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Figure 5.1 Overview of the experimental design to identify the renin
cell developmental trajectory . (a) Foxd1 progenitors in the cap
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model are sorted on Foxd1-derived GFP expression and single-cell ATAC-
seq and RNA-seq is performed. (c) UMAP visualization of scATAC-seq
data separated by time point. (d) UMAP visualization of scRNA-seq
data with annotated cell clusters. (e) UMAP visualization of gene
activity scores for canonical JG markers Ren1 and Akr1b7. (f) UMAP
visualization of gene expression for canonical JG markers Ren1 and
Akr1b7. (g) UMAP visualization of integrated scATAC-seq and scRNA-
seq data with annotated cell clusters. (h) Cell frequency distribution
across developmental time point. Numbers below timepoints represent
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Figure 5.4 MEF2 family of TFs uniquely defines the terminal JG pop-
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enriched TFs identify putative binding sites in open and co-accessible
peaks. Yellow fill box highlights uniquely enriched peak in JG cluster.
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super-enhancer; SMC: smooth muscle cell . . . . . . . . . . . . . . . . 85
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Abstract

An ultimate goal of biology is the understanding, at a fundamental level, of the function

of the cell. What factors shape cell identity and function and how does an organism or

individual cell control the timing, development, and activity of its genome? A cell’s identity

can change over time, based on genetic and epigenetic signals, its spatial context in an

organism, or due to internal or external stimuli. Genomics and epigenomics seek to uncover

these signals by measuring molecular profiles of RNA [1–4], DNA [5–8], protein [9, 10],

epigenetic modifications [11–13], or chromatin accessibility and conformation [14–18]. Open

chromatin and gene expression assays with their corresponding computational tools enable the

deconvolution of complex samples, the identification of rare or novel cell types and regulatory

elements, and of the interactions between DNA and chromatin-interacting proteins [19–24].

We sought to evaluate the status of the computational infrastructure to enable these sorts

of analyses, address unmet needs in the field, and apply this knowledge and expertise to

investigate questions of development in a rare kidney cell (renin or juxtaglomerular cells) that

is integral for maintaining homeostasis. To fulfill this goal, we evaluated current methods

for open chromatin analysis, developed computational pipelines to analyze bulk ATAC-seq,

nascent RNA-seq, and applied an integrated analysis of scATAC-seq and scRNA-seq to uncover

the regions and factors driving the differentiation of renin cells in developing mouse kidneys.

This work led to the novel finding of the importance of the MEF2 family of transcription

factors being primary drivers of renin cell differentiation.
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1 Introduction

1.1 Chromatin

1.1.1 Chromatin overview

Chromatin is dynamic and changes in chromatin accessibility to various transcription fac-

tors and remodeling complexes reflect changes in transcriptional activity of the cell. This

accessibility is in essence a measure of the degree to which nuclear proteins and molecules

are able to interact with the underlying DNA. Chromatin is itself tightly regulated to ensure

proper function of DNA processes. This regulation can occur from the level of individual

nucleosomes, to general DNA accessibility, up to and including higher-order structures of

chromatin. Thus the organization of accessible chromatin across the genome represents the

set of possibly interacting regulatory elements and chromatin binding factors that regulate

gene expression [25, 26]. Factors that interact with chromatin are responsible for regulating

this structure and can act both directly on chromatin conformation as well as indirectly

dependent on that same conformational structure. Therefore, a complex system emerges

whereby changes in chromatin structure affect which chromatin regulators are able to bind

and chromatin regulators in turn affect the chromatin structure [27, 28]. While the genome

is the same, cells execute unique functions based on specific gene expression patterns under

regulation by the topological organization in the nucleus [29–32]

1.1.2 Chromatin structure

Chromatin structure enforces broad and significant effects on essentially all DNA based

processes from kinetochore and centromere formation to DNA repair, replication, and tran-

scription [[33]; [34]; Venkatesh2015]. Furthermore, beyond the underlying genetic sequences

themselves, chromatin structure can also be inherited [34]. Chromatin is organized broadly

into regions of highly condensed, transcriptionally silent areas mainly present at pericentric

regions and telomeres known as heterochromatin versus euchromatin, which includes less

condensed, gene-dense, actively transcribed regions [35–39].

Restructuring transcriptional networks is the method by which cells undergo development

and respond to changes in their environment without changes to underlying DNA sequences.

These primarily epigenetic changes occur during cell division and differentiation and may be

partially controlled through changes in chromosomal conformation. Historically we viewed

gene expression as occurring from a linear arrangement of DNA sequence encoding genes in a

one-dimensional state. However, we now know that three-dimensional interactions are often



2

necessary and required to bring regulatory elements and chromatin-bound factors together

with target genes to regulate expression. In this updated view, transcriptional activity and

regulation involves the interplay between transcriptional complexes involving TFs [40, 41] and

other regulators [42, 43] brought together through DNA looping [44, 45].

Chromatin’s underlying structure is composed of approximately 147 bp of DNA wrapped

around repeating units of eight histone proteins which together form a nucleosome [46–49].

The distribution of these nucleosomes is not uniform across the genome [50, 51]. Nucleosomes

tend to be densely arranged in facultative and constitute heterochromatin, but are depleted

at regulatory regions and actively transcribed gene bodies [50–53].

1.1.2.1 Nucleosomes The location of nucleosomes along chromatin serves as one of

the determinant factors controlling accessibility of DNA to interacting proteins including

transcription factors [54, 55]. The nucleosome comprises the major subunit of eukaryotic

chromatin. Its core is comprised of approximately 147 bp of DNA wrapped 1.65 times around

a histone octamer composed of two of each of the four core histones, H2A, H2B, H3, and

H4 [46, 48, 49, 53, 56, 57]. The length of the DNA that wraps around a nucleosome core

is tightly conserved with the length of DNA between nucleosomes variable and subject to

different chromatin regions, different cell and tissue types, and different species [58]. These

differences directly affect the activity of critical processes of cellular regulation by controlling

which proteins have access to specific DNA regions. Assaying regions of open chromatin

therefore provides a direct measure of which regions of a particular cell or groups of cells are

accessible to cellular machinery.

1.1.2.2 Histones Histones are the molecular units that comprise nucleosomes and work to

package and organize DNA in the nucleus [39]. The core histones that comprise a nucleosome

include: H2A, H2B, H3 and H4 [57]. There is a wide range of post-translational modifications

of histones that affect the function of each individual subunit and the accessibility of nearby

DNA [59–61]. Furthermore, multiple variants exist in each of the core histone subunit families

that play different roles in development, epigenetic regulation, and localization [39, 62]. These

modifications may serve as epigenetic indicators of chromatin states and play important roles

in determining or indicating the activity of regulatory elements [32].

For example, the histone variants H2A.Z and H3.3 can influence nucleosome turnover rates and

are enriched at TSSs and enhancers [63, 64]. Furthermore, specific histone post-translational

modifications are indicative of various regulatory elements. Nucleosomes downstream of active

promoters are enriched for H3K4me3 and H3K27ac as are active enhancers (Fig. 1.1)[65–70].
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Enhancers contain H3K4me1 whether they are inactive, poised, or active [67, 71]. Repressed

or inactive enhancers include H3K27me3 and dense nucleosome assemblies (Fig. 1.1)[69]. To

distinguish between active and poised enhancers, poised enhancers have H3K27me3 in place

of H3K27Ac and reduced chromatin accessibility (Fig. 1.1) [69, 72–74]. Poised enhancers

represent a possible epigenetic priming mechanism [75], are evolutionarily conserved during

embryonic development, and appear to be a controlling mechanism of lineage specificity [74,

76].

H3K9ac Ac�ve promoters and enhancers

H3K14ac Ac�ve transcrip�on

H3K4me3/me2 Ac�ve promoters and enhancers

H3K4me1 Enhancer-specific

H3K27ac Enhancer-specific

H3K36me3 Ac�ve transcribed regions

H3K27me3/me2/me1 Silent promoters

H3K9me3/me2/me1 Silent promoters

Figure 1.1: Histone modifications are indicative of promoter and enhancer activity.

1.1.3 Regulatory regions

Regions of open chromatin represent areas of DNA accessible to transcriptional machinery.

Thus, cellular identity and function is at least partially defined by what regions of chromatin

are open and the corresponding regulatory elements present. Both genes and non-coding

regions of the genome in these open areas participate in the expression and activity of proteins.

Regulatory regions are found primarily in these accessible regions and the identification of

cell-specific regulatory elements is critical to understand cell identify and function. While

less than 2-3% of the genome encodes for amino acids in proteins, 90% of regions bound

by a TF are found in the remaining regions of open chromatin [[51]; Cao2015]. Identifying

open chromatin provides the opportunity to identify not only regulatory regions but binding

sites of chromatin-interacting proteins that act to regulate gene expression. These regulatory

regions are composed of several general classes including: promoters, enhancers, insulators and

silencers. Both promoters and enhancers may initiate transcription but only at gene promoters

are the resultant transcripts stable [70, 77–79]. Promoter activity is itself modulated by input

from enhancers, with both mediated by transcription factors and transcriptional cofactors

[70].

1.1.3.1 Promoters Promoters are genomic regions located near gene transcription start

sites (TSSs) [70, 80, 81]. They may be further broken down into core and proximal promoters.
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Core promoters are regions nearest TSSs (~50bp upstream and downstream of the TSS) where

transcription machinery assembles, including the pre-initiation complex containing Pol II

and general transcription factors (GTFs) with active cores devoid of nucleosomes [40, 70,

82–86]. The proximal promoter is located around 250 bp upstream of the TSS and contains

transcription factor binding sites to regulate the corresponding gene’s expression [70].

Within core promoters, there are several universally employed motifs with fixed positioning,

including the well-known TATA-box motif [86, 87], the imitator motif [88, 89], TFIIB

recognition elements [90, 91], or downstream core elements [92]. This enables the classification

of core promoters into three general types. The first includes core promoters with imprecisely

positioned nucleosomes and clear initiation patterns in addition to motifs for TATA-box and

initiator [93, 94]. They often represent genes active in terminally differentiated cells [95]. The

second type of core promoter is found at housekeeping genes which are broadly expressed.

They tend to have less precise initiation patterns but with precisely positioned nucleosomes

[93, 96, 97]. The third type resembles the promoters found at housekeeping genes but are in

poised states, as indicated by H3K4me3 and H3K27me3 histone marks, suggesting they are

important for directing cell lineage and terminal differentiation determination [98, 99].

1.1.3.2 Enhancers While core promoters are sufficient to initiate transcription, they

generally have low basal activity which can be modulated by distal enhancers [86, 100, 101].

While the distinction between enhancers and proximal promoters is minimal, enhancers

are distinguished by being distal to core promoters and can act independent of distance

and orientation [70, 86, 101]. They are further distinguished from promoter elements by

enrichment of H3K4 methylation, H3K27ac, and the presence of histone variant H2A.Z [66,

102–105]. They are present in regions of open chromatin and are activated by the binding of

transcription factors and cofactors [70]. These recruited factors can interact with promoters to

increase initialization or stabilization of transcriptional machinery through three-dimensional

organization of chromatin [100, 106–110]. They can be located in cis or trans to genes they

regulate [45, 81, 111, 112]. Enhancers are essential for controlling the specificity of gene

expression with different enhancers active in different cell types and tissues. The combination

of active enhancers in a cell controls the expression of cell identity genes and represent the

primary indicator of cell specificity [81, 113–115]. Furthermore, clusters of enhancers in close

proximity bound by TFs that are associated with cell specificity have been identified that are

termed super-enhancers, although their function as distinct functional units is unclear [116,

117].
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1.1.3.3 Insulators For enhancers to interact with target gene promoters, they must be

within regions that are topologically accessible to each other. Insulators are elements that

can set the boundaries of these topologically accessible regions and are defined by the binding

of CTCF [118–120]. They function by ensuring the correct distal elements have access to the

right promoter elements [121–123]. The region bound by CTCF-bound insulators is highly

accessible but surrounded by dense arrays of stable nucleosomes [32].

1.1.3.4 Silencers Silencers are regulatory regions which repress gene activity by modu-

lating chromatin looping at the target promoter [124, 125], recruiting repressive transcription

factors [126, 127], or through recruiting histone writers to apply repressive chromatin marks

[128]. While their genomic localization is similar to enhancers and they can act independent

of orientation and distance to promoters, they result in decreases in target gene transcription

in contrast to enhancers [129].

1.1.4 Transcription factors

Transcription factors (TFs) are proteins that bind specific DNA sequences via a DNA-binding

domain and can regulate transcription [130–132]. TFs do so via the recruitment of RNA

polymerase II or transcriptional cofactors through a transactivation domain [133, 134]. The

binding and activity of TFs is a dynamic process with competition between histones and

chromatin-interacting proteins to affect nucleosome occupancy and control accessibility of

DNA [[135] ;[136]; Felsenfeld1996; [137]], Furthermore, the chromatin accessibility landscape

is itself dynamic, with active chromatin remodeling modulating nucleosome turnover and

affecting the ability of TFs to bind and recruit cofactors and distal regulatory elements

[138–141]. Although the majority of TFs require accessible DNA to bind, pioneer TFs are

thought to bind directly to nucleosomal DNA or are the first factor that binds following the

establishment of open chromatin [136, 142–148].

1.2 Assays for measuring open chromatin

The ability to determine a cell’s chromatin landscape is essential for understanding the

regulatory processes driving cellular function and identity. Open chromatin assays identify

DNA regions that are accessible to external factors (e.g. TFs, chromatin remodellers, RNA

pol II), and these regions have been shown to correspond to regulatory elements, including

promoters, enhancers, and others [26, 51, 149–151]. Regulatory element activity varies

spatially, temporally, and between cell-types to influence the binding of transcription factors

and the expression of target genes [149, 150]. Studying activity of regulatory elements promises
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to increase our understanding of the fundamental biology of gene regulation, and its influence

on human health and disease [152–160]. Measurements of open chromatin in both bulk and

single cell populations act as proxies for TF-binding signals providing further insight into

epigenetic regulation [32, 51].

1.2.1 MNase-seq

With the central role of histone proteins in regulating chromatin accessibility, MNase-seq is a

technique developed for assaying nucleosome occupancy [58, 161, 162]. MNase-seq derives its

name from the use of a non-specific micrococcal nuclease (MNase) derived from the bacteria,

Staphylococcus aureus. This nuclease has a strong preference for cleavage in non-nucleosomal

regions, thus providing a means of enrichment of accessible chromatin [58]. If a region of

DNA is bound to histones or a transcription factor, MNase is unable to bind and cleave

that region. A limitation of MNase-seq for assaying chromatin broadly is that it is primarily

focused on identifying fragments of DNA bound directly by the histones or other chromatin

binding proteins. Therefore, MNase-seq identifies regions of DNA which are transcriptionally

inaccessible, and is not directly applicable for investigating epigenetic regulation of genes

[163].

1.2.2 DNase-seq

DNase-seq uses the DNaseI enzyme to digest regions of chromatin unprotected by bound

proteins, leaving behind accessible regions that are known as DNase I hypersensitive sites

(DHSs) [164–166]. DNA regions tightly wrapped around nucleosomes or bound in higher-order

structures are effectively protected from digestion [166]. By isolating DHSs followed by high-

throughput sequencing, DNase-seq enables the whole-genome interrogation of open chromatin

and the identification of active gene regulatory elements. While all chromatin assays have

some level of bias dependent on the cleavage process employed, DNase-seq shows an increased

preference for signal at promoters, but maintains a comparatively low signal-to-noise ratio

enabling identification of all classes of regulatory elements [167, 168].

1.2.3 FAIRE-seq

FAIRE-seq was designed to provide a straight-forward method for isolating nucleosome-

deprived DNA from human chromatin [168, 169]. It relies on the use of formaldehyde

to crosslink target proteins with DNA followed by sonication or pulverization and phenol-

chloroform extraction to separate DNA that is crosslinked or not. The resulting non-crosslinked

DNA is sequenced and provides a direct measure of open chromatin. However, relative to
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competing open chromatin assays, FAIRE-seq requires higher input of cells [170]. Its reliance

on crosslinking also means that even transiently bound proteins may reduce the amount of

non-crosslinked DNA obtained [171]. FAIRE-seq also suffers from a lower signal-to-noise ratio

compared to competing approaches meaning identifying signal compared to background can

be more challenging [168]. It also tends to be biased to non-promoter regions of the genome

which can be leveraged as an advantage if distal regulatory elements are of greater interest

[167, 168, 172].

1.2.4 ATAC-seq

The most recently developed approach for assaying bulk open chromatin is ATAC-seq [170,

173, 174]. ATAC-seq dramatically improved the efficiency in cost, time (hours versus days),

and required amount of sample over previous chromatin assays [170]. ATAC-seq relies on the

activity of a hyperactive Tn5 transposase [170, 175]. This transposase is leveraged, through a

process known as tagmentation [176], to fragment the genome while simultaneously inserting

sequencing adapters [170]. This enables the determination of open chromatin sequences

without affecting the underlying chromatin structure prior to sequencing by avoiding high-

salt conditions, sonication steps, or crosslinking. An early limitation to ATAC-seq was the

presence of high amounts of mtDNA contamination, but both library preparation [174] and

computational improvements [177] have addressed this limitation.

1.2.5 scATAC-seq

Further refinements in ATAC-seq protocols have led to the ability to assay open chromatin

in single cells (scATAC-seq) [17, 178, 179]. These tools have uncovered the variability of

accessibility among cells to establish distinct molecular states and the identification of rare

cell populations [17, 18, 160, 180, 181]. Each of these methods utilizes cellular barcodes or

indexes to link the source of sequenced reads back to individual cells following the previously

established ATAC-seq assay [17, 178, 179]. The primary benefit of single cell methods

compared to the previously described bulk assays is the identification of open chromatin

in heterogeneous cell populations. This is particularly important when studying dynamic

processes such as development or responses to stimuli where multiple cell subpopulations

modulate their accessible chromatin differentially. The primary caveats to scATAC-seq

over bulk methods includes increased time, starting material, cost, and the complexity of

bioinformatic analysis.
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1.3 Assays for measuring gene expression

Measurements of open chromatin provide direct evidence for epigenetic regulation of gene

transcription. However, they are independent of direct measures of gene activity itself. Assays

for measuring RNA abundance do and by integrating the two approaches we improve our

understanding of the shared regulatory processes controlling cell identity and function.

1.3.1 RNA-seq

RNA-seq includes any method for assaying RNA abundance in large quantity using high-

throughput sequencing [182–184]. It leverages the reverse transcription of cellular RNA,

ligation of sequencing adapters, and deep sequencing of the resultant libraries. RNA-seq

can therefore measure the steady-state abundance of total RNA, mRNA, or small RNAs

including rRNA [185], miRNA [186], or tRNAs [187]. Sequenced RNA can be then be used to

describe changes in gene expression over time [188, 189], between experimental conditions

[190], or the identification of gene fusions [191] and alternative splicing events [192]. As one of

the earliest applications of next-generation high-throughput sequencing, RNA-seq represents

well-established and cost-effective protocols for assaying gene expression in cells.

1.3.2 scRNA-seq

Similar to differences between bulk and single-cell chromatin assays, bulk RNA-seq masks

individual contributions of cellular subpopulations as aggregate signals of expression [22,

193, 194]. To address limitations of bulk RNA-seq, scRNA-seq methods have undergone

rapid development and adoption [3, 4, 194–197]. With these technologies, deconvolution of

heterogeneous cell populations can be performed [198–200]. Cells’ expression profiles can be

categorized by type, spatial organization, and through stochastic differences in gene regulatory

networks across time [194, 200, 201].

1.3.3 Nascent RNA-seq

Both bulk and scRNA-seq represent steady-state levels of gene expression, even where

differences between individual cells are present. As cells are dynamic entities, response to both

internal and external stimuli is rapid and on much shorter timescales than can be captured

with non-nascent approaches. Nascent RNA sequencing methods address this limitation in

several ways. Instead of measuring a snapshot of stable mRNA accumulation and turnover,

nascent RNA sequencing directly measures transcription, the orientation of transcripts, and

can capture unstable, short-lived transcripts too [202–204]. These latter features are significant

as bidirectional transcription is captured at promoters and enhancers. Therefore, nascent



9

RNA sequencing provides an independent method to directly identify active enhancers in cells

[[205]; [206]; [207]; [208]; [79]; [209]; [210]; [211]; Wang2019].

1.4 Computational challenges of genomic and epigenomic analysis

With the rapid development of both bulk and single-cell assays for gene expression and

chromatin, corresponding computational methods have lagged the proliferation of available

data. While the more established bulk RNA-seq assays have enjoyed a robust development of

analysis techniques [212], bulk ATAC-seq has only recently experienced settled field-standard

analyses [177, 213, 214]. Conversely, with the more recent advent of single-cell RNA-seq,

nascent RNA-seq, and single-cell ATAC-seq, computational methods for standard and efficient

analysis is again an active and needed area of development [194, 215, 216].

1.4.1 Bioinformatic analysis of single-cell genomics

Single-cell genomic assays resolve limitations of bulk approaches, but suffer from increased

complexity in computational analyses. Due to the sparse and high-dimensional data from single-

cells, new techniques became necessary to properly normalize and evaluate single-cell reads.

In scRNA-seq, dropouts, or transcripts with zero reads either from biological or technological

reasons become a concern as are batch effects, increased heterogeneity, and more complex

distributions of expression [217, 218]. In scATAC-seq, data is sparse since diploid organisms

only carry two copies of DNA, and thus any measure of chromatin accessibility from a single cell

is binary [214, 216]. This sparsity is exacerbated in scATAC-seq due to there being hundreds of

thousands of possible regulatory regions compared to the relatively compact twenty thousand

genes in a scRNA-seq experiment. Therefore, scalable computational approaches that address

the size of data, data sparsity, batch effects, normalization, visualization, dimensionality-

reduction, and clustering approaches are necessary [181, 216, 218–224]. Finally, combining both

single-cell chromatin accessibility with single-cell transcriptomics can uncover the interplay

between regulatory elements, transcription factor activity, and their impact on expression [32,

216, 224, 225].

1.5 Renin cell development

With the challenges posed by renin cell rarity and intractability to in vitro methods, single-cell

omics provide the necessary tools to begin uncovering how these cells are formed and regulated.

We sought to utilize these approaches to answer the following questions. Can we identify this

rare cell population through enrichment of lineage-tracing models of renin cell progenitors?

Once identified, can we define a trajectory of early progenitor subpopulations before arriving
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at the mature renin-producing cell? What genetic and epigenetic changes occur during

this development, and can we identify TFs potentially involved in regulating any observed

epigenetic differences? Are TFs expressed at different times or in different subpopulations?

Are there accessible binding sites for putative effector TFs present in our cell population

of interest? By combining scRNA-seq and scATAC-seq, we finally have the tools to begin

answering these questions.

1.5.1 Renin cell overview

Embryonic kidney

Adult kidney

Renin cell
VSMCs
Mesangial cells
Fibroblasts
Pericytes

Angiotensin II

Angiotensinogen

Angiotensin I

ACE

Blood pressure
Extracellular volume

Homeostasis

RENIN

a b

Figure 1.2: Distribution of renin cells in development and the role of renin in
homeostatic control. (a) Renin cells line afferent arterioles during embryogenesis before
differentiating into vascular smooth muscle cells (VSMC) and mesangial cells with mature
renin-expressing cells restricted to the juxtaglomerular region in adult mammals. (b) Renin
converts angiotensinogen into angiotensin I to initiate homeostatic balance.

Renin cells are critical for survival by maintaining homeostasis through the release of the

hormone-enzyme renin in response to minute changes in blood pressure [226–228]. These

renin-producing cells are restricted in adult mammals along the walls of renal arterioles

near the entrance to the glomeruli, and are therefore known as juxtaglomerular (JG) cells

[228–230] (Fig. 1.2a). Renin release initiates a cascade that produces angiotensin II, leading

to vasoconstriction and blood pressure increase (Fig. 1.2b). Not only do renin cells play this

vital role, they are also progenitors for multiple additional cell types that retain the memory

of the renin phenotype and are able to restore this phenotype to produce renin under stress

[228, 230]. Despite the clear importance of these cells for organism health, we still do not

fully understand their development. Building off past knowledge, our goal is to define the

mechanisms that govern the identity and plasticity of renin-expressing JG cells.

