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Abstract

I examine market segmentation between equity and bond markets. Although under the no

arbitrage principle equity and bond markets should prove integrated, real-world frictions may

induce some degree of market segmentation. To assess the extent of this segmentation, I use

non-parametric estimators of the stochastic discount factor (SDF). I make four contributions

in this work. First, the non-parametric methods I use surmount several econometric limita-

tions of previous such investigations. Second, I propose a novel machine learning-based SDF

estimator. Third, I examine time variation in the extent of segmentation between equity and

bond markets, which previous work has not empirically tested. Fourth, I use dual-asset-class

SDF estimates to examine cross-asset-class trading signals, which have immediate practical

applications. I find evidence of integration between equity and bond markets in the full

sample. However, cross-asset-class information proves difficult to exploit out of sample in

cross-sectional pricing and trading applications.
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1 Introduction

Asset prices equal expected discounted future payoffs. All of asset pricing stems from this

principle. In theory, under the no arbitrage condition, there exists a stochastic discount

factor (SDF) - a strictly positive random variable that discounts random future payoffs -

that prices all assets (Hansen & Richard, 1987). Such an SDF, if correctly estimated, should

explain the variation in expected returns across any cross-section of assets. Thus, in theory,

a single SDF should price the cross-section of equities and bonds. Of course, in theory there

is no difference between theory and reality. In reality, on the other hand, it is possible

that equity and bond markets are “segmented.” Market segmentation arises when investors

do not necessarily trade across asset classes, and can lead to different pricing properties.

I seek to investigate the extent of market segmentation between equity and bond markets

by answering the following question: Do bond yields contain information that can help

explain the cross-section of equity returns and vice versa? Specifically, I use non-parametric

estimates of the SDF to determine if an SDF estimated from equities and bonds possesses

greater explanatory power than one derived from a single asset class.

My examination of this question interacts with three veins of the existing asset pricing

literature. First is previous research on market segmentation in a variety of settings. Most

prior work in market segmentation has focused on segmentation in international equity mar-

kets and segmentation across the term structure. Second is research on cross-sectional stock

and bond pricing. Stocks command a risk premium because they often perform poorly in

times of high marginal utility for investors, such as recessions or other negative economic

events (Cochrane, 2017). Thus, to the extent bond yields capture investor expectations of

future economic activity, they should serve as proxies for priced risk factors in the cross-

section of equity returns (Fama & French, 1993; Koijen et al., 2017). Third is prior work

on SDF estimation. Extracting the SDF from asset returns proves difficult in general due

to uncertainty regarding the correct parametric form of the SDF. However, non-parametric

methods, such as recent work by Ghosh et al. (2016) and Galpin et al. (2017), obviate the
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need to specify a functional form for the SDF, and thus avoid model misspecification.

My analysis employs modern econometric techniques to assess the extent of equity and

bond market segmentation in the United States. Specifically, I apply the non-parametric SDF

estimation methods of Ghosh et al. (2016) and Galpin et al. (2017), as well as a machine

learning-based SDF estimation method motivated by Ghosh et al. (2016), to daily United

States equity and bond data. If an SDF estimated from stock and bond returns explains

more of the cross-sectional variance in stock and bond returns than does an SDF estimated

from stock or bond returns alone, then information in bond yields helps price equities and

vice versa. This conclusion would constitute evidence against market segmentation.

My research makes several contributions to the existing literature. First, the non-parametric

methods I use can price larger cross-sections of test assets than was previously possible and

preclude the need for a benchmark model. Much previous work on jointly pricing equities

and bonds has focused on developing structural models of the SDF that provide economic

intuition for market integration (Bakshi & Chen, 2005; Campbell et al., 2009; Lettau &

Wachter, 2011). Comparatively less work has examined market segmentation from a more

direct empirical standpoint (Fama & French, 1993; Koijen et al., 2017). Most of these empir-

ical studies jointly price only a relatively small cross section of assets. Yet it is possible that

models that successfully price a small cross section will fail to price a larger set of assets.

Moreover, these works usually assess the marginal explanatory power of bond factors beyond

a specific benchmark model (e.g. the Fama-French 3 factor model). However, with the “zoo”

of factors discovered in the past twenty years, it is possible that newly discovered equity

factors subsume the information provided by bond factors (Cochrane, 2011). The methods

I use surmount these problems. Second, I propose a novel machine learning-based SDF es-

timation technique that can potentially overcome some econometric issues faced by existing

non-parametric methods. Third, I examine the extent to which equity and bond markets

become more segmented during stressful periods. Although some theoretical work suggests

the possibility of time-varying segmentation, previous work has not empirically tested this
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notion. Fourth, I examine cross-asset-class trading signals based on dual-asset-class SDF esti-

mates (e.g. a signal derived from stock and bond momentum) that have immediate practical

applications. Thus, my research provides a thorough assessment of market segmentation

between equity and bond markets currently missing from the existing literature.

The remainder of this proposal proceeds as follows. In Section 2 I review the existing

literature on market segmentation, joint stock and bond pricing, and SDF estimation. In

Section 3 I detail the methods I use and the empirical tests I conduct. In Section 4 I discuss

the data I use. In Section 5 I outline my hypotheses for the tests I run. Section 7 concludes

the proposal.

2 Literature Review

In this section I review the existing literature on market segmentation, joint stock and bond

pricing, and SDF estimation.

2.1 Market Segmentation

Market segmentation arises when investors are limited in their ability to share risks in a

particular market (Cochrane, 2011). The existing literature highlights market frictions and

heterogeneous preferences as the major reasons for limited risk sharing. Previous work on

market segmentation mostly focuses two specific cases: segmentation in international equity

markets and segmentation in bond markets across the term structure.

2.1.1 International Equity Market Segmentation

Early work on segmentation in international equity markets postulated that market frictions

due to structural barriers to the free flow of capital induced “segmentation premia” in na-

tional equity markets where global investors could not effectively arbitrage price differences

away. Researchers often appealed to differences in currency areas, political regimes, trade
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barriers, and capital controls as drivers of segmentation (Solnik, 1974). Furthermore, em-

pirical work found evidence of “mildly segmentation” in international equity markets. For

example, Errunza & Losq (1985) found that securities with restricted access due to the above

frictions earned “super risk premia.” Nevertheless, as economic liberalization has removed

barriers to the free flow of capital, empirical support for segmented international markets has

weakened. As a result, theories of segmented markets have been replaced with equilibrium

models of capital flows (Errunza & Miller, 2000; Duffie & Strulovici, 2012).

2.1.2 Segmentation Across the Term Structure

Most market segmentation research has focused on segmentation across the term structure.

The earliest work in this vein dates back to Modiglini and Sutch’s proposal of the preferred

habitat model in the 1960’s (Modigliani & Sutch, 1966, 1967). The preferred habitat model

represents one of the many attempts to extend the expectations hypothesis to account for

the empirical fact that the yield curve slopes upward (Gürkaynak & Wright, 2012). Under

the expectations hypothesis, long run interest rates reflect future expectations of short term

interest rates, so risk neutral investors should prove indifferent as to what maturity they

lend at. The preferred habitat model, however, holds that many investors are risk averse

and often have obligations at fixed maturities in the future (e.g. pension funds). These

investors seek certainty in their ability to finance these future obligations, and hence have

definite preferences over what maturities to invest at (Modigliani & Sutch, 1967). As a

result, “the interest rate is determined by the supply and demand of bonds of that particular

maturity” (Gürkaynak & Wright, 2012). That is, bond market segmentation arises along the

yield curve due to heterogeneous preferences.

The preferred habitat model has not received much serious attention until recently due

to its inability to explain why arbitrageurs don’t enter the market and flatten the yield

curve. Modigliani & Sutch (1967) only address this issue on the surface by appealing to

transaction costs as an obstacle to such arbitrage. However, interest in the preferred habitat

5



model has reemerged after the 2008 financial crisis due to clear empirical evidence of market

segmentation that emerged in that period. Greenwood & Vayanos (2008) and Vayanos & Vila

(2009) have developed a preferred habitat model in which arbitrageurs are themselves risk-

averse. Others such as Fontaine & Garcia (2011) have focused on the frictions fixed income

arbitrageurs face, such as liquidity constraints. Gürkaynak & Wright (2012) hypothesize that

in times when transactions costs or risk aversion spike, arbitrageurs may prove insufficiently

able to integrate different portions of the yield curve. For example, in late 2008, the U.S.

Treasury yield curve exhibited clear segmentation, with short term notes yielding less than

longer term bonds with the same maturity dates.

Thus, market segmentation can manifest even in in liquid cross-sections. No obvious

frictions inhibit fixed income investors from also participating in equity markets, so one

would not expect equity and bond markets to be segmented. As discussed in the Section

2.2, previous work suggests that equity and bond markets are quite integrated. Yet it is

conceivable that heterogeneous investor preferences over these two asset classes paired with

spikes in arbitrageur risk aversion and other frictions might induce segmentation in extreme

periods, such as financial crises.

2.2 The Cross-Section of Bonds and Equities

As discussed above, under the no arbitrage principle there exists a single SDF that prices all

assets, including stocks and bonds. As a result, previous theoretical and empirical work has

sought to unify equity and bond pricing.

2.2.1 Theoretical and Empirical Links between Bonds and the SDF

In this particular application, factors derived from bond yields should help price the cross-

section of equity returns for economically intuitive reasons. Under a time-separable utility

function, the SDF represents the growth rate of an investor’s marginal utility (Campbell,

2000). By construction, an asset’s expected excess return is proportional to the negative

6



of it’s covariance with the SDF. Since stocks are negatively correlated with the SDF, they

perform poorly when the SDF is high, or equivalently, when marginal utility is high. As a

result, equities command a risk premium because they often perform poorly in times of high

marginal utility for investors, such as recessions or other negative economic events (Cochrane,

2017). Thus, to the extent that factors derived from bond yields can predict future economic

activity, they should inform the SDF.

A large body of empirical work finds that bond factors do forecast future economic activ-

ity. Macroeconomic shocks impact investor expectations about economic fundamentals (e.g.

inflation, growth) and expectations about policy responses to these fundamentals, and thus

contemporaneously affect the term structure (Campbell et al., 2009). At the same time, bond

factors also predict future economic activity. Harvey (1988) establishes that the real term

structure contains predictive information of consumption growth. Stock & Watson (1989)

find that long-term/short-term Treasury yield spreads serve as useful leading indicators of a

variety of macroeconomic variables. Many authors link term structure information to future

GDP growth (Estrella & Hardouvelis, 1991; Plosser & Rouwenhorst, 1994; Haubrich & Dom-

brosky, 1996). In more recent work, Brooks (2011) finds that “tent factor” of Cochrane &

Piazzesi (2005), a linear combination of forward rates, forecasts unemployment at quarterly

frequencies. Gilchrist & Zakrajšek (2012) find that corporate bond credit spreads forecast

payroll employment, unemployment, and industrial production at horizons of up to a year.

Koijen et al. (2017) demonstrate that many bond factors (e.g. the Cochrane-Piazzesi tent

factor, the slope factor of Litterman & Scheinkman (1991), and others) forecast future eco-

nomic activity, measured by the Chicago Fed National Activity Index and GDP, at business

cycle horizons of two to three years.

