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Abstract

The nuclear equation of state (EoS) is poorly constrained at
present. Properties of neutron stars (NSs) such as radius and
tidal deformability are strongly correlated with the EoS, provid-
ing an opportunity to study nuclear matter through observations
of NSs. We construct a population of EoSs by randomly sampling
a multidimensional Taylor expansion, then constructing correla-
tion distributions between the nuclear parameter Ksym,0, radius R,
and tidal deformability Λ. Using NICER measurements of R from
PSR J0030+0451 and LIGO measurements of Λ from GW170817,
we develop a statistical method to place bounds on Ksym,0. Work
is ongoing to modify the physical models for the EoS, such as the
inclusion of the 3rd order symmetry parameter Jsym,0, which ap-
pears to produce distributions of Ksym,0 which are more consistent
with measurements of GW170817 and J0030.
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INTRODUCTION

The supranuclear equation of state (EoS), found in heavy ion collisions [1, 2] and neutron stars (NSs) [3], remains
one of the biggest mysteries in nuclear physics and astrophysics to date. Macroscopic properties of an NS, such as
radius and tidal deformability, are strongly dependent on the EoS relationship between energy density and pressure.
This presents the opportunity to constrain the EoS using multiple measurements of independent NS observables, such
as x-ray measurements of the NS mass and radius [4–8].

The historic gravitational wave (GW) detection of the merging NS binary system GW170817 [9] by the LIGO/Virgo
Collaboration (LVC) presented the first opportunity to probe the interior properties of a NS through the tidal effects
on the gravitational waveform [10–17]. During the inspiral, the tidal fields of each NS in the binary system induce a
tidal response in the other. This effect is quantified by the tidal deformability parameter [18].

More recently, the Neutron Star Interior Composition Explorer (NICER), an X-ray telescope mounted on the
International Space Station, performed a direct observation of the mass and radius of PSR J0030+0451 [19–24].
Using these results, many analyses have been performed to place constraints on the EoS [24–27].

In this thesis, we utilize a population of parameterized EoSs to quantify the relationship between the EoS, tidal
deformability, and radius of a NS. We ultimately construct a statistical method and attempt to place bounds on the
EoS utilizing the GW measurements of GW170817 and NICER measurement of J0030. This is an extension of the
author’s previous work placing bounds on the EoS utilizing only GW170817 [28]. This thesis is an extension of the
author’s previous work [29]. Throughout this thesis, we adopt the convention G = c = 1.

NUCLEAR MATTER PARAMETERS AND EQUATIONS OF STATE

In order to quantify properties of the EoS, we construct EoSs as a parameterized Taylor expansion, allowing
correlations between nuclear parameters and NS observables to be extracted. We express the energy per nucleon
e(n, δ) of supranuclear matter as a Taylor expansion in the nucleon number density n and isospin symmetry parameter
δ ≡ (nn − np)/n representing how neutron-richness of the matter, with np and nn as the proton and neutron number
densities, respectively.

The expansion goes as follows [28]. We first express e(n, δ) as the sum of the symmetric matter part e(n, 0) plus
the leading asymmetric part S2(n) as

e(n, δ) = e(n, 0) + S2(n)δ2 +O(δ4). (1)

We can further expand the symmetric part about nuclear saturation density n0 using the parameters as

e(n, 0) = e0 +
K0

2
y2 +

Q0

6
y3 +O(y4), (2)

where y ≡ (n−n0)/3n0 and the coefficients represent energy per nucleon e0, incompressibility K0, and third derivative
term Q0, respectively. Similarly, we can expand the asymmetric part as

S2(n) = J0 + L0y +
Ksym,0

2
y2 +O(y3), (3)

where the coefficients represent symmetry energy J0, its slope L0, and its curvatureKsym,0. The lower order parameters
in the expansion, such as J0 and L0, have been constrained with nuclear experiments [30]. On the other hand, neutron
star observations can be used to measure higher order parameters like Ksym,0 due to their large central densities. In
this thesis, we exclusively focus on placing bounds on Ksym,0 by combining results from GW170817 and the recent
NICER measurements of the neutron star radius.

