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Abstract 

Hypertension affects an estimated 45% of Americans and is considered one of America’s major health problems.1 Continuous 
ambulatory blood pressure monitors (cABPMs) have the potential to benefit affected individuals by providing accurate, long-term 
readings into their blood pressure patterns. For this purpose, Barron Associates designed the DEPART System, an ergonomic, cost-
effective cABPM that collects PPG and ECG data to make blood pressure measurements. We aimed to build on past work with the 
device by (1) collecting data using the DEPART System and a criterion device, the Human NIBP Nano System, and (2) using 
MATLAB to process the data and model blood pressure under different conditions. Regression models were created for diastolic 
and systolic blood pressure for two subjects’ data sets, where heart rate and either pulse arrival time (PAT) or differential pulse 
arrival time (dPAT) served as independent variables. PAT, calculated for chest and finger PPG sensors, was found by subtracting 
the peak points of each PPG waveform from the peak points of the corresponding ECG waveform. dPAT was found by subtracting 
the finger and chest PAT readings. The regression models were then evaluated relative to standards set by the Association for the 
Advancement of Medical Instrumentation (AAMI), which they did not meet. Further research with the DEPART system should 
involve more subjects, more inputs (such as heart rate variability metrics), different criterion systems (such as the Caretaker), and 
explorations of machine learning and deep learning algorithms to make blood pressure predictions. 
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Introduction 

Background 

Hypertension describes the condition of having excessively high blood 
pressure for prolonged periods. It can cause progressive damage to the 
body over time, negatively impact quality of life, and drastically increase 
someone’s risk of having a heart attack or stroke. The CDC defines 
hypertension as blood pressure exceeding 130/80 mmHg, and in 2018, it 
was cited as a primary or contributing cause to nearly 500,000 deaths.1 It 
has been estimated that, in the United States, 45% of adults have 
hypertension, but only about 24% of those people have their condition 
“under control”.1 Additionally, hypertension treatments comprise a 
significant portion of health care expenditures; in 2006, such 
expenditures were estimated to be nearly $55 billion.2 Between 1999 and 
2016, the overall burden of hypertension in the United States has 
increased, indicating the need to enhance prevention and treatment 
efforts.3 

In the past, any system that claimed to be a beat-to-beat blood pressure 
monitoring method required an invasive procedure involving arterial 
catheters or other complex devices. Given the complex nature of these 
procedures, these methods were reserved for critical care settings.4 This 
left a need for a more current, non-invasive model not limited to critical 
care. ADInstruments’ solution is the Human Non-invasive Blood 
Pressure (NIBP) Nano system, which allows for the measurement of a 

continuous blood pressure signal using a dual finger cuff system.5 This 
device can correct for motion artifacts using a Height Correction Unit 
(HCU) that accounts for hand movement relative to the heart.6 The 
system, however, is not convenient to use in day-to-day life, as it consists 
of a wrist unit, finger cuff, and a 3 meter long cable connecting the wrist 
unit to an interface that facilitates communication with a data analysis 
software called LabChart.  

Recent studies show that the most accurate blood pressure measurements 
are both ambulatory and self-monitoring. Ambulatory monitoring has 
become the gold standard for predicting clinical risk related to blood 
pressure, as it has been found to be a better predictor than conventional 
blood pressure monitors. Additionally, self-monitoring device eliminates 
blood pressure increases that often occur in doctor’s office and allows for 
multiple readings to take place over a prolonged period of time.7,8 
Currently there is not an effective 24-hour, self-monitoring, ambulatory 
system that is widely available to diagnose hypertension. Additionally, 
the devices on the market are too expensive to allow patients to monitor 
their responses to treatments and understand their effectiveness. For these 
reasons, Barron Associates has developed a continuous blood pressure 
monitor with the potential for self-monitoring and ambulatory use. The 
system aims to monitor blood pressure on a heartbeat-to-heartbeat basis 
to maximize accuracy and precision while being ergonomic and cheap 
enough for people to use over long periods throughout the day. 
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The system utilizes differential pulse arrival time (dPAT), determined 
from the pulse arrival time (PAT) measured at each patch. PAT is the 
length of time it takes for a heartbeat to travel from an ECG signal at the 
chest to a PPG signal at a different point in the body. PAT has been 
studied in depth, and has been determined to be proportional to blood 
pressure in a number of different regression and machine learning 
models.9–13 However, in other studies, PAT has been found to be 
inaccurate because of the inclusion of a pre-ejaculation period (PEP).14–

