


 
 

In the digital age, trillions of bytes are collected, processed, and stored every day to fuel 

the operations of businesses and organizations.  Passive and active data collection transformed 

the global economy and continue to guide innovation and optimization in the modern world.  

Financial expert J. Manyika (2011) predicted early in the boom of big data that a retailer using 

big data to track customer preferences and system inefficiencies “could increase its operating 

margin by more than 60,” (p. 2) in a report on the transformations coming as a result of Big Data 

systems.  Manyika saw potential benefits to businesses from Big Data practices in four areas: the 

improvement of organizational systems, the customization of services, the automation of manual 

systems, and increasing transparency (Manyika, 2011, p. 5).  Today, businesses and 

organizations of every type use data collection on ever increasing scales to increase their margins 

and optimize their operations.  In the wake of its successes and growing ubiquity, Big Data is 

now also praised as the new modern tool for improvement in tracking sustainability and 

improving wasteful practices.  In 2014, a UN Independent Expert Advisory Group (IEAG) 

released a new environmental report centered on the importance of Big Data in tracking and 

improving sustainability on a global scale (United Nations IEAG, 2014, p. 2).  Big Data is at the 

forefront of the modern push for sustainability and improvement, however, its own implications 

to sustainability must be scrutinized if it is to be the path forward. 

AREAS FOR RESEARCH AND IMPROVEMENT 

In applications such as these, Big Data is often seen as an instrument of the “common 

good”, since it is used as a tool for the betterment and optimization of existing systems 

(Lucivero, 2019, p. 1).  One of the key recommendations of the aforementioned UN report is to 

“Share [Big Data] technology and innovations for the common good” (United Nations IEAG, 

2014, p. 3).  Data initiatives are often presented to communities and users as the cutting-edge 
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modern solution to improving services, but in the case of sustainability, it is very rarely 

discussed how Big Data initiatives threaten sustainable practices themselves.  Lucivero, a senior 

researcher in ethics and data, finds it especially worrying how Big Data is often thought of as a 

“clean oil” or “limitless resource”.  The hardware systems that supported the data revolution 

have improved in efficiency and carbon footprint, but power use of data centers still accounts for 

three percent of annual electricity sales in the U.S., or about 70 billion kWh, equivalent to the 

annual electricity use of over 6 million households (Shehabi et al., 2018, p. 4).  For scale, the 

United States Environmental Protection Agency’s (U.S. EPA) data tool for carbon equivalency 

estimates this power use to be equivalent to 49.5 million metric tons of CO2.  This is the CO2 

output of approximately 54 billion pounds of coal, or the carbon offset of 800,000 tree saplings 

grown for 10 years (U.S. EPA, 2019).  According to the taxonomy discussed by Pohl et al. 

(2018), direct, first order environmental effects of the hardware that supports Big Data are not 

the only environmental risks with data systems either.  Big Data initiatives can also have high 

order environmental effects, such as the effects of the applications and uses of Big Data (Pohl et 

al., 2018, p. 699).  Even if Big Data initiatives are praised for tracking and increasing 

sustainability, their own growth and continued success inherently means more hardware, data 

centers, and power usage. 

Big Data systems should not be seen as a clean, unlimited resource, but one that requires 

ongoing improvement in limiting wasteful practices and improving efficiency.  With Big Data 

established as a tool for modern success, the volume of data we collect and store is only set to 

increase in the near future.  Since the onset of the internet, researchers have improved the 

efficiency and sustainability of data storage systems consistently.  These technical 

improvements, along changes to the private data center market, have stifled the increase of data 
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center power usage so far, but researchers such as Shehabi et al. (2018) worry that, “The growth 

of data center electricity use beyond 2020, however, is uncertain as the modeled trends indicate 

efficiency measures of the past my not be enough for the data center demand of the future,” (p. 

9).  Continued improvement to Big Data systems is necessary if data collection and demand 

continues to grow exponentially (Shehabi et al., 2018, p. 8).  These systems must be improved 

technically and be regulated in order to reduce the increase in their power consumption that 

comes with an increase in demand for data services. 

