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General Research Problem 

How can models and automation improve patient care? 

Advanced modeling and automation techniques have the potential to greatly improve the 

accuracy and efficiency of medical diagnoses, treatment plans, patient monitoring, and more. 

Biomimetic models can replicate key aspects of human physiology without relying on live 

animal models, thereby eliminating ethical concerns, reducing variability issues, and avoiding 

the procedural and financial burdens associated with animal testing. Some examples include 

organ-on-a-chip, which replicates human organ functions on a small scale to improve drug 

testing accuracy, and robotic animal surrogates, which simulate anatomical movements for 

biomechanical and neurological studies, enhancing research precision and reproducibility (Bhatia 

& Ingber, 2014; Kamm & Bashir, 2014).  

These technologies have become especially appealing to healthcare entities with large 

financial motives due to the substantial savings they offer. The global healthcare automation 

market is projected to grow significantly, reaching $88.9 billion by 2027 (Grand View Research, 

2020). Machine learning algorithms, in particular, have already proven effective in areas like 

diagnostics and data sorting. AI-based predictive models can reduce medical errors and improve 

outcomes by identifying patient risk factors and providing data-driven insights (Topol, 2019). 

Such models could be instrumental in addressing diagnostic errors, which currently affect 12 

million U.S. adults each year (Singh et al., 2018). These technologies have the potential to bridge 

critical gaps in underserved communities; however, without careful oversight, could exacerbate 

disparities due to flaws in development. To evaluate whether automation improves patient care, 

quality care must be defined; Is it state-of-the-art diagnosis and treatment of distinct medical 

conditions or is it care for the whole person?  



 2 

An Actuated Robotic Model of the Lewis Rat Hindlimb 

How can neural control strategies for restoring normal gait following a volumetric muscle loss 

injury be rapidly developed and accurately tested? 

A robotic model of a Lewis rat’s hindlimbs will substantiate evidence gathered using the 

Dr. Russell’s current computational models through its interaction with the physical world, while 

enabling rapid injury simulation and testing. We aim to accurately replicate both anatomical 

movement patterns and force exertion while allowing for easily customizable injury simulations. 

Therapeutic methods extrapolated from the model will be applied to treat wounded warriors 

recovering from VML injuries. I will work alongside fellow biomedical engineering students 

Maximus Cresti and Brandon Lawrence, under the guidance of Dr. Shawn Russell and Hudson 

Burke (GRA).  

Current state of the art in VML injury simulation and testing, combines in vivo models, 

computational simulations, and advanced measurement techniques to better understand and 

develop treatments. Most commonly, animal models, specifically rats, are used. A standardized 

approach involves creating a 6mm biopsy punch defect in the tibialis anterior muscle (Corona et 

al., 2022). Computational models have also been developed to simulate various processes related 

to VML injuries. For example, Dr. Russell uses an open-source movement analysis tool—which 

simulates hindlimb gait in Lewis Rats—to investigate the impact of the injury on gait and 

explore potential therapeutic interventions. Agent-based models (ABMs) have also emerged as 

powerful tools focused specifically on the cellular mechanisms driving the regeneration response 

in VML injuries, predicting tissue remodeling patterns (Ceresa et al., 2021). In addition to 

computational models, wireless, noninvasive nanomembrane systems have been developed for 

real-time, continuous monitoring of VML injuries. These measurement systems integrate skin-
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wearable printed sensors and electronics to measure the electrophysiology of the muscle during 

active movement (Kim et al., 2021). Researchers are increasingly shifting away from animal 

models due to the high financial and time costs, as well as ethical concerns, associated with 

inducing severe injuries in live subjects. Our solution aligns with this trend, offering a viable and 

innovative alternative for VML study. 

We will design the hindlimb structure in CAD based on anatomical data, focusing on 

maintaining the general biology—such as length, size, and connection points—while making 

purposeful simplifications that prioritize functional movement over precise natural replication. 

Components will be manufactured using 3D printing and CNC machining techniques. Key 

equipment includes actuators that will function as synthetic muscles, ground reaction force 

sensors, and joint angle (positional) sensors to enable responsive self-correction and ensure 

motion accuracy. The model will integrate an onboard microcontroller and power source, 

supporting extended testing and durability. 

Success in this project will yield ankle and foot joints that mimic a rat’s natural gait, 

verified through motion capture analysis. The next step would be to integrate our model with 

another capstone team’s knee and hip joints. Ultimately, the now comprehensive leg model, will 

pair with a neural network capable of adapting its gait in response to simulated injuries, 

mimicking the adaptive learning process seen in rats and even humans. In doing so, this project 

equips researchers with a critical tool to bring future regenerative therapeutics closer to clinical 

implementation, especially for complex injuries seen in polytrauma patients. 
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Redefining Care: Competing Forces Shaping the Future of Medical AI  

In the US, how are medical professionals, hospitals, insurance companies, patient advocates and 

MedTech companies competing to draw the line between the legitimate and the illegitimate 

applications of medical AI? 

 

Introduction  

Your next medical consult could be with an algorithm. AI is enhancing diagnostics, 

patient care, and operational efficiency, while saving the medical industry billions (Snowflake, 

2024). Algorithms can even handle more complex tasks like needle insertion and surgical 

procedures (Knudsen, Ghaffar, & Hung, 2024). The rapid adoption of AI throughout the industry 

has sparked a crucial competition between participants. Improvements in the accuracy and 

efficiency of care are counterbalanced by concerns about bias, patient safety, and the potential 

for over-reliance on technology (Parikh, Teeple, & Navathe, 2019; Naik et al., 2022). Boundaries 

drawn during this early phase will shape the ethical, legal, and clinical frameworks that will 

govern AI's future in healthcare. 

