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Abstract

User behaviour Prediction from social media
posts could potentially enable more robust ac-
tive cognition models, and help construct more
accurate simulations of the spread of online
information to further the understanding of
adversarial manipulation of such information.
This study presents a network based frame-
work to predict a given Twitter users reac-
tions to a given set of information. We used
natural language processing to tokenize each
tweet from our collected data, and constructed
a semantic network from given Twitter users
timeline. Then, we used text tokens as nodes
and calculated the unweighed centrality and
weighted centrality with TF-IDF for tweets the
user may see, and we used such values with
other Twitter-specific features to train classi-
fiers. The classifier takes a list of tweets and
assign probabilities of different types of user
behaviours. In our evaluation, the implemen-
tation of the semantic network has generally
increased prediction accuracy from baseline
models. We also provide several potential ap-
plications of our framework.

1 Introduction

1.1 Social Networks

The rapid emergence of various social media sites
in the beginning of the 21st century has greatly
transformed the lives of people worldwide by mak-
ing them more connected than ever. Twitter is a
microblogging and social networking service with
321 million monthly active users in 2018, On Twit-
ter, a user may interacted with another user by
like, retweet, reply, or quote the tweet posted by
another user. Twitter provides researchers an excel-
lent tool to study the many real-world implications
of social interactions of contact networks and make
predictions based on available data, such as pre-
dicting election outcomes[ 1], disease outbreaks[2],
and stock returns[3]. However, Twitter research
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done by adversarial entities such as Russias Inter-
net Research Agency recently has also raised public
concerns of election interference and the spread of
misinformation|[4].

1.2 Semantic Networks

Semantic networks[5] are graphical representations
of knowledge based on meaningful relationships of
written text, structured as a network of words cogni-
tively related to one another[]. In this study. nodes
of the Semantic network are words that represent
a variety of concepts found in each tweets posted
by the user. The connections between nodes are
referred to as edges which represent relationships
between connected concepts. Semantic networks
allow the extraction of meaningful ideas by identi-
fying emergent clusters of concepts rather than an-
alyzing frequencies of isolated words: in this way,
analyzing online social media can enhance under-
standing of complex humans interactive behaviour.
In constructing the semantic network, we also incor-
porated natural language processing (NLP)[6] tech-
niques, to extract and tokenize information from
each tweets using both human and computerized
methods.

1.3 Spreading Activation

Spreading activation[7] is a method for search-
ing semantic networks. The search process starts
with the activation of a set of nodes and then it-
eratively propagating that activation out to other
nodes linked to the source nodes. In this study,
when nodes in the network are activated, e.g. the
user interacted with another user by a quote, the
activation spreads from the nodes that correspond
to the words in the quote in the semantic network to
nearby nodes. Spreading activation is also hypoth-
esized as the model for the automatic activation of
sentiments that may affect the interaction.
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Figure 1: Overview

1.4 Word Embedding

Word embeddings[8] are a type of word representa-
tion that allows words with similar meaning to have
a similar representation. They are a distributed rep-
resentation for text that is perhaps one of the key
breakthroughs for the impressive performance of
deep learning methods on challenging natural lan-
guage processing problems. In this study, we used
word embeddings to vectorize individual words
from tweets that are present in the semantic net-
work, and weigh the word vector with the activation
value from the spreading activation method.

1.5 Convolutional Neural Networks

Convolutional Neural Network(CNNJ[9] is a class
of deep neural networks that was inspired by bio-
logical processes in that the connectivity pattern
between neurons resembles the organization of the
animal visual cortex. In this study, we implemented
an input layer, an output layer, and multiple hid-
den layers with RELU activation function in order
to produce a classifier that utilizes the semantic

network approach to predict user interactions.

1.6 Objectives

This study seek to resolve the following premise:

Given a Twitter user A, and a set of
tweets fq, ta, t4...f; the user A sees, can
we predict how the user may react(reply,
retweet, quote, like) to each tweet in the
set?

We resolve the premise by collecting the tweets
the user may see and constructing and analyzing
semantic networks of the given users timeline data.

