic

methods with the goal of improving the overall network performance given an ex-

isting network infrastructure. Our work combines these two approaches and solves

a real-time dynamic tra�c scenario with integer linear programming (ILP), seeking

to maximize the overall network throughput. The tra�c is served in a time-slotted

fashion so that the network throughput is optimized at each time slot given the ex-

isting network state. The solution is compared with results from existing heuristic
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methods. We incorporate physical impairment limitations into our network model,

and consider several grooming options.

7.1 Introduction

Translucent fiber-optic networks need to be carefully planned at many di↵erent stages.

Not only the capital investment should be minimized during network design and net-

work upgrade, but also the service capability should be maximized once the equipment

is deployed and real-time tra�c demands arrive.

As we mentioned in previous chapters, many works have applied the powerful

mixed-integer linear programming (MILP) tool to solve optical networking issues: [1],

[43],[44], [45], [46],[47]. However, in these and other previous work when researchers

use LP to address network problems, they only consider a static tra�c model. The

dynamically fluctuating nature of real-time tra�c cannot be properly represented

with this kind of model.

An e↵ective alternative to using an LP method is to employ a heuristic method,

which can handle dynamic environments. Heuristic methods usually have the advan-

tage of a simple implementation, short calculation time, and good scalability. The

drawback of heuristic methods is that they often do not provide optimal solutions.

This is partly due to the fact they do not consider all possible solutions, and often

pick one based on the network designer’s understanding of the current network state.

In order to solve the network operation problem for dynamic real-time tra�c

and find a solution closer to the optimal solution, we propose to solve an ILP in a

time-slotted fashion: for each time slot the network throughput is maximized while

preserving as much of the resources as possible for future tra�c. This requires a

di↵erent objective function than previous LP work such as in Chapter 5 and 6. The

dynamic tra�c model di↵ers from the static tra�c model in that each call request

93



has a arrival time and a call duration, and the network capacity is updated continu-

ously. Our approach bundles incoming tra�c into time slots and solves the grooming,

routing and wavelength assignment (GRWA) problem for those incoming calls opti-

mally given the existing network state. We incorporate physical impairments (PIs)

into our solution by imposing all-optical reach constraints. We also allow for multiple

line-rates across the network. Another aspect that di↵erentiates our approach from

others is that we incorporate grooming into our solution in real time. This operation

requires unique ILP constraints so that various grooming rules are enforced.

7.2 Implementing Tra�c Grooming in MILP

Recall tra�c grooming can currently only be done in the electrical domain, which

implies that we can only perform grooming either at the source of a demand or at

an OEO regeneration site of a demand, which are the only two places where the

signal reverts to its electrical form. This restriction requires us to carefully track the

wavelength availability of channels for grooming opportunities. A wavelength must

be considered as unavailable to groom onto along an all-optical segment, where it

remains in the optical domain. To address this constraint, a novel approach must be

applied. It is essential in our formulation to clearly mark all-optical segments that

include more than one physical link so that OEO conversion is forbidden within the

segment. Our approach is to create a virtual link between the two ends of a segment

whenever it is formed, while marking the original physical resource unavailable to all

new tra�c demands. The virtual link holds only the wavelength used in the segment

and its free capacity is adjusted based on the channel usage on the segment. New

arrivals only see the one wavelength on these virtual links, and it will appear as a

single hop to prevent a call from attempting to groom mid-way. When the routing

and wavelength assignment ILP uses this virtual link, it considers only solutions that
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include utilizing that wavelength from the segment source to the segment end, but not

partially in between. This ensures that grooming is only performed at points where

signals undergo OEO conversion. This modification only lasts until the termination

of the call that forms the segment.

7.3 Mathematical Model

To the author’s knowledge, this is the first published work that solves the grooming

problem for real-time tra�c using an ILP. Using an ILP allows us to fully exploit the

versatility and routing potential of the network by considering all possible solutions, as

compared to heuristic methods that consider only a small set of candidate paths. Our

approach also di↵ers from ILP approaches that also restrict the number of candidate

paths for each node pair, such as [59].

7.3.1 Time-Slotted Approach

The novelty of our approach stems partly from viewing the dynamic problem as a

succession of small static problems with strong initial conditions (the current net-

work state). We solve the real-time dynamic tra�c situation by using a time-slotted

approach, applying the ILP to each time-slot successively. Similar to the dynamic

heuristic method, the network state is updated continuously and forms a base for the

ILP execution for next time slot.

The pooling of tra�c arriving within a time slot provides the algorithm flexibility

to find an optimal GRWA solution for those calls, i.e., optimized for that time slot.

In order to take the nature of the dynamic tra�c into consideration, we split the time

axis during which tra�c arrives into fixed time slots, which creates a discrete-time

approximate model of the real-time tra�c, as shown in Fig. 7.1. In this approxi-

mation the demands is always serviced starting at the beginning of a time slot and
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Figure 7.1: Illustration of time-slotted tra�c model. Time slot duration of (a) 1 time
unit and (b) 0.2 time units.

terminates at the end of a time slot. This can be thought of as introducing a certain

amount of delay (no longer than the duration of the time slot) for the demand to be

serviced, called the initiation delay. The result is also an over-allocation of resources

for demands after their termination (termination delay), again no longer than the

duration of the time slot. By doing this, we create an opportunity to find an optimal

solution for all the calls that arrive within the same time slot. Fig. 7.1 illustrates the

call initialization delay and call termination delay su↵ered by calls, which depends

on the time slot duration. The time slot duration also a↵ects the number of calls to

be calculated per ILP solution. In this example, when the time slot duration is set to

1 time unit, Fig. 7.1(a), 5 calls arrive within 2 time slots (around 2.5 calls per time

slot); when the time slot duration is set to 0.2 time units, Fig. 7.1(b), 5 calls arrive
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within 8 time slots, which makes it on average 0.625 calls per time slot. The delay

introduced in servicing calls can be considered a trade-o↵ for system performance

improvement.

At the beginning of each time slot, the calls that have arrived in the previous

time slot are used as demand requests and the solution is found based on the current

network state (wavelength usage, etc). The network state is then updated based on

the ILP’s GRWA solution. The available capacity of each wavelength is updated.

The ILP enforces the restriction of no wavelength conversion for all-optical segments.

Then, before the next time slot starts, call terminations are performed, where some

resources are released and the network state is again updated. The above steps are

performed iteratively until all tra�c samples terminate. The overall goodput (fraction

of the data rate request accepted) is calculated by dividing the sum data-rate of tra�c

accepted by the system by the sum data-rate of the tra�c requested.

