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Abstract

The prevalence of adversarial examples raises questions about the reliability of machine

learning systems, especially for their deployment in critical applications. Numerous defense

mechanisms have been proposed that aim to improve a machine learning system’s robust-

ness in the presence of adversarial examples. However, none of these methods are able to

produce satisfactorily robust models, even for simple classification tasks on benchmarks. In

addition to empirical attempts to build robust models, recent studies have identified intrin-

sic limitations for robust learning against adversarial examples. My research aims to gain

a deeper understanding of why machine learning models fail in the presence of adversaries

and design ways to build better robust systems. In this dissertation, I develop a concen-

tration estimation framework to characterize the intrinsic limits of robustness for typical

classification tasks of interest. The proposed framework leads to the discovery that com-

pared with the concentration of measure which was previously argued to be an important

factor, the existence of uncertain inputs may explain more fundamentally the vulnerability

of state-of-the-art defenses. Moreover, to further advance our understanding of adversarial

examples, I introduce a notion of representation robustness based on mutual information,

which is shown to be related to an intrinsic limit of model robustness for downstream classi-

fication tasks. Finally in this dissertation, I advocate for a need to rethink the current design

goal of robustness and shed light on ways to build better robust machine learning systems,

potentially escaping the intrinsic limits of robustness.
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Chapter 1

Introduction

Machine learning has made remarkable breakthroughs in various fields, including computer

vision [55] and natural language processing [27], especially when classification accuracy

is evaluated. However, state-of-the-art machine learning models have been shown to be

extremely vulnerable to classifying inputs, known as adversarial examples [116, 51], that are

crafted with targeted but visually-imperceptible perturbations. This phenomenon has raised

serious trustworthy concerns for deploying machine learning models in critical applications,

such as malware detection [104], face recognition [110] and autonomous vehicles [42].

Since the initial reports of adversarial examples, many defensive mechanisms [93, 11, 48,

21] have been proposed aiming to enhance the robustness of machine learning models. Most

have failed, however, against stronger adaptive attacks [5, 118]. PGD-based adversarial

training [79] and its variants [129, 17] are the current state-of-the-art, but these methods

still fail to produce satisfactorily robust classifiers, even for benchmark classification tasks

on image datasets like CIFAR-10.

In addition to empirical attempts to build adversarially robust models, recent studies have

identified intrinsic difficulties for learning in the presence of adversarial examples. In par-

ticular, a line of research [49, 44, 80, 108] proved that adversarial robustness is unattainable

if the underlying distribution is concentrated with respect to the perturbation metric. Al-

though such findings seem discouraging to the goal of developing robust classifiers, there

exists a large gap between the problem settings where the inevitability results of adversar-
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ial examples are drawn and the typical classification tasks considered by most empirical

works. It remains elusive whether these theoretical results apply to actual classification

tasks of interest.

Witnessing the empirical bottleneck for improving model robustness and the negative results

on adversarial examples, this dissertation aims to develop provable methods for understand-

ing the fundamental causes of the adversarial vulnerability. The proposed methods shrink

the gap between analyses of robustness for theoretical distributions and understanding the

intrinsic robustness limits for actual datasets of interest. In addition, they provide quanti-

tative estimates that characterize the contribution of each fundamental factor in explaining

adversarial vulnerability, which further suggests promising directions for escaping the in-

trinsic limits of robustness. Moreover, I am going to identify scenarios where the current

design goal of a system’s robustness is not appropriate, and shed light on potential ways to

build better robust machine learning systems.

1.1 Contributions

The main contributions of this thesis are summarized as follows.

1.1.1 Deeper Understanding of Adversarial Robustness

Characterizing Intrinsic Limits on Classifier Robustness. To understand to what extent

the inevitability results of adversarial examples apply to typical robust classification tasks of

interest, we developed different empirical methods to understand and estimate the intrinsic

limits of adversarial robustness translated by the concentration of measure in a series of

publications [131, 81, 96] (Chapter 3). In particular, the first method was introduced in
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the paper [131], which proves upper bounds on intrinsic robustness (see Definition 3.2)

based on the assumption that the underlying data is captured by a conditional generative

model, then provides empirical estimates of such bounds on generated image distributions

(Section 3.3). The second method was initially proposed as a general approach in the paper

[81] then improved by the method introduced in the work [96], where empirical estimators

are developed to measure the concentration of an arbitrary distribution using data samples,

then employed it to estimate a lower bound on intrinsic robustness for image benchmarks

(Sections 3.4 and 3.5). Observing a large gap between the estimated bounds of intrinsic

robustness and the robustness performance achieved by the best current adversarially trained

models, we conclude that different from the conclusion drawn from previous works [49, 44,

80, 108], concentration of measure should not be considered as the main reason behind

the adversarial vulnerability of existing classifiers for typical classification tasks on image

benchmarks.

Revealing the Importance of Labels in Intrinsic Robustness. The existence of a large

gap between intrinsic robustness estimates and robust accuracies attained by state-of-the-

art classifiers motivates us to further study the reasons behind this phenomenon. In the

paper [133], we show that intrinsic robustness with respect to imperfect classifiers, studied

in all of the aforementioned works, is not sufficient to capture a realistic intrinsic robustness

limit, because it ignores data labels which are essential to any classification task. Therefore,

we argue that it would be more meaningful to incorporate the underlying label information

into the definition of intrinsic robustness.

We introduced a novel definition of label uncertainty (see Definition 4.3), and empirically

observed that error regions induced by state-of-the-art models all tend to have much higher

label uncertainty. This observation motivated us to incorporate label uncertainty in the

standard concentration measure as an initial step towards a more realistic characterization

3



of intrinsic robustness. We further adapted a standard concentration estimation algorithm

that accounts for label uncertainty. Our results show that the proposed method is able to

produce a lower intrinsic robustness limit for image benchmarks than was possible using

prior methods that do not consider data labels, suggesting that in addition to concentration

of measure, another fundamental cause of the adversarial vulnerability is the existence of

examples with high label uncertainty (Chapter 4).

Improved Understanding of Robustness at the Level of Representations. To better un-

derstand adversarial robustness, we considered the underlying problem of learning robust

representations [135]. In particular, we introduced a notion of representation vulnerability

based on mutual information (see Definition 5.4), then proposed an unsupervised learn-

ing method for obtaining intrinsically robust representations by maximizing the worst-case

mutual information between the input and output distributions. Our results demonstrate a

strong correlation between model and representation robustness, suggesting the effective-

ness of our method as an approach for understanding and measuring achievable adversarial

robustness at the level of representations (Chapter 5).

1.1.2 Towards building better robust classifiers

Although understanding intrinsic limits of classifier robustness is scientifically important,

our ultimate goal is to design ways to build better machine learning systems. Built upon

the current design goal of overall adversarial robustness, however, it seems that there is no

hope to escape the intrinsic robustness limits. This motivates me to rethink whether overall

robustness is the right design goal for building robust machine learning systems. I argue

that there exist scenarios where overall robustness is not the appropriate evaluation criterion

4



for a system’s robustness (Chapter 6), which I further explain below.

Cost-Sensitive Robustness. In the paper [132], we argue that from a security perspective,

only certain kinds of adversarial misclassifications pose meaningful threats that provide

value for potential adversaries, whereas overall robustness places equal emphasis on every

possible adversarial transformation. As a simple example, misclassifying a malicious pro-

gram as benign results in more severe consequences than the reverse. Motivated by this

observation, we proposed a general method for adapting certified defenses against norm-

bounded perturbations to take into account the potential harm of different adversarial class

transformations. In particular, we capture the impact of different adversarial class trans-

formations using a cost matrix. Instead of reducing the overall robust error, we advocate

for a more meaningful goal of maximizing the cost-sensitive robustness against adversarial

examples. Our results showed that the proposed training method is able to produce mod-

els with significantly improved cost-sensitive robustness, while maintaining similar clean

accuracy for a variety of cost scenarios on typical image benchmarks (Chapter 6.2).

Uncertainty-Aware Robustness. In addition to not considering the underlying goal of ad-

vesaries, I argue that overall robustness would also be an unrealistic goal to achieve for

uncertain inputs, since the ground-truth labels are inherently probabilistic at those inputs,

thus should not be regarded as single-labeled . Inspired by existing literature on conformal

classification [102, 3], I propose the notion of uncertainty-aware robustness (see Defini-

tion 6.1) as a more meaningful metric for evaluating classifier’s robustness, which tolerates

adversarial class transformations that are aligned with the underlying label information. In

addition, by adapting a PGD-attack based algorithm, I design methods to empirically eval-

uate the uncertainty-aware robustness of a given classifier and demonstrate the superiority

of uncertainty-aware robustness for benchmark image classification tasks, especially when

a classifier’s robustness performance is being assessed on the set of intrinsically uncertain
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inputs (Chapter 6.3).

1.2 Dissertation Structure

Chapter 2 reviews the most related literature to this dissertation. In Chapter 3, we develop

different methods for measuring concentration, then employ them to estimate intrinsic ro-

bustness limits for benchmark classification tasks. In Chapter 4, we identity the insuffi-

ciency of standard concentration function in capturing a meaningful intrinsic robustness

limit, then study the concentration problem with the consideration of label uncertainty. To

better understand adversarial robustness, we study the underlying problem of learning robust

representations in Chapter 5. In Chapter 6, we identify scenarios where overall robustness is

not the appropriate criterion for measuring a system’s robustness performance, and discuss

potential ideas to build better robust ML systems. Finally, I conclude my dissertation and

discuss open questions in Chapter 7.

Notations. For any n ∈ Z+, denote by [n] the set {1, 2, . . . , n}. Lowercase boldface letters

such as x denote vectors and uppercase boldface letters such as A represent matrices. For

any vector x and p ∈ [1,∞), let xj , ∥x∥p and ∥x∥∞ be the j-th element, the ℓp-norm and

the ℓ∞-norm of x. For any matrix A, B is said to be a square root of A if A = BB, and the

induced matrix p-norm of A is defined as ∥A∥p = supx ̸=0{∥Ax∥p/∥x∥p}.

For any set A, |A| denotes its cardinality, Pow(A) is all its measurable subsets, and 1A(·)

is the indicator function of A. Consider metric probability space (X , µ,∆), where ∆ :

X × X → R≥0 is a distance metric on X . Define the empirical measure of µ with respect

to a data set S sampled from µ as µ̂S(A) =
∑

x∈S 1A(x)/|S|. Denote by B(∆)
ϵ (x) the ball

around x with radius ϵ measured by ∆. The ϵ-expansion of A is defined as A(∆)
ϵ = {x ∈
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X : ∃ x′ ∈ B(∆)
ϵ (x) ∩ A}. When ∆ is free of context, we simply write Bϵ(x) = B(∆)

ϵ (x)

and Aϵ = A(∆)
ϵ . The collection of the ϵ-expansions for members of any G ⊆ Pow(X ) is

defined and denoted as Gϵ = {Aϵ : A ∈ G}.

We use In to denote the n×n identity matrix. Denote byN (θ,Σ) the Gaussian distribution

with mean θ and covariance matrixΣ. Let γn be the probability measure ofN (0, In), where

In denotes the n× n identity matrix. For the one dimensional case, we use Φ(x) to denote

the cumulative distribution function (CDF) ofN (0, 1), and use Φ−1(x) to denote its inverse

function. For any function g : Z → X and probability measure ν defined over Z , g∗(ν)

denotes the push-forward measure of ν.
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Chapter 2

Related Work

I review the most related literature in this chapter, including both the empirical works that

propose defenses against adversarial examples and theoretical works on explaining the hard-

ness of adversarially robust learning.

2.1 Defenses against Adversarial Examples

Since the first discovery of adversarial examples by [116], numerous heuristic defense

mechanisms have been proposed aiming to improve model robustness, such as defensive

distillation [93], input transformations [53], thermometer encoding [15], randomization

schemes [125, 29] and adversarial training [51, 71, 79]. However, many of these pro-

posed methods have been shown to be ineffective against stronger adaptive adversaries

[16, 5, 118]. To end this arms race between heuristic defenses that claim successful against

existing attacks and newly devised stronger attacks that penetrate these models, various cer-

tifiable methods have been proposed, such as linear relaxations [121, 35], semi-definite pro-

gramming [97], distributionally robust optimization [112] and interval bound propagation

[82, 52]. Although these methods are able to certify the classifier’s prediction to be constant

within some ℓp-norm bounded set around given inputs and to train models to optimize for

certifiable robustness, they suffer from scalability issues when the size of the datasets or

the implemented networks are large, and the best achieved certifiable robustness guaran-
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tee is far from satisfying. Despite continuous efforts seeking to develop scalable methods

for improving robustness against adversarial examples [120, 129, 130, 19], state-of-the-art

training methods cannot produce adversarially robust models, even for simple classification

tasks on CIFAR-10 [68]. In this thesis, we are going to explore better ways to build better

robust machine learning systems, by rethinking the current design goal of robustness.

2.2 Theoretical works on Adversarially Robust Learning

Given the unsatisfying status of the existing adversarial defenses, recent works attempted

to provide fundamental explanations for the difficulties of robust learning against adver-

sarial examples. In particular, one line of research [49, 44, 80, 108, 31, 10] studied the

intrinsic robustness limits of robust learning with respect to the metric probability space

of the inputs. They showed that no classifier is able to achieve adversarial robustness, if

the input distribution and the perturbation set satisfy certain assumptions. For example, the

pioneering work of [49] proved model-independent bounds on adversarial risk and showed

that adversarial robustness is unattainable for any classifier with constant error, assuming

the input data are sampled uniformly from n-spheres and the considered perturbation metric

is Euclidean distance. Later on, [80] generalized their results for any concentrated metric

probability space. Based on the assumption that the input data can be well captured by a

smooth generative model, [44] proved that any classifier is vulnerable against adversarial

examples with respect to the assumed input distribution. [108] showed that adversarial ex-

amples are inevitable, provided the maximum density of the input distribution is relatively

small compared with uniform density. In this dissertation, I follow this line of works, but

with a more practical goal to understand the intrinsic robustness for actual classification

tasks of interest.
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In addition to understanding the intrinsic robustness limits, another line of research studied

a more comprehensive problem of adversarially robust generalization. For instance, [105]

showed that compared with standard generalization, adversarially robust generalization re-

quires significantly larger sample complexity for specific learning problems. To tackle such

barrier, recent works [17, 1] demonstrated that by incorporating additional unlabeled data,

semi-supervised learning methods can potentially bypass the sample complexity constraint.

Other theoretical works [127, 65, 6] directly derive robust generalization bounds using ex-

tensions of Rademacher complexity under certain simplified settings, suggesting that com-

pared with standard generalization, there may exist additional statistical barriers for adver-

sarially robust generalization. In addition, [14] and [25] constructed specific tasks where

computationally efficient robust classification is impossible, while [85] presented settings

where adversarial robustness can only be achieved by improper learning. Other explana-

tions for the difficulties of achieving adversarial robustness have been also proposed, such

as the tension between standard and robust accuracy [119, 98], and the existence of well-

generalizing but non-robust features [61], to name a few. However, all of the aforementioned

theoretical analyses are conducted on special theoretical distributions, thus it is still unclear

whether these results apply to actual datasets of interest.
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Chapter 3

Intrinsic Robustness Limits

3.1 Introduction

The unsatisfactory adversarial robustness achieved by state-of-the-art machine learning clas-

sifiers motivates a fundamental information-theoretic question: what are the inherent lim-

itations of developing robust classifiers? Several recent works [49, 44, 80, 108, 10] have

shown that under certain assumptions regarding the data distribution and the perturbation

metric, adversarial examples are theoretically inevitable. As a result, for a broad set of

theoretically natural metric probability spaces of inputs, there is no classifier for the data

distribution that achieves adversarial robustness. For example, [49] assumed that the input

data are sampled uniformly from n-spheres and proved a model-independent theoretical

bound connecting the risk to the average Euclidean distance to the “caps” (i.e., round re-

gions on a sphere). [80] generalized this result to any concentrated metric probability space

of inputs and showed, for example, that if the inputs come from any Normal Lévy family

[74], any classifier with a noticable test error will be vulnerable to small perturbations.

Although such theoretical findings seem discouraging to the goal of developing robust clas-

sifiers, all these impossibility results depend on assumptions about data distributions that

might not hold for cases of interest. In order to better understand the intrinsic limits of ad-

versarial robustness for typical robust classification tasks of interest, we develop methods

for testing properties of concrete datasets against these theoretical assumptions.
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3.2 Preliminaries

Adversarial Risk. Adversarial risk captures the vulnerability of a classifier against adver-

sarial perturbations. In particular, we adopt the following adversarial risk definition, which

has been studied in several previous works including [49, 14, 80].

Definition 3.1 (Adversarial Risk). Let (X , µ) be the probability space of instances and

c : X → Y be the ground-truth labeling function, where Y denotes the set of all possible

labels. Consider perturbations with strength ϵ measured in distance metric ∆, then the

adversarial risk of a classifier f is defined as:

AdvRiskϵ(f ;µ, c,∆) = Pr
x∼µ

[
∃ x′ ∈ Ball(x, ϵ) s.t. f(x′) ̸= c(x′)

]
.

When µ, c and ∆ is free of context, we write AdvRiskϵ(f) = AdvRiskϵ(f ;µ, c,∆) for

simplicity. Correspondingly, the adversarial robustness of f is defined as:

AdvRobϵ(f) = 1− AdvRiskϵ(f).

When ϵ = 0, adversarial risk equals to the standard risk. Namely, AdvRisk0(f) = Risk(f) :=

Prx∼µ[f(x) ̸= c(x)] for any classifier f . Other definitions of adversarial risk have been pro-

posed, such as the one used in [79]. These definitions are equivalent to the one we use, as

long as small perturbations preserve the labels assigned by c(·)1.

Intrinsic Robustness. Given an adversarially robust classification problem, intrinsic ro-

bustness captures the maximum achievable adversarial robustness with respect to some

family of classifiers.

1See [30] for a detailed comparison of these and other definitions of adversarial robustness.
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Definition 3.2 (Intrinsic Robustness). Consider the same setting as in Definition 3.1. Let

F be some family of classifiers which map instances from X to Y . The intrinsic robustness

with respect to F is defined as:

AdvRobϵ(F) = 1− inf
f∈F

{
AdvRiskϵ(f)

}
= sup

f∈F
{AdvRobϵ(f)}.

According to the definition of intrinsic robustness, there does not exist any classifier in F

with adversarial robustness higher than AdvRobϵ(F) for the considered task.

Concentration of Measure. Concentration of measure captures a ‘closeness’ property for

a metric probability space of instances. More formally, it is defined by the concentration

function as follows.

Definition 3.3 (Concentration Function). Consider a probability space (X , µ)with distance

metric ∆. For any ϵ > 0 and α ∈ (0, 1), the concentration function is defined as:

h(µ, α, ϵ; ∆) = inf
E∈Pow(X )

{µ(Eϵ) : µ(E) ≥ α}.

When the metric ∆ is free of context, we write h(µ, α, ϵ) = h(µ, α, ϵ; ∆) for simplicity.

The standard notion of concentration function considers a special case of Definition 3.3

with α = 1/2 (e.g., [117]). For some special metric probability spaces, one can prove the

closed-form solution of the concentration function.

In particular, the Gaussian Isoperimetric Inequality [12, 114] characterizes the concentra-

tion function for spherical Gaussian distribution and ℓ2-norm distance metric.

Lemma 3.4 (Gaussian Isoperimetric Inequality). Consider the standard Gaussian space

(Rn, νn) with ℓ2-distance. Let E ∈ Pow(Rn) and H be a half space such that νn(E) =
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νn(H), then for any ϵ ≥ 0, it holds that

νn
(
E (ℓ2)ϵ

)
≥ νn

(
H(ℓ2)
ϵ

)
= Φ

(
Φ−1

(
νn(E)

)
+ ϵ
)
.

Lemma 3.4 implies the closed-form solution of the concentration function with respect to

the considered metric probability space. More formally, h(νn, α, ϵ; ℓ2) = Φ(Φ−1(α) + ϵ).

3.2.1 Connecting Intrinsic Robustness with Concentration

Let (X , µ,∆) be the considered input metric probability space, Y be the set of possible

labels, and c : X → Y be the concept function that gives each input a label. Given pa-

rameters 0 < α < 1 and ϵ ≥ 0, the concentration of measure problem can be cast into an

optimization problem as follows:

minimize
E∈Pow(X )

µ(Eϵ) subject to µ(E) ≥ α. (3.1)

For any classifier f , let E = {x ∈ X : f(x) ̸= c(x)} be its induced error region with

respect to c(·). By connecting the risk of f with the measure of E and the adversarial risk

of f with the measure of the ϵ-expansion of E (see Figure 3.1 for the illustration of these

connections), [80] proved that the concentration of measure problem is equivalent to the

following optimization problem regarding risk and adversarial risk:

minimize
f

AdvRiskϵ(f) subject to Risk(f) ≥ α. (3.2)

More specifically, the following theorem, proven in [80], characterizes the fundamental

connection between the concentration of measure and an intrinsic robustness limit.
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(a) Risk(f) = µ(E) (b) AdvRisk(f) = µ
(
E(∆)
ϵ

)
Figure 3.1: Illustration of the connection between risk and error region as well as the con-
nection between adversarial risk and expanded error region: (a) the risk of any classifier
f is equivalent to the measure of its induced error region E , (b) the adversarial risk of any
classifier f corresponds to the measure of the ϵ-expansion of its error region E (∆)

ϵ . Here ∆
is set as the ℓ2-norm distance metric in the Figure 3.1(b).

Theorem 3.5. Consider input metric probability space (X , µ,∆), label spaceY and ground-

truth labeling function c. For any classifier f : X → Y and ϵ ≥ 0, it holds that

AdvRiskϵ(f) ≥ h(µ,Risk(f), ϵ).

For any α ∈ (0, 1), if denote by Fα = {f : Risk(f) ≥ α} the set of classifiers with

imperfect risk, then it holds for any ϵ ≥ 0 that

AdvRobϵ(Fα) = 1− h(µ, α, ϵ).

Theorem 3.5 suggests that the concentration function of the input metric probability space

can be translated into an adversarial robustness upper bound that applies to any classifier

with risk at least α. If this upper bound is small, then one can conclude that it is impossible

to learn an adversarially robust classifier, as long as the classifier has risk at least α.
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Figure 3.2: Illustration of the theoretical upper bounds on adversarial robustness for the
robust classification task on uniform n-spheres considered in [49]. The red dashed line rep-
resents the naive upper bound, namely AdvRobϵ(f) ≤ 1 − Risk(f) for any classifier f ;
whereas the orange dashed line denotes the intrinsic robustness limit translated by concen-
tration of measure, namely AdvRobϵ(f) ≤ 1− h(µ,Risk(f), ϵ) for any classifier f .

To give a specific example, we visualize the intrinsic robustness limit translated by con-

centration function for the synthetic robust classification problem studied in [49] in Figure

3.2. In particular, the inputs are assumed to be uniformly distributed over two concentric

n-spheres and ℓ2-norm bounded perturbations are considered2. Here, we set n = 1000 and

consider the ℓ2 perturbations with strength ϵ = 0.1 for illustration. Figure 3.2 suggests that

due to the concentration of measure phenomenon, classifiers are only attainable with risk

and adversarial robustness below the orange dashed line for the considered robust classi-

fication task. In particular, as long as a classifier has risk larger than 1%, the maximum

achievable adversarial robustness implied by the concentration of measure phenomenon is

less than 54%, suggesting that adversarial robustness is inherently unattainable for classify-

ing inputs generated according to the considered setting.
2See [49] for the detailed description of the considered classification problem
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3.3 Conditional Generative Model based Approach3

Although closed-form solutions to the concentration of measure problem (3.1) can be proved

with respect to some specific metric probability spaces, it remains unclear about the impli-

cations of Theorem 3.5 on intrinsic robustness for general distributions such as images. In

this section, we leverage the power of conditional generative models for modeling natural

image distributions, which builds a bridge to understand the intrinsic robustness limits of

general distributions using the concentration property of well-behaved latent space.

3.3.1 Definitions and Assumptions

Conditional Generative Models. Motivated by the great success of producing natural-

looking images using conditional generative adversarial nets (GANs) [83, 92, 13], we as-

sume that the underlying data distribution µ can be modeled by some conditional generative

model. A generative model can be seen as a function g : Z → X that maps some latent

distribution, usually assumed to be multivariate Gaussian, to some generated distribution.

Conditional generative models incorporate the additional class information into the data

generating process. A conditional generative model can be considered as a set of generative

models {gi}i∈[K], where images from the i-th class can be generated by transforming latent

Gaussian vectors through gi. More rigorously, we say a probability distribution µ can be

generated by a conditional generative model {(gi, pi)}i∈[K], if µ =
∑K

i=1 pi ·(gi)∗(νd), where

K is the total number of different class labels, and pi ∈ [0, 1] represents the probability of
3Xiao Zhang*, Jinghui Chen*, Quanquan Gu, David Evans, Understanding the Intrinsic Robustness of

Image Distributions using Conditional Generative Models, in the 23rd International Conference on Artificial
Intelligence and Statistics (AISTATS 2020) [131].
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sampling an image from class i.

In-distribution Adversarial Risk. Given the conditional generative process, in-distribution

adversarial risk captures the vulnerability of a classifier against adversarial examples that

lie on the generated image manifold.

Definition 3.6 (In-distribution Adversarial Risk). Consider the same settings as in Defi-

nition 3.1. Suppose µ can be captured by a conditional generative model {(gi, pi)}i∈[K].

For any given classifier f , the in-distribution adversarial risk of f against ϵ-perturbations

measured by metric ∆ is defined as:

In-AdvRiskϵ(f) = Pr
(x,i)∼µ

[
∃ z′ ∈ Z s.t. gi(z′) ∈ Bϵ(x) and f(gi(z′)) ̸= c(gi(z

′))
]
.

Given that the in-distribution adversarial risk restricts the adversarial examples to be on the

image manifold, it holds that, for any classifier f , In-AdvRiskϵ(f) ≤ AdvRiskϵ(f).

Local Lipschitz Condition. The local Lipschitz condition characterizes the smoothness

property of a generative model, which connects perturbations in the image space to pertur-

bations in the latent space.

Condition 3.3.1 (Local Lipschitz Condition). Let g : Rd → X be a generative model that

maps the latent Gaussian distribution νd to some generated distribution. Consider Euclidean

distance as the distance metric for Rd, and ∆ as the metric for X . Given r > 0 and 0 < δ <

1, g is said to be L(r)-locally Lipschitz with probability at least 1− δ, if it satisfies

Pr
z∼νd

[
∀z′ ∈ Br(z), ∆

(
g(z′), g(z)

)
≤ L(r) · ∥z′ − z∥2

]
≥ 1− δ.
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3.3.2 Theoretical Results on Intrinsic Robustness

Making use of the Gaussian Isoperimetric Inequality (Lemma 3.4) and local Lipschitz prop-

erty of the conditional generator (Condition 3.3.1), the following theorem proves a lower

bound on the (in-distribution) adversarial risk for any given classifier, provided that the

underlying distribution can be captured by a conditional generative model.

Theorem 3.7. Let (X , µ,∆) be a metric probability space and c : X → [K] be the un-

derlying ground-truth. Suppose µ can be generated by a conditional generative model

{(gi, pi)}i∈[K]. Given ϵ > 0, suppose there exist constants r > 0 and δ ∈ (0, 1) such

that for any i ∈ [K], gi satisfies Li(r)-local Lipschitz property with probability at least

1− δ and r · Li(r) ≥ ϵ. Then for any classifier f , it holds that

AdvRiskϵ(f) ≥ In-AdvRiskϵ(f) ≥
K∑
i=1

pi · Φ
(
Φ−1

(
Risk(f ;µi)

)
+

ϵ

Li(r)

)
− δ,

where µi = (gi)∗(νd) is the push-forward measure of νd though gi, for any i ∈ [K].

Proof of Theorem 3.7. Let E = {x ∈ X : f(x) ̸= c(x)} be the error region in the image

space and Eϵ be the ϵ-expansion of E with metric ∆. By Definition 3.1, we have

AdvRiskϵ(f ;µ) = µ(Eϵ) =
K∑
i=1

pi · µi(Eϵ) =
K∑
i=1

pi · AdvRiskϵ(f ;µi).

According to Definition 3.6, we have AdvRiskϵ(f ;µi) ≥ In-AdvRiskϵ(f ;µi) for any i ∈

[K]. Thus, it remains to lower bound each term In-AdvRiskϵ(f ;µi) individually. For any
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classifier f , we have

In-AdvRiskϵ(f ;µi) = Pr
z∼νd

[
∃ z′ ∈ Rd, s.t. ∆

(
gi(z

′), gi(z)
)
≤ ϵ, f

(
gi(z

′)
)
̸= c
(
gi(z

′)
)]

≥ Pr
z∼νd

[
∃ z′ ∈ Bϵ/Li(r)(z), s.t. f

(
gi(z

′)
)
̸= c
(
gi(z

′)
)]

︸ ︷︷ ︸
I

−δ (3.3)

where the first inequality is due to µi = (gi)∗(νd), and the second inequality holds because

gi satisfies the Li(r)-locally Lipschitz condition and Bϵ/Li(r)(z) ⊆ Br(z) holds for any z.

To further bound the term I , we make use of the Gaussian Isoperimetric Inequality as pre-

sented in Lemma 3.4. Let Af = {z ∈ Rd : f(gi(z)) ̸= c(gi(z))} be the corresponding

error region in the latent space. By Lemma 3.4, we have

I ≥ Φ

(
Φ−1

(
νd(Af )

)
+

ϵ

Li(r)

)
= Φ

(
Φ−1

(
Risk(f ;µi)

)
+

ϵ

Li(r)

)
. (3.4)

Finally, plugging (3.4) into (3.3), we complete the proof.

Theorem 3.7 suggests the (in-distribution) adversarial risk is related to the risk on each data

manifold and the ratio between the perturbation strength and the local Lipschitz constant.

The following theorem gives a theoretical upper bound on the intrinsic robustness with

respect to the family of classifiers with imperfect risk.

Theorem 3.8. Under the same setting as in Theorem 3.7, let Lmax(r) = maxi∈[K] Li(r).

Consider the class of imperfect classifiers Fα = {f : Risk(f) ≥ α} with α > 0, then the

intrinsic robustness with respect to Fα can be bounded as,

AdvRobϵ(Fα) ≤ 1 + δ − min
i∈[K]

{
pi · Φ

(
Φ−1

(
α

pi

)
+

ϵ

Lmax(r)

)}
,
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provided that α/pi ≤ 1 for any i ∈ [K]. In addition, if we consider the family of classifiers

that have conditional risk at least α for each class, namely F̃α = {f : Risk(f ;µi) ≥ α, ∀i ∈

[K]}, then the intrinsic robustness with respect to F̃α can be bounded by

AdvRobϵ(F̃α) ≤ 1 + δ −
K∑
i=1

pi · Φ
(
Φ−1

(
α
)
+

ϵ

Lmax(r)

)
.