1.7 Public Significance

To combat distortions from foreign entities on So-
cial media, DARPA has created the SocialSim chal-
lenge[10] in 2018 to develop innovative technolo-
gies for high-fidelity computational simulation of
online social behavior, hoping it could enable a
deeper and more quantitative understanding of ad-
versaries use of the global information environment
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Figure 2: Data Collection

than is currently possible using existing approaches.
This study propose a framework to further enhance
the simulation of user behaviour by incorporat-
ing network analysis, and findings from this study
could prove pivotal in informing and improving the
simulation of social networks to help combat the
manipulation of social networks by foreign entities.

2 Related Work

With the rising research interest with Twitter data,
there are several work that slightly overlap with
our work. With regard to prediction on Twitter,
Petrovic, Osborne and Lavrenko[11] studied the
problem of predicting whether a user will retweet a
particular tweet, TwitterMancer[12] proposed pre-
dicting what type of interaction may take place
between two different users with link prediction,
and RealGraph[13] utilizes a framework to com-
pute relationship strength for ties based on directed
interactions between users. Our work differs with
these prior work by being the first to construct a
semantic network and utilize NLP techniques with
Twitter data to predict how a given user may react
to a set of tweets. For word embedding, Tang et
al.[14] explored sentiment classification on Twitter
with learning sentiment-specific word embedding.
Our work differs with them in that we seek to weigh
such embedded word vectors with activation values
from the spreading activation method and evaluate
the results. In addition, this work does employ a
similar approach to Kang, Swraup[15] to utilize
Semantic Network and Spreading Activation tech-

niques for Twitter Analysis. However, this work
seek to make predictions about user behaviours
rather than analyze user sentiment on vaccines.

3 Methods

Our framework is implemented with Python. As
shown in Figure 1. it has three major components:
data collection, feature engineering, and classifica-
tion. In section 3.1, we will detail the the method-
ology and the parameters we utilized to collect the
necessary data. In section 3.2, we will detail the
data preprocessing techniques, the generation of se-
mantic network, the implementation of Spreading
Activation with word embedding, and the compu-
tation of different centralitiy and weighted central-
ity using TF-IDF. In section 3.3, we will detail
the steps we take to establish a baseline model for
data classification and prediction, and the imple-
mentation of a CNN model for better classification
accuracy results.

3.1 Data Collection

We utilized Twitter’s open-source API to extract
user data. The API allows us to retrieve up to 3200
of the most recent Tweets posted by a given user
from user timeline, and up to 3200 of the most re-
cent Tweets liked by a given user from users like
timeline. However, if the user posted or liked more
than 3200 tweets, the timespan for users timeline
and like timeline may vary, results in missing data
and undermines the validity of this study. Thus, we
chose a set of criteria that guarantees the user we
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Figure 3: Sample Semantic Network(10 tweets)

selected with an appropriate number of tweets and
likes in the users timeline and like timeline, respec-
tively. We implemented a web crawler to download
users timeline and like timeline with multiple pa-
rameters associated with each tweet. We merged
users timeline and like timeline, and sorted the data
with the created time of each tweet. We saved this
data in document A. Then, we examined tweets that
the user interacted with another user (like, reply,
quote, retweet). We define such users who inter-
acted with the given user as known interacted users.
We downloaded all of such known interacted users
timeline and like timeline, with the same sets of
parameters associated with each tweet (Figure 2).
Due to Twitters rate limit constraints, the timeline
and like timeline for each known interacted user
only consists up to 200 tweets each. The above
data for all the known interacted users are stored in
document B. We randomly sample an appropriate
number of Twitter users that meet the criteria, and

repeated the data collection process for every user.

