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Statement of Work: 

Bryam Ayvar:  

My main responsibility was OpenCV and the interaction between the camera and the 

board. I researched and developed the board detection and the piece recognition algorithms, 

testing multiple approaches and finding the most accurate one to have a reliable stream of data 

for the rearrangement algorithm to function properly. I also worked analyzing the details of the 

markers, such as size, distance, and camera sensor resolution. I developed the camera driver code 

and configured the Pi to be able to handle the resolution from our camera sensor. Finally, I 

designed and built the packaging of the camera. This includes around half of the woodworking 

aspect of the project. 

 My secondary responsibility was designing the motor driver portion of the PCB, 3D 

printing many of the parts, such as the chess pieces and the gantry parts (which Marshall 

designed) and setting up the breadboard for the preliminary design of the project. 

I assisted on system and integration testing with Selena and Marshall for the entire 

project and debugging and testing the PCB with Bruce. I also prepared all the documents, parts, 

and board to assemble the PCB at 3W with the help of Selena. 

Bruce Bui:  

My main responsibility was designing, assembling, and testing the printed circuit board. 

This included researching the operation of motor drivers, use of MOSFETs as switches, 

electromagnets as inductive loads, and general board design concepts. I designed the 

electromagnet control and power supply sections of the PCB. After receiving the PCB, I was 

responsible for soldering components onto the board, and performed most of the testing on it. 

During integration testing, I was responsible for setting up remote access to our Raspberry Pis, to 

avoid having to use an external monitor and keyboard. I also enforced determinism on the 

Raspberry Pi, to ensure our rearrangement does not hang infinitely, and executes within a set 

time. 

Marshall Mcilyar: 

My main responsibility was designing and building the gantry system. I first researched 

and found the best way to achieve 2D motion (via coreXY), and then I CAD designed a gantry 

system under this design mechanism. I purchased and 3D printed a few parts, then assembled the 

gantry design by hand. Once the motors were operational, I then tested the gantry system and 

added features like limit switches and cable management to improve design robustness. 

My secondary responsibility was working on PCB circuitry and schematics for the system 

inputs: the two limit switches and start button switch. This includes multithreading and 

debouncing the on/off switch and software level logic for the limit switches. 
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I spent my remaining time designing the chess pieces in CAD, iteratively testing the 

electromagnet + permanent magnet combination, and assisting with software improvement and 

full system testing. 

Selena Pham: 

 My main responsibility was the rearrangement algorithm and the embedded code, which 

is the step that follows right after the image processing. I developed a program to determine if a 

board is rearranged, which piece to move first, prioritizing the main pieces and the shortest path 

for a given piece, and also handling exceptional cases, such as moving a piece out of a spot if a 

piece needs to move there. Then, I programmed the Raspberry Pi to send the appropriate signals 

for the stepper motor drivers to move one piece from a tile to the other. I also tested and 

determined many of the factors of the motors and the coreXY system, such as the speed, micro-

stepping level, how many steps to move the carriage 1 mm and torque.  

My secondary responsibility was putting Bryam image processing and Marshall 

multithreading code to have the completed software system. After that, I did a great deal of 

system tests to identify any errors if they came from mechanic system or software system. Then, 

I communicated with the corresponding team members to fix integration issues, such as 

improving the accuracy of the markers, helping with the bump-switches, testing the magnet and 

electromagnet strengths, and breadboard issues. 

I also assisted in building the wood frame of the board, doing around half of the 

woodworking, and the packaging of the pieces, such as spray-painting them and designing and 

printing the green playing board. 
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Abstract  

The ReChess is an automatic self-rearranging chess board which can be used to return the 

pieces quickly and efficiently to their starting positions once a match has concluded. In order to 

determine the current game state, a camera suspended above the board can frequently capture the 

positions of the pieces. This data is processed using OpenCV computer vision and used by our 

algorithms to determine the correct sequence of moves. The actual piece movement is handled 

by a gantry system underneath the board, which uses an electromagnet that is turned on and off 

to “pick up” pieces. 

Background  

Chess, one of the oldest and most popular board games, is played by two opponents on a 

checkerboard with specially designed pieces of contrasting colors, commonly white and black. 

The board consists of 64 squares arranged in eight vertical rows called files and eight horizontal 

rows called ranks. These squares alternate between two colors: one light, such as white, beige, or 

yellow; and the other dark, such as black or green. Chess first appeared in India about the 6th 

century and by the 10th century had spread from Asia to the Middle East and Europe [1]. After 

being introduced to Europe in the 15th century, chess became popular among the nobility [2]. 

Rules and set design slowly evolved until both reached today’s standard in the early 19th 

century. 

Since the beginning of the Information age in the 1950s [3], advancements in artificial 

intelligence, neural networks, and deep learning have significantly accelerated the evolution of 

chess. At the time, artificial intelligence playing chess was one of the most novel and 

groundbreaking ideas. Many studies, prototypes, and inventions pertaining to computer chess 

and robotics were created. In 1997, IBM supercomputer Deep Blue’s historic victory over world 

chess champion Gary Kasparov shook the world of chess to its core. Now, a short 25 years later, 

AIs employing chess engines such as AlphaZero, Stockfish, and Leela Chess Zero are 
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commonplace, and players can even choose a level of difficulty to play against [4]. In addition to 

improving AI algorithms, there have been further research studies demonstrating how to create a 

robot to play chess with humans. At the 2011 IEEE International Conference on Robotics and 

Automation, a team of researchers led by AI researcher Cynthia Matuszek presented Gambit, a 

manipulative system that is designed to autonomously play chess against human (or robotic) 

opponents [5]. Matuszek and her team also developed custom robotic arm hardware, as a player, 

for the Gambit system [5].  

 As for our research, the chess industry mostly develops AI algorithms and autonomous 

robotic systems to play chess. In contrast, our project instead focuses on designing a chessboard 

with the automatic rearranging ability that supports players to reorganize their chess pieces to the 

original positions to start a new game. The current design is a fully integrated product between 

hardware and software to create a fully functioning chessboard that can move the pieces and 

implement the most efficient rearranging algorithm.  

The strategy that intertwines hardware and software requires a great deal of knowledge 

accumulating through the whole engineering curriculum and some additional research and 

knowledge to support the design. All team members have taken the ECE Fundamentals courses 

which will help in creating the power supply, designing PCB, and integrating hardware testing. 

PCB design and signal processing would be used to create a stable power supply, such as the AC 

to DC transformation. Testing all the hardware components before building them to the physical 

system is important. The Embedded Computing & Robotics sequels (ECE 3501 and ECE 3502) 

cover topics in embedded computing with a focus on robotics. The courses introduced and 

trained us how to use a microcontroller as a “brain” to implement software programs and transfer 

the results to the processing signals for the hardware, especially the motor here, to move the 

pieces. In addition, the skills gained from the Algorithm course (CS 4102) would play the most 

crucial roles in designing and implementing the rearrangement algorithm. 

Physical Constraints 

Design Constraints 

The most important constraint of our design is the capstone course constraint that our 

design must include a Microcontroller or Microprocessor as well as a PCB. We already had an 

RPi at our disposal, but the PCB needed to be designed and manufactured. The PCB design 

needed to be manufacturable, so it had to be under a certain maximum size, above a minimum 

line spacing, etc. [6]. Due to space constraints, the PCB will also need to be mountable on top of 

the Raspberry Pi like a HAT [7]. A time constraint for the PCB is the send out. We were only 

given two of three possible dates to send our board to the manufacturer: 10/10, 10/18, and 11/11. 

Although these dates got pushed back, our initial PCB layout had to be complete by either 10/10 

or 10/18, and it had to be finalized by 11/11. 

Another manufacturing limitation was the part orders. Part orders had to be issued in 

groups to save money, so they only occurred once a week; for Openbuilds and Digikey, this was 
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sometimes every other week. Furthermore, part availability was scarce, so parts being out of 

stock was another constraint on manufacturing. The manufacturer for creating the PCB [6] and 

the part assembly at 3W [8] each have a week of overhead, so this constrained our design time 

further. 

  CPU constraints were not heavily considered due to the large processing power of the 

Raspberry Pi 4B [9]. However, we found OpenCV to be bottlenecking our processor during 

testing, so we had to limit the camera resolution in order to remove this bottleneck. UVA’s 

software licenses and open-source software made any necessary software readily available. 

Cost Constraints 

Our project was assigned a budget of 500 dollars. In order to maintain this budget while 

working in parallel, we assigned a 250-dollar budget to the gantry parts and assembly. In order to 

operate under these constraints, our design had to work with cheap aluminum extrusion from 

Zyltech [10], as opposed to more expensive cylindrical rods and bearings found at McMaster-

Carr [11]. Costs were cut further by custom designing chess pieces in CAD and 3D printing them 

for free at UVA. The RPi was already readily available, which helped relax budgetary constraints 

overall. Nevertheless, the $500 budget limited the quality of the gantry and motors. Also, backup 

parts were not ordered due to cost constraints, so the cost constraints forced us to find 

workarounds for broken parts. 