Proof of Theorem 3.8. According to Theorem 3.7, for any f ∈ Fα, we have

AdvRobϵ(Fα) ≤ 1 + δ −
K∑
i=1

pi · Φ
(
Φ−1

(
Risk(f ;µi)

)
+

ϵ

Li(r)

)

≤ 1 + δ −
K∑
i=1

pi · Φ
(
Φ−1

(
Risk(f ;µi))

)
+

ϵ

Lmax(r)

)
, (3.5)

where the last inequality holds because Φ(·) is monotonically increasing. For any f ∈ Fα,

let E = {x ∈ X : f(x) ̸= c(x)} be the error region and αi = µi(E) be the measure of E

under the i-th conditional distribution.

Thus, to obtain an upper bound on AdvRobϵ(Fα) using (3.5), it remains to solve the follow-

ing optimization problem:

minimize
α1,...,αK∈[0,1]

K∑
i=1

pi · Φ
(
Φ−1(αi) +

ϵ

Lmax(r)

)
subject to

K∑
i=1

piαi ≥ α. (3.6)

Note that for classifier in F̃α, by definition, we can simply replace αi = α in (3.6), which

proves the upper bound on AdvRobϵ(F̃α).

Next, we are going to show that the optimal value of (3.6) is achieved, only if there exists

a class i′ ∈ [K] such that αi′ = α/pi′ and αi = 0 for any i ̸= i′. Consider the simplest

case where K = 2. Note that Φ(·) and Φ−1(·) are both monotonically increasing functions,

which implies that
∑K

i=1 piαi = α holds when optimum achieved, thus the optimization
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problem for K = 2 can be formulated as follows

min
α1,α2∈[0,1]

∑
i∈{1,2}

pi · Φ
(
Φ−1(αi) +

ϵ

Lmax(r)

)
s.t.

∑
i∈{1,2}

piαi = α. (3.7)

Suppose α1 ≥ α2 holds for the initial setting. Now consider another setting where α′1 > α1,

α′2 < α2. Let s1 = Φ−1(α′1) − Φ−1(α1) and s2 = Φ−1(α2) − Φ−1(α′2). According to the

equality constraint of the optimization problem (3.7), we have

p1 ·
∫ Φ−1(α1)+s1

Φ−1(α1)

1√
2π
· exp−x2/2dx = p2 ·

∫ Φ−1(α2)

Φ−1(α2)−s2

1√
2π
· exp−x2/2dx. (3.8)

Let η = ϵ/Lmax(r) for simplicity. By simple algebra, we have

p1 ·
∫ Φ−1(α1)+s1+η

Φ−1(α1)+η

1√
2π
·exp−x2/2dx = p1 ·

∫ Φ−1(α1)+s1

Φ−1(α1)

1√
2π
· exp−u2/2−η·u−η2/2du

< p1 · exp−η·Φ−1(α1)−η2/2 ·
∫ Φ−1(α1)+s1

Φ−1(α1)

1√
2π
· exp−u2/2du

≤ p2 · exp−η·Φ−1(α2)−η2/2 ·
∫ Φ−1(α2)

Φ−1(α2)−s2

1√
2π
· exp−u2/2du

< p2 ·
∫ Φ−1(α2)+η

Φ−1(α2)−s2+η

1√
2π
· exp−x2/2dx,

where the first inequality holds because exp−η·u < exp−η·Φ−1(α1) for any u > Φ−1(α1),

the second inequality follows from (3.8) and the fact that Φ−1(α1) ≥ Φ−1(α2), and the

last inequality holds because exp−η·Φ−1(α2) < exp−η·u for any u < Φ−1(α2). Therefore,

the optimal value of (3.7) will be achieved when α1 = 0 or α2 = 0. For general setting

with K > 2, since α1, . . . , αK are independent in the objective, we can fix α3, . . . , αK and

optimize α1 and α2 first, then deal with αi incrementally using the same technique.

Remark 3.9. Theorem 3.8 shows that if the data distribution can be captured by a condi-
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tional generative model, the intrinsic robustness bound with respect to imperfect classifiers

will largely depend on the ratio ϵ/Lmax. For instance, if we assume the ratio ϵ/Lmax = 1,

then Theorem 3.8 suggests that no classifier with initial risk at least 5% can achieve robust

accuracy exceeding 75%. In addition, if we assume the local Lipschitz parameter Lmax is

some constant, then adversarial robustness is indeed not achievable for high-dimensional

data distributions, provided the perturbation strength ϵ is sublinear to the input dimension,

which is the typical setting considered in previous works [49, 44, 80].

Remark 3.10. The intrinsic robustness is closely related to the in-distribution adversarial

risk. For the class of classifiers Fα, one can prove that the intrinsic robustness is equivalent

to the maximum achievable in-distribution adversarial robustness:

AdvRobϵ(Fα) = 1− inf
f∈Fα

{In-AdvRiskϵ(f)}. (3.9)

On one hand, AdvRiskϵ(f) ≥ In-AdvRiskϵ(f) holds for any f . On the other hand, for any

f ∈ Fα, one can construct an hf ∈ Fα such that hf (x) = f(x) if x ∈ Ef ∩ M and

hf (x) = c(x) otherwise, where Ef = {x ∈ X : f(x) ̸= c(x)} denotes the error region

of f and M is the considered image manifold. The construction immediately suggests

In-AdvRiskϵ(f) = AdvRiskϵ(hf ), which implies,

inf
f∈Fα

{In-AdvRiskϵ(f)} = inf
f∈Fα

{AdvRiskϵ(hf )} ≥ inf
f∈Fα

{AdvRiskϵ(f)}.

Combining both directions proves the soundness of (3.9). This equivalence suggests the in-

distribution adversarial robustness of any classifier in Fα can be viewed as a lower bound

on the actual intrinsic robustness, which motivates us to study the intrinsic robustness by

estimating the in-distribution adversarial robustness of trained models in our experiments.
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3.3.3 Experiments

This section provides our empirical evaluations of the intrinsic robustness on typical im-

age distributions to evaluate the tightness of our bound. We test our bound on two image

distributions generated using MNIST [72] and ImageNet [26] datasets.

Conditional GAN Models. Instead of directly evaluating the robustness on real datasets,

we make use of conditional GAN models to generate datasets from the learned data dis-

tributions and evaluate the robustness of several state-of-the-art robust models trained on

the generated dataset for a fair comparison with the theoretical robustness limits. Note that

this approach is only feasible with conditional generative models as unconditional models

cannot provide the corresponding labels for the generated data samples. For MNIST, we

adopt ACGAN [92] which features an additional auxiliary classifier for better conditional

image generation. The ACGAN model generates 28× 28 images from a 100-dimension la-

tent space concatenated with an addition 10-dimension one-hot encoding of the conditional

class labels. For ImageNet, we adopt the BigGAN model [13] which is the state-of-the-art

GAN model in conditional image generation. It generates 128 × 128 images from a 120-

dimension latent space. We down-sampled the generated images to 32 × 32 for efficiency

propose. We consider a standard Gaussian4 as the latent distribution for both conditional

generative models. Figure 3.3 shows examples of the generated MNIST and ImageNet im-

ages. For both figures, each column of images corresponds to a particular label class of the

considered dataset.

Local Lipschitz Constant Estimation. From Theorem 3.8, we observe that given a class of

classifiers with risk at leastα, the derived intrinsic robustness upper bound is mainly decided

by the perturbation strength ϵ and the local Lipschitz constant L(r). While ϵ is usually
4The original BigGAN model uses truncated Gaussian. We adapted it to standard Gaussian distribution.
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(a) ACGAN Generated MNIST (b) BigGAN Generated ImageNet

Figure 3.3: Illustration of the generated images using different conditional models. For
BigGAN generated images, we select 10 specific classes from the 1000 ImageNet classes
(corresponding to the 10 image classes in CIFAR-10).

predesignated in common robustness evaluation settings, the local Lipschitz constant L(r)

is unknown for most real world tasks. Computing an exact Lipschitz constant of a deep

neural network is a difficult open problem. Thus, instead of obtaining the exact value, we

approximate L(r) using a sample-based approach with respect to the generative models.

Recalling Definition 3.3.1, we consider ∆ as the ℓ2 distance and g(z) and g(z′) are easy to

compute via the generator network. Computing L(r), however, is much more complicated

as it requires obtaining a maximum value within a radius-r ball. To deal with this, our

approach approximates L(r) by samplingN points in the neighborhood around z and takes

the maximum value as the estimation of the true maximum value within the ball. Since the

definition of local Lipschitz is probabilistic, we take multiple samples of the latent vectors

z to estimate the local Lipschitz constant L(r). The estimation procedure is summarized

in Algorithm 1, which gives an underestimate of the underlying truth. Developing better

Lipschitz estimation methods is an active area in machine learning research, but is not the

main focus of this work.
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Algorithm 1: Local Lipschitz Estimation
Input : number of samples S, number of local neighbors per sample N , r, δ

1 for i = 1, . . . , S do
2 Generate a latent space sample zi;
3 Generate N samples {ẑji }Nj=1 within Br(zi);
4 Li = maxj

∥g(ẑj
i )−g(zi)∥2
∥ẑj

i−zi∥2
;

5 end
Output : (1− δ)-percentile of {Li}Si=1

Tables 3.1 and 3.2 summarize the local Lipschitz constants estimated for the trained ACGAN

and BigGAN generators conditioned on each class. In particular, we report both the mean

estimates averaged over 10 repeated trials and the standard deviations. For both conditional

generators, we set S = 1000, N = 2000, r = 0.5 and δ = 0.001 in Algorithm 1 for

Lipschitz estimation. For BigGAN, the specifically selected 10 classes from ImageNet are

reported in Table 3.2.

Compared with unconditional generative models, conditional ones generate each class using

a separate generator. Thus, the local Lipschitz constant of each class-conditioned generator

is expected to be smaller than that of unconditional ones, as the within-class variation is

usually much smaller than the between-class variation for a given classification dataset. For

instance, we trained an unconditional GAN generator [50] on MNIST dataset, which yields

an overall local Lipschitz constant of 27.01 from Algorithm 1 under the same parameter

settings. If we plug in this estimated Lipschitz constant into the theoretical results in [44], the

implied intrinsic robustness bound is in fact vacuous (above 1) with perturbations strength

ϵ ≤ 3.0 in ℓ2 distance.

Comparisons with Robust Classifiers. We compare our derived intrinsic robustness

upper bound with the empirical adversarial robustness achieved by the current state-of-the-

art defense methods under ℓ2 perturbations. Specifically, we consider three robust training
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Table 3.1: The estimated local Lipschitz constants of the trained ACGAN model on the 10
MNIST classes with r = 0.5 and δ = 0.001.

Class digit 0 digit 1 digit 2 digit 3 digit 4

Lipschitz 7.9± 0.3 8.6± 0.4 8.3± 0.4 7.8± 0.3 10.3± 0.6

Class digit 5 digit 6 digit 7 digit 8 digit 9

Lipschitz 11.0± 0.4 9.5± 0.3 7.8± 0.2 9.3± 0.4 10.9± 0.4

Table 3.2: The estimated local Lipschitz constants of the BigGAN model on the 10 selected
ImageNet classes with r = 0.5 and δ = 0.001.

Class airliner jeep goldfinch tabby cat hartebeest

Lipschitz 13.1± 0.8 14.5± 1.1 11.7± 0.5 12.4± 0.4 10.4± 1.1

Class Maltese dog bullfrog sorrel pirate ship pickup

Lipschitz 11.3± 0.6 9.4± 0.3 13.0± 0.3 13.1± 0.8 14.9± 0.9

methods: LP-Certify: optimization-based certified robust defense [122]; Adv-Train: PGD

attack based adversarial training [79]; and TRADES: adversarial training by accuracy and

robustness trade-off [129]. We adopt these robust training methods to train robust classifiers

over a set of generated training images and evaluate their robustness on the corresponding

generated test set.

For MNIST, we use our trained ACGAN model to generate 10 classes of hand-written digits

with 60, 000 training images and 10, 000 testing images. For ImageNet, we use the BigGAN

model to generate 10 selected classes of images, which contains 50, 000 images for training

set and 10, 000 images for test set. We refer to the 10-class BigGAN generated dataset as

‘ImageNet10’. We set ϵ = 3.0 for training robust models using Adv-Train and TRADES

for both generated datasets, whereas we only train the LP-based certified robust classifier

with ϵ = 2.0 on generated MNIST data, as it is not able to scale with ImageNet10 as well

as generated MNIST with larger ϵ.

27



Table 3.3: Comparisons between the empirically measured robustness of adversarially
trained classifiers and the implied theoretical intrinsic robustness bound on the conditional
generated datasets.

Dataset Method Natural Accuracy
Adversarial Robustness

ϵ = 1.0 ϵ = 2.0 ϵ = 3.0

Generated
MNIST

LP-Certify 88.3± 0.2% 74.0± 0.4% 51.1± 0.6% 23.5± 0.3%
Adv-Train 97.2± 0.2% 93.1± 0.2% 83.5± 0.3% 58.9± 0.4%
TRADES 98.3± 0.1% 94.8± 0.2% 81.8± 0.4% 57.7± 0.4%

Our Bound - 98.2% 97.8% 97.2%

ImageNet10
Adv-Train 82.1± 0.3% 67.8± 0.3% 47.1± 0.4% 23.4± 0.4%
TRADES 83.4± 0.3% 68.5± 0.3% 49.1± 0.5% 27.8± 0.5%

Our Bound - 83.5% 81.8% 80.0%

A commonly-used method to evaluate the robustness of a given model is by performing

carefully-designed adversarial attacks. Here we adopt the PGD attack [79], and report the

robust accuracy (classification accuracy on inputs generated using the PGD attack) as the

empirically measured model robustness. We test both the natural classification accuracy and

the robustness of the aforementioned adversarially trained classifiers under ℓ2 perturbations

with perturbation strength ϵ selected from {1.0, 2.0, 3.0}.

Table 3.3 compares the empirically measured robustness of the trained robust classifiers

and the derived theoretical upper bound on intrinsic robustness. For empirically measured

adversarial robustness, we report both the mean and the standard deviation with respect

to 10 repeated trials. For computing our theoretical robust bounds, we plug the estimated

local Lipschitz constants into Theorem 3.8 with risk threshold α = 0.015 for generated

MNIST and α = 0.15 for ImageNet10, to reflect the best natural accuracy achieved by the

considered robust classifiers.

Under most settings, there exists a large gap between the robust limit implied by our the-

ory and the best adversarial robustness achieved by state-of-the-art robust classifiers. For
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instance, Adv-Train and TRADES only achieve less than 50% robust accuracy on the gen-

erated ImageNet10 data with ϵ = 2.0, whereas the estimated robustness bound is as high

as 81.8%. The gap becomes even larger when we increase the perturbation strength ϵ. In

contrast to the previous theoretical results on artificial distributions, for these image clas-

sification problems we cannot simply conclude from the intrinsic robustness bound that

adversarial examples are inevitable. This huge gap between the empirical robustness of the

best current image classifiers and the estimated theoretical bound suggests that either there

is a way to train better robust models or that there exist other explanations for the inherent

limitations of robust learning against adversarial examples.

In-distribution Adversarial Robustness. In previous sections, we empirically show the

unconstrained robustness of existing robust classifiers is far below the intrinsic robustness

upper bound implied by our theory for real distributions. However, it is not clear whether the

reason is that current robust training methods are far from perfect, or that our derived upper

bound is not tight enough due to the Lipschitz relaxation step used for proving such bound.

In this section, we empirically study the in-distribution adversarial risk for a better charac-

terization of the actual intrinsic robustness. As shown in Remark 3.10, the in-distribution

adversarial robustness of any classifier with risk at least α can be regarded as a lower bound

for the intrinsic robustness AdvRobϵ(Fα). This provides us a more accurate characterization

of the intrinsic robustness bound and enables better understanding of intrinsic robustness.

While there are many types of attack algorithms in the literature that can be used to evaluate

the unconstrained robustness of a given classifier in the image space, little has been done

in terms of how to evaluate the in-distribution robustness. In order to empirically evaluate

the in-distribution robustness, we straightforwardly formulate the following optimization
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problem to find adversarial examples on the image manifold:

min
z
L(f(G(z, y)), y) s.t. ∥G(z, y)− x∥2 ≤ ϵ, (3.10)

where z ∈ Rd, x is the data sample in the image space to be attacked, f is the given

classifier, and L denotes the adversarial loss function. The goal of (3.10) is to optimize

the latent vector to lower the adversarial loss (make the robust classifier mis-classify some

generated images) while keeping the distance between the generated image and the test

image within ϵ perturbation limit. The key difficulty in solving (3.10) lies in the fact that

we cannot perform any type of projection operations as we are optimizing over z but the

constraints are imposed on the generated image space G(z, y). This prohibits the use of

common attack algorithms such as PGD. In order to solve (3.10), we transform (3.10) into

the following Lagrangian formulation:

min
z
∥G(z, y)− x∥2 + λ · L(f(G(z, y)), y). (3.11)

This formulation ignores the perturbation constraint of ϵ and tries to find the in-distribution

adversarial examples with the smallest possible perturbation. In order to evaluate the in-

trinsic robustness under a given ϵ perturbation budget, we need to further check all in-

distribution adversarial examples found and only count those with perturbations within the

ϵ constraint. Note that even though (3.11) provides us a feasible way to compute the in-

distribution robustness of a classifier, equation (3.11) itself could be hard to solve in gen-

eral. First, it is not obvious how to initialize z. Random initialization of z could lead to bad

local optima which prevent the optimizer from efficiently solving (3.11) or even finding a z

that could make G(z, y) close enough to x. Second, the hyper-parameter λ could be quite

sensitive to different test examples. Failing to choose a proper λ could also lead to failures
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Figure 3.4: Comparisons between the theoretical intrinsic robustness bound and the empir-
ically estimated unconstrained/in-distribution adversarial robustness, denoted as “unc” and
“in” in the legend, of models produced during robust training on the generated data under
ℓ2. In each subfigure, the dotted curve line represents the theoretical bound on intrinsic
robustness with horizontal axis denoting the different choice of α.

in finding in-distribution adversarial examples within ϵ constraint. In order to the tackle

the aforementioned challenges, we propose to solve another optimization problem for the

initialization of z and adopt binary search for the best choice of λ.

Figure 3.4 summarizes results from our empirical evaluations on intrinsic robustness of the

generated MNIST and ImageNet10 data. We evaluate the empirical robustness of three types

of robust training methods at different time points during the training procedure. To be more

specific, we evaluate the robustness of the intermediate models produced every 5 training

epochs. For each method, we plot both the unconstrained robustness measured by PGD

attacks and the in-distribution robustness measured using the aforementioned strategies. In

addition, based on the estimated local Lipschitz constants, we plot the implied theoretical

bound on intrinsic robustness as the dotted line curve for direct comparison.
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Compared with the intrinsic robustness upper bound (dotted curve line), the unconstrained

robustness of various robustly-trained models is much smaller, and the gap between them

becomes more obvious as we increase ϵ. However under all the considered settings, the

estimated in-distribution adversarial robustness is much higher than the unconstrained one

and closer to the theoretical upper bound, especially for the ImageNet10 data. Note that ac-

cording to Remark 3.10, the actual intrinsic robustness AdvRobϵ(Fα) should lie between the

in-distribution robustness of any given classifier with risk at least α and the derived intrinsic

robustness upper bound. Observing the big gap between the estimated in-distribution and

unconstrained robustness of various robustly trained models, one would expect the current

state-of-the-art robust models are still far from approaching the actual intrinsic robustness

limit for real image distributions.

3.4 Concentration Estimation based Approach5

In Section 3.3, we present a method to understand intrinsic robustness using conditional

generative models to connect the image space with the latent space whose concentration

property is well-understood. However, one limitation is that the underlying input data is

assumed to lie on the data manifold captured by some conditional generative model. That

said, the results do not directly apply to the setting where the actual input distribution de-

viates from the assumed generated distribution. In this section, we are going to present

an empirical method to directly measure the concentration function on a metric probability

space, which can then be translated into an instrinsic robsutness limit using Theorem 3.5.

We aim to understand and empirically estimate the intrinsic robustness limit for typical
5Saeed Mahloujifar*, Xiao Zhang*, Mohammad Mahmoody, David Evans, Empirically Measuring Con-

centration: Fundamental Limits on Intrinsic Robustness, in the Thirty-third Conference on Neural Information
Processing Systems (NeurIPS 2019) [81].
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robust classification tasks by measuring concentration. Note that solving the concentration

problem (3.1) itself only shows the existence of an error region E whose ϵ-expansion has

certain (small) measure. This further implies the possibility of existing an optimally robust

classifier (with risk at least α), whose robustness matches the intrinsic robustness limit

AdvRobϵ(Fα). However, actually finding such optimal classifier using a learning algorithm

might be a much more challenging task.

3.4.1 Method for Measuring Concentration

There are two main challenges for solving the concentration of measure problem (3.1). First

and foremost, we usually do not have access to the knowledge of the density function of the

underlying distribution for typical robust classification tasks of interest. Moreover, even

with the density function, solving the concentration problem (3.1) is still difficult, as we

have to find the optimal subset among all the subsets within the whole search space.

We show how to overcome these challenges and find the actual concentration in the limit by

first empirically simulating the distribution and then narrowing down our search space to a

specific collection of subsets. Our results show that for a carefully chosen family of sets, the

set with minimum expansion can be approximated using polynomially many samples. On

the other hand, the minimum expansion convergence to the actual concentration (without

the limits on the sets) as the complexity of the collection goes to infinity.

Before stating our main theorems, we introduce two useful definitions. The following defi-

nition captures the concentration function for a specific collection of subsets.

Definition 3.11 (Concentration Function for a Collection of Subsets). Consider a metric

probability space (X , µ,∆). Let ϵ ≥ 0 and α ∈ (0, 1) be given parameters, then the con-
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centration function with respect to a collection of subsets G ⊆ Pow(X ) is defined as

h(µ, α, ϵ,G) = inf
E∈G
{µ(Eϵ) : µ(E) ≥ α}.

Note that whenG = Pow(X ), it corresponds to the standard concentration functionh(µ, α, ϵ).

We also need to define the notion of complexity penalty for a collection of subsets. The

complexity penalty for a collection of subsets captures the rate of the uniform convergence

for the subsets in that collection. One can get such uniform convergence rates using the VC

dimension or Rademacher complexity of the collection.

Definition 3.12 (Complexity Penalty). Let G ⊆ Pow(X ) be a collection of subsets of X .

A function ϕ : N×R→ [0, 1] is a complexity penalty for G iff for any probability measure

µ supported on X and any δ ∈ [0, 1], we have

Pr
S←µm

[∃ E ∈ G s.t. |µ(E)− µ̂S(E)| ≥ δ] ≤ ϕ(m, δ).

Theorem 3.13 shows how to overcome the challenge of measuring concentration from finite

samples, when the concentration is defined with respect to specific families of subsets.

Namely, it shows that the empirical concentration is close to the true concentration, if the

underlying collection of subsets is not too complex.

Theorem 3.13 (Generalization of Concentration). Let (X , µ,∆) be a metric probability

space and G ⊆ Pow(X ). For any δ, α, ϵ ∈ [0, 1], we have

Pr
S←µm

[h(µ, α− δ, ϵ,G)− δ ≤ h(µ̂S, α, ϵ,G) ≤h(µ, α + δ, ϵ,G) + δ]

≥ 1− 2
(
ϕ(m, δ) + ϕϵ(m, δ)

)
,
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where ϕ and ϕϵ are complexity penalties for G and Gϵ respectively.

Proof of Theorem 3.13. Define g(µ, α, ϵ,G) = argminE∈G {µ(Eϵ) : µ(E) ≥ α}, and let E =

g(µ, α+δ, ϵ,G) and Ê = g(µ̂S, α, ϵ,G). (Note that these sets achieving the minimum might

not exist, in which case we select a set for which the expansion is arbitrarily close to the

infimum and every step of the proof will extend to this variant).

By the definition of the complexity penalty we have

Pr
S←µm

[∣∣µ(Ê)− µ̂S(Ê)∣∣ ≥ δ
]
≤ ϕ(m, δ),

which implies

Pr
S←µm

[µ(Ê) ≤ α− δ] ≤ ϕ(m, δ).

Therefore, by the definition of h we have

Pr
S←µm

[µ(Êϵ) ≤ h(µ, α− δ, ϵ,G)] ≤ ϕ(m, δ). (3.12)

On the other hand, based on the definition of ϕϵ we have

Pr
S←µm

[∣∣µ(Êϵ)− µ̂S(Êϵ)∣∣ ≥ δ
]
≤ ϕϵ(m, δ). (3.13)

Combining Equation 3.12 and Equation 3.13, and by a union bound we get

Pr
S←µm

[µ̂S(Êϵ) ≤ h(µ, α− δ, ϵ,G)− δ] ≤ ϕ(m, δ) + ϕϵ(m, δ),

which by the definition of Ê implies that

Pr
S←µm

[h(µ̂S, α, ϵ,G) ≤ h(µ, α− δ, ϵ,G)− δ] ≤ ϕ(m, δ) + ϕϵ(m, δ). (3.14)
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Now we bound the probability for the other side of our inequality. By the definition of the

notion of complexity penalty we have

Pr
S←µm

[∣∣µ(E)− µ̂S(E)∣∣ ≥ δ
]
≤ ϕ(m, δ),

which implies

Pr
S←µm

[µ̂S(E) ≤ α] ≤ ϕ(m, δ).

Therefore, by the definition of h we have,

Pr
S←µm

[µ̂S(Eϵ) ≤ h(µ̂S, α, ϵ,G)] ≤ ϕ(m, δ). (3.15)

On the other hand, based on the definition of ϕϵ we have

Pr
S←µm

[∣∣µ(Eϵ)− µ̂S(Eϵ)∣∣ ≥ δ
]
≤ ϕ(m, δ) + ϕϵ(m, δ). (3.16)

Combining Equations 3.15 and 3.16, by union bound we get

Pr
S←µm

[µ(Eϵ) ≤ h(µ̂S, α, ϵ,G)− δ] ≤ ϕ(m, δ) + ϕϵ(m, δ),

which by the definition of E implies

Pr
S←µm

[h(µ, α + δ, ϵ,G) ≤ h(µ̂S, α, ϵ,G)− δ] ≤ ϕ(m, δ) + ϕϵ(m, δ). (3.17)
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Now combining Equations 3.14 and 3.17, by union bound we have

Pr
S←µm

[h(µ, α− δ, ϵ,G)− δ ≤ h(µ̂S, α, ϵ,G) ≤ h(µ, α + δ, ϵ,G) + δ]

≥ 1− 2 (ϕ(m, δ) + ϕϵ(m, δ)) ,

which completes the proof.

Remark 3.14. Theorem 3.13 shows that if we narrow down our search to a collection of

subsets G such that both G and Gϵ have small complexity penalty, then we can use the em-

pirical distribution to measure concentration of measure for that specific collection. Note

that the generalization bound of Theorem 3.13 depends on complexity penalties for both G

and Gϵ. Therefore, in order for this theorem to be useful, the collection G must be chosen in

a careful way. For example, if G has bounded VC dimension, then Gϵ might still have a very

large VC dimension. Alternatively, G might denote the collection of subsets that are decid-

able by a neural network of a certain size. In that case, even though there are well known

complexity penalties for such collections (see [89]), the complexity of their expansions is

unknown. In fact, relating the complexity penalty for expansion of a collection to that of

the original collection is tightly related to generalization bounds in the adversarial settings,

which has also been the subject of several recent works [22, 6, 85, 127, 98].

The following theorem states that if we gradually increase the complexity of the collection

and the number of samples together, the empirical estimate of concentration converges to

actual concentration, as long as several conditions hold. Theorem 3.15 and the techniques

used in its proof are inspired by the work of [107] on learning minimum volume sets.

Theorem 3.15. Let {G(T )}T∈N be a family of subset collections defined over a space X .

Let {ϕT}T∈N and {ϕTϵ }T∈N be two families of complexity penalty functions such that ϕT

and ϕTϵ are complexity penalties for G(T ) and Gϵ(T ) respectively, for some ϵ ∈ [0, 1]. Let
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{m(T )}T∈N and {δ(T )}T∈N be two sequences such that m(T ) ∈ N and δ(T ) ∈ [0, 1].

Consider a sequence of datasets {ST}T∈N, where ST consists of m(T ) i.i.d. samples from

a measure µ supported on X . Also let α ∈ [0, 1] be such that h is locally continuous w.r.t

the second parameter at point (µ, α, ϵ,Pow(X )). If all the following hold,

1.
∑∞

T=1 ϕ
T (m(T ), δ(T )) <∞

2.
∑∞

T=1 ϕ
T
ϵ (m(T ), δ(T )) <∞

3. limT→∞ δ(T ) = 0

4. limT→∞ h(µ, α, ϵ,G(T )) = h(µ, α, ϵ)

then with probability 1, we have limT→∞ h(µ̂ST
, α, ϵ,G(T )) = h(µ, α, ϵ).

Proof of Theorem 3.15. First, we lay out the following lemma which will be used in proving

Theorem 3.15.

Lemma 3.16 (Borel-Cantelli Lemma). Let {ET}T∈N be a series of events such that

∞∑
T=1

Pr[ET ] <∞

Then with probability 1, only finite number of events will occur.

Next, we prove Theorem 3.15. Define ET to be the event that

h(µ, α− δ(T ), ϵ,G(T ))− δ(T ) > h(µ̂ST
, α, ϵ) or

h(µ, α + δ(T ), ϵ,G(T )) + δ(T ) < h(µ̂ST
, α, ϵ,G).
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Based on Theorem 3.13 we have Pr[ET ] ≤ 2 ·(ϕT (m(T ), δ(T ))+ϕTϵ (m(T ), δ(T ))). There-

fore, by Conditions 1 and 2 we have

∞∑
T=1

Pr[ET ] ≤ 2

(
∞∑
T=1

ϕT (m(T ), δ(T )) + ϕTϵ (m(T ), δ(T ))

)
<∞.

Now by Lemma 3.16, we know there exist with measure 1 some j ∈ N, such that for all

T ≥ j,

h(µ, α− δ(T ), ϵ,G(T ))− δ(T ) ≤ h(µ̂ST
, α, ϵ,G(T )) ≤ h(µ, α + δ(T ), ϵ,G(T )) + δ(T ).

The above implies that

lim
T→∞

h(µ, α− δ(T ), ϵ,G(T ))− δ(T ) ≤ lim
T→∞

h(µ̂ST
, α, ϵ,G(T ))

≤ lim
T→∞

h(µ, α + δ(T ), ϵ,G(T )) + δ(T ).