Renin cell research is made difficult through a number of challenges. First, renin cells are

incredibly rare, accounting for 0.01% of the kidney cell mass [231]. Second, they are incredibly

challenging to isolate and stop producing renin after only 48 hours in culture [231]. Despite

these issues, a preponderance of evidence has grown to describe renin-cell physiology. They

are known to originate from Foxd1 positive (Foxd1+) mesenchyme cells in the kidney and are
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themselves progenitors to smooth muscle cells, pericytes, mesangial and tubular cells [230–235].

Studies in lineage-tracing mouse models, transcriptomic and epigenomic analyses have also

begun to expand our understanding of the development and control of renin-expressing cells.

1.5.2 Current knowledge of renin cell regulation

Figure 1.3: Super-enhancers (SEs) act as chromatin sensors that control the
identity and memory of renin cells to maintain homeostasis. Schematic summarizing
the main signaling pathways, and chromatin changes involved in the maintenance of juxta-
glomerular (JG) cell identity and reacquisition of the renin phenotype by smooth muscle cells
(SMCs) in response to physiological demands. Activation of the cAMP or the Notch pathways
leads to profound epigenetic changes at the renin locus regulatory region characterized by
deposition of acetylation of lysine 27 of H3 by p300, sliding of nucleosomes, and opening of
chromatin, which facilitate the access of numerous transcription factors including but not
limited to Med1 (Mediator complex 1), Creb (cAMP-responsible element binding protein)
1, and RBP-J (recombination signal binding protein for immunoglobulin kappa J region).
Loop formation is maintained by Ctcf (CCCTC-binding factor). The colored dots indicate
the presence of additional SEs throughout the genome that also regulate renin cell identity.
β-AR indicates beta adrenergic receptor; AC, adenylate cyclase; CREBP, phosphorylated
cAMP-responsive element binding protein; EP4, Prostaglandin E2 receptor 4; Gsα, activating
G-protein–coupled subunit; NICD, Notch intracellular domain; PGE2, prostaglandin E2;
PKA, protein kinase A; Pol II, RNA polymerase II; and RBP-J, recombination signal binding
protein for immunoglobulin kappa J region. Illustration credit: Ben Smith. Data derived
from Martinez et al. [228]. Included by permission from Maria Luisa S. Sequeira-Lopez and
R. Ariel Gomez. Renin Cells, the Kidney, and Hypertension. Circulation Research. Volume:
128, Issue: 7, Pages: 887-907, DOI:10.1161/CIRCRESAHA.121.318064. and the publisher,
Wolters Kluwer Health, Inc. Please contact permissions@lww.com for further information.

Major efforts to elucidate determinants of renin cell identify have uncovered a number of

important pathways and genomic regions integral to renin-expressing cells. The cAMP

pathway has been shown to stimulate renin gene transcription and subsequent release (Fig.

1.3) [236–238]. The renin gene contains a cAMP responsive element where the histone acetyl
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transferases CBP/p300 can bind to regulate renin expression [239–241]. Additionally, the

final common effector of the Notch signaling pathway, RBP-J, is necessary to maintain

renin expression and modulates the plasticity of SMCs and mesangial cells to restore renin

expression [230, 242–244]. RBP-J also regulates AKR1b7 which is co-expressed with renin

and serves as an additional marker of mature renin cells [230, 245]. Understanding the

epigenetic changes that occur to regulate the renin phenotype is ongoing. More center efforts

to uncover these changes identified a set of super-enhancers unique to renin cells [228]. The

primary super-enhancer was found just upstream of the renin gene (Ren1) and is thought to

be responsible for the restoration of renin phenotype in renin cell descendants [228]. Despite

this knowledge of renin control, we are only beginning to undercover the epigenetic changes

that occur along the differentiation trajectory of renin cells. An improved understanding of

the dynamic genetic and epigenetic changes that occur in renin differentiation is necessary to

better understand kidney pathologies and the effects of therapeutic targeting in cardiovascular

disease.

2 Analytical approaches for ATAC-seq data analysis

(modified from [213])

To identify gaps in the field of ATAC-seq data analysis, we performed a comprehensive

survey of the most accepted approaches to analysis and the tools and infrastructure available.

Based upon these findings, we realized there existed a substantial gap in easy to adopt,

well-documented, robust and reproducible pipelines for ATAC-seq analysis that we later

sought to address.

2.1 Introduction

As our understanding of gene regulation has improved, so has our awareness of the increasingly

complex chromatin landscape that governs that regulation. Assays to better evaluate this

landscape have been rapidly developed and improved, and the Assay for Transpose Accessible

Chromatin using sequencing (ATAC-seq) has become a common first step for studying gene

regulation. ATAC-seq interrogates chromatin openness, or chromatin accessibility, similar to

earlier assays such as DNase-seq, MNase-seq, or FAIRE-seq [246, 247]. These assays identify

DNA regions that are accessible to external factors, which have been shown to correspond

to regulatory elements, including promoters, enhancers, and other types of elements [26, 51,

149–151]. Activity of regulatory elements varies spatially, temporally, and among cell-types to

influence the binding of transcription factors and the expression of target genes [149, 150].
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Figure 2.1: ATAC-seq is a rapidly growing method for open chromatin analysis.
(a) Increasing prevalence of ‘ATAC-seq’ DataSets in the Gene Expression Omnibus (GEO)
(Color = Species, Gray line = fitted exponential growth model) (b) Generalized ATAC-seq
library prep protocol
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Studying activity of regulatory elements promises to increase our not only understanding the

fundamental biology of gene regulation, but also its influence on human health and disease

[152–160].

ATAC-seq has been adopted rapidly in the scientific community, with the number of studies

using ATAC-seq approaching 10,000 in just a few years (Fig. 2.1A). The primary factor driving

this adoption is efficiency, as ATAC-seq dramatically improved the efficiency in cost, time,

and required amount of sample over previous similar assays [170]. ATAC-seq relies on the

activity of a hyperactive Tn5 transposase [170, 175]. This transposase is leveraged, through a

process known as tagmentation [176], to simultaneously fragment the genome while inserting

sequencing adapters [170]. These sequences can be PCR amplified and then sequenced using

2-4 orders of magnitude fewer cells, fewer protocol steps, and less time than analogous assays

(Fig. 2.1B) [170, 248]. Protocols for ATAC-seq have improved since it was first introduced in

2013 [170, 173], for example, with improved removal of contaminating mitochondria DNA

[174, 249] and extension to single cells [17, 178, 250]. As the protocol has developed and

increased in popularity, analytical approaches have also been multiplying rapidly. Here, we

provide guidance for both novice and experienced analysts on the advantages and limitations

of ATAC-seq analysis pipelines, methods, and tools.

2.2 Fundamentals of ATAC-seq Data Analysis

A typical ATAC-seq analysis can be divided into two major components: 1) general processing

of raw sequencing reads, which produces intermediate outputs like annotated peak calls; and

2) detailed downstream analysis, which is more specific to a particular biological question

(Fig. 2.2). In general, the first step is universal to all downstream analysis types, whereas the

second step then requires more specialized software.

2.3 Alignment, adapters, and mitochondrial reads

Analysis of ATAC data typically starts by processing raw sequences through a series of

pipeline steps into outputs amenable for detailed biological questions (Fig. 2.2). A generalized

workflow includes the following: First, reads are screened for quality, then adapter sequences

are removed, and finally the reads are aligned to a reference assembly. After alignment,

many pipelines are equipped to handle high mitochondrial DNA content, because ATAC-

seq libraries are prone to high levels of mitochondrial DNA, which is typically considered

undesirable. While recent protocol adaptations have succeeded in reducing mitochondrial

DNA using optimized reagents [174, 251] or molecular biology techniques [249], many pipelines



15

Trim adapters

Align reads

Convert format

Remove mitochondrial reads

Raw read
qualityCQ

Deduplicate

Signal tracks

Call peaks
QC plots

Summary
statistics

CA
T

A
G
C
TA C

T
T
C

Motif
enrichment
Differentially
accessible
regions

Generic ATAC-seq analysis workflow

General data
processing

Project-specific
analysis

Region
enrichment

Nucleosome
positioning

Figure 2.2: ATAC-seq general workflow. Raw reads are processed through a series of
steps to produce uniform intermediate results, which can then be further analyzed with more
analysis specific to a biological research question.

address this computationally by filtering out mitochondrial sequences. These sequences are

removed through either sequential alignments to mitochondrial DNA before genomic, through

removal of mitochondrial DNA from genome-wide genomic indices, or through blacklists of

mitochondrial DNA after alignment. In our work, sequential alignment is the most accurate

and computationally efficient way to eliminate mitochondrial contaminants – and it also allows

for later analysis of mitochondrial reads [213].

2.4 Removing duplicates

Following adapter removal and alignment, pipelines remove read duplicates, although typical

computational strategies may be overzealous in this approach if using only single-end sequenc-

ing data since there is only a single end to compare. Single-end sequencing also provides

less information as it reduces the ability to identify PCR duplicates, which are typically

removed, and it lacks the ability to identify both ends preventing the identification of where

the transposase inserted. For these reasons, it is recommended to use paired-end ATAC-seq

data when possible. After alignment and duplicate removal, low-quality, multi-mapping, or

unmapped paired reads also typically get removed from downstream analyses.
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2.5 Generating signal tracks

Once reads are aligned and filtered, they are shifted to accommodate the mechanics of

transposase Tn5 activity [170, 175, 176]. When the Tn5 tranposase interacts with DNA, it

effectively occupies about 9bp of DNA and introduces the sequencing adapter at the 5’ end of

the interaction site. The Tn5 adapters are inserted in a staggered manner to the 5’ ends of

target sequence strands with a 9 bp gap between them [170, 175, 176].This means the center

of the Tn5 binding is actually 4 bp to the right of the edge of positive strand reads, or 5 bp

to the left on negative strand reads. This shifting is intended to identify the center of the

locus where Tn5 interaction occurred. An alternative approach is to account for the 9 bp size

of the transposase binding event by mapping the reads as 9 bp insertion events instead of at

nucleotide resolution. In either case, mapped reads are then transformed into signal tracks for

visualization and further data analysis.

2.6 Peak calling

As the goal of ATAC-seq is the identification of regions of accessible chromatin, and by

proxy, regulatory elements and sites of transcription factor binding, we must next identify

those regions of interest. To do this, we identify areas of the genome that are enriched for

aligned reads. These regions are identified and visualized as peaks. Calling peaks therefore

represents the identification of regions of concentrated ATAC-seq signal which indicate regions

of open chromatin. Peak calling necessitates choosing an appropriate peak-calling algorithm

or tool that balances sensitivity and specificity of called peaks. User-defined settings can

widely influence the number, width, and confidence of identified peaks [252]. Following the

identification of peaks, they are typically broadly annotated into genomic partitions including

known features such as promoters, exons, introns, or 3’ and 5’UTR among others.

Peak calling is typically the end of the general data processing pipeline that considers each

sample independently. With signal tracks and called peaks for each sample, analysts are

prepared for downstream analyses using more specialized analysis approaches that depend on

specific user-defined biological questions.

2.7 Downstream analysis

For detailed downstream analysis, the data is generally integrated across samples. These

analyses include differential accessibilty analysis, motif analysis, footprinting, and peak

enrichment analysis. Because these analyses are more specific to particular biological questions,

they are not typically performed by general-purpose ATAC-seq pipelines and must be manually
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set up for each study. Therefore, only a subset of these analyses will be relevant for a particular

analysis, which should be determined before investing significant effort in a particular tool.

We describe these analysis types in more detail in the next section.

2.8 Survey of Tools for ATAC-seq Analysis

Here, we present a survey of tools divided into classes based on their primary goal. This includes

three classes geared toward the general ATAC-seq data processing: Step-by-step analysis

guides, Raw sequence pipelines and workflows, and Quality control tools. The remaining tools

are for more detailed downstream analyses, which we sub-divided into five categories: Peak

calling, Motif enrichment and footprinting, Nucleosome positioning, Differential accessibility,

Region enrichment, and Single-cell analysis. The advantages and disadvantages of the tools

vary widely, and some are targeted for novices while others require an experienced analyst. Our

survey provides an overview of each analysis type, along with a table of some characteristics

of relevant tools, such as mode of operation, language, update frequency, and a link to more

information.

Author Title Notes Update
Yiwei Niu ATAC-seq data analysis: from FASTQ to peaks Blog style walk-

through of gener-
alized ATAC-seq
data analysis.

2019

Steve Parker BIOINF525 Lab 3.2 Minimal stan-
dard ATAC-seq
analysis walk-
through.

2016

Rockefeller Univer-
sity Bioinformatics
Resource

Analysis of ATAC-seq data in R and Bioconductor Bioconductor
ATAC-seq analy-
sis course.

2018

John M. Gaspar ATAC-seq Generalized
ATAC-seq analy-
sis walkthrough.

2019

Delisle L; Doyle M;
Heyl F

ATAC-seq data analysis Galaxy training
walkthrough
of generalized
ATAC-seq analy-
sis.

2020

Table 1: Step-by-step guides

2.8.1 Step-by-step Analysis Guides

For users who would prefer following a manual, stepwise procedure, several tutorials are

available to walk a user through ATAC-seq data analysis (Table 1). These guides are a great

starting point for an inexperienced user as they explain how each step is manipulating raw

data towards the goal of called peaks and further analyses. Users are required only to be

able to work at the command line and have experience installing prerequisites. Examples
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include either formal classes available publicly (Steve Parker, Rockefeller University), training

guides from public platforms [253], or guides from individual researchers sharing their own

experiences (e.g. Yiwei Niu and John M Gaspar). These step-by-step guides are primarily

educational tools and are not intended to be automatic, re-usable pipelines that can be easily

deployed on many samples across multiple projects; for this application, users will be more

interested in the reusable pipelines described next.

2.8.2 Raw Sequence Pipelines and Workflows

A more common need is a standardized pipeline to process raw data through fastq processing,

alignment, peak calling, and signal track generation (Fig. 2.2). A number of raw data

processing pipelines are available (Table 2). Many comprehensive pipelines now exist with

different target audiences. Some pipelines are geared toward the bench biologist with graphical

user interfaces, including both open-source (I-ATAC, GUAVA) and commercial options

(Basepair). While the GUI may simplify things for some users, these tools tend have less

documentation and also give less power to the user. The majority of raw data processing

pipelines are executable at a command line interface (CLI). Among these pipelines, there is

a wide range of possible pipeline end-points. Some pipelines are geared toward doing only

universal analysis, ending at annotated peaks to provide a starting point for more detailed

downstream analysis. Other pipelines include substantial cross-sample analysis after peak

calling. To delineate this distinction, we have categorize pipelines into two groups: entry-point

pipelines provide a series of outputs intended as the beginning of a user-controlled downstream

analysis, while end-point pipelines are intended as a complete analysis, running integrated

analysis internally.

Entry-point pipelines (AIAP, ENCODE, PEPATAC) are generally robust and reproducible to

yield consistent processing of few to many samples. This goal necessarily excludes some

downstream steps to improve efficiency, and for the fact that not all researchers may wish

to do all analyses all the time. This is particular important if those additional procedures

are not specific to the biological question being investigated. In that case, those additional

procedures come at the increased cost of time and computational resources. All three of the

entry-point pipelines include some level of shared and novel quality-control metrics to identify

quality libraries with minimal project-specific analyses included.

The majority of the pipelines are end-point oriented, with substantial downstream processing

following peak calling and signal track generation. The advantage of end-point pipelines is

that they require the least additional effort for a complete analysis. These pipelines typically
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Name Language Notes Docs Last Update Citation
AIAP Bash, R, Python Optimized analy-

sis with novel QC
metrics

++ 2019 Liu et al. (2019)

ATAC2GRNBash, Python Parameter opti-
mized ATAC-seq
pipeline

+ 2018 Pranzatelli et al. (2018)

ATAC-
pipe

Python, R “Analysis pipeline
for ATAC-seq
data including TF
footprinting, cell-
type classification,
and regulatory
network creation”

+++ 2019 Zuo et al. (2019)

ATACProcBash, Python, R Complete pipeline
with additional
downstream anal-
yses included

++ 2019 unpublished

Basepair NA Commercial.
Web-based GUI
for complete anal-
ysis

Unknown* Unknown* unpublished

CIPHER R, Perl, Python A data process-
ing platform
for ChIP-seq,
RNA-seq, MNase-
seq, DNase-seq,
ATAC-seq and
GRO-seq datasets

+ 2017 Guzman and D’Orso (2017)

ENCODE Python, Bash Complete pipeline
following EN-
CODE standards
for ATAC/DNase-
seq analysis

++ 2020 unpublished

esATAC R Complete pipeline
including down-
stream analyses

+++ 2019 Wei et al. (2018)

GUAVA Java, Python, R GUI based com-
plete ATAC-seq
pipeline

+ 2019 Divate and Cheung (2018)

I-
ATAC

Java GUI based inter-
active ATAC-seq
pipeline

+ 2017 Ahmed and Ucar (2017)

Nfcore-
atacseq

Python, R Complete pipeline
build using
Nextflow

+++ 2019 Ewels et al. (2019)

PEPATACPython, R, Perl Complete pipeline
with unique ana-
lytical approaches
and QC metrics

+++ 2019 unpublished

pyflow-
ATAC-
seq

Bash, Python ATAC-seq snake-
make pipeline
with included
nucleosome posi-
tioning and TF
footprinting

++ 2020 unpublished

snakePipes
ATAC-
seq

Python Workflow system
including, but not
limited to, ATAC-
seq analysis

+++ 2019 Bhardwajet al. (2019)

Tobias
Rausch

Bash, R, Python Complete pipeline
with emphasis on
downstream anal-
yses

++ 2020 Rausch et al. (2019)

Table 2: Raw ATAC-seq data processing pipelines
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include the ability to incorporate sample structure (case vs. control) for differential analysis

of accessible regions, transcription factor binding sites, or motifs. However, the cost of this

convenience is a lack of customizability, as the exact downstream analysis may or may not

match the requirements of a particular study, and the exact settings and assumptions must be

taken into account. Furthermore, the increased complexity of pipelines that include numerous

downstream analyses may waste analysis time and computational resources if that analysis is

irrelevant for the question under investigation.

2.8.3 Quality control

Name Languages Notes Docs Reference
ATAqC Bash; Python Generate ATAC-seq specific quality

control metrics.
+ unpublished

ATACseqQC R Provides ATAC-seq specific quality
control metrics and transcription fac-
tor footprinting.

+++ Ou et al. (2018)

ataqv C++; Bash ATAC-seq QC and visualization. +++ unpublished

Table 3: Quality control tools

Raw data processing pipelines have nearly universally adopted several standard quality control

(QC) metrics. Briefly, these include QC of the raw and aligned sequence data, the distribution

of aligned sequence fragments to confirm the presence of nucleosomes, measures of library

complexity, the fraction of reads in peaks (FRiP), and the enrichment of reads at transcription

start sites (TSS). Quality control tools are dedicated tools that provide these and more

advanced QC metrics (Table 3). Advanced metrics include the enrichment of promoter signal

relative to gene body, measures of the proportion of nucleosome free reads, and measures of

signal to noise.

2.8.4 Peak calling

Comprehensive ATAC-seq pipelines typically employ one of just a few widely adopted peak

callers, which include tools originally developed for ChIP-seq or DNase-seq experiments, such

as F-Seq [254], MACS [255], or PeaKDEck [256]. There are also other options built specifically

for ATAC-seq data, including Genrich [257] and HMMRATAC [258] (Table 4). The widely

employed peak callers developed for ChIP-seq and DNase-seq experiments offer the advantage

of years of demonstrated utility, support, and understanding of their strengths and weaknesses,

but may neglect features of ATAC-seq data such as nucleosome positioning and transposase

biases. Because ATAC-seq seeks to identify regions of open chromatin, the peak calling step

is critical, so there will likely continue to be effort dedicated to improving peak calling tools

and leveraging ATAC-specific data features to improve accuracy.
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Name Languages Notes Docs Reference
F-Seq Java Can be used as gen-

eral peak caller to
identify regions of
open chromatin.

++ Boyle et al. (2008)

Genrich C Peak caller for ge-
nomic enrichment as-
says with specific
ATAC-seq mode.

+++ unpublished

HMMRATAC Java Identify nucleosome
positioning and
leverage ATAC-seq
specific read outs to
call peaks.

+++ Tarbell and Liu (2019)

Hotspot2 C++ Identify significantly
enriched genomic re-
gions.

++ unpublished

HOMER Perl; C++ Suite of tools that in-
clude the ability to
call peaks from DNA
enrichment assays.

+++ Heinz et al. (2010)

MACS2 Python Specifically designed
for ChIP-seq but
broadly applicable
to any DNA enrich-
ment assay to call
peaks.

+++ Zhang et al. (2020)

PeaKDEck Perl Peak calling pro-
gram for DNase-seq
data.

+++ McCarthy and O’Callaghan (2014)

Table 4: Peak calling tools

2.8.5 Differential accessibility

Name Languages Notes Docs Reference
DAStk Python Identify changes in transcription

factor activity by looking at
changes in chromatin accessibility

+++ Tripodi et al. (2018)

diffTF Python; R Identifies differential transcription
factors. Can operate in basic mode
with just chromatin accessibility or
in classification mode where it inte-
grates RNA-seq.

+++ Berest et al. (2019)

Table 5: Tools to investigate differentially accessible regions

ATAC-seq peaks correspond to regions of open chromatin, which have been shown to identify

regulatory regions. One of the most common analysis is to identify differentially accessible

regions. Analagous to identifying differential expression between two sample types, differential

accessibility can demonstrate how gene regulation is goverend in different biological settings.

Typically, differential regions are identified by counting sequencing reads in individual peaks,

and then using mainstream count-based statistical tests to assess for statistical differences.

Most analysis uses popular R packages for count-based data, such as edgeR [259, 260], DESeq2

[261], or DiffBind [262]. While designed for other data types, like RNA-seq, because ATAC-seq

data is count-based, the statistical assumptions are often transferable.
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After identifying differentially accessible regions, we typically want to better understand what

factors are acting at these regions. A common follow-up is to identify which transcription

factors are also differentially active between scenarios (Table 5). To accomplish this, there are

at least two tools optimized to work with ATAC-seq data to identify differential transcription

factor activity. By incorporating chromatin accessibility information and reported transcription

factor binding sites it becomes possible to identify differential TF activity [DAStk 263, diffTF,

264]. Should an experiment also include corresponding gene expression information, its

possible to then classify differential transcription factors as activators or repressors [264].

2.8.6 Motif enrichment and TF footprinting

Name Languages Notes Docs Reference
BiFET R Identify overrepre-

sented transcription
factor footprints.

++ Youn et al. (2019)

BinDNase R Transcription factor
binding prediction
using DNase-seq.

+ Kahara and Lahdesmaki (2015)

CENTIPEDE R Transcription factor
footprinting and bind-
ing site prediction.

++ Pique-Regi et al. (2011)

DeFCoM Python Detecting transcription
factor footprints and
underlying motifs using
supervised learning.

+++ Quach and Furey (2017)

DNase2TF R Identify footprint
candidates from
DNase-seq data on
user-specified regions.

+ Sung et al. (2014)

HINT-ATAC Python Use open chromatin
data to identify tran-
scription factor foot-
prints with modifica-
tions specific to ATAC-
seq data.

+++ Li et al. (2019)

HOMER Perl; C++ A suite of tools for mo-
tif discovery and enrich-
ment.

+++ Heinz et al. (2010)

MEME Suite Perl; Python Suite of tools for motif
discovery; enrichment;
and GO term analyses.

+++ Bailey et al. (2009)

PIQ Bash; R Models genome-wide
DNase profiles to iden-
tify transcription factor
binding sites.

++ Sherwood et al. (2014)

TOBIAS Python Identify transcription
factor footprints.

++ Bentsen et al. (2019)

TRACE Python Transcription factor
footprinting.