7.3.2 ILP Model

In this section we introduce the ILP model to optimize the network goodput by

optimally aggregating sub-wavelength data tra�c into high data-rate streams. The

notation in Tables 7.1, 7.2, and 7.3 is used in our mathematical formulation. In

particular we use the symbols i and j to index the head and tail of a physical link,

and symbols s and d to index the source and destination of a demand.

Objective function:

max
X

sd2D

Acceptsd ⇥Dataratesd

+
X

ij2L,ld2Ld

ULLdij,ld ⇥ wld ⇤ ld+

X

ij2L,ld2Ld,sd2D

Uij,ld,sd ⇥ w (7.1)
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Table 7.1: Sets used by ILP

N sd Set of network nodes
nbN Number of nodes in the network
N r Set of nodes that are able to regenerate signal
Nnr Set of nodes that are not capable of regeneration or those with the ca-

pability but not selected for regeneration
L Set of network links
D Set of network demands between node pairs. These demands often ask

for data rate lower than line rate of a wavelength
Ld Set of available wavelengths on each fiber link.

Table 7.2: Parameters used by ILP

Aij,ld how much of channel capacity is available of each link ij and ld pair,
ij 2 L, ld 2 Ld

Rn the number of regenerators allocated at node n
Trld Transmission reach for each wavelength, this is based on the channel line

rate of that wavelength
Dataratesd Data rate that is requested by demand sd in D
Lengthij Link length of link ij in kms
Cld Channel capacity (i.e.: channel line rate) of each wavelength
Sn,sd Sn,sd = �1 if node n is demand sd’s source node; Sn,sd = 1 if node n is

demand sd’s destination node; otherwise, Sn,sd = 0.
w small negative weight parameter ⇡ �0.01 to be put on each link-lambda

pair usage; therefore, the shortest path routing is followed when there
exist multiple equivalent solutions (equal throughput).

wld small negative weight parameter ⇡ �0.001 put on wavelength ld. Dif-
ferent values are used to enforce preferences for particular wavelengths;
for example, a higher wld is assigned to wavelengths with low channel
capacity to allocate the wavelength with the minimum su�cient capacity
to a demand first.

The objective function is designed to maximize the demands serviced while using

as few network resources as possible. The network resource usage is used as a tie

breaker when multiple solutions result in the same goodput.

Constraints:
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Table 7.3: Variables used by ILP

Acceptsd Acceptsd = 1 if demand sd is accepted; otherwise Acceptsd = 0
Uij,ld,sd Uij,ld,sd = 1 if wavelength ld on link ij is assigned to demand sd
ULij,sd ULij,sd = 1 if link ij is assigned to demand sd; otherwise ULij,sd = 0
ULLdij,ld number of demands that share wavelength ld on link ij.
�ij,sd,ld physical distance from the head of link ij to the head of the segment for

demand sd and wavelength ld. �ij,sd,ld = 0 if wavelength ld on link ij is
not assigned to demand sd.

Yn,sd,ld physical distance from node n to the head of the segment for demand sd
and wavelength ld. Yn,sd,ld = 0 if node n is not on the lightpath selected
for demand sd.

Conservation flow constraint:

X

ij2L,j=n

ULij,sd �
X

ij2L,i=n

ULij,sd = Sn,sd ⇥ Acceptsd,

8n 2 N, sd 2 D (7.2)

Link capacity constraint:

X

sd2D

Uij,ld,sd ⇥Dataratesd  Cld ⇥ Aij,ld, 8ij 2 L, ld 2 Ld (7.3)

No call splitting:
X

ld2Ld

Uij,ld,sd  1, 8sd 2 D, ij 2 L (7.4)

Wavelength continuity constraint:

X

ij2L,j 6=s,j 6=d

Uij,ld,sd =
X

ij2L,i 6=s,i 6=d

Uij,ld,sd,

8sd 2 D, ld 2 Ld (7.5)
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Transmission reach constraints, 8sd 2 D, ij 2 L, ld 2 Ld:

�ij,sd,ld  Uij,ld,sd ⇥ Trld,

�ij,sd,ld  Yi,sd,ld

Yi,sd,ld � �ij,sd,ld  Trld ⇥ (1� Uij,ld,sd)

Yn,sd,ld = 0, 8n 2 N r or n = s

Yn,sd,ld =
X

ij2L:j=n

�ij,sd,ld + Lengthij ⇥ Uij,ld,sd,

8n 2 Nnr and n 6= s (7.6)

Regenerators resource constraint:

X

sd2D,nj2L,ld2Ld

Unj,ld,sd  Rn, 8n 2 N r (7.7)

Link-wavelength usage count:

ULLDij,ld =
X

sd2D

Uij,ld,sd, 8ij 2 L, ld 2 Ld (7.8)

Link usage with link-wavelength usage:

ULij,sd =
X

ld2Ld

Uij,ld,sd, 8ij 2 L, sd 2 D (7.9)

No grooming constraint (optional):

X

sd2D

Uij,ld,sd  1, 8ij 2 L, ld 2 Ld (7.10)
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7.3.3 Explanation of Constraints

Equation (7.2) ensures that for transient nodes (neither the source nor the destination

for the demand considered) the tra�c entering the node equals the tra�c exiting

the node. For end nodes, the tra�c that exits the source node and enters into the

destination node equals the demand’s datarate request. Equation (7.3) ensures that,

for the wavelength (lambda) considered, the tra�c volume assigned to new demands

is less than the available capacity. Note that a link-lambda pair could be used for one

demand and later also assigned to another demand if there is capacity left over; so

Aij,ld ranges from 0 to 1. Equation (7.4) ensures that each demand request can only

be satisfied by at most one lambda on any link. This assumption is solely for the sake

of model simplicity, and could be removed to consider an expanded version of the

problem. Equation (7.5) ensures that for each segment the optical signal maintains

the same lambda. The constraint is placed on the nodes that do not have regeneration

capability (also on nodes with regeneration capability if the regeneration function is

not used). For these nodes the tra�c that enters and the tra�c that exits the node

for a demand use the same lambda.

Equations (7.6) ensure that the optical signal will not travel further than the

transmission reach without regeneration: if a link is assigned to a demand, its head

node should be within the transmission reach from the segment’s head node. The

distance from the segment head node to a link ij should be no greater than the

distance to the node i. If a link is assigned to a demand (Uij,ld,sd = 1), Yi,sd,ld

(abbreviated Y ) and �ij,sd,ld should be equal. If it is not assigned to the demand, Y

should be within the transmission reach. For the source node of the demand or a

node performing a regeneration operation for that demand, Y is 0. This is how the

Y ’s are derived from the source of the demand. If a link is assigned to the demand,

its end node Y is calculated by adding the physical link distance to the Y value of its
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head node. For any node along the lightpath for a demand, the Y should be within

the transmission reach.