16 In previous studies, dPAT has also been previously been found to be a 
valid and accurate measure of blood pressure, as well, as it removes the 
PEP.17  

The dPAT does not account for specific physiological factors that may 
influence the blood pressure reading, for example changes in sympathetic 
tone.13 The DEPART algorithm will account for sympathetic nervous 
system effects on the arterioles through the inclusion of heart rate 
variability, which has been shown to correlate with autonomic tone.18 The 
sympathetic nervous system can modulate blood vessel diameter through 
nervous system innervation of the vascular smooth muscle in response to 
real-life stressors, including college examinations.19 This measure has 
been extracted from smartphone photoplethysmograms (PPG), and will 
be found using PPG technology in the DEPART device.20 The use of 
machine learning to help determine patterns within the blood pressure 
data is another aspect of the device.21 Our contribution to this device will 
be determining if dPAT is a more effective metric for finding blood 
pressure than PAT, and determining if HRV improves the blood pressure 
model.  

This device will contribute to public health by improving the diagnosis 
of hypertension, allowing for better correlations between hypertension 
diagnosis and clinical outcomes. It will do this by allowing for 24-hour 
continuous monitoring for patients with blood pressure irregularities and 
providing comprehensive data about their cardiovascular patterns. This 
should enable clinicians to recognize hypertension sooner in patients’ 
lives and do so more reliably. For patients, the device will be cheaper and 
more accessible than the current standard for continuous monitoring, as 
well as easier to use and less invasive. Its decreased sensitivity to motion 
artifacts will allow for more mobility, and its placement and relatively 
small size should minimize interference with daily activities. By better 
informing clinicians and providing more comfort for patients, the system 
could decrease rates of hypertension and associated morbidities, 
including heart failure, stroke, and dementia. In addition to benefiting 
public health, the more comprehensive data about blood pressure patterns 
could bolster scientific knowledge regarding how the body works and 
how hypertension correlates with diseases.  

Aims 

The first aim involves collecting human subjects’ blood pressure data to 
test the efficacy of Barron Associates’ continuous (beat-to-beat) 
ambulatory blood pressure monitor, known as the DEPART system, 
relative to the Human NIBP Nano, a currently used FDA-approved 
system. This testing will allow the team to collect human subjects’ data 
through an IRB-approved study utilizing both devices for comparison.   

The second aim is to use data obtained through testing to create 
regression models using either dPAT or PAT. For the regression inputs, 
PATs from the chest ECG signal to the PPG on the chest and to the PPG 
on the finger were calculated. To find the dPAT, the difference between 
the finger PAT and the chest PAT was found. This value was believed to 
eliminate the pre-ejaculation period (PEP) that is present in the PAT, 
possibly creating a more accurate blood pressure measurement.14–16 The 
goal was to determine which estimation method provides a more accurate 
blood pressure measurement in comparison with the FDA approved Nano 
System. Additionally, the results from these models were evaluated 

against the standards set by the Association for the Advancement of 
Medical Instrumentation (AAMI) to determine their efficacy in the 
traditional seated posture in which blood pressure is typically measured. 

Materials and Methods 

Materials 

In order to collect human subject’s data and fulfill the first specific aim, 
the team used three main materials in addition to software and laboratory 
tools for measuring the height and weight of subjects: The Human NIBP 
Nano monitoring system, the DEPART system, and the Biometrics Hand 
Grip Dynamometer. 

The Human NIBP Nano, which will hereafter be referred to as the “Nano” 
or “Nano system”, consists of two finger cuffs attached to a wrist unit, as 
well as a three lead ECG on the chest. The entire unit is connected to an 
interface that provides power to the wrist unit and facilitates 
communication with a software system that processes and displays data 
on-screen.5 The device also features a height correction unit, which 
allows the system to compensate for movement of the hand relative to the 
heart.6 Overall, the Nano system integrates numerous software and 
hardware components to provide a continuous blood pressure signal from 
adult humans in a non-invasive manner. 