2.2.2 Cross-Sectional Bond and Stock Pricing

These theoretical and empirical results have motivated work on cross-sectional bond and

stock pricing. This body of research provides evidence that bond factors do help explain
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equity returns and vice versa. I divide this work into two categories. The first is empirical

investigations that conduct regressions to estimate the empirical prices of risk of various

factors. Fama & French (1989) find that dividend yields forecast bond returns, while the

“default-premium," the credit spread between AAA bonds and the market portfolio of cor-

porate bonds, and the “term-premium," the spread between AAA yields and one-month

Treasury yields, forecast excess equity returns. Fama & French (1993) demonstrate that

the default and term premia factors add significant explanatory power to the cross-section

of equity returns beyond the market, SMB, and HML factors. They also find that these

equity factors help explain the cross-section of low-grade corporate bond returns. Cochrane

& Piazzesi (2005) show that their tent factor predicts not only excess returns of one to five

year Treasuries, but also excess stock returns at one-year horizons. Koijen et al. (2017) use

bond factors to empirically explain the value premium. They demonstrate that the cash

flows of value stocks have greater exposure than those of growth stocks to bond factors that

predict economic activity at business cycle horizons. As a result, value stocks command a

premium because their cash flows are more significantly impacted in times when investor

marginal utility is already high. Thus, this body of work finds that empirically bond factors

do help explain the equity returns.

The second category of work in cross-sectional stock and bond pricing focuses on struc-

tural models of equity and bond returns. These authors propose models, usually affine term

structure models, of the SDF that they calibrate to observed data. They then compare the

moments yielded by return series generated under the model to observed moments to assess

model’s realism. Compared to the purely empirical investigations discussed above, this vein

of literature places more emphasis on theoretical justification for the model structure and

input variables chosen. Bakshi & Chen (2005) propose a stock valuation model based on

a single factor term structure model of the SDF and obtain relatively small pricing errors.

Wachter (2006) proposes a consumption based model that produces realistic bond and stock

volatility and a high equity premium. Bekaert et al. (2009) propose an affine term structure

8



model of the SDF based on fundamental macroeconomic variables such as inflation and con-

sumption growth. They find that this model matches the empirical volatilities of dividend

and consumption growth, and generates a large equity premium and low risk free rate. Let-

tau & Wachter (2011) achieve similar results with a model parametrized to dividend growth,

inflation, and short-term real rates, and in particular have some success in matching the

value premium. Departing from the macroeconomic basis of most of these models, Gabaix

(2012) finds that a structural model of the SDF based on rare disasters explains a variety

of asset pricing puzzles, including jointly pricing stocks and bonds. Campbell et al. (2009)

employ a multifactor term structure model based on real interest rates, inflation, and a state

variable to explain the time-varying covariance of stock and bond returns.

The cross-sectional stock and bond pricing literature suggests Deep theoretical under-

pinnings for why bond factors should help price equities and vice versa. Empirical results

corroborate this theory. As discussed in Section 2.3, modern econometric techniques have

the ability to better quantify the extent of this cross-asset-class pricing ability.

2.3 Empirical SDF Estimation

The SDF is a fundamentally important object in asset pricing. Indeed, if one could perfectly

characterize the SDF and the stochastic payoff process of a given asset, he or she could

perfectly price that asset. As a result, many researchers have sought methods to estimate the

SDF. The ideal SDF model would directly link asset returns to to underlying macroeconomic

variables, describing the observed data well and providing theoretical insight (Campbell,

2000). Unfortunately, structurally motivated SDF models, such as those discussed in Section

2.2, can usually at best only qualitatively match certain aspects of the observed data. For

example, many structural models do yield a sufficiently volatile SDF as determined by the

Hansen-Jagannathan lower bound (Hansen & Jagannathan, 1991). These models cannot,

however, generate return patterns that fit observed asset returns well (Cochrane, 2017). As

a result, many researchers have developed methods to extract the the SDF directly from
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observed asset prices. Even if these methods cannot necessarily illuminate the underlying

macroeconomic fundamentals of the SDF, they often prove practically useful (e.g. for risk

management, derivatives pricing, and asset allocation). Moreover, these methods can help

identify which systematic risk factors empirically impact asset returns.

2.3.1 SDF Estimation from Options Data

Most previous work on extracting the SDF directly from asset prices has used options data.

Options prove theoretically appealing for this application because they contractually specify

payoffs in different states of nature and trade on exchanges. Early work in this area designed

parametric techniques to extract the state price density (closely related to SDF) from option

prices (Ross, 1976; Banz & Miller, 1978; Breeden & Litzenberger, 1978). These approaches

impose strict assumptions on the distribution of the SDF, and hence fall victim to the dangers

of model misspecification (Hansen, 2014).

Thus, subsequent work focused on developing non-parametric methods that more accu-

rately describe observed data due to their lack of unrealistic assumptions. For example,

Jackwerth & Rubinstein (1996) extract the risk-neutral probability distribution, which is

closely related to the SDF, from daily S&P 500 index options data. Aït-Sahalia & Lo (1998)

and Aït-Sahalia & Lo (2000) develop non-parametric methods to extract the state price

density, also closely related to the SDF, from options prices. Rosenberg & Engle (2002)

present a non-parametric method to estimate the SDF using S&P 500 index options data

and a stochastic volatility model of the S&P 500. The limitation of these models is their

reliance on options data. Options are not nearly as liquid as stocks. Indeed at strike prices

far from the spot price, options can be quite illiquid. Thus, data quality can significantly

limit the performance of these methods. To cope with this issue, these papers use S&P 500

index options, which are perhaps the most liquid options. As a result, one cannot easily

apply these methods to other stocks with less liquid options chains, and certainly not to

other asset classes such as bonds, which do not have exchange traded options.
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2.3.2 General Non-Parametric SDF Estimation

Fortunately, recent work has presented methods to extract the SDF from general asset return

data, thereby allowing researchers to estimate the SDF directly from, for example, equity

return data. Ghosh et al. (2016) provide an information-theoretic approach to estimating the

SDF. Given a cross-section of assets (the authors focus on equity portfolios), the proposed

method minimizes a particular entropy-based loss function (the Kullback-Leibler informa-

tion Criterion), subject to the constraint that the SDF pricing equation holds. The resulting

optimization problem has a solution that expresses the SDF as a nonlinear function of the La-

grange multipliers of the optimization problem and the observed asset returns. The authors

construct a rolling out-of-sample estimate of the SDF by computing the Lagrange multipli-

ers from previous data, and then calculating the SDF over the evaluation period from those

out-of-sample estimates and the contemporaneous cross-sectional returns. They then use

this “Information SDF” (I-SDF) and its linear projection onto the return space, called the

“Information Portfolio” (I-P), as single factor pricing models. The I-SDF and I-P series allow

one examine how well the SDF extracted from a given set of portfolios prices those portfolios

out of sample. Ghosh et al. (2016) find that both the I-SDF and I-P cross-sectionally price

the test assets better than Fama-French three-factor and Carhart four-factor models. The

I-SDF provides a flexible and computationally tractable way to extract the SDF from any

set of test assets. Thus, one can easily extend this analysis to other classes by, for example,

including bonds in the cross-section of test assets.

Galpin et al. (2017) conduct a similar but slightly different analysis. These authors use the

I-SDF of Ghosh et al. (2016), which they call the exponential tilting estimator, and another

non-parametric SDF estimator motivated by the continuously-updated estimator of Hansen

et al. (1996) to estimate the SDF directly from a set of systematic risk factors, not from a

set of test assets. In this way, Galpin et al. (2017) obtain the Lagrange multipliers from the

pricing constraints for the set of test factors as in Ghosh et al. (2016). They then test the

significance of these Lagrange multipliers in the SDF via tests developed by Newey & Smith
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(2004). These tests allow the authors to determine which factors add significant information

to the SDF when conditioned on the other test factors. The authors argue that adding in

auxiliary test assets “muddles inference,” whereas their method can directly determine which

factors prove economically significant. They find that four factors suffice to characterize the

SDF: the market, profitability, investment, and value-profitability-momentum. This method

also proves easily extensible to other asset classes.

3 Methodology

In this section I detail the methods I use and the empirical tests I conduct. To ensure

robustness, I test for equity and bond market segmentation in three different ways.

3.1 Testing for Segmentation via SDF Estimation

I first detail two non-parametric SDF estimation techniques and then outline the statistical

tests I use to test for market segmentation.

3.1.1 SDF Estimation Method of Ghosh et al. (2016)

Ghosh et al. (2016) use an information-theoretic approach to non-parametrically extract

the SDF from a cross section of test assets. Specifically, they derive the “least-informative”

SDF that prices all of the assets in the sample period. Least-informative in this context

means the SDF corresponding to the risk-neutral probability measure that deviates least

from the hypothetical physical probability measure, while still pricing all assets. Precisely,

Ghosh et al. (2016) present the following non-parametric, maximum-likelihood estimate of

the risk-neutral probability measure Q given the physical probability measure P:

argmin
Q

D(Q|P) s.t. EQ[R
e
t ] = 0 ∈ Rn, (3.1)
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where Re
t ∈ Rn is the vector of excess returns of our n test assets in period t, and D(Q|P) is

the Kullback-Leibler Information Criterion (KLIC). The KLIC is a measure of the extent to

which one probability distribution deviates from another. Thus, Q as given by (3.1) is the risk-

neutral measure that requires the least additional information over the physical probability

measure but that still prices all test assets. Some measure-theoretic simplifications to (3.1)

yields the following equivalent optimization problem:

argmin
{Mt}Tt=1

1

T

T∑
t=1

Mt ln(Mt) s.t.
1

T

T∑
t=1

MtR
e
t = 0, (3.2)

where Mt is the value of the SDF at time t. As Ghosh et al. (2016) note, (3.2) has the

following solution:

M Info
t =

eλ
⊤
T Re

t∑T
t=1 e

λ⊤
T Re

t

, λT = argmin
θ

1

T

T∑
t=1

eθ
⊤Re

t , (3.3)

where λT ∈ Rn is the vector of Lagrange multipliers required for the pricing constraint in

(3.2) to hold. The notation M Info
t follows from Ghosh et al. (2016) naming their estimator

the “Information SDF.” To summarize, M Info
t as given by (3.3) corresponds to essentially

the least-complex risk-neutral probability measure that still prices all assets. Note that (3.3)

gives a way to estimate the SDF out-of-sample: extract λT from a previous sub-sample

{t0− s, t0− s+1, . . . , T − s}, s > T − t0, and calculate each Mt based on Re
t ∀t ∈ {t0, . . . , T}.

In the next section, I propose a similar non-parametric SDF method.

3.1.2 Neural Network-Based SDF Estimation

The non-parametric SDF estimation method of Ghosh et al. (2016) motivates a neural

network-based SDF estimation procedure. Neural networks, also known as “deep nets,” are

a machine learning method that uses a set of training examples to non-parametrically learn

a continuous function between, in this setting, a vector-valued input variable and a vector-
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valued output variable. Note that (3.3) specifies the SDF Mt as a non-linear function of Re
t

and the parameter vector λT obtained from the pricing constraint. In the same way, a neural

network learns a parameter vector ω that yields the “best” mapping between the input and

output variables according to some loss function.

