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Abstract 
Water resource management (WRM) is a complex and challenging task, as it frequently involves making 

critical trade-offs under conditions of high uncertainty, complexity, and knowledge constraints. These 

challenges arise from the numerous interconnected and interdependent factors that influence water 

resources, the diversity of stakeholders with conflicting interests and values, and the incomplete, uncertain, 

and often contradictory understanding of the system. In such a context, forward-thinking and adaptive 

decision-making are essential for effective WRM. The overarching aim of this research is to compare a 

range of exploratory and predictive foresight methods to assess their potential applicability in addressing 

various WRM problems. 

This research specifically investigates agricultural water management (AgWM) and hazardous algal bloom 

(HAB) management as two critical and challenging WRM problems that have significant environmental, 

social, and economic implications. To tackle these issues, the research is divided into two main parts. 

In the first part, a formative scenario planning method is employed to explore the adaptation strategies for 

AgWM in arid and semi-arid regions. This process involves constructing a small set of coherent and 

distinctive governance scenarios that consider various factors, such as climate change, technological 

advancements, and social and political developments. These scenarios provide a robust framework for 

decision-makers to develop proactive and flexible strategies that can effectively respond to the evolving 

challenges in AgWM. 

In the second part of this research, a set of data-driven predictive models is developed to provide near-term 

forecasts of HABs, which can support the prevention, control, and mitigation of these harmful events. These 

models leverage advanced machine learning techniques and a variety of data sources to generate accurate 

and timely predictions of algal bloom occurrences. By providing reliable and actionable information, these 

predictive models can inform WRM stakeholders and support evidence-based decision-making to minimize 

the negative impacts of HABs on water quality, public health, and the environment. 

In conclusion, this research contributes to the field of WRM by comparing and evaluating a range of 

foresight methods that can address the complex challenges associated with AgWM and HAB management. 

The findings of this study can provide valuable insights for policymakers, practitioners, and researchers in 

WRM, and help inform the development of more effective, adaptive, and sustainable strategies for 

managing water resources in the face of uncertainty and change. 
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Chapter 1  

Introduction  

 

 

This chapter serves as an introduction to the research agenda for this dissertation. It begins by discussing 

the global challenges related to water resource management (WRM) and the decision-making complexities 

associated with these issues. Subsequently, it provides an overview of various foresight methods that 

facilitate uncertainty-informed decision-making in the context of WRM. The motivation for this research, 

the goals, research questions, and the methodologies employed to achieve the objectives, are then presented. 

Finally, this chapter offers an outline of the subsequent chapters, delineating the connections between them 

and the research goals and questions. 

1.1. Motivation and Background  

Viewed from outer space, our seemingly vibrant blue planet might suggest an abundance of fresh water 

resources, yet access to safe, clean water remains one of humanity's most enduring challenges. Renewable, 

non-frozen fresh water constitutes a mere 0.005% of Earth's total water, which, if equally distributed, would 

suffice for the current global population. For example, the Middle East and North Africa (MENA) region 

possesses only about 1% of the world's fresh water resources, while accommodating 6% of the global 

population. Furthermore, the availability of water resources within the MENA region varies significantly. 

Climate change has introduced additional uncertainty to the spatial and temporal distribution of 

precipitation, exacerbating the frequency and severity of flood and drought events. The UN Office for 

Disaster Risk Reduction (UNDRR) reported that between 2000 and 2019, four billion people were affected 

by natural disasters, with 79% of these incidents related to floods and droughts (UNDRR, 2019). Moreover, 

surging water demand, driven by rapid population growth and urbanization, places immense stress on this 

finite and vulnerable resource (Cosgrove and Loucks, 2015). 

In addition to water quantity concerns, water quality has also been negatively impacted by factors such as 

extensive agricultural activities, over-fertilization near water bodies, and inadequate waste management. 

Agricultural runoff contaminates both surface and groundwater resources, disrupting natural ecological 

systems and leading to the increased occurrence of phenomena such as Harmful Algal Blooms (HABs) in 

water sources. (Palaniappan et al., 2010). 

These challenges disproportionately affect the most economically vulnerable social groups. For instance, 

Keshavarz et al. (2013) outline numerous socio-economic difficulties faced by rural communities in the 

MENA region as a result of the ongoing water crisis. These issues encompass decreased income and limited 

alternative income sources, heightened water disputes, food insecurity, health impacts coupled with reduced 

access to healthcare services, diminished access to education, forced displacement, impoverishment, and a 

decline in overall quality of life. The water crisis can also lead to psychological and emotional distress, 
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including depression and frustration, alterations in family plans such as postponing marriage, as well as 

family and community disharmony and disintegration. (Keshavarz, Karami and Vanclay, 2013).   

Water resource management is acknowledged as a wicked problem due to its numerous interconnected and 

interdependent factors, the presence of multiple stakeholders with conflicting interests and values, and the 

incomplete, uncertain, and contradictory understanding of the system (Grafton, 2017). Notably, in arid and 

semi-arid regions such as the Middle East and North Africa (MENA), water resource management is further 

complicated by the scarcity of water resources. This challenge is exacerbated by the uncertainties associated 

with climate change. As a result, the trade-off between food and water security becomes a critical issue in 

these regions, frequently leading to social fragmentation and conflicts among stakeholders. 

Considering this context, attempting to address this wicked problem by simplifying it into a single-objective 

issue has led, and will continue to lead, to simplistic solutions that may provide short-term success but 

could create more severe problems in the long run. Furthermore, efforts to maximize the benefits for a 

single dominant stakeholder typically result in the neglect or marginalization of the preferences and needs 

of less influential stakeholders (Hearnshaw, Tompkins and Cullen, 2011).  

An additional challenge in WRM decision-making is that it often involves substantial investments in 

policies or infrastructure that impact numerous stakeholders at once. As a result, not only is the 

implementation of these decisions highly expensive, but the repercussions of mistakes can be far-reaching 

and potentially irreversible. 