The DEPART system, which is the main experimental focus, consists of 
a wrist unit and chest unit, these are shown in Figure 1A and 1B, 
respectively. Each unit utilizes a microSD card that stores the data being 
recorded, as shown in Figure 1C. The wrist unit attaches to the fingers 
and wrist, where the wearer can control and manage data collection; it 
has a PPG sensor embedded in the finger cuff. The chest unit attaches to 
the sternum via an electrode. For proper data collection, an additional 
electrode on the left side of the chest connects to an ECG sensor, and an 
attached PPG sensor is taped elsewhere to the chest. After data is 
collected from each unit, including ECG and PPG signals from the chest 
unit and a PPG signal from the wrist unit, the microSD cards from each 
must be processed with software external to the device to obtain beat-to-
beat ECG and PPG data. An example of an output graph of the DEPART 

data is shown in Figure 2.  The Biometrics Hand Grip Dynamometer is 
used by subjects in the latter portion of the lab protocol to increase 
sympathetic stimulation and change blood pressure relative to a resting 
state. By inducing blood pressure changes with the dynamometer, data 
collection could occur over a broader range of real-world conditions. This 
allowed for a more comprehensive evaluation of the DEPART system 

Figure 1: The DEPART Device. The wrist unit of the device, with the finger 
cuff PPG sensor attached by a wire, is shown in Figure 1A. The chest unit of the 
device, with both the ECG and PPG sensors connected, is shown in Figure 1B. 
The microSD cards used in the device are shown in Figure 1C. 
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and the subjects tested. More detail on how the dynamometer was applied 
is included in the “Lab Protocol” section. 

Lab Protocol 
Subjects were recruited by team members. After subjects’ height, weight, 
and sex, the team simultaneously hooked them up to the DEPART and 
Nano systems. The Nano was attached to the wrist and index finger of 
the subject’s non-dominant hand, and the DEPART system rPPG sensor 
was attached to the chest and another DEPART system rPPG sensor was 
attached to the wrist (or forearm) of the non-dominant hand. The setup of 
both devices on the subject is illustrated in Figure 3. The subject was 
asked to jump once to create an artifact within the data in order to 

establish a starting point for both sets of data being collected. Each 
subject’s maximum voluntary contraction (MVC) was assessed in the 
dominant hand before beginning her/his experimental trial using the 
Biometrics Hand Grip Dynamometer.  
 
 

ECG and PPG data were recorded simultaneously in the following 
conditions, in the following order: 
1. Seated quietly with their feet flat on the floor and her/his non-

dominant upper arm at heart level 
2. Lying down  
1. Standing still with arms at their sides 
2. Standing still with arms raised over head 
3. Standing still with straight arms extended 90 degrees 
4. Seated while gripping the Biometrics hand grip dynamometer at 

10% of MVC 
5. Seated while gripping the Biometrics hand grip dynamometer at 

20% of MVC 
6. Seated while gripping the Biometrics hand grip dynamometer at 

30% of MVC  
7. Seated while gripping the Biometrics hand grip dynamometer at 

40% of MVC 
 
Each condition will be maintained for 3 minutes while recording data 
with the DEPART and Finapres Nano systems. Subjects will be given a 
5-minute rest period between all activities (i.e., arm elevations and hand 
grip exercises). More rest time will be allowed if needed by the subject 
following any posture or activity. 

ECG Peak-picking 

To begin the data analysis the peaks of the ECG were determined. This 
was needed to determine the RR interval, heart rate variability, and the 
PATs. The Pan-Tompkins peak picking algorithm was used to find the 
peak of the R-wave of each ECG. First, a Butterworth filter was applied 
which is intended to increase the signal-to-noise ratio, then a derivative 
filter was applied to provide information about the slope of the QRS 
complex of the ECG signal, and finally, the square of the filter signal was 
taken to ensure that the R peaks are detected. The graphs of each filter 
are shown in Figure 4. After the signal has been filtered, the location of 
each peak is determined and stored in a vector using the peak picking 

function on MATLAB. The MATLAB peak picking function requires 
two inputs, the minimum distance between peaks, and the minimum 
height of the peaks. The optimal inputs to this function were determined 

Figure 2: The DEPART Device Raw Data. The signal from the ECG signal is 
demonstrated in blue, the signal from the finger PPG attached to the wrist unit is 
shown in red, and the signal from the PPG attached to the chest unit is shown in 
orange. 

 

Figure 3: The Laboratory Set-up. The subject is shown attached to both the 
DEPART device and Nano System. The DEPART system wrist unit is the lower 
unit attached to the subject's forearm and the black finger cuff. The Nano System 
is the unit closer to the subject’s hand, and it attaches to the two white finger cuffs. 
In this figure, you cannot see the chest attachments of either device. The subject 
is also pictured holding the Biometrics Handgrip Dynamometer. 