3.2 Data Analysis

3.2.1 Data Preprocessing

For each tweet from document A or document B,
we utilized SpaCy, an open-source Natural Lan-
guage Processing software library to preprocess
the tweet text. Our data preprocessing pipeline has
three components. First, text tokenization is ap-
plied to segment the tweet into words, punctuation
and so on. Then, words are transformed to their
respective base forms to prevent the creation of
multiple nodes of the same word, just in different
forms, in the network. Finally, we filter out the
punctuation and the stop words from the tweet to
prevent useless data from interfering with the com-
putation of centrality which may undermine the
validity of the study. For example, the sentence

She just likes to drink tea.

is represented by a list of text tokens (She, like,
drink, tea) after preprocessed by the pipeline.



Figure 4: Spreading Activation with Semantic Networks

3.2.2 Semantic Network Construction

We used NetworkX to construct Semantic Net-
works. After defining the size and the scope of
the network, new nodes (i.e., words tokenized from
the prior step) are added to the network by adding
tweets from document A to the network. When a
node is added to the network, we would first ex-
amine if the network already contains nodes the
represents the same word. If yes, this node is not
added to the network, and we increase the size of
the corresponding existing node already in the net-
work by 1. Otherwise the node is added to the
network. After all the nodes from the tweet are
added or updated, we initialize edges to connect
every node in the tweet. If an edge already exist
between two nodes, the edge is not initialized, and
we increase the weight of the corresponding exist-
ing edge by 1. We repeat this process for every
tweet we intend to include in the network. Figure
2 shows a semantic network with 10 tweets.

3.2.3 Computation

For the target tweets we intended to analyze, we
utilized concepts of Word Embedding and Network

Centrality to compute the importance of individual
words from target tweets in the Semantic Network.

Spreading Activation

= Weight of node

= Weight of source node

Edge Weight connecting node

and source node

R
I

decay value

We implemented Spreading Activation with Seman-
tic Network produced by NetworkX in prior the
step to compute the weight of nodes (i.e., words)
for the tweet we intended to analyze. We iter-
ate through the text tokens of the tweet. If the
network already contains nodes the represents the
same word as the given text token, we activates the
node by assigning weight of 1 to that node. Then,
we iteratively propagate that activation out to other
nodes linked to the source node in the Semantic
Network, and assign these nodes with new weights.



The weights assigned to such new nodes are com-
puted by the above formula.

An example of the spreading activation implemen-
tation is shown in Figure 4 (decay = 0.6, threshold
= 0.4). Here, the tweet we intended to analyze is
"1 like coffee™. First, the node "I" is activated with
an activation value of 1. It first propagate the acti-
vation value to nodes that are closest to "T". Thus,
the nodes “prefer” and "like” are activated, both
receiving a activation value calculated by the above
formula, in this case 0.6. Then, these nodes propa-
gate the activation value further in the semantic net-
work, until all propagating nodes have a activation
value that’s lower than the threshold, in which the
nodes stop propagating activation values to other
nodes. At the time, the activation value 1s recorded
for all nodes. Then, we activate the node “like™,
and repeat the above process for every word token
in the tweet. Finally. we add all the activation val-
ues for each notde during each process. In addition,
any node may receive activation values from more
than one source nodes, and if the network does not
contain nodes that represents the same word as the
given text token, we do not activate any text tokens
in the network.

Word Embedding After the activation value
was calculated for each node in the semantic net-
work, we proceed to calculate a weighted word
vector for each node. We used spaCy’s built-in
word2vec function to vectorize the word token cor-
responding to each word vector, then we weighed
each word vector using the formula below.

weighted word vector = [v * a, vy * a, v3 * a

where v; = vector value

a = activation value

The dimension for the word vector will be 300.
Then, we calculated the average weighted word
vector for each node in the network.