We know that

lim
T→∞

h(µ, α− δ(T ), ϵ,G(T )) = lim
T1→∞

lim
T2→∞

h(µ, α− δ(T1), ϵ,G(T2))

(By condition 4) = lim
T1→∞

h(µ, α− δ(T1), ϵ)

(By local continuity and condition 3) = h(µ, α, ϵ).

Similarly, we have

lim
T→∞

h(µ, α + δ(T ), ϵ,G(T )) = h(µ, α, ϵ).

Therefore we have,

lim
T→∞

h(µ, α, ϵ)− δ(T ) ≤ lim
T→∞

h(µ̂ST
, α, ϵ,G(T )) ≤ lim

T→∞
h(µ, α, ϵ) + δ(T ),

39



which by condition 3 implies

lim
T→∞

h(µ̂ST
, α, ϵ,G(T )) = h(µ, α, ϵ).

Thus, we complete the proof.

Remark 3.17. In Theorem 3.15, the first two conditions restrict the growth rate for the

complexity of the collections. Namely, we need the complexity penalties ϕT (m(T ), δ(T ))

and ϕTϵ (m(T ), δ(T )) to rapidly approach 0 as T →∞, which means the complexity of G(T )

and Gϵ(T ) should grow at a slow rate. The third condition requires that our generalization

error goes to zero as we increaseT . Note that the complexity penalty is a decreasing function

with respect to δ, which means condition 3 makes achieving the first two conditions harder.

However, since the complexity penalty is a function of both δ and sample size, we can still

increase the sample size with a faster rate to satisfy the first two conditions. Finally, the

fourth condition requires our approximation error goes to 0 as we increase T . Note that

this condition holds for any family of collections of subsets that is a universal approximator

(e.g., decision trees or neural networks). However, in order for our theorem to hold, we also

need all the other conditions. In particular, we cannot use decision trees or neural networks

as our collection of subsets, because we do not know if there is a complexity penalty for

them that satisfies condition 2.

Special Case of ℓ∞. In the following, we show how to instantiate Theorem 3.15 for the case

of ℓ∞-norm distance metric. Below, we introduce a special collection of subsets character-

ized by the complement of a union of hyperrectangles.

Definition 3.18 (Complement of union of hyperrectangles). For any positive integer T , the

collection of subsets specified by the complement of a union of T n-dimensional hyperrect-
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angles is defined as:

CR(T, n) =
{
Rn \ ∪Tt=1Rect(u(t), r(t)) : ∀t ∈ [T ], (u(t), r(t)) ∈ Rn × Rn

≥0

}
,

where Rect(u, r) =
{
x ∈ X : ∀j ∈ [n], |xj − uj| ≤ rj/2

}
denotes the hyperrectangle

centered at u with r representing the edge size vector. When n is free of context, we simply

write CR(T ).

Recall that our goal is to find a subset E ∈ Rn such that E has measure at least α and the ϵ∞-

expansion of E under ℓ∞ has the minimum measure. To achieve this goal, we approximate

the distribution µ with an empirical distribution µ̂S , and limit our search to the special

collection CR(T ) (though our goal is to find the minimum concentration around arbitrary

subsets). Namely, what we find is still an upper bound on the concentration function, and

it is an upper bound that we know it converges the actual value in the limit. Our problem

thus becomes the following optimization task:

minimize
E∈CR(T )

µ̂S(Eϵ∞) subject to µ̂S(E) ≥ α. (3.18)

The following theorem provides the key to our empirical method by providing a convergence

guarantee. It states that if we increase the number of rectangles and the number of samples

together in a careful way, the solution to the problem using restricted sets converges to the

true concentration.

Theorem 3.19. Consider a nice metric probability space (Rn, µ, ℓ∞). Let {ST}T∈N be a

family of datasets such that for all T ∈ N, ST contains at least T 4 i.i.d. samples from µ.

For any ϵ∞ and α ∈ [0, 1], if h is locally continuous w.r.t the second parameter at point
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(µ, α, ϵ∞), then with probability 1 we get

lim
T→∞

h(µ̂ST
, α, ϵ∞, CR(T )) = h(µ, α, ϵ∞).

Note that the size of ST is selected as T 4 to guarantee conditions 1 and 2 are satisfied in

Theorem 3.15. In fact, we can tune the parameters more carefully to get T 2, instead of T 4,

but the convergence will be slower.

Proof of Theorem 3.19. This theorem follows from our general Theorem 3.15. We show

that the choice of parameters here satisfies all four conditions of Theorem 3.15.

If we let G(T ) to be the collection of subsets specified by complement of union of T hy-

perrectangles. Then Gϵ(T ) will be the collection of of subsets specified by complement of

union of T hyperrectangles that are bigger than ϵ in each coordinate. Therefore we have

Gϵ(T ) ⊂ G(T ). We know that the VC dimension of G(T ) is dT = O(nT log(T )) because

the VC dimension of all hyperrectangles is O(n) and the functions formed by T fold union

of functions in a VC class is at most n · T log(T ) (See [36]). Therefore, by VC inequality

we have

Pr
S←µm

[
sup
E∈G(T )

|µ(E)− µ̂S(E)| ≥ δ

]
≤ 8enT log(T ) log(m)−mδ2/128.

Therefore ΦT (m, δ) = 8enT log(T ) log(m)−mδ2/128 is a complexity penalty for both G(T ) and

Gϵ(T ). Hence, if we define δ(T ) = 1/T and m(T ) ≥ T 4, then the first three conditions of

Theorem 3.15 are satisfied. The fourth condition is also satisfied by the universal consis-

tency of histogram rules (See [28], Ch. 9).

Special Case of ℓ2. We demonstrate how to apply Theorem 3.15 to the case of ℓ2. The

following definition introduces the collection of subsets characterized by a union of balls:
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Definition 3.20 (Union of Balls). For any positive integer T , the collection of subsets spec-

ified by a union of T n-dimensional balls is defined as

B(T, n) =
{
∪Tt=1 Ball(u(t), r(t)) : ∀t ∈ [T ], (u(t), r(t)) ∈ Rn × Rn

≥0

}
.

When n is free of context, we simply write B(T ).

By restricting our search to the collection of a union of balls B(T ) and replacing the un-

derlying distribution µ with the empirical one µ̂S , our problem becomes the following op-

timization task

minimize
E∈B(T )

µ̂S(Eϵ2) subject to µ̂S(E) ≥ α. (3.19)

Theorem 3.21 guarantees that if we increase the number of balls and samples together in a

careful way, the solution to the empirical problem (3.19) converges to the true concentration.

Theorem 3.21. Consider a nice metric probability space (Rn, µ, ℓ2). Let {ST}T∈N be a

family of datasets such that for all T ∈ N, ST contains at least T 4 i.i.d. samples from µ.

For any ϵ2 and α ∈ [0, 1], if h is locally continuous w.r.t the second parameter at point

(µ, α, ϵ2), then with probability 1 we get

lim
T→∞

h(µ̂ST
, α, ϵ2,B(T )) = h(µ, α, ϵ2).

Proof of Theorem 3.21. Similar to Theorem 3.19 This theorem follows from our general

Theorem 3.15. We show that the choice of parameters here satisfies all four conditions of

Theorem 3.15.

If we let G(T ) to be the collection of subsets specified by union of T balls. Then Gϵ(T ) will

43



be the collection of of subsets specified by union of T balls with diameter at least ϵ. Similar

to the proof of Theorem 3.19, we have Gϵ(T ) ⊂ G(T ). We know that the VC dimension of

all balls is O(n) so using the fact that G(T ) is T fold union of balls, the VC dimension of

G(T ) is dT = O(nT log(T )) (See [36]). Therefore, by VC inequality we have complexity

penalties similar to those of Theorem 3.19 for both G(T ) and Gϵ(T ). Hence, if we define

δ(T ) = 1/T and m(T ) ≥ T 4, then the first three conditions of Theorem 3.15 are satisfied.

The fourth condition is also satisfied by the universal consistency of kernel-based rules (See

[28] , Ch. 10).

3.4.2 Experiments for ℓ∞

In this section, we provide heuristic methods to find the best possible error region, which

covers at least α fraction of the samples and its expansion covers the least number of points

for ℓ∞ distance metric. Specifically, we first introduce our algorithm, then evaluate our

approach on two benchmark image datasets: MNIST [73] and CIFAR-10 [68]. Note that

in our experiments we exactly use the collection of subsets as suggested by our theoretical

results in Section 3.4.1. However, that is not necessary and one might work with any subset

collection to run experiments, as long as they can estimate the measure of the sets and their

expansion. We tried working with other collection of subsets that we do not have theoretical

support for (e.g. sets defined by a neural network) and observed a large generalization

gap. This observation shows the importance of working with subset collections that we can

theoretically control their generalization penalty.

Theorem 3.19 shows that the empirical concentration function h(µ̂S , α, ϵ∞, CR(T )) con-

verges to the actual concentration h(µ, α, ϵ∞) asymptotically, when T and |S| go to infinity
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with |S| ≥ T 4. Thus, it remains to solve the empirical concentration problem (3.18).

Method. Although the collection of subsets is specified using simple topology, solving

(3.18) exactly is still difficult, as the problem itself is combinatorial in nature. Borrow-

ing techniques from clustering, we propose an empirical method to search for desirable

error region within CR(T ). Any error region E could be used to define fE , i.e., fE(x) =

c(x), if x /∈ E ; fE(x) ̸= c(x), if x ∈ E . However, finding a classifier corresponding to

fE using a learning algorithm might be a difficult task. Here, we find the optimally robust

error region, not the corresponding classifier. A desirable error region should have small

adversarial risk6, compared with all subsets in CR(T ) that have measure at least α.

The high-level intuition is that images from different classes are likely to be concentrated in

separable regions, since it is generally believed that small perturbations preserve the ground-

truth class at the sampled images. Therefore, if we cluster all the images into different

clusters, a desired region with low adversarial risk should exclude any image from the dense

clusters, otherwise the expansion of such a region will quickly cover the whole cluster. In

other words, a desirable subset within CR(T ) should be ϵ∞ away (in ℓ∞ norm) from all the

dense image clusters, which motivates our method to cover the dense image clusters using

hyperrectangles and treat the complement of them as error set.

More specifically, our algorithm (for pseudocode, see Algorithm 2) starts by sorting all the

training images in an ascending order based on the ℓ1-norm distance to the k-th nearest

neighbour with k = 50, and then obtains T hyperrectangular image clusters by performing

k-means clustering [54] on the top-q densest images, where the metric is chosen as ℓ1 and

the maximum iterations is set as 30. Finally, we perform a binary search over q ∈ [0, 1],

where we set δbin = 0.005 as the stopping criteria, to obtain the best robust subset (lowest
6The adversarial risk of an error region E simply refers to the adversarial risk of fE .
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Algorithm 2: Heuristic Search for Robust Error Region under ℓ∞
Input : a set of images S; perturbation strength ϵ∞; error threshold α; number of

hyperrectangles T ; number of nearest neighbours k; precision for binary
search δbin.

1 rk(x)← compute the ℓ1-norm distance to the k-th nearest neighbour for each x ∈ S;
2 Ssort ← sort all the images in S by rk(x) in an ascending order;
3 qlower ← 0.0, qupper ← 1.0;
4 while qupper − qlower > δbin do
5 q ← (qlower + qupper)/2;
6 perform kmeans clustering algorithm (T clusters, ℓ1 metric) on the top-q images of

Ssort;
7 {u(t)}Tt=1 ← record the centroids of the resulted T clusters;
8 for t = 1, 2, . . . , T do
9 Rect(u(t), r(t))← cover t-th cluster with the minimum-sized rectangle

centered at u(t);
10 end
11 Eq ← X \ ∪Tt=1Rectϵ∞(u(t), r(t)) ; // Rectϵ(u, r) denotes the ϵ-expansion of

Rect(u, r)
12 if |S ∩ Eq|/|S| ≥ α then
13 qlower ← q, AdvRiskq ←

∣∣{x ∈ S : x ̸∈ ∪Tt=1Rect(u(t), r(t))
}∣∣/|S|;

14 else
15 qupper ← q;
16 end
17 end
18 q̂ ← argminq{AdvRiskq};

Output : (q̂, AdvRiskq̂, Eq̂)

adversarial risk) in CR(T ) with empirical measure at least α.

Results. We choose α to reflect the best accuracy achieved by state-of-the-art classifiers,

using α = 0.01 and ϵ∞ ∈ {0.1, 0.2, 0.3, 0.4} for MNIST and selecting appropriate values

to represent the best typical results on the other datasets (see Table 3.4). Given the number

of hyperrectangles, T , we obtain the resulting error region using the proposed algorithm on

the training dataset, and tune T for the minimum adversarial risk on the testing dataset.

Figure 3.5 shows the learning curves regarding risk and adversarial risk for two specific ex-

perimental settings. Figure 3.5(a) suggests that as we increase the initial covered percentage
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Figure 3.5: (a) Plots of risk and adversarial risk w.r.t. the resulted error region using our
method as q varies (CIFAR-10, ϵ∞ = 8/255, T = 30); (b) Plots of adversarial risk w.r.t.
the resulted error region using our method (best q) as T varies on MNIST (ϵ∞ = 0.3) and
CIFAR-10 (ϵ∞ = 8/255).

q, both risk and adversarial risk of the corresponding error region decrease. This supports

our use of binary search on q in Algorithm 2. On the other hand, as can be seen from Fig-

ure 3.5(b), overfitting with respect to adversarial risk becomes significant as we increase

the number of hyperrectangles. According to the adversarial risk curve for testing data, the

optimal value of T is selected as T = 10 for MNIST (ϵ∞ = 0.3) and T = 40 for CIFAR-10

(ϵ∞ = 8/255).

Table 3.4 summarizes the optimal parameters, the empirical risk and adversarial risk of

the learned error region on the testing datasets for each experimental setting. Since the

k-means algorithm does not guarantee global optimum, we repeat our method for 10 runs

with random restarts in terms of the best parameters, then report both the mean and the

standard deviation. Our experiments provide examples of rather robust error regions for

real image datasets. For instance, in Table 3.4 we have a case where the measure of the

resulting error region increases from 5.94% to 18.13% after expansion with ϵ∞ = 8/255

on CIFAR-10 dataset. This means that there could potentially be a classifier with 5.94%

risk and 18.13% adversarial risk, but the-state-of-the-art robust classifier has empirically-
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Table 3.4: Summary of the main results using our method with ℓ∞ perturbations.

Dataset α ϵ∞ T Best q Risk (%) AdvRisk (%)

MNIST 0.01

0.1 5 0.662 1.23± 0.12 3.64± 0.30
0.2 10 0.660 1.11± 0.10 5.89± 0.44
0.3 10 0.629 1.15± 0.13 7.24± 0.38
0.4 10 0.598 1.21± 0.09 9.92± 0.60

CIFAR-10 0.05

2/255 10 0.680 5.72± 0.25 8.13± 0.26
4/255 20 0.688 6.05± 0.40 13.66± 0.33
8/255 40 0.734 5.94± 0.34 18.13± 0.30
16/255 75 0.719 5.28± 0.23 28.83± 0.46

measured adversarial risk 52.96% [79].

Noticing that the risk lower thresholdα = 0.05 is much lower than the empirical risk 12.70%

of the adversarially-trained robust model reported in [79], we further measure the empirical

concentration on MNIST and CIFAR-10 using our method with α set to be the same as the

reported standard test error in [79], which is demonstrated in Table 3.5. In particular, we

show that the gap between the attack success rate of Madry et al.’s classifier (10.70%) and

our estimated best-achievable adversarial risk (8.28%) is quite small on MNIST, suggesting

that the robustness of Madry et al.’s classifier is actually close to the intrinsic robustness. In

sharp contrast, the gap becomes significantly larger on CIFAR-10: 29.21% for our estimate,

while 52.96% for the reported attack success rate in [79]. Regardless of the difference, this

gap cannot be explained by the concentration of measure phenomenon, suggesting there may

still be room for developing more robust classifiers, or that other inherent reasons impede

learning a more robust classifier.
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Table 3.5: Comparisons between our method and the existing adversarially trained robust
classifiers under different settings. We use the Risk and AdvRisk for robust training methods
to denote the standard test error and attack success rate reported in literature. The AdvRisk
reported for our method can be seen as an estimated lower bound of adversarial risk for
existing classifiers.

Dataset Strength (metric) Method Risk AdvRisk

MNIST ϵ∞ = 0.3
[79]’s 1.20% 10.70%
Ours 1.35%± 0.08% 8.28%± 0.22%

MNIST ϵ2 = 1.5
[106]’s 1.00% 20.00%
Ours 1.08% 2.12%

CIFAR-10 ϵ∞ = 8/255
[79]’s 12.70% 52.96%
Ours 14.22%± 0.46% 29.21%± 0.35%

3.4.3 Experiments for ℓ2

For ℓ2 adversaries, Theorem 3.21 guarantees the asymptotic convergence of the empirical

concentration function characterized by union of balls B(T ) towards the actual concentra-

tion. Thus, it remains to solve the corresponding optimization problem (3.19). Similar to

ℓ∞, we propose an empirical method to search for desirable robust error regions under ℓ2

perturbations. From a high level, our algorithm (for pseudocode, see Algorithm 3) places

T balls in a sequential manner, and searches for the best possible placement using a greedy

approach at each time. Since enumerating all the possible ball centers is infeasible, we re-

strict the choice of the center to be the set of training data points. Our method keeps two

sets of indices: one for the initial coverage and one for the coverage after expansion, and

updates them when we find the optimal placement, i.e. the ball centered at some training

data point that has the minimum expansion with respect to both sets.

We compare our empirical method for finding robust error regions characterized by a union

of balls with the hyperplane-based approach [49] on MNIST and CIFAR-10. In particular,

49



Algorithm 3: Heuristic Search for Robust Error Region under ℓ2
Input : a set of images S; perturbation strength ϵ2; error threshold α; number of

balls T .
1 Ê ← {}, Ŝinit ← {}, Ŝexp ← {};
2 for t = 1, 2, . . . , T do
3 klower ← ⌈(α|S| − |Ŝinit|)/(T − t+ 1)⌉, kupper ← (α|S| − |Ŝinit|);
4 for u ∈ S do
5 for k ∈ [klower, kupper] do
6 rk(u)← compute the ℓ2 distance from u to the k-th nearest neighbour in

S \ Ŝinit;
7 Sinit(u, k)← {x ∈ S \ Ŝinit : ∥x− u∥2 ≤ rk(u)};
8 Sexp(u, k)← {x ∈ S \ Ŝexp : ∥x− u∥2 ≤ rk(u) + ϵ2};
9 end

10 end
11 (û, k̂)← argmin(u,k){|Sexp(u, k)| − |Sinit(u, k)|};
12 Ê ← Ê ∪ Ball(û, rk̂(û));
13 Ŝinit ← Ŝinit ∪ Sinit(û, k̂), Ŝexp ← Ŝexp ∪ Sexp(û, k̂);
14 end

Output : Ê

the risk threshold α is set to be the same as the case of ℓ∞, and the adversarial strength

ϵ2 is chosen such that the volume of an ℓ2 ball with radius ϵ2 is roughly the same as the

ℓ∞ ball with radius ϵ∞, using the conversion rule ϵ2 =
√
n/π · ϵ∞ as in [122]. Table 3.6

summarizes the optimal parameters, the testing risk and adversarial risk of the trained error

regions using different methods, where we tune the number of balls T for our method.

Our results show that there exist rather robust ℓ2 error regions for real image datasets. For

example, the measure of the resulting error region using our method only increases by 0.69%

(from 5.14% to 5.83%) after expansion with ϵ2 = 0.4905 on CIFAR-10. Compared with

[49], our method is able to find regions with significantly smaller adversarial risk (around

half the adversarial risk of regions found by their method) on MNIST, while attaining com-

parable error region robustness on CIFAR-10. Nevertheless, the adversarial risk attained by

state-of-the-art robust classifiers against ℓ2 perturbations is much higher than these reported
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Table 3.6: Comparisons between different methods for finding robust regions with ℓ2 metric.

Dataset α ϵ2
[49]’s Method Our Method

Risk AdvRisk T Risk AdvRisk

MNIST 0.01
1.58 1.18% 3.92% 20 1.07% 2.19%
3.16 1.18% 9.73% 20 1.02% 4.15%
4.74 1.18% 23.40% 20 1.07% 10.09%

CIFAR-10 0.05
0.2453 5.27% 5.58% 5 5.16% 5.53%
0.4905 5.27% 5.93% 5 5.14% 5.83%
0.9810 5.27% 6.47% 5 5.12% 6.56%

rates (see Table 3.5 for a comparison with the best robust classifier against ℓ2 perturbations

proposed in [106]).

3.5 Improved Concentration Estimation using Half Spaces7

In Section 3.4, we present an empirical method to measure the concentration of an arbitrary

distribution using data samples, then employed it to estimate a lower bound on intrinsic

robustness for image benchmarks. By demonstrating the gap between the estimated bounds

of intrinsic robustness and the robustness performance achieved by the best current models,

we show that concentration of measure is not the sole reason behind the adversarial vul-

nerability of existing classifiers for benchmark image distributions. However, due to the

heuristic nature of the proposed algorithm, it remains elusive whether the estimates it pro-

duces can serve as useful approximations of the underlying intrinsic robustness limits, thus

hindering understanding of how much of the actual adversarial risk can be explained by the
7Jack Prescott, Xiao Zhang, David Evans, Improved Estimation of Concentration Under Lp-Norm Dis-

tance Metric Using Half Spaces, in the Ninth International Conference on Learning Representations (ICLR
2021) [96].
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concentration of measure phenomenon.

In this section, we address this issue by first characterizing the optimum of the actual con-

centration problem for general Gaussian spaces, then using our theoretical insights to de-

velop an alternative algorithm for measuring concentration empirically that significantly

improves both the accuracy and efficiency of estimates of intrinsic robustness. While we

do not demonstrate a specific classifier which achieves this robustness upper bound, our re-

sults rule out inherent image distribution concentration as the reason for our current inability

to find adversarially robust models.

3.5.1 Generalizing the Gaussian Isoperimetric Inequality

Before proceeding to introduce the proposed methodology for solving the concentration of

measure problem, we first present our main theoretical results of generalizing the Gaussian

Isoperimetric Inequality. This theoretical result largely motivates our method.

Note that the Gaussian Ispoperimetric Inequality (see Lemma 3.4) characterizes the opti-

mum of the concentration problem (3.1) with respect to standard Gaussian distribution and

ℓ2-distance, where half spaces are proven to be the optimal sets.

Definition 3.22 (Half Space). Let w ∈ Rn and b ∈ R. Without loss of generality, assume

∥w∥2 = 1. An n-dimensional half space with parameters w and b is defined as:

Hw,b = {z ∈ Rn : w⊤z + b ≤ 0}.

Lemma 3.4 implies the concentration function with respect spherical Gaussian distribution

and ℓ2-norm distance metric. However, it only gives a concentration function for estimating

the the intrinsic robustness limit in a very restrictive setting. To understand the concentra-
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tion of measure for more general problems, we prove the following theorem that extends the

standard Gaussian Isoperimetric Inequality (Lemma 3.4) to non-spherical Gaussian mea-

sure and general ℓp-norm distance metrics for any p ≥ 2.

Theorem 3.23 (Generalized Gaussian Isoperimetric Inequality). Let ν be the probability

measure of N (θ,Σ), where θ ∈ Rn and Σ is a positive definite matrix in Rn×n. Consider

the probability space (Rn, ν) with ℓp-norm distance, where p ≥ 2 (including ℓ∞). For any

E ∈ Pow(Rn) and ϵ ≥ 0,

ν
(
E (ℓp)ϵ

)
≥ Φ

(
Φ−1

(
ν(E)

)
+ ϵ/∥Σ1/2∥p

)
, (3.20)

whereΣ1/2 is the square root ofΣ, and ∥Σ1/2∥p denotes the induced matrix p-norm ofΣ1/2.

Proof of Theorem 3.23. We provide the proof sketch of Theorem 3.23 as follows. The com-

plete proof of the theorem can be found in [96]. We start with the spherical Gaussian dis-

tribution where ν = γn. More specifically, we are going to prove that for any E ⊆ Rn and

η ≥ 0,

γn
(
E (ℓp)η

)
≥ Φ

(
Φ−1

(
γn(E)

)
+ η
)

holds for p ≥ 2. (3.21)

Note that for any vector x ∈ Rn, the mapping p → ∥x∥p is monotonically decreasing for

any p ≥ 1 (see [100]), thus we can show that E (ℓq)η ⊆ E (ℓp)η holds for any p ≥ q ≥ 1. Making

use of the standard Gaussian Isoperimetric Inequality (Lemma 3.4), we then immediately

obtain

γn
(
E (ℓp)η

)
≥ γn

(
E (ℓ2)η

)
≥ Φ

(
Φ−1

(
γn(E)

)
+ η
)
, for any p ≥ 2.

Moreover, to prove the concentration bound for general case where ν is the probability
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measure ofN (θ,Σ), we build connections with the spherical Gaussian case by constructing

a subset A = {Σ−1/2(x − θ) : x ∈ E}. Based on the affine transformation of Gaussian

measure, we then prove:

ν(E) = γn(A) and ν(E (ℓp)ϵ ) ≥ γn(A(ℓp)
η ), where η = ϵ/∥Σ1/2∥p. (3.22)

Finally, combining (3.21) and (3.22) completes the proof of Theorem 3.23.

Remark 3.24. Theorem 3.23 suggests that for general Gaussian distribution N (θ,Σ) and

any ℓp-norm distance (p ≥ 2), the corresponding concentration function is lower bounded by

Φ(Φ−1(α)+ϵ/∥Σ1/2∥p). Due to the NP-hardness of approximating the matrix p-norm [57],

it is generally hard to infer whether the equality of (3.20) can be attained or not. However,

for specific special Gaussian spaces, we can derive optimal subsets that achieve the lower

bound. In particular, for the case where Σ = In and p > 2, the optimum is attained when E

is a half space with axis-aligned weight vector (that is, w = ej for some j ∈ [n]). For the

case where Σ ̸= In and p = 2, the optimal solution is a half space Hv1,b, where v1 is the

eigenvector with respect to the largest eigenvalue of Σ.

Proof of the Optimality Results in Remark 3.24. First, we prove the optimality for the spher-

ical Gaussian case, where ν = γn and p > 2. Let H = Hw,b be a half space with axis-

aligned weight vector, that said w = ej for some j ∈ [n]. Intuitively speaking, the ϵ-

expansion of H with respect to ℓp-norm will only happen along the j-th dimension. More

rigorously, we are going to prove the following results: for any ϵ ≥ 0,

H(ℓp)
ϵ = H(ℓ2)

ϵ holds for any p ≥ 1. (3.23)

By definition,H = {x ∈ Rn : xj + b ≤ 0}. For any x /∈ H, let x̂ ∈ H be the closest point

of x in terms of ℓp-norm. Since the weight vector w of H is axis-aligned, thus x̂ will only
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differ from x by the j-th element. That said, x̂j′ = xj′ for any j′ ̸= j and x̂j = −b. Thus

for any p ≥ 1, we have ∥x − x̂∥p = ∥x − x̂∥2 = xj + b. Based on this observation, we

further obtain that for any p ≥ 1,

H(ℓp)
ϵ = {x ∈ Rn : xj + b ≤ ϵ} = H(ℓ2)

ϵ ,

which proves (3.23). According to the Gaussian Isoperimetric Inequality (Lemma 3.4), we

obtain

γn
(
H(ℓp)
ϵ

)
= γn

(
H(ℓ2)
ϵ

)
= Φ(Φ−1(γn(H)) + ϵ).

Therefore, combining this with Theorem 3.23, we prove the optimality for the spherical

Gaussian case.

Now we turn to prove the non-spherical Gaussian case with p = 2. Based on Theorem 3.23,

the lower bound is Φ(Φ−1(ν(E) + ϵ/∥Σ1/2∥2) when p = 2. In the following, we are going

to prove: if we choose E = Hv1,b, where v1 is the eigenvector with respect to the largest

eigenvalue of Σ, this lower bound is attained. Similarly to the proof of Theorem 3.23, we

construct A = {Σ−1/2(x− θ) : x ∈ E}.

Note that when E is a half space, the constructed set A is also a half space. In particular,

for the case where E = Hv1,b, for any u ∈ A, there exists an x ∈ Rn such that u =

Σ−1/2(x−θ) and v⊤1 x+ b ≤ 0. This implies that v⊤1 Σ
1/2u+v⊤1 θ+ b ≤ 0 for any u ∈ A.

Since v1 is the eigenvector of Σ, we further have that A is a half space with weight vector

Σ1/2v1 = ∥Σ1/2∥2 · v1.

Note that according to (3.22), as in the proof of Theorem 3.23, for any E ⊆ Rn, we have

ν(E) = γn(A) and ν
(
E (ℓ2)ϵ

)
≥ γn

(
A(ℓ2)
η

)
, where η = ϵ/∥Σ1/2∥2.
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For E = Hv1,b, based on the explicit formulation of ℓ2-distance to a half space, we can

explicitly compute the η-expansion of A as

A(ℓ2)
η = {u ∈ Rn : v⊤1 Σ

1/2u+ v⊤1 θ + b ≤ η · ∥Σ1/2∥2}.

When we set η = ϵ/∥Σ1/2∥2, it further implies that

γn
(
A(ℓ2)
η

)
= Pr

u∼γn

[
v⊤1 Σ

1/2u+ v⊤1 θ + b ≤ ϵ
]
= Pr

x∼ν

[
v⊤1 x+ b ≤ ϵ

]
= ν

(
E (ℓ2)ϵ

)
.

Finally, according to the optimality of the standard Gaussian Isoperimetric Inequality (Lemma

3.4), we complete the proof.

3.5.2 Empirically Measuring Concentration using Half Spaces

Built upon our concentration estimation method developed in Section 3.4, we consider the

following empirical counterpart of the actual concentration problem (3.1):

minimize
E∈G

µ̂m
(
E (ℓp)ϵ

)
subject to µ̂m(E) ≥ α, (3.24)

where µ̂m is the empirical measure based on {xi}i∈[m] and G ⊆ Pow(X ) denotes a particu-

lar collection of subsets. Previously, we use the complement of union of T hyperrectangles

as G for ℓ∞ and the union of T balls for ℓ2, and prove that if one increases the complex-

ity parameter T and the sample size m together in a careful way, the optimal value of the

empirical concentration problem (3.24) converges to the actual concentration asymptoti-

cally. However, it is unclear how quickly it converges and how well the proposed heuristic

algorithm finds the optimum of (3.24).
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We argue that the set of half spaces is a superior choice for G with respect to any ℓp-norm

distance. Apart from achieving the optimality for certain Gaussian spaces as discussed

in Remark 3.24, estimating concentration using half spaces has several other advantages

including the closed-form solution of ℓp-distance to half-space (Lemma 3.25) and its small

sample complexity requirement for generalization (Theorem 3.26). To be more specific, we

focus on the following optimization problem based on the empirical measure µ̂m and the

collection of half spacesHS(n):

minimize
E∈HS(n)

µ̂m
(
E (ℓp)ϵ

)
subject to µ̂m(E) ≥ α, (3.25)

where HS(n) = {Hw,b : w ∈ Rn, b ∈ R, and ∥w∥2 = 1} is the set of half spaces in Rn.