Precisely, let σ(x) = 1/(1+e−x) be the logistic function. Note that σ maps x continuously

into the range (0, 1), exactly the domain of the SDF. As above, let Re
t ∈ Rn be the vector of

excess asset returns in period t. Motivated by the pricing constraint in (3.2), let

L(ω;Re
t ) =

1

n
∥Re

tσ(ω
⊤Re

t )∥22 =
1

n

n∑
i=1

(Re
t,iσ(ω

⊤Re
t ))

2, (3.4)

be the least-squares loss function, where Re
t,i is the excess return of the i-th asset in period

t. Note that if we let Mt = σ(ω⊤Re
t ), then minimizing L(ω;Re

t ) corresponds to finding an

SDF that forces the pricing constraint to (almost) hold in period t. Thus, let

MDeep
t = σ(−ω⊤Re

t ), ω = argmin
θ

1

T

T∑
t=1

L(θ;Re
t ), (3.5)

so MDeep
t is the SDF that forces the pricing constraint to hold in the full sample. (3.5) is

typically solved in the Deep learning literature via stochastic gradient descent. For brevity,

I omit the details of stochastic gradient descent and refer the reader to Heaton et al. (2016),

a review of the uses of Deep learning in finance, for more details. Note that MDeep
t can be

estimated in a rolling out-of-sample fashion in exactly the same fashion described above for

M Info
t . Figure 3.1.2 illustrates the neural network described in this section graphically.

This SDF estimator bears several structural similarities to that of Ghosh et al. (2016).

Both estimators model the SDF as a nonlinear function based on a parameter vector learned

from the pricing constraint. Indeed, the specific nonlinear mappings in both cases are func-

tionally similar. The difference between the two methods is the manner in which the pa-

rameter vectors λT and ω are learned. Yet comparing the equation for λT in (3.2) to the

equation for ω in (3.5), we see that the only difference in the ways λT and ω are learned is
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the particular loss function chosen. Thus, this neural network SDF estimation technique is

no more complex than the estimation method of Ghosh et al. (2016). However, the neural

network approach offers several potential advantages in this setting. First, whereas Ghosh

et al. (2016) acknowledge that their method requires a large time series dimension relative to

the cross-sectional dimension, neural networks have proven useful in many high-dimensional

applications (e.g image recognition), and thus might offer superior performance in this set-

ting as we expand the cross-section of assets. Second, since I seek to model the SDF in an

out-of-sample fashion, overfitting of the parameter vector to a previous subsample represents

a serious concern. Deep learning offers several methods to prevent overfitting (e.g. regular-

ization, dropout layers) that manifest as slight modifications to the optimization problem in

(3.5). Thus, this neural network estimator may provide a more informative SDF than that

yielded by the method of Ghosh et al. (2016). At the very least, this method provides an

additional robustness check for the results yielded by the other tests I use.

Re
t,1

Re
t,2

Re
t,3

Re
t,n

...
Mt = σ(−ω⊤Re

t )

MtR
e
t,1

MtR
e
t,2

MtR
e
t,3

MtR
e
t,n

...

ω1

ω2

ω3

ω4

Figure 1: Graphical representation of neural network used to estimate the SDF.
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3.1.3 Tests of Market Segmentation

I estimate the SDF via (3.3) and (3.5) in a rolling out-of-sample fashion from three sets

of assets: a set of equity test assets (SEquity), a set of bond test assets (SBond), and the

union of these two sets (SAll). Denote these six SDFs as MEquity,j,MBond,j, and MDual,j, j ∈

{Info,Deep}, respectively. Now in a similar manner to Ghosh et al. (2016), ∀i ∈ {Equity, Bond,Dual},

j ∈ {Info,Deep} construct tradeable factor-mimicking portfolios by linearly projecting each

SDF onto the return space:

wi,j = −
b̂

|b̂⊤η|
,

(
â, b̂

)
= argmin

a,b

1

T

T∑
t=1

(
M i,j

t − a− b⊤Re
t

)2
+ γ∥(a, b)∥22, (3.6)

where wi,j is the vector of portfolio weights and η is a vector of conformable ones. Here the

coefficient γ is the regularization parameter. The second term in the optimization problem

penalizes large coefficients a and b, thereby constraining the positions weights of the mimick-

ing portfolios. Ghosh et al. (2016) omit this regularization term and construct the mimicking

portfolio via simple ordinary least squares (OLS) regression. However, when working with a

wider cross section of assets, the OLS portfolio weights take on unreasonably large weights,

and regularization can yield portfolios that perform better out of sample. This technique of

penalizing the usual OLS problem by the L2 norm of the coefficient vector is known as ridge

regression (Hoerl & Kennard, 1970).

Let Re,i
t , i ∈ {Equity, Bond,Dual} be the vector of excess returns for each set of test

assets. Then Re,i,j
t = wi,j⊤Re,i

t ∈ {Equity, Bond,Dual}, j ∈ {Info,Deep} is the factor-

mimicking portfolio excess return for period t, where the weight vector wi,j⊤ has been

calculated out-of-sample from a previous subsample. Thus, REquity,j
t , RBond,j

t , RDual,j
t , j ∈

{Info,Deep}, represent six pricing factors.

I use these six pricing factors to test for market segmentation in two ways.

Benchmark-free tests of market segmentation

My first test of market segmentation involves two benchmark-free cross-sectional Fama-
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MacBeth regressions. By obviating the need to specify a benchmark model, I strip out the

potential statistical biases that arise from using the wrong benchmark model (e.g. omitted

variable bias). The first pass of this test is to obtain factor loadings for each asset on its corre-

sponding single-asset-class SDF and on the dual-asset-class SDF. For j ∈ {Info,Deep}, i ∈

{Equity, Bond}, regress the excess returns for asset k ∈ Si on Re,i,j
t and Re,Dual,j

t :

Re
t,k = α + βi,j

k Re,i,j
t + ϵt,

Re
t,k = α + βDual,j

k Re,Dual,j
t + ϵt.

Now cross-sectionally regress the sample expected returns for each assets k ∈ Si, denoted

Re,i
k , on the vectors of factor loadings:

Re,i
k = α + θi⊤βi,j

k + ϵk, (3.7)

Re,i
k = α + θDual⊤βDual,j

k + ϵk. (3.8)

Here, θi⊤ and θDual⊤ represent the risk premia earned by exposure to the factor-mimicking

portfolios for M i,j and MDual,j. If the full model (3.8) has significantly better fit than

the nested model (3.7), then one would conclude that the dual-asset-class SDF explains

significantly more of the variance in cross-sectional stock or bond returns than does a single-

asset-class SDF. This conclusion would provide evidence against market segmentation. I

conduct this test both in the full sample and in stressful subsamples.

I use two tests to determine if the full model (3.8) has better fit than the nested model

(3.7). First, I use the Vuong closeness test for non-nested models (Vuong, 1989), which com-

putes a normally-distributed z-statistic based on the Kullback-Leibler divergence between

each of two non-nested models model and the hypothetical true model, to determine which

better fits the data. Second, I evaluate the difference in alphas between the full model (3.8)

and the nested model (3.7). Since these cross-sectional alphas represent pricing errors, the

full model yielding a significantly smaller alpha than the nested model would constitute ev-
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idence of market integration. I use seemingly unrelated regression (SUR) to estimate the

standard error of the alpha difference. In SUR, one stacks the vectors for the response

variables used in two separate regressions and forms a block-diagonal matrix from the two

individual design matrices, as shown in (3.9). One then regresses the combined response vec-

tor on the block-diagonal design matrix to obtain a stacked vector of regression coefficients

and a covariance matrix for the regression coefficients, from which one can obtain a standard

error for the alpha difference. This regression takes the following form:

 y1

y2

 =

 β1

β2


 X1 0

0 X2

+

 ϵ1

ϵ2

 , (3.9)

where

yj, ϵj ∈ Rn,βj ∈ Rd,Xj ∈ Rn×d, j ∈ {1, 2},

for n the number of observations and d the number of parameters.

Comparison to equity and bond benchmarks

My second test of market segmentation compares the average alphas for all test assets in

each asset class under a benchmark model and under that same benchmark model augmented

with the single and dual-asset-class SDF-mimicking portfolios. I use the Fama-French five

factor model with momentum as the equity benchmark (Fama & French, 2016), and the

level-slope-curvature three factor model as the bond benchmark (Litterman & Scheinkman,

1991).

For each asset k ∈ SEquity, conduct the following three time series regressions for all
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j ∈ {Info,Deep}:

Re
t,k = αk + bkR

e
M,t + skSMBt + hkHMLt + rkRMWt + ckCMAt +mkMOMt + ϵk,t,

(3.10)

Re
t,k = αj,0

k + bj,0k Re
M,t + sj,0k SMBt + hj,0

k HMLt + rj,0k RMWt (3.11)

+ cj,0k CMAt +mkMOMt + βj,0
k REquity,j

k + ϵk,t, (3.12)

Re
t,k = αj,1

k + bj,1k Re
M,t + sj,1k SMBt + hj,1

k SMBt + rj,1k RMWt (3.13)

+ cj,1k CMAt +mkMOMt + βj,1
k RDual,j

k + ϵk,t. (3.14)

Here Re
M,t is the excess return of the market, SMBt is the size factor, HMLt is the value

factor, RMWt is the profitability factor, CMAt is the investment factor, all as described in

Fama & French (2016), and MOMt is the momentum factor.

For each asset k ∈ SBond, conduct the following three time series regressions for all

j ∈ {Info,Deep}:

Re
t,k = αk + lkLevelt + skSlopet + ckCurvaturet + ϵk,t, (3.15)

Re
t,k = αj,0

k + lj,0k Levelt + sj,0k Slopet + cj,0k Curvaturet + βj,0
k RBond,j

k + ϵk,t, (3.16)

Re
t,k = αj,1

k + lj,1k Levelt + sj,1k Slopet + cj,1k Curvaturet + βj,1
k RDual,j

k + ϵk,t. (3.17)

Here Levelt is the 1-year field, Slopet is the 10-year yield minus the 2-year yield, and

Curvaturet is the 5-year yield minus the average of the 10 and 2 year yields.

For j ∈ {Info,Deep}, i ∈ {Equity, Bond}, let

αi =
1

|Si|
∑
k∈Si

|αk|, αj,0
i =

1

|Si|
∑
k∈Si

|αj,0
k |, αj,1

i =
1

|Si|
∑
k∈Si

|αj,1
k |. (3.18)

If αj,0
i is significantly less than αi, as measured by the reduction in average absolute t-

statistic, then the single-asset-class SDF adds significant additional pricing power over the
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benchmark model. If αj,1
i is significantly less than αj,0

i , then the dual-asset-class SDF adds

adds significant additional pricing power over the single-asset-class SDF. For example, if

αj,1
Equity << αj,0

Equity, then bond information helps price equities, which is evidence against

market segmentation.

The benefit of this test is that, even though it requires specifying benchmark models,

it can impart economic intuition about the extent of market integration in the form of the

basis point reduction in average alpha due to each of the SDFs.

3.2 Testing for Segmentation via SDF Information

In this section, I detail the method of Galpin et al. (2017), which tests which assets add

significant information to the SDF. Galpin et al. (2017) establish that in this setting,

λT
D−→ N (0,P), P =

1

T

T∑
t=1

M info
t Re

tR
e⊤
t ∈ Rn×n, (3.19)

where n is the number of test assets and λT is the vector of Lagrange multipliers used in the

SDF estimation method of Ghosh et al. (2016) defined in (3.3). Thus, a test of H0 : λT,k = 0

is a test of if the pricing constraint for asset k binds, and so is a test of if asset k adds a

significant amount of information to the SDF. Thus, I first test, in the full sample and in

stressful sub periods which individual equity portfolios and bonds add a significant amount

of information to the SDF.