++ Ouyang and Boyle (2019)

Wellington Python Identify TF footprints
using DNase-seq data.

+++ Piper et al. (2013)

Table 6: Motif enrichment and transcription factor footprinting tools.

Another common analysis of differentially accessible regions is de novo motif analysis, which
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is to look for an overrepresentation of transcription factor motifs in regions of interest relative

to some background set. Motif discovery is typically used in analysis of ChIP-seq data, but

is also relevant for accessible chromatin peaks with some specificity, such as for a particular

cell-type or treatment. Motif discovery has an ongoing field of study for decades, and there

are many tools to identify enriched motifs [263–267]. Tools initially designed for ChIP-seq or

DNase-seq experiments have been widely applied to ATAC-seq data as well [MEME Suite,

266, HOMER, 267]. There are now dozens or hundreds of individual motif-finding tools [268].

A related approach called footprinting explores the microarchitecture of reads within peaks

to identify physical evidence of bound transcription factors that decrease the accessibility at

small binding sites (typically under 20 bp) within an overall area of higher accessibility (Table

6) [269]. Following the introduction and rapid adoption of DNase-seq, the number of tools to

perform TF footprinting rapidly expanded. A number of these were designed for DNase-seq,

but have often been employed using ATAC-seq data successfully [CENTIPEDE, [270]; PIQ,

[147]; DNase2TF, [271]; BinDNase, [272]; Wellington, [273]; [274]; TRACE, Ouyang2019]. One

advantage of usingtools designed for DNase-seq simply lies in their track record of robustness

and widely demonstrated utility, even when applied to ATAC-seq data. Yet, there are unique

features of ATAC-seq data including nucleosome positioning information and transposase

cleavage biases that can be used to inform on TF footprinting. Newer tools either have specific

settings to work with ATAC-seq data or were designed specifically for ATAC-seq and may be

more appropriate going forward [DeFCoM, 275, TOBIAS, 276, HINT-ATAC, 277, BiFET,

278].

2.8.7 Nucleosome positioning

Name Languages Notes Docs Reference
HMMRATAC Java Identify nucleosome positioning

and leverage ATAC-seq specific
read outs to call peaks.

+++ Tarbell and Liu (2019)

NucleoATAC Python; R Call nucleosomes using ATAC-
seq data.

+++ Schep et al. (2015)

NucTools Perl; R Calculate nucleosome occu-
pancy profiles on chromatin
accessibility data.

+++ Vainshtein et al. (2017)

Table 7: Tools to investigate nucleosome positioning.

Nucleosome positioning is crucial in a number of DNA regulatory processes, particularly gene

expression, and may be directly interrogated using ATAC-seq data [55, 279, 280]. ATAC-

seq is designed to assay regions of open chromatin; in other words, to identify regions not

currently packaged into nucleosomes. As a consequence of this, sequenced fragment lengths

and alignments occur in structured patterns that inform on the presence and positioning
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Name Languages Notes Docs Reference
Annotatr R Annotate summarize

and visualize genomic
regions.

+++ Cavalcante and Sartor (2017)

BART/BARTweb Python Predict factors that
bind at cis-regulatory
regions.

+++ Wang et al. (2018)

chipenrich R Perform gene set enrich-
ment testing using ge-
nomic regions.

+++ Welch et al. (2014)

coloc-stats Python Perform co-localization
analysis of genomic re-
gions.

+++ Simovski et al. (2018)

COLO JSP Identify genomic fea-
tures in close proxim-
ity to user-submitted ge-
nomic regions.

++ Kim et al. (2015)

FEATnotator Perl; R Annotate genomic re-
gions.

++ Podicheti and Mockaitis (2015)

GenomeRunner .NET Perform annotation and
enrichment of genomic
regions against default
or custom regulatory re-
gions.

++ Dozmorov et al. (2016)

GenometriCorr R Determine spatial cor-
relation between region
sets.

++ Favorov et al. (2012)

Genomic Associa-
tion Tester

Python Calculate the signifi-
cance of overlaps be-
tween multiple genomic
region sets.

+++ Heger et al. (2013)

GIGGLE C Genomics search engine
to uncover signifcantly
shared genomic loci (re-
gions) between data.

+++ Layer et al. (2018)

GLANET Java; Perl Genomic loci annotation
and enrichment tool be-
tween sets of genomic re-
gions.

+++ Otlu et al. (2017)

GREAT C Annotate genomic re-
gions.

+++ McLean et al. (2010)

LOLA/LOLAweb R Determine significant en-
richment between region
sets to inform on biolog-
ical meaning.

+++ Sheffield and Bock (2016)

regioneR R Evaluate significant as-
sociations between re-
gion sets using permuta-
tion testing.

+++ Gel et al. (2016)

StereoGene C++; R Estimate genome-wide
correlation between
pairs of genomic fea-
tures.

++ Stavrovskaya et al. (2017)

Table 8: Tools to investigate region enrichments

of nucleosomes (Table 7). Essentially, short ATAC-seq fragments represent nucleosome-free

regions, and longer fragments represent nucleosome-associated DNA [170]. The earliest tool

[NucleoATAC, 280] reports the position and occupancy of nucleosomes. Building on the fact

that this information is inherent to ATAC-seq data, later tools extend the biological information
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that can be obtained from a more thorough understanding of nucleosome positioning. The use

of nucleosome positioning information may now be easily compared between sample conditions

which ultimately allows for concurrent identification of transcription factor binding sites

alongside additional epigenetic marks [NucTools, 281]. Furthermore, this information may be

leveraged to improve peak calling by incorporating nucleosome positioning and enrichment to

more accurately predict true positive open chromatin [HMMRATAC, 258].

2.8.8 Region enrichment

A widely successful analysis type for gene expression data is gene ontology analysis or

gene set enrichment analyses, which can be extended to region-based enrichments. In this

context, instead of genes as the units of interest, the analysis is done on non-coding regions

corresponding to regulatory elements. As chromatin accessibility has increased, so has interest

in assigning biological meaning to non-coding loci. Region set enrichment analyses are one

approach to this problem. Generally, these tools compare a set of regions of interest (i.e.,

called peaks) to regions with known biological function. The tools then assess similarity to

determine whether there are significant enrichments of overlap between the region sets. This

approach can function by identifying significantly enriched GO terms [GREAT, 282], and/or

by comparing any previously annotated region set with your unknown peak set [regioneR, 283,

LOLA, 284, annotatr, 285, GIGGLE, 286]. Therefore, to assign more meaningful biological

relationships to annotated ATAC-seq peaks, one can investigate what specific biological

features are correlated or enriched in your peak set (Table 8). These tools and other related

tools have been reviewed elsewhere in detail [287, 288].

2.8.9 Single-cell

Although single-cell ATAC-seq (scATAC-seq) is only a few years old [17, 178], the number

of available analysis tools has proliferated rapidly (Table 9). A primary challenge to any

single-cell sequencing assay is the sparsity of data. For that reason, modifications to general

ATAC-seq data processing are necessary. Tools specific to single-cell ATAC-seq analysis

include both raw processing pipelines [CellRanger ATAC; BROCKMAN, 289, Scasat, 221,

SnapATAC, 290, scATAC-pro, 291] as well as downstream analysis tools, particularly for

clustering individual cells into separate cell-type populations [BAP, 179, scABC, 292, SCALE,

293] and identifying transcription factor accessibility [SCRAT, 294, chromVAR, 295, Cicero,

220, cisTopic, 296, scOpen, 297]. Single-cell ATAC-seq analysis is a rapidly changing area,

with many of these tools published only within the past year.
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Name Languages Notes Docs Reference
BAP R; Python Bead-based scATAC-seq data pro-

cessing.
++ Lareau et al. (2019)

BROCKMANR; Bash; Ruby Convert genomics data into K-mer
words associated with chromatin
marks used to compare and iden-
tify changes across samples.

++ de Boer and Regev (2018)

Cell
Ranger
ATAC

NA Commercial. Set of analysis
pipelines for Chromium single cell
ATAC-seq.

+++ unpublished

chromVARR Identify transcription factor accessi-
bility in single-cell data. Enables
clustering of single-cell ATAC-seq
data.

+++ Schep et al. (2017)

Cicero R Predict cis-regulatory DNA interac-
tions using single-cell chromatin ac-
cessibility data.

+++ Pliner et al. (2018)

cisTopic R Identify cell states and cis-regulatory
topics from single-cell data.

+++ Bravo Gonzalez-Blas et al.(2019)

scABC R Classify single-cell ATAC using un-
supervised clustering and identify
chromatin regions specific to cell
identity.

+ Zamanighomi et al. (2018)

SCALE Python Clustering and visualization of
single-cell ATAC-seq data into in-
terpretable cell populations.

++ Xiong et al. (2019)

Scasat Bash; Python; R Complete pipeline to process
scATAC-seq data with simple steps.

+++ Baker et al. (2019)

scATAC-
pro

R; Python Comprehensive pipeline for single
cell ATAC-seq analysis.

+++ Yu et al. (2019)

scOpen Python Chromatin-accessibility estimation
of single-cell ATAC data.

+ Li et al. (2019)

SCRAT R Useful for studying single cell het-
erogeneity. Can identify changes
in gene sets or transcription fac-
tor binding sites. Includes GUI and
web-based service.

+++ Ji et al. (2017)

SnapATACR; Python Single Nucleus Analysis Pipeline for
ATAC-seq.

+++ Fang et al.(2019)

Table 9: Tools for single cell ATAC-seq data processing
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2.9 Conclusion

Chromatin accessibility analysis is becoming increasingly relevant for a range of biological

research areas. As scientists realize the richness of chromatin accessibility data, new analytical

approaches and tools are being developed. At the same time, chromatin accessibility analysis

is now approachable by individuals with a wider range of perspective and experience. This

has led to a wide increase in biological results, tools, and analytical approaches.

In our survey of ATAC-seq analysis tools, we identified more than 50 tools employed specifically

for ATAC-seq data analysis. In assessing this diverse range of tools, we have found it useful

to categorize them by primary aim. Because the diversity and number of available tools

and approaches is likely to only increase as ATAC-seq analysis becomes mainstream, we

believe it will be important to continue to revisit such tool surveys as the field develops.

These summaries provide novices with a basic understanding and starting point, and also

give experienced analysts a reference resource to provide ideas for more detailed analysis.

3 PEPPRO: quality control and processing of nascent

RNA profiling data (modified from [215])

Following our survey of ATAC-seq analytical tools, we also discovered a dearth of pipelines

for processing the emerging field of nascent RNA sequencing. While tools existed to analyze

processed data, no unified approach existed to generate the input required for those approaches.

Nor were there any standard metrics of nascent RNA-seq quality control or measures of

successful nascent sequencing preparations. I was motivated to address these weaknesses by

developing a nascent RNA-seq pipeline with novel metrics of sequencing success.

3.1 Background

Steady-state transcription levels are commonly measured by RNA-seq, but there are many

advantages to quantifying nascent RNA transcripts: First, it measures the transcription process

directly, whereas steady-state mRNA levels reflect the balance of mRNA accumulation and

turnover. Second, nascent RNA profiling measures not only RNA polymerase occupancy, but

also orientation by default, whereas traditional RNA-seq requires specific library preparation

steps to capture orientation. Third, nascent RNA profiling measures unstable transcripts,

which can be used to infer regulatory element activity and identify promoters and enhancers de

novo by detecting bidirectional transcription and clustered transcription start sites (TSSs) [210,

298]. Fourth, nascent RNA profiling can be used to determine pausing and RNA polymerase
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accumulation within any genomic feature. These advantages have led to growing adoption of

global run-on (GRO-seq), precision run-on (PRO-seq), and, most recently, chromatin run-on

(ChRO-seq) experiments [202–204]. With increasing data production, we require analysis

pipelines for these data types. While tools are available for downstream analysis, such as to

identify novel transcriptional units and bidirectionally transcribed regulatory elements [211,

298–302], there is no comprehensive, unified approach to initial sample processing and quality

control.

Here, we introduce PEPPRO, an analysis pipeline for uniform initial sample processing and

novel quality control metrics. PEPPRO features include: 1) a serial alignment approach to

remove ribosomal DNA reads; 2) nascent transcription-specific quality control outputs; and 3)

a modular setup that is easily customizable, allowing modification of individual command

settings or even swapping software components by editing human-readable configuration files.

PEPPRO is compatible with the Portable Encapsulated Projects (PEP) format, which defines

a common project metadata description, facilitating interoperability [303]. PEPPRO can be

easily deployed across multiple samples either locally or via any cluster resource manager, and

we also produced a computing environment with all the command-line tools required to run

PEPPRO using either docker or singularity with the bulker multi-container environment

manager [304]. Thus, PEPPRO provides a unified, cross-platform pipeline for nascent RNA

profiling projects.

A BSample name Description Source

GSM1480327
GSM1480325
GSM1558746
GSM3309956
GSM3309957
GSM3618147
GSM3618143
GSM4214080
GSM4214081
GSM4214082
GSM4214083
GSM4214084
GSM4214085

1
2
3
4
5
6
7
8
9

10

12
13

#

K562 PRO-seq
K562 GRO-seq

HelaS3 GRO-seq
Jurkat ChRO-seq 1
Jurkat ChRO-seq 2

HEK PRO-seq
HEK ARF PRO-seq

H9 PRO-seq 1
H9 PRO-seq 2
H9 PRO-seq 3

H9 treated PRO-seq 1
H9 treated PRO-seq 2
H9 treated PRO-seq 3

high quality PRO-seq data
high quality GRO-seq data
low quality across multiple metrics
high quality ChRO-seq data
relatively low complexity
intact RNA
degraded RNA

Differential expression analysis
observed Δ pause index following treatment11

1 kb hg38
GAPDH

HEK ARF PRO-seq

HEK PRO-seq

HelaS3 GRO-seq

Jurkat ChRO-seq 1

Jurkat ChRO-seq 2

K562 GRO-seq

K562 PRO-seq

+ strand
strand

0.63
-0.21
1.05

-0.21
9.35

-0.07
11.30
-0.61
19.20

-1.59
0.33

0.52
-0.05

-0.02

Figure 3.1: PEPPRO test set data table and signal tracks. A) Table showing the attributes
of samples collected for our test set. Complete metadata is available from the PEPPRO website.
B) Read count normalized signal tracks from published data are visualized within a browser
(Scale is per 1M).

3.2 Results

3.2.1 Pipeline overview and data description

PEPPRO starts from raw, unaligned reads, and produces a variety of output formats, plots, and

quality control metrics. Briefly, pre-alignment steps include removing adapters, deduplicating,

trimming, and reverse complementation (Fig. 3.2). PEPPRO then uses a serial alignment
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Figure 3.2: PEPPRO steps for genomic run-on data. PEPPRO starts from raw sequencing
reads and produces a variety of quality control plots and processed output files for more
detailed downstream analysis.

strategy to siphon off unwanted reads from rDNA, mtDNA, and any other user-provided

decoy sequences. It aligns reads and produces signal intensity tracks as both single-nucleotide

counts files and smoothed normalized profiles for visualization. PEPPRO also provides a variety

of plots and statistics to assess several aspects of library quality, such as complexity, adapter

abundance, RNA integrity and purity, and run-on efficiency (See Methods for complete

details).

To evaluate PEPPRO on different library types, we assembled a test set of run-on libraries

with diverse characteristics (Fig. 3.1A). Our test set includes 7 previously published libraries:

2 ChRO-seq, 2 GRO-seq, and 3 PRO-seq [204, 305–307]. We ran each of these samples

through PEPPRO as a test case and visualized the data in a genome browser (Fig. 3.1B). To

demonstrate PEPPRO’s setup for differential expression analysis, we also generated paired-end

PRO-seq libraries from H9 cell culture samples either naive or treated with romidepsin, a

histone deacetylase inhibitor (HDACi). This test set therefore provides a range of qualities,

protocols, and issues, providing a good test case for demonstrating the novel quality control

features of PEPPRO and how to distinguish high-quality samples.

To demonstrate how PEPPRO responds to mRNA contamination, we also generated a set of 11

samples built from a single PRO-seq library (GSM1480327) that we spiked with increasing

amounts of RNA-seq data (GSM765405) (Additional file 1: Fig. 3.10). We ran PEPPRO on our

public test set, our differential expression test set, and our spike-in set. Results of PEPPRO

can be explored in the PEPPRO HTML-based web report, which displays all of the output
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statistics and QC plots (see PEPPRO documentation). Here, we describe each plot and statistic

produced by PEPPRO.
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are considered high quality). C-F) Insert size distributions for: C, a degraded single-end
library; D, a degraded paired-end library; E, a non-degraded single-end library; and F, a
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3.2.2 Adapter ratio

A common source of unwanted reads in PRO/GRO/ChRO-seq libraries results from adapter-

adapter ligation. These methods require two independent ligation steps to fuse distinct RNA

adapters to each end of the nascent RNA molecule. The second ligation can lead to adapter-

adapter ligation products that are amplified by PCR. The frequency of adapter-adapter

ligation can be reduced by molecular techniques (see Methods), but these are not always

possible and many experiments retain adapters in high molar excess, leading to substantial

adapter-adapter sequences.

PEPPRO counts and reports the fraction of reads that contain adapter-adapter ligation products,

then removes adapter sequences and adapter-adapter ligation sequences before downstream

alignment. In our test, all samples had fewer than 50% adapter-adapter ligation reads

(Additional file 1: Fig. 3.11). Higher rates do not necessarily reflect lower quality samples, but

rather indicate a suboptimal ratio of adapters during the library preparation or exclusion of

the gel extraction size selection step. Excess adapters indicate that future sequencing will be

less informative, leading to increased depth requirements, and therefore inform on whether to
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sequence a library deeper, tweak the adapter ratio in future samples, or include a size selection

step. In our hands, we aim for adapter-adapter ligation abundance between 20-50% with no

size selection step, or less than 5% if the final library is polyacrylamide gel electrophoresis

(PAGE) purified. Libraries with no adapter-adapter ligation indicate that size selection was

too stringent, and may actively select against short RNA insertions from specific classes of

nascent RNA, such as RNAs from promoter-proximal paused polymerases [308].
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3.2.3 RNA integrity

A common indicator of RNA sample quality is the level of RNA integrity. RNA integrity can

be assessed by plotting the distribution of RNA insert sizes, which will be smaller when RNA

is degraded. For a highly degraded library, we expect insert sizes below 20 nucleotides, which

corresponds to the length of RNA between the RNA polymerase exit channel and 3′ RNA end.

These nucleotides are sterically protected from degradation [309], so high frequency of insert

sizes below 20 indicates that degradation occurred after the run-on step [204] (Fig. 3.3A).

PEPPRO uses a novel method to calculate the insert size distribution that applies to both

single- and paired-end data (see Methods). PEPPRO reports the ratio of insert sizes from 10-20

nucleotides versus 30-40 nucleotides, which measures RNA integrity because more degraded

libraries have higher frequency of reads of length 10-20, whereas less degraded libraries have

more reads of length 30-40. Using our test set, we found that PRO-seq libraries with a ratio

< 1 should be considered high quality (Fig. 3.3B). A single-end ChRO-seq library that was

intentionally degraded with RNase prior to the run on step [204] has a degradation ratio

near 1 with a insertion distribution plot showing a peak at 20 nucleotides (Fig. 3.3C). A

poor quality paired-end PRO-seq library contains many RNA species falling within the 10-20
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Figure 3.5: Nascent RNA purity is assessed with the exon-intron ratio. A) Schematic
demonstrating mRNA contamination calculation. X represents the exclusion of the first exon
in the calculation. B) Median mRNA contamination metric for test set samples (Shaded
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range (Fig. 3.3D). High-quality libraries show plots that peak outside of the sub-20-nucleotide

degradation zone (Fig. 3.3E, F).

3.2.4 Library complexity

Library complexity measures the uniqueness of molecules in a sequencing library (Fig. 3.4A).

For conventional RNA-seq, shearing is random, so paired-end reads with the same start and

end coordinates may be assumed to be PCR duplicates. In contrast, in PRO-seq, transcription

start sites account for many of the 5′ RNA ends, and promoter proximal pause sites can

focus the 3′ end of the RNA [203], so independent insertions with the same end points are

not necessarily PCR duplicates. As a result, unfortunately, this means it is not possible to

calculate complexity generally.

Recent PRO-seq protocols resolve this by incorporating a unique molecular identifier (UMI)

into the 3′ adapter, which PEPPRO uses to distinguish between PCR duplicates and independent

RNA molecules with identical ends. For data that includes UMIs, PEPPRO accommodates

multiple software packages for read deduplication, including seqkit [310] and fqdedup [311].

PEPPRO calculates library complexity at the current depth, reporting the percentage of PCR

duplicates. In our test samples, we found that libraries with at least 75% of reads unique
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at a sequencing depth of 10 million can be considered high quality (Fig. 3.4C). PEPPRO also

invokes preseq [312] to project the unique fraction of the library if sequenced at higher depth

(Fig. 3.4B). These metrics provide a direct measure of library complexity and allow the user

to determine value of additional sequencing. However, because nascent RNA reads cannot

be effectively deduplicated using the standard approach applied to traditional RNA-seq,

complexity metrics are only calculated for samples with UMIs.
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Figure 3.6: Run-on efficiency is measured with pause indices. A) Schematic demon-
strating pause index calculation. B) Pause index values for Drosophila melanogaster GRO-seq
libraries with (GSM577247) or without sarkosyl (GSM577248). C) The histogram of pause
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3.2.5 Nascent RNA purity

One challenge specific to nascent RNA sequencing is ensuring that the library targets nascent

RNA specifically, which requires eliminating the more abundant processed rRNA, tRNA,

and mRNA transcripts. Early run-on protocols included 3 successive affinity purifications,

resulting in 10,000-fold enrichment over mRNA and over 98% purity of nascent RNA [202, 203].

Newer run-on protocols recommend fewer affinity purifications [307]. Therefore, assessing the

efficiency of nascent enrichment is a useful quality control output.

To estimate the nascent purity of RNA, PEPPRO provides two results: an mRNA contamination

metric and a rDNA alignment rate. First, PEPPRO assesses nascent RNA purity by calculating

the exon to intron read density ratio (Fig. 3.5A). A nascent RNA sequencing library without

polymerase pausing would have a ratio of exon density to intron density of ≈ 1. Because
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promoter-proximal pausing inflates this ratio, PEPPRO excludes the first exon from this

calculation. In our test samples, the median exon-intron ratio is between 1.0 and 1.8 for

high quality libraries (Fig. 3.5B). Our in silico spike-in of conventional RNA-seq increases

this ratio proportionally to the level of mRNA contamination (Fig. 3.5B). This ratio varies

substantially among genes and PEPPRO produces histograms to compare in more detail among

samples (Fig. 3.5C-F). By comparing these values to the spike-in experiment, we can estimate

the level of mRNA contamination of a library (Fig. 3.5E, F). A second measure of nascent

purity is to evaluate relative rRNA abundance.

Since rRNA represents the vast majority of stable RNA species in a cell, overrepresentation

of rRNA reads indicates poor nascent RNA enrichment. We find that high-quality nascent

RNA libraries typically have less than 20% rRNA alignment (Additional file 1: Fig. 3.12). In

contrast, between 70% and 80% of mature RNA in a cell is rRNA. Therefore, the ratio of

rRNA aligned reads compared to the all other reads reflects mature RNA contamination. To

demonstrate, we calculated the correlation between the exon-intron read density ratio and the

rRNA-to-aligned-reads ratio using the primary set of test samples with additional samples

(GSE126919) to increase power. We found these two measures are significantly correlated

(Additional file 1: Fig. 3.13). Exon-intron read density ratio is a more robust measure of

nascent RNA purity, as the fraction of nascent rRNA transcription is likely to be distinct

among cell lines. However, PEPPRO still reports the rDNA alignment ratio as an orthogonal

measure of nascent RNA purity and overall library quality.