Equation (7.7) enforces that the total number of OEO regenerators at any given

regeneration node at any given time slot is no greater than the number of regenerator

circuit the node has. Equations (7.8) and (7.9) show the relation between the three

variables we use in our programming. Equation (7.10), which enforces how many

demands can share a wavelength ld on a link ij, is optional and is used to compare

the grooming case versus the no-grooming case.

7.4 Numerical Results

Numerical simulation experiments are conducted on a 14-node bidirectional-link NSF

nationwide network, shown in Fig. 2.2. Each link has 8 wavelengths, and each wave-

length supports either a 10, 40 or 100 Gbps line-rate and has unlimited, 2500 and

2000 kms TR, respectively. The ILP is solved using the optimizer CPLEX [57]. The

demand requests arrive at the system following a Poisson process and are uniformly

distributed among node pairs. The call duration follows an exponential distribution

with a mean value of 1 (arbitrary time units). For Figs. 7.2-7.7, the time slot du-

ration is 0.1 time units. The data-rate requests for each demand follow a uniform

distribution ranging from 1 to 30 Gbps.

Since in real-time scenarios the processing time is critical, the ILP solve-time is

limited to 100 seconds (wall-time) on a desktop computer; when the calculation time

exceeds this limit, the best feasible solution at that time is selected.1 The computation

time is therefore significant when the call-durations are short compared to this delay.

With optimized processing the delay may be reduced significantly, yet the algorithm

remains complex for large networks. The proposed technique, as stated, is suitable

1We tested with di↵erent simulation time constraints and noticed that while it is important to
have a solve-time su�ciently long to find at least one feasible solution, finding the optimal solution
does not improve the system performance significantly.
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Figure 7.2: Goodput using ILP and heuristic method versus load

to calls with long service time requirements, such as large file transfers and other

e-science applications.

We compare the solution from solving the ILP with the solution from a previously

proposed heuristic method in Chapter 3. For a high load case, we can see significant

improvements in terms of both network goodput, Fig. 7.2, and call blocking proba-

bility, Fig. 7.3. This is because the ILP considers all possible lightpaths given by the

network structure while the heuristic method often considers the shortest path or just

a few alternatives before it rejects the request. It is obvious that the network opera-

tor benefits from the more comprehensive search within the solution space. From the

plots we can see that for low loads the ILP method provides little advantage since

the low tra�c rarely causes congestion.

The grooming case outperforms the no-grooming case as the load increase, as

seen in Figs. 7.4 and 7.5. In the no-grooming case, a channel is set as unavailable

once assigned to a demand, no matter how much capacity is still available. If the

call cannot groom with others, there is also a smaller chance for it to find a feasible
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Figure 7.3: Blocking probability using ILP and heuristic method versus load
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Figure 7.4: Goodput using grooming and no-grooming methods versus load

lightpath when the network is heavily loaded. That is why we can see the grooming

case outperforms the no-grooming case in our ILP solution.

For some cases (for low load) the performance improvement is not obvious or

sometimes reversed. This is because the time-slotted ILP solution is based on an
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Figure 7.5: Blocking probability using grooming and no-grooming methods versus
load

objective function to maximize the single time slot throughput, rather than the whole

simulation throughput. In the future, we will consider improvement to address this

issue.

In Figs. 7.6 and 7.7, we compare the di↵erence when regeneration is allowed versus

not allowed, i.e., between a transparent and a translucent network. If no regeneration

is possible, the physical impairments put a restriction on the signal transmission reach,

which then makes certain node pairs unreachable for high line-rates. The regeneration

operation basically extends the transmission reach for each line-rate lightpath, thereby

introducing more candidate solutions. For node pairs that are too far apart in terms

of physical distance, it is possible to create a lightpath for some line-rates with the

signal being regenerated somewhere along the lightpath. For heavily loaded networks,

the direct connection (the shortest path) between a node pair may be unavailable,

and the demand may be required to be rerouted over a longer lightpath, where the

signal quality degradation could then become an issue. Regeneration makes rerouting

possible.
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Figure 7.6: Goodput using regeneration and no-regeneration methods versus load

Another important impact on performance caused by regeneration is that it pro-

vides opportunities for grooming. When a signal undergoes OEO conversion, it can

then be multiplexed with other streams to become a higher data-rate stream, which

improves the channel capacity usage e�ciency. That is why researchers propose to

intentionally control TR of some line-rate signals to force them through OEO con-

versions, to take advantage of these grooming opportunities.

Note that although obvious di↵erences in performance exist between di↵erent

methods, the di↵erence is not large. Since the ILP considers all options, the network

is highly e�cient and can handle large volumes of tra�c.

In Table 7.4 we compare the system performance for a tra�c model with load of

100 Erlang using di↵erent time slot durations. The value of the time slot duration

can be considered as the maximum delay of each call before it can be processed. From

the ILP’s point of view, it a↵ects the number of simultaneous demands for service.

On average, the number of calls per time slot is equal to the load (Erlang) times the

slot duration divided by the call duration (arbitrary units of time). As the slot size
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Figure 7.7: Blocking probability using regeneration and no-regeneration methods
versus load

increases, the number of calls to allocate per time slot increases. The ILP solution

calculated with more calls results in a better solution, since the optimization only

considers new calls (not calls established in previous slots). However, the increased

time slot duration wastes resources since the termination of calls is delayed until the

end of each time slot. Based on these two reasons, we can explain why the performance

is similar with di↵erent time slot durations, as seen in the table.

Table 7.4: E↵ects of Time Slot Duration, Load of 100 Erlang

Time slot duration 0.2 0.1 0.05 0.03
Goodput 0.92 0.91 0.88 0.91

Blocking probability 0.09 0.08 0.05 0.09

7.5 Summary

We propose an approach to solve the dynamic real-time tra�c GRWA problem us-

ing an ILP in a time-slotted fashion. The tra�c only endures a short delay before
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being processed. Meanwhile, the system e�ciency is increased compared to heuristic

methods, both in goodput and call blocking probability. Grooming and regeneration

e↵ects on the network performance are also discussed.