Now let λi
T represent the λT vector derived from the set of test assets Si, i ∈ {Equity, Bond,All}.

I next test, in the full sample and in stressful subsamples, the following joint null hypothesis

for i ∈ {Equity, Bond}:

H i
0 : λ

All
T,k = 0, ∀k ∈ Si.

Rejecting HEquity
0 would imply that the equity test assets collectively add a significant amount

of information to the SDF. Similarly, rejecting HBond
0 would imply that the bonds collectively
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add a significant amount of information to the SDF. Galpin et al. (2017) establish the

following convergence result that provides a simple means to conduct this hypothesis test:

T∑
t=1

M f
t ln(M f

t )−M r
t ln(M

r
t )

D−→ χ2(d),

where M f
t is the SDF estimated from the full cross section and M r

t is the Information SDF

estimated from the restricted cross section, and d is the difference in the number of assets

between the full and restricted cross sections.

Thus, this method provides another benchmark-free test of market segmentation.

3.3 Dual-Asset-Class Trading Signals

The third way I test for market segmentation is by examining the performance of dual-

asset-class trading strategies. I compare the performance of common factor strategies and

variants of those strategies informed by a dual-asset-class SDF. If the dual-asset-class SDF

significantly improves performance, then bonds help price equities, and vice versa. This

conclusion would suggest market integration.

I examine trading signals for the value and momentum anomalies based on sorted equity

and bond portfolios. I use the standard Fama-French decile sorts as the equity portfolios.

Following the setup of Brooks & Moskowitz (2017), I use the 1, 3, 5, 7, and 10 year U.S.

Treasury bonds sorted on real yields as the bond value assets, and these same bonds sorted

on trailing 12-month returns as the momentum assets. For each set of trading assets (either

the ten equity or five bond portfolios), consider the following three strategies based on these

assets:

1. Control strategy: Long the greatest anomaly portfolio (tenth equity decile for if

trading equities, fifth bond quintile if trading bonds) short the least anomaly portfolio.

2. Single-SDF strategy: Extract the SDF out-of-sample from the trading assets by

(3.3) and (3.5). Project each SDF onto the return space of these portfolios via (3.6)
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to create two tradeable anomaly portfolios. As noted by Ghosh et al. (2016), these

portfolios should represent the tangency portfolios of these ten assets.

3. Dual-SDF strategy: Extract the SDF out-of-sample from the trading assets and the

set of non-trading assets by (3.3) and (3.5). Project each SDF onto the return space

of these equity portfolios via (3.6) to create two tradeable anomaly portfolios.

If the single-SDF strategy performs significantly better than the control strategy (on the

bases of Sharpe ratio and alpha to a benchmark factor model), then the SDF we estimate does

uncover a better asset allocation, and perhaps identifies the tangency portfolio. If the dual-

SDF strategy performs significantly better than the single-SDF strategy, then information in

bond yields (stock returns) helps price and trade equities (bonds), which would be evidence

against market segmentation. In addition to providing another robustness check to my other

tests of market segmentation, testing these dual-asset-class trading signals also highlights

the practical value of the SDF estimation techniques I use.

4 Data

In this section I discuss the data I use. I use daily U.S. stock and bond returns. To ensure

robustness, I use a wide cross section of test equity portfolios. Specifically, I use daily

decile sorts on size, value, momentum, investment, and profitability, obtained from Kenneth

French’s data library. This data set covers the period from July 1963 to September 2017.

In order to capture information from the full yield curve, I use U.S. Treasury zero-coupon

bonds with maturities of 1, 3, 5, 7, and 10 years. The CRSP Fixed Term Indexes dataset

has daily data on these maturities from June 1961 to December 2016.

I use the NBER recession periods as the stressful periods for my subsample analyses. For

the real yield proxies used to form the bond value assets, I use the data provided by Chernov

& Mueller (2012), who model quarterly real yields, from 1971 to 2002 for maturities of 1, 3,

5, 7, and 10 years. From 2003 to 2016, I use daily TIPS yields for maturities of 5, 7, and 10
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years. For the 1 and 3-year yields during this period, I estimate real yields by subtracting

the nominal yield from expected maturity-matched CPI inflation forecasts obtained from the

Federal Reserve Bank of Philadelphia. This dataset covers provides inflation forecasts at a

quarterly frequency for 1 and 10 year time horizons. I obtain 3-year expected inflation via

linear interpolation.

The full data set I use for the tests outlined in Sections 3.1 and 3.2 covers the period from

July 1963 to December 2015. I use a ten-year rolling window to construct the Information

and Deep SDFs, so the out-of-sample period covers September 1973 to December 2015. I

evaluate dual-asset-class trading strategies discussed in Section 3.3 on the period November

1981 to December 2016.

5 Hypotheses

In this section, I summarize the empirical tests I conduct and outline my priors on the results

of these tests. Overall, based on the success of previous joint bond and stock pricing efforts,

as discussed in Section 2.2, I expect to find evidence of market integration. No arbitrage is

a fairly weak assumption, especially in liquid cross sections, so theory suggests a single SDF

will price stocks and bonds. Furthermore, previous work, such as Fama & French (1993),

has found bond factors to be informative in the cross-section of equity returns and vice

versa. Even though, as discussed in section 2.1.2, the preferred habitat hypothesis and work

on term structure segmentation suggest that equity and bond markets may display signs

of segmentation in stressful periods, I maintain the same prior here due to the results of

previous full-sample analyses. Table 1 exhibits the empirical tests I run and my priors on

the results of each of these tests.
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Table 1: Summary of empirical tests and associated priors.

Test Statistical H0 Prior

F-test/likelihood ratio
test of single vs. dual-

asset-class SDF in cross-
sectional regression

∀j ∈ {Info,Deep}
Hj

0 : Full model does
not have better fit
than nested model

∀j ∈ {Info,Deep}
Hj

0 will be rejected

Comparison of aver-
age alphas under

benchmark and SDF-
augmented benchmarks

∀i ∈ {Equity, Bond},
j ∈ {Info,Deep}
H1,i,j

0 : αi = αj,0
i

H2,i,j
0 : αj,0

i = αj,1
i

∀i ∈ {Equity, Bond},
j ∈ {Info,Deep}
H1,i,j

0 and H2,i,j
0

will be rejected.
Significance tests of equity
and bond Lagrange mul-
tipliers in SDF estimate

∀i ∈ {Equity, Bond}:
H i

0 : λAll
T,k = 0, ∀k ∈ Si

∀i ∈ {Equity, Bond}
H i

0 will be rejected

Comparison of control,
single-SDF, and dual-
SDF trading strategies

∀a ∈ {value,momentum},
j ∈ {Info,Deep}

Ha,j,1
0 : Single-SDF strat-

egy does not outperform
dual-SDF strategy

Ha,j,2
0 : Dual-SDF strategy
does not outperform
single-SDF strategy

∀a ∈ {value,momentum},
j ∈ {Info,Deep}
Ha,j,1

0 and Ha,j,2
0

will be rejected

6 Results

In this section I detail the results of the empirical tests I conduct.

6.1 SDF and Mimicking Portfolio Summary Statistics

Table 2 displays summary statistics for the Information and Deep SDFs, and their correspond-

ing mimicking portfolios (MPs). The Information SDFs are normalized to have mean of 1 by

construction, while the Deep SDFs happen to be centered at .5, which isn’t surprising given

their construction via the logistic function. The equity and full cross-section Information

SDFs are extremely volatile (σ > 4), and all three Information SDFs have extraordinarily

positive skewness (> 40) and kurtosis (> 2000), as illustrated by the histogram in Panel

A of Figure 2. The Deep SDFs are much less volatile, with insignificant skewness (about

1 at most), and significantly lower, yet still very high, kurtosis (up to 19). The histogram
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in Panel B of Figure 2 displays the roughly normal distribution (on a log scale) of the full

cross-section Deep SDF.

Panel A: Information SDF

Statistic Eq. SDF Bonds SDF Both SDF Eq. MP Bonds MP Both MP

Mean 1.00 1.00 1.00 6.01e-4 9.64e-5 5.63e-4
Std Dev 4.20 0.119 4.25 0.0103 2.76e-3 9.17e-3
Skewness 46.7 43.2 46.4 -0.591 0.0294 -0.744
Kurtosis 2.45e+3 3.28e+3 2.40e+3 12.1 4.70 14.2
Sharpe - - - 0.0585 0.0349 0.0615

Panel B: Deep SDF

Statistic Eq. SDF Bonds SDF Both SDF Eq. MP Bonds MP Both MP

Mean 0.500 0.500 0.500 3.91e-4 8.14e-5 4.10e-4
Std Dev 0.0217 3.88e-3 0.0219 0.0122 2.48e-3 0.0138
Skewness 1.01 0.407 1.00 -0.409 0.125 -0.347
Kurtosis 19.0 10.8 19.1 6.92 8.05 7.90
Sharpe - - - 0.0320 0.0329 0.0297

Table 2: Daily SDF and mimicking portfolio (MP) summary statistics.

The MPs perform well in terms of Sharpe ratio after annualizing the numbers in Table 2

by multiplying by
√
252. For the Information method, the equity and full cross-section MP

Sharpe’s (.0585 and .0615) are significantly higher than the bond MP Sharpe (.0349), and

the full cross-section MP Sharpe is a fair bit higher than the equity MP Sharpe. For Deep

method, the bond MP Sharpe (.0329) is slightly higher than the equity MP Sharpe (.0320),

which is slightly higher than the full cross section MP Sharpe (.0297). Figure 3 exhibits the

cumulative growth of $1 in each of the MPs and demonstrates that the Information equity

MP achieves the highest cumulative return over the sample period.

Figure 4 exhibits the MP weights for the Information and Deep SDFs extracted from

the full cross section. The weights appear to conform with a reasonable ex-ante expectation

about which portfolios the SDF should load strongly on (e.g. high value and high momentum

portfolios have large, positive weights). Moreover, the MP weights demonstrate significant

time variation, which suggests that the factor structure of asset returns is not stable over

time.

Table 3 displays the correlations between the Information and Deep SDFs extracted from

25



0 50 100 150 200 250
SDF Value

100

101

102

103

104

Fr
eq

ue
nc

y

Information Empirical SDF Distribution

(a) Information SDF

0.3 0.4 0.5 0.6 0.7 0.8
SDF Value

100

101

102

103

Fr
eq

ue
nc

y

Deep Empirical SDF Distribution

(b) Deep SDF

Figure 2: Empirical distributions of Information and Deep SDFs extracted from the full cross
section. The y-axes have been log-scaled to highlight tail behavior.
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Figure 3: Cumulative returns to each of the SDF-mimicking portfolios for the equity, bond,
and combined ("Both") cross sections, extracted via the Information and Deep SDF methods.

the equity, bond, and full cross sections, and for the corresponding MPs. The SDFs are almost

always negatively correlated with their corresponding MPs, as one would expect given the

construction of the MP weights. The equity and full cross-section SDFs are almost perfectly

correlated (close to 1.0) for both methods, as are the equity and full cross-section MPs for

both methods. On the other hand, the bond SDFs are very weakly, and usually slightly

negatively, correlated with the equity and both SDFs, as are the corresponding MPs. Thus,

it appears that adding equities to the bond cross section introduces some new information,

but not necessarily vice versa.

