
Stack Faults: Memory Access Permissions for Stack Frames

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Ratik Mathur

Spring, 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Stack Faults: Memory Access Permissions for Stack Frames

CS4991 Capstone Report, 2024

Ratik Mathur

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

rdm7rkm@virginia.edu

ABSTRACT

Buffer overflows are a common security

vulnerability that plague many code bases,

notably those written in C/C++, by writing

data into a buffer past its capacity which may

replace important data on the stack. I propose

a stack frame-level memory permission check

for data on the stack, inspired by page faults

that are process-level memory permission

checks. When a function call is made, an

identifier for the new frame is pushed onto

the stack; this identifier is checked whenever

we write to the stack, and if a change in

identifier is detected, then the program

“faults” and a memory permission error (such

as “Segmentation Fault”) is displayed. This

would serve as a method of mitigating Buffer

Overflow attacks with minimal performance

degradation, ideally similar degradation to

bounds checking on the buffer. Future work

would include extending the idea of

numbering frames to get much faster than

bounds checking (maybe through the

hardware), as well as expanding this concept

of faulting the program to other areas that are

vulnerable to unauthorized memory access.

1. INTRODUCTION

Older languages such as C and C++ are

still relevant for today’s developers. These

programming languages work rather closely

to the underlying hardware and provide a

convenient abstraction for said hardware.

This means that they require the developer to

tell the computer exactly what to do and thus

make the developer responsible for securing

their code properly to prevent vulnerabilities.

A notable vulnerability with this model is the

“buffer overflow” attack. Buffer overflows

occur when the amount of data written to a

location (the buffer) exceeds the storage

space the computer has allocated for that data

(overflowing it). For example, if a program

wants to take the user's name as input and

then display it to the user, the developer

might allocate ten bytes on the server to store

that name. However, unless extra precautions

are taken, a user of the program could enter a

megabyte of data. This would all get written

to the server, writing well past the allocated

ten bytes, overwriting important data in the

process.

All major programming languages allow

placement of lines of codes into a “function”

that can then be referenced (or “called”) by

the name given to it. This simultaneously

introduces abstraction and allows for code to

be reused throughout a program. Every time

one function calls another, as the called

function is likely in a different section of

memory, the computer must make sure to

save all important data about the calling

function before “jumping” to the memory

location where the desired function is. This

data is placed into what is called a “stack

frame” within a part of the computer’s

memory called the “stack” [1]. Notable

among this data is the caller’s “return

address,” which specifies where in memory

the computer should go back to once it has

finished the function.

Buffer overflows, like the example

mentioned above, work by overwriting the

data in other stack frames. If an attacker can

determine how the stack frames are laid out,

they could attempt to overflow exactly

enough data that they overwrite the return

address with malware that opens a backdoor.

When a function finishes executing, the

computer will look at whatever data is in the

slot the caller’s return address should be in,

unconditionally jump to that memory address,

and begin executing any code it locates there.

One of the first such exploits was used by

the “Morris worm” which overwrote the

return address to point to code that opened up

a reverse shell (a command line interface) [2],

[3].

To defend against such attacks, developers

either need to add additional instructions to

properly check the data before writing it to a

buffer or use a language (compiler) that will

insert these instructions for them. This slows

the application down as there is literally more

code to be run.

However, while the return address should

never be modified by a buffer write, it is

rather common for functions to modify other

data (including other buffers) from different

stack frames, typically through a process

called pass-by-reference. A simple example

would be an update_username function,

which should modify the memory address at

which the username lives, which would be in

a previous frame.

2. RELATED WORKS

This idea is like the concept of “Page

Faults” which effectively does this but for

entire programs: they prevent other programs

from touching memory they should not have.

I propose “Stack Faults” that crash the

program if a stack frame modifies memory it

should not have.

While I have not found a paper attempting

to number frames as I am proposing, there

has been numerous works in buffer overflow

mitigation that specifically try to crash the

program when writing across frames. Such

examples are stack canaries, guard pages,

stack checksums, shadow stacks, etc.

An example of a canary is in the

“StackGuard” paper. StackGuard places a

secret word next to the return address and

checks if that word has been modified, which

would indicate that the return address has

been modified. It also can prevent writes in

the first place by make the return address read

only while the program is executing, although

this is slower than a canary [4].