Under circumstances where decision-making entails crucial trade-offs amid high uncertainty, complexity, 

and limited knowledge, forward-thinking becomes essential. This approach allows for the exploration of 

uncertain futures, the anticipation of potential pitfalls, and the development of adaptive responses and plans 

for decision-makers. 

Numerous methodologies and tools have been developed to facilitate forward-thinking, in efforts to shine 

a ray of light into the various pathways that may evolve from the present to the future. The cone of 

plausibility introduced by Hancock and Bezold, illustrates diverse pathways (scenarios) that can lead to the 

future. Some pathways lead to the most probable future, and some pathways are our most preferred future 

or the normative scenarios. However, many more pathways are plausible, and even more, are possible 

(Hancock and Bezold, 1994). 

Most studies in WRM and decision-making concentrate on predicting the most probable futures. 

Nonetheless, predictive methods prove to be more effective and insightful for near-term decision-making, 

such as operational water system management issues (Dietze et al. 2018).  

Advancements in technology for collecting high-frequency data, such as satellite imagery, automated 

sensing devices, and wireless communication technologies, coupled with data processing techniques like 

machine learning algorithms, have revolutionized prediction methods within the field of water resource 

management. This revolution in data collection and processing has allowed for more accurate and timely 

predictions, leading to better decision-making and improved outcomes in managing water resources, 

especially in addressing complex and uncertain challenges (Mehmood et al., 2020). In particular, the 

growing impacts of climate change on water quality and quantity have made it increasingly important to 

improve forecasting methods, as they can play a crucial role in enhancing the resilience and efficiency of 

water management operations. These operations encompass various aspects of water resources, such as 

water supply, distribution, and storage, as well as wastewater collection and treatment systems. By utilizing 
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cutting-edge forecasting techniques, decision-makers can better anticipate potential changes and 

disruptions in water resources and develop proactive strategies to adapt and mitigate the effects of climate 

change. This, in turn, enables more sustainable and effective management of water resources, ensuring that 

communities can continue to rely on a safe and reliable water supply while minimizing the environmental 

impacts on water quality and ecosystems.  

In situations where numerous interconnected factors influence water governance, it is crucial to assess the 

long-term impacts of decisions and policies. This necessitates defining the boundaries of plausible and 

possible outcomes, which tend to expand as time progresses. However, as these boundaries widen, so does 

the associated uncertainty in any estimations or predictions, ultimately undermining the value of future 

forecasting. Consequently, while the predictive approach offers notable benefits in the short term, its 

efficacy diminishes due to the inherent complexity of modeling human and organizational behavior. As a 

result, a paradigm shift from predicting the most probable future to examining all plausible futures is 

essential for enhancing anticipatory capacity in the governance aspect of water resource management. This 

shift enables decision-makers to consider a broader range of possibilities and adopt more adaptive and 

robust strategies for addressing the complex challenges of water governance (Haasnoot and Middelkoop, 

2012). 

 

 

 

Figure 1-1- Cone of Plausibility 

 

Strategic foresight methodologies, including scenario planning, visioning, and back-casting, play a critical 

role in fostering improved anticipation in decision-making processes. By facilitating the exploration of 

alternative futures, these methods enable policymakers to better prepare for and adapt to potential 

opportunities and challenges that may arise in the future. In doing so, they encourage proactive and 

informed decision-making, allowing stakeholders to account for a broader range of possibilities, minimize 

risks, and maximize the potential benefits of their choices. Ultimately, the incorporation of strategic 

foresight methods into water resource management helps build more resilient and adaptable systems, 

capable of navigating the complexities and uncertainties inherent in this field (OECD, 2019). In essence, 

foresight methods provide a valuable tool that enables us to virtually investigate various alternative futures 

and evaluate potential courses of action before implementing them (Fuerth, 2009).  
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Strategic foresight methods play a crucial role in building the confidence of decision-makers and other 

stakeholders in water resource management by facilitating a deeper understanding of potential opportunities 

and risks. By focusing on medium to long-term strategies, these methods enable the effective management 

of complex systems. Rather than attempting to predict the future, strategic foresight methods emphasize the 

evaluation of possible future outcomes that result from current decisions and intermediate events. This 

approach empowers decision-makers to anticipate and prepare for a wide array of possible future states, 

fostering adaptive and resilient planning in the face of uncertainty and change.  

Although there has been a growing interest in future studies within the context of WRM, a holistic 

framework to categorize various methods and techniques is missing., as well as the advantages various 

methods provide for resilient, adaptive decision-making in WRM. This research seeks to address some of 

these gaps by exploring and comparing the applications of exploratory and predictive perspectives for two 

distinct WRM issues, one at the governance level and the other at the operational level. 

1.2. Overall goals and objectives 
The primary objective of this research is to examine and compare the implementation of exploratory and 

predictive foresight methods, along with their influence on decision-making processes within the context 

of WRM. This dissertation asks the question, "In what ways can foresight methods enhance decision-

making and lead to more adaptive water resources management?" To investigate this question, the study is 

divided into two parts, each focusing on the exploratory and predictive approaches, respectively. 

The research commences by addressing the water supply challenge. The first part of this study delves into 

the WRM problem from a water governance perspective, employing an explanatory approach. The 

objective is to present an extensive framework that enables the exploration of diverse water governance 

scenarios. Part 1 concentrates on a case study of agricultural water demand management within the 

Zayandehrud watershed in Iran. The primary objectives of this part are to: 

1.1 Engage stakeholders in the identification of crucial adaptation strategies and policy interventions 

for AgWM.  

1.2 Evaluate the interactions and interdependencies among these strategies.  

1.3 Employ formative scenario planning to develop a limited set of plausible, distinct regional 

agricultural water governance alternative scenarios.  

1.4 Assess the effects of these scenarios on the sustainability and adaptability of the watershed. 

In the second part of this research, the focus transitions from the governance level to the operational level 

and from an exploratory lens to a predictive one. This portion of the study investigates the utilization of 

cutting-edge forecasting techniques in decision-making concerning operational WRM challenges. 