3.2.6 Run-on efficiency

Another quality metric for run-on experiments is run-on efficiency. Typically, gene-body

polymerases extend efficiently during the nuclear run-on step, but promoter-proximal paused

polymerases require either high salt or detergent to do so [313, 314]. Because these treatments

vary, leading to varying run-on efficiency, PEPPRO employs two methods to assess run-on

efficiency: pause index and TSS enrichment. First, we define the pause index as the ratio of

the density of reads in the pausing region versus the density in the corresponding gene body

(Fig. 3.6A; see Methods). PEPPRO plots the frequency distribution of the pause index across

genes. A greater pause index indicates a more efficient run-on, as a higher value indicates

that paused polymerases efficiently incorporate the modified NTPs. As test of this metric,

we analyzed GRO-seq data that was generated in the presence and absence of the anionic

detergent Sarkysol [314]. Paused polymerases necessitate detergent to run on and incorporate

NTPs efficiently, thus the pause index drops substantially in the absence of Sarkysol (Fig.

3.6B,C). We found in our test samples that an efficient run-on process has a median pause
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index greater than 10 (Fig. 3.6D). For more detail, PEPPRO produces frequency distribution

plots that show an exponential distribution among genes for an efficient library (or a normal

distribution on a log scale, Fig. 3.6E) and a shifted distribution for an inefficient run-on (Fig.

3.6F).

As a second assessment of run-on efficiency, PEPPRO aggregates sequencing reads at TSSs

to plot and calculate a TSS enrichment score. PEPPRO plots aggregated reads 2000 bases

upstream and downstream of a reference set of TSSs. The normalized TSS enrichment score is

calculated by taking the average base coverage in a 100 bp window around the peak divided by

the average coverage in the first 200 bases. Efficient TSS plots show a characteristic PRO-seq

pattern with an upstream peak for divergently transcribing polymerases and a prominent

peak representing canonical paused polymerases (Additional file 1: Fig. 3.14). PEPPRO also

summarizes these values across samples.
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3.2.7 Read feature distributions

PEPPRO also produces plots to visualize the fraction of reads in features, or FRiF. The

cumulative FRiF (cFRiF) plot provides an information-dense look into the genomic distribution

of reads relative to genomic features. This analysis is a generalization of the more common

fraction of reads in peaks (FRiP) plots produced for other data types [315] with two key

differences: First, it shows how the reads are distributed among different features, not just

peaks; and second, it uses a cumulative distribution to visualize how quickly the final read

count is accumulated in features of a given type. To calculate the FRiF, PEPPRO overlaps each

read with a feature set of genomic annotations, including: enhancers, promoters, promoter

flanking regions, 5′ UTR, 3′ UTR, exons, and introns (Fig. 3.7). The individual feature

elements are then sorted by read count, and for each feature, we traverse the sorted list and

calculate the cumulative sum of reads found in that feature divided by the total number

of aligned reads. We plot the read fraction against the log10 transformed cumulative size

of all loci for each feature. This allows the identification of features that are enriched for

reads with fewer total features and total genomic space. Additionally, PEPPRO calculates

the non-cumulative FRiF by taking the log10 of the number of observed bases covered in

each feature over the number of expected bases in each feature to identify enriched genomic

features (Fig. 3.7).

In our test samples, high-quality libraries have a characteristic pattern with slow accumulation

but high total of reads in introns, and fast accumulation but lower total of reads in promoter

elements. ChRO-seq libraries have an increased promoter emphasis and higher mRNA

contamination indicated by an increase in reads in promoters and exons at the cost of reads

in introns and promoter flanking regions (Additional file 1: Fig. 3.15). Additionally, the

RNA-seq spike-in samples demonstrate the increasing prevalence of exonic reads and 3′ UTR

at the cost of intronic sequences (Additional file 1: Fig. 3.16). These plots are therefore a

useful general-purpose quality control tool that reveal substantial information about a sample

in a concise visualization.

3.2.8 Differential expression

The focus of PEPPRO is in the pre-processing relevant for any type of biological project. The

output of PEPPRO sets the stage for downstream analysis specific to a particular biological

question. Perhaps the most common downstream application of nascent transcription data is

differential expression analysis. PEPPRO allows the user to easily run a differential comparison

using dedicated software like the DESeq2 bioconductor package [261]. To demonstrate this,
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we included PRO-seq libraries from H9 human cutaneous T-cell lymphoma cell lines treated

with either DMSO (n=3) or an HDAC inhibitor (n=3).

To facilitate differential expression analysis, PEPPRO produces a project-level counts table

that may be loaded in R using pepr, and, in a few lines of code, converted quickly into

DEseq data sets ready for downstream DESeq analyses (See Additional file 1: R code to

generate a gene counts table). Using this approach, we ran a differential expression analysis

comparing romidepsin-treated against untreated samples (Fig. 3.8A). We identified many

genes with significantly different read coverage. As an example, the PTPN7 gene showed

clear differences in counts (Fig. 3.8B), which we can further visualize using the browser track

outputs generated by PEPPRO (Fig. 3.8C). This analysis demonstrates how simple it is to ask

a downstream biological question starting from the output produced by PEPPRO.

< 1Degradation ratio

mRNA contamination
Pause index > 10

1 - 1.8

Metric Recommended value

rDNA alignment rate < 20%

< 5%% uniformative adapter reads (PAGE)

> 75%% unique at 10M reads

% uniformative adapter reads (w/o PAGE) 20 - 50%

Figure 3.9: Recommendation table. Based on our experience processing both high-
and low-quality nascent RNA libraries, these are our recommended values for high-quality
PRO-seq libraries.

3.2.9 Metric robustness

To evaluate the robustness of our metrics across sequencing depth and library complexity, we

ran PEPPRO on subsampled single-end and paired-end with UMI PRO-seq libraries (Additional

file 1: Fig. 3.17, Fig. 3.18). Our metrics remained constant across sequencing depth from

as few as 10M reads to well over 100M (Additional file 1: Fig. 3.19, Fig. 3.20). We also

generated synthetic low complexity paired-end with UMI PRO-seq libraries and our metrics

remain robust to reductions in library complexity (Additional file 1: Fig. 3.21).

Because our metrics are based on specific source annotation files, we also investigated the

effect of alternative annotation source files. To illustrate, we recalculated exon:intron density

ratios and pause indicies using UCSC RefSeq, Ensembl, and GENCODE gene set annotation

files. While specific values per sample may have minor changes, as would be expected, the

relationship between samples is consistent (Additional file 1: Fig. 3.22).
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3.3 Conclusions

PEPPRO is an efficient, user-friendly PRO/GRO/ChRO-seq pipeline that produces novel,

integral quality control plots and signal tracks that provide a comprehensive starting point

for further downstream analysis. The included quality control metrics inform on library

complexity, RNA integrity, nascent RNA purity, and run-on efficiency with theoretical and

empirical recommended values (Fig. 3.9). PEPPRO is uniquely flexible, allowing pipeline users

to serially align to multiple genomes, to select from multiple bioinformatic tools, and providing

a convenient configurable interface so a user can adjust parameters for individual pipeline tasks.

Furthermore, PEPPRO reads projects in PEP format, a standardized, well-described project

definition format, providing an interface with Python and R APIs to simplify downstream

analysis.

PEPPRO is easily deployable on any compute infrastructure, from a laptop to a compute cluster.

It is thereby inherently expandable from single to multi-sample analyses with both group

level and individual sample level quality control reporting. By design, PEPPRO enables simple

restarts at any step in the process should the pipeline be interrupted. At multiple steps within

the pipeline, different software options exist creating a swappable pipeline flow path with

individual steps adaptable to future changes in the field. PEPPRO is a rapid, flexible, and

portable PRO/GRO/ChRO-seq project analysis pipeline providing a standardized foundation

for more advanced inquiries.

3.4 Availability of data and materials

Documentation on the Portable Encapsulated Project (PEP) standard may be found at

pep.databio.org. Refgenie documentation and pre-built reference genomes are available

at refgenie.databio.org. The PEPPRO documentation, including links to an HTML report

for the test samples, is hosted at peppro.databio.org, and source code is available at

github.com/databio/peppro and archived under DOI 10.5281/zenodo.4542304 [316].

Primary analyses data were downloaded from GEO accession numbers GSM1480327 [305],

GSM1480325 [305], GSM1558746 [306], GSM3309956, GSM3309957 [204], GSM3618147,

GSM3618143 [307], GSM4214080, GSM4214081, GSM4214082, GSM4214083, GSM4214084,

GSM4214085 [317]. The sarkosyl analysis used data downloaded from GEO accession numbers

GSM577247 and GSM577248 [314]. Data for the RNA-seq spike-in analysis was downloaded

from GEO accession numbers GSM1480327 [305] and GSM765405 [318]. Additional data for

the rDNA to mRNA contamination correlation analysis was downloaded from GEO accession

GSE126919 [307].

https://pep.databio.org/
https://refgenie.databio.org
http://peppro.databio.org
http://github.com/databio/peppro/
https://doi.org/10.5281/zenodo.4542304
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3.5 Methods

3.5.1 Pipeline implementation

The PEPPRO pipeline is a python script (peppro.py) runnable from the command-line. PEPPRO

provides restartability, file integrity protection, logging, monitoring, and other features.

Individual pipeline settings can be configured using a pipeline configuration file (peppro.yaml),

which enables a user to specify absolute or relative paths to installed software and parameterize

alignment and filtering software tools. Required software includes several Python packages

(cutadapt[319], looper, numpy[320], pandas[321], pararead, pypiper, and refgenie[322]) and

R packages (installed via the included PEPPROr R package) in addition to some common

bioinformatics tools including bedtools [323], bigWigCat [324], bowtie2 [325], fastq-pair

[326], flash [327], picard, preseq [312], seqkit [310], samtools [328], seqtk, and wigToBigWig

[324]. This configuration file will work out-of-the-box for research environments that include

required software in the shell PATH, but may be configured to fit any computing environment

and is adaptable to project-specific parameterization needs.

3.5.2 Refgenie reference assembly resources

Several PEPPRO steps require generic reference genome assembly files, such as sequence indexes

and annotation files. For example, alignment with bowtie2 requires bowtie2 indexes, and

feature annotation to calculate fraction of reads in features requires a feature annotation.

To simplify and standardize these assembly resources, PEPPRO uses refgenie. Refgenie is a

reference genome assembly asset manager that streamlines downloading, building, and using

data files related to reference genomes [322]. Refgenie includes recipes for building genome

indexes and genome assets as well as downloads of pre-indexed genomes and assets for common

assemblies. Refgenie enables easy generation of new standard reference genomes as needed.

For a complete analysis, PEPPRO requires a number of refgenie managed assets. Those assets

as defined by refgenie are: fasta, bowtie2_index, ensembl_gtf, ensembl_rb, refgene_anno,

and feat_annotation. If building these assets manually, they separately require a genome

fasta file, a gene set annotation file from RefGene, an Ensembl gene set annotation file in

GTF format, and an Ensembl regulatory build annotation file. Finally, using PEPPRO with

seqOutBias requires the additional refgenie tallymer_index asset of the same read length as

the data.

http://looper.databio.org/en/latest/
http://pararead.databio.org/en/latest/
http://pypiper.databio.org/en/latest/
http://broadinstitute.github.io/picard
https://github.com/lh3/seqtk
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3.5.3 Adapter-adapter ligation product abundance

Adapter-adapter ligation products show up in run-on libraries because there are two inde-

pendent ligation steps. Sequencing these products is uninformative, and so there are several

molecular approaches used to reduce their abundance in a sequencing library. All protocols

include an inverted dT on the 3′ end of the 3′ adapter, and also do not phosphorylate the 5′

end of the 5′ adapter. Many protocols include a size-selection gel extraction step to purify

the library from a prominent adapter-adapter ligation species.

PEPPRO calculates adapter-adapter ligation products directly from cutadapt output, and the

default -m value for this step is the length of the UMI plus two nucleotides. Therefore, if

RNA insertions fewer than three nucleotides in length are present in the library, these are

treated as adapter-adapter ligation products.

3.5.4 RNA insert size distribution and degradation

For both single and paired end data, the RNA insert size distribution is calculated prior to

alignment. For single end data, the calculation is derived only from sequences that contain

adapter sequence, which is output directly from cutadapt [319]. PEPPRO plots the inverse

cutadapt report fragment lengths against the cutadapt fragment counts. If there is a known

UMI, based on user input, that length is subtracted from reported cutadapt fragment lengths.

As a consequence of this distribution, we can establish a measure of library integrity by

evaluating the sum of fragments between 10-20 bases versus the sum of fragments between

30-40 bases in length. The higher this degradation ratio, the more degraded the library.

Paired end sequencing files often have shorter reads because a standard 75 base sequencing

cartridge can be used for two paired end reads that are each 38 nucleotides in length. Therefore,

many fewer of the reads derived from either end of the molecule extend into the adapter

sequence. To address this issue, we incorporate a step that fuses overlapping reads using

flash[327]. Therefore, if two paired end reads contain overlapping sequence, the reads are

combined and the insert size is calculated directly from the fused reads and output directly

from flash. This distribution is plotted identically to the single end reads and degradation is

calculated in the same manner. This degradation ratio metric is uniform between single-end

or paired-end libraries and is reported prior to any alignment steps, minimizing influences

from extensive file processing or alignment eccentricities.
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3.5.5 Excluding size selection skews metrics

Recent PRO-seq protocols, including the H9 libraries we generated, exclude the PAGE

size selection step that removes adapter-adapter ligation products [307]. Size selection can

potentially bias against small RNA insertions. The previous two metrics: adapter-adapter

abundance and degradation ratio are naturally skewed toward the undesirable range if libraries

are constructed without size selection. Adapter abundance is skewed because the sole purpose

of size selection is to remove the adapter species, but these uninformative reads are of minimal

concern and can be overcome by increasing sequencing depth. Degradation ratio is skewed

higher because the size selection is not perfect and insert sizes in the range of 10-20 are

preferentially selected against relative to those in the 30-40 range. Therefore, while we provide

recommendations for optimal degradation ratios, this metric is not necessarily comparable

between library preparation protocols and a higher ratio is expected for protocols that exclude

size selection.

3.5.6 Removing UMI and reverse complementation

In a typical sequencing library, low library complexity is indicated by high levels of PCR

duplicates. Conventional methods remove independent paired-end reads that map to the

same genomic positions. This method works reasonably well for molecular genomics data sets

with random nucleic acid cleavage. However, in PRO-seq, transcription start sites account

for many of the 5′ RNA ends and polymerases pause downstream in a focused region [203].

Consequently, independent insertions with the same end points are common, especially in the

promoter-proximal region. To solve this, PRO-seq protocols incorporate a unique molecular

identifier (UMI) into the 3′ adapter to distinguish between PCR duplicates and independent

insertions with shared ends. PEPPRO removes PCR duplicates only if UMIs are provided.

Following the removal of PCR duplicates, the UMI is trimmed. For run-on experiments

where the sequencing primer sequences the 3′ end of the original RNA molecule, reverse

complementation is performed. As only the first read contains a UMI in paired-end experiments,

the second reads skip UMI trimming. Both steps are performed using either seqtk (https:

//github.com/lh3/seqtk) or fastx (https://github.com/agordon/fastx_toolkit), depending

on user preference. Because reads are processed uniquely for first and second reads in a

paired-end experiment, reads must be re-paired prior to alignment. PEPPRO uses the optimized

implementation fastq-pair [326] to re-pair desynchronized read files.

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
https://github.com/agordon/fastx_toolkit
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3.5.7 Serial alignments

Following re-pairing, or starting from processed single-end reads, PEPPRO performs a series

of preliminary, serial alignments (prealignments) before aligning to the primary reference

using bowtie2 [325]. As a significant portion of nascent transcription includes rDNA, PEPPRO

defaults to initially aligning all reads to the human rDNA sequence. Not only does this remove

rDNA reads from downstream analysis, it improves computational efficiency by aligning the

largest read pool to a small genome and reduces that read pool for subsequent steps. The user

can specify any number of additional genomes to align to prior to primary alignment, which

may be used for species contamination, dual-species experiments, repeat model alignments,

decoy contamination, or spike-in controls. For serial alignments, bowtie2 is run with the

following parameters -k 1 -D 20 -R 3 -N 1 -L 20 -i S,1,0.50, where we are interested

primarily in quickly identifying and removing any reads that have a valid alignment to the

serial alignment genome (-k 1 parameter). These settings are easily adjusted in the pipeline

configuration file (peppro.yaml).

Subsequent to these serial alignments, remaining reads are aligned to the primary genome.

Primary genome alignment uses the bowtie2 --very-sensitive option by default and sets

the maximum paired-end fragment length to 2000. The goal with primary alignment is to

identify the best valid alignment for reads, sacrificing speed for accuracy. Following primary

alignment, low-quality reads are removed using samtools view -q 10. As with the initial

prealignments, these parameters can be customized by the user in the pipeline configuration

file (peppro.yaml). Alignment statistics (number of aligned reads and alignment rate) for all

serial alignments and primary alignments are reported. For the primary alignment, PEPPRO

also reports the number of mapped reads, the number removed for quality control, the total

efficiency of alignment (aligned reads out of total raw reads), and the read depth. Prior to

further downstream analysis, paired-end reads are split into separate read alignment files and

only the first read is retained for downstream processing. For both paired-end and single-end

experiments, this aligned read file is split by strand with both plus and minus strand aligned

files further processed.

3.5.8 Processed signal tracks

Following read processing, alignment, strand separation, and quality control reporting, aligned

reads are efficiently converted into strand-specific bigWig files by default. For PRO-seq and

similar protocols, reads are reported from the 3′ end and may optionally be scaled by total

reads. PEPPRO may alternatively use seqOutBias [311] to correct enzymatic sequence bias.



43

Bias is corrected by taking the ratio of genome-wide observed read counts to the expected

sequence based counts for each k-mer [311]. K-mer counts take into account mappability at a

given read length using Genome Tools’ Tallymer program [329]. Correcting for enzymatic

bias can be important as bias from T4 RNA Ligase used in PRO-seq protocols can yield

erroneous conclusions [311]. As such, we recommend using seqOutBias for bias correction

when analyzing a typical PRO-seq library. Bias correction is especially important when

plotting composite profiles over sequence features. Strand specific bigWigs may be visually

analyzed using genomic visualization tools and provide a unified starting point for downstream

analyses. For example, output bigWig files can be directly loaded into dREG to identify

regulatory elements defined by bidirectional transcription [298].

3.5.9 Exon-intron ratio plots

PEPPRO provides an mRNA contamination histogram for quick visual quality control, and a

BED format file containing gene by gene exon:intron ratios for detailed analysis. To calculate

this metric, PEPPRO utilizes annotation files derived from UCSC RefSeq gene files. Because

promoter-proximal pausing inflates these ratios, PEPPRO excludes the first exon from the

calculation. Otherwise, the reads per kilobase per million mapped reads (RPKM) is calculated

for all exonic and intronic sequences on a gene by gene basis. Then, the ratio of exon RPKM

to intron RPKM is determined for every gene. The overall measure, the mRNA contamination

metric, is the median of all genic exon:intron density ratios.

3.5.10 Pause index

Pause indices are calculated as the ratio of read density in the promoter proximal region

versus read density in the gene body. To calculate these values, PEPPRO utilizes annotation

files derived from Ensembl gene set files. Pause indices can vary widely depending on the

defined pause window and how a pause window is determined (i.e. relative to a TSS or the

most dense window proximal to a TSS). PEPPRO defines the density within the pause region

as the single, most dense window +20-120 bp taken from all annotated TSS isoforms per gene.

This is necessary as some genes contain multiple exon 1 annotations and because this region

is where most polymerase pausing occurs, PEPPRO identifies the predominant exon 1, based

on density, and calculates the pause index using this window density. This means that for

genes with multiple TSSs, we define the pause window as the region +20-120 bases from each

identified TSS per gene. We determine the read density at every annotated pause window per

gene, and identify the predominant, singular pause window as the pause window with the

greatest density. This singular pause window is used to calculate the pause index for that gene.
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The corresponding gene body is defined as the region beginning 500 bp downstream from the

predominant TSS to the gene end. We found that lowly expressed genes represent a significant

portion of genes with a low pause index. At low sequencing depth, these lowly expressed genes

experience greater dropout and fluctuation in pause index calculation, skewing the metric

upwards at low depth. To address this, we restrict the pause index calculation to the upper

50th percentile of genes by expression, which eliminates the variability due to depth. Finally,

PEPPRO plots the distribution of pause indices for each remaining gene in a histogram and

provides a BED-formatted file containing each gene’s pause index for more detailed analyses.

3.5.11 PRO-seq experiments

H9 PRO-seq experiments were conducted as described previously [307]. The HDACi-treated

samples were incubated with 200nM romidepsin for 60 minutes prior to harvesting. The

control “untreated” samples were treated with DMSO for 60 minutes. We have included

these samples as a test to demonstrate differential expression analysis using PEPPRO. They

also provide additional example libraries for the metrics in general, and unexpectedly, show

significant differences in pause index upon treatment.

3.5.12 Synthetic experiments

Synthetic sequencing depth variant libraries were constructed for single-end and paired-

end PRO-seq libraries using either the K562 PRO-seq (GSM1480327) or H9 PRO-seq 2

(GSM4214081) as source libraries, respectively. For K562 PRO-seq subsamples, seqtk sample

-s99 was called on the raw fastq files to generate libraries between 2-10%, in 2 percent

increments, and between 10-100%, in 10 percent increments. For the H9 PRO-seq libraries,

seqtk sample -s99 was called on the raw fastq files to produce libraries between 10-100%,

in 10 percent increments. Lower percentage K562 PRO-seq libraries were generated to yield

libraries of total size comparable to low percentage H9 PRO-seq libraries.

RNA-seq spike-in libraries were also produced using the command seqtk sample -s99 on raw

fastq files using combinations of the K562 PRO-seq library utilized prior and a corresponding

K562 RNA-seq library (GSM765405). RNA-seq libraries were sampled between 10-100%,

in 10 percent increments, and concatenated with the sampled K562 PRO-seq libraries to

generate mixed libraries composed of 0-100% RNA-seq.

Low complexity libraries were similarly constructed. Thirty million total read libraries were

generated by using seqtk sample -s99 on the H9 PRO-seq 2 library and sampling at 50, 80,

90, 92, 94, 96, 98, and 100%. At each percentage of original H9 PRO-seq 2 library sample, the
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remainder represents duplicates of the original raw reads composing the opposite percentage,

producing libraries with varying levels of duplicated reads.

3.6 Supplemental

3.6.1 R code to generate a gene counts table

PEPPRO provides a project level counts table that simplifies downstream analyses. Here, we

import the PEPPRO project counts table and construct a DESeq data set in a few lines of code.