In the following discussions of this section, we write E (ℓp)ϵ = Eϵ for simplicity.

The following lemma characterizes the closed-form solution of the ℓp-norm distance be-

tween a point x and a half space. Such a formulation enables an exact computation of the

empirical measure with respect to the ϵ-expansion of any half space.

Lemma 3.25 (ℓp-Distance to Half Space). Let Hw,b ∈ HS(n) be an n-dimensional half

space. For any vector x ∈ Rn, the ℓp-norm distance (p ≥ 1) from x toHw,b is:

dp(x,Hw,b) =

 0, w⊤x+ b ≤ 0;

(w⊤x+ b)/∥w∥q, otherwise.

Here, q is a real number that satisfies 1/p+ 1/q = 1.

Proof of lemma 3.25. We only consider the case when w⊤x+ b > 0, because dp(x,Hw,b)

is zero trivially holds if w⊤x+ b ≤ 0. The problem of finding the ℓp-distance from a given

point x to a half space Hw,b can be formulated as the following constrained optimization
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problem:

min
z∈Rn

∥z − x∥p, subject to w⊤z + b ≤ 0. (3.26)

Let z̃ = z − x, then optimization problem (3.26) is equivalent to

min
z̃∈Rn

∥z̃∥p, subject to w⊤z̃ +w⊤x+ b ≤ 0. (3.27)

According to Hölder’s Inequality, for any z̃ ∈ Rn we have

−∥w∥q · ∥z̃∥p ≤ w⊤z̃ ≤ ∥w∥q · ∥z̃∥p,

where 1/p+ 1/q = 1. Therefore, for any z̃ that satisfies the constraint of (3.27), we have

w⊤x+ b ≤ −w⊤z̃ ≤ ∥w∥q · ∥z̃∥p. (3.28)

Since ∥w∥2 = 1, we have ∥w∥q > 0, thus (3.28) further suggests ∥z̃∥p ≥ (w⊤x+b)/∥w∥q.

Up till now, we have proven that the optimal value of (3.26) is lower bounded by (w⊤x +

b)/∥w∥q. The remaining task is to show this lower bound can be achieved. To this end, we

construct ẑ as

ẑj = xj −
w⊤x+ b

∥w∥q
·
(

wq
j∑

j∈[n] w
q
j

)1/p

, for any j ∈ [n],

where 1/p + 1/q = 1. We remark that for the extreme case where p = ∞, such choice of

ẑ can be simplified as ẑ = x− (w⊤x+ b) · sgn(w)/∥w∥q, where sgn(·) denotes the sign
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function for vectors. According to the construction, it can be verified that

w⊤ẑ + b = (w⊤x+ b)− w⊤x+ b

∥w∥q
·
∑
j∈[n]

wj ·
(

wq
j∑

j∈[d] w
q
j

)1/p

= 0,

and ∥ẑ − x∥p = (w⊤x+ b)/∥w∥q.

Lemma 3.25 implies that the ϵ-expansion of any half space with respect to the ℓp-norm is

still a half space. Since the VC-dimensions of both the set of half spaces and its expansion

are bounded, we can thus apply Theorem 3.13, which yields the following theorem that

characterizes the generalization of concentration with respect to half spaces.

Theorem 3.26 (Generalization of Concentration of Half Spaces). Consider the metric prob-

ability space, (X , µ, ∥·∥p), whereX ⊆ Rn and p ≥ 1. Let {xi}i∈[m] be a set ofm instances

sampled from µ, and let µ̂m be the corresponding empirical measure. Define the concen-

tration functions regarding the collection of half spacesHS(n) with respect to µ as:

h
(
µ, α, ϵ,HS(n)

)
= inf
E∈HS(n)

{µ(Eϵ) : µ(E) ≥ α},

and let h(µ̂m, α, ϵ,HS(n)) be its empirical counterpart with respect to µ̂m. For any δ ∈

(0, 1), there exists constants c0 and c1 such that with probability at least 1− c0 · e−n logn,

h(µ̂m, α− δ, ϵ,HS(n))− δ ≤ h(µ̂m, α, ϵ,HS(n)) ≤ h
(
µ̂m, α + δ, ϵ,HS(n)

)
+ δ

holds, provided that the sample size m ≥ c1 · n logn/δ2.

Proof of Theorem 3.26. We write HS as HS(n) for simplicity. Let S be a set of size

m sampled from µ and µ̂m be the corresponding empirical measure. Note that the VC-
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dimension ofHS(n) is n+ 1 (see [84]), thus according to the VC inequality, we have

Pr
S←µm

[
sup

E∈HS(n)

∣∣µ̂m(E)− µ(E)∣∣ ≥ δ
]
≤ 8e(n+1) log(m+1)−mδ2/32.

In addition, according to Lemma 3.25, the ϵ-expansion of any half space is still a half space.

Therefore, we can directly apply Theorem 3.3 in [81] to bound the generalization of con-

centration with respect to half spaces: for any δ ∈ (0, 1), we have

Pr
S←µm

[
h(µ̂m, α− δ, ϵ,HS)− δ ≤ h(µ̂m, α, ϵ,HS) ≤ h(µ̂m, α + δ, ϵ,HS) + δ

]
≥ 1− 32e(n+1) log(m+1)−mδ2/32.

Finally, assuming the sample size m ≥ c0 · n logn/δ2 for some constant c0 large enough,

then there exists positive constant c1 such that

h(µ̂m, α− δ, ϵ,HS)− δ ≤ h(µ̂m, α, ϵ,HS) ≤ h(µ̂m, α + δ, ϵ,HS) + δ

holds with probability at least 1− c1 · e−n logn.

Remark 3.27. Theorem 3.26 suggests that for the concentration of measure problem with

respect to half spaces, in order to achieve δ estimation error with high probability, it requires

Ω(n log(n)/δ2) number of samples. Compared with [81], our method using half spaces re-

quires fewer samples in theory to achieve the same estimation error.8 For standard Gaussian

inputs, the empirical concentration with respect to half spaces is guaranteed to converge

to the actual concentration as in (3.1), i.e., limm→∞ h(µ̂m, α, ϵ,HS(n)) = h(µ̂m, α, ϵ);

whereas for distributions that are not Gaussian, there might exist a gap. However, this gap

of empirical and actual concentration is shown to be uniformly small across various data
8The proposed estimators for ℓ∞ and ℓ2 in [81] require Ω(nT log(n) log(T )/δ2) samples to achieve δ

approximation, where T is a predefined number of hyperrectangles or balls.
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distributions, as will be discussed in our experiments

Based on Lemma 3.25, estimating the empirical concentration using half spaces as defined

in (3.25) is equivalent to solving the following constrained optimization problem:

minimize
w∈Rn,b∈R

∑
i∈[m]

1{w⊤xi + b ≤ ϵ∥w∥q}

subject to
1

m

∑
i∈[m]

1{w⊤xi + b ≤ 0} ≥ α and ∥w∥2 = 1.

(3.29)

The optimal solution to (3.29) would be a half space Hw,b that satisfies the following two

properties: (1) approximately α-fraction of data is covered by Hw,b, and (2) most of the

remaining data points are at least ϵ-away fromHw,b under ℓp-norm distance metric.

Note that we can always set b to be the α-quantile of the projections {−w⊤xi : i ∈ [m]}

to satisfy the first property. In addition, to satisfy the second condition, inspired by the

special case optimality results in Remark 3.24, we propose to search for a weight vector w

such that both the ℓq-norm of w is small and the variation of the given sample set along the

direction of w is large. These searching criteria guarantee that the given dataset {xi}i∈[m],

when projected onto w then normalized by ∥w∥q, will have a large variance, which implies

the second property.

We propose a heuristic algorithm to search for the desirable half space according to the

aforementioned criteria. In particular, Algorithm 4 searches for a desirable half space based

on the principal components of the empirical dataset and their rotations defined by a power

parameter. More specifically, the function pow() takes a vector v ∈ Rn and a positive

integer s ∈ Z+, and returns the normalized s-th power of v (with sign preserved):

pow(v, s) = sgn(v) ◦ [abs(v)]s/∥vs∥2 =

{
vs/∥vs∥2, if s is odd;
sgn(v) ◦ vs/∥vs∥2, otherwise.

(3.30)
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Algorithm 4: Heuristic Search for Robust Half Space under ℓp-distance
Input : a set of samples {xi}i∈[m]; strength ϵ (in ℓp-norm); risk threshold α;

#iterations S.
Q← compute the sample covariance matrix based on {xi}i∈[m];
V ← obtain the set of principal components by eigenvalue decomposition on Q;
for v ∈ V do

for s = 1, 2, . . . , S do
w ← select from {±pow(v, s)}; // pow() is defined according to (3.30)
b← α-quantile of the set {−w⊤xi : i ∈ [m]};
AdvRiskϵ(Hw,b)←

∑m
i=1 1(w

⊤xi + b ≤ ϵ∥w∥q)/m;
end

end
(ŵ, b̂)← argmin(w,b) AdvRiskϵ(Hw,b);
Output : Hŵ,b̂

Note that all the functions used in (3.30) are element-wise operations for vectors, where

sgn(v), abs(v), vs represent the sign, absolute value and the s-th power of v respectively,

and the operator ◦ denotes the Hardamard product of two vectors.

Connected with the theoretical optimum regarding Gaussian spaces in Remark 3.24, the top

principal component corresponds to the optimal choice of w if the perturbation metric is

ℓ2-distance, whereas close-to-axis would be favourable for w when p > 2. In addition, as

implied by the empirical concentration problem (3.29) and the monotonicity of ℓp-mapping,

the value of ∥w∥q will be more influential in affecting the ϵ-expansion of half space as p

grows larger. For example, the ℓ∞-norm of w can be as large as
√
n for the worst case (n

denotes the input dimension), while ∥w∥∞ = 1 if w aligns any axis. By searching through

the region between each principal component and the closest axis, the proposed algorithm

aims to find the optimal balance between ∥w∥q and the variance of the given data along w

that leads to the smallest ϵ-expansion. Although there is no theoretical guarantee that our

algorithm will find the optimum to (3.29) for an arbitrary dataset, we empirically show its
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efficacy in our experiments in estimating concentration across various datasets.

Moreover, our algorithm is efficient in terms of both time and space complexities. Precom-

puting the principal components requiresO(mn2+n3) time andO(n2) space to store them,

where m denotes the samples size and n is the input dimension. For each iteration step, the

time complexity of computing w, b and AdvRiskϵ(Hw,b) is O(mn), while the space com-

plexity for saving the intermediate variables and the best parameters is O(m + n). With

n outer iterations and S inner iterations, the total time complexity is O(n3 +mn2S). The

total space complexity is O(n2 + mn), where the extra O(mn) denotes the initial space

requirement for saving all the input data. For our experiments, we observe AdvRiskϵ(Hw,b)

is not sensitive to small increment of the exponent parameter s, thus we choose to increase

s in a more aggressive way, which further saves computation.

3.5.3 Experiments

In this section, we evaluate our empirical method for estimating concentration under ℓ∞-

norm distance and comparing its performance to that of the method proposed in Section 3.4.

We first demonstrate that the estimate produced by our algorithm is very close to the ac-

tual concentration for a spherical Gaussian distribution, and that our method is able to find

much tighter bounds on the best possible adversarial risk for several image benchmarks. We

then compare the convergence rates, and show that our method converges with substantially

less data. Note that while we only provide results for the most widely-used ℓ∞-norm per-

turbation metric adopted in the existing adversarial examples literature, our algorithm and

experiments can be applied to any other ℓp-norm.

Estimation Accuracy. First, we evaluate the performance of our algorithm under ℓ∞-

norm distance metric on a generated synthetic dataset consisting of 30,000 samples from
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N (0, I784). Since the proposed method follows from the analytical results of concentration

of multivariate Gaussian distributions, we expect results produced by our empirical method

to closely approach the analytical concentration on this simulated Gaussian dataset. We

initially consider the case where ϵ = 1.0 and α = 0.5 for the actual concentration problem,

requiring that the feasible set contains at least half of the data samples, and the adversary can

perturb each entry by precisely the standard deviation of the underlying distribution. Our

algorithm is able to produce a half space whose ϵ-expansion has mean empirical measure

84.18% over 5 repeated trials. According to Theorem 3.23 and Remark 3.24, the optimal

value of the considered concentration problem is 84.13%. This implies that our method

performs very well when the underlying distribution is Gaussian, while in stark contrast,

the method proposed in Section 3.4 is not able to find a region whose expansion has mea-

sure less than 1 on the same simulated set. In addition, we consider another setting for this

dataset where ϵ = 1.0 is set the same and α = 0.05 is set to be much smaller. Similarly,

we observe that our method significantly outperforms the previous method in terms of the

estimation accuracy (see Table 3.7 for the detailed comparison results).

Next, we evaluate our method on several image benchmarks. We set the values of α and

ϵ to be the same as in Section 3.4 for the ℓ∞ case. For example, we use α = 0.01, ϵ ∈

{0.1, 0.2, 0.3, 0.4} for MNIST, and α = 0.05, ϵ ∈ {2/255, 4/255, 8/255, 16/255} for

CIFAR-10. These α values were selected to roughly represent the standard error of the

state-of-the-art classifiers.

Table 3.7 demonstrates the risk and adversarial risk with respect to the best produced sub-

sets using both methods, computed on a separate test dataset. In our context of measuring

concentration, risk refers to the empirical measure of the produced subset, while adversarial

risk corresponds to the empirical measure of its ϵ-expansion. We use a 50/50 train-test split

over the whole dataset to perform our evaluation, and determine the best exponent of each
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Table 3.7: Comparisons between our method of estimating concentration with ℓ∞-norm
distance and the method proposed by [81] for different settings. ForN (0, I784)withα = 0.5
and ϵ = 1.0, the previous method is unable to produce nontrivial estimate. Results for the
previous method are taken directly from the original paper (except for the Gaussian results).

Dataset α ϵ
Test Risk (%) Test Adv. Risk (%)

Prev. Method Our Method Prev. Method Our Method

N (0, I784)
0.05 1.0 6.21± 0.44 5.20± 0.16 89.75± 0.80 26.37± 0.17
0.5 1.0 - 49.98± 0.25 - 84.18± 0.11

MNIST 0.01

0.1 1.23± 0.12 1.22± 0.05 3.64± 0.30 1.35± 0.06
0.2 1.11± 0.10 1.24± 0.05 5.89± 0.44 1.52± 0.06
0.3 1.15± 0.13 1.25± 0.04 7.24± 0.38 1.75± 0.05
0.4 1.21± 0.09 1.27± 0.05 9.92± 0.60 1.98± 0.08

CIFAR-10 0.05

2/255 5.72± 0.25 5.14± 0.13 8.13± 0.26 5.28± 0.12
4/255 6.05± 0.40 5.22± 0.20 13.66± 0.33 5.68± 0.21
8/255 5.94± 0.34 5.22± 0.16 18.13± 0.30 6.28± 0.13
16/255 5.28± 0.23 5.19± 0.08 28.83± 0.46 7.34± 0.15

FMNIST 0.05
0.1 5.92± 0.85 5.33± 0.14 11.56± 0.84 6.04± 0.13
0.2 6.00± 1.02 5.34± 0.14 14.82± 0.71 6.82± 0.19
0.3 6.13± 0.93 5.24± 0.10 17.46± 0.53 8.01± 0.19

SVHN 0.05 0.01 8.83± 0.30 5.23± 0.09 10.17± 0.29 5.56± 0.08

principal component based on a brute-force search. Though our method is deterministic

for a given pair of training and testing sets, we account for the variance of our method over

different train-test splits by repeating our experiments 5 times and reporting the mean and

standard deviation of the results for each (α, ϵ). It is worth noting that the randomness of

the previous method is derived not only from the selection of the training and test sets, but

also from the inherent randomness of the employed k-means algorithm.

We observe from Table 3.7 that in every case, the estimated adversarial risk is significantly

lower for our method than for the one found by the previous method. Since both methods

restrict the search space to some special collection of subsets, these estimates can be viewed

as valid empirical upper bounds of the actual concentration as defined in (3.1). Therefore,
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the fact that our results are significantly lower indicates that our algorithm is able to produce

estimates that are much closer to the optimum of the targeted problem. In addition, when

translated to adversarial robustness, these tighter estimates prove the existence of a rather

robust classifier9 that has risk at least α, which further suggests that the underlying intrinsic

robustness limit of each of these image benchmarks is actually much higher than previously

thought.

For example, the best classifier produced by the previous method using hyperrectangles has

18.1% adversarial risk under ℓ∞-perturbations bounded by ϵ = 8/255 on CIFAR-10. How-

ever, our results demonstrate that the adversarial risk of the best possible robust classifier

can be as low as 6.3% given the same risk constraint, indicating the underlying intrinsic ro-

bustness to be above 93.7%. As the intrinsic robustness limits are shown to be very close to

the trivial upper bound 1−α across all the settings, our results reveal that the concentration

of measure phenomenon is not an important factor that causes the adversarial vulnerability

of existing classifiers on these image benchmarks.

Convergence Analysis. Figure 3.6 shows the convergence rate of our method under ℓ∞-

distance for Gaussian data from N (0, I784) (α = 0.05, ϵ = 1), as well as for MNIST

(α = 0.01, ϵ = 0.1) and CIFAR-10 (α = 0.05, ϵ = 2/255). For each graph, the horizontal

x-axis represents the size of the dataset used to train the estimator, and the vertical y-axis

shows the concentration bounds estimated for a separate test set, which is of size 30, 000 for

each case. We generate the means and standard deviations for these convergence curves by

repeating both methods 5 times for different randomly-selected training and test tests. For

the method presented in Section 3.4, we tune the number of the hyperrectangles T for the

optimal performance based on the empirically-observed adversarial risk.
9Based on the ground-truth c and the returned set E of our algorithm, this classifier can be simply con-

structed by setting f(x) = c(x) for x /∈ E and f(x) ̸= c(x) for x ∈ E . Without knowing the ground-truth,
we note that such classifier may or may not be learnable.
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(a) N (0, I784) (b) MNIST (c) CIFAR-10

Figure 3.6: The convergence curves of the best possible adversarial risk estimated using our
method and the previous method as the number of training samples grows.

For the simulated Gaussian datasets, we include a horizontal line at y = 0.2595 to repre-

sent the true concentration of the underlying distribution, derived from Theorem 3.23 and

Remark 3.24. This allows us to more accurately assess the convergence of our method, as

it is the only case for which we know the optimal value that our empirical estimates should

be converging to. We see that our estimates approach this line very quickly, coming within

0.01 of the true value given only about 1,000 samples.

While we do not have such a theoretical limit for other datasets, the risk threshold α can be

viewed as a lower bound of the actual concentration, which is useful in visually assessing the

convergence performance of our method. We can see that for both MNIST and CIFAR-10,

our estimates get very close to the horizontal line at y = α given several thousand training

samples. Since the actual concentration must be no less than α and our estimated upper

bound is approaching α from the above, we immediate infer that the actual concentration

of these data distributions with ℓ∞-norm distance should be a value sightly greater than α.

These results not only demonstrate the superiority of our method over the previous method

in estimating concentration, but also show that concentration of measure is not the reason

for our inability to find adversarially robust models for these image benchmarks.
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3.6 Discussion

In the previous sections, we proposed different methods for characterizing the intrinsic ro-

bustness limits (with respect to imperfect classifiers) for typical classification tasks on im-

age benchmarks. This section provides further discussions on these methods as well as their

connections with existing literature.

Comparisons between our Methods. Following the line of related works [44, 69], our

method presented in Section 3.3 first trains a conditional generative model using samples

from the underlying data distribution, then estimates an upper bound on the intrinsic ro-

bustness limit with respect to the generated distribution based on the smoothness parameter

of generator. One limitation of this method is the estimated concentration property is with

respect to the simulated distribution captured by the learned generator instead of the actual

data distribution. It is possible to generalize our intrinsic robustness bound by introducing

an extra term regarding the Wasserstein distance between the generated distribution and the

actual distribution (see Theorem 4 in [44] for a similar adaptation), however, there will be an

empirical challenge on how to get good estimates of such Wasserstein distance. In addition,

since the empirical estimates are with respect to an upper bound on intrinsic robustness, it

remains unknown how to rigorously characterize the gap between the actual intrinsic ro-

bustness limit and the estimated upper bounds. We made an initial attempt to estimate the

in-distribution adversarial risk of state-of-the-art adversarially trained models to empirically

understand such gap (see Section 3.3.3 for the experimental results on this).

Different from generative model based approaches, our methods proposed in Sections 3.4

and 3.5 directly learns the concentration function of the underlying distribution. Then, we

employ the learned concentration function to estimate intrinsic robustness limits with re-

spect to imperfect classifiers. These methods are related to the previous work [49], which
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provides experiments to heuristically estimate the concentration property of MNIST dataset

under ℓ2 distance. In comparison, our method in Section 3.4 provides a general methodol-

ogy to empirically estimate the concentration of measure with provable guarantees, and is

able to deal with ℓ∞ perturbations, which is the most popular setting for research in adver-

sarial examples; while our method in Section 3.5 generalizes the approach in [49] to any

ℓp-norm distance metric with p ≥ 2 and is able to produce tighter empirical concentration

estimates for image benchmarks.

From the theoretical perspective, both our concentration estimation based methods proposed

in Sections 3.4 and 3.5 adopt the same empirical framework based on carefully-chosen col-

lection of subsets but with different choices (union of hyperrectangles or balls are used in

Section 3.4 and half spaces in Section 3.5). When the concentration problem is restricted to

those selected collections of subsets, generalization of concentration results can be proved

(see Theorem 3.13 and Theorem 3.26). However, we additionally proved a convergence

guarantee of the concentration with respect to the collection of subsets used in Section 3.4

to the actual concentration (see Theorem 3.15). We are not able to obtain such convergence

guarantee using half spaces, since they are not universal set approximators.

On the algorithmic side, both the proposed algorithms in Sections 3.4 and 3.5 for solving the

empirical concentration problem are able to return an optimally-found ‘robust’ subset within

the selected collection of subsets, which is then used as the error region of the best robust

classifier we are able to construct. The adversarial robustness of such constructed classifier

is regarded as an empirical estimate of the intrinsic robustness limit. We demonstrate in

Section 3.5 that choosing the set of half spaces for empirical concentration estimation is

superior than previous choices in producing tighter estimates for measuring concentration
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of several benchmark datasets.

Error Analysis for Concentration Estimation. At the core of our concentration estima-

tion approaches is selecting a good collection of subsets G for the empirical concentration

estimation problem. In the following, we first conduct a detailed error analysis for the con-

centration estimators proposed in Sections 3.4 and 3.5, then discuss its implications for

measuring concentration of general metric probability spaces.

Let (X , µ,∆) be the underlying input metric probability space and G ∈ Pow(X ) be a col-

lection of subsets. Consider the following empirical concentration problem:

minimize
E∈G

µ̂m(Eϵ) subject to µ̂m(E) ≥ α, (3.31)

where µ̂m is the empirical measure based onm i.i.d. samples from µ, and α ∈ (0, 1), ϵ ≥ 0

are given constants. Suppose an algorithm aims to solve problem (3.31) and returns E as a

solution. The approximation error between the empirical estimate of concentration and the

actual concentration can be decomposed into three error terms:

h(µ, α, ϵ)− µ̂m(Eϵ)︸ ︷︷ ︸
approximation error

= h(µ, α, ϵ)− h(µ, α, ϵ,G)︸ ︷︷ ︸
modeling error

+ h(µ, α, ϵ,G)− h(µ̂m, α, ϵ,G)︸ ︷︷ ︸
finite sample estimation error

+ h(µ̂m, α, ϵ,G)− µ̂m(Eϵ)︸ ︷︷ ︸
optimization error

. (3.32)

The modeling error denotes the difference between the actual concentration function and

the concentration function with respect to the selected collection of subsets G; the finite

sample estimation error represents the generalization gap between the empirical concen-

tration function and its limit; and the optimization error captures how well the algorithm

approximates the empirical concentration problem. Such an error decomposition applies to
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both the empirical methods proposed in both Sections 3.4 and 3.5.

The complexity of G and the complexity of its ϵ-expansion Gϵ = {Eϵ : E ∈ G} control

the finite sample estimation error. So, G should be selected such that the empirical con-

centration function h(µ̂m, α, ϵ,G) generalizes. If either G or Gϵ is too complex (e.g., it has

unbounded VC-dimension), it will be difficult to control the generalization of the empirical

concentration function.

There exist tradeoffs among the three error terms in (3.32), and it is unlikely that there is a

uniformly good choice for G that minimizes all these error terms. In particular, increasing

the complexity ofG typically reduces the modeling error, since the feasible set of the concen-

tration function with respect to G becomes larger. However, according to the generalization

of concentration, this will also increase the finite sample estimation error. Therefore, we

should consider the effect of all these error terms when choosing G, including the hardness

of the optimization problem with respect to the empirical concentration. It is favorable that

the distance to any set in G has a closed-form solution, which enables exactly computing

the empirical measure of the ϵ-expansion of any set in G.

In addition, it will be easier to control the optimization error (i.e., develop an algorithm that

produces tight estimates), if the empirical concentration problem is simpler. For instance,

when the underlying perturbation metric is ℓ∞-norm, solving the empirical concentration

problem with respect to the set of half spaces is easier than solving it based on the union of

hyperrectangles, since there are more hyperparameters to optimize for the latter problem.

Such simplicity further contributes to tighter empirical estimates produced by our algorithm

using half spaces for measuring concentration (see Section 3.5 for a detailed argument).

Connection with other Related Works. A line of research studied the inherent trade-

off between robustness and accuracy, which are related to ours. In particular, the work of
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[119] showed that for some specific learning problems, achieving robustness and accuracy

together is not possible. At the first glance, it might seem that this trade-off contradicts the

upper bounds on adversarial robustness that come from concentration of measure. However,

there is no contradiction and what is proved there is with regard to a different definition

of adversarial examples. The definition of adversarial examples used there could diverge

from our definition in some learning problems (see [30]), but they coincide in the cases

that the ground-truth function is robust to small perturbations. In addition, they considered

adversaries bounded in ℓ∞-norm with attack radius greater than the distance between the

two classes’ mean value difference, which is not realistic for classification tasks of interest.

The work of [126] considered a more realistic assumption. They showed that if the underly-

ing data are well-separated, there exists a robust and perfectly accurate classifier, which

somewhat suggests that robustness and accuracy can be achieved together in principle.

However, this does not contradict our results, since we directly assume the existence of

the underlying ground-truth as the concept function in our adversarial risk definition, and

study the maximum achievable robustness that can be attained by classifiers with imper-

fect risk, which implicitly excludes the ground-truth classifier. In addition, the construction

of the ‘perfectly’ robust and accurate classifier presented in [126] assumes the knowledge

of the support of the underlying data manifold, which is difficult to test for typical classi-

fication tasks; whereas our results do not rely on such assumption. We present a method

with provable guarantees for characterizing the concentration function that works for typical

classification tasks of interest.

Other related works [129, 99] studied the robustness and accuracy trade-off with respect

to specifically learned classifiers. In contrast, our results on intrinsic robustness translated

by concentration of measure is different, since it is with respect to the optimally robust

classifier that can be constructed within the set of imperfect classifiers. Actually finding
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such an optimal classifier using a learning algorithm might be a more difficult task or even

infeasible. We do not consider that problem in this chapter.

3.7 Summary

To understand whether theoretical results showing limits of intrinsic robustness for theoret-

ical distributions apply to robust classification tasks of interest, we developed general meth-

ods in this chapter to understand and estimate the concentration function of an unknown dis-

tribution. According to our experimental results, we demonstrate that the concentration of

measure phenomenon is not the major reason behind vulnerability of the existing classifiers

to adversarial examples. In other words, recent impossibility results [49, 44, 80, 108] should

not cause us to lose hope in the possibility of finding more robust classifiers. Thus, either

there is room for improving the robustness of image classifiers (even with non-zero classifi-

cation error) or a need for deeper understanding of the reasons for the gap between intrinsic

robustness and the actual robustness achieved by robust models, at least for the datasets like

the image classification benchmarks used in our experiments. In the next chapter, we are

going to study another fundamental cause, i.e. the existence of uncertain inputs, in explain-

ing the adversarial vulnerability of state-of-the-art classification models by adapting our

concentration estimation method proposed in Section 3.4.
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Chapter 4

Importance of Labels1

4.1 Introduction

In this work, we argue that the standard concentration of measure problem, which was stud-

ied in all of the aforementioned works, is not sufficient to capture a realistic intrinsic ro-

bustness limit for a classification problem. In particular, the standard concentration function

(see Definition 3.3) is defined as an inherent property regarding the input metric probability

space that does not take account of the underlying label information. We argue that such

label information is essential for any supervised learning problem, including adversarially

robust classification, so must be incorporated into intrinsic robustness limits.

We introduce a notion of label uncertainty, which characterizes the average uncertainty of

label assignments for an input region. We then incorporate label uncertainty in the standard

concentration measure as an initial step towards a more realistic characterization of intrin-

sic robustness. Experiments on the CIFAR-10 and CIFAR-10H [95] datasets demonstrate

that error regions induced by state-of-the-art classification models all have high label uncer-

tainty, which validates the proposed label uncertainty constrained concentration problem.

By adapting the standard concentration estimation method in [81], we propose an empirical

estimator for the label uncertainty constrained concentration function. We then theoreti-
1Xiao Zhang, David Evans, Understanding Intrinsic Robustness using Label Uncertainty, in the Tenth

International Conference on Learning Representations (ICLR 2022) [133].
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cally study the asymptotic behavior of the proposed estimator and provide a corresponding

heuristic algorithm for typical perturbation metrics. We demonstrate that our method is

able to produce a more accurate characterization of intrinsic robustness limit for bench-

mark datasets than was possible using prior methods that do not consider labels. Figure 4.1

illustrates the intrinsic robustness estimates resulting from our label uncertainty approach

on two CIFAR-10 robust classification tasks. The intrinsic robustness estimates we obtain

by incorporating label uncertainty are much lower than prior limits, suggesting that com-

pared with the concentration of measure phenomenon, the existence of uncertain inputs may

explain more fundamentally the adversarial vulnerability of state-of-the-art robustly-trained

models. In addition, we also provide empirical evidence showing that both the clean and

robust accuracies of state-of-the-art robust classification models are largely affected by the

label uncertainty of the tested examples, suggesting that adding an abstain option based on

label uncertainty is a promising avenue for improving adversarial robustness of deployed

machine learning systems.