In order to maintain a model-agnostic approach and minimize systematic biases from the assumptions of EoSs
motivated by microscopic physical models, we consider only EoS generated using the form of Eqs. (1)-(3). EoSs
were created by randomly sampling each nuclear parameter from a uniform prior, then running tests of the physical
properties of the nuclear matter and corresponding NS properties. We required that EoSs must maintain an increasing

pressure p with respect to energy density ε as ∂p
∂ε > 0. Additionally, we require the speed of sound cs ≡

√
∂p
∂ε < c

to remain causal at any central pressure p0 below the maximum mass defined by dM
dp0
|Mmax

= 0. Additionally, we

rejected EoSs inconsistent with the 90% confidence bounds on L0 and J0 described in [30]. Lastly, we require that all
EoSs support NSs with Mmax > 1.96M� [31]. All the EoS models considered here contain pure nuclear matter and
do not contain hyperons, Bose condensates, quarks, or any other phase transition.
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FIG. 1. Relations between the NS mass (M�) and radius (km) for the population of EoSs. This shows that a diverse sampling
regime is represented by the Taylor expansion generation of the EoS population. Acausal EoSs are included in this plot.

MASS, RADIUS AND TIDAL DEFORMABILITY

Using the population of EoSs, we compute observable NS properties, such as the mass-radius relationship and tidal
deformability for each. Mass and radius are calculated by solving the Tolman-Oppenheimer-Volkhoff equations for
hydrostatic equilibrium:

dp

dr
= − (ε+ p)(m+ 4πr3p)

r(r − 2m)
(4)

dm

dr
= 4πεr2, (5)

where the EoS is used to determine ε as a function of p and m(r) represents the gravitational mass contained within a
sphere of radius r To solve Eq. (4), we pick the central pressure p(0) ≡ p0 as an initial condition. We then numerically
solve the differential equation until reaching the radius R where pressure vanishes p(R) = 0. The mass m(R) ≡ M
contained within that radius defines the gravitational mass of the star. Because both R and M are parameterized
by p0, we can directly relate the two variables as R(M). The point where dM

dp0
= 0 is defined as the maximum mass

Mmax supported by the EoS.

Figure 1 shows the distribution of mass-radius curves for the EoS population, only enforcing Mmax > 1.96M�,
without any restrictions on the causality limit inside of the star. The figure shows a wide sampling range of masses
and radii for the NS population obtained by the random sampling of nuclear parameters.

The tidal deformability λ of a NS quantifies its elasticity to develop a quadrupole moment Qij in the presence of
an external tidal field Eij as

Qij = −λ Eij . (6)
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Qij and Eij are both obtained from the asymptotic behavior of the gravitational potential around a tidally-deformed
NS. Such a stellar solution can be constructed by perturbing the non-rotating, isolated background solution derived
earlier and solving a set of perturbed Einstein equations [28]. An alternative method can be used to approximate λ
using the universal relations between compactness C ≡M/R and Λ ≡ λ/M5 [32]:

Λ ≈ 2.718−0.07092(−355+2.236
√
4901+56400C). (7)

Due to the strong coupling of tidal interaction in a binary system, it is difficult to independently measure Λ1 and
Λ2 for each NS. Rather, we compute the mass-averaged tidal deformability

Λ̃ =
16

13

(1 + 12q)Λ1 + (12 + q)q4Λ2

(1 + q)5
, (8)

which is the leading order tidal parameter in the gravitational waveform of a binary NS inspiral. In Eq. (8),
q ≡ m2/m1 < 1 is the mass ratio and mA and ΛA represents the mass and dimensionless tidal deformability of the
Ath neutron star respectively.

EXTRACTING CORRELATIONS

With a large population of EoSs generated and observables calculated, the next step is to construct distributions
relating each relevant property of the EoS.