This section concentrates on the topic of water quality through an examination of Harmful Algal Blooms 

(HABs) in freshwater resources. The primary objectives of this part include: 

2.1 Developing a comprehensive framework for evaluating the performance of near-term forecasting 

models.  

2.2 Improving existing algal bloom predictions by utilizing high-frequency data and advanced deep 

learning techniques. 
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1.3. Investigation Approach and Dissertation Outline  
 

Table 1-1 summarizes the WRM problem, case study, and methods employed to achieve the research 

objectives of each chapter. Every chapter in this dissertation has its own scope, contributions, and 

methodology. Based on published journal articles or conference papers, or working papers they together 

form a research framework for applying foresight methods to facilitate adaptive decision-making in WRM 

problems. 

Chapters 2 and 3 demonstrate the application of the exploratory framework to water supply issues in the 

context of the agricultural water demand problem in the Zayandehrud watershed. In Chapter 2, we employ 

a formative scenario planning approach to identify key variables that may influence agricultural water 

demand in the watershed and analyze alternative policies and infrastructures with the potential to effectively 

address the problem or that are already in use elsewhere. Based on these findings, we develop a concise set 

of governance-oriented scenarios to inform ongoing planning. Additionally, we assess the impacts of each 

scenario on the socio-economic and ecological sustainability of the watershed. 

In Chapter 3, we delve deeper into one of the five scenarios created in Chapter 2, seeking to answer the 

question: How will water markets impact irrigation water demand and overall utility in a watershed under 

a free trade regulation scenario? To address this question, we develop a partial equilibrium model. 

Chapters 4 and 5 shift the focus from exploratory to predictive approaches, exploring these methods in 

relation to water quality issues, specifically the challenge of algal blooms in freshwater resources. In both 

chapters, historical data from Peter Lake, an experimental lake in the Notre Dame Environmental Research 

Center, is used as the case study. 

In Chapter 4, we establish a comprehensive framework for assessing the performance of near-term 

forecasting models. Additionally, we develop univariate algal bloom forecasts using historical chlorophyll-

a data and deep learning techniques. 

Chapter 5 expands upon the scope of Chapter 4 by incorporating water quality and environmental variables 

to improve the performance of univariate models. We compare the performance of multivariate and 

univariate models using the evaluation criteria established in Chapter 4. 

In Chapter 6, I conclude by summarizing the motivation behind my research, the research goals and 

objectives, the results obtained, their contributions to the field, and my recommendations for future work. 
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Table 1-1 Research goals, questions, methods, and associated chapters 

Ch 
WRM 

problem 

Chapter 

Description 
Research Objective Methods Case Study 

1 
General 

WRM 
Introduction - - - 

2 

AgWM 

Divergent agricultural 

water governance 

scenarios: the case of 

Zayandehrud basin, Iran 

 

• To identify the 

adaptation policies  

• To construct a small set 

of plausible, distinct 

regional agricultural 

water governance 

alternative scenarios 

• Formative 

scenario 

planning 

Zayandehrud 

Watershed, Iran 

3 

Modeling water market 

and food free-trade as 

instruments for the 
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Abstract 
 

There is an urgent need to consider adaptation strategies for agricultural water resources in response to the 

ever-growing demand for freshwater around the world. This is especially poignant in arid and semi-arid 

regions, like the Middle East and North Africa (MENA) where water resources have been extremely limited 

historically.  Today, water resources are declining due to a variety of factors, including climate change, 

population growth and changing food preferences. Research on this topic typically seeks to assess the 

impact of discreet alternative interventions in isolation. However, it is necessary to analyze the broader 

factors affecting agricultural water management as interconnected components of a complex water 

governance system within a specific geographic context. This research uses an exploratory, formative 

scenario planning approach to a) identify important adaptation strategies, b) use those adaptation strategies 

to construct a small set of coherent, plausible and diverse regional agricultural water governance scenarios, 

and c) analyze future scenarios of the Zayandehroud watershed in Iran in the year 2040. The research shares 

five scenarios that exemplify divergent adaptation and mitigation approaches to agriculture water demand 

in Zayandehroud watershed, including adhering to the status quo. Each scenario embodies different 

economic and political priorities to reveal how those priorities impact the ecological, social, and economic 

sustainability of this watershed. These scenarios provide insights into the long-term implications of near-

term decisions about water and food security, resilience of local communities and the ecological integrity 

of the regional watershed. This research explores the conceptual relationships between components of the 

water governance system and demonstrates an approach to analyzing alternative constellations of factors 

that will impact agricultural water management.  Policymakers can make more effective policies if they 

consider how to transform the broader system of regional water governance, rather than only evaluating 

discrete agricultural water management projects on a project-by-project basis. 

 

Keywords 

Adaptive Governance, Scenario Planning, Water Market, Rural Development, Local Governance, Land 

Use Planning 
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2.1. Introduction 
 

Climate change and population growth are often the most discussed causes for global water scarcity in 

terms of supply uncertainty and increasing demand, respectively. Yet, water crises can also be attributed to 

governance––including a broad range of political, social, economic and administrative systems that are in 

place to develop and manage water resources. This is especially the case in developing countries where 

rigid and hierarchical governance systems, which exercise monopolies via governmental control, corporate 

contractors, water-market manipulation through trade policies, incentives and water credits inhibit rational, 

objective water policies (Rogers and Hall, 2003). 

In arid and semi-arid regions––characterized by low precipitation, high evaporation and uneven temporal 

and spatial distribution of water resources ––agricultural water governance is of utmost importance, since 

the decisions impact the dual goals of food security and water security. For instance, in the Middle East and 

North Africa (MENA) region, over 85% of available fresh water is being consumed by the agricultural 

sector to guarantee food security, yet water demand far outstrips water availability (Shetty, 2006; Bucknall, 

2007). Classic approaches to agricultural water management in these regions rely mostly on technologies 

(and connected infrastructure) to augment the irrigation water supply and to enhance the productivity and 

efficiency of irrigation.  