4.2 Standard Concentration is Insufficient

Concentration without Labels Mischaracterizes Intrinsic Robustness. Despite the ap-

pealing relationship between concentration of measure and intrinsic robustness, we argue

that solving the standard concentration problem is not enough to capture a meaningful in-

trinsic limit for adversarially robust classification. The standard concentration of measure

problem (3.1), which aims to find the optimal subset that has the smallest ϵ-expansion with

regard to the input metric probability space (X , µ,∆), does not involve the concept function

c(·) that determines the underlying class label of each input. Therefore, no matter how we

assign the labels to the inputs, the concentration function h(µ, α, ϵ) will remain the same for
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(a) ℓ∞ perturbations (b) ℓ2 perturbations

Figure 4.1: Intrinsic robustness estimates for classification tasks on CIFAR-10 under (a) ℓ∞
perturbations with ϵ = 8/255 and (b) ℓ2 perturbations with ϵ = 0.5. Orange dots are in-
trinsic robustness estimates using the method in [96], which does not consider labels; green
dots show the results using our methods that incorporate label uncertainty; blue dots are
results achieved by the state-of-the-art adversarially-trained models in RobustBench [21].
Three fundamental causes behind the adversarial vulnerability can be summarized as imper-
fect risk (red region), concentration of measure (orange region) and existence of uncertain
inputs (green region).

the considered metric probability space. In sharp contrast, learning an adversarially-robust

classifier depends on the joint distribution of both the inputs and the labels.

Moreover, when the standard concentration function is translated into an intrinsic limit of

adversarial robustness, it is defined with respect to the set of imperfect classfiers Fα (see

Theorem 3.5). The only restriction imposed by Fα is that the classifier (or equivalently,

the measure of the corresponding error region) has risk at least α. This fails to consider

whether the classifier is learnable or not under the given classification problem. There-

fore, the intrinsic robustness limit implied by standard concentration AdvRobϵ(Fα) could

be much higher than AdvRobϵ(Flearn), where Flearn denotes the set of classifiers that can

be produced by some supervised learning method. Hence, it is not surprising that the ad-

versarial robustness attained by state-of-the-art robust training methods for several image

benchmarks is much lower than the intrinsic robustness limit implied by standard concen-

tration of measure. In this work, to obtain a more meaningful intrinsic robustness limit we
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restrict the search space of the standard concentration problem (3.1) by considering both

the underlying class labels and the learnability of the given classification problem.

Gaussian Mixture Model. We further illustrate the insufficiency of standard concentration

under a simple Gaussian mixture model. LetX ⊆ Rn be the input space andY = {−1,+1}

be the label space. Assume all the inputs are first generated according to a mixture of 2-

Gaussian distribution: x ∼ µ = 1
2
N (−θ, σ2In) + 1

2
N (θ, σ2In), then labeled by a concept

function c(x) = sgn(θ⊤x), where θ ∈ Rn and σ ∈ R are given parameters (this concept

function is also the Bayes optimal classifier, which best separates the two Gaussian clusters).

Theorem 4.1 characterizes the optimal solution to the standard concentration problem under

this assumed model.

Theorem 4.1. Consider the above Gaussian mixture model with ℓ2 perturbation metric.

The optimal solution to the standard concentration problem (3.1) is a halfspace, either

H− = {x ∈ X : θ⊤x+ b · ∥θ∥2 ≤ 0} or H+ = {x ∈ X : θ⊤x− b · ∥θ∥2 ≥ 0},

where b is a parameter depending on α and θ such that µ(H−) = µ(H+) = α.

Proof of Theorem 4.1. Let µ− be the probability measure for N (−θ, σ2In) and µ+ be the

probability measure for N (θ, σ2In), then by definition, we have µ = µ−/2 + µ+/2. Con-

sider the optimal subset E∗ = argminE∈Pow(X ){µϵ(E) : µ(E) ≥ α}.

Note that the standard concentration function h(µ, α, ϵ) is monotonically increasing with

respect to α, thus µ(E∗) = α holds for any continuous µ. Let α− = µ−(E∗) and α+ =

µ+(E∗). According to the Gaussian Isoperimetric Inequality (see Lemma 3.4), it holds for
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any ϵ ≥ 0 that

µ(E∗ϵ ) =
1

2
µ−(E∗ϵ ) +

1

2
µ+(E∗ϵ ) ≥

1

2
Φ(Φ−1(α−) + ϵ) +

1

2
Φ(Φ−1(α+) + ϵ). (4.1)

Note that the equality of (4.1) can be achieved if and only if E∗ is a half space.

Next, we show that there always exists a half space H ∈ Pow(X ) such that µ−(H) = α−

and µ+(H) = α+. Let f−(·), f+(·) be the PDFs of µ− and µ+ respectively. For any x ∈ X ,

f−(x) and f+(x) are always positive, thus we have

f+(x)

f−(x)
=

exp
{
− 1

2σ2 (x− θ)⊤(x− θ)
}

exp
{
− 1

2σ2 (x+ θ)⊤(x+ θ)
} = exp

(
2θ⊤x

σ2

)
.

This implies that the ratio of f+(x)/f−(x) is monotonically increasing with respect to θ⊤x.

Consider the following extreme half spaceH− = {x ∈ X : θ⊤x+ b · ∥θ∥2 ≤ 0} such that

µ(H−) = α. We are going to prove µ−(H−) ≥ µ−(E∗) = α− and µ+(H−) ≤ µ+(E∗) =

α+. Consider the sets E∗ ∩ (H−)∁ and (E∗)∁ ∩H−, we have

µ+

(
E∗ ∩ (H−)∁

)
µ−
(
E∗ ∩ (H−)∁

) ≥ inf
x∈E∗∩(H−)∁

exp
(
2θ⊤x

σ2

)
≥ sup

x∈(E∗)∁∩H−

(
2θ⊤x

σ2

)
≥
µ+

(
(E∗)∁ ∩H−

)
µ−
(
(E∗)∁ ∩H−

) .
(4.2)

Note that we also have

µ+

(
E∗ ∩ (H−)∁

)
+ µ−

(
E∗ ∩ (H−)∁ = µ+

(
(E∗)∁ ∩H−

)
+ µ−

(
(E∗)∁ ∩H−

)
. (4.3)

Thus, combining (4.2) and (4.3), we have

µ+

(
E∗ ∩ (H−)∁

)
≥ µ+

(
(E∗)∁ ∩H−

)
and µ−

(
E∗ ∩ (H−)∁

)
≤ µ−

(
(E∗)∁ ∩H−

)
,
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Adding the term µ+

(
E∗ ∩H−

)
or µ−

(
E∗ ∩H−

)
on both sides, we further have

µ+(H−) ≤ µ+(E∗) = α+ and µ−(H−) ≥ µ−(E∗) = α−.

On the other hand, consider the half spaceH+ = {x ∈ X : θ⊤x− b · ∥θ∥2 ≥ 0} such that

µ(H+) = α. Based on a similar technique, we can prove

µ−(H+) ≥ µ+(E∗) = α+ and µ−(H+) ≤ µ−(E∗) = α−.

In addition, letH = {x ∈ X : w⊤x+ b ≤ 0} be any half space such that µ(H) = α. Since

both µ+ and µ− are continuous, as we rotate the half space (i.e., gradually increase the value

of w⊤θ), µ−(H) and µ+(H) will also change continuously. Therefore, it is guaranteed that

there exists a half space H ∈ Pow(X ) such that µ−(H) = α− and µ+(H) = α+. This

further implies that the lower bound of (4.1) can be always be achieved.

Finally, since we have proved the optimal subset has to be a half space, the remaining task

is to solve the following optimization problem:

min
H∈Pow(X )

1

2
Φ
(
Φ−1

(
µ−(H)

)
+ ϵ
)
+

1

2
Φ
(
Φ−1

(
µ+(H)

)
+ ϵ
)

s.t. H = {x ∈ X : w⊤x+ b ≤ 0} and µ(H) = α.

(4.4)

Construct function g(u) = Φ
(
Φ−1(u)+ϵ

)
+Φ
(
Φ−1(2α−u)+ϵ

)
, where u ∈ [0, 2α]. Based

on the derivative of inverse function formula, we compute the derivative of g with respect
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to u as follows

dg(u)
du

=
1√
2π

exp
{
− (Φ−1(u) + ϵ)2

2

}
· dΦ

−1(u)

du

+
1√
2π

exp
{
− (Φ−1(2α− u) + ϵ)2

2

}
· dΦ−1(2α− u)

du

= exp
{
− (Φ−1(u) + ϵ)2

2

}
· exp

{
(Φ−1(u))2

2

}
− exp

{
− (Φ−1(2α− u) + ϵ)2

2

}
· exp

{
(Φ−1(2α− u))2

2

}
= exp(−ϵ2/2) ·

[
exp
(
− ϵΦ−1(u)

)
− exp

(
− ϵΦ−1(2α− u)

)]
.

Noticing the term exp(−ϵΦ−1(u)) is monotonically decreasing with respect to u, we then

know that g(u) is monotonically increasing in [0, α] and monotonically decreasing in [α, 2α].

Therefore, this suggests that the optimal solution to (4.4) is achieved when µ−(H) reaches

its maximum or its minimum. According to the previous argument regarding the range of

α− and α+, we can immediately prove the optimality results of Theorem 4.1.

Remark 4.2. Theorem 4.1 suggests that for the Gaussian mixture model, the optimal subset

achieving the smallest ϵ-expansion under ℓ2-norm distance metric is a halfspace H, which

is far away from the boundary between the two Gaussian classes for small α. When trans-

lated into the intrinsic robustness problem, the corresponding optimal classifier f has to

be constructed by treating H as the only error region, or more precisely f(x) = c(x) if

x /∈ H; f(x) ̸= c(x) otherwise. This optimally constructed classifier f , however, does not

match our intuition of what a predictive classifier would do under the considered Gaussian

mixture model. In particular, since all the inputs in H and their neighbours share the same

class label and are also far away from the boundary, examples that fall into H should be

easily classified correctly using simple decision rule, such as k-nearest neighbour or max-

imum margin, whereas examples that are close to the boundary should be more likely to
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be misclassified as errors by supervisedly-learned classifiers. This confirms our claim that

standard concentration is not sufficient for capturing a meaningful intrinsic robustness limit.

4.3 Incorporating Labels in Intrinsic Robustness

In this section, we first propose a new concentration estimation framework by imposing

a constraint based on label uncertainty (Definition 4.3) on the search space with respect

to the standard problem (3.1). Then, we explain why this yields a more realistic intrinsic

robustness limit.

Let (X , µ) be the input probability space and Y = {1, 2, . . . , k} be the set of labels. η :

X → [0, 1]k is said to capture the full label distribution [47, 45], if [η(x)]y corresponds to

the description degree of y to x for any x ∈ X and y ∈ Y , and
∑

y∈[k][η(x)]y = 1 holds for

any x ∈ X . For classification tasks that rely on human labeling, one can approximate the

label distribution for any input by collecting human labels from multiple human annotators.

Our experiments use the CIFAR-10H dataset that did this for the CIFAR-10 test images [95].

For any subset E ∈ Pow(X ), we introduce label uncertainty to capture the average uncer-

tainty level with respect to the label assignments of the inputs within E :

Definition 4.3 (Label Uncertainty). Let (X , µ) be the input probability space and Y =

{1, 2, . . . , k} be the complete set of class labels. Suppose c : X → Y is a concept function

that assigns each input x a label y ∈ Y . Assume η : X → [0, 1]k is the underlying label

distribution function, where [η(x)]y represents the description degree of y to x. For any

subset E ∈ Pow(X ) with measure µ(E) > 0, the label uncertainty (LU) of E with respect
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to (X , µ), c(·) and η(·) is defined as:

LU(E ;µ, c, η) = 1

µ(E)

∫
E

{
1−

[
η(x)

]
c(x)

+ max
y′ ̸=c(x)

[
η(x)

]
y′

}
dµ.

We define LU(E ;µ, c, η) as the average label uncertainty for all the examples that fall into

E , where 1 − [η(x)]c(x) + maxy′ ̸=c(x)[η(x)]y′ represents the label uncertainty of a single

example {x, c(x)}. The range of label uncertainty is [0, 2]. For a single input, label un-

certainty of 0 suggests the assigned label fully captures the underlying label distribution;

label uncertainty of 1 means there are other classes as likely to be the ground-truth label

as the assigned label; label uncertainty of 2 means the input is mislabeled and there is a

different label that represents the ground-truth label. Let (X , µ,∆) be the underlying input

metric probability space. Based on the notion of label uncertainty, we study the following

constrained concentration problem:

minimize
E∈Pow(X )

µ(Eϵ) subject to µ(E) ≥ α and LU(E ;µ, c, η) ≥ γ, (4.5)

where γ ∈ [0, 2] is a constant. When γ is set as zero, (4.5) simplifies to the standard concen-

tration of measure problem. We set the value of γ to roughly represent the label uncertainty

of the error region of state-of-the-art classifiers for the given classification problem.

Theorem 4.4 shows how (4.5) captures the intrinsic robustness limit with respect to the set

of imperfect classifiers whose error region label uncertainty is at least γ.

Theorem 4.4. Define Fα,γ = {f : Risk(f) ≥ α, LU(Ef ;µ, c, η) ≥ γ}, where α ∈ (0, 1),

γ ∈ (0, 2) and Ef = {x ∈ X : f(x) ̸= c(x)} is the error region of f . For any ϵ ≥ 0, it
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holds that

inf
E∈Pow(X )

{µ(Eϵ) : µ(E) ≥ α, LU(E ;µ, c, η) ≥ γ} = 1− AdvRobϵ(Fα,γ).

Proof of Theorem 4.4. Let E∗ be the optimal solution to (4.5), then µ(E∗ϵ ) is the optimal

value of (4.5). We will show 1− AdvRobϵ(Fα,γ) = µ(E∗ϵ ) by proving both directions.

First, we prove 1−AdvRobϵ(Fα,γ) ≥ µ(E∗ϵ ). Let f be any classifier within Fα,γ , and E(f)

be the corresponding error region of f . According to Definition 3.1, we have

Risk(f) = µ(E(f)) and AdvRiskϵ(f) = µ(Eϵ(f)),

where Eϵ(f) represents the ϵ-expansion of E(f). Since f ∈ Fα,γ , we have

Risk(f) = µ(E(f)) ≥ α and LU(E(f);µ, c, η) ≥ γ.

Thus, by (4.5), we obtain that

1− AdvRobϵ(f) = AdvRiskϵ(f) = µ(Eϵ(f)) ≥ µ(E∗ϵ ).

By taking the infimum over f over Fα,γ , we have 1− AdvRobϵ(Fα) ≥ µ(E∗ϵ ).

Next, we show that 1− AdvRobϵ(Fα,γ) ≤ µ(E∗ϵ ). We construct a classifier f ∗ such that

f ∗(x) = c(x) if x ̸∈ E∗; f ∗(x) ̸= c(x) otherwise.

Note that by construction, E∗ corresponds to the error region of f ∗. Thus according to the
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definitions of risk and adversarial risk, we know

Risk(f ∗) = µ(E∗) ≥ α and AdvRiskϵ(f ∗) = µ(E∗ϵ ).

Since LU(E∗;µ, c, η) ≥ γ, the error region label uncertainty of f ∗ is at least γ. Thus, by

definition of intrinsic robustness, we know 1−AdvRobϵ(Fα,γ) ≤ AdvRiskϵ(f ∗) = µ(E∗ϵ ).

Finally, putting pieces together, we complete the proof.

Compared with standard concentration, (4.5) aims to search for the least expansive subset

with respect to input regions with high label uncertainty. According to Theorem 4.4, the

translated intrinsic robustness limit is defined with respect to Fα,γ and is guaranteed to

be no greater than AdvRobϵ(Fα). Although both AdvRobϵ(Fα) and AdvRobϵ(Fα,γ) can

serve as valid robustness upper bounds for any f ∈ Fα,γ , the latter one would be able to

capture a more meaningful intrinsic robustness limit, since state-of-the-art classifiers are

expected to more frequently misclassify inputs with large label uncertainty, as there is more

discrepancy between their assigned labels and the underlying label distribution (Section 4.5

provides supporting empirical evidence for this on CIFAR-10).

Need for Soft Labels. The proposed approach requires label uncertainty information for

training examples. The CIFAR-10H dataset provided soft labels from humans that enabled

our experiments, but typical machine learning datasets do not provide such information.

Below, we discuss possible avenues to estimating label uncertainty when human soft labels

are not available and are too expensive to acquire. A potential solution is to estimate the set

of examples with high label uncertainty using the predicted probabilities of a classification

model. Confident learning [88, 76, 60, 91, 90] provides a systematic method to identify

label errors in a dataset based on this idea. If the estimated label errors match the examples

with high human label uncertainty, then we can directly extend our framework by leverag-
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ing the estimated error set. Our experiments on CIFAR-10 (see Section 4.5.4), however,

suggest that there is a misalignment between human recognized errors and errors produced

by confident learning. The existence of such misalignment further suggests that one should

be cautious when combining the estimated set of label errors into our framework. As the

field of confident learning advances to produce a more accurate estimator of label error set,

it would serve as a good alternative solution for applying our framework to the setting where

human label information is not accessible.

4.4 Measuring Concentration with Label Uncertainty

Directly solving (4.5) requires the knowledge of the underlying input distribution µ and the

ground-truth label distribution function η(·), which are usually not available for classifica-

tion problems. Thus, we consider the following empirical counterpart of (4.5):

minimize
E∈G

µ̂S(Eϵ) subject to µ̂S(E) ≥ α and LU(E ; µ̂S , c, η̂) ≥ γ, (4.6)

where the search space is restricted to some specific collection of subsets G ⊆ Pow(X ), µ

is replaced by the empirical distribution µ̂S with respect to a set of inputs sampled from µ,

and the empirical label distribution η̂(x) is considered as an empirical replacement of η(x)

for any given input x ∈ S .

The following theorem characterizes a generalization bound regarding the proposed label

uncertainty estimate. It shows that if G is not too complex and η̂ is close to the ground-truth

label distribution function η, the empirical estimate of label uncertainty LU(E ; µ̂S , c, η̂) is

guaranteed to be close to the actual label uncertainty LU(E ;µ, c, η).

Theorem 4.5 (Generalization of Label Uncertainty). Let (X , µ) be a probability space and
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G ⊆ Pow(X ) be a collection of subsets of X . Assume ϕ : N × R → [0, 1] is a complex-

ity penalty for G. If η̂(·) is close to η(·) in L1-norm with respect to µ, i.e.
∫
X ∥η(x) −

η̂(x)∥1dµ ≤ δη, where δη ∈ (0, 1) is a small constant, then for any α, δ ∈ (0, 1) such that

δ < α, we have

Pr
S←µm

[
∃ E ∈ G and µ(E) ≥ α :

∣∣LU(E ;µ, c, η)− LU(E ; µ̂S , c, η̂)
∣∣ ≤ 4δ + δη

α− δ

]
≤ ϕ(m, δ).

Proof of Theorem 4.5. Let lu(x; c, η) = 1 −
[
η(x)

]
c(x)

+ maxy′ ̸=c(x)
[
η(x)

]
y′

be the label

uncertainty of a given input x with respect to c(·) and η(·). Let E be a subset in G such

that µ(E) ≥ α and |µ(E) − µ̂(E)| ≤ δ, where δ is a constant much smaller than α. Then

according to Definition 4.3, we can decompose the estimation error of label uncertainty as:

LU(E ;µ, c, η)− LU(E ; µ̂S , c, η̂) =
1

µ(E)

∫
E

lu(x; c, η) dµ− 1

µ̂S(E)

∫
E

lu(x; c, η̂) dµ̂S

=

(
1

µ(E)
− 1

µ̂S(E)

)
·
∫
E

lu(x; c, η) dµ︸ ︷︷ ︸
I1

+
1

µ̂S(E)

∫
E

[
lu(x; c, η)− lu(x; c, η̂)

]
dµ︸ ︷︷ ︸

I2

+
1

µ̂S(E)

(∫
E

lu(x; c, η̂) dµ−
∫
E

lu(x; c, η̂) dµ̂S
)

︸ ︷︷ ︸
I3

.

Next, we upper bound the absolute value of the three components, respectively.

Consider the first term I1. Note that 0 ≤ lu(x; c, η) ≤ 2 for any x ∈ X , thus we have

|
∫
E lu(x; c, η) dµ| ≤ 2µ(E). Therefore, we have

|I1| ≤
∣∣∣∣ 1

µ(E)
− 1

µ̂S(E)

∣∣∣∣ · 2µ(E) ≤ 2

µ̂S(E)
· |µ(E)− µ̂S(E)|.
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As for the second term I2, the following inequality holds for any x ∈ X

|lu(x; c, η)− lu(x; c, η̂)| ≤
∣∣∣∣[η(x)− η̂(x)]c(x)∣∣∣∣+ ∣∣∣∣ max

y′ ̸=c(x)

[
η(x)

]
y′
− max

y′ ̸=c(x)

[
η̂(x)

]
y′

∣∣∣∣
≤
∥∥η(x)− η̂(x)∥∥

1
,

where the second inequality holds because |maxi ai − maxi bi| ≤ maxi |ai − bi| for any

a, b ∈ Rn. Therefore, we can upper bound |I2| by

|I2| ≤
1

µ̂S(E)

∫
E

∥∥η(x)− η̂(x)∥∥
1
dµ ≤ 1

µ̂S(E)

∫
X

∥∥η(x)− η̂(x)∥∥
1
dµ ≤ δη

µ̂S(E)
.

For the last term I3, since 0 ≤ lu(x; c, η) ≤ 2 holds for any x ∈ X , we have

|I3| ≤
2

µ̂S(E)
·
∣∣µ(E)− µ̂S(E)∣∣.

Finally, putting pieces together, we have

|LU(E ;µ, c, η)− LU(E ; µ̂S , c, η̂)| ≤
4

µ̂S(E)
·
∣∣µ(E)− µ̂S(E)∣∣+ δη

µ̂S(E)
≤ 4δ + δη

α− δ
,

provided µ(E) ≥ α and |µ(E) − µ̂S(E)| ≤ δ. Making use of the definition of complexity

penalty for G completes the proof of Theorem 4.5.

Theorem 4.5 implies the generalization of concentration under label uncertainty constraints.

The following theorem, inspired by Theorem 3.13, shows that if we choose G and the collec-

tion of its ϵ-expansions, Gϵ = {Eϵ : E ∈ G} in a careful way that both of their complexities

are small, then with high probability, the empirical label uncertainty constrained concen-

tration will be close to the actual concentration when the search space is restricted to G.

Theorem 4.6 (Generalization of Concentration). Let (X , µ,∆) be a metric probability

87



space and G ⊆ Pow(X ). Define the generalized concentration function under label un-

certainty constraints as h(µ, c, η, α, γ, ϵ,G) = infE∈G{µ(Eϵ) : µ(E) ≥ α,LU(E ;µ, c, η) ≥

γ}. Then, under the same setting of Theorem 4.5, for any γ, ϵ ∈ [0, 1], α ∈ (0, 1] and

δ ∈ (0, α/2), we have

Pr
S←µm

[
h(µ, c, η, α − δ, γ − δ′, ϵ,G)− δ ≤ h(µ̂S , c, η̂, α, γ, ϵ,G)

≤ h(µ, c, η, α + δ, γ + δ′, ϵ,G) + δ
]
≥ 1− 6ϕ(m, δ)− 2ϕϵ(m, δ),

where δ′ = (4δ + δη)/(α− 2δ) and ϕϵ is the complexity penalty for Gϵ.

Proof of Theorem 4.6. Our proof is inspired by the techniques used in proving Theorem

3.13. First, we introduce some notations. Let h(µ, c, η, α, γ, ϵ,G) be the optimal value

and g(µ, c, η, α, γ, ϵ,G) be the optimal solution with respect to the following generalized

concentration of measure problem with label uncertainty constraint:

minimize
E∈G

µ(Eϵ) subject to µ(E) ≥ α and LU(E ;µ, c, η) ≥ γ. (4.7)

Note that the difference between (4.7) and (4.5) is that the feasible set of E is restricted to

some collection of subsets G ⊆ Pow(X ). Correspondingly, we let h(µ̂S , c, η̂, α, γ, ϵ,G) and

g(µ̂S , c, η̂, α, γ, ϵ,G) be the optimal value and optimal solution with respect to the empirical

optimization problem (4.6).

Let E = g(µ, c, η, α + δ, γ + δ′, ϵ,G) and Ê = g(µ̂S , c, η̂, α, γ, ϵ,G), where δ′ will be

specified later. Note that when these optimal sets do not exist, we can select a set for which

the expansion is arbitrarily close to the optimum, then every step of the proof will apply to
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this variant. According to the definition of complexity penalty, we have

Pr
S←µm

[
|µ̂S(Ê)− µ(Ê)| ≥ δ

]
≤ ϕ(m, δ). (4.8)

Since µ̂S(Ê) ≥ α by definition, (4.8) implies that

Pr
S←µm

[
µ(Ê) ≤ α− δ

]
≤ ϕ(m, δ). (4.9)

In addition, according to Theorem 4.5, for any δ ∈ (0, α/2), we have

Pr
S←µm

[∣∣LU(Ê ;µ, c, η)− LU(Ê ; µ̂S , c, η̂)
∣∣ ≤ 4δ + δη

α− 2δ

]
≤ 2ϕ(m, δ), (4.10)

where the inequality holds because of (4.9) and the union bound. Since LU(Ê ; µ̂S , c, η̂) ≥ γ

by definition, (4.10) implies that

Pr
S←µm

[
LU(Ê ;µ, c, η) ≤ γ − 4δ + δη

α− 2δ

]
≤ 2ϕ(m, δ). (4.11)

Based on the definition of the concentration function h, combining (4.9) and (4.11) and

making use of the union bound, we have

Pr
S←µm

[
µ(Êϵ) ≤ h(µ, c, η, α − δ, γ − δ′, ϵ,G)

]
≤ 3ϕ(m, δ), (4.12)

where we set δ′ = 4δ+δη
α−2δ . Note that according to the definition of ϕϵ, we have

Pr
S←µm

[
|µ(Êϵ)− µS(Êϵ)| ≤ δ

]
≤ ϕϵ(m, δ), (4.13)

89



thus combining (4.12) and (4.13) by union bound, we have

Pr
S←µm

[
µ̂S(Êϵ) ≤ h(µ, c, η, α − δ, γ − δ′, ϵ,G)− δ

]
≤ 3ϕ(m, δ) + ϕϵ(m, δ). (4.14)

This completes the proof of one-sided inequality of Theorem 4.6. The other side of Theorem

4.6 can be proved using the same technique. In particular, we have

Pr
S←µm

[
µ̂S(Êϵ) ≥ h(µ, c, η, α + δ, γ + δ′, ϵ,G) + δ

]
≤ 3ϕ(m, δ) + ϕϵ(m, δ). (4.15)

Combining (4.14) and (4.15) by union bound completes the proof.

Following Theorem 3.15, we can further show that if G also satisfies a universal approxima-

tion property, the optimal value of the empirical concentration problem (4.6) will approxi-

mately converge to the actual concentration function, if we increase both the complexity of

the collection of subsets G and the number of samples used for the empirical estimation.

Theorem 4.7. Consider the input metric probability space (X , µ,∆), the concept function

c and the label distribution function η. Let {G(T )}T∈N be a series of collection of subsets

over X . For any T ∈ N, assume ϕT and ϕTϵ are complexity penalties for G(T ) and Gϵ(T )

respectively, and η̂ is a function such that
∫
X ∥η̂(x)− η(x)∥1dx ≤ δη.

Define h(µ, c, η, α, γ, ϵ,G) = infE∈G{µ(Eϵ) : µ(E) ≥ α,LU(E ;µ, c, η) ≥ γ} as the con-

strained concentration function. We write h(µ, c, η, α, γ, ϵ) when G = Pow(X ). Given

a sequence of datasets {ST}T∈N, where ST consists of m(T ) i.i.d. samples from µ and a

sequence of numbers {δ(T )}T∈N with δ(T ) ∈ (0, α/2), if the following assumptions holds:

1.
∑∞

T=1 ϕ
T (m(T ), δ(T )) <∞

2.
∑∞

T=1 ϕ
T
ϵ (m(T ), δ(T )) <∞

90



3. limT→∞ δ(T ) = 0

4. limT→∞ h(µ, c, η, α, γ, ϵ,G(T )) = h(µ, c, η, α, γ, ϵ)2

5. h is locally continuous w.r.t. α and γ at (µ, c, η, α, γ ± δη/α, ϵ, Pow(X )),

then with probability 1, we have

h(µ, c, η, α, γ − δη/α, ϵ) ≤ lim
T→∞

h(µST , c, η̂, α, γ, ϵ,G(T )) ≤ h(µ, c, η, α, γ + δη/α, ϵ).

Note that there is an error term of δη/α on the parameter γ. When the difference between

the empirical label distribution η̂(·) and the underlying label distribution η(·) is negligible,

it is guaranteed that the optimal value of (4.6) asymptoptically converges to that of (4.5).

Proof of Theorem 4.7. Let ET be the event such that

h
(
µ, c, η, α − δ(T ), γ − δ′(T ), ϵ,G(T )

)
− δ(T ) > h

(
µ̂ST , c, η̂, α, γ, ϵ,G(T )

)
or

h
(
µ, c, η, α + δ(T ), γ + δ′(T ), ϵ,G(T )

)
+ δ(T ) < h

(
µ̂ST , c, η̂, α, γ, ϵ,G(T )

)
,

δ′(T ) = (4δ(T ) + δη)/(α − 2δ(T )) for any T ∈ N. Since δ(T ) < α/2, thus according to

Theorem 4.6, for any T ∈ N, we have

Pr[ET ] ≤ 6ϕT (m(T ), δ(T )) + 2ϕTϵ (m(T ), δ(T ))).

By Assumptions 1 and 2, this further implies

∞∑
T=1

Pr[ET ] ≤ 6
∞∑
T=1

ϕT (m(T ), δ(T )) + 2
∞∑
T=1

ϕTϵ (m(T ), δ(T ))) <∞.