Statistic
Info
Eq.

SDF

Info
Bonds
SDF

Info
Both
SDF

Info
Eq.
MP

Info
Bonds
MP

Info
Both
MP

Deep
Eq.

SDF

Deep
Bonds
SDF

Deep
Both
SDF

Deep
Eq.
MP

Deep
Bonds
MP

Deep
Both
MP

Info Eq. SDF 1.0 -0.01 1.0 -0.11 0.02 -0.13 -0.04 0.02 -0.04 -0.07 0.02 -0.06
Info Bonds SDF -0.01 1.0 0.01 0.04 -0.26 0.03 -0.03 -0.0 -0.08 0.03 -0.23 0.03
Info Both SDF 1.0 0.01 1.0 -0.11 0.01 -0.13 -0.04 0.01 -0.04 -0.07 0.02 -0.06
Info Eq. MP -0.11 0.04 -0.11 1.0 -0.12 0.99 -0.22 0.16 -0.21 0.9 -0.09 0.87

Info Bonds MP 0.02 -0.26 0.01 -0.12 1.0 -0.07 0.07 0.34 0.23 -0.14 0.89 -0.16
Info Both MP -0.13 0.03 -0.13 0.99 -0.07 1.0 -0.21 0.19 -0.2 0.88 -0.07 0.83
Deep Eq. SDF -0.04 -0.03 -0.04 -0.22 0.07 -0.21 1.0 0.02 0.98 -0.36 0.11 -0.36

Deep Bonds SDF 0.02 -0.0 0.01 0.16 0.34 0.19 0.02 1.0 0.11 0.13 0.22 0.11
Deep Both SDF -0.04 -0.08 -0.04 -0.21 0.23 -0.2 0.98 0.11 1.0 -0.35 0.25 -0.36
Deep Eq. MP -0.07 0.03 -0.07 0.9 -0.14 0.88 -0.36 0.13 -0.35 1.0 -0.12 0.99

Deep Bonds MP 0.02 -0.23 0.02 -0.09 0.89 -0.07 0.11 0.22 0.25 -0.12 1.0 -0.13
Deep Both MP -0.06 0.03 -0.06 0.87 -0.16 0.83 -0.36 0.11 -0.36 0.99 -0.13 1.0

Table 3: Daily SDF and mimicking portfolio (MP) correlations.
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Figure 4: SDF-mimicking portfolio weights for full cross section demonstrate clear time-
variation.
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6.2 Tests via SDF Estimation

Cross-sectional benchmark-free tests of market segmentation

Table 4 displays the full-sample Fama-MacBeth regression results for pricing the equity

(Panel A) and bond (Panel B) cross sections using the single and dual-asset-class SDFs

estimated via the Information and Deep methods, and using their corresponding MPs. The

SDFs and MPs do a fair job at pricing the the equity cross section. The R2s are mostly in

the double digits digits, and all but one of the prices of risk are significant. The SDF prices

of risk all have the correct sign (negative), but two of the MP risk prices have the wrong sign

(negative when should be positive). Of course, these factors do not achieve the greater than

90% R2s reported by Fama & French (2016) for the Fama-French five-factor model, but at

the same time the equity cross-section being priced here is much larger than that used in

Fama & French (2016), where the authors separately conduct Fama-MacBeth regressions for

sets of 25 size-value, size-profitability, and size-investment sorted portfolios. Here, I price 60

size-value, profitability-investment, and momentum sorted portfolios simultaneously.

The SDFs and MPs price the bond cross-section very well. Most of the R2s are over 80%

and all of the prices of risk are significant. Two of the SDF risk prices have the correct sign

(negative) while three of the MP risk prices have the correct sign (positive). The superior

pricing ability in the bond cross section likely yields from the fact that the bond cross section

is much smaller than the equity cross section (5 assets vs. 60 assets).

The stressful sub period Fama-MacBeth regression results displayed in Table 5 do not

differ in any meaningful way from the full-sample results except that fewer of the t-statistics

are positive due to the reduced power of the smaller sample.

Table 6 presents the results for the Vuong closeness test comparing the model fits between

the single and dual-asset-class SDFs and MPs, for both the equity (Panel A) and bond (Panel

B) cross-sections. Positive test statistics mean the single-asset class factor provides a better

model fit (i.e. prices the cross section better, which is evidence of segmentation) than the

dual-asset class factor, and vice versa for negative test statistics (evidence of integration). For
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Panel A: Equity Cross-Sectional Regressions

Row const. θEq.,Info
SDF θEq.,Info

MP θBoth,Info
SDF θBoth,Info

MP θEq.,Deep
SDF θEq.,Deep

MP θBoth,Deep
SDF θBoth,Deep

MP R
2
(%)

(1) 1.604e-4 -0.7701 9.1
(2.132) (-2.627)

(2) 9.282e-4 -5.993e-4 13.1
(5.059) (-3.141)

(3) 1.616e-4 -0.7744 8.8
(2.124) (-2.581)

(4) 9.385e-4 -5.409e-4 14.5
(5.300) (-3.314)

(5) 4.000e-4 4.607e-4 2.8
(12.42) (1.649)

(6) 7.569e-4 -5.332e-4 13.9
(6.038) (-3.239)

(7) 3.993e-4 4.642e-4 2.9
(12.65) (1.668)

(8) 6.977e-4 -5.448e-4 10.7
(5.710) (-2.836)

Panel B: Bond Cross-Sectional Regressions

Row const. θBond,Info
SDF θBond,Info

MP θBoth,Info
SDF θBoth,Info

MP θBond,Deep
SDF θBond,Deep

MP θBoth,Deep
SDF θBoth,Deep

MP R
2
(%)

(1) -8.702e-6 -0.02273 64.3
(-0.2428) (-2.863)

(2) 3.886e-5 5.947e-5 87.5
(3.504) (5.378)

(3) 2.615e-5 7.279 9.1
(0.4650) (1.183)

(4) 6.035e-5 -9.573e-3 84.9
(6.918) (-4.855)

(5) 3.726e-5 1.486e-4 83.8
(2.850) (4.651)

(6) 3.840e-5 5.252e-5 85.6
(3.189) (4.975)

(7) 3.644e-5 1.758e-3 87.3
(3.155) (5.345)

(8) 5.037e-5 -2.034e-3 80.0
(4.196) (-4.124)

Table 4: Full-sample benchmark-free Fama-MacBeth regressions following the setup in (3.7)
and (3.8)

.
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Panel A: Equity Cross-Sectional Regressions

Row const. θEq.,Info
SDF θEq.,Info

MP θBoth,Info
SDF θBoth,Info

MP θEq.,Deep
SDF θEq.,Deep

MP θBoth,Deep
SDF θBoth,Deep

MP R
2
(%)

(1) -4.195e-4 0.3324 -0.3
(-12.29) (0.9061)

(2) 2.845e-4 -6.322e-4 17.1
(1.417) (-3.626)

(3) -4.204e-4 0.3339 -0.4
(-12.34) (0.8672)

(4) 3.287e-4 -6.324e-4 18.3
(1.604) (-3.770)

(5) -5.159e-4 6.060e-4 1.9
(-8.672) (1.466)

(6) 3.181e-4 -8.589e-4 26.9
(1.981) (-4.761)

(7) -5.207e-4 6.570e-4 2.4
(-8.764) (1.558)

(8) 2.840e-4 -8.157e-4 26.3
(1.827) (-4.700)

Panel B: Bond Cross-Sectional Regressions

Row const. θBond,Info
SDF θBond,Info

MP θBoth,Info
SDF θBoth,Info

MP θBond,Deep
SDF θBond,Deep

MP θBoth,Deep
SDF θBoth,Deep

MP R
2
(%)

(1) 1.777e-4 -5.137e-3 -17.1
(2.818) (-0.6453)

(2) 1.154e-4 9.966e-5 86.3
(5.317) (5.123)

(3) 2.010e-4 4.824 -4.6
(6.419) (0.9078)

(4) 1.342e-4 -4.985e-3 76.9
(5.415) (-3.782)

(5) 1.068e-4 3.474e-4 80.0
(3.722) (4.121)

(6) 1.207e-4 9.961e-5 81.8
(4.969) (4.362)

(7) 1.024e-4 2.588e-3 89.6
(4.966) (5.965)

(8) 1.340e-4 -4.626e-3 78.8
(5.666) (-3.983)

Table 5: Stressful sub period benchmark-free Fama-MacBeth regressions following the setup
in (3.7) and (3.8).
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example, the top left box compares the cross-sectional fit of the Fama-MacBeth regression

when regressing the entire eqity cross section on the Information equity SDF versus on the

Information dual SDF. The full-sample (Panel A) results overall are inconclusive. Three

out of eight tests indicate segmentation, one indicates integration, and four are inconclusive.

The stressful sub period results (Panel B) are equivalently inconclusive: two out of eight

tests show integration and six are inconclusive.

Panel A: Full Sample

Equities Bonds

SDF Method SDF MP SDF MP

Info 1.727 -1.194 1.304 0.4562
(0.0421) (0.884) (0.0961) (0.324)

Deep -0.4141 2.159 -5.668 2.985
(0.661) (0.0154) (1.00) (1.42e-3)

Panel B: Stressful Sub Periods

Equities Bonds

SDF Method SDF MP SDF MP

Info 0.7234 -2.319 -0.8677 1.310
(0.235) (0.990) (0.807) (0.0951)

Deep -1.351 1.535 -2.289 0.6723
(0.912) (0.0624) (0.989) (0.251)

Table 6: Cross-sectional Vuong closeness test results for comparing the cross-sectional fit of
the second stage of the Fama-MacBeth regressions of each cross section (equities or bonds)
on single versus dual-asset-class SDFs and MPs. The top value in each cell is the normally-
distributed z-statistic yielded by the Vuong closeness test, while (right-tail) p-values are
provided in parentheses. Positive values (significance highlighted in red) indicate segmenta-
tion while negative values (significance highlighted in green) indicate integration.

Table 7 compares the Fama-MacBeth alphas between the single and dual-asset-class

factors. This table displays the difference in alphas between the two models, and the cor-

responding t-statistic for the alpha difference derived from SUR. The values in Table 7

take the form αdual asset class − αsingle asset class, so positive differences indicate a reduction in

cross-sectional pricing error when incorporating dual-asset-class information (evidence of in-

tegration). For example, the top left box compares the cross-sectional alpha of the second

stage of the Fama-MacBeth regression when regressing the entire equity cross section on the

Information equity SDF versus on the Information dual SDF. In the full sample (Panel A),
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the results are inconclusive: two out of eight tests show integration, two show segmentation,

and four tests are inconclusive. The stressful sub period results (Panel B) prove similarly

inconclusive: three out of eight tests indicate integration, two tests show segmentation, and

three are inconclusive.

