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ABSTRACT 

Buffer overflows are a common security 

vulnerability that plague many code bases, 

notably those written in C/C++, by writing 

data into a buffer past its capacity which may 

replace important data on the stack. I propose 

a stack frame-level memory permission check 

for data on the stack, inspired by page faults 

that are process-level memory permission 

checks. When a function call is made, an 

identifier for the new frame is pushed onto 

the stack; this identifier is checked whenever 

we write to the stack, and if a change in 

identifier is detected, then the program 

“faults” and a memory permission error (such 

as “Segmentation Fault”) is displayed. This 

would serve as a method of mitigating Buffer 

Overflow attacks with minimal performance 

degradation, ideally similar degradation to 

bounds checking on the buffer. Future work 

would include extending the idea of 

numbering frames to get much faster than 

bounds checking (maybe through the 

hardware), as well as expanding this concept 

of faulting the program to other areas that are 

vulnerable to unauthorized memory access. 

 

1. INTRODUCTION 

Older languages such as C and C++ are 

still relevant for today’s developers. These 

programming languages work rather closely 

to the underlying hardware and provide a 

convenient abstraction for said hardware. 

This means that they require the developer to 

tell the computer exactly what to do and thus 

make the developer responsible for securing 

their code properly to prevent vulnerabilities. 

A notable vulnerability with this model is the 

“buffer overflow” attack. Buffer overflows 

occur when the amount of data written to a 

location (the buffer) exceeds the storage 

space the computer has allocated for that data 

(overflowing it). For example, if a program 

wants to take the user's name as input and 

then display it to the user, the developer 

might allocate ten bytes on the server to store 

that name. However, unless extra precautions 

are taken, a user of the program could enter a 

megabyte of data. This would all get written 

to the server, writing well past the allocated 

ten bytes, overwriting important data in the 

process. 

All major programming languages allow 

placement of lines of codes into a “function” 

that can then be referenced (or “called”) by 

the name given to it. This simultaneously 

introduces abstraction and allows for code to 

be reused throughout a program. Every time 

one function calls another, as the called 

function is likely in a different section of 

memory, the computer must make sure to 

save all important data about the calling 

function before “jumping” to the memory 

location where the desired function is. This 

data is placed into what is called a “stack 

frame” within a part of the computer’s 

memory called the “stack” [1]. Notable 

among this data is the caller’s “return 

address,” which specifies where in memory 



 

the computer should go back to once it has 

finished the function. 

Buffer overflows, like the example 

mentioned above, work by overwriting the 

data in other stack frames. If an attacker can 

determine how the stack frames are laid out, 

they could attempt to overflow exactly 

enough data that they overwrite the return 

address with malware that opens a backdoor. 

When a function finishes executing, the 

computer will look at whatever data is in the 

slot the caller’s return address should be in, 

unconditionally jump to that memory address, 

and begin executing any code it locates there. 

One of the first such exploits was used by 

the “Morris worm” which overwrote the 

return address to point to code that opened up 

a reverse shell (a command line interface) [2], 

[3]. 

To defend against such attacks, developers 

either need to add additional instructions to 

properly check the data before writing it to a 

buffer or use a language (compiler) that will 

insert these instructions for them. This slows 

the application down as there is literally more 

code to be run. 

However, while the return address should 

never be modified by a buffer write, it is 

rather common for functions to modify other 

data (including other buffers) from different 

stack frames, typically through a process 

called pass-by-reference. A simple example 

would be an update_username function, 

which should modify the memory address at 

which the username lives, which would be in 

a previous frame. 

 

2. RELATED WORKS 

This idea is like the concept of “Page 

Faults” which effectively does this but for 

entire programs: they prevent other programs 

from touching memory they should not have. 

I propose “Stack Faults” that crash the 

program if a stack frame modifies memory it 

should not have. 