 

Figure 4: ECG Filtering. The raw ECG data is shown in Figure 1A. A 
Butterworth filter was applied to the data in Figure 1B. Figure 1C shows the 
filtered ECG signal after a derivative filter was applied. Figure 1D shows the final 
squared ECG data. 
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to be a 0.5 second time delay between peaks, and a peak height of 100. 
Figure 5 demonstrates the output of this function. To determine the RR 
interval, each time point was subtracted from the one before it.  

PPG Peak-picking 
In order to determine the PAT, a fiducial point must be determined on the 
PPG waveforms. The team chose to use the peak of the PPG signal as the 
fiducial point. To find the PPG-peak the same MATLAB peak picking 
algorithm was introduced. This algorithm was used on both the chest and 
finger PPG. The inputs used for the chest PPG peak picking algorithm 
were a minimum height of 300mmHg and a minimum distance of 0.5 
seconds. The inputs for the finger PPG were a minimum height of 
500mmHg and a minimum distance of 0.5 seconds as well. Figure 6 
demonstrates the outputs of this function on a finger PPG waveform.  

PAT and dPAT 

The PATs were determined by subtracting the ECG R-peak time point 
from the PPG peak point. These points are shown in Figure 7. Two PATs 

were determined, the chest PAT and the finger PAT. Then the dPAT was 
determined by subtracting the wrist PAT from the finger PAT. These 
values were then used as inputs into four different regression analysis 
models. 

Heart Rate Variability Metrics 

Heart rate variability (HRV) quantifies short term fluctuations in heart 
rate, which depend on the activity of the parasympathetic and 
sympathetic branches of the nervous system; too little or too much HRV 
can indicate disease or non-ideal health. Because HRV was expected to 
change between the conditions tested in the in-lab protocol, we aimed to 
account for it and use a metric for it as an input for the regression model. 
Using peaks found with the ECG peak picking code, HRV was quantified 
in two different ways: spectral analysis of low frequency and high 

Figure 5: ECG Peak Picking. The blue line illustrates the filtered ECG signal. 
The blue triangles at the peak of each signal are the triangles chosen by the 
MATLAB peak picking algorithm. The x and y coordinates of each of these 
triangles are stored in vectors in MATLAB. 

Figure 6: PPG Peak Picking. The PPG peaks were located using the MATLAB 
Peak Picking algorithm and are shown in this figure as red circles. 

Figure 7: Peak Points of all Waveforms. This figure demonstrates the peak 
points found from each of the waveforms. The difference between the PPG peaks 
and each of the ECG peaks were then found to determine the PAT. 

Figure 8: ECG Power Spectrum. The ECG Power Spectrum shows the 
amplitudes of different frequencies contained in an ECG waveform. The low 
frequency (0.04 - 0.15 Hz) and high frequency (0.15 - 0.4 Hz) components can be 
divided and used as a metric for heart rate variability. 
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frequency components of the ECG as shown in Figure 8 and calculating 
the root mean square of successive differences (RMSSD) between 
heartbeats.22 However, the spectral analysis yielded too few data points 
to successfully run the regression with, and the RMSSD calculations 
(N=3) was not found to significantly affect the team’s goal of comparing 
blood pressure models using the chest PAT, finger PAT, or dPAT. 
Therefore, no HRV metrics were included as inputs in the final blood 
pressure models, even though they could provide more accurate 
comparisons between conditions of lower stress (e.g., sitting) and higher 
stress (e.g., squeezing a hand grip dynamometer). Unfortunately, this 
metric was determined to be insignificant when used as an input to the 
stepwise regression model, which we will discuss in the results section.  

Results 

To assess whether or not PAT or dPAT yielded a better model when 
predicting blood pressure measurements for the DEPART system, we 
used regression analysis. In particular, linear stepwise regression was 
chosen as the model with a 10-fold validation due to its ability to 
determine which variables are significant to the final model.23 Every 
model was developed in MATLAB using the regression learner 
application and evaluated in Excel.  