2It is worth nothing that this assumption is satisfied for any family of collections of subsets that is a uni-
versal approximator, such as kernel SVMs and decision trees.
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Thus according to Lemma 3.16, we know that there exists some j ∈ N such that for all

T ≥ j,

h
(
µ, c, η, α − δ(T ), γ − δ′(T ),ϵ,G(T )

)
− δ(T ) ≤ h(µ̂ST , c, η̂, α, γ, ϵ)

≤ h
(
µ, c, η, α + δ(T ), γ + δ′(T ), ϵ,G(T )

)
+ δ(T ),

(4.16)

holds with probability 1. In addition, by Assumptions 3, 4 and 5, we have

lim
T→∞

h
(
µ, c, η, α − δ(T ), γ − δ′(T ), ϵ,G(T )

)
= lim

T1→∞
lim
T2→∞

h
(
µ, c, η, α − δ(T1), γ − δ′(T1), ϵ,G(T2)

)
= lim

T1→∞
h
(
µ, c, η, α − δ(T1), γ − δ′(T1), ϵ

)
= h

(
µ, c, η, α, γ − δη/α, ϵ

)
,

where the second equality is due to Assumption 4 and the last equality is due to Assumptions

3 and 5. Similarly, we have

lim
T→∞

h
(
µ, c, η, α + δ(T ), γ + δ′(T ), ϵ,G(T )

)
= h

(
µ, c, η, α, γ + δη/α, ϵ

)
.

Therefore, let T goes to∞ in (4.16), we have

h
(
µ, c, η, α, γ − δη/α, ϵ

)
≤ lim

T→∞
h
(
µ̂ST , c, η̂, α, γ, ϵ,G(T )

)
≤ h

(
µ, c, η, α, γ + δη/α, ϵ

)
,

which completes the proof.
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Concentration Estimation Algorithm. Although Theorem 4.7 provides a general idea

how to choose G for measuring concentration, it does not indicate how to solve the empir-

ical concentration problem (4.6) for a specific perturbation metric. This section presents a

heuristic algorithm for estimating the least-expansive subset for optimization problem (4.6)

when the metric is ℓ2-norm or ℓ∞-norm. We choose G as a union of balls for the ℓ2-norm

distance metric and set G as a union of hypercubes for ℓ∞-norm. It is worth noting that

such choices of G satisfy the condition required for Theorem 4.7, since they are universal

set approximators and the VC-dimensions of both G and Gϵ are both bounded (see [36, 28]).

Algorithm 5: Heuristic Search for Robust Error Region under ℓp(p ∈ {2,∞})
Input : a set of labeled inputs {x, c(x), η̂(x)}x∈S , parameters α, γ, ϵ, T
Ê ← {}, Ŝinit ← {}, Ŝexp ← {};
for t = 1, 2, . . . , T do

klower ← ⌈(α|S| − |Ŝinit|)/(T − t+ 1)⌉, kupper ← (α|S| − |Ŝinit|);
Ω← {};
for u ∈ S do

for k ∈ [klower, kupper] do
rk(u)← compute the ℓp distance from u to the k-th nearest neighbour in
S \ Ŝinit;
Sinit(u, k)← {x ∈ S \ Ŝinit : ∥x− u∥2 ≤ rk(u)};
Sexp(u, k)← {x ∈ S \ Ŝexp : ∥x− u∥2 ≤ rk(u) + ϵ};
if LU(Sinit(u, k), µ̂S , c, η̂) ≥ γ then

insert (u, k) into Ω
end

end
end
(û, k̂)← argmin(u,k)∈Ω{|Sexp(u, k)| − |Sinit(u, k)|};
Ê ← Ê ∪ Ball(û, rk̂(û));
Ŝinit ← Ŝinit ∪ Sinit(û, k̂), Ŝexp ← Ŝexp ∪ Sexp(û, k̂);

end
Output : Ê

The remaining task is to solve (4.6) based on the selected G. We place the balls for ℓ2 (or the
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hypercubes for ℓ∞) in a sequential manner, and search for the best placement that satisfies

the label uncertainty constraint using a greedy approach. Algorithm 5 gives pseudocode

for the search algorithm. It initializes the feasible set of the hyperparmeters Ω as an empty

set for each placement of balls (or hypercubes), then enumerates all the possible initial

placements, Sinit(u, k), such that its empirical label uncertainty exceeds the given threshold

γ. Finally, among all the feasible ball (or hypercube) placements, it records the one that has

the smallest ϵ-expansion with respect to the empirical measure µ̂S . In this way, the input

region produced by Algorithm 5 serves as a good approximate solution to the empirical

concentration problem (4.6).

4.5 Experiments

We conduct experiments on the CIFAR-10H dataset [95], which contains soft labels re-

flecting human perceptual uncertainty for the 10,000 CIFAR-10 test images [68]. These

soft labels can be regarded as an approximation of the label distribution function η(·) at

each given input, whereas the original CIFAR-10 test dataset provides the class labels given

by the concept function c(·). We report on experiments showing the connection between

label uncertainty and classification error rates (Section 4.5.1) and that incorporating la-

bel uncertainty enables better intrinsic robustness estimates (Section 4.5.2). Section 4.5.3

demonstrates the possibility of improving model robustness by abstaining for inputs in high

label uncertainty regions, whereas Section 4.5.4 explores whether a state-of-the-art confi-

dent learning approach can be used for predicting label uncertainty.
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(a) Illustration of CIFAR-10 and CIFAR-10H (b) Label Uncertainty Distribution

Figure 4.2: (a) Visualization of the CIFAR-10 test images with the soft labels from CIFAR-
10H, the original assigned labels from CIFAR-10 and the label uncertainty scores computed
based on Definition 4.3. (b) Histogram of the label uncertainty distribution for the CIFAR-
10 test dataset.

4.5.1 Error Regions have Larger Label Uncertainty

Figure 4.2(a) shows the label uncertainty scores for several images with both the soft labels

from CIFAR-10H and the original class labels from CIFAR-10. Images with low uncer-

tainty scores are typically easier for humans to recognize their class category (first row of

Figure 4.2(a)), whereas images with high uncertainty scores look ambiguous or even mis-

leading (second and third rows). Figure 4.2(b) shows the histogram of the label uncertainty

distribution for all the 10, 000 CIFAR-10 test examples. In particular, more than 80% of

the examples have label uncertainty scores below 0.1, suggesting the original class labels

mostly capture the underlying label distribution well. However, around 2% of the examples

have label uncertainty scores exceeding 0.7, and some 400 images appear to be mislabeled

with uncertainty scores above 1.2.

We hypothesize that ambiguous or misleading images should also be more likely to be mis-

classified as errors by state-of-the-art machine learning classifiers. That is, their induced

error regions should have larger that typical label uncertainty. To test this hypothesis, we
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(a) Standard Training (b) Adversarial Training (c) RobustBench

Figure 4.3: Visualizations of error region label uncertainty versus standard risk and adver-
sarial risk with respect to classifiers produced by different machine learning methods: (a)
Standard-trained classifiers with different network architecture; (b) Adversarially-trained
classifiers using different learning algorithms; (c) State-of-the-art adversarially robust clas-
sification models from RobustBench.

conduct experiments on CIFAR-10 and CIFAR-10H datasets. More specifically, we train

different classification models, including intermediate models extracted at different epochs,

using the CIFAR-10 training dataset, then empirically compute the standard risk, adversarial

risk, and label uncertainty of the corresponding error region.

Figures 4.3(a) and 4.3(b) demonstrate the relationship between label uncertainty and stan-

dard risk for various classifiers produced by standard training and adversarial training meth-

ods under ℓ∞ perturbations with ϵ = 8/255. In addition, we plot the label uncertainty

with error bars of randomly-selected images from the CIFAR-10 test dataset as a refer-

ence. As the model classification accuracy increases, the label uncertainty of its induced

error region increases, suggesting the misclassified examples tend to have higher label un-

certainty. This observation holds consistently for both standard and adversarially trained

models with any tested network architecture. Figure 4.3(c) summarizes the error region la-

bel uncertainty with respect to the state-of-the-art adversarially robust models documented

in RobustBench [21]. Regardless of the perturbation type or the learning method, the av-

erage label uncertainty of their misclassified examples all falls into a range of (0.17, 0.23),

whereas the mean label uncertainty of all the testing CIFAR-10 data is less than 0.1. This
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(a) ℓ∞ perturbations (ϵ = 8/255) (b) ℓ2 perturbations (ϵ = 0.5)

Figure 4.4: Estimated intrinsic robustness based on Algorithm 5 with γ = 0.17 under (a) ℓ∞
perturbations with ϵ = 8/255; and (b) ℓ2 perturbations with ϵ = 0.5. For comparison, we
plot baseline estimates produced without considering label uncertainty using a half-space
searching method [96] and using union of hypercubes or balls (Algorithm 5 with γ = 0).
Robust accuracies achieved by state-of-the-art RobustBench models are plotted in green.

supports our hypothesis that error regions of state-of-the-art classifiers tend to have larger

label uncertainty, and our claim that intrinsic robustness estimates should account for labels.

4.5.2 Empirical Estimation of Intrinsic Robustness

In this section, we apply Algorithm 5 to estimate the intrinsic robustness limit for the CIFAR-

10 dataset under ℓ∞ perturbations with ϵ = 8/255 and ℓ2 perturbations with ϵ = 0.5. We

set the label uncertainty threshold γ = 0.17 to roughly represent the error region label

uncertainty of state-of-the-art classification models (see Figure 4.3). In particular, we adopt

a 50/50 train-test split over the original 10, 000 CIFAR-10 test images.

Figure 4.4 shows our intrinsic robustness estimates with γ = 0.17 when choosing different

values of α. We include the estimates of intrinsic robustness defined with Fα as a baseline,

where no label uncertainty constraint is imposed (γ = 0). Results are shown both for our

ℓp-balls searching method and the half-space searching method proposed in Section 3.5.

We also plot the standard error and the robust accuracy of the state-of-the-art adversarially
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(a) (b)

Figure 4.5: Accuracy curves for different adversarially-trained classifiers, varying the ab-
staining ratio of CIFAR-10 images with high label uncertainty score: (a) [17]’s model for
ℓ∞ perturbations with ϵ = 8/255; (b) [123]’s model for ℓ2 perturbations with ϵ = 0.5.
Corresponding cut-off values of label uncertainty are marked on the x-axis with respect to
percentage values of {0.02, 0.1, 0.2}.

robust models in RobustBench [21]. For concentration estimation methods, the plotted val-

ues are the empirical measure of the returned optimally-searched subset (x-axis) and 1− the

empirical measure of its ϵ-expansion (y-axis).

Compared with the baseline estimates, our label-uncertainty constrained intrinsic robust-

ness estimates are uniformly lower across all the considered settings. Although both of

these estimates can serve as legitimate upper bounds on the maximum achievable adversar-

ial robustness for the given task, our estimate, which takes data labels into account, being

closer to the robust accuracy achieved by state-of-the-art classifiers indicates it is a more

accurate characterization of intrinsic robustness limit. For instance, under ℓ∞ perturbations

with ϵ = 8/255, the best adversarially-trained classifier achieves 66% robust accuracy with

approximately 8% clean error, whereas our estimate indicates that the maximum robustness

one can hope for is about 82% as long as the model has at least 8% clean error. In contrast,

the intrinsic robustness limit implied by standard concentration is as high as 90% for the

same setting, which again shows the insufficiency of standard concentration.
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4.5.3 Abstaining based on Label Uncertainty

According to our results presented in the previous sections, we expect classification models

to have higher accuracy on examples with low label uncertainty. Figure 4.5 shows the results

of experiments to study the effect of abstaining based on label uncertainty on both clean

and robust accuracies using adversarially-trained CIFAR-10 classification models from [17]

(ℓ∞, ϵ = 8/255) and [123] (ℓ2, ϵ = 0.5). We first sort all the test CIFAR-10 images based on

label uncertainty, then evaluate the model performance with respect to different abstaining

ratios of top uncertain inputs. The accuracy curves suggest that a potential way to improve

the robustness of classification systems is to enable the classifier an option to abstain on

examples with high label uncertainty score.

For example, if we allow the robust classifier of [17] to abstain on the 2% of the test examples

whose label uncertainty exceeds 0.7, the clean accuracy improves from 89.7% to 90.3%,

while the robust accuracy increases from 59.5% to 60.4%. This is close to the maximum

robust accuracy that could be achieved with a 2% abstention rate (0.595/(1−0.02) = 0.607).

This result points to abstaining on examples in high label uncertainty regions as a promising

path towards achieving adversarial robustness.

4.5.4 Estimating Label Errors using Confident Learning

The proposed concentration estimation framework relies on the knowledge of human soft

labels to determine which example has label uncertainty exceeding a certainty threshold.

Since typical datasets do not provide such label information like CIFAR-10H, this raises

the question of how to extend our method to the setting where human soft labels are un-

available. In this section, we make an initial attempt to address the aforementioned issue

using the confident learning approach of [91]. Their goal was to identify label errors for a
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dataset, which is closely related to label uncertainty. The method first computes a confi-

dence joint matrix based on the predicted probabilities of a pretrained classifier, then selects

the top examples based on a ranking rule, such as self-confidence or max margin. If we are

able to approximate human label uncertainty from the raw inputs and labels, or identify the

set of examples with high label uncertainty, then we can immediately adapt our proposed

framework by leveraging such estimated results. However, we observe only a weak corre-

lation between the set of label errors that are produced by confident learning and the set of

examples with high human label uncertainty.

We conduct the experiments on CIFAR-10 and identify the set of label errors based on con-

fident learning. We train a ResNet-50 based classification model on the CIFAR-10 training

data, and select examples in the CIFAR-10 test dataset as labeling errors using the best

ranking method suggested in [91]. Figure 4.6(a) compares the distribution of human label

uncertainty (based on the human soft labels from CIFAR-10H) between the set of estimated

label error and non-errors. Although the set of examples estimated as label error have rel-

ative higher human label uncertainty compared with non-errors, there exist over 30% of

estimated label errors have 0 label uncertainty for human annotators. It implies that there

is a mismatch between label errors identified by human and that estimated using confident

learning techniques. This is confirmed by the precision-recall curve presented in Figure

4.6(b). We treat examples with human label uncertainty exceeding 0.5 as the ‘ground-truth’

uncertain images, and vary the size of produced set of label errors to plot the precision and

recall curve. The fact that precision rate is uniformly lower than 0.25, indicating that over

75% of the estimate error examples have human label uncertainty less than 0.5.

Figure 4.7 visualizes the human label distribution and estimated label distribution on CIFAR-

10. We compute the estimated label uncertainty of each CIFAR-10 testing examples by re-

placing the human label distribution with the predicted probabilities of the trained model.
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(a) Error versus Non-error (b) Precision Recall Curve

Figure 4.6: Illustration of misalignment label errors recognized by human and those iden-
tified by confident learning (a) Distribution of human label uncertainty between errors and
non-errors estimated using confident learning; (b) Precision-recall curve for estimating the
set of examples with human label uncertainty exceeding 0.5.

There exists a misalignment between the human label distribution and the distribution esti-

mated using some neural network. This again confirms that label errors produced by con-

fident learning are not guaranteed to be examples that are difficult for humans.

4.6 Summary

In this chapter, we show that standard concentration fails to sufficiently capture intrinsic

robustness since it ignores data labels. Based on the definition of label uncertainty, we ob-

serve that the error regions induced by state-of-the-art classification models all tend to have

high label uncertainty. This motivates us to develop an empirical method to study the con-

centration behavior regarding the input regions with high label uncertainty, which results

in more accurate intrinsic robustness measures for benchmark image classification tasks.

Our experiments show the importance of considering labels in understanding intrinsic ro-

bustness, and further suggest that abstaining based on label uncertainty could be a potential

method to improve the classifier accuracy and robustness.
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Figure 4.7: Visualization of label distribution of top uncertain CIFAR-10 test images esti-
mated using a confident learning approach. Both human and estimated label distribution
are plotted in each figure. The corresponding label uncertainty scores are computed and
provided under each image, while the original CIFAR-10 label is highlighted in blue above
each image.
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Chapter 5

Learning Robust Representations1

5.1 Introduction

Motivated by the empirical and theoretical challenges of robust learning with adversarial

examples, we study the underlying problem of learning adversarially robust representa-

tions [46, 94]. Given an input space X ⊆ Rd and a feature space Z ⊆ Rn, any function

g : X → Z is called a representation with respect to (X ,Z). Adversarially robust rep-

resentations denote the set of functions from X to Z that are less sensitive to adversarial

perturbations with respect to some metric ∆. Note that one can always get an overall clas-

sification model by learning a downstream classifier given a representation, thus learning

representations that are robust can be viewed as an intermediate step for the ultimate goal of

finding adversarially robust models. In this sense, learning adversarially robust represen-

tations may help us better understand adversarial examples, and perhaps more importantly,

bypass some of the aforementioned intrinsic barriers for achieving model robustness.

In the following, we first give a general definition for robust representations based on mutual

information, then study its implications on model robustness for a downstream classification

task. Finally, we propose empirical methods for estimating and inducing representation

robustness, and demonstrate the effectiveness of our method through experiments.
1Sicheng Zhu*, Xiao Zhang*, David Evans, Learning Adversarially Robust Representations via Worst-

Case Mutual Information Maximization, in the Thirty-seventh International Conference on Machine Learning
(ICML 2022) [135].
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5.2 Preliminaries

Mutual information. Mutual information is an entropy-based measure of the mutual de-

pendence between variables.

Definition 5.1. Let (X,Z) be a pair of random variables with values over the space X ×Z .

The mutual information of (X,Z) is defined as:

I(X;Z) =

∫
Z

∫
X
pXZ(x, z) log

(
pXZ(x, z)

pX(x)pZ(z)

)
dxdz,

where pXZ is the joint probability density function of (X,Z), and pX , pZ are the marginal

probability density functions of X and Z, respectively.

Intuitively, I(X;Z) tells us how well one can predict Z from X (and X from Z, since it is

symmetrical). By definition, I(X;Z) = 0 if X and Z are independent; when X and Z are

identical, I(X;X) equals to the entropy H(X).

Wasserstein distance. Wasserstein distance is a distance function defined between two

probability distributions on a given metric space.

Definition 5.2. Let (X ,∆) be a metric space with bounded support. Given two probability

measures µ and ν on (X ,∆), the p-th Wasserstein distance, for any p ≥ 1, is defined as:

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
X×X

∆(x,x′)p dγ(x, x′)

)1/p

,

where Γ(µ, ν) is the collection of all probability measures on X ×X with µ and ν being the

marginals of the first and second factor, respectively. The p-th Wasserstein ball with respect

104



to µ and radius ϵ ≥ 0 is defined as:

Bϵ(µ;Wp) = {µ′ ∈ P(X ) : Wp(µ
′, µ) ≤ ϵ}.

Note that the ∞-Wasserstein distance is defined as the limit of p-th Wasserstein distance,

W∞(µ, ν) = limp→∞ Wp(µ, ν).

Adversarial risk. Adversarial risk captures the vulnerability of a given classification model

to input perturbations. In this chapter, we work with the following definition of adversarial

risk, which has been used for robustness evaluation in previous works such as [79, 119, 126].

Definition 5.3. Let (X ,∆) be the input metric space and Y be the set of labels. Let µXY

be the underlying distribution of the input and label pairs. For any classifier f : X → Y ,

the adversarial risk of f with respect to ϵ ≥ 0 is defined as:

AdvRiskϵ(f) = Pr
(x,y)∼µXY

[
∃ x′ ∈ Bϵ(x) s.t. f(x′) ̸= y

]
.

Adversarial risk with ϵ = 0 is equivalent to standard risk, namely AdvRisk0(f) = Risk(f) =

Pr(x,y)∼µ[f(x) ̸= y]. Note that different from the adversarial risk definition used in previ-

ous sections (Definition 3.1), Definition 5.3 does not assume the existence of a ground-

truth concept function. However, as long as the small perturbations preserve the underlying

ground-truth, these definitions of adversarial risk are equivalent to each other.

In addition, for any classifier f : X → Y , we define the adversarial gap of f as:

AGϵ(f) = AdvRiskϵ(f)− Risk(f).
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5.3 Adversarially Robust Representations

In this section, we first propose a definition of representation vulnerability, and then prove

a theorem that bounds achievable model robustness based on representation vulnerability.

5.3.1 Defining Representation Vulnerability

Let X ⊆ Rd be the input space and Z ⊆ Rn be some feature space. We define a represen-

tation to be a function g that maps any input x in X to some vector g(x) ∈ Z . A classifier,

f = h◦g, maps an input to a label in a label space Y , and is a composition of a downstream

classifier, h : Z → Y , with a representation, g : X → Z . As is done in previous works

[46, 61], we define a feature as a function from X to R, so can think of a representation as

an array of features.

Inspired by the empirical success of standard representation learning using the mutual infor-

mation maximization principle [58], we propose the following definition of representation

vulnerability, which captures the robustness of a given representation against input distri-

bution perturbations in terms of mutual information between its input and output.

Definition 5.4 (Representation Vulnerability). Let (X , µX ,∆) be a metric probability space

of inputs and Z be some feature space. Given a representation g : X → Z and ϵ ≥ 0, the

representation vulnerability of g with respect to perturbations bounded in an∞-Wasserstein

ball with radius ϵ is defined as:

RVϵ(g) = sup
µX′∈Bϵ(µX ;W∞)

[
I(X; g(X))− I(X ′; g(X ′))

]
,

where X and X ′ denote random variables that follow µX and µX′ , respectively.
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Representation vulnerability is always non-negative, and higher values indicate that the rep-

resentation is less robust to adversarial input distribution perturbations. More formally,

given parameters ϵ ≥ 0 and τ ≥ 0, a representation g is called (ϵ, τ)-robust if RVϵ(g) ≤ τ .

Notably, using the∞-Wasserstein distance does not restrict the choice of the metric function

∆ of the input space. This metric ∆ corresponds to the perturbation metric for defining

adversarial examples. Thus, based on our definition of representation vulnerability, our

following theoretical results and empirical methods work with any adversarial perturbation,

including any ℓp-norm based attack.

Compared with existing definitions of robust features [46, 61, 43], our definition is more

general and enjoys several desirable properties. As it does not impose any constraint on the

feature space, it is invariant to scale change2 and it does not require the knowledge of the

labels. The most similar definition to ours is from [94], who propose to use statistical Fisher

information as the evaluation criteria for feature robustness. However, Fisher information

can only capture the average sensitivity of the log conditional density to small changes on

the input distribution (when ϵ → 0), whereas our definition is defined with respect to the

worst-case input distribution perturbations in an∞-Wasserstein ball, which is more aligned

with the adversarial setting. As will be shown next, our representation robustness notion

has a clear connection with the potential model robustness of any classifier that can be built

upon a representation.

5.3.2 Theoretical Results

In this section, we present our main theoretical results regarding robust representations.

First, we present the following lemma that characterizes the connection between adversarial
2Scale-invariance is desirable for representation robustness. Otherwise, one can always divide the function

by some large constant to improve its robustness, e.g., [46].
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risk and input distribution perturbations bounded in an∞-Wasserstein ball.

Lemma 5.5. Let (X ,∆) be the input metric space and Y be the set of labels. Assume all

the examples are generated from a joint probability distribution (X,Y ) ∼ µXY . Let µX be

the marginal distribution of X . Then, for any classifier f : X → Y and ϵ > 0, we have

AdvRiskϵ(f) = sup
µX′∈Bϵ(µX ;W∞)

Pr
[
f(X ′) ̸= Y

]
,

where X ′ denotes the random variable that follows µX′ .

Proof of Lemma 5.5. Before starting the proof, we introduce the following notations and an

alternative definition of the∞-Wasserstein distance. Let (X , µ) and (Y , ν) be two proba-

bility spaces. We say that T : X → Y transports µ ∈ P(X ) to ν ∈ P(Y), and we call T

a transport map, if ν(A) = µ(T−1(A)), for all ν-measurable sets E . In addition, for any

measurable map T : X → Y , we define the pushforward of µ through T as

(T#(µ))(A) = µ(T−1(A)), for any measurable A ⊆ Y .

Alternative definition of∞-Wasserstein distance. From the perspective of transportation

theory, given two probability measures µ and ν on (X ,∆), any joint probability distribution

γ ∈ Γ(µ, ν) corresponds to a specific transport map T : X → X that moves µ to ν. Then,

the p-th Wasserstein distance can viewed as finding the optimal transport map to move from

µ to ν that minimizes some cost functional depending on p [67]. For the case where p =∞,

if we let T be the transport map induced by a given γ ∈ Γ(µ, ν), then the cost functional

can be informally understood as the maximum of all the transport distances ∆(T (x),x).
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More rigorously, the∞-Wasserstein distance can be alternatively defined as

W∞(µ, ν) := inf
γ∈Γ(µ,ν)

γ -ess sup
(x,x′)∈X 2

∆(x,x′)

= inf
γ∈Γ(µ,ν)

inf
{
t ≥ 0: γ

(
∆(x,x′) > t

)
= 0
}
.

A more detailed discussion of∞-Wasserstein distance can be found in [18].

Now we are ready to prove Lemma 5.5. We are going prove the equality by proving ≤

inequalities in both directions. First, we prove

AdvRiskϵ(f) ≤ sup
µX′∈BW∞ (µX ,ϵ)

Pr
[
f(X ′) ̸= Y

]
. (5.1)

For any classifier f : X → Y , according to Definition 3.1, we have

AdvRiskϵ(f) = Pr
(x,y)∼µXY

[
∃ x′ ∈ B(x, ϵ) s.t. f(x′) ̸= y

]
.

Since f is a given deterministic function, the optimal perturbation scheme that achieves

AdvRiskϵ(f) essentially defines a transport map T : X → X . More specifically, let

Cy(f) = {x ∈ X : f(x) ̸= y}. Then, for any sampled pair (x, y) ∼ µXY , we can

construct T such that

T (x) =

 argminx′∈Cy(f) ∆(x′,x), if Cy(f) ∩ B(x, ϵ) ̸= ∅;

x, otherwise.

Let (X,Y ) be the random variable that follows µXY . By construction, it can be easily

verified that T#(µX) ∈ Bϵ(µX ;W∞) and AdvRiskϵ(f) = Pr
[
f(T (X)) ≠ Y

]
. Therefore,

we have proven (5.1).
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It remains to prove the other direction of the inequality:

AdvRiskϵ(f) ≥ sup
µX′∈BW∞ (µX ,ϵ)

Pr
[
f(X ′) ̸= Y

]
. (5.2)

According to the alternative definition of∞-Wasserstein distance, the optimal solution µ∗X′

that achieves the supremum of the right hand side of (5.2) can be captured by a transport

map T ∗ : X → X such that µ∗X′ = T ∗# (µX) and ∆(T ∗(X), X) ≤ ϵ holds almost surely

with respect to the randomness of X and T ∗. Thus, we have

Pr
[
f(T ∗(X)) ̸= Y

]
= Pr

(x,y)∼µXY

[
f(T ∗(x)) ̸= y

]
= Pr

(x,y)∼µXY

[
∆(T ∗(x),x) ≤ ϵ and f(T ∗(x)) ̸= y

]
≤ 1− Pr

(x,y)∼µXY

[
∀ x′ ∈ Bϵ(x) s.t. f(x′) = y

]
= AdvRiskϵ(f).

Therefore, we have proven the second direction and completed the proof.

The following theorem gives a lower bound for the adversarial risk for any downstream

classifier, using the worst-case mutual information between the representation’s input and

output distributions.

Theorem 5.6. Let (X ,∆) be the input metric space, Y be the set of labels and µXY be the

underlying joint probability distribution. Assume the marginal distribution of labels µY is

a uniform distribution over Y . Consider the feature space Z and the set of downstream

classifiersH = {h : Z → Y}. Given ϵ ≥ 0, for any g : X → Z , we have

inf
h∈H

AdvRiskϵ(h ◦ g) ≥ 1− I(X;Z)− RVϵ(g) + log 2
log |Y|

,

where X is the random variable that follows the marginal distribution of inputs µX and
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Z = g(X).

Proof of Theorem 5.6. Before starting the proof, we state two useful lemmas on Markov

chains. A Markov chain is defined to be a collection of random variables {Xt}t∈Z with the

property that given the present, the future is conditionally independent of the past. Namely,

Pr(Xt = j|X0 = i0, X1 = i1, ..., X(t−1) = i(t−1)) = Pr(Xt = j|X(t−1) = i(t−1)).

Lemma 5.7 (Fano’s Inequality). Let X be a random variable uniformly distributed over a

finite set of outcomes X . For any estimator X̂ such that X → Y → X̂ forms a Markov

chain, we have

Pr(X̂ ̸= X) ≥ 1− I(X; X̂)− log 2
log |X |

.

Lemma 5.8 (Data-Processing Inequality). For any Markov chain X → Y → Z, we have

I(X;Y ) ≥ I(X;Z) and I(Y ;Z) ≥ I(X;Z).

Chapter 2 in [20] provides proofs of Lemmas 5.7 and 5.8.

Now we are ready to prove Theorem 5.6.

For any classifier h : Z → Y , according to Lemma 5.5, we have

AdvRiskϵ(h ◦ g) = sup
µX′∈BW∞ (µX ,ϵ)

Pr
[
h(g(X ′)) ̸= Y

]
. (5.3)

Let µX′ ∈ Bϵ(µX ;W∞) be a probability measure over (X ,∆). According to the alternative

definition of∞-Wasserstein distance using optimal transport, µX′ corresponds to a transport
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map T : X → X such that µX′ = T#(µX). Thus, for any given µX′ ∈ Bϵ(µX ;W∞) and

h ∈ H, we have the Markov chain

Y →X T−→ X ′
g−→ g(X ′)

h−→ (h ◦ g)(X ′).

where X,Y are random variables for input and label distributions respectively. The first

Markov chain Y → X can be understood as a generative model for generating inputs ac-

cording to the conditional probability distribution µX|Y . Therefore, applying Lemmas 5.7

and 5.8, we obtain the inequality,

Pr
[
h(g(X ′)) ̸= Y

]
≥ 1−

I
(
Y ; (h ◦ g)(X ′)

)
+ log 2

log |Y|
≥ 1−

I
(
X ′; g(X ′)

)
+ log 2

log |Y|
. (5.4)

Taking the supremum over the distribution of X ′ in Bϵ(µX ;W∞) and infimum over h ∈ H

on both sides of (5.4) yields

inf
h∈H

[
AdvRiskϵ(h ◦ g)

]
= inf

h∈H
sup

µX′∈Bϵ(µX ;W∞)

Pr
[
h(g(X ′)) ̸= Y

]
≥ 1−

infµX′∈Bϵ(µX ;W∞) I
(
X ′; g(X ′)

)
+ log 2

log |Y|

= 1− I(X; g(X))− RVϵ(g) + log 2
log |Y|

,

where the first equality is due to (5.3) and the inequality holds because of (5.4). Thus, we

completed the proof.

Remark 5.9. Theorem 5.6 suggests that adversarial robustness cannot be achieved if the

available representation is highly vulnerable or the standard mutual information between

X and g(X) is low. Note that I(X; g(X)) − RVϵ(g) = inf{I(X ′; g(X ′)) : X ′ ∼ µX′ ∈

Bϵ(µX ;W∞)}, which corresponds to the worst-case mutual information between input and

output of g. Therefore, if we assume robust classification as the downstream task for repre-

112



sentation learning, then the representation having high worst-case mutual information is a

necessary condition for achieving adversarial robustness for the overall classifier.