Tools Employed 

PCB Design 

KiCad [12] was used for circuit schematics and PCB design. It allowed us to create a 

netlist that connected components automatically, map footprints for manufacturers, and use 

hierarchical blocks to keep our schematics organized. KiCad’s schematics editor was used first to 

draw up the design schematics. We then used KiCad’s PCB Layout software to arrange the 

schematic components on an actual PCB and connect them through a netlist. Our team was 

inexperienced with KiCad, so it had a steep learning curve before we could start working on our 

board. Once our PCB Layout was complete, FreeDFM [13] was used to verify the design as 

manufacturable. 

Gantry & Hardware Design 

The gantry was designed in FreeCAD [14] before being built. Marshall, the team member 

in charge of gantry design, was not experienced with Cad, so he had to learn Cad from scratch 

before building the gantry. Designing the gantry in CAD first guaranteed that parts would fit 

together for assembly. Furthermore, some of the parts used in the gantry had to be custom 

designed and 3D printed to fit the CoreXY design. FreeCAD was also used to design custom 

chess pieces. Drills, screwdrivers, hex wrenches, and pliers were utilized in the physical gantry 

assembly. The custom gantry and chess models needed to be created, so Ultimaker [15] and 
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Makerbot replicator+ [16] printers were used for 3d printing them. Ultimaker Cura and Makerbot 

Print were used respectively to slice the CAD files into 3D printable GCode. 

Software 

Our OS for the RPi is the default OS, called “Raspberry Pi OS”, and it is a Linux 

distribution based on Debian [17]. The software was programmed using the Visual Studio Code 

IDE [18]. Our lead programmer Selena had some experience with Python coding already which 

eased the process of developing functional code. For image recognition, we used a special 

python library called OpenCV, which has extensive functions and documentation on image 

processing [19]. Though our team already has experience with python, it took a lot of time to 

learn the OpenCV library and employ it in our final design. 

 

Societal Impact Constraints 

Environmental Impact 

The product itself consumes very little power; energy consumption is not a major concern 

for environmental impact. However, the use of permanent Neodymium magnets is cause for 

concern. If disposed improperly, the magnets can be toxic and cause health problems to people 

near where the magnets are dumped [20]. It would be prudent to find a more environmentally 

friendly magnet for mass production. Plastic chess pieces are also a potential waste hazard. 

Though PLA plastic is recyclable, not all recycling plants can recycle it [21]. Furthermore, a new 

issue in microplastics has recently grown in prominence in both environmental research and the 

mainstream media. There is evidence that the process of recycling can cause microplastics to 

leak into aquatic environments and pollute them [22]. If the pollution issue of microplastics 

becomes severe, unnecessary or materialistic products such as this chess player may need to be 

redesigned. One possible solution is to swap from plastic chess pieces to custom wooden pieces 

when redesigning the product for mass production. Plastic is fine for rapid prototyping, but a 

factory with a wooden lathe would be cost efficient and environmentally friendly for mass 

production. 

The lifespan of our product is variable dependent on frequency of use and is mainly 

dictated by the stepper motors. The motors drive a very light load compared to their weight limit, 

operating at a fifth of their maximum current, thus a fifth of their maximum torque. Thus, the 

motors should last for multiple years of frequent or continuous use [23]. Another potential 

bottleneck for product lifespan is friction of the pieces sliding along the chessboard. For a 

commercial product, a smooth, polished wooden board surface would help reduce friction, 

coupled with a low friction padding on the bottom of the chess pieces. Our testing also found that 

the camera could fail if the piece identifiers got damaged or deformed. Providing some sort of 

replacement markers may help improve product lifetime, or potentially engraving the markers 

into the wooden pieces when manufactured. 
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Sustainability 

Given the nature of our product and its awkward size, it’s unrealistic to expect consumers 

to break down the product at its end of life and recycle it. However, because aluminum is highly 

recyclable [24] and our product contains a large amount of aluminum, our design could be 

refactored to allow consumers to easily detach the aluminum framing for easy recycling. 

Nevertheless, a life cycle assessment of some sort would be appropriate to assess the overall 

impact of this product on climate change with a focus on pollution from manufacturing and 

recyclability. The impacts may be minimal due to the small size of the product, but it would be 

prudent to perform an LCA regardless. 

Health and Safety 

Our device isn’t inherently dangerous, but it does have a few potential health hazards of 

note. First and foremost, the chess pieces themselves could be considered a choking hazard, so 

this device should not be accessible to children under three years old [25]. Furthermore, the 

device itself should not be easily broken down in order to prevent children or unsuspecting 

patrons from being exposed to moving machinery. Unfortunately, this makes extracting 

aluminum for recycling an especially tricky task. The gantry could potentially damage a person’s 

finger if exposed when the device is active, though the current design does not run at a high 

enough torque to cause any significant damage. Our current design traps the gantry inside a box 

that is bolted shut, but a warning label would help advise consumers against taking apart the box. 

Though epilepsy was initially a health concern, our design does not use flash photography, so 

there is no longer a concern for epilepsy triggers. 

Ethical, Social, and Economic Concerns 

Perceived ethical issues that could arise from this design are minimal. The chessboard 

does not exclude any social group except for those who might not be able to move the chess 

pieces or press the start button. However, a mass-produced design would be augmented to 

provide automatic movements through an app for voice commands, and these two accessibility 

options could alleviate perceived isolation from people who struggle with disabilities. 

Economic disparage is the most significant ethical issue because the product may exclude 

anyone who cannot afford it. However, this is no different from any other unique or expensive 

chess set on the market. One way to maintain an ethical product is to set aside a portion of profits 

for a charity in which Re-Chess boards are donated to people with disabilities interested in 

learning chess. This would of course require more accessibility features to be added to the 

design, but the current hardware acts as proof of concept for a more accessible automated 

chessboard. 
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External Considerations 

External Standards 

1. NEMA motor standards – The stepper motors we used fall under the size standard of NEMA 

17. This means that the faceplate of the motor is 1.7 X 1.7 inches [26]. This standard is useful for 

designing any stepper motor driven actuation because a manufacturer can use a standardized 

motor carriage or chassis without having to worry about motor compatibility. For our design, this 

standard was useful because some of the most popular NEMA-17 motors were either out of stock 

or out of our price range. 

2. IPC PCB standards – We used two IPC standards to design out board for manufacturability. 

IPC 2221 gives general guidelines on trace thickness, part spacing, solder mask clearance, etc. 

[27]. IPC 600 is an inspection standard [28], and it is used by Advanced Circuits, the PCB 

manufacturer our group used for standard PCB inspections [29]. 

3. Surface Mount Standards – Our team used standard surface mount component sizes such that 

we could find appropriate footprints for our PCB layout [30]. While a custom layout is possible, 

a standard size assures that our PCB manufacturers and assemblers don’t have any problems 

building the board. 

4. STL (Standard Tesselation Language) - STL is a standard used for 3D modeling purposes 

[31]. It is a standard file format that represents 3D models as tesselations of triangles. STL files 

are used to allow 3D models to be imported and exported between different 3D model programs. 

For example, our project used CAD models of chess pieces in FreeCAD. However, Ultimaker 

Cura does not understand FreeCAD files. But I can export my FreeCAD files as .STL files and 

then send those files into Cura, allowing me and my team to produce 3D prints of files I 

developed using FreeCAD. 

5. V Slot Extrusion Standard – Though not guided by a formal standard, V-slot extrusion is a sort 

of standardized guide rail created by openbuilds [32]. The use of a standard guide rail allows our 

team to buy parts from multiple manufacturers, in this case both Zyltech and Openbuilds. 

6. Choking Hazard – The only standardized health hazard of our project is the standard on small 

parts used in toys and games [25]. Our project has chess pieces small enough to be considered a 

choking hazard according to the CPSC because the pieces are smaller than 1.25” in diameter and 

2.25” in height. If our project were mass produced, we would need a clear warning for children 

under 3 to steer clear of the chess set. 

Intellectual Property Issues 

The project’s patentability is dependent on many factors. The idea is not entirely unique; 

there is already a chessboard that uses a similar mechanism to move pieces available on the 

market: the SquareOff board [33]. It also uses an electromagnet to pick up pieces, but uses an 

HBot gantry system rather than a CoreXY. Additionally, our project uses image processing to 

detect pieces on the board, whereas the SquareOff board makes use of capacitive sensors and 
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sound feedback to make sure a piece has been touched. Another board similar to our project is 

the US 11 369 862 patent [34], which also has a framework to obtain an abstraction from the 

physical world and place it into a computer. However, the patented board uses radio frequency 

identification (RFID) antennas arranged in registration with the 64 squares on the board to detect 

pieces, which is wholly different from how we accomplish piece recognition. Figure 1 below 

shows a diagram of the pieces being detected on the board. 

  

Figure 1: US20190314715A1 smart chessboard patent piece detection 

 A more general concept of electronic game boards and game piece detection is described by 

patent US 10 456 660 [35]. The patent is not specific to chess, but instead covers all board games 

which have some method of tracking piece characteristics and storing/updating them in memory. 

Our board falls under this category, since it uses a camera to track piece positions, and stores this 

data in the Raspberry Pi’s memory. A patent for our project may not be approved due to its 

derivative nature. However, we argue that the piece detection system is only one part of our 

project, and that the piece rearrangement constitutes enough of a difference. 

