
RESTful API Design: A Device Deployment Microservice

CS4991 Capstone Report, 2022

Boheng Mu

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

bm5dj@virginia.edu

Abstract

A Seattle-based cloud service company

provides a deployment and development platform

for IoT devices. The testing framework for their

service is monolithic and is deployed per test case,

resulting in inefficient allocation of resources and

interference from test cases using the same

devices. As an intern, I was tasked with

decoupling the device provisioning process as a

micro-service in the form of a RESTful API

designed to follow industry standards and internal

specifications for path, method, and payload. The

implementation exclusively utilizes company-

provided technology and draws on industry

practices such as testing and OOP. The API I

designed was ultimately able to deploy devices

for the company’s cloud computing service and

fully utilize the scaling capability that was

ostracized before. I successfully demonstrated the

API using an internal device testing service.

However, due to the time constraint and the scope

of the project, I had to forgo integration with the

existing test framework. Further development is

currently in the process for integrating with the

exiting test framework and the physical device

lab the team manages.

1. Introduction

Software testing is a very important part of

the software development cycle. There have been

many careers and companies that emerged for the

purpose of more effective testing [1]. The

industry has adopted continuous integration,

continuous deployment/ delivery (CICD) as the

norm for delivering agile products and

maintaining software; and software testing is an

important part of this CICD workflow [2].

However, finding the right balance for testing is

a task that requires careful articulation. Lack of

testing may result in faulty delivery of the product,

while too much could interrupt the sense of

continuous development, forcing developers to

wait a prolonged time for test results, before

moving onto the next step.

What is worse than the previous two cases,

however, is faulty tests. Faulty tests prevent

engineers from properly accessing the results of

their product, requiring additional engineering

hours on debugging the test rather than working

the product itself. Ensuring the integrity and

smooth running of tests, then, has become the

focus of many companies, including the one

where I did my internship.

2. Background

Orchestrator and DUT

The company has its own internal tools for

the CICD workflow, including automated testing.

However, due to the product being relatively new

and the need to integrate with special embedded

hardware, the team had to build the testing

solution from the ground up. The result is a

testing orchestrator where engineers who wish to

test their features only have to worry about

writing tests and which devices they want to test

on. The orchestrator will connect to the device

under test (DUT) and perform the test in place of

an engineer. The orchestrator is also interfaced

with the company’s existing automated testing

system where code changes to the product will be

periodically tested. DUTs are also set up in both

cloud computing units and physical device lab, in

different regions. DUTs are organized into device

pools, categorized by device type, operating

system, and capabilities.

3. Related Works

For Representational state transfer (REST)

and RESTful APIs, the industry has used

Swagger.io [3] as a standard. According to Casas,

et. al, (2021), Swagger.io provides a contract for

path definition, methods, and even testing for API

design [4]. It is a structure that is not specific to

any language or technology and allows many

different services to talk with each other. This one

key feature is critical because the product under

test has been rewritten from the Go language to

Java. The current orchestrator is written in Go

while a new open-source orchestrator is under

development in Java.

Compatibility between the two orchestrators

is critical. One such use of Swagger API

definition to bridge the gap between technology

is in jQuery AJAX validation, as explained by

Tashtoush, et. al (2019) [5]. The validation tool

allowed different services in different languages

to talk to each other thanks to the API

specification where the sender knows what the

receiver is expecting, and the receiver knows how

to interpret the information that it was sent. I aim

to achieve this type of consistence and

compatibility with the device deployment API.

4. Project Design

The design of the project strictly adheres to

the company’s guideline for designing a project.

Which starts from understanding the problem and

customer needs. Then move fast, build iteratively,

and break little.

4.1 Test Cases

The test cases are identified by tags

where engineers can select a combination of tags

on their devices. There is a predefined suite of

tests as well as the option for engineers to bring

their own test. Each test case run will instantiate

a new instance of the orchestrator. However, the

problem comes from each test case having its

own orchestrator, meaning that no one test will

have context on the overall tests being run.

Additionally, a race condition can happen when

multiple test case grab the same DUT and corrupt

the testing process. By decoupling the device

provisioning process as a stand-alone micro-

service, I seek to provide the overall context

needed to prevent the race condition.