The appeal of technological solutions can lead decisionmakers to overlook the potential of alternative 

solutions like market policies, institutional reforms and social changes (Madani, 2014). In fact, adaptation 

processes can be constrained by a lack of political will and consensus, oppositional cultural factors, and the 

lack of stakeholder engagement  (Ricart et al., 2019b; 2019a). As an example, intra-basin competition over 

water resources can arise when public officials seek to implement short-term, visible outcomes for the 

landowning farmers that elected them, thereby contributing to the persistence of technocratic approaches 

(Dietz, Ostrom and Stern, 2003). In developing regions around the world, international donors and other 

financial organizations historically have been strong external drivers of policy. They can incentivize 

technology-oriented solutions and centralized governance structures in order to control and protect their 

investments.   

Iglesias and Garroteb (2015) performed a comprehensive study to identify agricultural water management 

adaptation strategies and evaluate their feasibility and effectiveness in Europe (Iglesias and Garrote, 2015). 

The adaptation strategies they cataloged cannot be considered a comprehensive set of neutral and 

independent tools that can be implemented globally to mitigate the water management crisis. Boelens and 

Vos (2012) explored the effects of discrete interventions that would affect water efficiency and enhance 

productivity, yet they concluded that while those interventions represent important alternative decisions 

they need to be understood within complex social and power relationships in the specific geographic 

contexts where they are being implemented (Boelens and Vos, 2012). Given the increasing vulnerability of 

water resources, climate uncertainty, and complex governance, effective water management policies must 

account systematically for a wider range of adaptation strategies  that embrace aspects of the built 

environment, social institutions, and socio-ecological systems as well as different water activity domains 

including supply, delivery, use and outflow (Larson, Wiek and Keeler, 2013; Field, 2014; White et al., 

2015).    
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Despite this need, there is a dearth of studies that attend to the interplay between adaptation choices (discrete 

interventions) and geo-political context and social relationships, which are often neglected in these studies. 

This means that the effectiveness and plausibility of a particular adaptation strategy is not considered in 

relation to other interventions, despite Boelens & Vos (2012) arguments to the contrary. To this point, 

Knieper and colleagues (2010) argue that there is a need for policy makers to explore alternative governance 

scenarios that attend to the technological and societal forces at work in their decisions (Knieper et al., 2010; 

Foley and Wiek, 2014).  

Scenario planning offers a powerful tool to study the future-states of a system by exploring alternative, yet 

plausible and consistent futures that could evolve out of present conditions (Stewart et al., 2007; Mahmoud 

et al., 2009; Funke, Claassen and Nienaber, 2013). Scenarios can help decision-makers (broadly defined) 

to understand and analyze the key connections, explore the uncertainties of a specific system to take a more 

holistic perspective, and to assess coordinated actions in a highly uncertain environment (Henriques et al., 

2015). Scenarios can be qualitative or quantitative, based upon the nature of the data. Qualitative scenarios 

are more suitable for the analysis of complex systems with high degrees of uncertainty and when most of 

information cannot be readily quantified due to data uncertainties (Van Notten et al., 2003). On the other 

hand, scenarios can be categorized as predictive, explorative or normative based on the research question 

that the researcher aims to address. While predictive scenarios seek to identify the most probable futures 

by answering questions related to what will happen, explorative scenarios develop knowledge about what 

are the most plausible futures, i.e. what can happen? Finally, normative scenarios explore questions about 

the most preferable futures (Bishop, Hines and Collins, 2007). This typology of scenario analysis is 

important to consider and will help the reader position our work within the field of scenario methodologies. 

It also should be noted that the nature of scenarios as a type of foresight knowledge is non-verifiable since 

it is not able to provide an exact representation of an observed reality. So for qualitative scenarios, quality 

criteria include: logical coherence, plausibility, divergence, and relevance to decision making rather than 

the accuracy of the prediction (Guimaraes Pereira, Von Schomberg and Funtowicz, 2006). For example, 

the National Parks Service uses scenarios to “anticipate plausible but unprecedented conditions, and expect 

surprises” with respect to the effects of climate change on the national parks (National Park services, 2013) 

This study offers a conceptual framework that attends to the interplay among multiple social, political, and 

technological factors and employs an explorative scenario development approach to study different 

constellations of those factors qualitatively.  The arrangement of those factors will inform distinct water 

governance scenarios, some of which may contribute to key aspects of sustainability and less so for others. 

The scenarios are not a blue-print for sustainable water governance, rather this study demonstrates 

conceptual relationships and explores the interplay of alternative strategy elements. Our research explores 

an important, yet modest goal by addressing the question: What adaptation policies, technical and 

infrastructure investments can alleviate future water scarcity of this watershed? How does each mitigation 

strategy promote or obstruct other choices? How will understanding about these interplays guide us to 

delineate alternative water governance scenarios? Finally, how will these alternative scenarios affect the 

ecosystems, agricultural sector, and rural communities? 

This paper offers a small set of alternative scenarios, which depict plausible, comprehensive governance 

regimes that address agricultural water demand. At its core is an exploration of the societal and 

technological transformations that may arise in parallel and ameliorate the conditions that are promulgating 

“water wars” across the globe  Left unchecked, the current rates of water overexploitation will lead to the 
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“Tragedy of the Commons” (Hardin, 1968; Ostrom, 2009) with dire consequences for millions of people. 

Rather than focusing on “silver bullet” solutions to water crises, this research treats water governance as a 

“wicked problem” that demands more holistic, adaptive management strategies. 

This study explores sustainable water governance by considering how alternative adaptation choices could 

function consistently without major obstructions. To bring the people and places into focus, next we 

introduce the Zayandehrud Basin in Iran as a means of highlighting the key geopolitical factors unique to 

that watershed. This case study will serve to illustrate the use of scenarios to explore potential approaches 

to the broader issues of water governance in arid and semi-arid regions generally, and the MENA region 

specifically.  