# 1. Load the PEPPRO R package.

library(PEPPROr)

# 2. Load the PEP project using the project configuration file.

prj = Project("peppro_paper.yaml")

# 3. Load the project gene counts table.

counts = read.csv(file.path(paste0(config(prj)$metadata$output_dir,

"/summary/PEPPRO_countData.csv")))

# 4. Only keep the H9 untreated or H9 HDAC inhibitor treated samples.

counts = counts[,c("geneName", "H9_PRO-seq_1", "H9_PRO-seq_2", "H9_PRO-seq_3",

"H9_treated_PRO-seq_1", "H9_treated_PRO-seq_2",

"H9_treated_PRO-seq_3")]

# 5. Convert the counts table to a matrix by removing the gene name column.

count_matrix = as.matrix(counts[,-"geneName"])

# 6. Set the rownames of the matrix object to be the gene names.

rownames(count_matrix) = counts$geneName

# 7. Create a data.frame that defines the sample information.

coldata = data.frame(condition=c(rep("untreated", 3), rep("treated", 3)))

# 8. Set the rownames of the sample information data.frame to match the counts matrix.

rownames(coldata) = colnames(count_matrix)

# 9. Load the DESeq2 package.

library("DESeq2")

# 10. Create a DESeq data set from our counts matrix and the sample information data.frame.

dds = DESeqDataSetFromMatrix(countData = count_matrix,

colData = coldata,

design = \~ condition)

3.6.2 Supplemental figures
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Figure 3.10: K562 RNA-seq spike-in signal tracks show increasing exonic coverage.
GAPDH exonic coverage is enriched as the percentage of RNA-seq reads increases, and is
visualized particularly well at exons 6 and 8. Each sample library is composed of 70M total
reads. Scale for each track is 1000 to -20.
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Figure 3.11: Percentage of uninformative adapter reads following adapter removal
for test set samples. The HEK and H9 libraries contain more adapter-adapter reads
because PAGE-mediated size selection was excluded from the protocol (Values below the
dashed line are generally recommended for PAGE-purified libraries. Shaded region represents
the recommended abundance of adapter reads for libraries without PAGE purification.)
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Figure 3.12: Ribosomal DNA alignment rates for test set samples. The HelaS3
GRO-seq sample is highly enriched for ribosomal RNA transcripts compared to other test
samples. Values below the dashed line are recommended.
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Figure 3.13: Abundance of rDNA to total reads is correlated with mature RNA
contamination. Correlation plot between the measure of mRNA contamination (median
exon:intron density) and the ratio of rDNA aligned reads to total reads for: A) all primary
samples (*excludes RNA-seq spike-in experiment due to ribosomal depletion inherent in RNA-
seq library preparation), B) primary samples excluding the known outlier HelaS3_GRO-seq
sample, C) all samples in panel B and all non-redundant samples from GSE126919 including
three cellular subclones (A, B, and C) to demonstrate possible differences due to cell lines.
Test for association determined with Pearson’s product moment correlation coefficient.
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Figure 3.19: QC metrics are not affected by sequencing depth in subsampled K562
PRO-seq. Using subsampled K562 PRO-seq data, we show how various metrics behave
across a spectrum of sequencing depths: A) Degradation ratio, B) mRNA contamination, C)
Pause index, D) the percentage of uninformative adapter reads, E) the rDNA alignment rate,
F) and the TSS enrichment scores are unaffected by sequencing depth. G) The FRiF and
cumulative FRiF is unaffected by sequencing depth. The complete K562 PRO-seq library
(100%) contains approximately 497 million reads.
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Figure 3.20: QC metrics are not affected by sequencing depth in subsampled H9
PRO-seq. Using subsampled H9 PRO-seq data, we show how various metrics behave across
a spectrum of sequencing depths: A) Degradation ratio, B) mRNA contamination, C) Pause
index, D) the percentage of uninformative adapter reads, E) the rDNA alignment rate, F) and
the TSS enrichment scores are unaffected by sequencing depth. G) Library complexity traces
plot the read count versus externally calculated deduplicated read counts. Deduplication is a
prerequisite, so these plots may only be produced for samples with UMIs. Inset zooms to
region from 0 to double the maximum number of unique reads. The position of curves in
the left panel at a sequencing depth of 10 million reads (dashed line represents minimum
recommended percentage of unique reads). H) The FRiF and cumulative FRiF is unaffected
by sequencing depth. The complete H9 PRO-seq library (100%) contains approximately 116
million reads.
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Figure 3.21: QC metrics are not affected by low library complexity. Using a
synthetic set of libraries, we show how various metrics behave across a spectrum of complexity:
A) Degradation ratio, B) mRNA contamination, C) Pause index, D) the percentage of
uninformative adapter reads, E) the rDNA alignment rate, F) and the TSS enrichment scores
are unaffected by low complexity. G) Library complexity traces plot the read count versus
externally calculated deduplicated read counts. Deduplication is a prerequisite, so these
plots may only be produced for samples with UMIs. Inset zooms to region from 0 to double
the maximum number of unique reads. The right panel represents the position of curves in
the left panel at a sequencing depth of 10 million reads (dashed line represents minimum
recommended percentage of unique reads). *Libraries with less than 90% uniqueness could
not be extrapolated due to saturation. H) The FRiF and cumulative FRiF is unaffected by
low complexity. Each library contains 30 million total reads.
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4 PEPATAC: An optimized pipeline for ATAC-seq data

analysis with serial alignments (modified from [177])

The completion of the nascent-RNA sequencing pipeline provided an improved foundation

upon which to base a comprehensive, modular pipeline for ATAC-seq analysis. This ATAC-seq

pipeline, which we term PEPATAC, is built upon a Python infrastructure with a complete,

included R package for custom consensus peak calling, count table generation, and plotting

functions. It enables the analysis of one or many samples with both sample-level and project-

level analyses. It was designed to be robust and restartable, highly modular, and to contain

extensive documentation to ease adoption. It has since been widely adopted with usage by

TCGA [160] and more [224, 330–335].

4.1 Introduction

Because cells package chromatin differently depending on their function and phenotype,

profiling chromatin accessibility is a primary experimental approach for understanding cell

states [51, 150, 246]. The number of chromatin accessibility experiments has grown dramati-

cally in recent years with the introduction of the assay for transposase-accessible chromatin

(ATAC-seq) [170]. With ATAC-seq now widespread, there is demand for analytical approaches

[213, 214], including systematic processing pipelines to facilitate the goal of reproducible

research and ease cross-study comparisons [336, 337].

To address this need we developed PEPATAC, a fast and effective ATAC-seq pipeline that easily

generalizes across compute contexts and research environments. This pipeline has been built

over years of experience analyzing chromatin accessibility experiments and implements several

concepts that make it effective. These include ATAC-specific quality control outputs, both

nucleotide-resolution and smoothed signal tracks, and a serial alignment strategy to deal with

high mitochondrial contamination. Our serial alignment strategy, or ‘prealignments,’ allows

the user to configure a series of genomes to align to before the primary genome. PEPATAC

provides a framework that allows a user to align serially in customized order to as many

genomes as desired, which will be useful for many situations, including species contamination,

dual-species experiments, repeat model alignments, decoy contamination, or spike-in controls.

While numerous ATAC-seq pipelines exist [213, For more in-depth coverage see: 214], PEPATAC

is designed with modularity and flexibility as paramount design considerations (Fig. 4.1a).

PEPATAC is compatible with the Portable Encapsulated Projects (PEP) format [303], which

defines a common project metadata description, allowing projects that use PEPATAC to be
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easily analyzed using any PEP-compatible tool. It also provides the possibility for a single

project description to be shared across pipelines, computing environments, and analytical

teams. PEPATAC is easily customizable, including changing individual command settings or

even swapping specific software components by modifying a few lines of human readable

configuration files.

PEPATAC does not rely on any specific local or cloud computing infrastructure, and it has

already been deployed successfully in various compute environments at multiple research

institutes to yield numerous peer-reviewed studies [160, 332, 338–340]. While all ATAC-seq

pipelines use several common bioinformatic tools (Fig. 4.4), we simplify the creation of a

computing environment with the required command-line tools using conda [341], or either

docker or singularity with the bulker multi-container environment manager [304].

PEPATAC includes a well-documented code base with detailed installation instructions, tutorials,

and example projects, so it is useful for both the bench biologist and bioinformatician alike.

We anticipate that this pipeline will provide a useful complete analysis for basic ATAC-seq

projects and serve as a unified starting point for more advanced ATAC-seq projects.

4.2 Materials and Methods

4.2.1 PEPATAC configuration
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Figure 4.1: PEPATAC is feature-rich with a logical workflow. (a) We compared
features across 14 ATAC-seq pipelines (AIAP [342]; ATAC2GRN [343]; ATAC-pipe [344];
ATACProc [345]; CIPHER [346]; ENCODE [347]; esATAC [348]; GUAVA [349]; I-ATAC
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Rausch [355]) and PEPATAC stands out for being feature-rich . (b) Reads are preprocessed,
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PEPATAC generates both smooth and exact signal plots, called peaks, and QC output plots
and tables.
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The PEPATAC pipeline is divided into two major parts (Fig. 4.1b): First, it processes each

sample individually at the sample level. Once sample processing is complete, the project-level

part aggregates, analyzes, and summarizes the results across samples. PEPATAC is composed of

two primary Python scripts that may be run from the command-line. Sample information and

parameters are passed to the pipeline as command-line arguments (see pepatac.py --help),

making it simple to use as a standalone pipeline for individual samples without requiring

a complete project configuration. Project level output is produced using the project level

pipeline (see pepatac_collator.py --help). PEPATAC is built using the Python module

pypiper [356], which provides restartability, file integrity protection, copious logging, resource

monitoring, and other features. Individual pipeline settings can also be configured using

a pipeline configuration file (pepatac.yaml), which enables a user to specify absolute or

relative paths to installed software, change adapter input files for trimming, and parameterize

alignment and peak calling software tools. This configuration file comes with sensible defaults

and will work out-of-the-box for research environments that include required software in the

shell PATH, but it also may be configured to fit any computing environment and adapt to

project-specific parameterization needs.

4.2.2 Refgenie reference assembly resources

Like any genome analysis, PEPATAC relies on reference genome annotations. To ensure that

results are comparable across runs, it’s important to use the same reference assembly. To

manage these assets in a reproducible and robust manner, PEPATAC uses refgenie. Refgenie

is a reference genome assembly asset manager that simplifies access to pre-indexed genomes

and annotations for common assemblies, and also allows generating new standard reference

genomes or annotations as needed while maintaining asset provenance [322, 357]. For a

complete analysis, PEPATAC requires several refgenie-managed assets: fasta, chrom_sizes,

bowtie2_index, blacklist, refgene_tss, and feat_annotation. These can be either downloaded

automatically or built manually, which require a genome fasta file, a gene set annotation file

from RefGene, and an Ensembl gene and regulatory build annotation file. Using PEPATAC

with seqOutBias requires the additional refgenie tallymer_index asset built for the same

read length as the data. Many of these assets may also be directly specified at the command

line should a user not have refgenie-managed versions available. The TSS annotation file,

region blacklist, and feature annotation file may all be specified to use a local, user-specified

file. For example, while ENCODE provides a common set of regions that are aberrantly

overrepresented in sequencing experiments (e.g. a blacklisted set of regions) [358], a user may

create their own version of regions that should be excluded from consideration and point to
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Figure 4.2: Example PEPATAC QC plots for reads and peaks. (a) Library complexity
plots the read count versus externally calculated deduplicated read counts. Red line is library
complexity curve for SRR5427743. Dashed line represents a completely unique library. Red
diamond is the externally calculated duplicate read count. (b) TSS enrichment quality control
plot. (c) Fragment length distribution showing characteristic peaks at mono-, di-, and tri-
nucleosomes. (d) Cumulative fraction of reads in annotated genomic features (cFRiF). Inset:
Fraction of reads in those features (FRiF). e) Signal tracks including: nucleotide-resolution
and smoothed signal tracks. PEPATAC default peaks are called using the default pipeline
settings for MACS2 [255]. (f) Distribution of peaks over the genome. (g) Distribution of
peaks relative to TSS. (h) Distribution of peaks in annotated genomic partitions. Data from
SRR5427743.
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this file manually.

4.2.3 File inputs and adapter trimming

PEPATAC sequentially trims, aligns, and analyzes sequences (Fig. 4.1b). PEPATAC accepts

sequence data input in 3 formats: unaligned BAM, separated FASTQ, or interleaved FASTQ

format. The pipeline first converts the input format into FASTQ (if necessary) for adapter

trimming. For adapter trimming, users may select between skewer [359], trimmomatic [360],

or an included Python tool using command-line arguments or the PEP configuration file. The

pipeline stores quality control results including the number of raw, trimmed, or duplicated

reads, and runs FastQC [361] if installed.

4.2.4 Prealignments and mitochondrial DNA

Because ATAC-seq data can have a high proportion of reads mapping to the mitochondrial

genome (from 15%-50% in a typical experiment up to 95% in some experiments [362]), we

considered how to optimize the pipeline to deal with abundant mitochondrial DNA (mtDNA).

High mtDNA exacerbates the alignment challenge caused by nuclear-mitochondrial DNA

(NuMts), which are mtDNA sequences that have integrated into the nuclear genome throughout

eukaryotic evolution [364]. NuMts represent nonfunctional, truncated, and mutation-ridden

copies of mitochondrial protein-coding genes; therefore, we assume that ATAC reads mapping

to them are highly likely to be erroneous alignments. The typical strategy is to align to the

mitochondrial and nuclear genomes simultaneously, and then remove nuclear-mitochondrial

DNA (NuMts) post-hoc using a blacklist, but this suffers from three disadvantages: First, it is

inefficient to align lots of mtDNA to the larger nuclear genome; second, reads that match both

NuMt and mtDNA will be (incorrectly) split between the two, and third, this approach relies

on an accurate pre-constructed annotation of NuMt locations, which may not be available

for every reference genome. Furthermore, due to mitochondrial genetic diversity within and

across cells, some reads derived from true mtDNA may in fact map better to the reference

NuMt than to the reference mtDNA sequence. Also, reads that span the artificial breakpoint

in the linear mtDNA reference may find an adequate NuMt match, but would never align to

the mtDNA.

We found that by separately aligning first to the mitochondrial genome, we alleviated

the challenges with simultaneous alignments. To capture NuMts that span the artificial

breakpoint induced by converting the circular mitochondrial DNA into a linear representation

for alignment, we use a doubled mitochondrial reference sequence, which enables non-circular

aligners to align reads that span the breakpoint. By default, the pipeline is configured to
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align reads first to the doubled mitochondrial reference genome, but may be easily configured

to perform any number of additional serial alignments.

4.2.5 Alignments, deduplication, and library complexity

For prealignments and primary alignment, PEPATAC employs bowtie2 by default [325].

Bowtie2 settings are configurable in the pipeline configuration file but come with sen-

sible defaults of -k 1 -D 20 -R 3 -N 1 -L 20 -i S,1,0.50 for prealignments and

--very-sensitive -X 2000 for nuclear genome alignment. Users may optionally use

bwa [365] with settings similarly configurable in the pipeline configuration file (default:

-M). Following alignment, reads with mapping quality scores below 10 and any residual

mitochondrial reads are removed and read deduplication is carried out using samblaster

[366], but picard’s MarkDuplicates [367], or samtools [328] may also be utilized based on

user preference. PEPATAC utilizes preseq [312] to calculate and plot sample library complexity

at the current depth, and includes the number of independently calculated duplicates (Fig

4.2a). The pipeline also projects the unique fraction of the library at 10M total reads. These

metrics provide an estimate of library complexity and allow the user to determine the value

of subsequent sequencing.

4.2.6 Library QC metrics

For quality control, PEPATAC provides a TSS enrichment plot, produced by aggregating reads

present in regions 2000 bases upstream and downstream of a reference set of TSSs (Fig 4.2b).

Enrichment is calculated as the average number of reads in a 100 bp window around the TSS

divided by the average number of reads in the first 200 bases of the entire region. This yields

low signals in the tails with a peak in the center, which we take to be the TSS enrichment score.

PEPATAC also produces a fragment length distribution plot (Figure 4.2c). A standard quality

ATAC-seq library is expected to yield clearly defined peaks at open chromatin (<100bp),

mononucleosomes (200 bp), and sequentially smaller peaks representing multi-nucleosomes at

regular intervals. To evaluate the enrichment of all reads across genomic partitions, PEPATAC

plots both the fraction and cumulative fraction of reads (FRiF, cFRiF respectively) in genomic

features (Fig 4.2d). A novel feature of PEPATAC includes the plotting of the fraction of reads

in any feature type, not solely in peaks. This is plotted as the cumulative sum of reads in each

feature divided by the total number of aligned reads against the cumulative sum of bases in

each feature. The relative proportion of each feature can be then be directly compared. The

standard feature annotation produced and managed by refgenie includes Ensembl defined

enhancers, promoters, promoter flanking regions, 5’ UTR, 3’ UTR, exons, and introns in
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that order. Users can specify an alternative annotation file, either a custom one or simply

a different sort order, using the --anno-name pipeline parameter. For a quality sample, the

proportion of reads in peaks should be the most enriched, reflecting the specificity of the peak

calls for that sample.

4.2.7 Signal tracks and peak calling

Alignments are used to generate two signal tracks: one that records the exact location of

transposition events, and one that is smoothed (Fig 4.2e). These tracks may be used for

different downstream analyses; the exact track is useful for analysis that requires nucleotide-

resolution, while the smoothed version is often preferred for visualization and peak analysis.

Reads, representing transpoase cut-sites, are extracted from the deduplicated, low-quality

removed, primary genome mapped BAM file into a wiggle-like track. For the exact signal

track, these cut-sites are shifted +4 bases for positive strand reads and -5 bases for negative

strand reads. For the smooth signal track, we extend the shifted exact sites +/- 25 bases to

yield 50 bp smoothed windows around the exact cut-site position. seqOutBias is an optional

tool that can be used to correct for enzymatic (e.g. Tn5 transposase) bias and generate tracks

for visualization [311]. The bias itself is corrected using a k-mer mask for the plus and minus

strand Tn5 recognition sites and by taking the ratio of genome-wide observed read counts to

the expected sequence based counts for each k-mer [311]. The k-mer counts take into account

mappability at a given read length using GenomeTools’ Tallymer program [329].

An earlier study found multiple peak callers worked well with chromatin accessibility data [368],

and PEPATAC provides the option to use F-Seq [254], MACS2 [255], Genrich [257], HOMER [267],

or HMMRATAC [258] for peak calling, with parameters customizable in the pipeline configuration

file. MACS2 is used by default (--shift -75 --extsize 150 --nomodel --call-summits

--nolambda --keep-dup all -p 0.01). The default settings are intended to maximize

recall and sensitivity. More stringent settings can be easily adopted by modifying the pipeline

configuration file. Called peaks are standardized by extending up and down 250 bases (a

tunable parameter, --extend) from the summit of each peak to establish peaks 500 bases in

width. Any peaks which then extend beyond chromosome boundaries are trimmed. Utilizing

fixed-width peaks reduces bias towards larger peaks in both count-based and motif analyses

while simultaneously improving the identification of consensus peak sets by reducing the

likelihood of extraordinary large peaks created through the union and merging of multiple

peak sets. Finally, peak scores are normalized to score per million by dividing by the sum of

scores over 1M.



63

PEPATAC also produces several plots detailing enrichment of reads in peaks including: the

distribution of peaks across the genome by chromosomal location (Fig 4.2f), the distribution

of peaks relative to TSSs (Fig 4.2g), and the distribution of peaks within genomic partitions

(Fig 4.2h). The TSS distance distribution shows the distance of called peaks with respect to

TSSs grouped in log-scale bins. Finally, users may optionally employ HOMER to calculate motif

enrichments in called peaks [369].

4.2.8 Running multiple samples with PEPATAC

To run the pipeline across multiple samples in a larger project, the pipeline uses the job

submission engine looper [370], which employs the Portable Encapsulated Project standard-

ized definition of project metadata [303](Fig. 4.5). This standard project format enables a

pipeline to be run on any project that follows the format, which is simple, standardized, and

well-documented. Looper enables the PEPATAC pipeline to be run in any compute environment,

including locally (the default) on a single laptop or desktop, or with any cluster resource

manager. It also can be used with containers. Additionally, looper’s project format gives

pipeline users access to APIs written in Python and R for downstream analysis of pipeline

results.

For the user whose environment is set up to run containers, we enable container use with either

Docker or Singularity via a single image file or through the multi-container environment

manager, bulker [304]. Using bulker, PEPATAC may be run in containers across samples and

compute environments, simplifying deployment by requiring only bulker and the PEPATAC

pipeline itself, eliminating the need to install each required package independently.

4.2.9 Aggregating results from multiple samples

To summarize and incorporate data across samples, the second step in a PEPATAC analysis is

to run a project-level pipeline (pepatac_collator.py) that identifies consensus peaks across

a project and calculates sample coverage of those consensus peaks in a convenient table for

easy downstream analysis. To establish consensus peaks, PEPATAC identifies overlapping (1

bp, a tunable parameter: --min-olap) peaks between every sample in a project and defines

the consensus peak’s coordinates based on the overlapping peak with the highest score. Peaks

present in at least 2 (parameter: --cutoff) samples with a minimum score per million greater

than or equal to 5 (parameter: --min-score) are retained. A peak count table is then

provided where every sample peak set is overlapped against the consensus peak set. Individual

peak counts for an overlapping peak are weighted by multiplying by the percent overlap of

the sample peak with the consensus peak.
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For navigating results, PEPATAC provides both sample and project level reports in a convenient,

easy-to-navigate HTML report with project-level summary table and plots, job status page,

and individual sample pages with sample statistics and QC plots all at your fingertips. In

addition, looper will produce summary plots from individual sample statistics including

the number of aligned reads, percent aligned reads, TSS scores, and library complexities. A

user can produce the HTML report during a run or after completion, with the job status

page providing information on whether a sample has failed, is still running, or has already

completed.

4.3 Results

To demonstrate PEPATAC’s default workflow and output, we analyzed samples from the original

standard ATAC [170], fast ATAC [158], and omni ATAC [174] protocol papers. This dataset

includes human ATAC-seq reads from 33 standard ATAC, 152 fast ATAC, and 139 omni

ATAC samples (Supplemental file 1). PEPATAC provides output and quality control results

both for individual samples and for the project as a whole. For each sample, PEPATAC

produces narrowPeak and bigWig files to visualize nucleotide-resolution alignments, smoothed

alignments, and peak calls. PEPATAC also produces summary statistics files that report the

number of reads, duplicates, genome alignment rates, transcription start site (TSS) enrichment

score, number of called peaks, fraction of reads in peaks (FRiP), and job runtime among

others for every sample in a project.

4.3.1 Performance

PEPATAC is designed to be computationally efficient. To evaluate how PEPATAC scales with

increasing numbers of reads, we ran 430 ATAC-seq samples of varying input size through

PEPATAC (Supplemental file 4). We then placed samples in 500MB input file size bins and

compared runtimes and peak memory usage (Fig. 4.6). Runtime scales linearly with increasing

file size, but importantly, even samples with more than 150 million reads completed in less

than 8 hours (Fig 4.6a). We also show that PEPATAC, with default settings, only utilizes

between 5-9 GB at peak memory use (Fig 4.6b).

4.3.2 Prealignments

To evaluate the advantage of serially aligning to the mitochondrial genome (Fig. 4.3a),

we measured the total alignment runtime of synthetic mixtures of mitochondrial-aligning

(mtDNA) and whole human-aligning (hg38) sequences with and without prealignments. We

constructed libraries of mixed mtDNA:hg38 mapping ATAC-seq reads from 0% to 100%
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Figure 4.3: PEPATAC prealignments increase mapped mtDNA reads, improve
computational efficiency, and positively influences the fraction of reads in peaks
(FRiP) metric. (a) NuMTs represent a significant complication of simultaneous alignment.
(b) At mtDNA percentages from 10-100% at total read numbers ranging from 10-200M, using
prealignments dramatically reduces run time. (c) Log ratio of prealignments runtimes versus
no prealignment runtimes yields significant savings. (d) There is a significant increase in the
percent of reads mapped to mitochondrial sequence when using prealignments versus not
across standard, fast, and omni-ATAC protocols. (e) As reported for ChIP-seq [371], FRiP is
positively correlated with the number of called peaks. (f) With prealignments, the positive
correlation between FRiP and the number of called peaks tends to increase ((d) ** = p <
0.001; t-test (mu = 0) with Benjamini-Hochberg correction. (e-f):* = p < 0.0001; Kendall
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mtDNA in increments of 10%, at 10 million, 20 million, and up to 200 million total reads in

increments of 20 million reads, resulting in 121 different library combinations. We recorded the

alignment time for each input file with and without prealignments (Fig. 4.3b). To determine

for which scenarios using prealignments is beneficial, we calculated the log ratio of run

times with prealignments versus without prealignments and found that using prealignments

reduces the total time of alignment even when mtDNA alignment rates are under 10% (Fig.

4.3c). In addition to speed and efficiency gains, PEPATAC with prealignment compared to

without prealignment to mtDNA yields higher alignment rates to mitochondrial sequence

than aligning to a combined human and mitochondrial genome as is commonly performed

(Fig. 4.3d). This is true for every sample tested no matter the library preparation protocol

nor percent mitochondrial contamination (Fig. 4.7). This result indicates that the common

approach of simultaneously aligning to the nuclear and mitochondrial genomes systematically

underestimates the fraction of mitochondrial reads in an experiment. We therefore propose

that mitochondrial alignment rates are generally underestimated by about 1-5% in published

reports.