Additionally, optimization can be done for the

queueing and ramp up of devices for testing

4.2 Onboarding Project

To help the interns to familiarize

themselves with the product, the team has the

interns build an onboarding project with the

project. For my onboarding project, I built a

sitting posture improvement system with IOT

devices and the company’s IoT software service.

The systems have pressure sensors and cameras

that can help detect improper sitting posture in the

user and will notify the user via SMS or email to

remind them to fix their posture. By completing

the onboarding project, I was able to understand

the purpose of the product, what kind of tests can

be run on the device, and more importantly how

the interaction among the software and the

physical devices work.

4.3 Gathering Requirements

To start any project, the company has the

policy to always start from the customer

perspective, which necessitates gathering

requirements from the user. During the early

phases of the project, I set up a series of meetings

with engineers on the team. Their roles range

from builders of the product that needs to run test

to testing engineers that built the orchestrator

from the ground up. Additionally, I took this time

to familiarize myself with the existing code base

for the orchestrator to understand how the API

will be used. Finally, the following requirements

were derived for the API:

• As a tester who wants to grab a device, I need

to be able to make a request for a DUT

• As a tester who wants to test, I need to have

the connectivity information to connect the

DUT

• As a tester I need to be able to check on the

status of my request and cancel if needed.

• As a testing engineer, I need to have a holistic

view of device usage and availability

4.4 Proof of Concept

Throughout the requirement process, I

experimented with different concepts and

ultimately landed on the reservation concept that

best fits the use case. The reservation concepts

describe this API as a “library” that vends devices,

which users must return. Physical devices need to

be reused, while virtual devices are recycled

internally. The user may reserve one or more

devices; the “library” then sets aside the

requested devices for a certain amount of time.

The user may opt to return the device early, or the

API will forcibly collect them by cutting off the

connection to the device and changing the logins.

This concept was re-created on the company’s

internal API system and was approved by the

manager and mentor of the project.

4.5 Key Components

The final design of the API contains three

main paths:

• root/{devicePoolName}

• root/{devicePoolName}/reservations

• root/{devicePoolName}/reservations/

{reservationID}

User can call the GET HTTP method on the

root/{devicePoolName} path to get general

information about the device pool, such

information will reside in the HTTP response

body

User can call the GET method on the

“root/{devicePoolName}/reservations” path to

obtain information on the overall reservation

status, such as how may devices are in use and

usage history. This feature is limited to key users.

The user can call the POST method on the same

path to create a reservation. Inside the POST

request the user can parameters such as how

many devices they want and how long they want

to keep the reservation. A reservation ID is

returned to the POST method in the response

body, this ID will be the only way the user can

interact with the reservation they created.

User can call the GET method on

“root/{devicePoolName}/reservations/{reservati

onID}” to obtain status on the reservation,

whether its approved or not. If the reservation is

approved, the connectivity information to the

device will also be returned, such as IP address of

the device and the SSH key pair required for

connection. PATCH method can be called on the

same path to update the reservation time needed.

Finally, the DELETE method can be called on the

reservation to indicate completion of testing, in

which the devices will be recycled. This delete

method will also be automatically called at the

end of the reservation.

4.6 Creating a Reservation

In order to create a reservation, the POST

method on the reservation path invokes a piece of

code that creates an instance in the reservation

database. The database is organized in their

respective device pools. On the creation of an

instance, the device pool is scanned for available

devices. If there are enough available devices to

match the reservation, the reserved devices will

be marked as unavailable, and the reservation will

be marked as ready. In the event that there are not

enough devices, the reservation will be marked as

pending, more devices will be prepared in the

background, and the can routine will be called

periodically.

4.7 Challenges

Due to the time constraints of the internship

and the complexity of interfacing with physical

devices, only virtual devices were considered for

this API. Furthermore, since this is the first time

I have worked with the technologies provided and

the first time designing an API, much guidance

was needed to complete this project. Finally, I

have full ownership of this project, meaning that

I had to build everything from the underlying

infrastructure to the user interface.