There have also been security analyses

conducted confirming that certain

implementations of shadow stacks are an

effective and performant mitigation

technique. Shadow stacks operate by making

a copy of the return addresses and storing

them elsewhere in memory. These copies are

then used to verify the integrity of the stack

when returning from a function call [5].

3. PROPOSAL DESIGN

To mitigate these vulnerabilities, I propose

increasing the granularity of permissions for

data within stack frames. If a buffer overflow

attempts to overwrite the return address,

which is in the previous stack frame, it will

fail to do so as it does not have the

permissions. More specifically, the hardware

will crash the entire program since the

program attempted to access invalid memory.

Since we want to make sure the program

does not crash in valid pass-by-reference

scenarios, we should specifically be

concerning ourselves with the scenario of

writing across stack frames. That is,

beginning to write to a buffer in one stack

frame and then end up writing to memory in

another stack frame. This way, valid use

cases for passing by reference will be allowed

as the writing would occur within the

appropriate frame.

To achieve this, I will be modifying the

source code for an operating system to keep

track of which frame is being written to

anytime data is placed on the stack. If a

change in frame is detected, this would

almost certainly be due to a buffer overflow

as the stack frames should have adequate

space allocated in them to support all the data

a buffer would require. I will edit the code to

send a signal to the operating system, referred

to as “interrupting” the OS, to crash the

current process when a change in stack frame

is detected.

4. ANTICIPATED RESULTS

I anticipate that this approach to

mitigating Buffer Overflows will incur

minimal performance degradation and that

the performance will be comparable to

bounds checking. For this, I propose creating

benchmarks that push a lot of buffers onto the

stack and then creating a second version of

the benchmarks that perform bounds

checking; the first set would be run with my

proposed mitigation strategy and the second

would be run without, allowing a

performance comparison between the two.

For dealing with optimizations that would

place data into registers over the stack, we

can either disable the optimization or create

six dummy variables before the buffers to

force them onto the stack as compiler

optimizations will often place up to six

variables into registers.

5. CONCLUSION

I propose a mitigation strategy for buffer

overflow vulnerabilities that prevents

programs from executing if they are found to

have been poisoned by such an attack. It

accomplishes this by numbering frames and

then checking if a single write instruction

crosses multiple frames. Rather than

preventing buffer overflows from taking

place, as is commonly seen in various modern

programming languages, it instead focuses on

blocking programs that have been

compromised; this is an approach that is

commonly seen in the literature (such as

canaries and shadow stacks) for mitigating

these vulnerabilities. Inspired by prior works,

it is estimated to have minimal performance

degradation allowing it to serve as a viable

alternative to other strategies.

6. FUTURE WORK

This project will serve as a feasibility

study, showing that numbering frames, or

even looking at stack frame permissions in

general, is a worthwhile area of research to

pursue. There does not seem to be much

literature on managing access permissions at

the granularity of stack frames in general.

Another idea I have is to copy the idea of

page faults quite literally by having metadata

in the base pointer for an array to do a “stack

table” traversal.

This paper also, in general, uses a data

check to crash the program. An alternative

would be to trigger interrupts from hardware

as page faults often do. The numbering stack

frames approach could be implemented

similar to page faults but with much less

complexity.

REFERENCES

[1] “Stack frames.” Accessed: Mar. 21, 2024.

[Online]. Available:

https://people.cs.rutgers.edu/~pxk/419/not

es/frames.html

[2] H. Orman, “The Morris worm: a fifteen-

year perspective,” IEEE Secur. Priv., vol.

1, no. 5, pp. 35–43, Sep. 2003, doi:

10.1109/MSECP.2003.1236233.

[3] E. H. Spafford, “The internet worm

program: an analysis,” ACM SIGCOMM

Comput. Commun. Rev., vol. 19, no. 1,

pp. 17–57, Jan. 1989, doi:

10.1145/66093.66095.

[4] C. Cowan, C. Pu, D. Maier, J. Walpole,

and P. Bakke, “StackGuard: Automatic

Adaptive Detection and Prevention of

Buffer-Overflow Attacks”.

[5] N. Burow, X. Zhang, and M. Payer,

“SoK: Shining Light on Shadow Stacks,”

in 2019 IEEE Symposium on Security and

Privacy (SP), San Francisco, CA, USA:

IEEE, May 2019, pp. 985–999. doi:

10.1109/SP.2019.00076.