The PAT data for subject two was not aligned correctly in testing so we 
decided to train and evaluate each model on only subject one’s data. We 
divided the data in half to create two testing sets. The independent 
variables that were chosen reflected this significance in the final model. 
The variables that were significant to the model were heart rate and either 
PAT or dPAT. We also included the inverses of the PAT or dPAT and 
the HRV, but they were determined to be insignificant to each model. 
The output for each model was either systolic or diastolic blood pressure. 
Each model is shown in figures 9-10. The root mean square error (RMSE) 
and R² values are shown in table 1 below. The models were fairly similar 
to each other but did not accurately predict the “true” blood pressure 
values. Equation 1 and Equation 2 show the base equations used to fit the  

models for PAT and dPAT respectively, with the lower-case variables 
being coefficients spit out by the model. 

 

DBP and SBP refer to diastolic and systolic blood pressure, respectively. 
HR is the heart rate and (Combinations) are the various combinations that 
can be justified by the model of the independent variables. 

Similar to Equation 1, DBP and SBP refer to diastolic and systolic blood 
pressure, respectively, and HR is the heart rate. 

Typically, a lower RMSE is preferred when creating predictive models. 
Conversely a higher R² value is preferred, with the R² value representing 
the correlation coefficient of the fitted model to the data.24 The R² value 
being below 0.5 is not a good indicator of the fits of the models.13 This is 
why both the PAT and dPAT models are similar to each other but not the 
true blood pressure reading measured with the Nano system. Overall, the 
PAT model had both higher R² values and lower RMSE values, so we 
chose the PAT models as our final model. It is important to note, again, 
that the two models are similar to each other but neither are good fits.  

Statistical Analysis  

Each model in Figures 9-10, has an associated RMSE and R² value shown 
in Table 1 below. When a paired two-sample t-test was performed on the 
RMSE values with a p-value of 0.05, the difference between the errors 
was not significant. 

In order for a blood pressure monitor to be considered accurate it must 
meet the standards set out by the AAMI. These standards are for a 
position that is seated quietly, with the feet on the floor, and the cuff at 
heart height.25 In order to meet these standards, the mean difference 
between each individual systolic and diastolic reading when compared to 
the test system (in this case the Nano System) must be within ±5mmHg, 
and the standard deviation of these values must be within 8mmHg.25 As 
shown in table 2, these standards were not met by any of the models. This 
outcome was expected due to the low number of subjects and data points 
in the model. In Phase I clinical testing, done by Barron Associates, the 
DEPART system was successfully validated for accuracy and precision 
relative to a criterion system so our data was the likely error.26  

 

 𝐷𝐵𝑃 𝑜𝑟 𝑆𝐵𝑃 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑎 ∗ 𝐹𝑖𝑛𝑔𝑒𝑟𝑃𝐴𝑇 + 𝑏 ∗ 𝐶ℎ𝑒𝑠𝑡𝑃𝐴𝑇 + 𝑐
∗ 𝐻𝑅 + 𝑑 ∗ (𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠)  [1] 

𝐷𝐵𝑃 𝑜𝑟 𝑆𝐵𝑃 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑎 ∗ 𝑑𝑃𝐴𝑇 + 𝑏 ∗ 𝐻𝑅 + 𝑐 ∗ 𝐻𝑅 ∗ dPAT   [2] 

Figure 9: Subject 1.1 Blood Pressure. The 
diastolic blood pressure (A) and systolic 
blood pressure (B) are shown in the two 
graphs above for subject 1.1. The gray line 
represents the PAT model and the blue line 
represents the dPAT model on both graphs. 
The graphs only show the first two conditions 
(the sitting and lying down conditions) in 
order to make the graphs readable. 

Figure 10: Subject 1.2 Blood Pressure The 
diastolic blood pressure (A) and systolic blood 
pressure (B) are shown in the two graphs above 
for subject 1.2. The gray line represents the 
PAT model and the blue line represents the 
dPAT model on both graphs. The graphs only 
show the first two conditions (the sitting and 
lying down conditions) in order to make the 
graphs readable. 
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Discussion 

Challenges 

Due to COVID-19, the team faced challenges getting IRB-HSR approval 
and completing the Capstone study. During the IRB-HSR approval 
process, an additional form was needed to ensure compliance with 
COVID-19 protocols, and only two researchers would be allowed to 
collect data in the lab. Additionally, the team determined that their subject 
pool would decrease from any Charlottesville resident to only University 
of Virginia staff and students. This was for the researcher’s safety, as this 
subject pool would be undergoing weekly COVID-19 testing, per 
University guidelines. After the study was granted IRB approval, a 
second challenge presented itself as the University of Virginia closed 
laboratories to undergraduate researchers for 2 weeks due to an increase 
in COVID-19 cases. This delayed the collection of subject data, pushing 
back the project timeline.  