We begin by clarifying the role of mass in these relationships. Each nuclear parameter is determined only by the
fundamental microscopic interactions of nucleons, and is thus independent of macroscopic properties of the NS such
as mass. Thus, each EoS has a singular value for each parameter, including Ksym,0. The NS radius, as shown in Fig 1,
can vary significantly with mass. We notate the radius R associated with a particular mass M as RM . Lastly, while Λ
does vary with mass primarily due to the associated variation of radius, Λ̃ can be considered a qauntity independent
of M . Previous work by the authors established that correlations between Ksym,0 and Λ̃ are dominated by the chirp
mass

M≡
[ 1

1 + q2

]3/5
(m1 +m2), (9)

rather than the exact mass ratio itself [28]. Because M is very well constrained by GW170817, we adopt the
mean values of m1 and m2 as measured by the LVC and ignore uncertainty in q. Thus, we obtain a singular value of
Λ̃GW170817

1 predicted by each EoS that should have been observed in GW170817, independent of any mass uncertainty.
Because the population of EoSs provides only discrete points, we must interpolate to produce a continuous distri-

bution. We use binning and interpolation to produce a continuous distribution P (Ksym,0, RM , Λ̃GW170817) between

RM , Λ̃GW170817 and Ksym,0, rather than assuming a Gaussian relationship as in previous work. [28].

Finally, we must normalize the relationships as conditional probability distributions on RM and Λ̃GW170817, per-
formed as

P (Ksym,0|RM , Λ̃GW170817) =
P (Ksym,0, RM , Λ̃GW170817)∫∞

−∞ P (K ′sym,0, RM , Λ̃GW170817)dK ′sym,0
. (10)

BOUNDS ON Ksym,0 FROM NICER

We now describe the process to derive bounds on Ksym,0 from the NICER’s measurement of the NS mass and radius
for PSR J0030+0451. We explore the results of the NICER study [20], released as the Markov Chain Monte Carlo
(MCMC) samples for pairs of mass and radius measured from the NS. Because of the strong degeneracy between mass
and radius in the NICER posterior measurement, our statistical procedures must account for uncertainty in mass.
We accomplish this by constructing bins of nearly constant mass from the NICER posterior. This is performed such

1 We denote the measurement of Λ̃ with the subscript GW170817 to emphasize that is a measurement unique to the exact combination
of NS masses involved in the event
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FIG. 2. 20 mass bins, each with a width of 0.05 M� divide the NICER measurement into approximations for P (RM ) with
small uncertainty in m relative to the statistical spread of RM . Added together, the 20 distributions for P (RM ) reconstruct
the original NICER measurement by Miller et Al.[20]

that the statistical uncertainty of radius RM samples falling within that bin is much greater than the difference in
average radius measurement between different mass bins ∆Rm ≡ R(m+δ) −Rm. We first divide NICER’s results into
20 bins of mass evenly spaced between 1 and 1.95 M�

2. The MCMC samples within each mass bin that starts with
mass M give us the probability distribution of the radius samples at that fixed mass M . The samples of R that fall
within the bin allow us to construct one-dimensional posterior approximations for P (RM ), which are shown in Fig 2
to reconstruct the entire distribution by Miller et Al. [20].

By converting the J0030 measurements into a series of measurements binned by nearly definite mass, we match the
conditional probability distributions obtained from the EoS population, which only permit a measurement of radius
given a definite mass, rather than a correlated uncertainty between the two quantities. One such distribution is shown
in Fig 3, which suggests that more positive values of Ksym,0 are consistent with the data. This is inconsistent with
past measurements of Ksym,0, which generally find Ksym,0 . 0 [33, 34]. Additionally, part of the distribution for
P (RM ) extends beyond the range of radii observed in the simulated EoS population, indicating that our population
may be inconsistent with the NICER measurements.