Using an ILP in a dynamic system may become too computationally burdensome

to be scalable as the network size increases. In future work we will consider relaxation

techniques for obtaining faster near-optimal solutions using this approach.
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Chapter 8

Estimation of Network

Performance Through Analytical

Modeling

8.1 Introduction

In previous chapters, we propose several heuristic algorithms and MILP formulations

for solving the routing and wavelength assignment (RWA) for wavelength division

multiplexed (WDM) networks and routing and resource allocation (RSA) problems

for elastic optical networks (EON). In particular, we are interested in the impact

of technologies such as signal regeneration, wavelength conversion, and modulation

conversion on network performance metrics such as the amount of spectrum needed.

It is desirable for network designers to begin with a fast coarse estimate of network

performance implementing such technologies without requiring computationally bur-

densome and detailed algorithms. In this chapter, we create an analytical model to

provide such an estimate.
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Analytical models have been proposed for network design problems to show in-

sight on the relationship between network parameters and to generate preliminary

approximations of network performance much more quickly than can be obtained by

simulation. In [60] the authors analyze the impacts of wavelength conversion on a

translucent optical network. [61] develops an approximation for the tra�c grooming

problem in optical networks. Korotky first introduced the network global expectation

model in [62], and derives a formula to represent network cost. In [63] he analyzes

the impact on network capacity using mixed-bit-rate transmission with this model.

The authors in [64] use the network global expectation model to estimate the num-

ber of channels used given a certain tra�c load, then use the number of channels to

calculate the impact of physical impairments and analyze the quality of transmission

issue. [65] uses a di↵erent approach: they develop an analytical model for dynamic

networks by implementing a finite state machine.

In this chapter we propose an analytical model to estimate the network per-

formance as measured by the average link spectrum usage, highest required spec-

trum, and network capacity for physically impaired EONs, when the aforementioned

technologies (signal regeneration, wavelength and modulation conversion) are imple-

mented. To the best of our knowledge, there is no published analytical model that

considers these e↵ects on optical networks. We therefore compare the results of our

analytical model with results from simulation. Our analytical models closely ap-

proximate results obtained via simulation, with modeling accuracy depending on the

network topology and how much information is known about the routing protocol.

In comparison with our one-shot probabilistic approach, over 100 random trials are

needed for the simulations to converge, resulting in over 30⇥ longer calculation time.

We first apply our analytical model on a symmetric 36-node mesh network as shown

in Fig. 2.4, then we apply the model on a real world network, the NSF-24 network

shown in Fig. 5.2.

110



8.2 Analytical Model

We model a network with sparse signal regeneration by assuming that a node is

capable of signal regeneration with probability q independently of the other nodes.

We also assume that all nodes are capable of converting the wavelength to avoid any

wavelength contention, i.e, the wavelength continuity constraint is not enforced. The

case where wavelength continuity is required is beyond the scope of this work. The

tra�c demands on the network are from every node to every other node, and the goal

is to estimate the minimum spectrum needed when the bit rate of demands are fixed

and to maximize the throughput the network can handle when bit rate is not fixed

but there is a limit of bandwidth for the transponders.

8.2.1 Expected Value of Longest Segment Length

Figure 8.1 illustrated a lightpath that consists of two transparent segments that repre-

sent portions of the lightpath where the signal remains in the optical domain. Optical

signals are regenerated at node 4. Recall from Section 2.3 in Chapter 2 that both the

transmission reach (TR) and the bandwidth used depend on the bit rate and spectral

e�ciency of the tra�c. Therefore, when the bit rate and spectral e�ciency are fixed

(no modulation conversion), the reach is also fixed. In order to satisfy the quality

of transmission (QoT) for the lightpath, the TR constraint has to be satisfied for all

transparent segments, and thus the TR has to be longer than the longest segment.

Therefore, when modulation conversion is not available (i.e., spectral e�ciency is

fixed), the spectral e�ciency is limited by the longest transparent segment of the two

(in this case segment #1).

In order to find the longest segment, we first derive the expected value of the

length of the first transparent segment. Let the number of hops on a path be denoted

as the random variable H. The probability that the node at hop k on a path p is
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Figure 8.1: A lightpath that consists of two transparent segments with node 4 as
regeneration node

assigned as the first regeneration node for this path is (1 � q)k�1q for k < H. Since

the lightpath has a limited length, the expected value of the first transparent segment

length (in number of hops), S1, is then

E[S1 | H = h] =
h�2X

k=0

k(1� q)kq + (h� 1)(1� q)h�1 + 1 (8.1)

The first term includes cases when any node from node 1 to nodes h � 1 is a regen-

eration node; the second term is when there is no regeneration node; the constant 1

at the end is because k in this equation represents the number of non-regeneration

nodes before the first regeneration node, and starts at k = 0.

The geometric distribution model can only generate the expectation length of

the first transparent segment of the path given its hop count, not the longest path.

In our example in Fig. 8.1, we have to take into account the probability that the

second transparent segment ( segment #2) is longer than transparent segment #1.

In order to find the expected value of the length of the longest transparent segment,

we derive a new model based on enumeration of the possible outcomes of the random

regeneration assignment. We follow the stars and bars approach1 [66] and derive the

formula for a path of h hops as follows. Define the longest transparent segment as a

random variable S(`), and let the number of regeneration nodes on the path be labeled

1The stars and bars method stems from a combinatorial mathematics theorem to solve sim-
ple counting problem such as how many ways there are to put N indistinguishable balls into K
distinguishable bins.

112



N (r). Then,

Pr{S(`) = k | H = h} =
h�1X

i=0

Pr{S(`) = k | N (r) = i, H = h}Pr{N (r) = i | H = h}

(8.2)

Pr{S(`)  k � 1 | N (r) = i, H = h} =

Pi+1
j=0(�1)j

✓
i+ 1

j

◆✓
h� 1 + j(k � 1)

i

◆

✓
h� 1 + i

i

◆ (8.3)

Pr{N (r) = i | H = h} = qi(1� q)(h�1�i)

✓
h� 1

i

◆
(8.4)

In (8.3), we show the conditional probability that the longest transparent segment

has at most k�1 hops given there are i regeneration node on a h hop path. Similarly

we can express the probability that the longest transparent segment has no more than

k hops. Then, we can find the probability that the longest transparent segment has

exact k hops by subtracting the two. Combining (8.2), (8.3), and (8.4), we derive the

expected value of the length of the longest transparent segment for any path given

the probability of regeneration node assignment q.