Panel A: Full Sample

Equities Bonds

SDF Method SDF MP SDF MP

Info -1.205e-6 -1.026e-5 -3.485e-5 -2.149e-5
(-1.76) (-0.856) (-1.04) (-4.05)

Deep 6.916e-7 5.924e-5 8.225e-7 -1.197e-5
(2.93) (8.10) (0.670) (-6.86)

Panel B: Stressful Sub Periods

Equities Bonds

SDF Method SDF MP SDF MP

Info 9.183e-7 -4.422e-5 -2.329e-5 -1.886e-5
(4.94) (-6.89) (-1.32) (-1.57)

Deep 4.821e-6 3.413e-5 4.338e-6 -1.327e-5
(5.98) (8.60) (0.502) (-1.97)

Table 7: Cross-sectional alpha comparison results for comparing the cross-sectional alphas
of the second stage of the Fama-MacBeth regressions of each cross section (equities or
bonds) on single versus dual-asset-class SDFs and MPs. The top value in each cell is
the αdual asset class − αsingle asset class difference, while t-statistics are provided in parentheses.
Negative values (significance highlighted in red) indicate segmentation while positive values
(significance highlighted in green) indicate integration.

Thus, the benchmark-free, cross-sectional pricing tests fail to provide strong evidence for

either market segmentation or integration.

Time-series benchmarked tests of market segmentation

Tables 8 (full sample) and 9 (stressful sub periods) compare the average, absolute time-

series alphas yielded by regressing each asset in each cross section on the asset class bench-

mark model (Fama French five factor model with momentum for equities and level-slope-

curvature for bonds) versus the benchmark model augmented with a single-asset-class factor

versus the benchmark model augmented with a dual-asset-class factor. For example, the

top left cell in Panel A states that the average absolute alpha across the entire equity cross

section under the benchmark model is 8.510e-5 (t = 1.928). When we add the Informa-
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tion equity SDF to that model, the average absolute alpha becomes 8.748e-5 (t = 1.717).

While the average absolute pricing error increases in magnitude, it decreases in significance,

although the increase in magnitude is economically insignificant (0.6 basis points annually)

and the decrease in significance is statistically insignificant (δt = −.211). These tables dis-

play differences in the form αleft model −αright model. A positive difference (i.e. the augmented

model yields a smaller absolute average pricing error) in the second row of Panels A and

B means that the new factor adds pricing information beyond the benchmark. A positive

difference in the fourth row means that the dual asset class factor adds pricing information

beyond what the single asset class factor contains. I don’t have a particularly sharp test

here, but we can still see if the change in significance is large (highlighted are changes in

average absolute t-stat of greater than 2).

This test does not provide strong evidence that the new pricing factors add significant

time-series pricing information above the benchmark models. In the full sample (Table 8 ),

the second row in Panels A and B demonstrate that the single asset class pricing factors don’t

appear to add any new pricing information about equities beyond the equity benchmark,

since none to these reductions in average absolute alpha are positive and significant. However,

the single asset class pricing factors do provide bond pricing information beyond the bond

benchmark, since three out of four of the reductions in average absolute alpha t-statistic are

positive and significant. For two of these three tests, the reduction in alpha by including

the new single-asset-class factor is also economically significant (over 1.2% annually). In

stressful sub periods (Table 9), none of the changes in average absolute alpha in the second

row of Panels A and B, likely due to the reduced power we have in the smaller sample (10549

observations in the full sample vs. 1492 in stressful sub periods).

This test also fails to provide strong evidence either in favor or against market segmen-

tation. In the full sample (Table 8), only three of eight fourth row tests using both the

Information and Deep SDF methods are significant, and all suggest segmentation. Five of

these eight tests are inconclusive. For two of these three tests, the reduction in alpha by
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Panel A: Info SDF

Equities Bonds

SDF Method SDF MP SDF MP

Benchmark, Single Alphas 8.510e-5 , 8.784e-5 8.510e-5 , 8.019e-5 7.417e-5 , 1.791e-3 7.417e-5 , 2.280e-5
(1.928 , 1.717) (1.928 , 1.845) (6.794 , 2.585) (6.794 , 3.995)

Benchmark, Single Difference -2.739e-6 4.911e-6 -1.717e-3 5.137e-5
( 0.2106) ( 0.08273) ( 4.209) ( 2.799)

Single, Dual Alphas 8.784e-5 , 8.755e-5 8.019e-5 , 7.833e-5 1.791e-3 , 7.118e-5 2.280e-5 , 7.852e-5
(1.717 , 1.718) (1.845 , 1.806) (2.585 , 6.548) (3.995 , 6.813)

Single, Dual Difference 2.883e-7 1.864e-6 1.720e-3 -5.572e-5
( -4.589e-4) ( 0.03909) ( -3.964) ( -2.818)

Panel B: Deep SDF

Equities Bonds

SDF Method SDF MP SDF MP

Benchmark, Single Alphas 8.510e-5 , 5.261e-3 8.510e-5 , 8.572e-5 7.417e-5 , 0.09696 7.417e-5 , 2.366e-5
(1.928 , 1.821) (1.928 , 1.945) (6.794 , 5.021) (6.794 , 4.395)

Benchmark, Single Difference -5.176e-3 -6.189e-7 -0.09688 5.052e-5
( 0.1064) ( -0.01745) ( 1.773) ( 2.398)

Single, Dual Alphas 5.261e-3 , 5.349e-3 8.572e-5 , 8.571e-5 0.09696 , 7.402e-3 2.366e-5 , 8.027e-5
(1.821 , 1.864) (1.945 , 1.944) (5.021 , 6.381) (4.395 , 7.060)

Single, Dual Difference -8.872e-5 5.431e-9 0.08955 -5.661e-5
( -0.04239) ( 1.583e-3) ( -1.360) ( -2.665)

Table 8: Full-sample comparison of time series alphas. Rows 1 and 3 of each panel display
the average, absolute, time-series alpha for each of the two models being compared with
OLS t-statistics in parentheses. Rows 2 and 4 of each panel display the difference in average,
absolute, time-series alphas with differences in average, absolute t-statistics provided in
parentheses. These differences are in the form αleft model − αright model, so positive differences
mean the right model yields a smaller average absolute pricing error than the left model.
Significance is highlighted in green (for positive changes in average absolute t-statistic) and
red (for negative changes).
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replacing the single-asset-class factor with a dual-asset-class factor is economically significant

(over 1.2% annually). In stressful sub periods (Table 9), none of the fourth row tests are

significant, so the results are even more inconclusive.

Panel A: Info SDF

Equities Bonds

SDF Method SDF MP SDF MP

Benchmark, Single Alphas 1.397e-4 , 1.303e-4 1.397e-4 , 1.378e-4 2.903e-5 , 1.742e-3 2.903e-5 , 2.227e-5
(1.112 , 1.013) (1.112 , 1.097) (1.222 , 1.409) (1.222 , 1.197)

Benchmark, Single Difference 9.340e-6 1.850e-6 -1.713e-3 6.754e-6
( 0.09894) ( 0.01520) ( -0.1877) ( 0.02435)

Single, Dual Alphas 1.303e-4 , 1.304e-4 1.378e-4 , 1.360e-4 1.742e-3 , 2.609e-5 2.227e-5 , 2.857e-5
(1.013 , 1.013) (1.097 , 1.081) (1.409 , 1.208) (1.197 , 1.183)

Single, Dual Difference -1.297e-7 1.829e-6 1.716e-3 -6.300e-6
( 3.763e-5) ( 0.01591) ( 0.2017) ( 0.01451)

Panel B: Deep SDF

Equities Bonds

SDF Method SDF MP SDF MP

Benchmark, Single Alphas 1.397e-4 , 9.062e-3 1.397e-4 , 1.387e-4 2.903e-5 , 0.06337 2.903e-5 , 2.268e-5
(1.112 , 1.540) (1.112 , 1.102) (1.222 , 1.979) (1.222 , 1.208)

Benchmark, Single Difference -8.922e-3 9.348e-7 -0.06335 6.353e-6
( -0.4278) ( 0.01016) ( -0.7578) ( 0.01311)

Single, Dual Alphas 9.062e-3 , 8.553e-3 1.387e-4 , 1.389e-4 0.06337 , 7.384e-3 2.268e-5 , 2.782e-5
(1.540 , 1.508) (1.102 , 1.104) (1.979 , 2.617) (1.208 , 1.166)

Single, Dual Difference 5.083e-4 -2.145e-7 0.05599 -5.144e-6
( 0.03184) ( -1.895e-3) ( -0.6379) ( 0.04202)

Table 9: Stressful sub period comparison of time series alphas. Rows 1 and 3 of each panel
display the average, absolute, time-series alpha for each of the two models being compared
with OLS t-statistics in parentheses. Rows 2 and 4 of each panel display the difference in
average, absolute, time-series alphas with differences in average, absolute t-statistics provided
in parentheses. These differences are in the form αleft model−αright model, so positive differences
mean the right model yields a smaller average absolute pricing error than the left model.
Significance is highlighted in green (for positive changes in average absolute t-statistic) and
red (for negative changes).

Why do the tests of market segmentation via SDF estimation fail to produce strong

evidence for or against market segmentation? Because pricing wide cross sections of assets

proves very difficult, especially in the out-of-sample manner done here where each year’s

SDF and MP are constructed using only the previous 10 years of data. As we see in the

histograms in Figure 2 in Section 6.1, the SDF series prove very noisy with very fat tails,
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especially under the Information method. Thus, the fact that these factors have as much

explanatory power as they do (see Tables 4 and 5 ) is in an of itself slightly surprising. In

the next section, I discuss the tests of segmentation via SDF information, which considers

the entire time series of returns unconditionally, and yields stronger results.

6.3 Tests via SDF Info

The method of Galpin et al. (2017) provides strong evidence of market integration. Table

10, exhibits the (normally-distributed) Lagrange multipliers and accompanying t-statistics

from (3.3) for each asset in the combined equity and bond cross section, when the SDF is

estimated from the full sample and from just the subsample of stressful sub periods. The

first row demonstrates the return on the one-year Treasury proves a significant determinant

of the SDF in both the full sample and in stressful sub periods. Table 11 presents the results

of the asset deletion test from Galpin et al. (2017). The first row illustrates that when

bonds are removed from the set of assets used to estimate the SDF, a significant amount of

information is lost, in both the full sample and in stressful sub periods. Likewise, the second

row demonstrates that a significant amount of information is lost when equities are removed

from the cross-section, in the full sample and in stressful sub periods.

The decisiveness of these results in contrast to the inconclusiveness of the regression

results in Section 6.4 likely derives from the unconditional, in-sample nature of the results

in this section. Whereas the tests in 6.4 try to price assets in a true out-of-sample fashion,

the tests in this section examine the composition of the SDF in the entire sample. Given the

time-varying nature of the SDF composition exhibited in Section 6.1, one shouldn’t find the

comparatively poor performance of the out-of-sample pricing tests surprising.