To show how prealignments successfully depletes reads aligning to NuMTs, we ran a standard

ATAC (SRR5427804), fast ATAC (SRR2920492), and omni ATAC (SRR5427806) sample

through PEPATAC with no prealignments, prealignment to mitochondrial sequence, and pre-

alignment to mitochondrial, ribosomal, and known repeat sequences. We then compared

the highest signal peaks between each prealignment strategy across each ATAC-seq protocol.

We used BLAST [372] to annotate the highest signal peaks and then intersected called peaks

under each strategy with the ENCODE blacklist [358], which normally is used to filter results

in PEPATAC by default. The omni ATAC sample had the least number of aberrant high

signal peaks with only a single NuMT peak identified in the top 10 highest signal peaks and

only present when analyzed without prealignments. Significantly, as soon as mitochondrial

prealignment is included, this peak is excluded (Supplemental file 3, Fig. 4.8a). Of the top 100

omni ATAC peaks, there are fewer overlaps with blacklisted regions, both overall, and as we

increase the number of prealignments. With no prealignments there are 4 blacklisted regions in

the top 100 and only 2 with prealignments (Supplemental file 3). As omni ATAC is reported to

reduce mitochondrial reads, this result is expected. Furthermore, this difference is highlighted

as we compare both fast ATAC and standard ATAC. Three of the top 10 peaks from the fast

ATAC sample without prealignments aligned to mitochondrial sequence (Supplemental file

3). These are eliminated with prealignments. Additionally, without prealignments, 22 of the

top 100 peaks intersect blacklisted regions. Only 18 overlap with mitochondrial prealignment,

and significantly, only 3 of the top 100 overlap blacklisted regions when prealigning includes
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ribosomal and repeat regions (i.e. satellite DNA). This suggests that a number of regularly

identified peaks should typically be excluded in the absence of prealignments. While a blacklist

does an excellent job at removing these regions, prealignment achieves similar results while also

removing additional non-blacklisted regions that are likely spurious (mapping to unmapped

regions or to different species, see Supplemental file 3). These results are even more obvious

with standard ATAC. Standard ATAC without prealignment to mitochondria mapped 8 of

the top 10 peaks to NuMTs (Supplemental file 3). These are removed with prealignment

to mitochondria. Furthermore, the number of blacklisted regions drops from 17 without

prealignments to 7 with mitochondrial prealignment and only 2 with mitochondrial, ribosomal,

and repeat region prealignment. Because prealignment reduces spurious peak assignment

(Supplemental file 3, Fig. 4.8b) and it reduces total runtime in nearly every scenario (Fig.

4.3c), prealignment is an effective strategy to include in every pipeline run.

4.3.3 Peak caller comparison

To evaluate the difference in called peaks when using different peak callers, we compared both

the PEPATAC determined consensus peaks and the peaks from a single sample (SRR5210416)

produced when using different peak callers (Fseq, Genrich, HOMER, HMMRATAC, MACS2 with

variable peaks, and MACS2 with fixed peaks). Similarity between the intervals was evaluated

with a modified Jaccard statistic [373] implemented in the bedtools [323] package. At the

single sample level MACS2 with variable peak width is the most similar in output to MACS2 with

fixed peaks and Fseq (Fig. 4.9a, see Supplemental file 2). Interestingly, the least similar peak

results are from Genrich and HMMRATAC, which possibly reflects the goal of both tools being

designed to evaluate ATAC-seq data as opposed to originally being developed for ChIP-seq

(Fig. 4.9a). These differences become more pronounced at the consensus peak level, with

HMMRATAC becoming more dissimilar (average jaccard statistic = 0.31, Supplemental file 2) to

the other peak callers (Fig. 4.9b).

We also asked whether this difference was due to an improvement in reduced peak calling at

nuclear mitochondrial sequences (NuMTs), repeat regions, or high signal regions. One way to

evaluate this is to determine the number of intersections of the individual peak caller called

regions against a known blacklist [358] and to BLAST [372] the highest signal peaks. Indeed,

HMMRATAC overlaps the least number of blacklisted regions (231 versus the maximum of

756 with HOMER; see Supplemental file 2) and it turns out a number of both the blacklisted

regions and the highest signal peaks are NuMTs or repeat regions (Supplemental file 3). While

MACS2 remains the most commonly employed peak caller across ATAC-seq pipelines, further

comparative studies may better illustrate the utility of some of the more recently developed
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peak callers.

4.3.4 Library QC comparison

Several of the QC metrics (e.g. TSS enrichment score, the fragment distributions, non-

redundant fractions, and the PCR bottlenecking coefficients 1 and 2) employed by PEPATAC

are near-universal in the field, and as such are calculated in the same manner. To evaluate

how different annotations may affect the TSS score, we also compared TSS annotations from

Ensembl, Gencode, and Refgene (PEPATAC default). Refgene produces higher TSS scores

(Fig. 4.10), which reflects the fact that Refgene contains only the most commonly employed

transcription start sites for each gene whereas both Ensembl and Gencode include all known

sites, diluting the aggregated signal.

4.3.5 Fraction of reads in peaks

It has also been reported that in ChIP-seq experiments, but not specifically in ATAC-seq,

that FRiP correlates positively with the number of identified peaks [371] (Fig. 4.3e). In

libraries with significant mitochondrial contamination, for example, from libraries produced

using standard-ATAC library preparation protocols, this correlation is emphasized when using

prealignments (Fig. 4.3f). We next sought to understand how the serial alignment strategy

affects calculation of Fraction of Reads in Peaks (FRiP). FRiP is a common qualitative measure

of enrichment and sample quality. However, FRiP calculations are poorly defined, making

it dangerous to compare FRiP scores among different protocols and approaches. ENCODE

defines the denominator of the FRiP score to be total mapped reads (ENCODE Terms). If

only one genome is used for alignment, then the calculation is clear, but for a serial alignment

pipeline, the FRiP score depends on whether the denominator includes reads mapped to

the nuclear genome only, or to all genomes (Fig. 4.11c,d). By default, PEPATAC uses the

deduplicated, low-quality removed, primary genome mapped BAM file to calculate the fraction

of reads in the final called peak output file, which by default utilizes fixed width peaks and has

removed any blacklisted regions. This has the consequence of changing the FRiP calculation

based on whether prealignments were used (Fig. 4.11c,d). When using prealignments, the

default FRiP calculation will significantly increase, because the number of reads mapped to the

primary genome is reduced due to reads mapping more accurately to the mitochondrial genome

and thus being excluded from downstream analysis. When FRiP is calculated using the

total mapped reads (prealignments and primary alignment), these relationships are inversed

(Fig. 4.11c,d). In any scenario, prealignments lead to more total mapped reads, due to more

efficient mitochondrial alignment. As more recent ATAC-seq sample preparation protocols

https://www.encodeproject.org/data-standards/terms/#enrichment
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intentionally reduce mitochondrial contamination, these differences are most pronounced

when using the original, standard ATAC-seq protocol. Therefore, reliance on a specific cutoff

(e.g. 0.3 or greater) as indicative of a quality sample must be relative to protocol and method.

4.4 Discussion

PEPATAC is an efficient, user-friendly ATAC-seq pipeline that produces helpful quality control

plots and signal tracks that provide a comprehensive starting point for further downstream

analysis. Two key benefits of the PEPATAC pipeline over existing pipelines are its flexibility and

modularity. PEPATAC is uniquely flexible, for example, by allowing pipeline users to serially

align to multiple genomes, to select from multiple aligners, peak callers, and adapter trimmers,

while providing a convenient, configurable interface so a user can adjust parameters for

individual pipeline tasks. Furthermore, PEPATAC reads projects in PEP format, a standardized,

well-described project definition format, providing a reproducible interface with Python and

R APIs to simplify downstream analysis.

Because PEPATAC is built on looper, it is easily deployable on any compute infrastructure,

including a laptop, a compute cluster, or the cloud. It is thereby inherently expandable

from single to multi-sample analyses with both project level and individual sample level

quality control reporting. This means that a user may submit any number of samples using

a single looper command and corresponding PEP metadata file. Its design allows for simple

restarts at any step in the process should the pipeline be interrupted. Due to its modular

construction multiple software options for primary pipeline steps are available, creating a

swappable pipeline flow path with individual steps adaptable to future changes in the field.

PEPATAC is a rapid, flexible, and portable ATAC-seq project analysis pipeline providing a

standardized foundation for more advanced inquiries.

4.4.1 Documentation and links

• PEPATAC v0.9.16: pepatac.databio.org.

• PEP metadata standards: pep.databio.org.

• Looper job submission engine: looper.databio.org.

• Refgenie reference genomes: refgenie.databio.org.

• Source code to reproduce output for this paper: github.com/databio/pepatac_paper_data.

4.5 Supplemental

4.5.1 Supplemental figures

https://www.encodeproject.org/atac-seq/#standards
https://pepatac.databio.org
https://pep.databio.org
http://looper.databio.org
https://refgenie.databio.org
https://github.com/databio/pepatac_paper_data
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Figure 4.4: ATAC-seq pipelines universally require several common bioinformatic
tools. While all pipelines require a number of common bioinformatic tools, PEPATAC offers
the greatest flexibility and includes a number of the most popular tools.



71

.SH.yaml

Project
config

looper

.SH.tsv

Sample
annotation

Pipeline
interface

.SH.py

Environment
config

.SH.yaml

.SH.yaml

local compute,
SLURM,

SGE,
cloud,
etc.PEPATAC

PEP

Raw
data

Figure 4.5: Deploying PEPATAC across multiple samples using looper. The
PEPATAC pipeline can be easily run across multiple samples in any computing environment
using looper.
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Figure 4.6: PEPATAC is computational efficient. (a) Pipeline runtime scales linearly
with input file size. (b) Pipeline memory use peaks between 5-9GB.
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each protocol. ** = p < 0.001; t-test (mu = 0) with Benjamini-Hochberg correction.)
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4.5.2 Supplemental_file_1

Supplemental_file_1.csv is the PEP-formatted sample table for the primary dataset. Samples

are defined by protocol, whether standard, fast, or omni, and include accession numbers for

access through the Gene Expression Omnibus [374].

• Supplemental_file_1.csv.

4.5.3 Supplemental_file_2

Supplemental_file_2.xlsx contains two sheets. The “jaccard_similarities” sheet includes

tables representing the results of bedtools intersect between each independent peak caller

software for 1) the PEPATAC derived consensus peak set, and 2) for an individual sample

(SRR5210416) between each peak caller. This sheet also includes the average jaccard statistic

for each peak caller. The “blacklisted_regions” sheet compares the number of peaks generated

by each peak caller that overlap blacklisted regions [358].

• Supplemental_file_2.xlsx.

4.5.4 Supplemental_file_3

Supplemental_file_3.xlsx includes three sheets for a standard ATAC (SRR5427804), fast

ATAC (SRR2920492), and omni ATAC (SRR5427806) sample that has been run through

PEPATAC with 1) no prealignments, 2) mitochondrial prealignment (rCRSd: the revised

Cambridge Reference Sequence doubled genome), and 3) mitochondrial, human repeats, and

rDNA prealignments. In each sheet, for the highest scoring peaks, individual peak fasta

sequences (included) were aligned with BLAST [372] and top scoring annotations recorded. If

the peak overlaps a known blacklisted region [358], this is also marked.

• Supplemental_file_3.xlsx.

4.5.5 Supplemental_file_4

Supplemental_file_4.csv is the PEP-formatted sample table for the performance testing

dataset. Accession numbers for file access through the Gene Expression Omnibus [374] are

included for each sample.

• Supplemental_file_4.csv.

http://big.databio.org/pepatac/Supplemental_file_1.csv
http://big.databio.org/pepatac/Supplemental_file_2.xlsx
http://big.databio.org/pepatac/Supplemental_file_3.xlsx
http://big.databio.org/pepatac/Supplemental_file_4.csv


76

5 MEF2 family of transcription factors contribute to

renin cell identity

Following the review and development of tools devoted to chromatin-related or chromatin-

based assays, I next sought to apply this knowledge towards a specific biological question.

In collaboration with Dr. Alexandre Martini and the University of Virginia Pediatric Center

of Excellence in Nephrology, we sought to improve the field’s understanding of the renin

cell phenotype by investigating the chromatin landscape throughout renin cell development.

Dr. Martini conceived the initial experiment, isolated mouse kidney cells, and prepared libraries

for single-cell ATAC-seq and RNA-seq. I performed subsequent analysis and integration of

the single-cell ATAC-seq and RNA-seq libraries. Here, I present the results of this analysis

and report novel findings on the significance of the MEF2 family of transcriptions factors for

renin cell development.

5.1 Background

By performing independently paired scATAC-seq and scRNA-seq at four developmental time

points (E12, E18, P5, and P30) during mouse kidney development, we sought to identify

epigenetic markers of renin cell identify and to construct a developmental trajectory from

early Foxd1+ progenitors to mature renin cells. In effect, we have constructed a single-cell

atlas of chromatin accessibility along a comprehensive time course of renin cell development.

Renin secreting cells are restricted in adult mammals along the walls of renal arterioles near the

entrance to the glomeruli, and are therefore known as juxtaglomerular (JG) cells (Fig. 5.1a)

[228–230]. These juxtaglomerular (JG) cells are critical for survival through the maintenance

of homeostasis via the release of the hormone-enzyme renin in response to minute changes

in blood pressure [226–228]. Renin release initiates a cascade that produces angiotensin II,

leading to vasoconstriction and blood pressure increase. This renin-angiotensin system (RAS)

is a key factor in cardiovascular pathologies [375–380]. Even in early hypertension, sustained

activation of RAS signaling promotes vascular hypertrophy and dysfunction [381, 382]. RAS

signaling is also relevant to diabetes, chronic kidney disease, dementia, and numerous cancers

[383–388]. The standard therapy for hypertensive disorders and chronic kidney disease is

the use of anti-RAS inhibitors and blockers [230, 389–391]. Unfortunately, inhibition of RAS

leads to chronic production of renin and severe kidney disease [382, 392–394]. From the

perspective of human health and disease, a better understanding of the control and formation

of renin-expressing cells is essential to address chronic effects of RAS inhibition. Not only do

renin cells play a vital role in homeostasis directly, they are also progenitors for multiple cell
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types that retain the memory of the renin phenotype and are able to restore this phenotype to

produce renin under stress [228, 230]. Despite the clear importance of these cells for organism

health, we still do not fully understand their development.

Major efforts to elucidate determinants of renin cell identity have uncovered a number of

important pathways and genomic regions integral to renin-expressing cells. The cAMP

pathway has been shown to stimulate renin gene transcription and subsequent release (Fig.

1.3) [236–238]. The renin gene contains a cAMP responsive element where the histone acetyl

transferases CBP/p300 can bind to regulate renin expression [239–241]. Additionally, the

final common effector of the Notch signaling pathway, RBP-J, is necessary to maintain renin

expression and modulates the plasticity of SMCs and mesangial cells to restore renin expression

[230, 242–244]. RBP-J also regulates Akr1b7 which is co-expressed with renin and serves as

an additional marker of mature renin cells [230, 245]. Understanding the epigenetic changes

that occur to regulate the renin phenotype is on-going. Past work in our group identified a

set of super-enhancers unique to renin cells [228]. The primary super-enhancer was found just

upstream of the renin gene (Ren1) and is thought to be responsible for the restoration of renin

phenotype in renin cell descendants [228]. Despite this knowledge of renin control, we are only

beginning to uncover the epigenetic changes that occur along the differentiation trajectory of

renin cells. An improved understanding of the dynamic genetic and epigenetic changes that

occur in renin differentiation is necessary to better understand kidney pathologies and the

effects of therapeutic targeting in cardiovascular disease.

While past efforts have greatly contributed to our knowledge or promoter and enhancer

elements affecting renin expression [235, 238, 241, 243, 391, 395–397], no comprehensive

study has been performed to delineate the individual factors that contribute to renin cell

development in animals. Based on our own and others’ past work, we sought to define the

epigenetic changes and factors that govern the identity and plasticity of renin-expressing

JG cells. Here, we produce a single-cell atlas of open chromatin and gene expression from

progenitors to mature juxtaglomerular cells in the developing kidney and identify the MEF2

family of transcription factors as important contributors to JG cell formation and function.

5.2 Results

We report a better understanding of the underlying epigenetic changes that occur during

the formation of renin-expressing (JG) cells in the kidney. Although we lack specific spatial

positioning of our cell clusters, we term the highly accessible and highly expressing renin

cells as juxtaglomerular cells to be clear on the putative identify of this cell population. We
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identify JG cells using markers of these cells present in our cell subpopulations (i.e. identify

JG cell marker gene expression and accessibility). This relies on the incorporation of known

markers of JG cells we and others have previously identified (see Methods for complete details)

[235, 391, 398]. Because we begin by isolating Foxd1+ cells, Foxd1 serves as a marker of cells

ultimately forming the JG population. Furthermore, JG cells are predominantly identified by

the expression of renin. Therefore, we looked for cells which express JG gene markers and

have open chromatin at Ren1.

5.2.1 Overview of the epigenetic landscape of juxtaglomerular cell development

To determine the identity of the mature renin-expressing JG cells in the mouse kidney, we

extracted mouse kidneys and isolated single cells across four developmental time points, E12,

E18, P5, and P30 (Fig. 5.1a). At E18, Foxd1+ cap mesenchyme cells are the progenitors of

renin producing cells, vascular smooth muscle cells (VSMCs), mesangial cells, and pericytes

(PCs) found in the fully formed mature kidney by P30. By P30, the renin cells are confined

to the juxtaglomerular region, yet cells in this lineage retain the ability to revert to renin-

expressing phenotypes (Fig. 5.1a). In this lineage-tracing model, cells that express Foxd1

at any point during development are marked by expression of GFP (Fig. 5.1b). Since the

primordial metanephros is very delicate and small at E12, we identify GFP+ animals by lung

“squashes” and proceed through a different cell isolation protocol (See Isolation of kidney

single cells: E12) without posterior FACS. For the three later timepoints, we leverage GFP

expression to FACS sort single cells isolated at each time point that are positive for GFP

(See Isolation of kidney single cells: E18, P5 and P30). All isolated cells are subsequently

subjected to independent scATAC-seq and scRNA-seq experiments (Fig. 5.1b). We mapped

the transposase-accessible chromatin and gene expression at the single-cell level using the

10X Genomics Chromium platform, and integrated these datasets to perform a combinatorial

analysis of the transcriptome and accessibilome of Foxd1 lineage cells (Fig. 5.1b). The

scATAC-seq samples formed clusters predominantly separated by developmental time point

with P30 cells showing the most spatially removed clustering profile (Fig. 5.1c). Independent

scRNA-seq cells were clustered and revealed 21 distinct annotated clusters (Fig. 5.1d, see

scRNA-seq cell clustering and scRNA-seq cell identification). We integrated the scRNA-seq

data with the scATAC-seq and performed label-transfer to ultimately annotate 23 open

chromatin derived clusters (Fig. 5.1g, See Integrating transciptome and accessibilome).

To identify the subset of cells representing mature JG cells, we looked for canonical markers of

JG cell identity, the genes Ren1 and Akr1b7 (See Identifying renin cells)[391]. By evaluating

these marker genes from the gene activity scores (Fig. 5.1e) and integrated gene expression
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Figure 5.1: Overview of the experimental design to identify the renin cell develop-
mental trajectory . (a) Foxd1 progenitors in the cap mesenchyme in early E12 differentiate
through E18, P5, and P30 to lead to mature renin expressing cells in the juxtaglomerular
region. (b) Kidneys isolated from Foxd1-CRE recombinase mouse lineage-tracing model are
sorted on Foxd1-derived GFP expression and single-cell ATAC-seq and RNA-seq is performed.
(c) UMAP visualization of scATAC-seq data separated by time point. (d) UMAP visualization
of scRNA-seq data with annotated cell clusters. (e) UMAP visualization of gene activity scores
for canonical JG markers Ren1 and Akr1b7. (f) UMAP visualization of gene expression for
canonical JG markers Ren1 and Akr1b7. (g) UMAP visualization of integrated scATAC-seq
and scRNA-seq data with annotated cell clusters. (h) Cell frequency distribution across
developmental time point. Numbers below timepoints represent total number of single cells
at each time point. CM: cap mesenchyme; CD: collecting duct; JG: juxtaglomerular; PC:
pericyte; EC: endothelial cell; SMC: smooth muscle cell; PT: proximal tubule; PCT: proximal
convoluted tubule; RD: rapidly dividing.
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(Fig. 5.1f), we identified a subpopulation of cells representing the likely juxtaglomerular

population. We also explored the distribution of annotated cells in the open chromatin data

across the kidney developmental time points to evaluate lineage contributions to the JG cells

(Fig. 5.1h).

5.2.2 Differentiation trajectory of juxtaglomerular cells

Because much remains unknown about the epigenetic changes that lead to JG cell identity,

we next sought to identify the regions of open chromatin, corresponding transcription factors

and their linked gene score and expression, to investigate what genetic and epigenetic features

define JG cells. Using previously identified genetic markers of renin-expressing juxtaglomerular

cells (See Identifying renin cells) we defined a pseudo-time trajectory of cells with high Foxd1

expression and accessibility early leading to cells with high expression and accessibility of

Ren1 and Akr1b7 (Fig. 5.2a, Fig. S??).

By looking within peaks that mark individual cell clusters along the developmental trajectory,

we can identify enriched motifs that most define individual cell types (Fig. 5.2b; See Motif

annotations and enrichment). Here we identify very high enrichment of the myocyte enhancer

factor 2 (MEF2) family of TFs as well as Nfix in both mature SMCs and JG cells (Fig. 5.2b).

The nuclear factor I family of TFs (including Nfix, Nfic) have been previously reported to

bind to renin promoter and enhancer regions in the genome [396, 397], and we confirm motif

occurrences of these and other factors at Ren1 (Fig. S5.7, Fig. S5.8). The motifs for Rfx2,

Ebf1, Bach2, Smarcc1 are also enriched in both of these late time point populations (Fig.

5.2b). When distinguishing mature SMCs and JG cells, we find a reduced enrichment for

Grhl1, Snai2 and Smad5 specifically in JG cells (Fig. 5.2b).

We also utilized our integrated pseudo-time analysis to identify positive drivers of differentiation

along the trajectory (See Positive transcription factor regulators, Fig. S5.11). Here we link

gene scores or gene expression to their corresponding motifs and uncover a number of genes

and motifs linked across pseudo-time and both gene score (Fig. 5.2c) and expression (Fig.

5.2d). Among the cell populations containing JG cells, the MEF2 family, Ets1, Ebf1, Junb,

and Stat3 are enriched across both integrative approaches (Fig. 5.2c,d).

We also identify enriched gene scores, gene expression, regulatory regions, and TF motifs

across pseudo-time that are not exclusively positively correlated. By the emergence of mature

JG cells (late P5 to P30), there are enriched gene scores for Foxs1, Zfp36, Junb, Fosl2 and

Dusp1 (Fig. S5.9a).

Foxs1 has been previously implicated as containing SNPs contributing to high blood-pressure
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Figure 5.2: Epigenomic differentiation trajectory uncovers renin cells by post-natal
day 5 in mouse kidney development. (a) UMAP visualization showing the pseudo-time
trajectory across developmental time points. Arrow head represents the end point of the
trajectory. (b) Heatmap of motif hypergeometric enrichment-adjusted P values within the
marker peaks of each JG trajectory cluster. Color indicates the motif enrichment (-log10(P
value)) based on the hypergeometric test. (c) Integrated pseudo-time analysis of positively
correlated gene scores and corresponding motifs. (d) Integrated pseudo-time analysis of
positively correlated gene expression and corresponding motifs. Bold text indicates genes and
motifs identified in both integrated approaches. CM: cap mesenchyme; CD: collecting duct;
EC: endothelial cell; JG: juxtaglomerular; PC: pericyte; RD: rapidly dividing; SMC: smooth
muscle cell; VEC: vascular endothelial cell; VSMC: vascular smooth muscle cell
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indicative of its importance to RAS signaling [399]. As Foxd1 is already an established marker

of renin-expressing cells in the kidney, Foxsl may contribute as a secondary marker of this

trajectory. Additionally, the forkhead box family members play a role in regulating the Wnt

signaling pathway along with Tcf and Lef transcription factors [380, 400–402], both of the

latter of which are positive TF regulators in our pseudo-time trajectory (Fig. S5.11). Together,

these findings confirm a role for Wnt signaling in renin-cell development [402, 403].