In addition, it is worth noting that Theorem 5.6 can be extended to general p-th Wasserstein

distances, if the downstream classifiers are evaluated based on robustness under distribu-

tional shift3, instead of adversarial risk. To be more specific, if using Wp metric to define

representation vulnerability, we can then establish an upper bound on the maximum distri-

butional robustness with respect to the considered Wp metric for any downstream classifier

based on similar proof techniques of Theorem 5.6.

5.4 Measuring Representation Vulnerability

This section presents an empirical method for estimating the vulnerability of a given rep-

resentation using i.i.d. samples. Recall from Definition 5.4, for any g : X → Z , the rep-

resentation vulnerability of g with respect to the input metric probability space (X , µX ,∆)

and ϵ ≥ 0 is defined as:

RVϵ(g) = I(X; g(X))︸ ︷︷ ︸
J1

− inf
µX′∈Bϵ(µX ;W∞)

I(X ′; g(X ′))︸ ︷︷ ︸
J2

. (5.5)

To measure representation vulnerability, we need to compute both terms J1 and J2. How-

ever, the main challenge is that we do not have the knowledge of the underlying probability

distribution µX for real-world problem tasks. Instead, we only have access to a finite set of

data points sampled from the distribution. Therefore, it is natural to consider sample-based

estimator for J1 and J2 for practical use.

The first term J1 is essentially the mutual information betweenX and Z = g(X). A variety
3See [113] for a rigorous definition of distributional robustness.
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of methods have been proposed for estimating mutual information [87, 24, 115, 63, 86]. The

most effective estimator is the mutual information neural estimator (MINE) [8], based on

the dual representation of KL-divergence [33]:

Îm(X;Z) = sup
θ∈Θ

E
µ̂
(m)
XZ

[Tθ]− log
(
E
µ̂
(m)
X ⊗µ̂(m)

Z
[exp(Tθ)]

)
,

where Tθ : X × Z → R is the function parameterized by a deep neural network with

parameters θ ∈ Θ, and µ̂(m)
XZ , µ̂(m)

X and µ̂(m)
Z denote the empirical distributions4 of random

variables (X,Z), X and Z respectively, based on m samples. In addition, [8] empirically

demonstrates the superiority of the proposed estimator in terms of estimation accuracy and

efficiency, and prove that it is strongly consistent: for all ε > 0, there exists M ∈ Z such

that for any m ≥ M , |̂Im(X;Z) − I(X;Z)| ≤ ε almost surely. Given the established

effectiveness of this method, we implement MINE to estimate I(X; g(X)) as the first step.

Compared with J1, the second term J2 is much more difficult to estimate, as it involves

finding the worst-case perturbations on µX in a∞-Wasserstein ball in terms of mutual in-

formation. As with the estimation of J1, we only have a finite set of instances sampled from

µX . On the other hand, due to the non-linearity and the lack of duality theory with respect to

the∞-Wasserstein distance [18], it is inherently difficult to directly solve an∞-Wasserstein

constrained optimization problem, even if we work with the empirical distribution of µX .

To deal with the first challenge, we replace µX with its empirical measure µ̂(m)
X based on

i.i.d. samples. Then, to avoid the need to search through the whole∞-Wasserstein ball, we

restrict the search space of µX′ to be the following set of empirical distributions:

Aϵ(S) =
{

1

m

m∑
i=1

δx′
i
: x′i ∈ Bϵ(xi) ∀i ∈ [m]

}
, (5.6)

4Given a set of m samples {xi}i∈[m] from a distribution µ, we let µ̂(m) = 1
m

∑
i∈[m] δxi

be the empirical
measure of µ.
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where S = {xi : i ∈ [m]} denotes the given set of m data points sampled from µX . Note

that the considered set Aϵ(S) ⊆ Bϵ(µ̂(m)
X ;W∞), since each perturbed point x′i is at most

ϵ-away from xi. Finally, making use of the dual formulation of KL-divergence that is used

in MINE, we propose the following empirical optimization problem for estimating J2:

min
µX′

Îm
(
X ′; g(X ′)

)
s.t. µX′ ∈ Aϵ(S), (5.7)

where we simply set the empirical distribution µ̂(m)
X′ to be the same as µX′ . In addition,

we propose a heuristic alternating minimization algorithm to solve (5.7) (see Appendix B

of [135] for the pseudocode and a complexity analysis of the proposed algorithm). More

specifically, our algorithm alternatively performs gradient ascent on θ for the inner maxi-

mization problem of estimating Îm(X ′; g(X ′)) given µ′X , and searches for the set of worst-

case perturbations on {x′i : i ∈ [m]} given θ based on projected gradient descent.

5.5 Learning Robust Representations

In this section, we present our method for learning adversarially robust representations.

First, we introduce the mutual information maximization principle for representation learn-

ing [75, 9]. Mathematically, given an input probability distribution µX and a set of repre-

sentations G = {g : X → Z}, the maximization principle proposes to solve this problem:

max
g∈G

I
(
X; g(X)

)
. (5.8)

Although this principle has been shown to be successful for learning good representations

under the standard setting [58], it becomes ineffective when considering adversarial per-

turbations (see Table 5.1 for an illustration). Motivated by the theoretical connections be-
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tween feature sensitivity and adversarial risk for downstream robust classification shown in

Section 5.3, we stimulate robust representations by adding a regularization term based on

representation vulnerability:

max
g∈G

I(X; g(X))− β · RVϵ(g), (5.9)

where β ≥ 0 is the trade-off parameter between I(X; g(X)) and RVϵ(g). When β = 0,

(5.9) is same as the objective for learning standard representations (5.8). Increasing the

value of β will produce representations with lower vulnerability, but may undesirably affect

the standard mutual information I(g(X);X) if β is too large. In particular, we set β = 1 in

the following discussions, which allows us to simplify (5.9) to obtain the following problem:

max
g∈G

min
µX′∈Bϵ(µX ;W∞)

I
(
X ′; g(X ′)

)
. (5.10)

The proposed training principle (5.10) aims to maximize the mutual information between

the representation’s input and output under the worst-case input distribution perturbation

bounded in a ∞-Wasserstein ball. We remark that problem (5.10) aligns well with the

results of Theorem 5.6, which shows the importance of the learned feature representation

achieving high worst-case mutual information for a downstream robust classification task.

As with estimating the feature sensitivity in Section 5.4, we do not have access to the under-

lying µX . However, the inner minimization problem is exactly the same as estimating the

worst-case mutual information J2 in (5.5), thus we can simply adapt the proposed empirical

estimator (5.7) to solve (5.10). To be more specific, we reparameterize g using a neural

network with parameter ψ ∈ Ψ and use the following min-max optimization problem:

max
ψ∈Ψ

min
µX′∈Aϵ(S)

Îm
(
X ′; gψ(X

′)
)
. (5.11)
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Based on the proposed algorithm for the inner minimization problem, (5.11) can be effi-

ciently solved using a standard optimizer, such as stochastic gradient descent.

5.6 Experiments

This section reports on experiments to study the implications of robust representations on

benchmark image datasets. Instead of focusing directly improving model robustness, our

experiments focus on understanding the proposed definition of robust representations as

well as its implications. Based on the proposed estimator in Section 5.4, Section 5.6.1

summarizes experiments to empirically test the relationship between representation vulner-

ability and model robustness, by extracting internal representations from the state-of-the-art

pre-trained standard and robust classification models. In addition, we empirically evaluate

the general lower bound on adversarial risk presented in Theorem 5.6. In Section 5.6.2,

we evaluate the proposed training principle for learning robust representations on image

datasets, and test its performance with comparisons to the state-of-the-art standard represen-

tation learning method in a downstream robust classification framework. We also visualize

saliency maps as an intuitive criteria for evaluating representation robustness.

We conduct experiments on CIFAR-10 [68], considering typical ℓ∞-norm bounded adver-

sarial perturbations with ϵ = 8/255. We use the PGD attack [79] for both generating ad-

versarial distributions in the estimation of worst-case mutual information and evaluating

model robustness. To implement our proposed estimator (5.7), we adopt the encode-and-

dot-product model architecture in [58] and adjust it to adapt to different forms of represen-

tations. We leverage implementations from [38] and [58] in our implementation.
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(a) (b)

Figure 5.1: (a) Normal and worst case mutual information for logit-layer representations.
Each pair of points shows the result of a specific model—the left point indicates the worst
case mutual information and the right for the normal mutual information. Filled points are
robust models; hollow points are standard models. (b) Correlations between the representa-
tion vulnerability and the CIFAR-10 model’s natural-adversarial accuracy gap. Filled points
indicate robust models (trained with ϵ = 8/255), half-filled are models adversarially trained
with ϵ = 2/255, and unfilled points are standard models.

5.6.1 Representation Robustness

To evaluate our proposed definition on representation vulnerability and its implications for

downstream classification models, we conduct experiments on image benchmarks using

various classifiers, including VGG [111], ResNet [55], DenseNet [59] and the simple con-

volutional neural network in [58] denoted as Baseline-H.

Correlation with model robustness. We empirically evaluate the correlation between our

representation vulnerability definition and achievable model robustness on image bench-

marks. Figure 5.1(a) summarizes the results of these experiments for CIFAR-10, where we

set the logit layer as the considered representation space. The adversarial gap decreases with

decreasing representation vulnerability in an approximately consistent relationship. Mod-

els with low logit layer representation vulnerability tend to have low natural-adversarial

accuracy gap, which is consistent with the intuition behind our definition.
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Adversarial risk lower bound. Theorem 5.6 provides a lower bound on the adversarial risk

that can be achieved by any downstream classifier as a function of representation vulnera-

bility. To evaluate the tightness of this bound, we estimate the normal-case and worst-case

mutual information I(X; g(X)) of layer representation g for different models, and empir-

ically evaluate the adversarial risk of the models. Figure 5.1(b) shows the results, where

we again set the logit layer as the feature space for a more direct comparison. The lower

bound of adversarial risk is calculated according to Theorem 5.6 and is converted to the

upper bound of adversarial accuracy for reference. In particular, for standard models, both

the estimated worst-case mutual information and the adversarial accuracy are close to zero,

whereas the computed upper bounds on adversarial accuracy are around 30%. We empir-

ically observed around 50% adversarial accuracy for robust models, whereas the bounds

computed using the estimated worst-case mutual information and Theorem 5.6 are about

75%. This shows that Theorem 5.6 gives a reasonably tight bound for a model’s adversarial

accuracy with respect to the logit-layer representation robustness.

Figure 5.1(b) also indicates that even the robust models produced by adversarial training

have representations that are not sufficiently robust to enable robust downstream classifi-

cations. For example, robust DenseNet121 in our evaluations has the highest logit layer

worst-case mutual information of 1.08, yet the corresponding adversarial accuracy is upper

bounded by 77.0% which is unsatisfactory for CIFAR-10. Such information theoretic lim-

itation also justifies our training principle of worst-case mutual information maximization,

since on the other hand the adversarial accuracy upper bound calculated by normal-case mu-

tual information does not constitute a limitation for most robust models in our experiments
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(as in Figure 5.1(a), most robust models achieve adversarial accuracy close to 100%).

Internal feature robustness. We further investigate the implications of our proposed def-

inition from the level of individual features. Specifically for neural networks, we consider

the function from the input to each individual neuron within a layer as a feature. The mo-

tivations for considering feature robustness comes from the fact that mutual information

in terms of the whole representation is controlled by the sum of all the features’ mutual

information and robust features are potentially easier to train [46]. As an illustration, we

evaluate the robustness of all the convolutional kernels in the second layer of the Baseline-H

model. Each neuron evaluated here is a composite convolutional kernel (all kernels in the

first layer connected to a second layer kernel) with image input size 10 × 10. Figure 5.2

shows the results that are averaged over two independently trained models for each type.

This result reveals the apparent difference in feature robustness between a standard model

and the adversarially-trained robust model, even in lower layers. Although in this case the

result does not prohibit a robust downstream model for lower layers neurons, for neurons

in higher layers the difference becomes more distinct and the vulnerability of neurons can

thus be the bottleneck of achieving high model robustness. The different feature robust-

ness according to our definition also coincide with the saliency maps of features, where

the saliency maps of robust features are apparently more interpretable compared to those of

standard features.

5.6.2 Learning Robust Representations

Our worst-case mutual information maximization training principle provides an unsuper-

vised way to learn adversarially robust representations. Since there are no established ways

to measure the robustness of a representation, empirically testing the robustness of repre-
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Figure 5.2: Distribution of mutual information I(X; g(X)) and feature vulnerability in the
second convolutional layer of Baseline-H. The upper plots are for standard models, and the
lower plots are for robust models. The total number of neurons is 128.

sentations learned by our training principle poses a dilemma. To avoid circular reasoning,

we evaluate the learned representations by running a series of downstream adversarial clas-

sification tasks and comparing the performance of the best models we are able to find for

each representation. In addition, recent work shows that the interpretability of saliency

map has certain connections with robustness [41, 61], thus we study the saliency map as an

alternative criteria for evaluating robust representations.

The unsupervised representation learning approach based on mutual information maximiza-

tion principle in [58] achieves the state-of-the-art results in many downstream tasks, includ-

ing standard classification. We further adopt their encoder architecture in our implementa-

tion, and extend their evaluation settings to adversarially robust classification. Specifically,

we truncate the front part of Baseline-H with a 64-dimensional latent layer output as the

representation g and train it by the worst-case mutual information maximization principle

using only unlabeled data (removing the labels from the normal training data). We test two
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MLP h Linear h
g h Natural Adversarial Natural Adversarial

[58] Std. 58.77± 0.22 0.22± 0.08 47.01± 0.53 0.15± 0.03
[58] Rob. 29.75± 1.49 15.08± 0.63 22.79± 1.42 10.28± 0.52
Ours Std. 62.54 ± 0.12 14.06± 0.69 50.29 ± 0.58 10.98± 0.49
Ours Std. (E.S.) 51.59± 3.34 27.53± 0.81 48.55± 0.63 13.52± 0.16
Ours Rob. 52.34± 0.17 31.52 ± 0.31 43.55± 0.10 25.15 ± 0.10

Supervised Std. 86.33± 0.17 0.07± 0.02 86.36± 0.13 0.02± 0.01
Supervised Rob. 70.71± 0.58 40.50± 0.27 72.44± 0.59 39.98± 0.16

Table 5.1: Comparisons of different methods on CIFAR-10 in downstream classification
settings. E.S. denotes early stopping under the criterion of the best adversarial accuracy.
We present mean accuracy and the standard deviation over 4 repeated trials.

architectures (two-layer multilayer perceptron and linear classifier) for implementing the

downstream classifier h and train it using labeled data after the encoder g has been trained

using unlabeled data.

Downstream classification tasks. Comparison results on CIFAR-10 are demonstrated in

Table 5.1. The fully-supervised models are trained for reference, from which we can see

the simple model architecture we use achieves a decent natural accuracy of 86.3%; the

adversarially-trained robust model reduces accuracy to around 70% with adversarial accu-

racy of 40.5%. The baseline, with g and h both trained normally, resembles the setting in

[58] and achieves a natural accuracy of 58.8%. For representations learned using worst-

case mutual information maximization, the composition with standard two-layer multilayer

perceptron (MLP) h achieves a non-trivial (compared to the 0.2% for the standard rep-

resentation) adversarial accuracy of 14.1%. When h is further trained using adversarial

training, the robust accuracy increases to 31.5% which is comparable to the result of the

robust fully-supervised model. As an ablation, the robust h based on standard g achieves

an adversarial accuracy of 15.1%, yet the natural accuracy severely drops below 30%, in-

dicating that a robust classifier cannot be found using the vulnerable representation. The
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case where h is a simple linear classifier shows similar results. These comparisons show

that the representation learned using worst-case mutual information maximization can make

the downstream classification more robust over the baseline and approaches the robustness

of fully-supervised adversarial training. This provides evidence that our training principle

produces adversarially robust representations.

Another interesting implication given by results in Table 5.1 is that robustly learned repre-

sentations may also have better natural accuracy (62.5%) over the standard representation

(58.8%) in downstream classification tasks on CIFAR-10. This matches our experiments in

Figure 5.1(b) where logit layer representations in robust models conveys more normal-case

mutual information (up to 1.75) than those in standard models (up to 1.25).

Saliency maps. A saliency map is commonly defined as the gradient of a model’s loss with

respect to the model’s input [41]. For a classification model, it intuitively illustrates what

the model looks for in changing its classification decision for a given sample. Recent work

[41, 61] indicates, at least in some synthetic settings, that the more alignment the saliency

map has with the input image, the more adversarially robust the model is. As an additional

test of representation robustness, we calculate the saliency maps of standard and robust

representations g by the mutual information maximization loss with respect to the input.

Figure 5.3 shows that the saliency maps of the robust representation appear to be much less

noisy and more interpretable in terms of the alignment with original images. Intuitively,

this shows that robust representations capture relatively higher level visual concepts instead

of pixel-level statistical clues [39]. The more interpretable saliency maps of representation

learned by our training principle further support its effectiveness in learning adversarially

robust representation.
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Figure 5.3: Visualization of saliency maps of different models on CIFAR-10: (a) original
images (b) representations learned using [58] (c) representations learned using our method.

5.7 Summary

In this chapter, we proposed a novel definition of representation robustness based on the

worst-case mutual information, and showed both theoretical and empirical connections be-

tween our definition of representation robustness and model robustness for a downstream

classification task. In addition, by developing estimation and training methods for repre-

sentation robustness, we demonstrated the connection and the usefulness of the proposed

method on benchmark datasets. Our results are not enough to produce strongly robust mod-

els, but they provide a new approach for understanding and measuring achievable adversarial

robustness at the level of representations.

124



Chapter 6

Towards Building Better Robust Models

6.1 Introduction

Previous chapters mainly focus on advancing our understanding on adversarial examples as

well as studying the fundamental causes behind the adversarial vulnerability of existing ma-

chine learning classifiers. In this chapter, we shift our focus from understanding adversarial

robustness to exploring ways to build better robust systems by rethinking the robustness

design goal.

We show in Chapter 3 and Chapter 4 that there exists intrinsic limits for achieving adversarial

robustness, due to the concentration of data distribution and the existence of inputs with

high label uncertainty. Built upon the current design goal for adversarial robustness, we

have no hope to escape such intrinsic robustness limits, unless we can produce a perfect

classifier with zero standard risk. Learning such a perfect classifier, however, seems to be a

difficult task, since uncertain inputs are likely to incur classification errors, and there may

exist inherent trade-offs between robustness and accuracy [119, 99].

We argue that the typical design goal for building adversarially robust classifiers, which is

termed as overall robustness in this chapter, may not be appropriate under certain scenarios.

More formally, the overall robustness of a classifier f with respect to perturbations with
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strength ϵ measured by metric ∆ is defined as:

AdvRobϵ(f) = 1− Pr
x∼µ

[
∃ x′ ∈ Bϵ(x) s.t. f(x′) ̸= c(x)

]
, (6.1)

where µ represents the underlying input distribution and c is the concept function that assign

a label to each input. For practical evaluation of overall robustness, the empirical measure

based on a set of inputs {xi}i∈[N ] is typically used to replace the population measure µ.

Note that this notion of overall robustness is different from Definition 3.1, which is used

throughout our previous discussions on intrinsic robustness. However, since we usually do

not have the knowledge of the ground-truth label beyond standard inputs, it is much easier

to measure the system’s robustness based on overall robustness from a practical perspective.

Although overall robustness seems to reflect a classifier’s resilience to adversarial pertur-

bations, we argue in this chapter that it is less meaningful to be treated as the evaluation

criterion for robustness when only certain kinds of adversarial misclassifications provide

value for potential adversaries (Section 6.2), or when input examples with uncertain class

labels are being assessed (Section 6.3). Therefore, we design more meaningful ways for as-

sessing system’s robustness performance and discuss potential methods for building better

robust models under each of the aforementioned scenarios.
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6.2 Cost-Sensitive Robustness1

6.2.1 Background

This section provides a brief introduction on related topics, including neural network classi-

fiers, adversarial examples, defenses with certified robustness, and cost-sensitive learning.

Neural Network Classifiers. A K-layer neural network classifier can be represented by a

function f : X → Y such that f(x) = fK−1(fK−2(· · · (f1(x)))), for any x ∈ X . For k ∈

{1, 2, . . . , K−2}, the mapping function fk(·) typically consists of two operations: an affine

transformation (either matrix multiplication or convolution) and a nonlinear activation. In

this paper, we consider rectified linear unit (ReLU) as the activation function. If denote the

feature vector of the k-th layer as zk, then fk(·) is defined as:

zk+1 = fk(zk) = max{Wkzk + bk, 0}, ∀k ∈ {1, 2, . . . K − 2},

where Wk denotes the weight parameter matrix and bk the bias vector. The output func-

tion fK−1(·) maps the feature vector in the last hidden layer to the output space Y solely

through matrix multiplication: zK = fK−1(zK−1) = WK−1zK−1 + bK−1, where zK can

be regarded as the estimated score vector of input x for different possible output classes.

In the following discussions, we use fθ to represent the neural network classifier, where

θ = {W1, . . . ,WK−1, b1, . . . , bK−1} denotes the model parameters.

To train the neural network, a loss function
∑N

i=1 L(fθ(xi), yi) is defined for a set of training

examples {xi, yi}Ni=1, where xi is the i-th input vector and yi denotes its class label. Cross-

entropy loss is typically used for multiclass image classification. With proper initialization,
1Xiao Zhang, David Evans, Cost-Sensitive Robustness against Adversarial Examples, in the Seventh In-

ternational Conference on Learning Representations (ICLR 2019) [132].
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all model parameters are then updated iteratively using backpropagation. For any input

example x̃, the predicted label ŷ is given by the index of the largest predicted score among

all classes, argmaxj[fθ(x̃)]j .

Adversarial Examples. An adversarial example is an input, generated by some adversary,

which is visually indistinguishable from an example from the natural distribution, but is

able to mislead the target classifier. Since “visually indistinguishable” depends on human

perception, which is hard to define rigorously, we consider the most popular alternative: in-

put examples with perturbations bounded in ℓ∞-norm [51]. The set of adversarial examples

with respect to seed example {x0, y0} and classifier fθ(·) is defined as:

Aϵ(x0, y0; θ) =
{
x ∈ X : ∥x− x0∥∞ ≤ ϵ and argmax

j
[fθ(x)]j ̸= y0

}
, (6.2)

where ϵ > 0 denotes the maximum perturbation distance. Although ℓp distances are com-

monly used in adversarial examples research, they are not an adequate measure of perceptual

similarity [109] and other minimal geometric transformations can be used to find adversarial

examples [40, 62, 124]. Nevertheless, there is considerable interest in improving robustness

in this simple domain, and hope that as this research area matures we will find ways to apply

results from studying simplified problems to more realistic ones.

Defenses with Certified Robustness. A line of recent work has proposed defenses that

are guaranteed to be robust against norm-bounded adversarial perturbations. [56] proved

formal robustness guarantees against ℓ2-norm bounded perturbations for two-layer neural

networks, and provided a training method based on a surrogate robust bound. [97] devel-

oped an approach based on semidefinite relaxation for training certified robust classifiers,

but was limited to two-layer fully-connected networks. Our work builds most directly on

[121], which can be applied to deep ReLU-based networks and achieves the state-of-the-art
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certified robustness on MNIST dataset.

Following the definitions in [121], an adversarial polytope Zϵ(x) with respect to a given

example x is defined as

Zϵ(x) =
{
fθ(x+ δ) : ∥δ∥∞ ≤ ϵ

}
, (6.3)

which contains all the possible output vectors for the given classifier fθ by perturbing x

within an ℓ∞-norm ball with radius ϵ. A seed example, {x0, y0}, is said to be certified

robust with respect to maximum perturbation distance ϵ, if the corresponding adversarial

example setAϵ(x0, y0; θ) is empty. Equivalently, if we solve, for any output class ytarg ̸= y0,

the optimization problem,

minimize
zK

[zK ]y0 − [zK ]ytarg , subject to zK ∈ Zϵ(x0), (6.4)

then according to the definition ofAϵ(x0, y0; θ) in (6.2), {x0, y0} is guaranteed to be robust

provided that the optimal objective value of (6.4) is positive for every output class. To

train a robust model on a given dataset {xi, yi}Ni=1, the standard robust optimization aims

to minimize the sample loss function on the worst-case locations through the following

adversarial loss

minimize
θ

N∑
i=1

max
∥δ∥∞≤ϵ

L
(
fθ(xi + δ), yi

)
, (6.5)

whereL(·, ·) denotes the cross-entropy loss. However, due to the nonconvexity of the neural

network classifier fθ(·) introduced by the nonlinear ReLU activation, both the adversarial

polytope (6.3) and training objective (6.5) are highly nonconvex. In addition, solving opti-

mization problem (6.4) for each pair of input example and output class is computationally
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intractable.

Instead of solving the optimization problem directly, [121] proposed an alternative training

objective function based on convex relaxation, which can be efficiently optimized through

a dual network. Specifically, they relaxed Zϵ(x) into a convex outer adversarial polytope

Z̃ϵ(x) by replacing the ReLU inequalities for each neuron z = max{ẑ, 0} with a set of

inequalities,

z ≥ 0, z ≥ ẑ, −uẑ + (u− ℓ)z ≤ −uℓ, (6.6)

where u, ℓ denote the lower and upper bounds on the considered pre-ReLU activation.2

Based on the relaxed outer bound Z̃ϵ(x), they propose the following alternative optimization

problem,

minimize
zK

[zK ]y0 − [zK ]ytarg , subject to zK ∈ Z̃ϵ(x0), (6.7)

which is in fact a linear program. Since Zϵ(x) ⊆ Z̃ϵ(x) for any x ∈ X , solving (6.7) for

all output classes provides stronger robustness guarantees compared with (6.4), provided

all the optimal objective values are positive. In addition, they derived a guaranteed lower

bound, denoted by Jϵ
(
x0, gθ(ey0 − eytarg)

)
, on the optimal objective value of Equation 6.7

using duality theory, where gθ(·) is a K-layer feedforward dual network (Theorem 1 in

[121]). Finally, according to the properties of cross-entropy loss, they minimize the follow-

ing objective to train the robust model, which serves as an upper bound of the adversarial

loss (6.5):

minimize
θ

1

N

N∑
i=1

L
(
− Jϵ

(
xi, gθ(eyi · 1⊤ − I)

)
, yi

)
, (6.8)

2The elementwise activation bounds can be computed efficiently using Algorithm 1 in [121].

130



where 1 denotes the all-ones vector, I denotes the identity matrix and gθ(·) is regarded as

a column-wise function when applied to a matrix. Although the proposed method in [121]

achieves certified robustness, its computational complexity is quadratic with the network

size in the worst case so it only scales to small networks. Recently, [122] extended the train-

ing procedure to scale to larger networks by using nonlinear random projections. However,

if the network size allows for both methods, we observe a small decrease in performance

using the training method provided in [122]. Therefore, we only use the approximation

techniques for the experiments on CIFAR-10 (§6.2.3), and use the less scalable method for

the MNIST experiments (§6.2.3).

Cost-Sensitive Learning. Cost-sensitive learning [32, 37, 77] was proposed to deal with

unequal misclassification costs and class imbalance problems commonly found in classi-

fication applications. The key observation is that cost-blind learning algorithms tend to

overwhelm the major class, but the neglected minor class is often our primary interest. For

example, in medical diagnosis misclassifying a rare cancerous lesion as benign is extremely

costly. Various cost-sensitive learning algorithms [70, 128, 134, 64] have been proposed in

literature, but only a few algorithms, limited to simple classifiers, considered adversarial

settings.3 [23] studied the naive Bayes classifier for spam detection in the presence of a

cost-sensitive adversary, and developed an adversary-aware classifier based on game theory.

[4] proposed a cost-sensitive robust minimax approach that hardens a linear discriminant

classifier with robustness in the adversarial context. All of these methods are designed for

simple linear classifiers, and cannot be directly extended to neural network classifiers. In

addition, the robustness of their proposed classifier is only examined experimentally based

on the performance against some specific adversary, so does not provide any notion of cer-

tified robustness. Recently, [34] advocated for the idea of using application-level semantics
3Given the vulnerability of standard classifiers to adversarial examples, it is not surprising that standard

cost-sensitive classifiers are also ineffective against adversaries.
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in adversarial analysis, however, they didn’t provide a formal method on how to train such

classifier. Our work provides a practical training method that hardens neural network clas-

sifiers with certified cost-sensitive robustness against adversarial perturbations.

6.2.2 Training a Cost-Sensitive Robust Classifier

The approach introduced in [121] penalizes all adversarial class transformations equally,

even though the consequences of adversarial examples usually depends on the specific class

transformations. Here, we provide a formal definition of cost-sensitive robustness and pro-

pose a general method for training cost-sensitive robust models.

Certified Cost-Sensitive Robustness. Our approach uses a cost matrix C that encodes

the cost (i.e., potential harm to model deployer) of different adversarial examples. First,

we consider the case where there are m classes and C is a m × m binary matrix with

Cjj′ ∈ {0, 1}. The value Cjj′ indicates whether we care about an adversary transforming a

seed input in class j into one recognized by the model as being in class j′. If the adversarial

transformation j → j′ matters, Cjj′ = 1, otherwise Cjj′ = 0. Let Ωj = {j′ ∈ [m] : Cjj′ ̸=

0} be the index set of output classes that induce cost with respect to input class j. For any

j ∈ [m], let δj = 0 if Ωj is an empty set, and δj = 1 otherwise. We are only concerned

with adversarial transformations from a seed class j to target classes j′ ∈ Ωj . For any

example x in seed class j, x is said to be certified cost-sensitive robust if the lower bound

Jϵ(x, gθ(ej − ej′)) ≥ 0 for all j′ ∈ Ωj . That is, no adversarial perturbations in an ℓ∞-norm

ball around x with radius ϵ can mislead the classifier to any target class in Ωj .

The cost-sensitive robust error on a dataset {xi, yi}Ni=1 is defined as the number of examples

that are not guaranteed to be cost-sensitive robust over the number of non-zero cost candidate
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seed examples:

cost-sensitive robust error = 1− #{i ∈ [N ] : Jϵ(xi, gθ(eyi − ej′)) ≥ 0, ∀j′ ∈ Ωyi}∑
j|δj=1

Nj

,

where #A represents the cardinality of a set A, and Nj is the total number of examples in

class j.

Next, we consider a more general case where C is a m ×m real-valued cost matrix. Each

entry of C is a non-negative real number, which represents the cost of the corresponding

adversarial transformation. To take into account the different potential costs among adver-

sarial examples, we measure the cost-sensitive robustness by the average certified cost of

adversarial examples. The cost of an adversarial example x in class j is defined as the sum

of all Cjj′ such that Jϵ(x, gθ(ej − ej′)) < 0. Intuitively speaking, an adversarial example

will induce more cost if it can be adversarially misclassified as more target classes with

high cost. Accordingly, the robust cost is defined as the total cost of adversarial examples

divided by the total number of valued seed examples:

robust cost =

∑
j|δj=1

∑
i|yi=j

∑
j′∈Ωj

Cjj′ · 1
(
Jϵ(xi, gθ(ej − ej′)) < 0

)∑
j|δj=1

Nj

, (6.9)

where 1(·) denotes the indicator function.