E[S(`) | H = h] =
hX

k=1

k Pr{S(`) = k | H = h} (8.5)

For example, for a path length of H = 10, the expected value of the longest trans-

parent segment expressed as the number of hops for di↵erent regeneration probabil-

ities q is given in Fig. 8.2. In this figure, we also show the results from simulation,

averaged over di↵erent numbers of trials. Notice the necessity of having su�cient

simulation trials in order for the results to converge.
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Figure 8.2: Expected longest transparent segment length for di↵erent regeneration
assignment probabilities q for a path of 10 hops

8.2.2 Expected Number of Segments of Length k

When modulation conversion is available at a regeneration node, the spectral e�-

ciency for each demand on any link doesn’t depend on the longest segment on the

path anymore. Instead, it depends on the length of the transparent segment that

the link belongs to. Compared to the no-modulation conversion case, the problem is

more complex in that we need not only the segment length, but also its distribution.

Let us assume there areN (r) = i regeneration nodes on a h-hop path, which implies

there are i+ 1 transparent segments. Then let Y (k) be the number of segments that

have k hops. In order to find E[Y (k)|H,N (r) = i], we define the indicator variables

X(k)
m so that X(k)

m is 1 if the mth segment has k hops and 0 otherwise. Then we have

Y (k) = X(k)
1 + X(k)

2 + ... + X(k)
i+1. By linearity of expectation, E[Y (k)|H,N (r) = i] =

E[X(k)
1 |H,N (r) = i] + E[X(k)

2 |H,N (r) = i] + ... + E[X(k)
i+1|H,N (r) = i]. So now the
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problem reduces to calculating the E[X(k)
m |H,N (r)] for each m,

E[X(k)
m |H = h,N (r) = i] = Pr{X(k)

m = 1|H = h,N (r) = i}

= Pr{segment m has k hops|H = h,N (r) = i}

=

✓
h� 1� i

k � 1

◆✓
1

i+ 1

◆k�1 ✓
1� 1

i+ 1

◆h�i�k

(8.6)

Therefore,

E[Y (k)|H = h,N (r) = i] = (i+ 1)Pr{segment m has k hops|H = h,N (r) = i}

=

✓
h� 1� i

k � 1

◆✓
1

i+ 1

◆k ✓
1� 1

i+ 1

◆h�i�k

(8.7)

Knowing the probability that a h-hop path has i regeneration nodes, (8.4), we get the

expected value of the number of segments that has k hops for a h-hop path given the

regeneration assignment probability q. For each segment length, assuming all links

have the same length, we can calculate the spectral e�ciency according to the reach

and bit rate of the demand using the transmission reach formula (2.1). Once we find

the expected number of segments for all k’s, we can derive the spectrum usage for

the network.

8.2.3 Path Hop Density Function

Since in our analytical model, we analyze the network performance on a path basis,

we want to distinguish the paths according to their length (number of hops). The hop

density function fH(h) represents the fraction of paths in the network of each path

length. Note that for a particular topology, we can easily find the hop density function

of the number of hops per path for a certain routing algorithm (e.g., Dijkstra’s shortest

path routing algorithm for static shortest path routing).
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We derive the expected number of transparent segments with length k on a h

hop path in the section above. Given the path hop density, the expected number of

transparent segments of length k over the whole network is then simply

E[Y (k)] =
X

h

fH(h)
h�1X

i=0

E[Y (k)|H = h,N (r) = i] Pr{N (r) = i|H = h} (8.8)

8.3 Performance Measures

In this section we derive performance metrics to estimate the resources needed and

the capacity of the network. In this section we test our expressions on the 36-node

symmetric network shown in Fig. 2.4.

8.3.1 Spectrum Usage for One Demand

In Section 8.2, we derive two important expected values: the expected value of the

length of the longest transparent segment and the expected number of segments of

length k. When modulation conversion is not available, the transmission reach Tr is

the length of the longest transparent segment. If modulation conversion is available,

the transmission reach enforced on each link is the length of the segment it belongs

to.

We use the transmission reach formula for demand d given in Chapter 2, (2.1). Ac-

cording to the relationship between bandwidth B, bit rate Rd and spectral e�ciency,

⌘d = Rb/B, the transmission reach formula can be re-written as

Tr =
↵ + �B

Rd
+ � (8.9)

i.e.,

B =
Rd(Tr � �)� ↵

�
(8.10)
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Figure 8.3: Comparison of average link spectrum usage between simulation and ana-
lytical model with and without modulation conversion

Using as the transmission reach either the longest segment for the path (if no modula-

tion conversion is used) or each segment length on the path separately (if modulation

conversion is used), this equation gives us the spectrum used by demand d. Summing

up the spectrum usage of each demand and then dividing by the number of links, we

can get the average link spectrum usage of the network shown in Fig. 8.3.

8.3.2 Highest Spectrum Required on a Link

Again assuming we know the routing table and the tra�c demand matrix, we can find

the highest required spectrum on any link by identifying the link that is shared by the

most number of paths assuming each demand uses the same amount of bandwidth.

We define F (max) as the highest spectrum usage on any link of the network; call

that link l(max). If no modulation conversion is used, the spectrum used by the path
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depends on the longest segment of the path and

F (max) =
X

p:l(max)2p

Rd(E[S(`)|H = hp]L� �)� ↵

�
. (8.11)

where hp is the number of hops of path p, and L is the link length and assumed to

be the same for all links.

If modulation conversion is used, since we do not know the length of the segments

that share the link, the best we can do is to use the average segment length. First we

calculate the total spectrum usage of a path p with length H = hp as

Bp =

h
pX

k=1

h
p

�1X

i=0

✓
hp � 1� i

k � 1

◆✓
1

i+ 1

◆k ✓
1� 1

i+ 1

◆h
p

�i�k Rd(kL� �)� ↵

�
. (8.12)

Then,

F (max) =
X

p:l(max)2p

Bp

hp
(8.13)

This is based on the assumption that all paths use about the same spectrum, which

may or may not be accurate depending on the load balance.

In Fig. 8.4 we show a comparison between the analytical model and simulation

results when no modulation conversion is available. In Fig 8.5 we show results for

the modulation conversion case. When there is modulation conversion, the spectrum

usage on any link not only depends on the paths that share the link, but also depends

on the segments within those paths that share the link. Since with our probabilistic

model we cannot identify which segment of each link shares the link (actually what

we are interested in is the segment length), we use the average segment length for

calculating the spectrum usage. However, in reality the link that requires the most

spectrum may change due to the assignment of segment lengths. Such variation

cannot be shown using our model. The inaccuracy is greater compared to the no

modulation conversion case. As expected, the more information one has about the
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Figure 8.4: Comparison of highest spectrum required between simulation and analyt-
ical model without modulation conversion

network, the more accurate the prediction. The highest required spectrum (i.e., when

q = 0, so the length of the segments that share the link all equal the path length)

can be seen as the upper bound for the spectrum required on the network. This is

essentially a transparent network. The lowest required spectrum (i.e., when q = 1, so

the length of the segments that share the link all equal one hop) can be seen as the

lower bound for spectrum requirement. This is essentially an opaque network.