Overall, we believe that our project is sufficiently non-imitative when compared with 

other patents. The intent of our project is different from those, in the sense that ours focuses only 

on rearrangement, while existing patents aim for players to play games autonomously, or do not 

cover autonomous piece movement at all. The mechanisms by which we achieve our goal are 

also sufficiently different. In conclusion, our project would most likely be marketable as a self-

rearranging board. 
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Detailed Technical Description of Project 

What It Is 

Our project's objective was to automatically reorganize a chessboard. The process starts 

when the push button is pressed, then our arrangement algorithm selects a piece and generates a 

queue of stepper motor moves to return the pieces to their initial place using image processing to 

locate the board and ArUco markers to pinpoint the exact locations of the pieces. Until the entire 

board was changed, this process would be repeated numerous times. A Raspberry Pi 4 served as 

the computer and processor and was employed for stepper motor control and image processing.  

Instead of using the traditional 8x8 chess board, the board has a border of 1 tile to allow for 

capture squares which made the board be 10x10 in total (Figure 2).  

 

Figure 2: The chess board and its captured pieces architecture 

The chess board is put on top of a wood frame which contains a CoreXY system to move the 

chess pieces. The Core XY system is composed of a gantry and two stepper motors that move an 

electromagnet which will be enabled with a logic high whenever a piece needs to be moved. 

Each chess piece has a permanent magnet attached to its base so that they can be grabbed by the 

electromagnet. Figure 3 describes the first draft of the product. 
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Figure 3: The first draft of the product (left) and the final product (right) 

The system design was broken down into the following sections 

• Software (Raspberry Pi) 

o Board Detection 

o Marker Detection 

o CoreXY execution: motors and electromagnet logic 

o Origin abstractions: Bump switches logics  

o Start Button Logics 

o Rearrangement Algorithm 

• Hardware (PCB) 

o Power Supply 

o Motor Driver Circuit 

o Electromagnet Control 

o Switches Circuit 

o Connection to Raspberry Pi 

• Mechanical 

o Piece Design 

o Wood-frame 

o Core-XY gantry design 

How It Works 
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Figure 4: General Process of ReChess 

Figure 4 describes the general software process of ReChess. When users press the start 

button, the Raspberry Pi is instructed to take a picture to capture the board's current 

configuration. The photo taken is processed by OpenCV [36] to detect the board, identify pieces, 

and create programming abstractions of the board and chess piece states. There are two 

abstractions that we use in the program: a 2D array and a “piece” class list that contains the 

approximate x and y coordinates of the piece, the name of the piece, and the tile it is located in.  

The rearrangement algorithm takes these abstractions as input to determine whether the 

chess board is rearranged or not. If the board is not rearranged, the algorithm picks the optimal 

piece to rearrange, calculates the path to move the piece to its destination, and creates a queue of 

movements. The CoreXY executes the movements to physically move the optimal pieces from 

its current position to the destination. Then, the camera takes a new picture reflecting the new 

state of the chess board. The process is repeated until the board is rearranged. 

Software 

Image Processing & Generating Abstraction 

Once the Raspberry Pi [37] obtains a picture of the chessboard, it needs to create an 

abstraction of the current state of the board for algorithm processing. To achieve this, we can 

further divide the steps into smaller goals: 

1. Detect the chessboard 

2. Identify the chess pieces 

3. Find the location of each piece 
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We will use the following image as an example of our image processing algorithm: 

 

Figure 5: Sample image for image processing 

Detecting the chessboard  

To detect the chessboard, we will use a string of well-known image processing 

algorithms from the openCV library [38]. We mainly need to use the Canny algorithm, which 

detects the edges in a given picture. However, some preprocessing needs to be done before we 

can apply it, thus the program first applies a Gaussian blur with a 7x7 kernel and turns the image 

into gray-scale, as these are better for thresholding, which is the next step. OpenCV has an 

adaptive thresholding algorithm we can use, in case there are changes in the amount of lightning 

in the picture, to enhance the system’s robustness [38]. After these, we can apply the Canny 

algorithm on the image, as seen by the 1st image below: 

 

Figure 6: From left to right - Canny result, findContour result, and Board Detector output 

After obtaining the result, we can obtain all the contours in the image using findContour, 

this process is shown by the middle figure. Then, we can approximate these contours to a 

geometrical shape, using an OpenCV function called approxPolyDP [36], and check for the one 

that has the largest area and four sides - the chessboard. The result can be seen in the last picture. 

There are a few points of weakness to keep in mind when using this method, such as requiring a 

bird’s eye view, a fixed distance from the chessboard, and having a distinct background under 

the chessboard. These are the reasons we decided to apply a static holder configuration for the 

camera to the final product. 
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Figure 7: Camera above Board 

 

 Finally, we can apply an image warp to zoom in the chessboard and account for any 

sideways movement in the camera: 

 

Figure 8: Warped image result 

By dividing the pixels in this image by 8, or 10 in our actual project because of the 

capture squares, we can approximate the bounds for tiles of the chessboard, which will be needed 

to determine in which tile each piece is located once they are recognized. Further, through a 

simple conversion with a reference measurement, we also obtain physical distance. 
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Identifying chess pieces 

To identify the pieces, we will make use of a special type of fiducial markers, also known 

as ArUco markers. There are a substantial number of functions in openCV [36] that facilitate the 

detection of these markers.  Additionally, this method was preferred over an original machine 

learning because of speed and accuracy purposes. On the original Machine Learning prototyping 

phases, the board only had an accuracy  

An ArUco marker is first found applying an additional adaptive filter, OpenCV internally 

detects the corner of each possible square candidate, then it divides the candidate by the width of 

the border + the resolution of the marker. The border is the black padding of the marker. This is 

In our case, we opted to use the original resolution of an ArUco (5x5) because we did not need 

many markers (which is the upside of having a higher resolution) and having a lower resolution 

of markers makes it easier for the camera to detect a piece. Once the candidate has been divided 

up, each square has a color filter applied to it. The white squares signify a 1 and the black 

squares signify a 0. This arrangement is hashed into a decimal number that the computer uses to 

identify the marker. In our case, 

   

Figure 9: ArUco Marker Breakdown 

In our project, we chose the specific ID configurations of the markers that were mostly 

solid, constant lines, as they were better detected by the camera.  Markers that had uneven edges 

of single squares floating in the middle were more susceptible to being rejected by the computer. 

We suspect this was because the warping portion of the process makes the color filter to be less 

certain about whether the bit is 1 or 0.  

The next factor which affected the process was the quality of the camera. According to a 

drone-project at Budapest University of Technology and Economics, a marker should cover 

20x20 or 30x30 pixels of the photo. We found that a resolution of 1980x1980 pixels was enough 

to detect 15mm markers from around 0.7meters. However, we increased the resolution to 

3070x3070 and left the 15mm to make sure the system was robust and did not miss any pieces. 

The only downside of this design decision was that processing the higher-resolution pictures 

would take around half a second longer than the other kind. We considered that our project was 

static and preferred accuracy over speed. Additionally, to improve accuracy, we made use of the 
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built-in sub-pixel refinement method to detect ArUco markers, which is able to detect the corners 

more accurately.  

There are a total of 12 different markers IDS, and they are placed on top each of the 

pieces. Each of the markers is only unique to one of the pieces, so all eight white pawns would 

have the same hat, the two black bishops would have the same hat, and so on. Figure 10 displays 

a few preliminary designs of the pieces (left) and the final pieces (right).  

 

Figure 10: Preliminary pieces vs final pieces 

The next step is to write a piece of code that will identify each of the markers. Figure 11 

showcases the output of such code on the right window, with the input on the left. The markers 

are swapped with images of the corresponding piece that they decoded. 

 

Figure 11: Machine view of the game of chess 

Finally, we can simply apply a mid-point formula to find the coordinates in the center of the 

ArUco marker. This will be a single point, shown in red in the figure above, which will tell us 
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the approximate location of the piece. With the methods and algorithms applied above, our result 

is a zoomed in and warped picture of the chessboard from the top view with the markers 

identified in a specific location. 

Find the locations of each piece 

After obtaining this information, we can simply divide the picture on the right of Figure 

11 by the number of tiles of the chessboard and obtain the bounds for each tile (in pixels). Then, 

we can approximate the location of each piece by finding the midpoint of the squares that they 

enclose. Using these two pieces of data, the points and the bounds, we can apply a modified 

version of binary search in the two directions to segment the points and find out their exact 

locations in the chessboard. Finally, output an abstraction for the rearrangement algorithm to 

process. The abstraction is the following: 

 

Figure 12: Low-level abstraction result 

There is also a secondary abstraction we make use of - a piece array that contains the 

piece name, row, column, x, and y coordinate. This abstraction is used by the rearrangement 

algorithm to find the nearest edge and path for the piece to move. The primary 2D array is used 

to simply determine whether a spot is taken or not. Note that the figure above is from the 

preliminary testing on the abstraction, with the final abstraction being 10x10 rather than 8x8 to 

account for capture squares. 