Fosl2 has been previously identified to regulate TGF-β1 [404], and TGF-β1 is itself induced

by renin expression [405, 406] suggesting a possible novel target in individuals with chronic

stimulation of the renin-angiotensin system, in addition to a possible mechanism of renin-

expressing cell dysfunction when treating with RAS inhibitors.

We also identify enrichment of the expected marker gene Ren1 and mature smooth muscle

markers Acta2, Tagln, and Crip1 (Fig. S5.9b). Late in pseudo-time where JG cells emerge,

there are enriched regulatory regions in chromosomes 1, 2, 4, 6, 7, 8, and 12 (Fig. S5.9c)

indicating possible trajectory defining regulatory regions. Looking closer, we then annotated

all marker regulatory regions between clusters along the JG differentiation trajectory to look

for enrichment of known functional classes between clusters (Fig. S5.10). Overall, we again

identify enrichment of motifs for the MEF2 family of transcription factors, as well as for

Smarcc1, Bach1 and Bach2, Nfix, Fos, and Jun (Fig. S5.9d).

5.2.3 Transcription factors contributing to juxtaglomerular cell development

Next we investigated enriched motifs and their corresponding expression and activity scores

for their potential contribution to JG differentiation. First we performed footprinting (See

TF footprinting) to look for enrichment of late acting TFs and confirmed overall enrichment

for Smarcc1 (Fig. 5.3a), Nfix (Fig. 5.3b), Mef2c (Fig. 5.3c), and Bach2 (Fig. 5.3d) in the late

differentiation clusters which include the JG cell subpopulation. A pattern emerges whereby

different TFs with aggregate enrichment of their footprints display differential patterns of

activity. We categorized these and additional TFs as enriched early, middle, or late during

differentiation (Fig. S5.12).

Of these initially identified TFs (see Motif annotations and enrichment), Smarcc1 gene activity

scores (Fig. 5.3e) and expression (Fig. 5.3i) peak early to middle along the JG differentiation

trajectory before dropping to near zero at terminal JG differentiation. Smarcc1 is part of

the SWI/SNF chromatin remodeling complex and can interact with a number of different

transcription factors [407, 408]. Data is suggestive for a role of Smarcc1 in early remodeling

of regulatory regions critical for JG cell identity.
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Figure 5.3: TF expression, accessibility, and enrichment uncover patterns of
differentiation. Footprints for Smarcc1 (a), Nfix (b), Mef2c (c), and Bach2 (d) are enriched
in the JG cluster and parent clusters of JG and SMC cells. The expression pattern of enriched
TFs in the JG cluster illustrates early (e), middle (f), late (g), and cyclical (h) patterns
of transcript abundance. Gene score activity recapitulates expression patterns of early (e),
middle (f), late (g), and cyclical (h) activity. TF deviation scores highlight enrichment of
Smarcc1 (m), Nfix (n), Mef2c (o), and Bach2 (p) in late differentiation along the JG trajectory.
CM: cap mesenchyme; CD: collecting duct; EC: endothelial cell; JG: juxtaglomerular; PC:
pericyte; RD: rapidly dividing; SMC: smooth muscle cell; VEC: vascular endothelial cell;
VSMC: vascular smooth muscle cell
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Nfix gene activity is maximal during the middle period of differentiation (Fig. 5.3f), with

gene expression peaking before dropping and rebounding at terminal JG formation (Fig. 5.3j).

As a known factor binding to the renin promoter and enhancer regions [396, 397], we provide

novel evidence suggesting a time-dependent mechanism of action for nuclear factor I family

members.

Mef2c gene activity (Fig. 5.3g) and expression ((Fig. 5.3k) both peak during the initial

differentiation into late time point clusters including pericytes and mesangial cells, before

peaking again late in the clusters containing SMCs and JG cells. The MEF2 family of TFs

includes four proteins, Mef2a/b/c/d, and each play important roles in cardiac and skeletal

muscle tissues where they interact with chromatin remodeling factors and other transcriptional

regulators [409–413]. Additionally, MEF2 target gene activation has been directly linked to

stimulation by p300 [414, 415], which is itself critical to remodeling of chromatin at the renin

locus [228]. Despite the similarity of target motifs for MEF2 members, previous work has

demonstrated that individual MEF2 members regulate non-overlapping gene programs [412],

suggesting distinct roles for MEF2 members in renin regulation previously unknown.

Interestingly, Bach2 undergoes a cyclical pattern of gene activity (Fig. 5.3h) and expression

((Fig. 5.3l) emphasizing a possible role in the cell cycle of differentiating JG cells [416, 417].

Bach2 is itself a transcriptional repressor which forms heterodimers with small Maf proteins

and bind at Maf-recognition elements (MARE) of target genes [418, 419]. MAREs share

strong sequence conservation with CRE elements [420] with a cAMP response element present

at the renin locus and essential for renin expression [228, 230, 421]. It is possible then that

Bach2 interacts with companion factors to repress expression of genes that direct progenitors

towards a JG cell fate as it does in other cells [422]. The cyclical expression and resultant

reduction in Bach2 expression in late developmental cell populations supports such a role.

Finally, we evaluated the deviation in TF motif enrichments on a per cell basis to further

confirm enrichment of these identified TFs as relevant to JG differentiation. Here we show that

each of the above TF motifs is preferentially enriched in late forming cell clusters, including

the JG population (Fig. 5.3m-p).

5.2.4 MEF2 family of TFs separates JG cells from mature SMCs

We then further narrow our focus by investigating what factors specifically differentiate the

late emerging clusters of SMCs and JG cells. Only a few (24) accessible regions differentiate

these two similar clusters (Fig. 5.4a), however when we investigate enriched motifs in SMCs

(Fig. 5.4b) or in JG cells relative to SMCs (Fig. 5.4c) we see some familiar actors. In
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Figure 5.4: MEF2 family of TFs uniquely defines the terminal JG population. (a).
MA plot of the differential regulatory regions between SMCs and JG cells. (b) Top enriched
motifs in SMCs as compared to JG cells. (c) Top enriched motifs in JG cells compared to
SMCs. Mef2a (d), Mef2b (e), Mef2c (f), and Mef2d (g) footprints are enriched in JG cells.
Mef2a expression (h) and gene score activity (l) peaks just prior to terminal differentiation
into JG cells. Mef2b expression peaks in early differentiation (i) with the corresponding
gene score activity steady early to middle before plummeting at differentiation into JG cells
(m). Mef2c (j,n) and Mef2d (k,o) expression and gene activity both peak at terminal JG
differentiation. (p) Browser tracks identify preferentially enriched open chromatin in the JG
cell cluster at Ren1. Motif occurrences of enriched TFs identify putative binding sites in
open and co-accessible peaks. Yellow fill box highlights uniquely enriched peak in JG cluster.
Pink fill box highlights JG promoter region. JG: juxtaglomerular; SE: super-enhancer; SMC:
smooth muscle cell
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particular, the entire MEF2 family is preferentially enriched in JG cells. We also looked

at patterns of enrichment of each of the top enriched motifs that distinguish JG cells from

SMCs (Fig. S5.13). The MEF2 (Mef2a (Fig. S5.13a), Mef2c (Fig. S5.13b)) family of TFs,

Zfp384 (Fig. S5.13c), Stat5b (Fig. S5.13e), the nuclear receptor subfamily 2 members (Nr2f6

(Fig. S5.13h), Nr2c1 (Fig. S5.13i)), and Rarg (Fig. S5.13j) are universally enriched in late

differentiation and within the JG cell population.

With the data purporting to show a strong role for MEF2 family members contributing to JG

cell differentiation, we next looked for overall enrichment of MEF2 family footprints along

the differentiation trajectory and identify each family member as enriched in JG cells (Fig.

5.4d-g). Individual MEF2 members show different activities when we compare gene activity

scores and gene expression for each independent MEF2 member. Mef2a gene activity and

expression peak in late differentiation (Fig. 5.4h,l). Conversely, Mef2b spikes early (Fig. 5.4i)

and experiences a precipitous drop (Fig. 5.4n) in expression in late differentiation. Both

Mef2c and Mef2d display overall similar patterns of activity, spiking briefly mid-to-late before

showing maximum activity and expression in the terminally differentiated JG containing

populations (Fig. 5.4k,o).

Finally, we looked at whether any of the enriched TFs so far identified have putative binding

sites at Ren1 (See Peak co-accessibility and peak to gene links). The previously mentioned

TFs Bach2, Ebf1, Nfix, and Rfx2 all contain motif occurrences in either the Ren1 promoter

and/or super-enhancer regions (Fig. 5.4p). While we do not identify MEF2 family motif

occurrences in either location, there are sites present in co-accessible regions with predominant

peaks of open chromatin in the JG cell population (Fig. 5.4p). With past evidence suggesting

a role of MEF2 family members in recruiting chromatin remodelers including p300, this

supports chromosomal conformation as an important regulatory feature of JG cell identify in

conjunction with the action of MEF2 TFs.

5.3 Discussion

Understanding the regulatory landscape of renin expressing cells is necessary to better

understand the control and function of this rare cell population with critical roles in health

and disease [229, 230, 235, 391, 398]. Our current understanding of the epigenomic regulatory

landscape in renin expressing cells is limited, therefore it is urgent we expand our knowledge to

understand consequences of disruptions to the renin-angiotensin system that occur in human

health and disease and the effects of drugs targeting this pathway.

Here, we employed high-throughput 10X-based scRNA-seq and scATAC-seq technology



87

to simultaneously measure the transcriptome and accesibilome of progenitors and mature

renin-expressing cells in the mouse kidney. Our integrated profiles revealed a sequential

differentiation pattern from early kidney development to mature kidney. Following the first

known identification of the renin-expressing population of juxtaglomerular cells in mouse

kidney, we identified substantial differences in the TF regulators of each cell subpopulation

along the differentiation trajectory.

In particular, the MEF2 family of transcription factors are enriched in late differentiation

clusters, including the juxtaglomerular cell population. Previous studies of the importance of

MEF2 members in angiogenesis [415], and the interaction of MEF2 members with p300 [411,

414] provide a foundation for future in vivo and in vitro experiments to directly interrogate

the individual roles of MEF2 members. Overall, we have provided the first identification of

juxtaglomerular cells in a single-cell atlas of kidney open chromatin, and highlighted a number

of novel factors important for their differentiation and function.

5.4 Materials and Methods

5.4.1 Mouse model (from the UVA Pediatric Center of Excellence in Nephrology)

All animals were maintained in a room with controlled temperature and humidity under a

12-hour light/dark cycle. All animals were handled in accordance with the National Institutes

of Health guidelines for the care and use of experimental animals, and the study was approved

by the Institutional Animal Care and Use Committee of the University of Virginia.

To generate Foxd1cre/+;R26R-mTmG mice, we crossed Foxd1cre/+ mice (16, 24) with

the R26R-mTmG mice [423, 424]. scRNA-seq and scATAC-Seq were performed using the

10X Genomics technology according to the respective protocol [425]. For the scATAC-Seq,

we performed the nuclei isolation following the manufacturer protocol [426], and all the

experiments targeted at least 2000 nuclei, while the scRNA-seq always targeted more than

1000 cells. The experiments were performed at specific time points of the mouse kidney

development: E12 (embryonic day 12), E18 (embryonic day 18), P5 (five days old) and P30

(one month old). Please, note that mice nephrogenesis and vascular development starts at

E11.5 and continues after birth for about 3-7 days, respectively [233].

5.4.2 Isolation of kidney cells

Isolation and subsequent library preparation of kidney cells for single-cell ATAC-seq and

RNA-seq was performed by Dr. Alexandre Martini.
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5.4.2.1 Isolation of kidney single cells: E12 Pregnant mice were injected with

tribromoethanol at enough dose to keep alive but anesthetized. Then, the small fetuses were

removed one by one. A small squash from the lung was used to identify the GFP pups, using

an EvosFLC cell imaging system (LifeTechnologiesTM, California, USA). Once they were

identified, the metanephros area was removed under microscopy and harvested in ice cold

dPBS. The tissue was then minced carefully with a razor blade and transferred to 1.7mL

Eppendorf tube. 300 µL of TryPLETM Express (Gibco, New York, USA) was added and

incubated at 37◦C for 5 minutes. Then, 600 µL of DMEM + 5% FBS was added to the

Eppendorf tube. The mixture was homogenized by pipetting up and down. The solution

was then filtered with a 40 µm nylon cell strainer. Tissue chunks were removed from the

mesh surface, placed again in an Eppendorf tube and the process repeated a second time.

Meanwhile, the flow-through filtrate was placed in a new Eppendorf tube and centrifuged

at 4◦C, 150g for 5 minutes. The supernatant was removed and the pellet resuspended with

resuspension buffer. All the tubes were combined in the end and the cells were ready for

single-cell capture.

5.4.2.2 Isolation of kidney single cells: E18, P5 and P30 Animals were anesthetized

with tribromoethanol (300 mg/kg). P5 and P30 mice kidneys were excised and decapsulated.

Then, the kidney cortices were dissected, minced with a razor blade, and transferred into a

15 mL tube with 5 mL of enzymatic solution (0.3% collagenase A [Millipore-Sigma], 0.25%

trypsin [Millipore-Sigma], and 0.0021% DNase I [Millipore-Sigma]). The tubes were placed

flat inside a shaking incubator (80 RPM) for 15 minutes at 37◦C. The solution was pipetted

up/down 10 times with a sterile transfer pipette and allowed to settle for 2 minutes, and the

supernatant was collected in a fresh tube on ice. The enzymatic solution was added to the

15 mL tube containing the remaining undigested cortices, and the digestion procedure was

repeated a total of 3 times. The supernatants were pooled and centrifuged at 800 g for 4

minutes at 4◦C using a Sorvall RT7 refrigerated centrifuge (Sorvall, Newtown, CT). The cell

pellet was resuspended in fresh buffer 1 (130 mM NaCl, 5 mM KCl, 2 mM CaCl2, 10 mM

glucose, 20 mM sucrose, 10 mM HEPES, pH 7.4), and the suspension was poured through

a sterile 100 µm nylon cell strainer (Corning Inc., Corning, NY) and washed with buffer 1.

The flow-through was poured through a sterile 40 µm nylon cell strainer (Corning Inc.) and

washed with buffer 1. The flow-through was centrifuged at 1,100 g for 4 min at 4◦C. The cell

pellet was resuspended in 1.5 mL of resuspension buffer [PBS, 1% FBS, 1 mM EDTA, DNAase

I (Millipore-Sigma)]. DAPI (Millipore-Sigma) was added to the cells to identify the living

cells. The GFP positive cells were collected by Fluorescent-Activated Cell Sorting (FACS)
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[230] and resuspended in DMEM (Dulbecco’s Modified Eagle Medium, Gibco, Netherlands)

with 10% FBS (Fetal Bovine Serum) for immediate use. The sorters were either an Influx Cell

Sorter (Becton Dickinson, Franklin Lakes, NJ) or a FACS Aria Fusion Cell Sorter (Becton

Dickinson), both located at the Flow Cytometry Core Facility at the University of Virginia.

5.4.3 scATAC-seq library preparation

The initial steps of capture between scATAC-seq and scRNA-seq are similar. The GFP-

positive cells are washed in dPBS with 0.04% BSA twice, and the sorted GFP-positive cells

are washed in dPBS with 0.04% BSA twice. The cells are counted with the CellometerMini

(Nexcelom Bioscience, Massachussets, USA). Sorted cells with viability higher than 80% and

absence of clumps were chosen to proceed. However, the scATAC-Seq protocol requires nuclei

isolation. Our experiments yielded less than 100,000 cells. Therefore, we have used the

protocol designed for Low Cell Input Nuclei Isolation. Briefly, we centrifuge the cells at 500g

at 4◦C for 10 minutes, remove the supernatant carefully and resuspend the cells in a freshly

prepared lysis buffer (1M Tris-HCl, 5M NaCl, 1M MgCl2, 10% BSA, 10% Tween-20). We

have optimized the lysis incubation time for 7 minutes on ice. Next, we immediately added

freshly made washing buffer (1M Tris-HCl, 5M NaCl, 1M MgCl2, 10% Tween-20, 10% Nonidet

P40, 5% digitonin and 10% BSA). This washing is performed twice, and then supernatant

is removed for a final wash with diluted nuclei buffer (nuclei buffer 20X, 10X Genomics,

diluted in nuclease free water to 1X). Once this is complete, we again remove the supernatant,

resuspend the nuclei pellet and count it with a Neubauer Chamber (Spencer, Buffalo, USA).

In all our experiments we were able to target between 1000-5000 nuclei. Nuclei were loaded

and captured with the Chromium System (10X Genomics, Pleasanton, CA) following the

manufacturer’s recommendation [425] using the Chromium Next GEM Chip H with reagents

of Chromium Next GEM Reagent Kits v1.1 (10X Genomics). Initially, nuclei were incubated

with the transposition mix, that includes a transposase, and later the GEMs are barcoded

and PCR amplified to generate the cDNA. The cDNA is then cleaned with Dynabeads and

SPRIselect, end-repaired, adaptor-ligated and amplificated by PCR. The constructed libraries

were sequenced on an Illumina HiSeq 2500/4000 platform (150-bp paired-end reads).

5.4.4 scRNA-seq library preparation

Sorted GFP-positive cells were spun down at 500g for 10 minutes in a Sorvall RT7 refrigerated

4◦C centrifuge (Sorvall, Newtown, CT). Then, the supernatant was carefully removed, and

the cell pellet was resuspended in dPBS (Dulbecco’s Phosphate Buffered Saline, Gibco, UK)

with 0.04% BSA (UltraPureTM Bovine Serum Albumin,Invitrogen, Lithuania) 10 times



90

with wide-bore tips. The process was repeated once, and the cells were counted with the

CellometerMini (Nexcelon Bioscience, Massachussets, USA). Experiments with more than 500

cells/µL, viability higher than 85%, and absence of clumps were chosen to proceed. Single

cells were loaded and captured with the Chromium System (10X Genomics, Pleasanton, CA)

following the manufacturer’s recommendation [425] using the Chromium Next GEM Chip

G with reagents of Chromium Next GEM Single Cell 3′ Reagent Kits v3.1 (10X Genomics).

The Cell-Gel Beads in Emulsion (GEMs) were generated and incubated to generate the

barcoded cDNA. cDNA was cleaned with Dynabeads and amplificated by PCR. cDNA was

then enzymatically fragmented, end-repaired, poly-A tailed, adaptor-ligated, and amplificated

by PCR. The constructed libraries were sequenced on an Illumina HiSeq 2500/4000 platform

(150-bp paired-end reads).

5.4.5 Read preprocessing

5.4.5.1 Genome and transcriptome annotations We performed all downstream

analyses using the mm10 genome. For Cell Ranger pipeline analyses, we used the

refdata-cellranger-arc-mm10-2020-A-2.0.0 reference data and for R-based analysis, the

BSgenome package BSgenome.Mmusculus.UCSC.mm10 was used.

5.4.5.2 scATAC-seq alignment and fragment matrix generation We processed

fastq files from the 10X Genomics Single Cell ATAC platform using the Cell Ranger ATAC

pipeline (version: cellranger-atac-2.0.0). Cell Ranger trims primer sequences using a

modified cutadapt tool [319] before alignment using a modified bwa-mem algorithm [[365];

Li2010a]. Duplicate reads were removed based on the start, end, and hashed barcode of

aligned reads. Finally, read fragments were corrected for Tn5 transposase binding biases and

stored as position-sorted fragment files.

5.4.5.3 scATAC-seq quality control We processed Cell Ranger fragment files using

the ArchR v1.0.1 R package [224]. Arrow files were produced from each time point’s

fragments file. We determined the presence of putative cell doublets using the ArchR function

addDoubletScores, which determines doublet identity by embedding synthetically created

pseudo-doublets from the input data into the shared sample space. We removed cells that

behaved like pseudo-doublets (n=599) prior to downstream analysis (Fig. 5.5a-d). We

further excluded cells with TSS enrichment scores less than 10 as these low TSS scores are

indicative of low signal-to-noise and poor quality (Fig. 5.5e-h) [427]. Finally, we evaluated

fragment distributions for each developmental time point to confirm the expected periodicity

of nucleosomal positioning (Fig. 5.5i-l).
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5.4.5.4 scATAC-seq dimensionality reduction and batch correction Following

quality control filtering, an iterative Latent Semantic Indexing dimensionality reduction [428,

429] technique using Singular Value Decomposition (SVD) to embed the most valuable sample

information in low dimensional space [224] was applied (see ArchR addIterativeLSI). This

reduced dimensionality matrix was further corrected for batch effects using the Harmony [430]

algorithm originally developed for scRNA-seq data but extended to scATAC-seq in ArchR

(using the function addHarmony) [224].

5.4.5.5 scATAC-seq cell clustering We then clustered the batch-corrected reduced

dimensionality matrix to identify cells based on shared chromatin accessibility patterns

using the addClusters function in ArchR [224]. These cluster embeddings were visualized

using Uniform Manifold Approximation and Projection (UMAP) to evaluate dimensionality

reduction and batch correction results across the integrated time points.

Because scATAC-seq data is inherently sparse, pseudo-bulk replicates were generated

(addGroupCoverages function) by grouping similar single cells into aggregate profiles similar

to bulk ATAC-seq data and then calling peaks. Peak calls were generated using MACS2 [255]

with the addReproduciblePeakSet function in ArchR.

5.4.5.6 scRNA-seq alignment and feature-barcode matrix generation Next, we

processed scRNA-seq fastq files from the 10X Genomics Single Cell Gene Expression platform

using the Cell Ranger pipeline (version: cellranger-6.0.1). The Cell Ranger pipeline trims

non-template sequence and aligns reads using the STAR aligner to genomic and transcriptomic

annotations [431]. Confidently mapped transcriptomic reads are grouped by barcode, UMI,

and gene. The number of reads mapped to each gene was calculated using UMI-based

counts. Finally, filtered UMIs were mapped to barcodes to build feature-barcode matrices for

downstream analysis.

5.4.5.7 scRNA-seq quality control We processed the filtered feature-barcode matrices

produced by Cell Ranger in R using Seurat [432]. Abnormally low (<200) or high (E12

>9000; E18>7000; P5>7500; P30>4500) numbers of features (Fig. 5.6a-d) indicative of low

quality and low information or doublet cells respectively were removed [433, 434]. While a

stringent threshold (<5% [435]) for mitochondrial contamination is often recommended, cells

with high energy demands may contain higher than expected mitochondrial sequence [436,

437]. Based on the experimental design of capturing actively dividing kidney cells, we loosened

this threshold to remove cells with >30% mitochondrial reads (Fig. 5.6e-h) to retain high

quality samples. Finally, hemoglobin mapped reads indicative of red blood cell contamination
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are restricted to retain cells with <30% hemoglobin (Fig. 5.6i-l).

5.4.5.8 scRNA-seq cell clustering Next, scRNA-seq cells were normalized (see Seu-

rat NormalizeData) by log-transforming the scaled (number of features divided by library

size and multiplied by a scaling factor of 10000) read counts + 1 [432, 438]. We merged

each scRNA-seq time point and identified the top 2000 most variable features (see Seu-

rat FindVariableFeatures) between cells. We applied a linear transformation (see Seurat

ScaleData) to scale expression to a mean of 0 between cells with a maximum variance of 1 to

reduce the dominance of highly-expressed genes prior to dimensionality reduction.

Next, we performed Principal Component Analysis (PCA) on the normalized data using the

previously identified top features (see Seurat RunPCA). To reduce technical noise, we performed

a JackStraw [439] procedure (see Seurat JackStraw) which randomly subsamples the data,

re-performs PCA, and identifies the components with the highest enrichment of low p-value

features. We then implemented a graph-based clustering approach to identify groups of similar

cells which we subsequently visualized using UMAP (see Seurat RunUMAP).