 

Relevant Research:  

There are fundamental differences between the way human clinicians and AI algorithms 

make conclusions. Clinicians rely on ecological rationality, using targeted cues and expertise to 

make decisions with limited but relevant information. AI systems debound the clinical decision-

making process, using all available information, even if it's not optimal or relevant. Debounding 

allows AI models to rely on irrational “shortcut” features learned from training data, 

mathematically improving accuracy but lacking clinical validity (Tikhomirov et al., 2024). This 



 5 

mismatch makes it harder to anticipate AI errors or detect biases. Bias detection and mitigation is 

essential for fair and generalizable AI technology (Mittermaier, Raza, & Kvedar, 2023). These 

systems can amplify biases in training data, exacerbating existing inequalities in socioeconomic 

status, race, gender, and more, particularly disadvantaging marginalized populations with less 

accurate predictions or underestimated care needs (Obermeyer et al., 2019; Spector-Bagdady et 

al., 2022; McCradden et al., 2022). 

 

Participants 

Doctors like Danton Char of Stanford warn that the tension between profit motives and 

effective healthcare in the US could lead to ethical conflicts based upon the clashing priorities of 

algorithm designers and clinicians (Webster, 2020; Ward, 2019). Abraham Verghese, Vice Chair 

for the Theory and Practice of Medicine at Stanford, cites the “greater financial incentive for 

relying on technology, testing, processes, and efficiency” as the driving force that is 

“eviscerating” the foundation of the physician-patient relationship. Physicians are "losing 

contact" as they engage with the "intermediary" of electronic systems. He cautions that viewing 

patients “through a screen” risks the omission of essential context, and subtleties that elevate the 

quality of care. Physicians, unlike AI, are not limited to only processing data and can perceive 

details—a patient’s body language, tone of voice, or the worn “outline of a cigarette packet” in a 

pocket—revealing risks often absent from patient records (Verghese, 2016). These nuances 

enrich the standard of care and are exceptionally difficult for AI to interpret.  

Trade associations such as the American Hospital Association (AHA) advocate for AI 

tools, citing their ability to improve health outcomes with "timely and precise interventions," 

reducing costs, and increasing productivity at multiple stages of care. To successfully adopt AI in 
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healthcare, the AHA advises patients and clinicians take a proactive approach: patients should 

engage with AI regularly, especially through tools like health chatbots, while clinicians should 

use AI to augment clinical decision-making (AHA, 2023). Another of these associations, 

AdvaMed, contends that AI should continue to be regulated as any other medical device, 

pointing out that the FDA’s "25 years of experience reviewing and authorizing AI/ML-enabled 

medical devices" has created a stable framework that supports innovation without compromising 

safety. Shifting AI into a separate regulatory category risks a disruption and "stifling innovation 

and reducing patient access" (AdvaMed, 2023). This perspective overlooks the evolving nature 

of AI, especially machine learning models, which, unlike traditional devices, may require 

ongoing updates to maintain their relevance and accuracy—posing challenges to a one-time 

approval model. 

As AI empowered tools are increasing in popularity the FDA and its Canadian and UK 

counterparts are emphasizing the need for regulation, advising developers to use training data 

representative of the intended patient populations to fight biases (FDA, 2021). According to the 

National Conference of State Legislatures, at least six states introduced legislation aimed at 

regulating AI in healthcare during the 2024 legislative session (NCSL, 2024). Colorado 

legislation mandates that insurers test their big data systems, including “external consumer data 

and information sources, algorithms, and predictive models,” to ensure they do not unfairly 

discriminate against consumers based on race, sex, disability, or sexual orientation (Colorado 

DORA, 2021). A bill backed by the California Medical Association aims to ensure algorithms, 

AI, and other software are applied “fairly and equitably.” Initially, the bill included a 

requirement for licensed physicians to oversee AI-based decisions to “approve, modify, or deny 

requests by providers,” but this clause was later removed (California State Senate, 2024). 
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President Biden's recent Executive Order on AI emphasizes the need for “privacy-preserving 

techniques” to protect personal health data and mandates “standards and best practices for 

detecting AI-generated content and authenticating official content,” which can enhance 

transparency and trust in AI-driven healthcare tools. Additionally, it calls for the Department of 

Health and Human Services to “establish a safety program to receive reports of—and act to 

remedy—harms or unsafe healthcare practices involving AI,” ensuring that tools are continually 

monitored for safety and effectiveness (White House, 2023). While these standards are not 

immediately enforceable on the private sector, they can influence the broader regulatory 

landscape, especially as agencies begin to develop specific policies and guidelines in line with 

the EO.  

Industry leaders with decades of development experience are now addressing the 

regulatory landscape. Peter Shen, Head of Digital & Automation at Siemens Medical Solutions, 

recently testified before the Senate, emphasizing that a “continuation of flexibility in the 

approval process” is crucial, warning that a “one-size-fits-all approach could seriously inhibit 

[AI’s] potential.” For large, financially driven institutions, a more flexible regulatory approach 

could accelerate adoption by reducing costs tied to lengthy approval processes. Siemens pledges 

to self-regulate by “openly communicat[ing] insights into underlying technology,” “carefully 

compil[ing] training and test datasets” for traceability, and eliminating biases, aiming to create 

systems that are “ethically acceptable and beneficial to humankind and society” (Shen, 2024). 

While this approach may be feasible for public-facing corporations, it raises concerns with 

smaller, less visible startups. Nonetheless, early-stage health-tech companies developing AI 

solutions continue to push boundaries, with biotech venture investments nearing 2021’s record 

totals (Gormley, 2024). 
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