The final step is to attempt to place probabilistic bounds on Ksym,0 using a combination of the observed data and
simulated correlations, which is achieved using marginalization integrals. Using only the NICER X-ray measurements,
the probability distribution of Ksym,0 from one mass bin at M is given by

PM(Ksym,0) =

∫ ∞
−∞

PM(Ksym,0|RM)P (RM) dRM. (11)

where PM(Ksym,0|RM) is the two-dimensional conditional probability distribution corresponding to Eq. (10). This
way, we can take into account the amount of scattering in the correlation between Ksym,0 and RM, which adds a
systematic error to the final distribution on Ksym,0. After normalizing it properly, this yields bounds on Ksym,0 for

2 We have checked that when we increase the number of bins to 40, the final bound on Ksym,0 only changed by less than 1 MeV.
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FIG. 3. A single mass bin forR1.45 is shown, with the scatter plot distribution for P (Ksym,0, R1.45) and the NICER measurement
for P (R1.45). The distributions favor more positive values of Ksym,0, and even extend to slightly larger radii than were consistent
with the results from EoS population synthesis.

each fixed value of mass M . The final step combines each bound weighted by the probability distribution of the mass
P (M) constructed from the number of NICER samples in each mass bin:

P (Ksym,0) =
∑

PM(Ksym,0)P (M). (12)

Due to the misalignment between P (RM ) and Pm(Ksym,0, RM ), the marginalization calculation does not yield
reasonable bounds. The final bounds on Ksym,0 are constrained by the prior uniform sampling limit of Ksym,0 < 200
MeV. For example, previous bounds of Ksym,0 = −125 ± 79 MeV [33] and Ksym,0 = −230+90

−50 MeV [34] are both
constrained well below our 200 MeV limit. Even accounting for differences in assumptions, this inconsistency is not
explainable statistically.

One possible resolution to the inconsistent bounds on Ksym,0 may be to include a secondary constraint from the
LVC measurement of GW170817. Because the NICER measurement favors larger values of Ksym,0, the GW170817
measurement’s relatively negative bounds on Ksym,0 may taper the outlying probabilities [28]. We use the three-

dimensional probability distribution PM(Ksym,0|RM, Λ̃GW170817) from Eq. (10) relating Ksym,0, RM and Λ̃GW170817.

We can first use the tidal measurement of P (Λ̃GW170817) by the LVC [35] to marginalize the above three-dimensional
probability distribution over Λ̃GW170817 to obtain PM(Ksym,0, RM):

PM(Ksym,0|RM) =

∫ ∞
−∞

PM(Ksym,0|RM, Λ̃GW170817)

×P (Λ̃GW170817) dΛ̃GW170817. (13)

We then proceed according to Eqs. (11) and (12) to obtain final bounds on Ksym,0. Research is ongoing to compute
this statistical bound using numerical methods properly and ensure that the final bounds are statistically reasonable.
The presently calculated distribution between Ksym,0 and Λ̃GW170817, shown in Fig 4 also appears inconsistent with
the measurement of GW170817 in the small Ksym,0 region. This finding is inconsistent with the past investigation of

Λ̃ and Ksym,0 using randomly sampled EoSs [28].
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FIG. 4. The LVC measurement of Λ̃ for GW170817 is inconsistent with the population of EoSs, which do not display values
below 400.
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FIG. 5. This logarithmic histogram shows the distributions of Ksym,0 and Q0 for the EoS population after various physicality
requirements have been applied in succession. Beginning from a uniform distribution of Ksym,0 and Q0 samples, the first
requirement dp

dε
> 0 requires that pressure must increase monotonically. The next requirement Mmax > 1.96M� ensures EoSs

are able to reproduce the 2σ lower bound of the mass of J0740 [31], which strongly favors larger values of Ksym,0 and Q0.
Lastly, the final requirement cs < c ensures the speed of sound inside the nuclear matter remains causal, which slightly favors
lower values of Ksym,0, but very strongly constrains the range of Q0.

INVESTIGATION OF INCONSISTENCIES

We have seen that the Taylor expansion-generated EoS population is unable to reproduce the range of measurements
of R by NICER, nor the range of probable ˜ΛGW170817 by LIGO/Virgo. While it is possible an error exists in our
analysis, we have conducted thorough review of each step in the process and all but excluded that possibility. Rather,
we believe that the source of inconsistency lies in the choice to use Ksym,0 as the highest order parameter in the
expansion of Eq. (3).