Rearrangement Algorithm 

Check if the board is rearranged 

After receiving the programming abstractions which are the 2D array describing the 

current board and the list of the piece object orientation, the algorithm checks whether the board 

is rearranged or not. There is a fact that if there is one piece at an incorrect spot, the board is not 

rearranged. By scanning through the piece list received from the image processing, the algorithm 

determines whether every piece is at the right position. If a piece is not where it should be, the 

board is not rearranged and the algorithm sets the boolean board_rearrange to be False. Figure 13 

describes the high level for checking board is rearranged. 
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Figure 13: Checking board is rearranged flow chart 

Check if piece is in the correct position 

As Figure 13, we used another function to check if a piece is in the correct position to 

support checking is a board is rearranged. We would like to discuss this function here. As we 

know, each piece has a name and can have multiple correct positions, such as a black knight 

piece having two possible right destinations, and a white pawn having up to eight correct 

destinations. Recognizing these facts and saving the runtime for the algorithm, we create two 

constant dictionaries storing piece names as keys and piece correct destinations as the values. 

One dictionary is for all the black pieces and the other one is for all the white pieces. In 

addition, we have a dictionary to store the number of pieces that have different names. 

￼￼￼Figure 14￼ shows the three dictionaries from the code. 

 

Figure 14: Pieces and number of pieces dictionaries 

We number the pieces that have the same name to identify their possible destinations in 

the dictionaries. The function uses these numbers as index to scan through the dictionaries 

for every specific piece name without being numbered. When a piece is passed into the 
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function from the check-board-is-rearranged function, the algorithm checks if the piece is 

black or white to use the appropriate dictionary. Then, it looks up the maximum number of 

pieces that have the same name as the current piece and uses the value as max_index to scan 

through the dictionary. The function aims to find the closest destination for the piece, so we 

have min_distance, dest_row, dest_col, occupied variables to keep track with the process. 

The function returns a boolean that determines if a piece is at the right position, the 

destination that includes dest_row and dest_col, a boolean occupied that determines if the 

destination is occupied, so the algorithm can move the occupied piece out of the destination 

before putting the piece there, and the min_distance from the piece’s current position to the 

destination. Figure 15 shows the high-level algorithm for this function in a flow chart. 

 

Figure 15: Check if piece is at the correct position flow chart 
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Pick a piece to move 

Acknowledging that finding the optimal piece requires scanning through all the pieces in 

the piece_list, we expand the check-if-board-is-rearranged function to pick a piece to move to 

save memory and run time. The function adds extra variables to track the process: 

min_distance, piece_to_rearrange. As Figure 16 shows, after receiving results from the 

check-if-a-piece-in-the-right-position, the function compares the result to some standards to 

find the optimal piece to move. These standards are: 

+Prioritizing to rearrange the outside pieces that include King, Queen, Knight, Rook, and 

Bishop pieces before rearranging Pawn pieces. 

+Looking for the closest distance to move among those pieces. 

+Not considering the movements needed to move unexpected pieces out of the 

destination. 

Figure 16 describes the high-level algorithm to pick an optimal piece to move. 

 

Figure 16: Check if piece is at the correct position flow chart 

Create piece movement 
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After determining whether board is rearranged and finding which piece to rearrange, 

the algorithm creates movements to move the piece from its current position to the 

destination. There are two types of movements that the algorithm generates: 

+Step movement: this movement is ordering the CoreXY to move the carriage in a 

direction (up, down, left, and right) and the number of steps that the two stepper motors need 

to rotate. 

+Electromagnet movement: this movement is ordering the CoreXY to turn on or turn 

off the electromagnet to grab or release a piece. 

The system aims to move the pieces in the middle of the square in the up, down, left, 

or right destination to avoid colliding among the pieces because most of the times, players 

put their pieces in the squares. However, if there are pieces on the way, the permanent 

magnet under the moving piece will push the standing pieces out of the way. We tested many 

magnets and designed the chess pieces in the right size to make this be possible. In the case 

that if the electromagnet may grab the standing piece and unexpectedly release another piece, 

it will move the wrong piece to the wrong destination and later on, the pieces will be 

rearranged eventually. We have tested the probability of happening this situation. The 

probability is 1 out of 10 times because the moving piece always have tendency to move 

pieces out of the way. If the wrong grabbing piece situation happened, the pieces are always 

rearranged to their right destination. 

 

Figure 17: The high level of creating the piece movement 

In addition, the algorithm uses the occupied Boolean variable from the check-if-a-

piece-in-the-right-position to determine whether there is a piece occupying the destination. If 

there is an occupied piece, the algorithm uses breadth-first-search to find an empty square 

near the destination to move the occupied piece to the empty square by adding extra 

movements before adding movements to move the right pieces. 
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CoreXY execution 

 After receiving the movement queue from the rearrangement algorithm, the CoreXY 

executes each movement in the queue to manipulate the motors and electromagnets to rearrange 

the pieces. Taking into the consideration of motor step lost and any errors during the process, 

such as, the carriage hit into the gantry or stuck in the middle of the process, we create a bump 

switch system to set up an origin to reset and robust the movement process. After every four 

pieces are rearranged, the CoreXY moves the carriage back to the origin. If an exception occurs, 

the CoreXY moves the carriage back to the origin. 

The bump switch system includes: 

 +bumpX: if the coreXY carriage hits the switch while moving to the left, the CoreXY 

stops the movement. 

 +bumpY: if the coreXY carriage hits the switch while moving down, the CoreXY stops 

the movement.  

 We create a function move_to_origin() where it keeps running the carriage down until it 

hits the bumpY then it keeps running the carriage to the left until it hits the bumpX. This is 

where the carriage reaches the origin. 

 Finally, we have a start button that using multithreading to run parallel with the main 

program to check if the start button is pressed. We also implement the debouncing function to 

filter distorting signals from pressing the button. Figure 18 shows the finite state machine of 

pressing the start.  

 

Figure 18: The start button logic 

 As we see that there are two states for the button: not start state and running state. We use 

two Boolean variables to describe the two states. When the button has not been pressed, not_start 

is True and running is False. When users hit the button, not_start becomes False and running 

becomes True in the side threading. The True running flag triggers the main program to start 

rearranging process. During the rearranging process, if users hit the button, the running flag 

becomes False and the not_start flag becomes True. These changing behaviors signal the main 

program to stop the rearranging process and move the carriage back to the origin with the 

move_to_origin() function.  

How to run the software 
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 We put all the software implementation in the Code folder. Please download all the files. 

You can use any IDE that can run Python code, such as, Visual Code Studio, to run the code. 

The only file that you need to run is main.py. Please keep in mind that you need to download 

OpenCV software to have the full function. 

Block Diagram for the Hardware and Mechanical 

 

Figure 19: Hardware/Mechanical Block Diagram 

Mechanical 

Our mechanical system consists of a 2D linear actuator that uses CoreXY, an 

electromagnet to move the chess pieces, the chess pieces themselves, and a wooden frame to 

hold everything together. The core of our mechanical design is the CoreXY framework that 

moves our electromagnet payload. CoreXY is a belt and pulley system that uses a clever 

arrangement of pulleys to achieve 2D motion [39]. There are two stepper motors from zyltech 

[10] located in the bottom left and bottom right of a grid that achieve diagonal motion. These 

diagonal actuators are linearly independent under the coreXY system, so they cover the entire 

range of 2D motion within the area covered by the pulleys. One can then simply add or subtract 

the two diagonal vectors together in order to get motion in the X or Y direction. 

Our CoreXY gantry was first designed in CAD in order to make sure it could be 

assembled properly. In this CAD assembly process, a few parts were designed to help fit the 

extrusion together and hold the pulleys in place. CoreXY is a design technique and not a specific 

design itself, so the CAD design depicted in Figure 20 was designed from scratch. The parts in 
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green were designed and 3D printed models, while everything else was an imported model of an 

existing product (motors, extrusion, magnet, etc.). 

 

Figure 20: Isometric view of CoreXY CAD Design 

Motion is enabled by gantry carts [10], which are small wheeled platforms that can slide 

freely up and down a piece of aluminum extrusion [10] (shown in yellow). The belts wrapped 

around the motors are attached to both ends of the middle gantry cart, so the motors pull on the 

gantry cart when they rotate, like a game of tug-of-war. The belts are wrapped around pulleys 

that are mounted on the side gantry carts in order to provide smooth vertical motion. A key 

tenant of CoreXY is keeping the pulleys parallel to the guide rails, as this ensures that the 

tensions across the belts stay balanced, given that Core XY takes advantage of components of the 

diagonal vectors superimposing destructively. 

 

Figure 21: (a) Side gantry cart with idler pulleys (b) Middle gantry cart with belt holders 

The custom designed CAD parts each serve unique purposes. The square block is 

designed to hold pulleys in place that route the belts from one side of the gantry to the other. The 

thin T shaped block holds the cross beam in place that allows for motion in the X direction. The 
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Fat T shaped block acts as a restraint for the belts. Though not shown in Figure 21, the belts in 

the final design are wrapped around the block with clamps that hold the belts in place, 

maintaining a firm tension in the belts that prevents belt skipping on the stepper motors. 

 

Figure 22: (a) Corner pulley block (b) Extrusion connector block (c) belt clamp block 

The whole point of this gantry is to move an electromagnet in a 2-D grid. The 

electromagnet is glued down to the center gantry cart that can move anywhere in 2 dimensions. 

The gantry simply takes inputs from the code telling it how long to run the motors, and with 

proper software this moves the electromagnet directly underneath any piece the code wants.  

In order to actually move the pieces, however, there needs to be a mechanism of 

movement for the pieces as well. Thus, the pieces have a small magnet embedded in them. 