6.4 Dual-Asset-Class Trading Strategies

In this section, I examine the performance of the dual-asset-class trading strategies described

in Section 3.3. Overall, I do not find evidence that incorporating dual-asset-class information
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Full Sample Stressful Sub Periods

Asset λasset T-Stat λasset T-Stat

TREASURY 1 YEAR -69.4 -3.40 -92.2 -2.49
TREASURY 2 YEAR 3.86 0.278 -9.66 -0.406
TREASURY 5 YEAR -3.68 -0.395 6.70 0.422
TREASURY 7 YEAR -11.3 -1.52 -9.28 -0.761
TREASURY 10 YEAR 7.87 1.44 3.85 0.420

SMALL LoBM 27.0 9.56 20.4 2.93
ME1 BM2 -8.41 -2.57 -1.49 -0.178
ME1 BM3 4.99 1.26 -6.04 -0.644
ME1 BM4 -12.3 -3.04 -12.6 -1.22

SMALL HiBM -20.1 -4.98 19.9 1.98
ME2 BM1 0.794 0.261 0.514 0.0686
ME2 BM2 0.391 0.113 -17.6 -2.26
ME2 BM3 4.19 1.10 6.25 0.700
ME2 BM4 1.66 0.450 4.91 0.557
ME2 BM5 8.01 2.83 0.723 0.117
ME3 BM1 3.86 1.24 2.32 0.291
ME3 BM2 -1.20 -0.330 4.34 0.475
ME3 BM3 3.67 0.987 9.16 1.04
ME3 BM4 -0.0795 -0.0228 6.24 0.825
ME3 BM5 -2.51 -1.03 -7.56 -1.51
ME4 BM1 4.04 1.26 18.2 2.20
ME4 BM2 7.54 2.08 15.3 1.77
ME4 BM3 9.14 2.67 7.04 0.988
ME4 BM4 2.82 0.869 -4.83 -0.640
ME4 BM5 1.22 0.575 10.1 2.26
BIG LoBM 52.8 10.7 87.9 7.08
ME5 BM2 24.1 6.53 32.9 3.82
ME5 BM3 14.7 4.69 26.3 3.80
ME5 BM4 18.5 7.04 16.2 2.71
BIG HiBM 4.37 2.66 2.54 0.749

LoOP LoINV -5.32 -2.58 -17.6 -3.48
OP1 INV2 -1.04 -0.548 -5.43 -1.18
OP1 INV3 -0.422 -0.239 -1.82 -0.496
OP1 INV4 -4.06 -2.41 -1.90 -0.541

LoOP HiINV -2.57 -1.37 -4.33 -0.941
OP2 INV1 -4.59 -2.36 -2.30 -0.498
OP2 INV2 -5.50 -2.58 -5.23 -1.09
OP2 INV3 -6.27 -3.30 -7.07 -1.90
OP2 INV4 -9.97 -4.51 -12.3 -2.52
OP2 INV5 -5.51 -2.94 -5.51 -1.29
OP3 INV1 -7.06 -4.25 -8.06 -1.99
OP3 INV2 -8.92 -4.14 -11.3 -1.93
OP3 INV3 -12.6 -4.80 -29.3 -4.59
OP3 INV4 -8.55 -3.87 -9.76 -1.98
OP3 INV5 -6.40 -3.31 -9.28 -1.90
OP4 INV1 -11.6 -6.55 -15.6 -3.40
OP4 INV2 -13.0 -6.03 -20.3 -3.99
OP4 INV3 -12.1 -4.98 -20.0 -3.37
OP4 INV4 -14.2 -5.56 -33.6 -5.28
OP4 INV5 -11.4 -5.52 -22.8 -4.15

HiOP LoINV -11.3 -6.38 -15.0 -3.81
OP5 INV2 -12.4 -5.96 -30.9 -6.28
OP5 INV3 -16.0 -6.74 -30.2 -5.47
OP5 INV4 -14.6 -6.21 -36.3 -5.86

HiOP HiINV -16.3 -8.21 -15.2 -3.17
Lo PRIOR 5.27 3.69 2.00 0.784
PRIOR 2 1.41 0.631 1.62 0.368
PRIOR 3 -0.0623 -0.0230 11.1 1.94
PRIOR 4 3.22 1.11 16.7 2.86
PRIOR 5 8.39 2.89 8.19 1.29
PRIOR 6 8.23 2.59 7.48 1.03
PRIOR 7 13.5 4.04 15.1 1.96
PRIOR 8 5.90 1.79 15.8 1.88
PRIOR 9 12.7 4.21 42.7 5.05
Hi PRIOR 1.23 0.526 9.90 1.71

Table 10: Galpin et al. (2017) significance test results. Significant t-statistics are highlighted
in green.
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Full Sample Stressful Sub Periods

Asset Class Removed χ2
df P-Value DF χ2

df P-Value DF

Bonds 20.8 8.98e-4 5 203 0.00 5
Equities 269 0.00 60 279 0.00 60

Table 11: Galpin et al. (2017) asset deletion test results.

improves single-asset-class trading strategy performance.

Tables 12 and 13 display the summary statistics for the equity and bond, respectively,

value and momentum strategies. Panel A in Table 12, demonstrates that all four equity

value strategies outperform the benchmark in terms of Sharpe ratio. Yet comparing the

Information Single and Information Dual columns, we see that for the Information method,

incorporating bonds into SDF estimation does not change the performance of the equity value

strategy at all. For the Deep method, incorporating bond Info raise Sharpe insignificantly

(.0297 to .0333).

Panel B in Table 12 exhibits similar results for the equity momentum strategies. Adding

bonds to the cross section does not change the Information momentum strategy performance

at all, while it lowers the Deep strategy Sharpe ratio insignificantly (.0309 to .0305). Unlike

with the value equity strategies, however, none of the equity momentum strategies outper-

form the benchmark in terms of Sharpe, and the Information momentum strategy actually

yields a negative expected daily return.

Table 13 presents summary statistics for the bond trading strategies that fit the pattern

established by the equity results. The value strategy results in Panel A demonstrate that

the single and dual-asset-class Information strategies achieve identical performance metrics,

while the the dual-asset-class Deep strategy achieves an insignificantly lower Sharpe ratio

than the single-asset-class Deep strategy (.0449 vs. .0452). The Information strategies

achieve lower Sharpe ratios than the benchmark, while the Deep strategies attain higher

Sharpe ratios.

Panel B of table 13 shows the bond Information momentum strategies fail to outperform

the benchmark in terms of Sharpe ratio, while both Deep strategies do achieve higher Sharpe
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Panel A: Value Strategy Results

Statistic Info Single Deep Single Info Dual Deep Dual Benchmark

Mean 3.92e-4 3.70e-4 3.92e-4 3.76e-4 1.87e-4
Std Dev 0.0115 0.0124 0.0115 0.0113 9.73e-3
Skewness -0.579 -0.597 -0.579 -0.709 0.113
Kurtosis 18.2 27.3 18.2 17.3 7.72
Sharpe 0.0340 0.0297 0.0340 0.0333 0.0192

Panel B: Momentum Strategy Results

Statistic Info Single Deep Single Info Dual Deep Dual Benchmark

Mean -6.42e-4 3.39e-4 -6.42e-4 3.42e-4 5.25e-4
Std Dev 0.0605 0.0110 0.0605 0.0112 0.0154
Skewness -4.48 -0.529 -4.48 -0.499 -1.04
Kurtosis 127 15.4 127 14.2 18.6
Sharpe -0.0106 0.0309 -0.0106 0.0305 0.0340

Table 12: Daily equity trading strategy summary stats.

ratios than the benchmark. Here again, incorporating equities in the cross section does not

alter the Information strategy performance at all, but actually significantly decreases the

Deep strategy Sharpe by almost doubling volatility while barely changing expected return as

compared to the single-asset-class Deep strategy. Incorporating equity information appears

to significantly increase the volatility of the SDF and its mimicking portfolio.

Panel A: Value Strategy Results

Statistic Info Single Deep Single Info Dual Deep Dual Benchmark

Mean 9.61e-5 1.17e-4 9.61e-5 1.07e-4 7.62e-5
Std Dev 0.162 2.58e-3 0.162 2.39e-3 0.00419
Skewness 2.01 0.269 2.01 0.250 -0.0779
Kurtosis 168 6.91 168 6.63 4.22
Sharpe 5.94e-4 0.0452 5.94e-4 0.0449 0.0182

Panel B: Momentum Strategy Results

Statistic Info Single Deep Single Info Dual Deep Dual Benchmark

Mean 4.85e-6 1.18e-4 4.85e-6 1.31e-4 5.54e-5
Std Dev 0.0148 2.64e-3 0.0148 4.79e-3 0.00396
Skewness -2.98 0.277 -2.98 0.366 -0.0317
Kurtosis 150 6.56 150 33.5 4.73
Sharpe 3.28e-4 0.0447 3.28e-4 0.0273 0.0140

Table 13: Daily bond trading strategy summary stats.

Thus, incorporating dual-asset-class information does not significantly increase the Sharpe

ratios of these equity and bond value and momentum trading strategies. Examining the fac-
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tor regressions in Tables 14 and 15, we see that the dual-asset-class informed trading strate-

gies also do not achieve significantly higher time-series alphas than the single-asset-class

informed trading strategies.

In Panel A of Table 14, all of the equity value trading strategy alphas are negative,

more negative than the benchmark alpha, and three of the four alphas are significantly

negative. All four strategies and the benchmark load significantly positively on HML. The

dual-asset-class Information strategy achieves the same factor loadings as the single-asset-

class Information strategy. The dual-asset-class Deep strategy achieves an alpha that is

greater, but more negative in t-statistic, as compared to the single-asset-class Deep strategy.

In Panel B of Table 14, all of the equity momentum trading strategy alphas are negative,

the benchmark alpha is positive, and all five of these alphas are insignificant. Three of

the four strategies load significantly positively on MOM. Here again, the dual-asset-class

Information strategy achieves the same factor loadings as the single-asset-class Information

strategy. The dual-asset-class Deep strategy achieves an alpha that is slightly more negative,

but slightly less negative in t-statistic, as compared to the single-asset-class Deep strategy.

Table 15 displays similar regression results for the bonds strategies. Panel A exhibits

negative insignificant alphas for the Information value strategies, positive significant alphas

for the Deep strategies, and a positive insignificant benchmark alpha. The single and dual-

asset-class Information strategies have identical factor loadings, while the single-asset-class

Deep strategy has a slightly greater and more significant alpha than then dual-asset-class

Deep strategy.