To address these needs, a state-of-the-art technical paper will examine the potential of 

reinforcement learning systems in reducing the power usage of data center systems.  This 

technical paper will examine both benefits and drawbacks, and study how accessible these 

technologies may be to the cheaper, less funded colocation data center markets.  Additionally, an 

STS advocacy paper will apply the Social Construction of Technology to examine the absence of 

awareness of the environmental risks of Big Data (Bijker, Bönig, & Oost, 1984).  This paper will 

examine how the scale of Big Data systems affects the ability of individuals to impart 

environmental views on to its construction, as well as social and regulatory paths to creating a 

balanced perception of Big Data. 

REINFORCEMENT LEARNING SYSTEMS IN DATA CENTER MANAGEMENT 

 Constantly changing workloads and environment experienced by data center systems 

require dynamic management of cooling systems to optimize both power usage and performance.  

Systems must balance the need to provide fast, reliable data access with the desire to limit power 

consumption, which ultimately determines the profit margin of data services.  Traditional task 

scheduling (TS) algorithms lack the scalability and adaptability needed to further improve these 
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management systems, and because of this, machine learning, specifically reinforcement learning 

(RL) models, have been of recent focus in research. 

RL MODELS AND ADAPTABILITY 

 Reinforcement learning models are machine learning models which instead of 

minimizing error with respect to some true value, maximize reward received from acting in some 

environment.  The model receives an input from the environment, produces an action back to the 

environment, and gets some amount of reward in return representing how good the action was.  

Over many iterations, the model can maximize reward with respect to its action choice, and 

therefore the model can be incentivized to solve any problem in which a reward function can be 

well defined.  One such model created by Silver et al. (2018) can play Chess, Shogi, and Go at 

superhuman levels of skill, having learned only by simulating play against itself.  RL has been 

recognized for its ability to be applied to such a variety of problems and produce consistent 

results. 

 In research to develop more efficient resource management systems, RL models are 

praised for the adaptability to the range of use patterns experienced by data centers.  In research 

by Cheng, Li, and Nazarian (2018) to construct an RL management system, data use patterns 

which occur over the span of a day as well as patterns that occur over months mean that 

“adaptability and self-learning capacity of the energy and electric cost reduction method are 

required” (p. 129) for improving management systems (Cheng, Li, & Nazarian, 2018).  These 

systems respond to use patterns that traditional models could not have adapted to, and also 

perform better when applied to data centers with thousands of servers.  Rolik et al. (2018), 

researchers who built a similar model, stated that RL models are especially good at “tasks with a 

compromise between long-term and short-term penalties” (p. 238), such as using more power vs. 
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breaking a service level agreement (SLA) in a resource management system.  Overall, RL 

models represent a potentially lucrative technology in solving problems of compromise or 

optimization in which there is no known ideal solution. 

THE STATE OF RL AND BIG DATA 

 A state-of-the-art report written during STS 4600 will synthesize current and relevant 

research on the application of RL models to data center resource management.  This research 

will investigate in what ways RL models have been tested in both simulated environments and 

real data centers to gauge their viability in improving the energy efficiency of data centers.  

Models such as those built by Cheng, Li, & Nazarian and Rolik et al. will be compared and 

contrasted to show what type of systems show the most potential for success, and also what the 

shortcomings of RL resource management systems may be.  The results of RL research will be 

used to extrapolate to the decoupling of energy use from data demand increase, to gauge whether 

or not RL systems could be the needed improvement to safely limit data center electricity use in 

coming years.  This work will be completed and presented in an academic report by December 

2020. 

ENVIRONMENTAL CONCERNS IN THE CONSTRUCTION OF BIG DATA 

 Much of the time Big Data initiatives are pitched to the public, emphasis is placed on 

their advantage as the new frontier for innovation.  However, very rarely is there any 

environmentally conscious pitch of Big Data systems.  As Lucivero (2019) points out, there are 

even eco-friendly biases in the metaphor of the naming of the digital “cloud” and cloud 

computing, the practice of decentralized storing and running of processes over many servers.  