Custom chess pieces were designed in order to fit this need (as well as the need for space to hold 

the arUco markers mentioned previously). With a permanent magnet glued or taped to the 

bottom of the piece, the chess piece is now attracted to the electromagnet whenever a switch is 

flipped. 

 

Figure 23: Chess piece with bottom cut out for magnet 
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In order to hold up all the pieces, a thin board is laid out on top of the gantry. The board 

is thin enough and low enough friction such that when the electromagnet is turned on, there is 

still a firm attraction between the chess pieces and the electromagnet. As the electromagnet 

moves, it pulls a chess piece with it, and this complete system creates 2-D motion for any chess 

piece on the board. There are issues with the magnets from chess pieces interfering with each 

other, so the permanent magnets went through an extensive testing process until the right magnet 

size was found that minimized interference while maximizing attraction to the electromagnet. 

 

Figure 24: Chess board on top of hidden gantry 

The frame itself consists of a pine wood two-by-four cut and bolted on top of plywood 

(purchased from Lowes), with a thin hardboard material laid out on top to hold the chess pieces. 

For temporary usage, a large piece of paper was printed out to form the chessboard. A mass-

produced design would have custom painted and stained wood to reduce friction even further and 

increase product longevity. 

The final mechanical aspect of our design is the bump switches [40]. These bump 

switches e situated in the corner of the gantry, and they tell the software when the electromagnet 

is at the origin. They calibrate the electromagnet to make up for any lost steps in the stepper 

motor such that error doesn’t accrue over time. These switches had to be moved around a few 

times because they kept getting tangled up with the wires of the electromagnet, but they are 

currently glued down in the bottom left corner of the gantry. An overall shot of the finished 

gantry is displayed in Figure 25. The differences between this image and the CAD design are 

apparent, specifically with new stepper motor holders [41] and all the input wirings being in 

place. 
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Figure 25: Finished gantry design 

Hardware 

Our printed circuit board was designed to interface between the code and the CoreXY 

motor system as a Hardware Attached on Top (HAT) which rested on top of the Raspberry Pi. 

The PCB was also designed to provide power to the motors and electromagnet. Initially, we did 

not realize the need for the bump switches and start button, so they were not included until later. 

The preliminary KiCad schematic for the PCB is shown below in Figure 26. 

 

Figure 26: Full Schematic 
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After receiving our first PCB, we discovered several flaws. Some components in the 

schematic had footprints which were not realistic for their value and were subsequently not able 

to be purchased. For example, our schematic contained 100μF capacitors rated for 50V, but the 

footprints chosen for them were a size 1206 package, which is far too small for capacitors with 

those specifications. As a result, we were unable to solder all the components on our PCB to test 

it fully. Additionally, the buck converter we used to step 24V down to 5V ran out of stock at our 

suppliers, and we had to select a new buck converter. After updating our design to include the 

switches, we made some more modifications to resolve the footprint issues and replace the old 

buck converter circuit. We also added a switch to turn the power on and off, and several LEDs 

which indicated the status of the rearrangement process. The final schematic is shown below in 

Figure 27. 

 

Figure 27: New Final Schematic 

Component J1 is a GPIO header which allows the PCB to sit on top of the Raspberry Pi, and 

MOTOR1 and MOTOR2 are the 4-pin connectors where the motors are plugged in. When we 

designed this version of the PCB, we were deciding between two types of electromagnets to use, 

each powered by 24V and 5V respectively. Because of this, we added component JSUPPLY1: a 

jumper between 5V, 24V, and electromagnet power supply, which allows us to place a shunt to 

connect the electromagnet to the correct source. 

We will now examine the different subsections of the schematic, starting with the power supply, 

as shown below in Figure 28. 
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Figure 28: Power Supply Schematic 

The power adapter we chose to use (not shown on schematic) supplied 24V and 2.5A to 

our circuit and was connected to the PJ-070AH-SMT-TR power jack. The motors we used 

required 24V, which is the reason for our adapter choice. In this schematic, we used a LM2586S-

ADJ boost converter to provide input protection to our PCB. It is supplied with 24V by the 

power jack, and outputs 24V and 2A to our motor driver chips, as well as the TPS54334DRCR 

buck converter. This converter steps the 24V down to 5V and outputs 2A, which would be used 

to supply our Raspberry Pi and electromagnet. Passive components were connected based on the 

datasheets of the converters, and their values were determined by the TI WEBENCH power 

designer tool to give the correct current and voltage output. 

The next subsection we will cover is the electromagnet control, shown below in Figure 29. 
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Figure 29: EM Switch Schematic 

In this circuit, Q1 is an n-channel logic level MOSFET that receives a signal from the Raspberry 

Pi to turn the electromagnet on and off. J2 is the electromagnet connector, and D3 is a Zener 

diode which protects the transistor from voltage spikes when switching the magnet. When the 

corresponding pin on the Raspberry Pi GPIO header is set high, the MOSFET will allow current 

to flow to the magnet, turning it on. Setting the pin low will block current flow, thus turning the 

magnet off. 

Next, we will look at the motor drivers, shown below in Figure 30. 
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Figure 30: Motor Driver Schematic 

To drive our motors, we used the DRV8824QPWPRQ1 chips, which were readily available to 

us. We used two motors, and thus needed two identical motor driver chips. The capacitors at the 

bottom of the schematic serve as input protection for the chip, and various pins on the chip are 

connected to the Raspberry Pi via the GPIO header. All the components in this section were 

connected according to the recommendations in the chip’s datasheet, except POT1, which is a 

potentiometer we included to allow the tuning of Vref’s value. Adjusting Vref’s value changes the 

motor current, as defined by the equation 𝐼𝑚𝑜𝑡𝑜𝑟 =
𝑉𝑟𝑒𝑓

5⋅𝑅𝑠𝑒𝑛𝑠𝑒
. The MODE0, MODE1, and MODE2 

pins are used to determine the stepping resolution of the motors and are set using GPIO pins. 

NENBL, NSLEEP, and NRESET are pins which turn the driver chip on and off. The DIR and 

STEP pins control the motor operation by setting the motor’s spin direction and running the 

motor respectively. 

Lastly, we will examine the bump switch and button circuits by looking at the schematic for the 

X-axis bump switch. 
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Figure 31: Input Switch Schematic 

The bump switches and start button all share the same schematic. The large component at the left 

of the schematic is the switch/button connector. RX1 acts as a pull-up resistor to 3.3V, and the 

Zener diode, capacitor, and remaining resistors provide input protection for the Raspberry Pi. 

Now that we have finished examining the different subsections in the schematic, we will look at 

the physical layout of these sections on the PCB. 
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Figure 32: PCB Layout 

As detailed in Figure 32, there are test points placed in several locations around the board, which 

we used to test the PCB. The motor connectors were placed on the left of the board, and the 

electromagnet and switch connectors were placed on the right to avoid wire tangling and to fit on 

the Raspberry Pi. A noteworthy feature of the layout is the presence of the two ground planes, 

shown in the figure as filled in blue areas. These were included in order to separate the high 

current flow of the driver chips and boost converter from the logic of the circuit. However, in 

practice, the benefits of this were negated by the fact that some passive components connected to 

the boost converter were placed on the right ground plane. Another feature which is not visible 

from the figure is the cutout on the bottom solder mask. An area matching the shape and location 

of the left ground plane was cut out of the bottom solder mask layer to provide cooling for the 

motor driver chips. 

One major issue encountered with the PCB was the thickness of the traces used for high current 

connections. This can mainly be seen in the connections surrounding the 5V buck converter. 
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Figure 33: Zoomed in 5V Buck PCB Layout 

These connections needed to be much thicker to accommodate the 2A of current flowing through 

them. As a result of this design, several of these traces were burnt during testing. Overall, our 

main problem with the PCB was time. The process of designing the board dragged on for too 

long, which resulted in us getting our first PCB on the second board sendout, therefore delaying 

our testing. Additionally, the fact that our first board had mismatched footprints prevented us 

from fully testing all the board’s functions. This led to design flaws being propagated to the 

second board. 

Other than the circuit board, we also worked with hardware for setting up piece recognition for 

input to our code. The input hardware used a light above the board to get clear vision of the 

pieces and a camera to take pictures of the board periodically for computer vision. The board 

itself had white and green squares, and white and black pieces. An essential part of computer 

vision is getting a proper image, so the input hardware and chessboard are physically configured 

(and colored) such that the images taken from the CV camera can be processed by the Raspberry 

Pi effectively. 

Initial Design Decisions and Tradeoffs 

At the beginning of the project, we planned on creating a chess board that allowed users 

to play chess matches fully autonomously without touching a single piece. We decided to move 

away from this concept, as we felt it would be difficult to complete within our allotted time. 

Instead, we decided to limit the scope of our project to rearranging pieces to their starting 

positions after players conclude a match. This reduces the possibilities for user error, at the cost 
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of the design’s usefulness. During the ideation process, we iterated through several versions of 

our chess board, with different mechanisms for recognizing and moving pieces. 