2.2. Case Study Context: Zayandehrud Watershed 
The Zayandehrud river originates from the Zagros mountains in the Northwest of Iran and flows 250 miles 

through the arid and semi-arid central plains before emptying into the Gavkhooni swamp (Fig.1). The total 

basin area of 16,000 mi2 extends into the provinces of Isfahan and Chahar Mahal. Charmahal province is 

located upstream of the river and its share of the river basin is just 7% of the land and 1.8% of the population 

(Mohajeri et al., 2016a). Beside Isfahan and Charmahal provinces, Zayandehrud also provides residential 

water to residents of two arid neighbor cities of Yazd and Kashan. Currently, more than one million (about 

20%) residents of the basin depend on farming income and subsistence food supplies over an area of nearly 

200,000 hectares of cultivated land, which is more than 90% irrigated. Food security concerns arose in the 

1980’s during an eight-year war between Iraq and Iran. This event made food self-sufficiency one of the 

highest national priorities regardless of severe water crises in most parts of the country [self-sufficiency]1. 

Policies for food self-sufficiency include high tariffs on imported foods and incentives, such as; subsidized 

water, energy, fertilizer and equipment to support domestic food production [food trade regulation, water 

pricing and subsidies].  

Subsequently, the agriculture sector is expanding in this watershed even though it is a closed basin 

[irrigated land area] (Molle and Mamanpoush, 2012). The food self-sufficiency incentives are not keyed 

to knowledge of the available water resources or their conservation. Therefore, they prevent the agriculture 

sector from shifting toward more efficient and productive practices [agricultural practices]. As a result, 

despite the existence of severe water scarcity in the basin, about 90% of its cultivated area is still supplied 

with water by flood irrigation [irrigation system] (Nikouei and Ward, 2013; Shahdany et al., 2018). The 

irrigation water storage and distribution networks are mostly open and uncovered canals and there is no 

infrastructure to gather, treat and redistribute marginal quality water in farms [storage and distribution 

system].  Farms in close vicinity to the river rely on surface water (30%), while other farms use spring water 

(6%) and groundwater from wells (58%) and qanats (6%) for irrigating their farms (Felmeden, 2014).  

A key historical and cultural feature of the agricultural water systems in Iran are qanats, which are 

underground horizontal tunnels excavated to convey groundwater from mountainous areas where the water 

table is closest to the surface, to arid regions. Qanats minimize water contamination and evaporation. Unlike 

the pumping system, qanats only extract renewable water (Yazdanpanah, Hayati, et al., 2013). 

 

 

1 The terms in bracket refer to adaptation strategies and are identified as key variables, listed in Table 1. 
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Overdevelopment of upstream irrigated areas, in addition to unauthorized groundwater extraction, have 

disturbed the traditional qanat water allocation system substantially. Downstream farmers along the river 

as well as qanat water right holders no longer receive their full water rights [water allocation]. This problem 

has led to widespread dissatisfaction and continuous protests. Protesters believe that the current water 

allocation system is unfair and water managers must stop pumping water to neighboring cities like Yazd 

and Kashan. In fact, angry farmers have frequently damaged the exporting water pipeline to those cities. 

For instance, as recently as  October 2018, the water pipeline to the city of Yazd was vandalized and 

ruptured by protesters 22 times  according to the governor of Yazd province.(BBC, 2018). 

To satisfy increasing demand, almost all river runoff is stored behind the Chadegan dam. Three tunnels 

divert water from the neighboring watershed, Karoon, while several new tunnels are under construction to 

increase the supply [water transfer projects], shown in Fig.1. Despite these efforts, the Gavkhooni wetland, 

which Iran committed to preserve under the Ramsar Convention, has not been receiving its minimum water 

requirements to preserve ecological integrity since 1995 [wetland water right].  

 

 

 

Figure 2-1 Zayandehrud watershed. Iran is in the inset map and is delineated by provinces. The Zayandehrud basis in called 

out and is divided among four provinces with Charmahal & Bakhtiary Province and Isfahan Province as the primary political 

stakeholder. The economic and populous center in the City of Isfahan.    
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The Zayandehroud river passes through the city of Isfahan, the third most populous city in Iran. 

Zayandehrud is a key feature of Isfahan City, a hub of tourism in Iran. Many outstanding features of this 

ancient city, such as bridges and palaces, rely on the glory of this “life-giving” river2 (Schramm and Sattary, 

2014). The Zayandehrud watershed was chosen as an illustrative case study due to its socioeconomic and 

ecological importance and as a complex case of agricultural water demand management. A few scenario 

planning studies have been conducted on different aspects of the Zayandehrud watershed. Gohari et al. 

(2013) developed a system dynamics model to evaluate new water augmentation projects on supply-demand 

dynamics in the Zayandehrud watershed (Gohari et al., 2013). Safavi et al. (2016) also developed an 

Adaptive Network-based Fussy Inference System (ANFIS) model to evaluate the impact of climate change 

and supply augmentation projects on the near future condition (2015-2019) of this watershed. Felmeden 

(2014) developed three scenarios with special focus on integrated water management, though that study 

offered very narrow recommendations. This broad range of studies and the complex characteristics of the 

Zayandehrud watershed make it an ideal case study to explore alternative governance arrangements through 

scenarios, and thus offer findings for other watersheds in the MENA region.   

2.3. Research Design and Methods 

2.3.1. Theoretical framing 

This study draws upon Elinor Ostrom’s (2009) scholarship on the governance of the commons and 

integrates aspects of the built environment, socio-economic, and ecological environment into an analytical 

framework (Ostrom, 2009). The built environment mostly embraces physical variables like technologies 

and infrastructures, while socio-economic conditions covers factors such as policies and regulations. 

Finally, the ecological interface includes environmental conditions and systems. Those three categories 

were complemented by the work of Keeler and colleagues (2015), which added phases of water governance; 

including the five domains of supply, delivery, use, outflow and cross-cutting activities (Larson, Wiek and 

Keeler, 2013; White et al., 2015). These two frameworks, together, inform the theoretical framework for 

this paper’s governance of agricultural water demand and demonstrate the conceptual alignment of the 

governance factors identified by Ostrom with the five phases offered by Keeler, see Figure 2. Such an 

alignment allows this research to interrogate the interdependencies between and among the system elements 

and sustainability principles, such as social institutions and water delivery or the built environment and 

socio-ecological integrity. 