Cost-Sensitive Robust Optimization. Recall that our goal is to develop a classifier with

certified cost-sensitive robustness, while maintaining overall classification accuracy. Ac-

cording to the guaranteed lower bound, Jϵ
(
x0, gθ(ey0−eytarg)

)
on Equation 6.7 and inspired

by the cost-sensitive CE loss [64], we propose the following robust optimization with respect
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to a neural network classifier fθ:

minimize
θ

1

N

∑
i∈[N ]

L
(
fθ(xi), yi

)
+ α

∑
j∈[m]

δj
Nj

∑
i|yi=j

log
(
1 +

∑
j′∈Ωj

Cjj′ · exp
(
− Jϵ(xi, gθ(ej − ej′))

))
,

(6.10)

where α ≥ 0 denotes the regularization parameter. The first term in Equation 6.10 denotes

the cross-entropy loss for standard classification, whereas the second term accounts for the

cost-sensitive robustness. Compared with the overall robustness training objective function

(6.8), we include a regularization parameter α to control the trade-off between classification

accuracy on original inputs and adversarial robustness.

To provide cost-sensitivity, the loss function selectively penalizes the adversarial examples

based on their cost. For binary cost matrixes, the regularization term penalizes every cost-

sensitive adversarial example equally, but has no impact for instances where Cjj′ = 0.

For the real-valued costs, a larger value of Cjj′ increases the weight of the corresponding

adversarial transformation in the training objective. This optimization problem (6.10) can

be solved efficiently using gradient-based algorithms, such as stochastic gradient descent

and ADAM [66].

6.2.3 Experiments

We evaluate the performance of our cost-sensitive robustness training method on models for

two benchmark image classification datasets: MNIST [73] and CIFAR-10 [68]. We com-

pare our results for various cost scenarios with overall robustness training as a baseline. For

both datasets, the relevant family of attacks is specified as all the adversarial perturbations
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that are bounded in an ℓ∞-norm ball.

Our goal in the experiments is to evaluate how well a variety of different types of cost

matrices can be supported. MNIST and CIFAR-10 are toy datasets, thus there are no obvious

cost matrices that correspond to meaningful security applications for these datasets. Instead,

we select representative tasks and design cost matrices to capture them.

Experiments on MNIST.

For MNIST, we use the same convolutional neural network architecture [72] as [121], which

includes two convolutional layers, with 16 and 32 filters respectively, and a two fully-

connected layers, consisting of 100 and 10 hidden units respectively. ReLU activations

are applied to each layer except the last one. For both our cost-sensitive robust model and

the overall robust model, we randomly split the 60,000 training samples into five folds of

equal size, and train the classifier over 60 epochs on four of them using the Adam opti-

mizer [66] with batch size 50 and learning rate 0.001. We treat the remaining fold as a

validation dataset for model selection. In addition, we use the ϵ-scheduling and learning

rate decay techniques, where we increase ϵ from 0.05 to the desired value linearly over the

first 20 epochs and decay the learning rate by 0.5 every 10 epochs for the remaining epochs.

Baseline: Overall Robustness. Figure 6.1(a) illustrates the learning curves of both classi-

fication error and overall robust error during training based on robust loss (6.8) with max-

imum perturbation distance ϵ = 0.2. The model with classification error less than 4%

and minimum overall robust error on the validation dataset is selected over the 60 training

epochs. The best classifier reaches 3.39% classification error and 13.80% overall robust

error on the 10,000 MNIST testing samples. We report the robust test error for every ad-

versarial transformation in Figure 6.1(b) (for the model without any robustness training all

of the values are 100%). The (i, j)-th entry is a bound on the robustness of that seed-
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Figure 6.1: Preliminary results on MNIST using overall robust classifier: (a) learning curves
of the classification error and overall robust error over the 60 training epochs; (b) heatmap
of the robust test error for pairwise class transformations based on the best trained classifier.

target transformation—the fraction of testing examples in class i that cannot be certified

robust against transformation into class j for any ϵ norm-bounded attack. As shown in Fig-

ure 6.1(b), the vulnerability to adversarial transformations differs considerably among class

pairs and appears correlated with perceptual similarity. For instance, only 0.26% of seeds

in class 1 cannot be certified robust for target class 9 compare to 10% of seeds from class 9

into class 4.

Binary Cost Matrix. Next, we evaluate the effectiveness of cost-sensitive robustness train-

ing in producing models that are more robust for adversarial transformations designated as

valuable. We consider four types of tasks defined by different binary cost matrices that

capture different sets of adversarial transformations: single pair: particular seed class s to

particular target class t; single seed: particular seed class s to any target class; single target:

any seed class to particular target class t; and multiple: multiple seed and target classes. For

each setting, the cost matrix is defined as Cij = 1 if (i, j) is selected; otherwise, Cij = 0.

In general, we expect that the sparser the cost matrix, the more opportunity there is for
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Table 6.1: Comparisons between different robust defense models on MNIST dataset against
ℓ∞ norm-bounded adversarial perturbations with ϵ = 0.2. The sparsity gives the number of
non-zero entries in the cost matrix over the total number of possible adversarial transforma-
tions. The candidates column is the number of potential seed examples for each task.

Task Description Sparsity Candidates α
Standard Error Robust Error
baseline ours baseline ours

single pair
(0,2) 1/90 980 10.0 3.39% 2.68% 0.92% 0.31%
(6,5) 1/90 958 5.0 3.39% 2.49% 3.55% 0.42%
(4,9) 1/90 982 4.0 3.39% 3.00% 10.08% 1.02%

single seed
digit 0 9/90 980 10.0 3.39% 3.48% 3.67% 0.92%
digit 2 9/90 1032 1.0 3.39% 2.91% 14.34% 3.68%
digit 8 9/90 974 0.4 3.39% 3.37% 22.28% 5.75%

single target
digit 1 9/90 8865 4.0 3.39% 3.29% 2.23% 0.14%
digit 5 9/90 9108 2.0 3.39% 3.24% 3.10% 0.29%
digit 8 9/90 9026 1.0 3.39% 3.52% 5.24% 0.54%

multiple

top 10 10/90 6024 0.4 3.39% 3.34% 11.14% 7.02%
random 10 10/90 7028 0.4 3.39% 3.18% 5.01% 2.18%
odd digit 45/90 5074 0.2 3.39% 3.30% 14.45% 9.97%
even digit 45/90 4926 0.1 3.39% 2.82% 13.13% 9.44%

cost-sensitive training to improve cost-sensitive robustness over models trained for overall

robustness.

For the single pair task, we selected three representative adversarial goals: a low vulner-

ability pair (0, 2), medium vulnerability pair (6, 5) and high vulnerability pair (4, 9). We

selected these pairs by considering the robust error results on the overall-robustness trained

model (Figure 6.1(b)) as a rough measure for transformation hardness. This is generally

consistent with intuitions about the MNIST digit classes (e.g., “9” and “4” look similar,

so are harder to induce robustness against adversarial transformation), as well as with the

visualization results produced by dimension reduction techniques, such as t-SNE [78].

Similarly, for the single seed and single target tasks we select three representative examples
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Figure 6.2: Cost-sensitive robust error using the proposed model and baseline model on
MNIST for different binary tasks: (a) treat each digit as the seed class of concern respec-
tively; (b) treat each digit as the target class of concern respectively.

representing low, medium, and high vulnerability to include in Table 6.1 and provide full

results for all the single-seed and single target tasks for MNIST in Figure 6.2. For the

multiple transformations task, we consider four variations: (i) the ten most vulnerable seed-

target transformations; (ii) ten randomly-selected seed-target transformations; (iii) all the

class transformations from odd digit seed to any other class; (iv) all the class transformations

from even digit seed to any other class.

Table 6.1 summarizes the results, comparing the cost-sensitive robust error between the

baseline model trained for overall robustness and a model trained using our cost-sensitive

robust optimization. The cost-sensitive robust defense model is trained with ϵ = 0.2 based

on loss function (6.10) and the corresponding cost matrix C. The regularization parameter

α is tuned via cross validation. We report the selected best α, classification error and cost-

sensitive robust error on the testing dataset.

Our model achieves a substantial improvement on the cost-sensitive robustness compared

with the baseline model on all of the considered tasks, with no significant increases in

normal classification error. The cost-sensitive robust error reduction varies from 30% to
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Table 6.2: Comparison results of different robust defense models for tasks with real-valued
cost matrix.

Dataset Task Sparsity Candidates α
Standard Error Robust Cost

baseline ours baseline ours

MNIST small-large 45/90 10000 0.04 3.39% 3.47% 2.245 0.947
MNIST large-small 45/90 10000 0.04 3.39% 3.13% 3.344 1.549
CIFAR-10 vehicle 40/90 4000 0.1 31.80% 26.19% 4.183 3.095

90%, and is generally higher for sparse cost matrices. In particular, our classifier reduces

the number of cost-sensitive adversarial examples from 198 to 12 on the single target task

with digit 1 as the target class.

Real-valued Cost Matrices. Loosely motivated by a check forging adversary who obtains

value by changing the semantic interpretation of a number [93], we consider two real-valued

cost matrices: small-large, where only adversarial transformations from a smaller digit class

to a larger one are valued, and the cost of valued-transformation is quadratic with the abso-

lute difference between the seed and target class digits: Cij = (i − j)2 if j > i, otherwise

Cij = 0; large-small: only adversarial transformations from a larger digit class to a smaller

one are valued: Cij = (i− j)2 if i > j, otherwise Cij = 0. We tune α for the cost-sensitive

robust model on the training MNIST dataset via cross validation, and set all the other pa-

rameters the same as in the binary case. The certified robust error for every adversarial

transformation on MNIST testing dataset is shown in Figure 6.3, and the classification error

and robust cost are given in Table 6.2. Compared with the model trained for overall robust-

ness (Figure 6.1(b)), our trained classifier achieves stronger robustness guarantees on the

adversarial transformations that induce costs, especially for those with larger costs.

Experiments on CIFAR-10.
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Figure 6.3: Heatmaps of robust test error using our cost-sensitive robust classifier on
MNIST for various real-valued cost tasks: (a) small-large; (b) large-small.

We use the same neural network architecture for the CIFAR-10 dataset as [122], with four

convolutional layers and two fully-connected layers. For memory and computational effi-

ciency, we incorporate the approximation technique based on nonlinear random projection

during the training phase ([122]). We train both the baseline model and our model using

random projection of 50 dimensions, and optimize the training objective using SGD. Other

parameters such as learning rate and batch size are set as same as those in [122].

Given a specific task, we train the cost-sensitive robust classifier on 80% randomly-selected

training examples, and tune the regularization parameter α according to the performance on

the remaining examples as validation dataset. The tasks are similar to those for MNIST

(§6.2.3), except for the multiple transformations task we cluster the ten CIFAR-10 classes

into two large groups: animals and vehicles, and consider the cases where only transforma-

tions between an animal class and a vehicle class are sensitive, and the converse.

Table 6.3 shows results on the testing data based on different robust defense models with

ϵ = 2/255. For all of the aforementioned tasks, our models substantially reduce the cost-
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Table 6.3: Cost-sensitive robust models for CIFAR-10 dataset against adversarial examples,
ϵ = 2/255.

Task Description Sparsity Candidates α
Standard Error Robust Error
baseline ours baseline ours

single pair (frog, bird) 1/90 1000 10.0 31.80% 27.88% 19.90% 1.20%
(cat, plane) 1/90 1000 10.0 31.80% 28.63% 9.30% 2.60%

single seed dog 9/90 1000 0.2 31.80% 30.69% 57.20% 28.90%
truck 9/90 1000 0.8 31.80% 31.55% 35.60% 15.40%

single target deer 9/90 9000 0.1 31.80% 26.69% 16.99% 3.77%
ship 9/90 9000 0.1 31.80% 24.80% 9.42% 3.06%

multiple A-V 24/90 6000 0.1 31.80% 26.65% 16.67% 7.42%
V-A 24/90 4000 0.2 31.80% 27.60% 12.07% 8.00%

sensitive robust error while keeping a lower classification error than the baseline.

For the real-valued task, we are concerned with adversarial transformations from seed ex-

amples in vehicle classes to other target classes. In addition, more cost is placed on transfor-

mations from vehicle to animal, which is 10 times larger compared with that from vehicle to

vehicle. Figures 6.4(a) and 6.4(b) illustrate the pairwise robust test error using overall robust

model and the proposed classifier for the aforementioned real-valued task on CIFAR-10.

Varying Adversary Strength. We investigate the performance of our model against differ-

ent levels of adversarial strength by varying the value of ϵ that defines the ℓ∞ ball available

to the adversary. Figure 6.5 show the overall classification and cost-sensitive robust error

of our best trained model, compared with the baseline model, on the MNIST single seed

task with digit 9 and CIFAR-10 single seed task with dog as the seed class of concern, as

we vary the maximum ℓ∞ perturbation distance.

Under all the considered attack models, the proposed classifier achieves better cost-sensitive

adversarial robustness than the baseline, while maintaining similar classification accuracy
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Figure 6.4: Heatmaps of robust test error for the real-valued task on CIFAR-10 using dif-
ferent robust classifiers: (a) baseline model; (b) our proposed cost-sensitive robust model.

on original data points. As the adversarial strength increases, the improvement for cost-

sensitive robustness over overall robustness becomes more significant.

6.3 Uncertainty-Aware Robustness4

According to our experiments on CIFAR-10H, we know that ambiguous inputs, which are

inherently difficult to assign a deterministic label even for human annotators, exist in bench-

mark image classification datasets such as CIFAR-10 (see Figure 4.2 in Chapter 4 for an il-

lustration). Pervasive label errors have also been found in other most commonly-used com-

puter vision, natural language, and audio datasets [90]. The existence of those examples will

largely affect the intrinsic limits of achievable robustness that come from concentration of

measure, as error regions of classifiers produced by state-of-the-art learning methods are

likely to be around those examples. To escape such intrinsic barriers for building better ro-

bust machine learning systems, there is a need to rethink how to treat those inputs properly
4This is a working paper. We show preliminary results in this chapter.
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Figure 6.5: Results for different adversary strengths, ϵ, for different settings: (a) MNIST
single seed task with digit 9 as the chosen class; (b) CIFAR-10 single seed task with dog as
the chosen class.

in the current learning framework for building robust models against adversarial examples.

An underlying assumption of overall robustness (Equation (6.1)) is that small perturbations

preserve the ground-truth. For typical classification tasks in computer vision and natural

language processing, the ‘ground-truth’ label of an input is usually assigned as the majority

vote of human annotators. Although assigning a single label by majority vote simplifies

the classification task, it removes the underlying probabilistic label information, especially

for inputs with inherently uncertain labels. In this section, we argue that overall robustness

would be an unrealistic goal with respect to uncertain inputs, thus should be modified to

take into account the heterogeneity of such uncertainty.

6.3.1 Defining Uncertainty-Aware Robustness

In this section, we explain why the standard notion of overall robustness is not a good metric

for assessing classifier’s robustness property at uncertain inputs, and introduce the proposed

notion of uncertainty-aware adversarial robustness.
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We work with the same definition of label distribution as introduced in Chapter 4. Let (X , µ)

be the input probability space andY = {1, 2, . . . , k} be the set of possible labels. A function

η : X → [0, 1]k is said to capture the full label distribution [47, 45], if [η(x)]y represents

the description degree of y to x for any x ∈ X and y ∈ Y , and
∑

y∈[k][η(x)]y = 1 for any

x ∈ X . In probability theory, η can be understood as capturing the conditional probability

distribution of Y |X . For classification tasks, the underlying concept function c : X → Y

that gives ‘ground-truth’ label can be regarded as the Bayes optimal classifier with respect

to η, namely c(x) = argmaxy∈[k] [η(x)]y.

Maximizing overall robustness as defined in (6.1) is typically regarded as the design goal for

robust machine learning systems. Note that according to the definition, the concept function

is assumed to assign a single label to each input as the ground-truth. However, for uncertain

inputs whose class is intrinsically hard to determine, defining adversarial examples with

reference to the underlying ground-truth with a single label would become controversial.

As an example, if a CIFAR image looks like a dog to 60% of humans, and like a cat to the

remaining 40%, it would not be reasonable to regard class transformations with target class

of cat or dog as adversarial. Therefore, we propose the following definition to adapt the

overall robustness to account for uncertain inputs, which are inspired by the literature on

conformal classification [102, 3].

Definition 6.1 (Uncertainty-Aware Robustness). Consider a probability space of inputs

(X , µ). Given parameter α ∈ [0, 1] representing the threshold for constructing ground-

truth label sets from η, the uncertainty-aware robustness of any classifier f : X → Y with

respect to ϵ-perturbations bounded by metric ∆ is defined as:

ÃdvRobϵ(f ;α) = 1− Pr
x∼µ

[
∃ x′ ∈ Bϵ(x) s.t. f(x′) ̸∈ Tα(x; η)

]
,
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where Tα : X → Pow(Y) is a set-valued function that maps each input to a set of most

probable labels based on η and the thresholding parameter α.

In Definition 6.1, Tα(x; η) can be understood as a set of plausible classes that x could be

assigned to. For simplicity, we write Tα(x; η) = Tα(x) in the following discussions. One

naive choice of the set-valued operator T is:

Tα(x) =
{
y ∈ Y : [η(x)]y ≥ α

}
.

However, it has been shown in conformal classification literature that although such choice

of Tα produces smallest average set size [103], it tends to undercover hard subgroups while

overcover easy ones [2]. To generate more adaptive prediction sets, the following construc-

tion rule of Tα has been proposed:

Tα(x) = {π1, π2, . . . , πk′}, where k′ = inf
{
l :

l∑
j=1

[η(x)]πj ≥ α
}
, (6.11)

and π is a permutation of {1, 2, . . . , k} that sorts η(x) from most likely to least likely. Note

that according to (6.11), |Tα(x)| is monotonically non-decreasing with respect toα. In order

to generate underlying ground-truth label sets that are adaptively to each individual input,

we choose the latter construction rule for Tα in the following discussions and experiments.

In contrast to the definition of overall robustness, only class transformations that do not

belong to the underlying label set of Tα(x) are considered as adversarial when uncertainty-

aware robustness are considered. We argue that this is a better design goal for robustness,

because uncertain inputs with |Tα(x)| ≥ 2 are intrinsically more difficult to classify cor-

rectly by the underlying ground-truth, thus instead of treating those examples equally, we

add more tolerance to perturbations with target class ytarg ∈ Tα(x), which can be regarded
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as relatively benign perturbations according to η(x).

6.3.2 Measuring Uncertainty-Aware Robustness

In this section, we first discuss the challenges for empirically measuring the proposed notion

of uncertainty-aware robustness, then propose our solutions to address such challenges.

To empirically evaluate the uncertainty-aware robustness of a given classifier, there exist

two main challenges. First, the proposed definition requires knowledge of the underlying

label distribution for any testing input, which is unavailable in typical benchmack datasets.

As discussed in Section 4.3, human soft labels collected from multiple human annotators

provide an approximate of such label distribution information for classification datasets that

rely on human labeling. In our preliminary experiments, we make use of the CIFAR-10H

dataset [95] which consists of human soft labels for CIFAR-10 test examples. If the hu-

man soft labels are unavailable for the dataset, an alternative solution which we are going

to study as future work is to predict the underlying label set by adapting state-of-the-art

conformal classification techniques [102, 3]. However, since conformal classifiers are typ-

ically designed based on some pretrained machine learning classifier, it remains an open

question of whether the label set returned by a conformal classification procedure are able

to approximate the ground-truth label distribution well.

Second, although we can use the same techniques for measuring overall robustness, such

as attack-based optimization methods, to empirically measure the uncertainty-aware robust-

ness with respect to inputs with |Tα(x)| = 1, it remains unclear how to deal with uncertain

inputs with |Tα(x)| ≥ 2. Noticing that as long as we can devise a attack with any possible

target class ytarg ̸∈ Tα(x), we immediate know there exists an adversarial example by the

definition of uncertainty-aware robustness. Therefore, we propose to search for the worst-
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(a) α = 0.7 (b) α = 0.8 (c) α = 0.9

Figure 6.6: Size distribution of ground-truth label set constructed based on (6.11) with
α ∈ {0.7, 0.8, 0.9} for CIFAR-10 test dataset.

case perturbation for each possible adversarial class transformation based on the following

objective:

minimize
δ∈Bϵ(x)

L
(
fθ(x+ δ), ytarg

)
, for any ytarg ̸∈ Tα(x), (6.12)

where fθ is a given classifier parameterized by θ that is being evaluated and Bϵ(x) is the

allowable perturbations with strength ϵ. To produce an approximated solution to equation

(6.12), one can set L as a function such as cross-entropy loss and adapt the standard PGD-

attack [79], which is adopted in our preliminary experiments. Studying and developing

optimization techniques that better solve (6.12) can provide us better sense of security under

the proposed definition of robustness, which would be an interesting future work.

6.3.3 Experiments

In this section, we report on experiments on CIFAR-10 [68] to evaluate the uncertainty-

aware robustness of state-of-the-art adversarially-trained classifiers. We make use of the

CIFAR-10H human soft labels [95] to approximate the underlying label distribution.

First, we visualize the generated ground-truth label sets using the construction rule of Tα(x)
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(a) α = 0.7 (b) α = 0.8 (c) α = 0.9

Figure 6.7: Visualizations of the top CIFAR-10 test images sorted by |Tα(x)| with T con-
structed by (6.11) with α chosen from {0.7, 0.8, 0.9}.

defined in (6.11). Figure 6.6 illustrates the size distribution of the constructed ground-truth

label sets on CIFAR-10. Note that larger label set size suggests that the image is intrinsically

hard to classify. Most of the CIFAR-10 test images have |Tα(x)| = 1, which means all the

human annotators agree on the label class that x should belong to. The set size distribution

becomes more right-skewed as we increase α, which is aligned with the construction rule of

(6.11). This is further demonstrated by Figure 6.7, which visualizes the top uncertain images

that have the largest label set size. These images are indeed intrinsically hard to assign a

deterministic label and the constructed label set captures the underlying label information for

each image, which justifies the usefulness of the proposed construction rule of Tα. We also

note that a few CIFAR-10 test images has originally assigned label not in our constructed

label set Tα(x) (see Figure 6.8 for examples). By visually examining these images, we can

easily conclude that the original CIFAR-10 labels are incorrect. This further suggests that

the standard notion of overall robustness will not be be a useful evaluation metric for such

mislabeled examples.

Next, we evaluate the uncertainty-aware robustness of existing state-of-the-art adversarially-

trained classifiers on CIFAR-10. We consider the most popular ℓ∞-perturbations with
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Figure 6.8: Illustration of CIFAR-10 images with original assigned label not covered by the
constructed ground-truth label set Tα(x) with α = 0.9 based on the CIFAR-10H dataset.

strength ϵ = 8/255. To implement the proposed method for measuring uncertainty-aware

robustness for a given classifier, we adopt the 10-step PGD-attack with attack step size ϵ/4

and three random restarts for solving the optimization problem (6.12). We set the thresh-

olding parameter α = 0.9 for generating ground-truth label set in this experiment. Table

6.4 illustrates the uncertainty-aware robustness, denoted as Rob. Acc. (ls), of the consid-

ered classifier with respect to different groups of examples stratified by label set size. For

comparisons, we also demonstrate the standard accuracy (Std. Acc.) and the overall robust-

ness (Rob. Acc.) evaluated using standard PGD-attack with respect the original CIFAR-10

labels, and the uncertainty-aware standard accuracy (Std. Acc. (ls)) which is computed by

setting ϵ = 0 in Definition 6.1.

As we increase the set size threshold from 1 to 5, the overall robustness of the classifier

decreases dramatically. This suggests that images with larger label sets are indeed more

difficult to classify correctly, thus should be treated differently compared with images with

a single deterministic label. When we shift our evaluation criterion of robustness from

overall robustness to uncertainty-aware robustness, adversarial perturbations for uncertain

inputs become harder to find, which is expected because adversaries are having less free-
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Table 6.4: Evaluations of the uncertainty-aware robustness of the state-of-the-art
adversairally-trained classifier [17] on group of CIFAR-10 test images with different in-
trinsic uncertainty level. Due to the randomness of the attack, we report both the mean
estimate and its standard deviation over 3 repeated trials for Rob. Acc. and Rob. acc. (ls).

Group #Examples Std. Acc. Std. Acc. (ls) Rob. Acc. Rob. Acc. (ls)
All 10, 000 89.69% 92.52% 63.86± 0.02% 68.88± 0.02%
Size == 1 8, 789 92.55% 92.56% 68.69± 0.01% 68.81± 0.01%
Size >= 2 1, 211 68.95% 92.24% 28.24± 0.07% 69.58± 0.08%
Size >= 3 255 60.78% 92.16% 17.39± 0.18% 71.37± 0.32%
Size >= 4 60 63.33% 86.67% 16.67± 0.00% 68.33± 0.00%
Size >= 5 19 73.68% 78.95% 10.53± 0.00% 52.63± 0.00%

dom in selecting target vulnerable class. For instance, when we evaluate the set of images

with |Tα(x)| ≥ 2, the overall robustness is around 30% lower than the uncertainty-aware

robustness. Similar trends was observed for other state-of-the-art classifiers as well as other

ℓ2-norm bounded perturbations (see Table 6.5).

The large difference on robustness performance with respect to the set of uncertain inputs

suggests that a possible way to build better robust systems is to enable the learning method

to account for such uncertainty information. Developing efficient and effective methods to

train classifiers for uncertainty-aware robustness would be an important next step. How-

ever, unlike the testing CIFAR-10 images, we do not have the underlying label distribution

information for training images. In the future, we are going to study how to adapt adver-

sarial training [79, 129] and conformal classification methods [3] to address this challenge

and train for uncertainty-aware robustness. We are hoping that studying uncertainty-aware

robustness would be an initial step towards escaping the current limits and building better

robust machine learning systems.
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Table 6.5: Evaluations of the uncertainty-aware robustness of various state-of-the-art
adversarially-trained classifiers with respect to the set of uncertain inputs with |Tα(x)| ≥ 2
on CIFAR-10. We set the thresholding parameter α = 0.9.

Metric Strength Model Std. Acc. Std. Acc. (ls) Rob. Acc. Rob. Acc. (ls)

ℓ∞-norm ϵ = 8/255
[17] 68.95% 92.24% 28.24± 0.07% 69.58± 0.08%
[123] 63.91% 89.93% 26.97± 0.04% 64.38± 0.10%
[129] 62.18% 89.76% 25.97± 0.04% 60.45± 0.00%

ℓ2-norm ϵ = 0.5
[7] 72.25% 88.19% 43.96± 0.08% 62.07± 0.10%

[101] 69.03% 93.15% 37.60± 0.04% 77.46± 0.00%
[123] 68.62% 90.67% 45.69± 0.08% 80.10± 0.00%

6.4 Summary

By focusing on overall robustness, previous robustness training methods expend a large frac-

tion of the capacity of the network on unimportant transformations. In Section 6.2, we argue

that for most scenarios, the actual harm caused by an adversarial transformation often varies

depending on the seed and target class, so robust training methods should be designed to

account for these differences. In Section 6.3, we argue that overall robustness is not properly

defined with respect to intrinsically uncertain inputs, which should be treated in a different

way compared with inputs that have deterministic label. We hope that considering cost-

sensitive robustness and uncertainty-aware robustness instead of overall robustness will be

an important step towards achieving more realistic, but still meaningful, robustness goals.
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Chapter 7

Conclusion

In this dissertation, we developed an empirical framework to understand and estimate the

intrinsic limits of adversarial robustness. The proposed framework connects theoretical

works that prove the inevitability of adversarial examples [49, 44, 80, 108] with empiri-

cal studies that propose defenses against adversarial examples. We show that benchmark

image datasets are not concentrated under typical perturbation metrics, thus unlike the im-

possibility results concluded in theoretical studies, standard concentration of measure can

only explain a fairly small amount of adversarial vulnerability of state-of-the-art machine

learning classifiers. Observing that labels are not considered in the standard concentration

problem, we further investigate the usefulness of labels in defining more meaningful intrin-

sic robustness limits. We found that in addition to concentration of measure, the existence of

uncertain inputs is another fundamental cause of intrinsic adversarial vulnerability, which

are usually overlooked in adversarial machine learning literature.

Although the proposed framework is able to identify several intrinsic causes of adversar-

ial vulnerability and provide quantifiable estimates of their effects, the intrinsic robustness

limits that come from these discovered causes are still much higher than the best robustness

performance achieved by state-of-the-art robustly-trained classifiers (see Figure 4.1 for an

illustration). One possible explanation is that the concentration of measure problem (even

with the label uncertainty constraint) is much simpler than the underlying problem of learn-

ing with adversarial examples, since the optimal solution to the concentration problem may
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not be realized as error region of any learnable classifier. As a result, it is likely that intrin-

sic adversarial vulnerability could also originate from the underlying learning procedure of

robust classifiers. It remains an open question whether it is plausible to characterize the

intrinsic robustness limits with respect to the set of learnable classifiers, which would be

the most realistic goal of robustness for empirical defenses to target for. Nevertheless, there

remain challenges such as how to rigorously define the set of learnable classifiers and even

with a definition of learnable classifiers, whether it is possible to be incorporated into the

proposed concentration estimation framework. Perhaps, studying the intrinsic robustness

limit with respect to classifiers that are produced by some specific learning methods could

be an initial step towards characterizing the intrinsic robustness with learnable classifiers.

Another open question is whether we can use the discovered fundamental causes of ad-

versarial vulnerability to improve model robustness, potentially approaching the intrinsic

robustness limit for the underlying task. A promising direction for future work is to study

whether we could induce the classifier’s error regions to reside in less concentrated region.

Moreover, we identify scenarios where overall robustness is not the right design goal for

robust machine learning systems. We propose cost-sensitive robustness to take into account

the potential harm of different adversarial class transformations; whereas we advocate for

uncertainty-aware robustness as a better evaluation metric for inherently uncertain inputs.

We design tools to train for cost-sensitive robustness, propose optimization methods to eval-

uate uncertainty-aware robustness, and demonstrate the usefulness of the proposed robust-

ness definitions. By rethinking the current design goal of robustness, our works shed lights

on potential ways to escape the intrinsic limits of robustness and build better robust ma-

chine learning systems. An open question on uncertainty-aware robustness is how to design

a meaningful robustness metric if the classifiers are allowed output a set of labels. Literature

on multi-label classification may provide important insights for this.
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