
Ansible for AIX: Developing for an Open-source Collection to Modernize an Operating

System’s Offerings

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Richard William Taylor

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Briana Morrison, Department of Computer Science

Ansible for AIX: Developing for an Open-source Collection to

Modernize an Operating System’s Offerings

CS4991 Capstone Report, 2023

Richard Taylor

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

rwt7uxg@virginia.edu

ABSTRACT

IBM found that customers utilizing their

operating system AIX desired more modern

tools for automation of routine tasks. A team

of developers was tasked with creating and

maintaining an Open-Source collection of

Ansible modules to support automation of

AIX processes, including my task of creating

modules for managing encryption settings of

storage device partitions. To develop these

encryption modules, I gathered information

about the features of the AIX commands that

needed to be automated and followed a

template of the structure of other modules in

the collection to construct two modules that

allow users to automate various encryption

processes and settings. In addition, I created an

extensive test suite to ensure the modules’

functionalities prior to every new deployment

of the collection. These modules afforded AIX

users increased efficiency in handling

encryption tasks and modernized the way AIX

could be controlled. Future work involves

changes to the way passwords are accepted by

AIX to ensure that these functionalities are

secure.

1. INTRODUCTION

Data breaches pose a significant threat to

enterprises, as the loss of sensitive information

can result in financial and reputational losses.

Globally, it is estimated that the annual cost of

data breaches in 2019 was $2.1 trillion, with

43% of these leaks coming from internal

employees (Cheng, et al., 2017). The process

of encrypting data across all of a business or

organization’s servers can be both complex

and time-consuming, leading to an increased

likelihood of errors and unaddressed gaps. A

focus on simplifying the process of protecting

data against these kinds of leaks is often taken

as a preventative measure.

AIX’s built in hdcryptmgr commands simplify

the process of managing encryption settings,

but must be run manually on each drive

partition on every machine that is to be

encrypted. System administrators at

organizations using AIX must devote

significant time whenever any change to the

system’s encryption settings must be made,

and can easily miss or overlook parts of the

system. Modernizing AIX by adding

automation capabilities means administrators

no longer have to manually run the commands

for every part of the system, saving time and

resources, and increasing the value of AIX to

the organizations who use it.

2. RELATED WORKS

To create the hdcrypt Ansible modules, I

referenced IBM’s AIX documentation on the

hdcyrptmgr command suite to learn about their

functions and how to use them (IBM, 2023).

IBM and the existing Ansible for AIX team

provides thorough documentation for the most

recent version of the Ansible collection (IBM,

2020). The modules I created follow the same

mailto:rwt7uxg@virginia.edu

format as those set up by the existing modules

in the collection, and I used the documentation

to learn about how the existing modules and

the Ansible tool itself worked.

3. PROCESS DESIGN

In order to develop for the Ansible AIX

collection, I first needed to understand what

requirements were necessary for the 2 hdcrypt

modules, and requirements that all ansible

modules have.

3.1 Ansible Collection Structure

The Ansible AIX collection is made up mainly

of modules, playbooks, and roles. Modules

encompass different actions or commands that

users invoke to perform some function on AIX

machines. Playbooks are special scripts that

specify target end machines to control and

what tasks to run on them. Each task is run on

sequentially on each target machine, and

specifies which module and the necessary

options for that module to execute. Figure 1

shows a sample Ansible Playbook.

Figure 1: Example Playbook

Roles are essentially a mechanism for

executing complex tasks that would require

multiple playbooks and modules using the

same variables to be run, simplifying creation

and reuse of playbooks. My contribution to the

collection consisted of two modules,

hdcrypt_encrypt and hdcrypt_auth, as well as

sample playbooks that showed the capabilities

of each module and how they were used, and a

suite of test cases that covered every use case

of the modules.

3.2 Ansible Module Requirements

Ansible modules are Python files which

import the AnsibleModule class from the base

ansible package, and use an instance of this

class to perform most of the functionalities in

the module. This object makes secure SSH

connections to the target machines and

executes commands on them. Because of this,

all information required to complete any task

must be provided in the playbook. Users are

therefore able to execute often complex

sequences of commands repeatedly with the

execution of a playbook. Ansible modules by

design must be idempotent, meaning re-

running a playbook with the same inputs does

not change anything after the first run.

Modules are also Atomic, meaning that if any

part of a task fails, no change will be done for

that task at all. These are properties that I had

to include in the development of the hdcrypt

modules.

3.3 hdcrypt Requirements

The Ansible for AIX team determined that the

hdcrypt modules should cover the actions of

encrypting and decrypting logical volumes,

which are virtual partitions of storage devices

on AIX, and volume groups, as well as adding

and removing authentication methods, and

unlocking logical volumes and volume groups

for decryption with specific authentication

methods. Users were to have the option of

performing these actions on a single or

multiple volumes or volume groups, or a mix

of any number of volumes and volume groups.