 

 

 

2 The meaning of Zayandehrud in Farsi is the “life-giving river”. 
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Figure 2-2 Conceptual framework. The three system interfaces are cross-cut by four domains of activities. This framework 

supporting the identification of adaptation choices, which were selected as variables via the scenario construction process. 

 

2.3.2. Scenario Construction Methodology 

Scenario development is usually a step-wise process in which all tasks can be categorized into three standard 

groups; idea generation, integration, and consistency checking (Bishop, Hines and Collins, 2007). There 

are several available techniques that are used in each group, and these can be adapted individually or in 

hybrid format based on the context, nature of study and available resources.  Generating techniques include 

collecting information from experts and/or stakeholders. Integrating techniques are used to combine parts 

into wholes. Consistency techniques are utilized to secure the consistency between or within scenarios 

(Börjeson et al., 2005). This research generated data from qualitative sources, including individual 

interviews, group discussions, and desk research. This research adapted a step-wise formative scenario 

analysis methodology developed by Scholz and Tietje  (Scholz and Tietje, 2002; Tietje, 2005) to integrate  

the information into a discrete set of governance-oriented scenarios for the Zayandehrud basin through 

2040. The method was also used to secure consistency and diversity across the scenarios. This exploratory 

approach helps to link the “formative” scenarios with expert and stakeholder knowledge to create a subset 

of signature scenarios which are normative, comprehensible and informative for decision-makers (Foley 

and Wiek, 2014; Keeler et al., 2015). The process that the research team followed to construct the formative 

scenarios is described next. 

 

Step 1- Variable Identification 
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Proposed adaptation measures, policy interventions and investments which may contribute “independently” 

to agricultural water demand (AgWD) management were identified and cataloged in order to construct 

consistent and distinct water governance scenarios.  The semi-participatory approach involved 15 individual 

interviews, eight online discussion forums with about 8000 participants, secondary sources from media-

based interviews, government reports and documents, and previous studies. The individual interviews were 

recorded in person, during January 2015. The interviewees were selected from a diverse range of water 

managers, environmental activists and decision-makers in Iran. The online discussions occurred through 

the “Telegram” application, which is the most popular phone-based communication application among 

Iranian citizens. It provides a flexible, affordable, free and secure medium for stakeholders to express their 

ideas freely to persons outside of Iran. Some forums involved official think tank and government advisors 

and others were unofficial discussion groups, which support different stakeholder groups and their interests 

and values. Due to the nature of this research, the individuals and organizations involved must remain 

anonymous.  

This approach gathered data that fit the theoretical framework and provided a broad range of strategies for 

the different interfaces and domain activities. The data gathered encompasses the three interfaces of socio-

economic (formal and informal institutions), built environment (technological systems), and environment 

(ecological) and five domains of supply, delivery, use, outflow and cross-cutting activities. Further, the 

research team condensed the list of variables to include only 20 independent variables in the final set of 

variables based upon the following criteria:  

1- Sustainability importance of the independent variable on AgWD.  

2- Systemic importance, including the potential uncertainty and complexity that any single variable 

adds to the whole system. For example, projections for population growth have a high confidence 

or low degree of uncertainty. Therefore, this variable, and others like it were removed because they 

do not contribute significant uncertainty to the model.    

3- Minimum redundancy for any variable that is already represented by other variables or if it is 

possible to combine two or more variables into a single variable. For example, variables like land 

consolidation, irrigation scheduling, and crop rotation programming were combined into a single 

variable called agricultural practice. 

4- Maximum diversity across different interfaces (socio-economic, technological, ecological) and 

activity domains (supply, delivery, use, outflow) was evaluated iteratively by the researchers to 

have the most comprehensive set of variables. 

Two to three future projections that were drawn from the generated data were used to explore how the 

independent variables could change in the long-term future, and thus how the governance arrangement 

could change. Table 1 presents the variables selected and the future projections explored.  
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Table 2-1 List of final selected variables. The first column lists the variables that were selected from the adaptation strategies. 

The second column shows the alignment with the conceptual framework. While the right-side column offers two to three diverse 

future projections for each variable. 

Variable 
Environment 

/Domain 
Future Projections 

1- Food Trade Regulation 

 1-Trade is regulation-free and based on economic probability (free market) 

Socio-econ/Supply 2-Trade is regulated based on their water productivity (Virtual water trading) 

 3-Trade is regulated based on food security concern (self-sufficiency approach)  

2- Water Market 

Socio-econ/Supply 1-Established water markets/banks facilitate water trade  

 2-There are only informal, small scale and direct bartering of water rights among 

farmers. 

3- Water Pricing  

Socio-

econ/Delivery 

1-Volumetric irrigation water consumption is being priced based on supply-demand 

and charged 

 2-Irrigation water is almost unpriced and ineffective 

4- Water Allocation  

Socio-

econ/Delivery 

1-Water is distributed based on government discretion and priorities, in an unfair way 

 2-Traditional water rights are followed as the central criteria for water allocation 

 3-Traditional water allocation system is modified and followed  

5- Irrigated Land Area  
Socio-econ/Use 1-  A restrictive cap on total irrigated land is set and enforced 

 2- There is no regulation to control irrigated area 

6- Cultivation Plan (Crop 

choice) 

 1- Farmers follow a comprehensive cultivation plan based on water availability 

Socio-econ/Use 2- Farmers plan cultivation collectively considering available water and socio-economic 

concerns 

 3-Farmers individually decide about their cultivation plan based on their experience 

and discretion 

7- Agricultural Practice 

 1- Industrial Farms are dominant  

Socio-econ/Use 2-Small and improved traditional agricultural practices are the dominant practice 

 3-Farms are mostly small, traditional and un-mechanized  

8- Runoff and Drainage 

Recycling 

Socio-

econ/Outflow 

1-Most of agricultural runoff is recycled and reused 

 2- Most of agricultural runoff is disposed without treatment and recycling  

9- Water Transfer Projects  
Built/Supply 1-New water transfer projects (i.e. Behesht Abad tunnel) are pursed 

 2-No new water transfer projects are pursed 

10- Storage & Distribution 

System 

Built/Delivery 1- Distribution system is lined and covered to minimize percolation and evaporation 

 2- Open and unlined distribution system is dominant 

11- Efficient Irrigation 

Technologies 

 1- Efficient irrigation technologies (like drip irrigation) are used in most farms 

Built/Use 2-Traditional irrigation system (like float irrigation) is still dominant among farmers 
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12- Groundwater Safe 

Yield 

Ecological/Supply 1-  Effective groundwater safe yield regulation exists and is enforced at any condition 

 2-  Safe yield regulations are not effective enough or is not pursued at water deficient 

condition. 