8.3.3 Capacity of the Network

Assuming each optical transponder has a limit on the spectrum it can use to transmit

signals, we can use our model to calculate the total capacity of the network. Results

in this section assume each demand can use no more than 50 GHz.

Following (2.1) in Chapter 2, we have

Rd =
↵ + �B

Tr � �
(8.14)
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Figure 8.5: Comparison of highest spectrum required between simulation and analyt-
ical model with modulation conversion

We know the relationship between Tr and the segment length, and thus can find a

limit on Rd, which gives us the network capacity as C =
P

d Rd, where the summation

is over all demands in the demand matrix.

For the case where modulation conversion is not used,

C =
X

d

h
dX

k=1

Pr{S(`) = k | H = hd}
↵ + �B

kL� �
(8.15)

where hd is the number of hops on the path used by demand d. For the case with

modulation conversion, the network capacity is the same, since the bit rate of the

demand is limited by its longest transparent segment.

In Fig. 8.6 we show how the capacity of the network changes with the regeneration

assignment probability of the nodes. Notice that the two curves align closely. This is

because when all links are with the same length the estimation of the length of the

longest segment is very accurate as shown in Fig. 8.2. In the following section, we

discuss our analytical model on a real topology NSF-24 network.
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Figure 8.6: Comparison between simulation and analytical model of the network
capacity assuming a per-demand bandwidth limit of 50 GHz

8.4 Real Topology

Consider a real topology such as the NSF-24 network shown in Fig. 5.2. Also assume

shortest path routing and first fit (FF) wavelength selection. We can first find the

hop density function of the paths fH(h), and then, following (8.8) above, calculate

the expected number of segments with given length h. And finally, we can calculate

the average link spectrum usage using (8.10) or (8.12), the highest spectrum required

using (8.11) or (8.13) depending on whether modulation conversion is implemented

or not, and the network capacity using (8.15).

8.4.1 Average Link Spectrum Usage for the NSF-24 Network

In Figs. 8.7 and 8.8, we compare the average link spectrum usage obtained using

the analytical model and simulation for the NSF-24 network. Since we don’t know

exactly the links contained in each segment, we can only approximate the segment

length. We tested two cases: (1) we use the average link length over all links in the
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Figure 8.7: Average link spectrum usage comparison using average link length over all
links (analytical 1), average link length over single path (analytical 2), and simulation
results, without modulation conversion

network (simulating the scenario when links length assignment is not known) and (2)

we average the link length over the links in the specific path (simulating the scenario

when links length assignment is known). Results show that when we approximate

the link length using method (1), we overestimate the average link spectrum when q

is small, and underestimate the average link spectrum usage when q is large. When

we approximate the link length using method (2), the results between the analytical

model and simulation is close when q is small, and gradually increases when q reaches

1. Note that since we use the average link length as the length of all links, when no

modulation conversion is allowed, we always underestimate the length of the longest

segment; therefore, in Fig. 8.7, the analytical model generally yields a smaller average

link spectrum usage than simulation results.
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Figure 8.8: Average link spectrum usage comparison using average link length over all
links (analytical 1), average link length over single path (analytical 2), and simulation
results, with modulation conversion

8.4.2 Highest Spectrum Required for a Link for the NSF-24

Network

In Figs. 8.9, we compare the highest spectrum required between the two analytical

cases and simulation with modulation conversion. Results show that the di↵erence

between estimation and simulation is greater using method (2) than method (1). In

method (2), the inaccuracy in the link length approximation accumulates over all

the demands that share the link and therefore, causes a greater gap. In method (1),

however, the transparent segment length is underestimated for some demands and

overestimated for others. Therefore the analytical results are closer to simulation

results.
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Figure 8.9: Highest required spectrum comparison with modulation conversion using
average link length over all links (analytical 1), average link length over single path
(analytical 2) and simulation results

8.4.3 Network Capacity on a Link for the NSF-24 Network

In Fig. 8.10, we compare the network capacity between the two analytical cases and

simulation. Results show that when we approximate the link length using method (1),

we underestimate the network capacity when q is small, and overestimate the network

capacity when q is large. When we approximate the link length using method (2),

the results between the analytical model and simulation is close when q is small, and

gradually increases when q reaches 1. When q = 0, there is only one segment for each

path, therefore, the estimation of method (2) is the same as simulation. When q = 1,

the longest segment on the path depends is the longest link on that path, therefore,

using average link length as the length of all links in method (2) underestimates the

longest segment length and overestimate the network capacity. Method (1) on the

other hand, underestimates the longest segment length for paths with longer links

and overestimate it for paths with shorter links.
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Figure 8.10: Network capacity comparison with modulation conversion using average
link length over all links (analytical 1), average link length over single path (analytical
2), and simulation results

8.5 Complexity and Accuracy

In order to show the trade-o↵ between computational complexity and accuracy, we

compare our analytical model with simulations using di↵erent numbers of trials in

Figs. 8.11 and 8.12. Results from the analytical model are consistent with the

simulation results based on 100 random trials. The simulation converges after about

10 trials (the di↵erence between 50 and 100 trials is not obvious). For simulations

using 50 and 100 trials, the running times are approximately 8 and 16 seconds2,

respectively, and appear to increase with higher q. The running time for the analytical

model, however, is less than 1 second and remains low with increased q. We conclude

that the analytical model is at least 8 times faster for our problem, with similar

accuracy. As the size of the topology increases, the running time is of great concern

2The simulations were run in Matlab R2013a within OS X on a Macbook pro laptop with 2.3
GHz Intel Core i7 processor and 8 GB of memory.
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Figure 8.11: Average link spectrum usage of regenerated network without modulation
conversion for 36-mesh network
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Figure 8.12: Running time for Fig. 8.11

and therefore, the analytical model is preferable for obtaining an initial estimate of

the average link spectrum needed.
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Figure 8.13: Average link spectrum usage of regenerated network without modulation
conversion for 16-mesh network

The convergence of simulation results depend on the size of the network. Compar-

ing the result of average link spectrum usage for a smaller 16-node symmetric network,

a 100-node symmetric network, and the 36-mesh network shown above, Figs. 8.13

and 8.14 show that larger size networks requires fewer trials of simulation to converge

to a result. These figures also show that the analytical model is consistent with sim-

ulation results. The running time for simulation also increases drastically with the

network size: we observe that the average runtime (over all q’s) for 100 trials for the

16-mesh network is 2 seconds, yet for the 100-mesh network it is 165 seconds. The

runtime for our analytical model does not scale that much when size of the network

increases. It runs less than 0.1 seconds for the 16-mesh network and around 4 seconds

for the 100-mesh network. The speed up is 34 and 42 times, respectively.