These actions were split into two modules,

hdcrypt_encrypt to handle encrypting and

decrypting, and hdcrypt_auth to handle

managing authentication methods. The

modules also needed to be able to support use

of any authentication method available in AIX.

3.4 Development Process

To develop these modules, I broke them down

into two “epics,” or major features, separating

the encryption module from the authentication

module. I then further broke down the epics

into more deliverable issues that could be

completed each development sprint cycle.

Issues included smaller features, such adding

the encryption action for a single volume or

volume group, which would eventually build

up to the complete module. Along with each

individual issue, I developed test cases that

covered each functionality added in that issue,

and ran all the tests created with each issue to

ensure that the new features were functional

and compatible with the already added ones.

3.5 Issues and Solutions

The biggest challenge that occurred during the

development of the modules related to the way

the hcryptmgr commands work on AIX. All

logical volumes that have encryption enabled

in AIX are required to have a password

authentication method at all times, and must be

in an unlocked state to perform any encryption

or authentication methods on them. Currently,

in order to add a password authentication

method and unlock, encrypt or decrypt a

volume with a password, a user must provide

the password in response to command prompts

when the commands are run. This violated the

requirement that the modules be able to run

without any user input beyond what is

provided in the playbook.

Initially, I sought to understand the way

passwords were accepted by the hdcryptmgr

command and stored in AIX, and attempted to

see if it was possible to change the command

to accept passwords in another way. However,

due to the way encrypted passwords are stored

in AIX, this was not immediately possible.

Instead, I opted to handle the user passwords

prompts by running the command in Linux

expect scripts. These scripts were formed by

the module on the ansible client using the

options provided in the playbook and then sent

to be ran on the target end machine. Expect

scripts work by running a provided command,

and “expecting” some output from that

command, which when received sends the next

part of the script. This solution circumvented

the password prompts in the hdcryptmgr

command, but introduced new security flaws.

Because the expect script is sent from the host

to each target over encrypted SSH

connections, it was not an issue that the

password was available in clear text within it;

however, if a user is looking at all running

processes on the AIX end machine when the

expect command is run, the password would

appear in cleartext, which is not secure. The

ansible team accepted this solution

temporarily, as most functionality of the

modules did not rely on it or have any other

user prompts.

4. RESULTS

I was able to successfully complete two

hdcrypt modules, affording users greater

efficiency in completing various encryption-

related tasks, which was one of the features

current users most requested be added to the

AIX collection. The modules changed the

process of encrypting logical volumes from a

multi-step, time-consuming process that could

only be done manually on each machine to a

fully automatic one that could be completed

across many AIX machines with a single

command and little user input. The most recent

version of the collection, which includes some

of my work on this project, has garnered over

160,000 downloads, and is one of the most

widely used IBM Ansible collections.

5. CONCLUSION

During my experience as an intern, I was able

to solve part of the important problem of

modernizing one of IBM’s oldest operating

system offerings. Through the creation of the

hdcrypt modules, the process of encryption

management on AIX can be greatly simplified

for users, allowing for greater protection

against data breaches and data loss, which

pose significant threats to enterprises.

6. FUTURE WORK

In order for the hdcrypt modules to be fully

introduced into the public facing collection,

the vulnerability regarding using expect scripts

to send passwords to hdcryptmgr commands

must be remedied. One potential solution

proposed to and being examined by the

Ansible for AIX team is to rework the

hdcryptmgr commands to not require user

input at all, but rather be able to accept an

already encrypted password as a command

line parameter. However, such a large change

would require input and acceptance from other

development teams in charge of the

hdcryptmgr commands, which would require a

lot of time. Alternatively, the ansible team is

also researching how other collections

implement these modules, as the hdcryptmgr

commands are closely related to commands on

other UNIX based operating systems. In

addition to this, future work for the collection

and hdcrypt suite of modules includes creating

modules to deal with managing Platform Key

Store (PKS) and KeyServer settings and

authentication options.

REFERENCES

[1] Cheng, L., Liu, F., and Yao, D. 2017.

Enterprise data breach: Causes, challenges,

prevention, and Future Directions. Wiley

Interdisciplinary Reviews: Data Mining and

Knowledge Discovery 7, 5 (2017). DOI:

http://dx.doi.org/10.1002/widm.1211

[2] IBM. 2023. hdcryptmgr Command.

(January 2023). Retrieved from

https://www.ibm.com/docs/en/aix/7.2?topic=

h-hdcryptmgr-command

[3] IBM. 2020. IBM Power Systems Aix

Collection for ansible. Retrieved from

https://ibm.github.io/ansible-power-

aix/index.html

http://dx.doi.org/10.1002/widm.1211
https://www.ibm.com/docs/en/aix/7.2?topic=h-hdcryptmgr-command
https://www.ibm.com/docs/en/aix/7.2?topic=h-hdcryptmgr-command
https://ibm.github.io/ansible-power-aix/index.html
https://ibm.github.io/ansible-power-aix/index.html