5. Results

I created a working version of the API using

the companies’ internal technologies and hosted

on a virtual private cloud. Internal engineers were

able to interface to it and make appropriate API

calls to obtain a device. This was demonstrated

by a wrapper code that calls the API, obtains the

connectivity information, then performs the test

via the internal device tester. The API was able to

vend out device(s) on different virtual device

pools. These device pools are hosted on my

personal testing account, however due to security

reasons, I was not able to directly return the SSH

keypair to the user. To amend this, I assumed that

the user would have access to the key pair via a

special indicator. Furthermore, the API was able

to utilize the scaling technology in the virtual

devices, which was ostracized in previous

orchestrators. As reservation requests trickle in,

the API can increase or decrease the number of

devices on hot standby. This balances the cost of

maintaining devices on standby and the cost of

engineering hours wasted on waiting for a device.

6. Conclusion

This device deployment microservice that I

created as a RESTful service allows the user

acceptance test to be hassle free and more

efficient. This enables engineers on the team to

focus on building the product, rather than

configuring and provisioning devices, resulting in

better use of engineering hours. Furthermore, the

service has a more holistic view on device usage

and can more efficiently allocate resources based

on demand. This helps the company to

significantly reduce wasted resources in both

devices and engineering hours. By isolating the

duty of device deployment for testing in a

separate service, the device contingency issue is

solved with a central arbitrator that assigns

devices on demand. The functionality of the

service meets the basic requirements specified at

the beginning of the project; however, there is

more work to be done.

7. Future Work

Due to the time constraint and the scope of

the project, integration with the current testing

orchestrator was foregone and the API can only

manage virtual devices provided by the company.

The team manages a device lab with physical

devices which have characteristics beneficial to

testing, but managing its connection with the

testing orchestrator is complex and calls for a

separate project. Furthermore, the contingency

issue is theoretically solved, but parts of the

testing orchestrator must be rewritten to integrate

with the device deployment API. As I returned for

a second internship with the team, these two

works are under way and I was involved in the

design process of the second phase of the project.

References

[1] Arachchi, S. and Perera, I. 2018.

Continuous integration and continuous

delivery pipeline automation for Agile

Software Project Management. 2018

Moratuwa Engineering Research

Conference (MERCon) (2018).

DOI:http://dx.doi.org/10.1109/mercon.2

018.8421965

[2] Bureau of Labor Statistics, U.S.

Department of Labor, Occupational

Outlook Handbook, Software

Developers, Quality Assurance Analysts,

and Testers. (2022). Retrieved

September 22, 2022 from

https://www.bls.gov/ooh/computer-and-

information-technology/software-

developers.htm#:~:text=in%20May%20

2021.-,Job%20Outlook,the%20average

%20for%20all%20occupations.

[3] Swagger. n.d. API development for

everyone. Retrieved September 23, 2022

from https://swagger.io/

[4] Casas, S., Cruz, D., Vidal, G., and

Constanzo, M. 2021. Uses and applications

of the openapi/swagger specification: A

systematic mapping of the literature. 2021

40th International Conference of the

Chilean Computer Science Society (SCCC)

(2021).

DOI:http://dx.doi.org/10.1109/sccc54552.

2021.9650408

[5] Tashtoush, Y., Nour, M., Salameh, A. O.,

and Alsmirat, M. 2019. Swagger-based

jQuery Ajax Validation. 2019 IEEE 9th

Annual Computing and Communication

Workshop and Conference (CCWC)

(2019).

DOI:http://dx.doi.org/10.1109/ccwc.2019.

8666542

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#:~:text=in%20May%202021.-,Job%20Outlook,the%20average%20for%20all%20occupations
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#:~:text=in%20May%202021.-,Job%20Outlook,the%20average%20for%20all%20occupations
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#:~:text=in%20May%202021.-,Job%20Outlook,the%20average%20for%20all%20occupations
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#:~:text=in%20May%202021.-,Job%20Outlook,the%20average%20for%20all%20occupations
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#:~:text=in%20May%202021.-,Job%20Outlook,the%20average%20for%20all%20occupations