Panel B exhibits negative insignificant alphas for the Information momentum strategies,

positive significant alphas for the Deep strategies, and a positive insignificant benchmark

alpha. Here again, the single and dual-asset-class Information strategies have identical factor

loadings. However, the dual-asset-class Deep strategy alpha is slightly higher than that for

the single-asset-class strategy, but has a significantly smaller t-statistic. Referring to Table

13, it appears that the increased volatility of the dual-asset-class SDF mimicking portfolio
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Panel A: Value Strategy Results

Info Single Deep Single Info Dual Deep Dual Benchmark

const -3.897e-5 -4.397e-5 -3.897e-5 -3.313e-5 -3.025e-5
(-2.205) (-1.558) (-2.205) (-2.575) (-0.5519)

Mkt-RF 1.060 1.082 1.060 1.048 0.1386
(169.6) (65.08) (169.6) (265.9) (12.03)

SMB 0.09419 0.07169 0.09419 0.06618 0.3482
(11.26) (4.737) (11.26) (10.24) (13.75)

HML 0.5038 0.6180 0.5038 0.3736 1.312
(18.49) (4.765) (18.49) (16.43) (35.71)

RMW -1.777e-3 -0.02581 -1.777e-3 0.04055 -0.3287
(-0.1376) (-0.5647) (-0.1376) (2.667) (-9.688)

CMA 1.033e-3 -0.1222 1.033e-3 0.02063 0.1313
(0.04807) (-1.279) (0.04807) (0.9105) (2.843)

MOM -0.01860 -0.07177 -0.01860 -0.03583 -0.04281
(-1.664) (-2.800) (-1.664) (-3.747) (-2.092)

R2 98.3 92.8 98.3 98.9 71.7

Panel B: Momentum Strategy Results

Info Single Deep Single Info Dual Deep Dual Benchmark

const -1.348e-3 -4.321e-5 -1.348e-3 -4.441e-5 8.841e-5
(-1.585) (-1.592) (-1.585) (-1.148) (1.286)

Mkt-RF 0.8955 1.015 0.8955 1.008 -0.01808
(5.023) (139.4) (5.023) (92.35) (-0.8011)

SMB -0.2050 0.08814 -0.2050 0.05856 -0.1791
(-1.455) (5.467) (-1.455) (2.556) (-5.790)

HML -1.698 0.1129 -1.698 0.1193 -0.2776
(-3.614) (5.520) (-3.614) (4.611) (-2.884)

RMW -0.2747 0.1264 -0.2747 0.09203 0.1448
(-0.7896) (2.965) (-0.7896) (1.874) (2.879)

CMA 1.548 -0.03460 1.548 -0.08050 0.07906
(3.908) (-0.9774) (3.908) (-1.987) (0.8665)

MOM 1.888 0.02005 1.888 0.08478 1.671
(4.474) (0.8007) (4.474) (2.233) (56.36)

R2 11.4 96.3 11.4 91.6 81.5

Table 14: Equity trading strategy factor regressions. HAC-adjusted t-statistics (maximal
Newey-West lag of 30 days) are presented in parentheses.
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bleeds into a higher standard error for the alpha term.

Panel A: Value Strategy Results

Info Single Deep Single Info Dual Deep Dual Benchmark

const -1.538e-4 8.380e-5 -1.538e-4 7.581e-5 6.024e-3
(-0.07716) (5.321) (-0.07716) (5.298) (1.482)

Level -21.50 -2.742 -21.50 -2.613 -136.8
(-2.735) (-12.44) (-2.735) (-13.22) (-3.431)

Slope -30.75 -1.403 -30.75 -1.301 -212.9
(-2.537) (-8.961) (-2.537) (-9.747) (-4.497)

Curvature -11.98 -1.202 -11.98 -0.9745 -145.1
(-1.500) (-5.457) (-1.500) (-5.124) (-3.392)

R2 1.4 51.4 1.4 53.4 11.0

Panel B: Momentum Strategy Results

Info Single Deep Single Info Dual Deep Dual Benchmark

const -1.278e-5 8.477e-5 -1.278e-5 8.884e-5 4.230e-3
(-0.06583) (5.331) (-0.06583) (2.505) (1.065)

Level -1.435 -2.779 -1.435 -3.476 -111.2
(-1.891) (-12.25) (-1.891) (-7.292) (-3.569)

Slope 0.6755 -1.502 0.6755 -1.456 -117.0
(0.5668) (-8.564) (0.5668) (-7.015) (-3.179)

Curvature 0.04476 -1.238 0.04476 -1.729 -58.63
(0.06715) (-4.998) (0.06715) (-4.341) (-1.531)

R2 0.5 50.8 0.5 23.7 4.9

Table 15: Bond trading strategy factor regressions. HAC-adjusted t-statistics (maximal
Newey-West lag of 30 days) are presented in parentheses.

As an interesting side note, all eight of the Information and Deep, single and dual-asset-

class, value and momentum strategies have significantly positive market betas of close to

one. While the SDF-mimicking portfolio weights are not constrained to be positive, both

the Information and Deep SDF-mimicking portfolio weights do happen to be positive on

average, as illustrated by Figure 5 for the single-asset-class equity value strategies.

Why are the performance metrics so similar between the single and dual-asset-class in-

formed strategies? As illustrated in Table 16, the single and dual-asset-class informed strate-

gies prove highly correlated (> .95) across the set of trading assets (equities vs. bonds) and

SDF estimation method (Information vs. Deep) used. The SDF correlations in Table 17

show that the single and dual-asset-class SDFs are also highly-correlated, but less so than

the factor-mimicking portfolios. Thus, bonds do appear to add some new information to the

equity SDF, but this information cannot be expressed through the linear span of the equity
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Figure 5: MP weights for the single-asset-class equity value strategies constructed via the
Information and Deep SDF methods.
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returns, and vice versa. Hence, any unique information found in the dual-asset-class cross-

section does not improve performance of the single-asset-class trading strategies. Figure 6

displays the growth of $1 in each of the trading strategies and benchmarks, and illustrates the

co-movement in the returns to these strategies. Importantly, the return correlation doesn’t

break down during the stressful sub periods highlighted in gray.

Panel A: Equity Strategy Return Correlations

Info
Single
Value

Deep
Single
Value

Info
Dual
Value

Deep
Dual
Value

Info
Single
Mom

Deep
Single
Mom

Info
Dual
Mom

Deep
Dual
Mom

Bench.
Value

Bench.
Mom

Info Single Value 1.0 0.95 1.0 0.99 0.04 0.96 0.04 0.93 0.28 -0.26
Deep Single Value 0.95 1.0 0.95 0.97 0.07 0.92 0.07 0.89 0.3 -0.32
Info Dual Value 1.0 0.95 1.0 0.99 0.04 0.96 0.04 0.93 0.28 -0.26
Deep Dual Value 0.99 0.97 0.99 1.0 0.07 0.97 0.07 0.94 0.23 -0.25
Info Single Mom 0.04 0.07 0.04 0.07 1.0 0.1 1.0 0.09 -0.14 0.27
Deep Single Mom 0.96 0.92 0.96 0.97 0.1 1.0 0.1 0.99 0.09 -0.16
Info Dual Mom 0.04 0.07 0.04 0.07 1.0 0.1 1.0 0.09 -0.14 0.27
Deep Dual Mom 0.93 0.89 0.93 0.94 0.09 0.99 0.09 1.0 0.06 -0.11

Bench. Value 0.28 0.3 0.28 0.23 -0.14 0.09 -0.14 0.06 1.0 -0.36
Bench. Mom -0.26 -0.32 -0.26 -0.25 0.27 -0.16 0.27 -0.11 -0.36 1.0

Panel B: Bond Strategy Return Correlations

Info
Single
Value

Deep
Single
Value

Info
Dual
Value

Deep
Dual
Value

Info
Single
Mom

Deep
Single
Mom

Info
Dual
Mom

Deep
Dual
Mom

Bench.
Value

Bench.
Mom

Info Single Value 1.0 0.15 1.0 0.17 -0.82 0.14 -0.82 0.08 -0.19 -0.15
Deep Single Value 0.15 1.0 0.15 0.96 0.08 0.98 0.08 0.69 0.52 0.39
Info Dual Value 1.0 0.15 1.0 0.17 -0.82 0.14 -0.82 0.08 -0.19 -0.15
Deep Dual Value 0.17 0.96 0.17 1.0 0.07 0.96 0.07 0.64 0.46 0.34
Info Single Mom -0.82 0.08 -0.82 0.07 1.0 0.11 1.0 0.07 0.24 0.29
Deep Single Mom 0.14 0.98 0.14 0.96 0.11 1.0 0.11 0.7 0.51 0.43
Info Dual Mom -0.82 0.08 -0.82 0.07 1.0 0.11 1.0 0.07 0.24 0.29
Deep Dual Mom 0.08 0.69 0.08 0.64 0.07 0.7 0.07 1.0 0.39 0.23

Bench. Value -0.19 0.52 -0.19 0.46 0.24 0.51 0.24 0.39 1.0 0.34
Bench. Mom -0.15 0.39 -0.15 0.34 0.29 0.43 0.29 0.23 0.34 1.0

Table 16: Trading strategy return correlations.
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(d) Bond Momentum Cumulative Returns

Figure 6: Cumulative growth of $1 in each of the equity and bond value and momentum
strategies and benchmarks. NBER recession periods are highlighted in gray.

Panel A: Equity Strategy SDF Correlations

Info
Single
Value

Deep
Single
Value

Info
Dual
Value

Deep
Dual
Value

Info
Single
Mom

Deep
Single
Mom

Info
Dual
Mom

Deep
Dual
Mom

Ghosh Single Value 1.0 0.23 0.83 0.26 0.16 0.02 0.12 0.05
Deep Single Value 0.23 1.0 0.17 0.95 0.21 0.77 0.19 0.75
Ghosh Dual Value 0.83 0.17 1.0 0.1 0.12 0.01 0.18 -0.06
Deep Dual Value 0.26 0.95 0.1 1.0 0.2 0.69 0.11 0.77

Ghosh Single Mom 0.16 0.21 0.12 0.2 1.0 0.19 0.9 0.18
Deep Single Mom 0.02 0.77 0.01 0.69 0.19 1.0 0.18 0.95
Ghosh Dual Mom 0.12 0.19 0.18 0.11 0.9 0.18 1.0 0.1
Deep Dual Mom 0.05 0.75 -0.06 0.77 0.18 0.95 0.1 1.0

Panel B: Bond Strategy SDF Correlations

Info
Single
Value

Deep
Single
Value

Info
Dual
Value

Deep
Dual
Value

Info
Single
Mom

Deep
Single
Mom

Info
Dual
Mom

Deep
Dual
Mom

Ghosh Single Value 1.0 -0.16 0.49 -0.23 0.49 -0.12 0.18 -0.12
Deep Single Value -0.16 1.0 -0.07 0.05 -0.14 0.98 -0.09 0.12
Info Dual Value 0.49 -0.07 1.0 0.1 0.21 -0.05 0.18 -0.06
Deep Dual Value -0.23 0.05 0.1 1.0 -0.18 0.05 0.11 0.77
Info Single Mom 0.49 -0.14 0.21 -0.18 1.0 -0.19 0.43 -0.12
Deep Single Mom -0.12 0.98 -0.05 0.05 -0.19 1.0 -0.12 0.12
Info Dual Mom 0.18 -0.09 0.18 0.11 0.43 -0.12 1.0 0.1
Deep Dual Mom -0.12 0.12 -0.06 0.77 -0.12 0.12 0.1 1.0

Table 17: Trading strategy SDF correlations.
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7 Conclusion

Overall, I find evidence of integration between equity and bond markets in the full sample.

I also find no evidence of increased segmentation in stressful sub periods, a result that does

not corroborate the preferred habitat hypothesis in the context of equity and bond markets.

Exploiting this integration, however, to price and trade equities and bonds out of sample

proves difficult due to the inherent challenges in working with wide cross sections of assets.

Nevertheless, the non-parametric SDF estimation procedures considered in this work do show

some promise in being able to tackle higher-dimensional cross sections than have traditionally

been considered in the literature.

Going forward, this line of research lends itself to several extensions. First, the Deep SDF

estimator used in this work employs a simple neural network architecture (a single layer).

More sophisticated architectures (e.g. deep long short memory networks) may uncover an

SDF that better prices the cross section out of sample. Second, if more sophisticated non-

parametric SDF estimators perform better out of sample, extending the analysis in this work

to include other asset classes (e.g. currencies, commodities, corporate bonds, etc.) might

lead to evidence of broad market integration, and point the way to a unified theory of asset

pricing. For example, non-parametric construction of cross-asset class systematic risk factors

that price a wide cross section of assets might not only “tame the factor zoo,” but would also

have significant portfolio management implications.
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