13- Gavkhouni Water 

Right 

Ecological/Delivery 1-Gavkhouni receives its water right continuously. 

 2-Gavkhouni does not receive its water need. 

14- Unauthorized 

Extraction  

Ecological/Use 1-Unauthrized extraction regulation is enforced effectively and fairly administered. 

 2-Unauthorized extraction is not regulated and/or unenforced properly. 

15- Subsidies 

 1- Both direct and indirect subsidies used to support food production 

Cross-cutting 2- Subsidies are used purposefully to motivate sustainable farming and conservative 

water consumption 

 3- All kind of subsidies are totally removed 

16- Knowledge Sharing 

System 

 

Cross-cutting 

1- Collaborative Knowledge System: Knowledge is generated and shared equally 

between farmers, bureaucrats, scientists, agricultural-product businesses, and consumers  

 2-  Knowledge Push:  Farmers are trained through education packages provided by 

government 

 3- Traditional Knowledge Sharing: Farmers are trained by their elders  

17- Rural Development 

Plan 

Cross-cutting 1- Local non-farming entrepreneurships are highly encouraged and incentivized 

 2- Access to basic services are provided and subsidized 

 3-There is no supportive plan for rural development 

18- Governance Integrity 

 1- There is a high level of institutional integrity among all parties over objectives, 

approach and decisions 

Cross-cutting 2- The system is fragmented in which actors follow different and conflicting objectives 

and approach. 

19- Governance 

Hierarchical System 

 1-Top-Down (Centralized) 

Cross-cutting 2-Local water governance (Decentralized) 

 3-Collaborative governance 

20- Food Self- Sufficiency 
Cross-cutting 1-Food Self-sufficiency is the principle guideline for decision/policy making 

 2-Food Self-sufficiency is not the central principal in water governance system 

 

Step 2- System Analysis 

The selected variables were scored for their cross-influence on a scale from 0 (no impact), 1 (indirect 

impact) to 2 (Direct impact). The scoring system is two-ways, because the impact of variable A on Variable 

B might be different from the impact of variable B on variable A. Subsequently, this will yield a non-

symmetric impact matrix, which includes impact relationships among all pairs of variables, see Appendix 

2-1 for the completed impact matrix uploaded as Research Data.  This analyzes the key interconnections of 

the system and illustrates the level of activity (influence) or passivity (sensitivity) of each variable (Kuzdas 

and Wiek, 2014; Michel et al., 2018). It should be noted the cross-impact and consistency scoring (the next 

step) were performed through an iterative process among the research team.  Consequently, the process 
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involves a level of subjectivity, where team members utilized their case-specific knowledge about the 

variables to perform these tasks. (Scholz and Tietje, 2002).   

Step 3- Consistency Analysis 

The consistency of each scenario, and logical coherence (Godet, 2000; Carpenter and Rissman, 2012) of 

paired variable-projections were scored from -2 (prevents the occurrence) to 2 (required to occur) following 

Tietje (2005). Unlike previous analysis, consistency scoring is a one-way analysis, because for each 

projection pair, the plausibility of their occurrence at a same time was scored. For example, the consistency 

score for having effective water markets without changing subsidies was -1 which means the levels hinder 

each other, but it’s not impossible that they 

occur at the same time. The result is a triangular matrix (see Appendix 2-2 uploaded as Research Data). 

This matrix was used to calculate additive and multiplicative consistency scores and number of 

inconsistencies for each scenario. The different indices complement each other and support the selection of 

the most consistent scenarios, which are neither too excluding nor on the other hand, compromising the 

major inconsistencies. For instance, the additive consistency index could compromise a major inconsistency 

between two future projections if the total consistency value is high enough. For example, for a given 

scenario if there are two -2 (absolutely inconsistent) scores but all other 18 scores are 2 (totally consistent), 

the additive consistency will be higher than many scenarios without major inconsistencies. In contrast, 

Multiplicative consistency could be too excluding, since even one major inconsistency leads to total score 

of zero (Tietje, 2005).  A computational model using Python programming language expedited the 

calculations.  The filtering criterion combined additive consistency (> 30) and the number of inconsistencies 

(< 2) to narrow the number of scenarios down from about 26.8 million initial scenarios to a smaller set of 

consistent scenarios (one million) which can be used in step 4, diversity analysis. It means all scenario with 

additive consistency above 30 were selected condition to have no more than one major inconsistency.  

Step 4- Diversity Analysis 

While 96% of the scenarios were excluded based upon the consistency analysis, the remaining consistent 

ones needed to be narrowed to a small set of plausible, and distinctive scenarios. For this purpose, the 

distance-to-selected (dts) methodology was adapted and combined with a set of exclusive criteria to select 

the final scenarios (Tietje, 2005). The most consistent scenario, which is close to the status quo scenario, 

was used as an “anchor” to find the second scenario. To choose the second scenario a tradeoff needs to be 

considered between the consistency values and distance value (harmonic mean distance from other selected 

scenarios). Since the intent of the study was to inform sustainable water governance, we elected to focus 

on scenarios that exhibit strong coherence (highly consistent) while also adhering, to the extent possible, to 

sustainability principles (Foley and Wiek, 2014; White et al., 2015). To do so, in each round, we chose 

scenarios that have the highest distance value from the most consistent scenarios while holding promise for 

a sustainable future. This process was iterated until there was no scenario with harmonic mean distance 

greater than 50%, while no unsustainable (i.e. societal collapse) scenarios were included. It means that 50% 

similarity was set as the maximum permitted similarity between the signature scenarios. 