Piece Movement 

All our piece movement designs were similar, in that they were based around a stepper 

motor gantry system which would move a carriage that picks up pieces. Our initial designs 

housed the gantry above the board, like an arcade claw machine. The “claw” would move around 

the X and Y axes to navigate to pieces and descend to pick them up. For this version of the 

board, we did not find a good method of picking up the pieces. This fact, coupled with flaws 

such as the overhead system obscuring players’ vision and pieces being easily knocked over 

during rearrangement, led us to move on from this design. Our later designs relocated the gantry 

to below the board, removing the need for vertical movement. The mechanism would then only 

move in the X-Y plane and pick up pieces using magnetic force. The pieces would have a 

permanent magnet embedded in the bottom, and the carriage would contain an electromagnet 

that is turned on and off to attract the pieces. By hiding the gantry away, the area above the board 

is freed up, so players would not have to worry about accidentally damaging it. For these 

reasons, we settled on this movement mechanism, and proceeded to design the gantry system. 

Piece Recognition 

We also considered several different methods of recognizing pieces on the board, each 

corresponding to the different piece movement designs. On our “claw” design, we initially 

planned on embedding five small magnets in the bottom of the chess pieces, which would be 

detected by the Hall effect sensors placed on the gantry carriage under the board. The orientation 

of the magnets would be read differently by the sensors and allow our board to check which 

piece is at the square where the carriage is currently located. However, upon further 

consideration, it became clear this idea would not work. Since we would be using a separate set 

of magnets to pick up the pieces and identify them, they would most likely interfere with each 

other’s operation. Additionally, the pieces may be rotated during rearrangement, which would 

change the positions of the recognition magnets and cause pieces to be misidentified. Robustness 

was also not present in this design, since the sensors would only be able to read one square at a 

time. This would not be sufficient to detect error states such as pieces being knocked over. To 

resolve this, our next idea emphasized being able to read the entire board state at once, and used 

photoelectric sensors placed on each square to detect when the square is covered by a piece. 

While this design could capture the entire board state at once, it could not tell which piece was 

blocking the sensor. In our last design for a board with gantry on top, we planned to build the 

board out of transparent material, place identifying markers on the bottoms of the pieces, and 

suspend a camera below the board that would read the markers. This system would be able to 

read the entire board state and identify the pieces on each square but was ultimately infeasible 

due to the camera not having enough light and contrast to read the markers. At this point, we 

started considering placing the gantry underneath the board instead of on top, and our piece 

recognition system design changed to accommodate this. In this design, the camera is suspended 

above the board, which eases the lighting requirements. The identifying markers are placed on 
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top of the pieces to be read by the camera. As an alternative to the camera and markers, we 

investigated using RFID tags in the pieces, but opted not to use them due to the potential 

interference between 32 RFID tags. We eventually finalized our design for the physical board, 

with the CoreXY gantry underneath the board, and the camera for piece recognition above. 

Project Timeline 

 

 

Figure 34: Proposed Gantt Chart 
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Figure 35: Updated Gantt Chart 

The first proposed Gantt chart can be seen in Figure 34. The original timeline sought to 

complete the whole project before December 12th where the system test would have been the last 

task to do. We had completed all the tasks before December 12th except the PCB. Due to many 

problems in the PCB, we have not completed the PCB design task. Instead of using the PCB to 

test the whole system, we designed temporary circuits on breadboards to check other subsystems. 

As checking, all other subsystems work exactly like we wanted them to be and we have a full 

functioned automatic ReChess without the PCB to demo on December 12th. We received an 

extension for completing until December 16th, so we hope that we can finish the PCB on 

December 15th. 

Bryam was the primary group member for implementing image processing with the 

OpenCV, researching cameras, detecting the pieces as well as their coordinates, and building the 

wood frame. He acted as the secondary group member for designing the PCB for the motor 

driver portion, 3D printing many of the parts, such as the chess pieces and the gantry parts 

(which Marshall designed) and setting up the breadboard for the preliminary design of the 

project. Bruce was the primary group member for designing the PCB that includes the power 

supply, PCB layout, and PCB debug. Marshall was the primary group for designing and building 

the gantry system, designing the bump switches and start buttons in the mechanic as well as 

software part. His secondary tasks are designing the chess pieces, printing 3D them, and 

implementing the multithreading for the software system. Selena was the primary group member 

for implementing the rearrangement algorithm and the embedded code for the motors and 

CoreXY system, using Bryam image processing software and Marshall software tasks to build 
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the whole system code. She is also responsible for testing the whole system and identify errors or 

malfunctions. Her secondary tasks are helping Bryam build the wood frame, painting 3D printed 

chess pieces, and decorating the product.  

 

Test Plan 

In our proposal and midterm design review, we did not have a well-defined test plan. 

During testing, we did not strictly follow a test script, but did use common sense testing 

procedures. Our system had three main sub-modules which were tested independently of each 

other: software, hardware, and mechanical. The testing performed for each module is listed 

below: 

Software 

Extensive testing was performed in order to determine the marker sizes, the resolution, 

and the right camera to determine whether the camera is correct or not. During the first few 

strides, the camera was only able to detect a few pieces, and we attempted to only make them 

around 7x7mm, which turned out to be too small. We gradually increased the dimensions and the 

resolution to determine which would be best for speed and accuracy purposes. 

In terms of the motors, finding the correct speed was also essential. In testing, the delay 

for the step waves being too frequent sometimes made the magnet come lose and let go of the 

piece that was being moved. Through exhaustive testing, we found the correct delay that 

balanced motor speed and piece attraction. 

Hardware 

This testing module covered the printed circuit board, and the various subsystems on it 

which interfaced with other areas of the project. 

Power Supply 

To power the PCB, we used a 24V wall adapter which was plugged into a power jack. To 

test that the power jack was functioning, we used a digital multimeter, and measured the voltage 

at the test point connected to the jack. After successfully measuring 24V, we then measured the 

voltage at the test point connected to the output of the 24V boost converter. Again, we were able 

to measure the correct voltage, and so we moved on to testing the 5V buck converter. We again 

measured the expected 5V, and thus concluded that our power supplies were working. 

Electromagnet Control 

To test the electromagnet control, we used a breadboard to simulate the GPIO output 

from the Pi which would toggle the magnet on and off. The electromagnet was plugged into its 

connector, and the power jack was connected to supply the magnet with 5V. By connecting and 

disconnecting 3.3V to the MOSFET, we were able to verify that the magnet turns on and off 

when supplied with the correct voltage. 
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Motor Drivers 

In order to independently test if our PCB could drive the motors correctly, we again used 

a breadboard to simulate the outputs of the various GPIO pins. For the STEP pin which is 

toggled on and off repeatedly to spin the motors, we used an MSP432 [reference] to provide a 

square wave input which simulated the switching on and off behavior. In doing so, we found that 

not enough current was given to drive the motors and used the potentiometers to increase the 

current until the motors functioned correctly. We also tested each motor driver chip individually, 

before testing both drivers running concurrently. After this testing, we were able to verify that 

both motor driver chips were functioning. 

Bump Switches and Start Button 

To test these functionalities, we wired the switches and button to their respective 

connectors. We then pressed the buttons and measured the outputs that would be fed to the 

Raspberry Pi GPIO using a multimeter. Initially, the switch resistor values did not allow our 

switches to function, and after replacing them with various different values on a breadboard, we 

were able to successfully read 3.3V from the switches when pressed. 

Mechanical 

The gantry, electromagnets, and piece magnets were initially tested in parallel. First, the 

gantry was constructed with tape holding it down temporarily to make sure all the parts fit 

together. Once the motors were functional, the gantry was tested briefly with the motors wired 

on a breadboard. This was a hybrid test of the motor drivers and the gantry, as the tension and 

friction of the belts and pulleys can change how much current the motor drivers need in order to 

drive the gantry. Testing was difficult to get perfect with the temporary gantry setup, but 

performing tests this way allowed everything to be taken apart quickly in case design changes 

needed to be made. 

Fortunately, the gantry-motor system worked the first time, so the gantry was bolted 

together once it was confirmed to be working. The belts were also tensioned at this time, except 

the frequency measurements originally planned for testing did not work very well. Instead, we 

simply tested the belt tensions by plucking it with our hands and listening to the sounds/watching 

the vibrations. So long as the tension in each belt is approximately equal, the gantry is functional 

[42]; any small errors in kinematics could be corrected by the bump switches or adjusted in 

software. The bolted gantry was tested with the electromagnet with “stress testing”. We ran the 

gantry faster and faster with higher torques until it broke down. We used half of the maximum 

speed as our designated max operational speed in software. 

An unforeseen issue cropped up during testing in that the electromagnet’s wiring was 

getting tangled with the gantry belts during gantry operation. As a temporary solution, fishing 

weights were crimped and then taped to the wires of the electromagnet to hold the wires down. 

Surprisingly, this worked so well it was kept in the final product. 
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In parallel with gantry testing, the electromagnet and permanent magnets for the chess 

pieces needed to be tested. Because the pieces hadn’t been designed yet, our team found chess 

pieces of approximately equal weight and size and used those as a substitute. This turned out to 

be a mistake, as designing the chess pieces first would have resulted in a better final product. 

Nevertheless, we purchased a variety pack of permanent neodymium magnets with different 

strengths and sizes.  

With each magnet, we emulated the motion of a gantry by hand, holding the 

electromagnet underneath our chess board while on top of the board was a chess piece and 

magnet. With the magnet moving at our planned gantry speed, it was considered functional, and 

was put in a list of functional magnets. Out of those functional magnets, we then put two 

magnet-piece pairs next to each other and measured how close they could get without repulsing 

each other and knocking one another over. This is a key part of testing our permanent magnets 

because our software was designed to slide chess pieces between each other. Thus, we needed to 

find permanent magnets that can slide between the predetermined gaps between chess pieces 

without knocking pieces over. 