We also implemented our analytical model on a ring network and found similar

outcomes, except that the analytical model’s runtime is in this case similar to that

of a simulation of 10 trials. This is due to the fact that the range of path lengths
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Figure 8.14: Average link spectrum usage of regenerated network without modulation
conversion for 100-mesh network

is larger compared to a mesh network with same number of nodes. Therefore the

amount of calculation also increases for the analytical model.

Once the routing is known, the analytical model can be applied to any network

and the results appear to be consistent with simulation. We tested the analytical

model on the 36-mesh network with modified routing (each demand randomly selects

from four alternate shortest paths). The results show similar trend as those shown

above.

8.6 Summary

In this article, we propose an analytical model to investigate the impact of signal

regeneration and modulation conversion on network performance as measured by

average link spectrum usage, highest spectrum required, and network capacity. We

show the trade-o↵ between the number of regeneration nodes and spectrum usage. We

compare our model with simulation results using 100 trials and show good consistency.
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We also show that our model can reduce the calculation complexity as measured by

a speed-up in the runtime by at least one order of magnitude, depending on the

topology.
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Chapter 9

Summary and Conclusions

In this thesis, we investigate the impact of physical impairments and resource al-

location approaches on the network performance for both static and dynamic fiber

optic networks. Heuristic algorithms and mixed-integer linear programming (MILP)

formulations are developed according to the assumed constraints and objectives. An

analytical model is derived to provide a coarse estimation of the network performance

and give network designers insights into the relationship between network parameters.

9.1 Summary

The first part of the work involve several heuristic algorithms for wavelength divi-

sion multiplexed (WDM) networks. The centralized heuristic grooming, routing, and

wavelength assignment (GRWA) algorithm presented in Chapter 3 and published in

[67] is essentially a weighted shortest path routing algorithm that bases the weights on

signal regeneration and tra�c grooming opportunities. Its goal is to balance the sav-

ing in spectrum usage from tra�c grooming with the additional congestion resulting

from rerouting on a path longer than the shortest path. We break down the algorithm

into a sequential process that considers the three di↵erent categories of tra�c groom-

ing opportunities: destination grooming, source grooming, and intermediate segment
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grooming. The algorithm also guarantees the established lightpath have acceptable

quality of transmission (QoT) by limiting the length of transparent segments. As

per reviewers suggestions when this paper was first published, we developed another

centralized heuristic GRWA algorithm for dynamic translucent networks, described in

Chapter 4 and published in [68], called the grooming adaptive shortest path (GASP).

Instead of valuing tra�c grooming, signal regeneration, wavelength availability sepa-

rately, we combine them into one step.

A distributed GRWA algorithm that implements ant colony optimization (ACO)

presented in Chapter 4 and published in [68] proposes a distributed control and man-

agement mechanism for network operation. It reduces the information sharing down

to only among relevant neighbors. It also localizes the GRWA decision making to

the source node of the tra�c demand, which shortens the call setup delay. The

ACO algorithm is then optimized for our specific network performance goal, which

includes QoT constraints. A series of algorithm modifications are explored to im-

prove the general ACO model to better fit our problem. The network performance

and network control overhead between distributed and centralized GRWA algorithms

are compared.

A part of the work addresses elastic optical networks (EONs). We implement a

MILP approach to solve the routing and spectrum assignment (RSA) problem for

EONs, described in Chapter 5 and submitted for publication [56]. The programming

not only uses flexible spectrum assignment for EONs but also includes variables and

constraints for wavelength and modulation conversion. The complexity of the formu-

lation is discussed. We then develop a recursive model that breaks down the problem

into subproblems with subsets of tra�c demands and solve them sequentially. This

recursive model can be easily applied to dynamic network and network expansion

with existing infrastructure as well as ongoing tra�c. In Chapter 6, also submit-

ted for publication [69], we investigate the merit of this link-based MILP in contrast
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with using a path-based (PB) MILP formulation to solve the network design problem

where only a subset of the RSA solutions are considered. We study the drawbacks of

pre-determining the regeneration resources allocation as in previous publications and

the impacts of the number of candidate paths in the solution pool.

The MILP formulation is modified in Chapter 7 (published in [70]) to apply to

dynamic WDM networks with an objective function that minimizes the occurrence

of tra�c demands being blocked. The formulation is formulated specifically in a

time-slotted fashion that matches the tra�c arrival and termination processes. The

resource allocation optimization is performed for each time-slot successively, with the

existing network state as initial constraints. This approach is the first to explore the

possibility of using MILP to solve dynamic RWA problems.

The goal of analytical models is to mathematically explain the relationship be-

tween network parameters. We present a model that also gives a preliminary estimate

of network performance given certain assumptions, such as uniform tra�c, uniform

link length, etc. In Chapter 8 we express the RSA problem for EON in analyti-

cal form. The analytical model is able to estimate key network performance such

as total spectrum usage, highest spectrum requirement and network capacity, while

considering the QoT of the network.

9.1.1 Tra�c Grooming in WDM Networks

When implemented in the heuristic methods in Chapters 3 and 4, tra�c grooming is

encouraged with caution: on one hand we want to encourage new tra�c to fill the

gap left by existing tra�c, on the other hand we want to avoid excessive spectrum

usage when grooming requires rerouting further from the shortest path. Therefore,

we always give priority to grooming opportunities that don’t require or require very

little rerouting, such as source-to-destination grooming. We then quantify the benefits

of grooming by using weights within the routing algorithm so that we can combine
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the two merits into one. In Chapter 4 the tra�c grooming information is not just

collected but also a↵ects the ants behavior in exploring the network. We develop a

novel approach to implement tra�c grooming in MILP in Chapter 7 so that tra�c

grooming is enforced at either the source or regeneration node where all groomed

tra�c undergoes OEO conversion.

9.1.2 Regeneration Node Placement

In Chapters 3 and 4 we follow the heuristic method for regeneration node placement

proposed in [21] that values the connectivity of the topology. In Chapter 5 we solve

the regenerator placement problem within the mixed-integer linear program by us-

ing variables that represent regenerator placement decisions as part of the objective

function. In this way, we can optimize the problem for our topology of interest.