While I have not found a paper attempting 

to number frames as I am proposing, there 

has been numerous works in buffer overflow 

mitigation that specifically try to crash the 

program when writing across frames. Such 

examples are stack canaries, guard pages, 

stack checksums, shadow stacks, etc. 

An example of a canary is in the 

“StackGuard” paper. StackGuard places a 

secret word next to the return address and 

checks if that word has been modified, which 

would indicate that the return address has 

been modified. It also can prevent writes in 

the first place by make the return address read 

only while the program is executing, although 

this is slower than a canary [4]. 

There have also been security analyses 

conducted confirming that certain 

implementations of shadow stacks are an 

effective and performant mitigation 

technique. Shadow stacks operate by making 

a copy of the return addresses and storing 

them elsewhere in memory. These copies are 

then used to verify the integrity of the stack 

when returning from a function call [5]. 

 

3. PROPOSAL DESIGN 

To mitigate these vulnerabilities, I propose 

increasing the granularity of permissions for 

data within stack frames. If a buffer overflow 

attempts to overwrite the return address, 

which is in the previous stack frame, it will 

fail to do so as it does not have the 

permissions. More specifically, the hardware 

will crash the entire program since the 

program attempted to access invalid memory. 

Since we want to make sure the program 

does not crash in valid pass-by-reference 

scenarios, we should specifically be 

concerning ourselves with the scenario of 

writing across stack frames. That is, 

beginning to write to a buffer in one stack 

frame and then end up writing to memory in 

another stack frame. This way, valid use 

cases for passing by reference will be allowed 



 

as the writing would occur within the 

appropriate frame. 

To achieve this, I will be modifying the 

source code for an operating system to keep 

track of which frame is being written to 

anytime data is placed on the stack. If a 

change in frame is detected, this would 

almost certainly be due to a buffer overflow 

as the stack frames should have adequate 

space allocated in them to support all the data 

a buffer would require. I will edit the code to 

send a signal to the operating system, referred 

to as “interrupting” the OS, to crash the 

current process when a change in stack frame 

is detected. 

 

4. ANTICIPATED RESULTS 

I anticipate that this approach to 

mitigating Buffer Overflows will incur 

minimal performance degradation and that 

the performance will be comparable to 

bounds checking. For this, I propose creating 

benchmarks that push a lot of buffers onto the 

stack and then creating a second version of 

the benchmarks that perform bounds 

checking; the first set would be run with my 

proposed mitigation strategy and the second 

would be run without, allowing a 

performance comparison between the two. 

For dealing with optimizations that would 

place data into registers over the stack, we 

can either disable the optimization or create 

six dummy variables before the buffers to 

force them onto the stack as compiler 

optimizations will often place up to six 

variables into registers. 

 

5. CONCLUSION 

I propose a mitigation strategy for buffer 

overflow vulnerabilities that prevents 

programs from executing if they are found to 

have been poisoned by such an attack. It 

accomplishes this by numbering frames and 

then checking if a single write instruction 

crosses multiple frames. Rather than 

preventing buffer overflows from taking 

place, as is commonly seen in various modern 

programming languages, it instead focuses on 

blocking programs that have been 

compromised; this is an approach that is 

commonly seen in the literature (such as 

canaries and shadow stacks) for mitigating 

these vulnerabilities. Inspired by prior works, 

it is estimated to have minimal performance 

degradation allowing it to serve as a viable 

alternative to other strategies. 

 

6. FUTURE WORK 

This project will serve as a feasibility 

study, showing that numbering frames, or 

even looking at stack frame permissions in 

general, is a worthwhile area of research to 

pursue. There does not seem to be much 

literature on managing access permissions at 

the granularity of stack frames in general. 

Another idea I have is to copy the idea of 

page faults quite literally by having metadata 

in the base pointer for an array to do a “stack 

table” traversal. 

This paper also, in general, uses a data 

check to crash the program. An alternative 

would be to trigger interrupts from hardware 

as page faults often do. The numbering stack 

frames approach could be implemented 

similar to page faults but with much less 

complexity. 
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