Network Centrality We used NetworkXs built-
in API to compute multiple centrality concepts for
the tweet we intended to analyze. We first iterate
through the text tokens of the tweet. If the text
token could be matched with any node in the Se-
mantic Network(i.e. the tweet contains words that
exist in the Semantic Network), we compute the
centrality for that node in the Semantic Network.
If no such match were found, the centrality for the
text token is set to 0. We sum the centrality of each
text token in the tweet to compute the unweighted

centrality of the tweet. For weighted centrality, we
also multiply each text tokens centrality with the
TF-IDF values of the corresponding node to the
text token. Here, the TF-IDF values of the node 1s
computed by

TF — IDF = TF(t,d) =« [DF(t)

N
=TF(t d) = log daf

where £ = text token t
d = tweet d
N = N tweets in the network
df = df tweets containing corresponding
node of text token t

After calculating the TF-IDF values, the weighted
centrality are calculated by

weighted centrality = ¢y * ¢ + co #t2 + c3 * t3...
where ¢; = centrality of text token 1
t; = TF-IDF value of text token i

3.3 Data Prediction
3.3.1 Preparing Data

When a user interact with another user (like, re-
ply, quote, retweet), we define the text that the
user posted as user text, and we define the original
tweet the user responded to by such interactions
as original text. In document A, if the users tweet
interacted with another user, we use the user text of
previous m number of tweets this user posted prior
to this interaction to establish a Semantic Network.
Then, we use the original text of this tweet and
compute the weighted and unweighted centrality.
We store the centrality and other twitter parameters
that associated with this tweet in our final dataset.
We repeat this process for each tweet in document
A that the user interacted with another user, and
label each tweet with that type of interaction. In
document B, we use the user text of tweets from
this users known interacted users posts from the
dataset, and use the user text of previous m num-
ber of tweets this user posted in document A prior
to the created time of the post by that this users
known interacted user to establish a Semantic Net-
work. Then, we use the user text of this tweet and
compute the weighted and unweighted centrality.
We store the centrality and other twitter parameters
that associated with this tweet in our final dataset.
We repeat this process for k number of tweets in



Table I: User Sample Overview

Parameters Value
description 151.12
followers 1709.18
friends 1965.18
list 70.88
words per tweet 16.36
interaction 3571.88
original posts 1663.9
like 1727.54
reply 678.68
retweet 1079.7
quote 85.96

document B, and label each tweet as no interac-
tion, meaning the user is likely to see the tweet but
choose to not respond to it. We repeat the above
process for every Twitter user that we collected its
data and its known interacted users data.

3.3.2 Model Evaluation

We divide the final dataset to training and testing
data. We first implemented a baseline model that
only contains the tweet-level parameters in Table
1. Then, as shown in Table 2, we implemented sev-
eral other models with different sets of parameters.
The performance metric we selected was accuracy.
or how accurate may the model predict user’s in-
teractions for a given tweet, and F-Score, which
also considers the precision and the recall values to
provide a more board explanation to the results.

Correct Classification

Accuracy =
cetraey Total Population

We also computed the F-Score to for each type of
tweet. The formula for F-Score is shown below.

2PR
F-Sc =
core P+ R
P
where I = Precision = m
TP

R = Recall = m

All models are trained and examined with CNN.

4 Experiment

We analyzed the performance of our framework
by performing real-world experiments. In section
A, we will detail our setup and implementation of
the experiment. In section B, we provide results of
experiment and evaluate the improvements using
our framework over baseline models.

4.1 Procedure

We randomly sampled 80 Twitter users that meet
the specified criteria. Such users all have fewer
than 3200 tweets in their imelines and like time-
lines. The criteria was chosen to avoid computing
with incomplete data. As we limit the total num-
ber of likes and tweets from the user, we could
guarantee that we collected the entire timeline and
the like timeline of the user, without any missing
data. Table I summarizes the general characteris-
tic of the 80 Twitter users. Then, we downloaded
their twitter timelines, like timelines, and merged
two timelines. We sorted the combined timelines
by the timestamp of each tweet. We then exam-
ined the combined timelines for all sampled users.
In all, as shown in Figure 5, about 68.23 % of
the sampled users” posts from their timelines were
interactions, while about 31.77% of the sampled
users’ posts were original. For the tweets that are
mnteractions, we labeled each tweet based on dif-
ferent types of interactions. Also, like was the
most common interaction overall, in which about
48.37% of sampled users” interactions were likes,
followed by retweet(30.23%), reply(19.00%), and
quote(2.40%), respectively. Using these interac-
tions, we downloaded the known interacted users
timelines and like timelines using methods speci-
fied in Section 2.1. In all, we collected a total of
27 million tweets created before August 15, 2019.
After the Twitter data were collected, we prepro-
cessed the data by tokenizing all the tweets. Then,
for every sampled user, we constructed the seman-
tic networks for each interacted tweets and 2000
random tweets that the user may see but chose
to not interact with. Although it was not possi-
ble for us to know what time did the user log in
to Twitter,we used time intervals to estimate the
likielihood that a tweet from a known interacted
user might be seen by the user. The time interval
was computed by