Challenges were also faced with data collection due to mechanical issues 
with the device. The first challenge was an inability to get the data off of 
the DEPART device using the external software due to faulty microSD 
cards. This made the first trial of data unusable for the researchers. The 
second trial also had mechanical issues due to noisy PPG data. We 
determined that this was due to light artifacts between the skin and the 
PPG sensor.  We also determined that light artifacts of this magnitude 
could not be filtered out, and led to a breakdown in the ability of the code 
to correctly determine the fiducial points on the PPG. To mitigate this 
issue the finger PPG was readjusted to decrease noise. Due to time 
limitations, COVID-19, and the technical difficulties with the device, the 
team was only able to get measurements from two subjects. The 
measurements from one of these objects was not aligned correctly 
between the wrist and chest units due to a time delay, so that data was 
also found to be unusable. The team had hoped to measure blood pressure 
from 20 subjects, but proceeded with a lesser number due to time 
constraints. 

Additionally, due to time constraints related to data collection, it was 
determined that machine learning algorithms would take too much time 
to process. Therefore, regression analysis was employed to determine 
which metric for blood pressure, PAT or dPAT would be more accurate.  

Alternatives  

In this project, only the dPAT and PAT were compared using regression 
analysis. There are a number of other alternatives that would also 
correlate to blood pressure. The first alternative would be to examine the 
efficacy of different fiducial points on the PPG. These could include the 
PPG foot point, or the point on the PPG with the steepest slope.9 Using 
different fiducial points could give a more accurate reading if picking 
each point is more accurate. Specifically, using the PPG foot point would 
equate to a longer PAT, which could allow for less error in the 
measurements. Additionally, a PPG could be used on other parts of the 
body. PPG sensors have been attached to the foot of the subject in other 
studies.27 Placing a PPG sensor on the foot could allow for a longer PAT, 
it could also allow for a larger dPAT measurement. This could lead to 
less error in data points, and could also be an unobtrusive location for a 
blood pressure monitor. Additionally, a different measure of pulse transit 
time (PTT) can be used and compared to PAT. This measurement is 
defined as the time it takes the pressure wave of a heartbeat to travel 
between two arterial sites.12 With the current device, this has been found 
between the chest and finger PATs waveforms. In other applications, it 
has been found between the valley point of the arterial blood pressure 
(ABP) waveform, and a fiducial point on the PPG. This has been shown 
to be a more accurate correlation to blood pressure due to the absence of 
a pre-ejaculation period (PEP).14–16 However, the ABP is found through 
an invasive method, and thus may not be a feasible measurement for an 
ambulatory blood pressure monitor.  

Another alternative to that proposed in the study would be the use of 
Machine Learning methods as an alternative to the regression models. 
This would give a more robust understanding of the parameters included 
than the regression model used in this project. In past studies, PPG data 
has been used within neural networks to estimate SBP and DBP signals. 
This method outperformed linear regression, and thus would be a good 
alternative to the method used in this project.12 A more robust Deep 
Learning algorithm has also been used, which includes a convolutional 
neural network, a bidirectional gated recurrent unit, and an attention 
mechanism.11 Using either of these methods could lead to more accurate 
DBP and SBP models.  

Further Improvements 

In the future, this project could be improved by a number of changes. The 
first would be using more subjects and a wider range of subjects. This is 
important because the regression analysis could be trained better on a 
larger amount of data. Additionally, a more diverse subject population 
would ensure a universal model is created. This is important because of 
the socioeconomic, and demographic differences in blood pressure.28,29 
By training the model on a number of patients with different baseline 
blood pressures because of race, age, gender, or economic status, we 
could ensure that the model is accurate for all patients.  

Additionally, it may be helpful to include multiple comparison devices in 
the study. Throughout the study, there were problems with the Human 
NIBP Nano system stopping in between measurements. This was due to 
issues with the finger cuffs inflating properly. Because of these issues, 
there may be discrepancies within the comparison data. By adding 
numerous comparison devices, we would be able to ensure that the 
comparison data is as accurate as possible. One of these devices could be 
a manual blood pressure cuff, taken at different intervals throughout the 
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study. Another could be the CareTaker device, which is another FDA 
approved device that measures continuous “beat-to-beat” blood pressure, 
heart rate, and other physiological parameters using only a finger cuff.30 
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