The average perception of Big Data systems lacks proper environmental context that accounts 
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for both how systems may aid in tracking sustainability as well as the environmental risks of an 

increased dependence on Big Data. 

RISKS 

 The overall environmental impact of Big Data systems is relatively unknown and 

challenging to measure.  High order effects of the deployment of data initiatives are hard to 

predict and even more challenging to measure.  Environmental researchers Pohl et al. (2019) 

found that life cycle analysis (LCA), though typically more product focused, can be productive 

in measuring higher order effects of technology replacement and optimization.   However, they 

remark that “not only were user-related ICT effects less frequently integrated into the 

assessment, but many behavioral effects, … were not taken into account,” concluding that 

current metrics of the total environmental impact of Information and Communication 

Technologies (ICT) are relatively uncertain.  As shown in Figure 1 below, a multitude of high 

order effects can increase the environmental impact of a technology.  Some of these include 

rebound effects, in which the reduction in scarcity of a resource or commodity increases 

consumption, or substitution effects, the positive or negative effect of replacing another  

Figure 1: The High Order Effects of ICT.  A depiction of environmentally friendly and 

dangerous effects of ICT separated by order and perspective. (Pohl, 2019). 
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technology (Pohl et al., 2019, p. 4).  Lucivero (2019) also raises concern for the lack of real 

measurement methods of the overall effects of ICT technologies on the environment, concluding 

that more research must be done to establish common measurement practices.  However, if our 

current understanding of Big Data’s impact on the environment is so vague, how are initiatives 

always pitched as being the newest eco-friendly project? 

THE STATE OF THE ENVIRONMENT AND BIG DATA 

In practice, data storage systems only present more environmental risk than most digital 

technologies when deployed at massive scale.  Due to this, individuals are unlikely to impart 

environmental concerns on to Big Data initiatives, and much of the construction and public 

perception is created by large technology companies and organizations.  Oftentimes these 

companies present Big Data along with pushes for sustainability because of the benefits in 

tracking and analysis it provides.  However, an environmentally balanced view is unlikely to be 

presented when the success of data initiatives is at risk, creating a one-sided perception of Big 

Data as a whole.  My research will focus on how this relationship has developed, and how 

individuals can affect the construction of data systems. 

An advocacy paper to be completed in STS 4600 will present research on how 

environmental concerns are excluded from the social construction of Big Data initiatives.  The 

Social Construction of Technology (SCOT) seeks to identify how social and cultural values are 

imbued on an artefact through its design, deployment and use.  Every decision made in SCOT is 

considered a social, moral, political, and cultural decision to expose how a technology has been 

shaped by the people around it (Bijker, Bönig, & Oost, 1984).  This paper will analyze the 

systems in which Big Data initiatives are deployed to determine who holds environmental 

values, and how those values do not end up imparted on the final object.  As shown below in 
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Figure 2, this analysis attempts to identify gatekeepers to the construction of Big Data that block 

environmental values from being imparted onto the technology.  These gatekeepers will be 

examined in order to identify social paths, such as community participation in determining data 

collection procedures, through which individuals and consumers can impart environmental 

values on data systems.  In addition to this, the paper will examine how large groups who control 

design, deployment, and advertising can be encouraged to impart environmental values onto the 

technology, as oftentimes their constructions are focused only on benefits to sustainability.  The 

goal of this research will be to determine how Big Data can be more accurately represented and 

created to encompass a responsible view of its relationship to sustainability. 

 

Figure 2: Social Construction of Big Data. Depiction of the lack of environmental values 

imparted on Big Data initiatives and the unknown gatekeeper. (Created by Dorsch, 2020) 

 

A SUSTAINABLE DIGITAL WORLD 

 This research will examine both the technical opportunities to improve data center 

efficiency using RL as well as why and how environmental concerns regarding Big Data are 

absent from its deployment and construction.  The exponential growth of data demand represents 

a serious threat to a sustainable future without further improvement to data center power use.  

We must adopt a more reasonable view of Big Data systems and continue improving them in 
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order to create a sustainable world where Big Data is used to optimize, innovate, and improve 

systems.  
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