10



Table 2: Prediction Accuracy

0t = teyrrent — Luser

Dataset 100 300
all centrality only 50.67% 5H1.40%
baseline only 86.62% 56.62%
baseline + subgraph centrality 86.39% 56.80%
baseline + weighted subgraph centrality 86.94% 87.07%
baseline + all centrality 80.27% 85.40%
quote

where fyrrent = timestamp of the tweet
fouser = timestamp of user’s first tweet

= after t ., rent

We incorporated the time interval feature into all
models. Next, to examine 1f the size of the seman-
tic network may enable the model to have better
prediction accuracy, we constructed semantic net-
works with a size of 100 and 300 tweets. The size
of the semantic network was chosen to reduce com-
putation time, and also enable real-world applica-
tions on less powerful devices. First, word vectors
were generated for each node in the network, and
the spreading activation method was used to weigh
the word vectors for each node, during the analy-
sis of each target tweet. Then, we calculated the
centrality values and the weighted centrality val-
ues with TF-IDF for each tweet, using the methods
specified in Section 2. Table II summarizes the
general characteristic of the tweets we analyzed.
Finally, we divided the final dataset to training and
testing data, and build CNN models to compare the
prediction accuracy for each model.

IL.T7%

interaction f
e

H/

Figure 5: Sampled User’s Activities on Twitter

4.2 Evaluation

The results of this evaluation are shown in Table
III. On average, models with subgraph centrality
achieved 0.5% increase prediction accuracy over
the baseline model. When comparing the best
model with an additional centrality and the base-
line model, as shown in Table 2, the best model
performs better than the baseline model for about
86.25% of the time when the size of the semantic
network was 100, and the best model performs bet-
ter than the baseline model for about 91.25% of the
time when the size of the semantic network was
300. On average. the best model with an additional
centrality achieved an average (.857% increase pre-
diction accuracy over the baseline model when the

Table 3: F-Score

reply like retweet quote
Dataset 100 300 100 300 100 300 100 300
all centrality only 19.69% 21.63% 28.51% 28.92% 31.75% 31.99% 3.28% 3.92%
baseline only 56.47% 56.47% 73.91% 73.91% 62.79% 62.79% 10.09% 10.09%
baseline +
subgraph centrality 55.05% 55.56% 71.47% 73.98% G61.38% 0(61.74% 12.54% 15.98%
baseline + weighted
subgraph centrality 55.67% 55.87% 72.69% 74.85% 63.10% 63.20% 10.76% 11.97%
baseline + all
centrality 52.58% 52.61% 68.66% 69.67% 59.52% 60.61% 8.63% 9.67%
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size of the semantic network was 100, with a maxi-
mum improvement of 1.635%, and the best model
with an additional centrality achieved an average
1.052% increase prediction

accuracy over the baseline model when the size
of the semantic network was 300, with a maximum
improvement of 3.917%. For F-Score, as shown in
Table 3, models with both subgraph centrality and
weighed subgraph centrality achieved about 1 2%
improvement over the baseline model for retweet
and quote.

5 Conclusion

In this paper, we presented a framework, Twitter-
Pred, to predict user interactions on Twitter. We
successfully incorporated semantic network analy-
sis into our models, with additional concepts such
as spreading activation, word embedding. network
centrality, and TF-IDF. While being simple, our
model has seen modest improvement in accuracy
over baseline models, and the approach is easier
to understand and requires less computational re-
sources than traditional NLP methods.
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