With proper permanent magnets selected and the gantry bolted down, the gantry-magnet 

system was functional enough to test the software that rearranged one or two pieces. However, 

the bump switches needed to be tested before full system testing, as the piece rearrangement 

tended to accumulate error after four or five cycles.  

The bump switches and start button were first tested on a breadboard to make sure the 

software logic was working properly. With proper code guaranteed, the bump switches were then 

temporarily glued into their respective places and tested with software. The bump switches were 

found to be finicky at first, but after removing the debouncing code (which turned out to be 

unnecessary), all the buttons were working as intended. Once the PCB arrived, all the buttons 

were tested on the PCB rather than just the breadboard. Though our PCB itself was having 

issues, the testing didn’t show any issues in the switches or the circuitry that dictated their 

behavior. 

Integration Testing 

After verifying the operation of the individual parts of the project, we began integrating 

and testing them. We connected the Raspberry Pi and motors to a breadboard, where the motor 

driver chips were placed. With this setup, we were able to test the operation of the motors using 

our written code and verify that the software and mechanical portions of our project functioned. 

 

Final Results 

Overall, our project was a success. During the demo session, our project was functioning 

for the entire three hours. The final product is shown below in Figure .  
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Figure 36: ReChess Finished 

Users were able to move pieces away from their starting positions, and even play games 

on the board, before initiating the rearrangement process. They were able to watch as the robot 

moves pieces around the board, navigating them to their starting positions. They could even 

move pieces during rearrangement, and the board would detect the new pieces’ positions, and 

include them in the rearrangement. Now, we will evaluate our final product based on the criteria 

outlined in our proposal, shown in the table below. 

Letter 

Grade 

Criteria 

A+ • An image processing script that can detect and label out a chessboard. 

• Object detection script that identifies chess pieces. 

• An algorithm that finds the movements required to rearrange the pieces and 

outputs commands for the motor. 

• Embedded code to adjust motors’ PWM 

• A working gantry system that is able to move to any x,y pair in a 

chessboard and electronically move pieces via a magnet system. 

• A circuit that is able to deliver power to the whole system 

• A printed circuit board that is able to correctly drive two stepper motors. 

A Device does not perform one of the tasks required for an “A+” 
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A- Device does not perform one of the tasks required for an “A+” AND one other task 

only works partially 

B+ Device does not perform two of the tasks required for an “A+” 

B Device does not perform three of the tasks required for an “A+” 

B- Device does not perform four of the tasks required for an “A+” 

C Device does not perform five of the tasks required for an “A+” 

D Device does not perform six of the tasks required for an “A+” 

F Device does not perform seven of the tasks required for an “A+” 

 

Criterion 1: An image processing script that can detect and label out a chessboard 

Our final product met this criterion. Our code for image processing was able to 

successfully detect the outline of the board, and used this to determine the boundaries for where 

to look for pieces. 

Criterion 2: Object detection script that identifies chess pieces 

The product was able to detect and identify pieces on the board with 100% accuracy 

during the demo.  

Criterion 3: An algorithm that finds the movements required to rearrange the pieces and 

outputs commands for the motor 

Our algorithm successfully rearranged the board every time it ran. The motors never 

made a misstep, and the board always ended up in the correct state. 

Criterion 4: Embedded code to adjust motors’ PWM 

Our code preemptively adjusted the motor’s stepping resolution and controlled the speed 

of the motor. Although this was not demoed, adjusting the resolution of the motors in the code 

would change the speed at which the motors moved. We used these characteristics to determine 

the speed and delay time to move the motors to match with the system. The full functioned 

motors system can be a reference for the embedded code working. 

Criterion 5: A working gantry system that is able to move to any x,y pair in a chessboard 

and electronically move pieces via a magnet system 

Our gantry system also worked according to our expectations. It was able to move to any 

piece on the board, regardless of its location, and successfully move it to any position around the 

board as well. 
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Criterion 6: A circuit that is able to deliver power to the whole system 

In testing, our circuit board was able to successfully power the motor drivers and 

electromagnets. 

Criterion 7: A printed circuit board that is able to correctly drive two stepper motors 

In testing, our circuit board was able to successfully drive the two stepper motors. The 

operation of the motors matched our code. This meant that when we ran code for the motors to 

move the gantry up, left, down, and right, the motor performed those actions. 

 

Costs 

For our project, we went slightly over the $500 budget provided to us. A general 

breakdown of the costs may be found in Appendix A, with each category of costs broken down 

further in the following appendix entries. Most of our budget went toward ordering the parts for 

the gantry, such as the metal bars along which the gantry would move. Part orders for the PCB 

were the second most expensive component of the project. The remaining budget was used to 

pay for PCB manufacturing and the soldering done by 3W. 

If we were to mass-produce our project in 10,000-unit quantities, our PCB fabrication 

and assembly costs would scale accordingly. Each board fabrication costs $33 individually, and 

the soldering done by 3W also costs $55 per board. Since each finished product would require a 

PCB, we can multiply the cost for one board by 10,000 and find that simple construction of the 

boards would cost $880,000. Each product would also require a gantry system, which would cost 

$2,445,600 in total. PCB parts would then add approximately $800,000 to the total cost. We do 

not believe that automated equipment could be used to assemble our device, as it required very 

precise adjustments, such as tuning the current supplied to the motors via the potentiometers and 

tensioning the belts on the gantry. Thus, labor costs from assembly of the products would also 

need to be accounted for. 

Future Work 

In the future, if this project were to be expanded or improved, there are many directions 

which could be taken. Currently, our board only performs rearrangement, and, excluding this 

feature, the board is identical to a normal chess set. The most interesting feature that could be 

added is the ability to actually play games of chess on the board autonomously. Our initial vision 

for the project included this, but the feature was removed from our proposal to accommodate 

time constraints. There are some minor improvements that could be made, such as finding a 

better method of reducing friction on pieces, or further refining the rearrangement algorithm to 

optimize time taken. Additionally, at the start of the project, we had not foreseen the difficulties 

we would encounter with the PCB. It is advised that as much time as possible is dedicated to 

designing the PCB, such that the first board send out deadline is met. Additionally, frequent 
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checks with the teaching staff should be performed to ensure the validity of the designs. It would 

also be wise to consider the budget more carefully at the beginning, as by the end of the project, 

money was very tight. 
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Appendix 

 

Expense Balance Cost New Balance 

Non-PCB Misc. Parts $500.00 $14.00 $486.00 

Gantry Parts Order $486.00 $244.56 $241.44 

PCB Parts Order 1 $241.44 $78.18 $163.26 

PCB Parts Order 2 $163.26 $57.85 $105.41 

PCB Sendout 1 $105.41 $33.00 $72.41 

PCB Sendout 2 $72.41 $33.00 $39.41 

W3 Assembly $39.41 $55.00 -$15.59 

Appendix A: Project cost breakdown 

 

Index 

Manufactu

rer Part # 

Digikey 

Part # 

Qty in 

Stock Qty Req'd 

Per Unit 

Price Cost 

1 3,873 

1528-2689-

ND 51 1 $9.95 $9.95 

2 8,173 

469-1048-

ND 2,298 5 $0.81 $4.05 

     Total Cost $14.00 

Appendix B: Miscellaneous non-PCB parts order 

 

http://roswiki.autolabor.com.cn/attachments/Events(2f)ICRA2010Tutorial/ICRA_2010_OpenCV_Tutorial.pdf
http://roswiki.autolabor.com.cn/attachments/Events(2f)ICRA2010Tutorial/ICRA_2010_OpenCV_Tutorial.pdf
https://corexy.com/theory.html
https://www.digikey.com/en/products/detail/omron-electronics-inc-emc-div/SS-5GL2/137204
https://www.digikey.com/en/products/detail/omron-electronics-inc-emc-div/SS-5GL2/137204
https://www.digikey.com/en/products/detail/pololu-corporation/2266/10449890?s=N4IgTCBcDa4IwA4DMBaMYBsGUDkAiIAugL5A
https://www.digikey.com/en/products/detail/pololu-corporation/2266/10449890?s=N4IgTCBcDa4IwA4DMBaMYBsGUDkAiIAugL5A
https://promega.printm3d.com/repair-and-maintenance/belt-tensioning
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Index 