9.1.3 Regeneration Circuit Allocation

We implement several schemes for regeneration circuit allocation heuristically: in

Chapter 3, a regenerator is assigned to call demands as needed; in Chapter 4, a re-

generator is assigned to a call demand whenever possible. We also show in Chapter 7

that for a network with a similar scale as the NSF-24 network, the number of regen-

erators needed is reasonably low. We then optimize regenerator usage by including

it as part of the objective function in our MILP formulation in Chapter 5.

9.2 Conclusions

In Chapter 3 we show that with tra�c grooming, the blocking probability of dynamic

WDM networks is reduced and the throughput is increased. We use the ongoing

tra�c trends to show that at any moment in the operation of the dynamic network,

the network with tra�c grooming implemented serves more tra�c. We also show the
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e↵ects of having a di↵erent number of regeneration nodes in the network, and point

out that while having more regeneration nodes implies more tra�c grooming oppor-

tunities, therefore leading to a higher spectrum usage e�ciency, after the number of

regeneration nodes reaches certain point (for example, 10 for the NSF-24 network),

the marginal improvement of adding new regeneration nodes decreases notably. This

is partly because the network is not symmetric and some paths are less frequently

used than others.

In Chapter 4 we introduce a distributed GRWA algorithm using ant colony op-

timization (ACO) for dynamic WDN networks. We acknowledge the performance

disadvantage of using a distributed algorithm compared to a centralized one by pre-

senting the ACO and GASP algorithm performance side-by-side. This results in a

trade-o↵ between blocking probability and distributed management (reduced control

overhead). The ACO has been modified by many previous works for better perfor-

mance, yet we show that for our specific question of GRWA, it is only meaningful to

optimize the algorithm with network performance as the criteria. By adjusting the

parameters of the algorithm the network performance in terms of blocking probability

can be improved.

In Chapter 3 we point out that the improvement to network throughput flattens

out as the number of regeneration nodes increases. This is because the topology is not

ideally symmetric and certain paths are not used as often as others. This conclusion

also implies that the translucent optical network design is both e↵ective in terms of

increasing network throughput and economically reasonable by reducing the need for

expensive electronic devices. We support this conclusion again in Chapter 5 and 6

with MILP formulations.

In Chapter 5 we investigate the implementation of technologies such as wavelength

and modulation conversion on di↵erent topologies (namely, connectivity, node degree,

etc., but with the same scale in terrestrial coverage and order of topology) and show
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that the e↵ects vary based on the topology. A more symmetric topology often requires

fewer conversion nodes than a realistic topology since the majority of lightpaths share

common intermediate nodes. A more symmetric topology also requires less spectrum

because there are fewer bottlenecks than networks such as the NSF-24 network; also

more alternative paths are available.

MILP often yields solutions much better compared to the heuristics, but due to its

complexity it can only be applied to small scale networks. In Chapter 5 we show the

di�culty of solving an MILP even for a limited number of demands for the NSF-24

topology. In order to solve this issue, we introduce the recursive MILP formulation

that makes the execution time much smaller and predictable (i.e., a higher chance of

finding a solution within a fixed time limit). The trade-o↵ is the solution quality.

The popular accepted path-based (PB) MILP formulation is compared with our

link-based (LB) MILP formulation in Chapter 6. We show that due to the pre-

determination of regeneration resources for PB formulation, the regeneration re-

sources usage is not optimized for the whole network, yielding less e�cient assignment

(the PB cannot use all regeneration resources due to pre-assignment even when they

are available) and more required spectrum for the same tra�c matrix. The advantage

of using PB formulations is its reduced computation complexity and therefore faster

calculation time. For PB formulations, adding more candidate paths in the solution

pool results in better network performance, yet this depends on the network topol-

ogy (connectivity, scale, etc.) as shown in comparing between the NSF-24 network

and a symmetric 24-node network. The size of the solution pool needed is found to

depend on many factors. The LB formulation, however, provides an optimal solution

regardless of the variation in topology parameters.

To implement MILP on dynamic networks, it is essential to break down the con-

tinuous tra�c into a sequence of sets of calls according to their arrival times, and

optimize the RWA for each set separately, as we propose in Chapter 7. The size of
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the set of calls determines the setup delay and extra assignment of resources. We

notice that the overall blocking probability of the network remains rather invariant

to the size of time granularity of the tra�c demand partitioning.

Analytical model runs much faster compared to even heuristic algorithms for find-

ing network performance objectives. Our analytical model described in 8 shows orders

of magnitide of speed-up compared to heuristic simulation. It is also highly consis-

tent with simulation runs for a large number of trials. The accuracy of the analytical

model varies with the topology of the network.

9.3 Future work

The network resource placement and assignment problem has been approached in

many ways, from heuristic algorithms to linear programming optimization. The re-

port herein suggests further study in particular areas of interest.

In particular, the resource assignment mechanism could be further improved if

additional information about future tra�c needs were included. In terms of traf-

fic grooming, we encourage the grooming of new tra�c with other new tra�c or

existing tra�c. But since the demand termination time is unknown, it becomes pos-

sible that one of the groomed tra�c quickly terminates after grooming starts, leaving

the spectrum ine�ciently utilized. It is expected that with certain tra�c reserva-

tion/planning, the algorithm can be improved so that the uptime of tra�c grooming

is high. In Chapter 5, we show that with the recursive MILP that can be used to

mimic dynamic networks, employing modulation conversion does not always improve

the performance of the network. This is also because optimization is only made for the

current tra�c while not taking future tra�c into consideration. We plan to include

tra�c scheduling into our design in the future.
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In some of our work we use relaxation of integer parameters to make the solutions

more computationally tractable. For example, the spectrum assignment in our MILP

is an arbitrary value, while in reality, arbitrary spectrum assignment is not practical

(using OFDM technology, the spectrum assignment can only be made in units of the

size of subcarrier). Similarly for spectral e�ciency and modulation we assume com-

plete flexibility when such an assumption is overstated. We plan to further investigate

the impact of these assumptions in future work.

The analytical model presented in Chapter 8 can also be extended. We could

consider scenarios where regeneration resources are not placed randomly but clustered

in a certain order. The model may also be able to handle dynamic tra�c instead of

a static tra�c matrix.

In our later work, we start to consider the e↵ects that network topology has on

network performance. The dependence of tra�c on network resource usage and physi-

cal impairments is expected to be highly topology dependent. Although real networks

such as the NSF-24 network are often used in the literature to implement designs, it is

critical to develop algorithms that take network topology into consideration. We plan

to introduce topology related knowledge, such as through graph theory, into research

on algorithm design for fiber optic networks.
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