In the work of Carson et Al., the phenomenologically sampled EoSs were not required to respect causality with
cs < c [28]. While Fig 5 shows that the causality requirement changes the distribution of Ksym,0 samples, the dominant
effect of the causality requirement is on the 3rd order parameter Q0 in Eq (2). Whereas Carson et Al. included EoSs
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FIG. 6. The Ksym,0 and Λ1.4 distributions are compared for this thesis and Carson et al. [28]. Blue shows the main method of
this analysis, utilizing the universal relation of Eq. (7) to approximate Λ from C. Red points show the phenomenological EoSs
of Carson et Al., which extend to much lower values of Ksym,0 and Λ1.4 than are represented in the aforementioned distribution.

with Q0 as large as 1500 MeV, we find that by enforcing the causality requirement, Q0 < 15 MeV.

This finding is expected, as cs generally— although not strictly—increases with increasing pressure. Because cs
is evaluated at the maximum possible NS mass Mmax for a given EoS, which corresponds to the greatest stable
pressure possible under the EoS, this condition corresponds to extremely large energy densities. Because the 3rd
order parameter Q0 dominates over the 2nd order Ksym,0 at densities much greater than saturation density, Q0 is
more strongly limited by the causality restriction than Ksym,0. Similar logic follows for the Mmax requirement, which
as shown in Fig 5 produces a sharper cutoff for the lower end of the Q0 distribution than the Ksym,0 distribution.

We can use this analysis of the Ksym,0 and Q0 distributions to motivate a potential solution to the inconsistency

between our theoretical models of R and Λ̃ and the NS measurements from NICER and LIGO/Virgo.

Comparing the distribution of Ksym,0 and Λ1.4 for three different methods, we can search for errors in our analysis
and compare to the past work of Carson et Al. [28]. Figure 6 shows this distribution as calculated using the universal
relation in Eq. (7), directly using a TOV solution to quadrupolar perturbation (see Carson et Al. for a detailed
description of this method), and lastly the original results of Carson et Al. [28]. Although there is some expected
inconsistency between the universal relation and TOV calculation of Λ1.4 because they are preformed on similar—but
not identical—population of EoSs, there appears to be a non-statistical inconsistency at large values of Λ1.4; this is
due to numerical errors in the TOV solver for NSs with large deformability and is not a real inconsistency. However,
there is a true inconsistency with the distribution of Carson et Al, which features much lower samples of Ksym,0 and
Λ1.4 than our analysis. Upon inspecting the EoSs of Carson et Al, we found that the EoSs in question corresponded
to very large values of Q0, and thus would have been rejected by our causality restriction.

MODELLING OF Jsym,0

Ultimately, we must produce a population of EoSs including these very negative values of Ksym,0, which as shown

clearly in Fig 6 will correspond to the missing small values of Λ, and similarly to the small Λ̃ missing from Fig. 4.
As we have shown in Fig. 5 that enforcing the causality and maximum mass requirements most strongly restricts
the highest order parameter, we propose modifying the Taylor expansion model in Eq. (3) to include the 3rd order
symmetry energy parameter Jsym,0:

S2(n) = J0 + L0y +
Ksym,0

2
y2 +

Jsym,0
6

y3 +O(y4). (14)
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FIG. 7. A sample of ∼ 115 EoSs with varying Jsym,0 shows the correlations between Ksym,0 and Jsym,0. By allowing Jsym,0 to
increase, EoSs with smaller values of Ksym,0 still achieve a maximum mass Mmax > 1.96M�, thus producing a wider range of
valid Ksym,0 values.