Manuf
acture
r Part 

# 

Digike
y Part 

# 

McMa
ster 

Part # 

Open 
Builds 
Part # 

Amazo
n 

Zyltec
h 

Qty in 
Stock 

Qty 
Req'd 

Per 
Unit 
Price Cost 

1 

1704H
S168A-

OB   623   N/A 2 $17.98 $35.96 

2 

EXT-
2040-
REG-
700-

VGRV     

EXT-
2040-
REG-
700-

VGRV N/A 2 $11.45 $22.90 

3 

EXT-
2020-
VGRV     

EXT-
2020-
VGRV N/A 2 $7.45 $14.90 

4 

EXT-
CUT-
SERV     

EXT-
CUT-
SERV N/A 2 $1.50 $3.00 

6 

HW-
20CAR
R-BLK     

HW-
20CAR
R-BLK N/A 3 $9.95 $29.85 

5 

$2,266
.00 

2183-
2266-

ND     318 2 $4.95 $9.90 

7 

LXMY0
382    

B07L9
QDVC

8  N/A 1 $13.99 $13.99 

8 

$210.0
0   210   N/A 2 $5.99 $11.98 

9 

470-
By-

the-
Foot   

470-
By-

the-
Foot   N/A 20 $2.49 $49.80 

10 

90-
Pack   

90-
Pack   N/A 1 $3.39 $3.39 

11 

225-
Pack   

225-
Pack   N/A 1 $3.89 $3.89 

12 $5.00   5   N/A 4 $0.31 $1.24 

13 

760-
Pack   

760-
Pack   N/A 1 $1.99 $1.99 

14 

140-
Pack   

140-
Pack   N/A 1 $1.79 $1.79 

15 

$185.0
0   185   N/A 2 $0.19 $0.38 
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16 

536-
Pack   

536-
Pack   N/A 2 $2.99 $5.98 

17 

10-
Pack   

10-
Pack   N/A 2 $0.99 $1.98 

18 490   490   N/A 2 $1.49 $2.98 

19 

946-
Pack   

946-
Pack   N/A 2 $0.99 $1.98 

20 485   485   N/A 4 $1.49 $5.96 

21 

922-
Pack   

922-
Pack   N/A 2 $1.19 $2.38 

22 

2165-
Pack   

2165-
Pack   N/A 1 $2.79 $2.79 

26 

135-
pack   

135-
pack   N/A 1 $1.69 $1.69 

23 

92005
A120  

92005
A120    N/A 1 $4.26 $4.26 

24 

92005
A223  

92005
A223    N/A 1 $6.87 $6.87 

25 

90695
A035  

90695
A035    N/A 1 $2.73 $2.73 

         

Total 
Price 

$244.5
6 

Appendix C: Gantry parts order 

 

Index 

Manufact

urer Part 

# 
Digikey 

Part # 
Mouser 

Part # 
Qty in 

Stock 
Qty 

Req'd 
Per Unit 

Price Cost 

1 
CSRN251

2FKR400 

CSRN251

2FKR400

CT-ND  14,739 10 $0.45 $4.54 

2 
12065C10

3KAT2A 
478-1542-

1-ND  262,764 13 $0.15 $1.95 

3 

$885,012,

208,034.0

0 
732-7690-

1-ND  3,337 4 $0.20 $0.80 

4 

CL31B10

4KBCNN

NC 

1276-

1017-1-

ND  1,376,463 4 $0.11 $0.44 

5 
35211M0

FT 
A116104

CT-ND  3,459 4 $0.57 $2.28 

6 

50THV10

0M10X10

.5 

1189-

2059-1-

ND  221,143 4 $0.89 $3.56 
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7 
TC33X-2-

103E 

TC33X-

103ECT-

ND  115,772 4 $0.28 $1.12 

8 
RMCF120

6JT10K0 

RMCF120

6JT10K0

CT-ND  1,747,089 15 $0.03 $0.38 

9 
$192,020,

013.00 
WM18731

-ND  75,247 4 $0.33 $1.32 

10 
$5,444,26

2.00 
277-

11313-ND  109,498 1 $1.00 $1.00 

11 
$5,447,86

1.00 
277-

11343-ND  81,238 1 $1.00 $1.00 

12 

UCLAMP

3301H.TC

T 

UCLAMP

3301HCT-

ND  118,654 2 $0.64 $1.28 

13 SS-5GL2 
SW156-

ND  36,445 2 $3.10 $6.20 

14 
PR144C1

900 
EG4699-

ND  6,503 1 $2.30 $2.30 

15 
$2,181,12

0,204.00 

900-

21811202

04-ND  427 3 $1.92 $5.76 

16 
$533,980,

271.00 
WM7606

CT-ND  206,079 3 $0.68 $2.04 

17 
RMCF120

6FT1K00 

RMCF120

6FT1K00

CT-ND  2,944,824 6 $0.10 $0.60 

18 

C1206C10

3KAREC

AUTO 

399-

17174-1-

ND  6,255 3 $0.23 $0.69 

19 
GSM60U

24-P1J  

709-

GSM60U

24-P1J 1,039 1 $37.76 $37.76 

20 

PJ-

070BH-

SMT-TR  

490-PJ-

070BH-

SMT-TR 838 2 $1.58 $3.16 

      

Total 
Costs $78.18 

Appendix D: First PCB parts order 

 

Index 

Manufact
urer Part 

# 
Digikey 
Part # 

Mouser 
Part # 

Qty in 
Stock Qty Req'd 

Per Unit 
Price Cost 

1 
VL-HDW-
101 

1241-
1053-ND  106 1 $5.00 $5.00 
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2 $2,223.00 
1528-
1385-ND  284 1 $2.50 $2.50 

3 
$61,300,3
11,121.00 

160-1404-
1-ND  750,211 2 $0.13 $0.26 

4 
QPC02SX
GN-RC S9337-ND  988,614 2 $0.10 $0.20 

5 
160-1404-
1-ND 

LTST-
C150KGKT  750,211 3 $0.35 $1.05 

6 
B540C-13-
F 

B540C-
FDICT-ND  178,568 4 $0.54 $2.16 

7 
$705,430,
038.00 

WM4826-
ND  51,465 1 $1.18 $1.18 

8 
$533,980,
271.00 

WM7606C
T-ND  184,518 3 $0.65 $1.95 

9 IRLZ44PBF 
IRLZ44PBF
-ND  944 2 $3.01 $6.02 

10 
UCLAMP3
301H.TCT 

UCLAMP3
301HTR-
ND  60,840 3 $0.64 $1.92 

11 $5,001.00 
36-5001-
ND  1,643,773 25 $0.34 $8.52 

12 EG1218 
EG1903-
ND  79,551 1 $0.76 $0.76 

13 
$5,444,26
2.00 

$5,444,26
2.00  196,337 1 $1.00 $1.00 

14 
SRR1210-
390M 

SRR1210-
390MCT-
ND  2,438 1 $1.41 $1.41 

15 
SRN8040-
8R2Y 

SRN8040-
8R2YCT-
ND  16,096 1 $0.78 $0.78 

16 
RNCF0805
DTE330R 

738-
RNCF0805
DTE330RC
T-ND  15,327 1 $0.14 $0.14 

17 
RNCP0805
FTD200R 

RNCP0805
FTD200RC
T-ND  124,279 2 $0.10 $0.20 

18 

EMK316B
BJ476ML-
T 

587-5425-
1-ND  408,452 1 $0.64 $0.64 

19 
C0805B10
6K050T 

4587-
C0805B10
6K050TCT
-ND  11,997 1 $0.47 $0.47 
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20 

EEE-
FN1H680X
P 

10-EEE-
FN1H680X
PCT-ND  7,680 2 $0.87 $1.74 

21 
08055A20
1JAT2A 

478-
10509-1-
ND  75,496 1 $0.23 $0.23 

22 

C2012C0G
1H822K06
0AA 

445-
14325-1-
ND  4,479 1 $0.30 $0.30 

23 

CC0805KR
X7R8BB15
4 

311-4315-
1-ND  5,721 1 $0.19 $0.19 

24 
CL21B474
KOFNNNG 

1276-
6483-1-
ND  245,311 2 $0.10 $0.20 

25 

C0805C10
4M5RAC7
800 

399-
C0805C10
4M5RAC7
800CT-ND  821,952 4 $0.10 $0.40 

26 

C1206C10
3KARECA
UTO 

399-
17174-1-
ND  6,138 3 $0.23 $0.69 

27 
CL21B103
KBANNNC 

1276-
1015-1-
ND  3,259,318 6 $0.10 $0.60 

28 
RMCF120
6JT10K0 

RMCF120
6JT10K0C
T-ND  1,087,474 4 $0.10 $0.40 

29 
AC1206JR-
071KL 

YAG3927C
T-ND  37,787 7 $0.10 $0.70 

30 
RMCF080
5FT1K24 

RMCF080
5FT1K24C
T-ND  19,174 1 $0.10 $0.10 

31 

CRCW080
53K16FKE
A 

541-
3.16KCCT-
ND  7,874 1 $0.10 $0.10 

32 
RNCP0805
FTD1K50 

RNCP0805
FTD1K50C
T-ND  147,544 1 $0.10 $0.10 

33 
RMCF080
5FT28K0 

RMCF080
5FT28K0C
T-ND  87,898 1 $0.10 $0.10 

34 
RMCF080
5FT19K1 

RMCF080
5FT19K1C
T-ND  105,827 1 $0.10 $0.10 
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35 
RMCF080
5FT100K 

RMCF080
5FT100KC
T-ND  4,776,317 1 $0.10 $0.10 

36 
RMCF080
5JT10K0 

RMCF080
5JT10K0C
T-ND  7,385,822 2 $0.10 $0.20 

37 
LM2586S-
ADJ/NOPB  

926-
LM2586S-
ADJ/NOPB 1,013 1 $10.00 $10.00 

38 
TPS54334
DRCR  

595-
TPS54334
DRCR 8,115 2 $2.72 $5.44 

      

Total 
Costs $57.85 

Appendix E: Second PCB parts order 

 