5.4.5.9 scRNA-seq cell identification We annotated individual cell clusters using

marker genes defining each cluster. Specifically, the top 25 marker genes for each cluster were

identified by finding differentially expressed genes being present in at least 25% of the cells

between groups with a 0.25 log fold change between clusters for that gene (FindAllMarkers).

These uniquely expressed marker genes were used to annotate individual clusters. To perform

this annotation, an iterative approach was performed by comparing the top markers to

previously identified markers from a series of mouse cell atlases and a commercial database of

cell markers (cellKb). First, internally identified markers from internal data was overlapped

with top markers from identified clusters. Second, markers were overlapped with cell identity

markers from three atlases of developing mouse kidney cells [24, 440, 441]. Third, top identified

markers were matched with cell signatures using the commercial CellKb database to create

rank ordered lists of top matching gene signatures to cell signatures. The resulting top ranked

hits from all three methods were then merged and cell cluster identities manually annotated.

5.4.6 Integrating transciptome and accessibilome

Next, we performed label-transfer to integrate scRNA-seq data with the scATAC-seq

data. Anchors between gene scores, a measure of gene expression based on chromatin

accessibility, and RNA expression from the scRNA-seq data was combined through the

addGeneIntegrationMatrix function from ArchR. First, a gene score matrix is generated
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by summing reads in peaks with the nearest annotated gene to calculate gene activity by

proxy of chromatin accessibility [224]. With this information, cells with the most similar gene

score derived expression profile are matched to scRNA-seq expression. This has the intended

benefit of labeling ATAC-derived clusters with the RNA-seq based cell annotations. With

this integration, we investigated the chromatin accessibility of individual cell types to identify

cell-type specific and co-accessible peaks, differentially accessible regions, enriched motifs,

and cellular trajectories.

5.4.7 Renin cell differentiation trajectory

Because mature renin cells are so rare, no previous studies have successfully identified markers

for this subpopulation. To identify these cells, we performed trajectory inference to uncover

the dynamic chromatin and expression changes that lead from Foxd1+ progenitor cells to

renin-expressing cells in later development. We calculated a pseudotime trajectory for each

cell. Cells early in the renin cell differentiation trajectory were identified by filtering cells on

high Foxd1+ expression from RNA-seq data and gene score activity from open chromatin.

We then identified cells with high expression (both integrated RNA-seq expression and gene

score activity) of the renin marker genes, Ren1 and Akr1b7. Clusters that fulfilled these

requirements were utilized as a backbone of ordered vectors and a pseudotime trajectory

constructed using ArchR’s addTrajectory function. This trajectory, and relevant markers,

were then visualized on the UMAP embeddings of the LSI and Harmony corrected reduced

matrix using the function plotTrajectory.

5.4.7.1 Identifying renin cells To determine the identity of the renin-expressing cells,

we evaluated markers of mature renin cells and mature smooth muscle cells (SMCs). Both

renin cells and mature smooth muscle cells are derived from a shared lineage, and we initially

identify clusters of cells with markers for both cell populations. To specifically identify only

mature renin cells, we exclude cells with predominant SMC markers. Specifically, we first

identify the intersection of cells in the upper quartile of integrated scRNA-seq expression

and the upper quartile of gene score activity derived from the scATAC-seq using the renin

cell specific markers: Ren1 and Akr1b7. We then identified the upper quartiles from both

scRNA-seq expression and gene score activity for the SMC markers: Acta2, Smtn, Tagln,

Myh11, and Cnn1. We then took the difference between the identified renin cells and SMCs

to create a renin cell exclusive subpopulation, with the remainder representing mature SMCs.
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5.4.8 Pairwise comparisons of renin trajectory cells

With our defined trajectory of progenitor cells and fully differentiated renin cells, we performed

pairwise comparisons between each cell group along the trajectory. Following the identification

of marker peaks, motifs were annotated and differentially enriched motifs identified between

clusters. Footprinting analysis was then performed on identified enriched TF motifs. Co-

accessible regions and genes were calculated and visualized in the browser with putative motif

binding sites. Finally, TFs that were positively correlated between enriched motifs and their

matched genes were determined.

5.4.8.1 Renin trajectory marker peaks With the identification of our population of

renin cells and the differentiation trajectory defined, we next sought to look which changes

in gene expression, regulatory features, and TF motifs are differentially regulated. We

subsetted the clusters comprising the renin cell trajectory and first identified the regulatory

regions that differentially identify each subpopulation by adding pseudo-bulk replicates that

recapitulate the biological variability within each cluster (addGroupCoverages) prior to calling

peaks (addReproduciblePeakSet). To identify features that were differentially expressed or

accessible between clusters, the getMarkerFeatures (ArchR) function was used and features

with a false discovery rate of less than 0.1 and absolute log2 fold changes greater than 1 were

identified. We then plotted marker genes based on integrated scRNA-seq and scATAC-seq

data on the UMAP embedded reduced dimensionality matrix.

5.4.8.2 Motif annotations and enrichment Next, we determined enriched TF motifs

to identify the most active transcription factors in our cell types of interest. We added

motif annotations in the enriched peaks using the cisbp [442] database of annotated motifs

through the addMotifAnnotations function of ArchR. This method utilizes chromVAR [443]

to calculate a TF deviation z-score that indicates relative enrichments of motifs in peak

regions compared to background [224, 443]. We leverage these deviation scores to uncover

differentially accessible regions and motifs between cell clusters of the renin cell trajectory.

5.4.8.3 TF footprinting After identifying enriched motifs, we sought to validate relevant

findings by calculating footprints of TFs of interest. To perform footprinting, motif positions

were extracted from the renin cell trajectory clusters using getPositions (ArchR). These

footprints are calculated using the pseudo-bulk replicates of scATAC-seq data along the

trajectory and normalized for Tn5 insertion bias. Footprints of enriched motifs in each renin

cell trajectory cluster were then plotted using plotFootprints (ArchR).
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5.4.8.4 Peak co-accessibility and peak to gene links Because peaks with shared

accessibility may represent distinct regulatory networks, identifying co-accessible peaks

provides a means to uncover features relevant to clusters along the renin cell trajectory.

This co-accessibility represents peaks with strong correlation across many cells and can

often indicate cell-type specific regulatory regions. We calculate this information with the

addCoAccessibility function in ArchR. With integrated scRNA-seq data, we additionally

look for correlations between both accessibility and gene expression profiles between marker

peaks using getPeak2GeneLinks at a resolution of 10000 to reduce the total number of

links to prevent over-fitting [224]. These peak-gene linkages are more relevant to regulatory

relationships because they include not only correlated peaks but genes whose expression is

also correlated between cells. The resulting co-accessible peaks and genes are visualized on

browser tracks using the plotBrowserTrack function. To visualize how accessible regions and

gene expression change along the trajectory, we also plot a heatmap of these linked regions

and genes using the plotPeak2GeneHeatmap function (ArchR).

We extended visualization in browser tracks by also plotting putative TF binding sites in

regions of interest by looking for motif occurrence enriched above random using FIMO [444].

TF binding profile position frequency matrices (PFM) for motifs enriched in marker peaks

were obtained from the Jaspar database [445]. For a wide region around the Ren1 gene,

enriched motif PFMs were used to find individual motif occurrences in this sequence and

plotted alongside tracks of chromatin accessibility and co-accessible peaks. These binding

sites were loaded into R as individual GRanges objects [446] and concatenated into a single

feature object and visualized in the browser by leveraging the features parameter of ArchR’

plotBrowserTrack.

5.4.8.5 Positive transcription factor regulators Since the specific DNA motifs be-

tween related TFs are similar, linking individual TF gene expression with motif enrichments

enables the identification of positively correlated genes with their matched motif. This is

performed by first calculating the most variable TF deviation z-scores between clusters and

then correlating those z-scores with the integrated gene expression from the scRNA-seq

data (correlateMatrices). Positive TF regulators are then those TFs with motif and gene

expression correlation greater than 0.5, p-values less than 0.01, and whose maximum difference

in z-score between clusters is in the first quartile. We also calculate this with the gene score

activity from scATAC-seq to identify positively correlated TFs based on motif enrichment

and gene score (correlateMatrices). These correlations identify factors playing a central

role in renin cell development.
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5.5 Supplemental figures
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Figure 5.5: scATAC-seq quality control. (a-d). UMAP visualiztion of putative doublets
in developmental time points E12 (a), E18 (b), P5 (c), and P30 (d). (e-h) Distributions of
TSS enrichment by the log10 number of unique fragments for E12 (e), E18 (f), P5 (g), and
P30 (h). Dashed lines represent cut off values below which cells are removed. (i-l) Fragment
distribution plots for developmental time points E12 (i), E18 (j), P5 (k), and P30 (l).
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Figure 5.6: scRNA-seq quality control. (a-d) Distribution of the number of RNA features
against the total RNA count in developmental time points E12 (a), E18 (b), P5 (c), and P30
(d). (e-h) Distribution of the percentage of mitochondria mapped reads against the total RNA
count in developmental time points E12 (e), E18 (f), P5 (g), and P30 (h). (i-l) Distribution
of the percentage of hemoglobin mapped reads against the total RNA count in developmental
time points E12 (i), E18 (j), P5 (k), and P30 (l). Green fill boxes represent cells passing
filters.
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Figure 5.7: Browser tracks at the Ren1 locus identify previously reported promoter
binding factor motif occurrences. Browser tracks identify preferentially enriched open
chromatin in the JG cell cluster at Ren1. Motif occurrences of enriched TFs identify putative
binding sites in open and co-accessible peaks. Yellow fill box highlights uniquely enriched
peak in JG cluster. Pink fill box highlights JG promoter region.
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Figure 5.9: Heatmaps show changes in differential accessibility, expression, and
TF motif enrichment along the JG trajectory. (a) Heatmap of gene score activity along
cell clusters defining the JG trajectory. (b) Heatmap of gene expression along cell clusters
defining the JG trajectory. (c) Heatmap of accessible regions identified along cell clusters
defining the JG trajectory. (d) Heatmap of enriched TF motifs along cell clusters defining the
JG trajectory.
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Figure 5.10: Enrichment of genomic functional classes in marker peaks along the
JG differentiation trajectory. Individual cell clusters along the differentiation trajectory
leading to JG cells display differential enrichment of genomic classes including: 3’ UTR,
promoter proximal, promoter core, intron, intergenic, 5’ UTR, exon, and enhancers. Bars for
each class represent the observed proportion of regions defined as marker peaks for individual
clusters relative to the expected proportion based on the number of bases defined as a
particular genomic functional class.
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Figure 5.12: Transcription factors enriched along the JG differentiation trajectory
act as early to middle to late acting factors. TFs that are enriched in clusters along
the developmental trajectory of JG cells early (a), middle (b), or late (c). (b) Bold TFs
are positive TF regulators Italicized TFs are known regulators of renin expression. JG:
juxtaglomerular
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Figure 5.13: Transcription factors differentiating JG cells from mature SMCs are
preferentially enriched in late differentiation trajectory clusters. (a) Mef2c (and
Mef2a (b), Mef2b (not shown), Mef2d (not shown)) are enriched in late time point clusters
that contain and ultimately form mature JG cells. Zfp283 (c) is enriched middle to late along
the differentiation trajectory. Tead3 (d) differentiates JGs from SMCs but is generally equally
enriched across development. Stat5b (e) is positively enriched throughout the middle and late
clusters along the JG differentiation trajectory. Bcl11a (f) and Bcl11b (g) differentiate JG cells
from SMCs but are overall lowly enriched in all clusters. Nr2f6 (h) and Nr2c1 (i) are enriched
in late time point clusters including JG cells. Rarg (j) is enriched in late developmental time
points including JG cells. JG: juxtaglomerular

6 Companion research that improves our ability to in-

terrogate genomic regions

While we sought to meet unmet computational needs in the field of genomic region analyses, we

realized a significant lack of infrastructure based tools and companion software to streamline

and increase reproducibility of bioinformatic analyses existed. To address some of these

limitations, I contributed programmatic efforts towards pipeline reporting, genomic asset

management, and novel applications of single cell embedding algorithms to improve our ability

to uncover biological relationships in region data.
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6.1 Looper: A pipeline submission engine

Looper is a Python package that simplifies job submission to local or cluster-based compute

resources. By employing a single definition of project data (i.e., PEP formatted files [447]),

looper handles job submission and status independent of individual pipelines. While the

earliest version of looper included this utility, it lacked universal reporting features that

eased adoption nor organized output in user-friendly and aesthetically pleasing ways. To

address this limitation, I wrote updated Python functions that could interpret PEP projects

and pipeline output to generate beautiful HTML-based reports of pipeline output agnostic of

individual pipelines. This provides end-users with a browsable report that condenses pipeline

output in a single, easy-to-navigate location.

6.2 Refgenie: a reference genome resource manager (derived from

[448])

Non de novo sequencing reads require alignment to reference genomes. The challenge arises in

which there are multiple reference genome authorities [449–453], but no standardized means

to organize and maintain provenance of those assets. Refgenie was designed to address

this need by providing programmatic access to download and manage assets while using

sequence-derived identifiers that uniquely and reproducibly identify asset provenance [448].

Not only does refgenie manage primary genome assemblies, but it can build and manage any

genome related asset including: gene and transcript annotations, genomic regions annotations,

or single-nucleotide polymorphism annotations. To expand the number of managed assets,

I wrote refgenie recipes to build genomic region annotation assets and genomic indexing

assets that identify mappable genomic regions based on read lengths [448].

6.3 Embeddings of genomic region sets capture rich biological asso-

ciations in lower dimensions (derived from [454])

Genomic regions can represent genes and non-coding regions that include regulatory elements.

A common task in genomic analyses involves clustering related genes or regions to find shared

patterns of regulation and expression among or between cells and experimental conditions.

In natural language processing (NLP) research, significant effort has been performed to

design algorithms that can uncover patterns of usage and similarity between words and

sentences in language [456]. Perhaps unsurprisingly, these representations of language share

strong similarity with representations of the relationships between genomic regions. A word

may represent an individual gene or regulatory locus with sentences representing gene and
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Figure 6.1: UMAP visualization of scATAC-seq datasets using region-set2vec
successfully separates single cells into biologically meaningful clusters. (a) Simulated
bone marrow dataset with a coverage of 2500 fragments per cell [455]. (b) Mouse Foxd1+
progenitors from four developmental time points: E12, E18, P5, and P30.

regulatory element networks. By modifying a well-established NLP algorithm, specifically

Word2Vec [457], to genomic regions, we showed that meaningful biological relationships can

be obtained through this embedding and clustering method [454]. This modified method

we term region-set2vec to reflect its genomic context. I wrote a Python package to apply

the region-set2vec method to open chromatin and show that NLP-derived algorithms can

successfully capture biological variability between groups of scATAC-seq cells with known

function (Fig. 6.1a) and/or shared lineage (Fig. 6.1b) [454].

6.4 GenomicDistributions: fast analysis of genomic intervals with

bioconductor (derived from [458])

Analyzing genomic regions includes several near-universal procedures which include iden-

tifying the distribution of regions across the genome, across annotated functional classes,

or relationships between genomic regions and TSSs or genes. With the abundance of open

chromatin data rapidly expanding, the need for software capable of processing these large data

sets quickly and efficiently continues to be an unmet need. With GenomicDistributions, we

sought to address this requirement by producing an R package that is fast and easy to use for

the summarization and visualization of genomic regions. Here, I contributed calculation and

plotting functions to identify the distribution of genomic regions across annotated functional

classes such as promoters, enhancers, exons, introns, or intergenic regions. Furthermore,

I included the ability to calculate the expected frequency of these annotation classes over

background, emphasing which particular classes are enriched in any provided set of genomic

regions. These functions, and others included in the package, enhance our ability to quickly



107

analyze and visualize any number of large genomic region data sets.

7 Conclusions, Impact, and Future Studies

Chromatin structure and accessibility in cells plays a pivotal role in development, function,

and identity. Efforts to investigate chromatin and the epigenome have been rapidly expanding

[213] with continual developments in methods to assay regions of open chromatin that include

regulatory regions. These regions represent cis-regulatory DNA sequences that control the

specificity and quantity of transcription through interactions with sequence-specific DNA-

binding transcription factors. Chromatin structure also regulates these processes through

differences in three-dimensional conformation, nucleosome positioning and density, and through

combinations of post-translational modifications of core histone proteins. Combined, open

or closed regions of chromatin demonstrate which areas of the genome are transcriptionally

active or repressed. Through bench-based and computational analysis, we can study cellular

differentiation and function as marked by changes in local chromatin structure.

While historically genome function was interrogated through the linear DNA sequence, we now

understand that chromatin accessibility and structure plays pivotal roles in genome regulation.

This has significant implications in the study of human health and disease [459–463]. Therefore,

we now have the tools to both identify novel druggable targets in diseases, including cancers,

and the ability to better understand off-target effects of current therapies. Applying these

approaches in understudied systems or in cells historically intractable to traditional methods,

such as renin cells, provides the opportunity for novel insights. Here, we have coalesced a

number of methods in the field to improve our computational-based tool set and apply these

methods to the study of open chromatin in a tissue and cell highly relevant to wide-ranging

human health conditions.

7.1 Summary of fulfilled gaps in the field

Each chapter of this dissertation seeks to fulfill or answer an unmet need in the field of

bioinformatic analysis. The review of open chromatin analysis provides the field a starting

point where new and accomplished users alike can begin when starting a study utilizing

ATAC-seq. PEPPRO provides the first nascent RNA sequencing pipeline for the field with

novel metrics that can be used with PEPPRO or independently to validate nascent experiments

[215]. PEPATAC provides the most comprehensive ATAC-seq pipeline in the field to simplify

and universalize ATAC-seq studies in preparation for the plethora of possible downstream

investigations [177]. The integration of computational analysis with bench-driven experiments
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in the field of renin cell biology provides a detailed example of the power of these assays

and tools developed to investigate them. This work demonstrates the utility of multi-omic

approaches and how we can apply tools to increase our power of discovery. Finally, the number

of companion tools [448, 454] I have helped develop illustrate the necessity for creating a shared

infrastructure for discovery and project sharing to aid reproducibility and the robustness of

findings. This companion work also uncovers new avenues for genomic regulation discovery

[454].

7.2 Integration of computational and bench-based methods

Together, this work brings together the power of computational biology with bench-driven

research. It illustrates the necessary steps to train an individual to build software that aids

researchers and demonstrates how those tools can then be applied to investigate biological

problems that remain challenging to investigate historically. Moving forward, more work

remains to improve our analytical tool box, and having researchers trained in both the

computational and biological paradigms necessary to answer these questions is an area of work

that requires continued effort. This dissertation has revolved exclusively at this intersection:

combining biological knowledge and bench-based techniques with the computational power to

aid in understanding new findings.

7.3 Support for analytical tools

With the production of publicly-accessible pipelines and tools comes the challenge of long-term

maintenance and support. Both PEPPRO and PEPATAC are published pipelines available through

the code sharing platform GitHub [464]. Development has continued regularly post-publication

through field-driven changes and community requests. These public code bases to which I

can maintain access will enable continued activity, contribution, and support on my part

going forward. I will also continue to provide input and support for shared efforts including

looper, refgenie, and the single-cell embeddings tool discussed in Chapter 6. All of the

aforementioned tools and analyses are open source and actively participate with users to

continue to improve and aid in adoption.

7.4 Investigating the development and regulation of renin cells

Because of the contribution of renin expressing cells in the kidney to homeostasis, improved

understanding of the development and regulation of these cells is an ongoing need in the field.

While we have continued the effort to explore the genetic and epigenetic landscape of renin

expressing cells, future work will expand on this knowledge through several potential avenues
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of research.

7.4.1 Epigenetic regulation of early, middle, and late progenitors of renin cells

With a single-cell atlas of chromatin accessibility and transcriptomic changes of renin lineage

cells, we now have the ability to investigate differential changes in regulatory element accessi-

bility, gene expression, and TF binding events that are required for differentiation from the

cap mesenchyme in developing kidneys to fully mature JG cells in the adult. A likely path

forward would include integrating ChIP data and chromosomal conformation experiments to

our single-cell developmental atlas. Assaying regulatory histone marks including H3K27ac,

H3K27me3, H3K4me1 can enable the identification of when regulatory regions along the

trajectory are poised or active to better elucidate the timing of events. This also informs on our

ability to obtain a viable cell culture model of renin cells in vitro, where the supplementation

of appropriate factors may facilitate long-term culturing and sustainability of renin expression

which is currently impossible. We can also integrate chromosome conformation capture with

ChIP-seq using HiChiP [465]. Here, we would obtain simultaneous interrogation of where

histone marks are identified and what DNA loops are associated with those marks of interest.

7.4.2 Identifying druggable targets of aberrant renin cell function and renin

expression

With >30% of the population of the United States experiencing hypertension [466, 467], an

improved understanding of renin cell function provides valuable insight into the effects of

this disease and consequences of standard treatment with RAS inhibitors [391]. Hypertensive

individuals constantly stimulate renin production and this has the malignant consequence of

leading to renin transformation and arterial disease. Furthermore, inhibition of the angiotensin

system to treat hypertension, whether through direct inhibition of renin (aliskiren), by ACE

inhibitors, or angiotensin receptor blockers (ARBs) causes significant changes to renin cells

[230]. Therefore, our efforts to better understand renin cell function may provide novel targets

for hypertensive treatment as well as better understand how current treatments adversely

effect renin cells. Future studies will look at possible interactions between drug targets and

the identified TFs that contribute to renin cell identity.

8 Materials and Methods

The primary methods for each chapter are included where appropriate. Because this work

is computational in nature, it is important to understand the infrastructure utilized and
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required to carry out this effort. The logic behind how to tackle computational projects is

also discussed.

8.1 Computational infrastructure

This dissertation research is computationally driven and relies on a robust computational

infrastructure to be pursued. As a student of Dr. Nathan Sheffield’s research group and as

a member of the Center for Public Health Genomics (CPHG) at UVA, we have access to

a comprehensive computational infrastructure that supported the work of this dissertation.

This research utilized multi-display Dell desktop computers and the UVA university-wide

computing cluster termed Rivanna (a Cray CS300AC with 240 20-core nodes (4800 cores in

total) and two 16-core GPU nodes, all with 128GB of memory per node and a high-speed,

low-latency Infiniband interconnect).

The CPHG’s linux servers and desktop backups are managed by the UVA Information

Technology Services (ITS) group. UVA ITS is an organization of professional faculty and staff

dedicated to providing access to high performance computing for research and education. ITS

staff manage and maintain the integrated systems infrastructure equipment and networks, UVA

email servers, and host a system for the development of dynamic web database applications,

designed to support medical research that may need to store sensitive data. These computing

resources provide outstanding computational power for bioinformatics. There is extensive

support provided for all aspects of computing, including the security of data, backup of data,

and 24/7 monitoring of all systems (including dedicated project servers).

For longer running and more intensive parallel-computing analyses, this work relied on access

to a university-wide computing cluster, Rivanna, installed in 2014. The system provides

1.4PB of temporary storage in a fast Lustre filesystem. The resource manager is SLURM

(Simple Linux Utility for Resource Management). User-level applications are invoked by

means of modules. The Cray cluster combines large amounts of processing with large amounts

of memory to provide a significant resource for computationally-intensive research at UVA.

8.2 Building a better pipeline

A primary focus of this research has been the development of robust computational pipelines

for the analysis of emerging genomic technologies, specifically ATAC-seq and nascent RNA-seq.

Much of the bioinformatic software available in the genomic and epigenomic field suffers from a

number of common issues, particularly a lack of formal best-practices software training among

researchers and limited funding and support for development and maintenance [468–473].
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Furthermore, a common question that comes up in any software driven effort is the selection

of an appropriate coding environment in which to write such software. To address all of these

concerns, firstly, I have performed this work under a computationally trained mentor. Secondly,

all implemented code is stored on a publicly-accessible and disclosed platform, GitHub [464],

which eases communication from users and developers and streamlines long-term maintenance.

Thirdly, I learned and wrote all demonstrated pipelines and tools in either the R or Python

coding environment, both of which are the top two most commonly employed bioinformatic

languages [474].
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