Beyond simply matching the 3rd order form of Eq. (2), Jsym,0 will dominate over Ksym,0 in the EoS at extremely
high densities. Whereas the missing low values of Ksym,0 are presently rejected by the Mmax requirement, we expect
that this requirement will more strongly limit the distribution of Jsym,0 and instead allow smaller values of Ksym,0 to
be obtained without decreasing Mmax. Past studies have found that the inclusion of Jsym,0 produced more negative
bounds on Ksym,0 [36]. We emphasize that Jsym,0 was not necessary in Carson et Al. because, by not enforcing
causality in the NS interior, the large values of Q0 supported large NS masses and allowed more freedom in Ksym,0.

A small sample population of EoSs was generated with a randomly sampled range of -1000 MeV < Jsym,0 < 2000
MeV. While this small number of EoSs is insufficient to test the statistical bounds on Ksym,0 using measurements
extracted from GW170817 and J0030, the preliminary distributions provide insight through comparison with the
original Jsym,0 = 0 population.

First, we can compare how the distribution of Ksym,0 changes with the introduction of a varying Jsym,0, illustrated
in Fig. 7. By allowing Jsym,0 to reach large values, EoSs with smaller values of Ksym,0 satisfy the Mmax > 1.96M�
requirement and remain physically viable. While the sampling is currently very sparse, there appears to be a roughly
linear cutoff to the minimum Ksym,0 permitted given a value of Jsym,0, shown in Fig. 7 as the boundary between the
region in the lower-left corner of the plot without any EoSs and the remainder of the EoS distribution.

Additionally, we can inspect the preliminary distribution between Ksym,0 and Λ̃GW170817, shown in Fig. 8. Be-
cause varying Jsym,0 produced lower values of Ksym,0 and the lower values of Ksym,0 generally correspond to smaller
deformability, the new distribution is slightly more consistent with the GW170817 event than the fixed Jsym,0 = 0

case. The new distribution produces EoSs with Λ̃GW170817 ∼ 275, compared to a minimum of ∼ 400 in the Jsym,0 = 0
distribution. This is expected to produce more reliable bounds on Ksym,0 using the GW170817 event than previously
obtainable.

Because the preliminary results for varying Jsym,0 appear promising, a much larger EoS population will be generated

using this method. Once a larger population is created, the correlation betweenKsym,0 and Λ̃GW170817 can be converted
to a continuous distribution as described previously. This will ultimately allow bounds on Ksym,0 to be produced once
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FIG. 8. By including a randomly sampled Jsym,0 parameter, the EoS population includes samples with Λ̃GW170817 ∼ 275, which
is significantly lower than the fixed Jsym,0 = 0 case, which only produces a lower limit of Λ̃GW170817 ∼ 400, shown in Fig. 4.
While still inconsistent with the measurement of Λ̃GW170817, the inconsistency is smaller, and an increase to the sampling range
of Jsym,0 is likely to allow the production of less deformable EoSs.

a large enough population of EoSs is generated. Work on this subject will continue during the summer, with the goal
to produce reliable bounds on Ksym,0.

CONCLUSIONS AND DISCUSSIONS

We constructed a large population of randomly sampled Taylor expanded EoSs, quantifying the relationships
between the nuclear parameter Ksym,0 and the physical observables R and Λ̃. By constructing multidimensional
conditional probability distributions, we designed a statistical process that can place bounds on Ksym,0 given a
measurement of radius and tidal deformability of a NS. While complications have prevented reliable bounds on
Ksym,0 from being obtained thus far, work is continuing to produce reasonable constraints on the EoS.

The EoS models have been modified to include a varying Jsym,0. While it is unlikely to be directly measurable
using the current data sets, its inclusion appears to shift the distribution of Ksym,0 in such a way that it corresponds
more closely with the measurement of GW170817, producing more reliable bounds on Ksym,0.

Future work will modify the statistical procedures of this project to incorporate the NICER measurement of the
pulsar J0740. Although its large mass will provide some complications for Taylor expansion EoSs, which become less
accurate at higher energy densities due to the omission of higher order parameters beyond Q0 and Jsym,0, it is still
likely to produce additional constraints on Ksym,0.
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