 

 

Step 5- Scenario Interpretation 
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As Scholz and Tietje (2002) claim, the most natural way to interpret the scenarios is through deep 

discussions about future states of the system. This method is consistent with our approach to transform the 

scenarios from “operations on numbers to operation on concepts” (Scholz and Tietje, 2002). This method 

also helps to communicate and validate the scenarios with targeted audiences more effectively. 

Accordingly, key systemic features of our scenarios were shared with participants who deliberated on them 

and explained their vision of the Zayandehrud basin in 2040 under each future scenario of the governance 

regime. The time frame was chosen to be long enough that each scenario gets fully established and short 

enough that could be imaginable without clashing with fundamental technological changes. 

Those discussions were used to evaluate each scenario with the following sustainability concerns: 

• Agricultural water demand  

• Ecological sustainability 

• Agriculture sector development 

• Welfare of rural communities 

• Food security 

• Conflict level 

The deliberations produced a storyline for each scenario and those narratives, along with some 

visualizations, were used to refine participant perceptions of the scenarios. 

2.4. Results: Scenario Construction and Selection 

The water governance system of Zayandehrud watershed was explored thoroughly using the scenario 

planning methodology described above. The major irrigation water demand management strategies were 

identified (Table 1 above) and their dyads were studied to find their key interactions and to analyze this 

system of systems thoroughly. Furthermore, five plausible and distinct scenarios were constructed and 

interpreted to address different approaches to irrigation water demand management in the Zayandehrud 

watershed, 2040.  
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Figure 2-3 Impact analysis. This plot shows the results of the systems analysis with the aggregate level of bi-directional 

influence resulted from scoring the interaction effects between the variables. 

 

The impact analysis identified institutional reforms and the general approach to trade policy as key drivers 

of the system since they have high activity and low passivity scores. Therefore, it is expected that any 

change in governance, its hierarchy and integrity level, and general food trade regulations, would trigger 

substantial movement in other variables. For instance, the central food trade regulation approach is a key 

driver for other market variables like subsidies, water markets and the water pricing system, which can also 

stimulate change in agricultural and ecological variables. As is illustrated in Fig. 3 many market variables 

are assigned a mediating role, since they can highly influence other variables and be influenced by other 

variables at same time.  

This analysis also shows that the food self-sufficiency approach has the highest activity and passivity score 

in this system, which implies its critical mediating role. While the food self-sufficiency approach can greatly 

affect the other water policies, such as market regulation and agriculture practices, it can also get influenced 

by any change in these policies. On the other hand, the adaptation strategies related to agricultural and 

efficiency and productivity fall in the third category, sensitive policies, including passive variables which 

are highly influenced by first and second groups. However, these have the least power to influence other 

variables. The last category includes buffer variables, which are neither drivers nor influence absorbers, but 

exert an indirect impact on system outcome variables. The results recognize no buffer variables. This 

implies a high level of system complexity, which means that none of these mitigatory actions happens in 

the vacuum without influencing or being influenced by other variables.  
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Table 2-2 Variable-Future Projection Alignment. The configuration of future projections for each variable across the five 

scenarios. The selected variables are referred in section 2 (case study context) in italic font. 

Variables 
S1:  

Status Quo 

S2: 

 Free market 

S3:  

Reformed Top- 

Down 

S4: 

Local Power  

S5: 

Rural 

Development  

Food Trade Regulation 

 Highly regulated 

in favor of domestic 

production 

Regulation-free 

Highly regulated 

in favor of domestic 

production 

Regulation-Free 
Regulated based 

on Water Productivity 

Water Market Not Available Available Not Available Not Available Available 

Water Pricing  Unmodified Modified Unmodified Unmodified Modified 

Subsidies 
Highly 

Subsidized 
No Subsidy 

Subsidized 

purposefully 
No subsidy 

Subsidized 

purposefully 

Water Allocation  
Government 

discretion 

Traditional Water 

Rights 

Government 

discretion 

Traditional water 

rights 
Modified 

Unauthorized 

Extraction  
Not enforced Not Enforced 

Highly regulated 

and enforced 
Not enforced 

Highly regulated 

and enforced 

Irrigated Land Area Unrestricted Unrestricted Restricted Unrestricted Restricted 

Cultivation Plan Individual choice Individual Choice 
Comprehensive 

Plan  

Locally 

Collective 

Comprehensive 

Plan 

Runoff and Drainage 

Recycling 
No reuse Recycled Recycled No Reuse No Reuse 

Water Transfer 

Projects 
Pursued Unpursued Pursued Unpursued Unpursued 

Storage & Distribution 

System 
Unchanged Upgraded Upgraded Unchanged Unchanged 

Irrigation System Inefficient Efficient Efficient Inefficient Inefficient 

Groundwater Safe 

Yield 
Unpursued Unpursued Pursued Pursued Pursued 

Agricultural Practice  Traditional  Industrialized Industrialized Traditional  
Improved 

Traditional 

Gavkhooni Water 

Right 
Not Allocated Allocated Not Allocated Not Allocated Allocated 

Education and 

Training 
Knowledge Push 

Traditional 

Knowledge 
Knowledge Push 

Traditional 

Knowledge 
collaborative 

Rural Development 

Plan 
Basic Needs No plan Basic Needs No Plan 

Alternative 

Income 

Institutional Integrity Fragmented Fragmented Integrated Fragmented Integrated 

Governance 

Hierarchical System 
Top-down Top-down Top-down Local Collaborative 

Food Self- Sufficiency 
Principle 

Guideline 
Not Pursued 

Principle 

Guideline 
Not Pursued Not Pursued 
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2.4.1. Selected Scenarios 

Five consistent, systematically different scenarios were selected out of approximately 27 million scenarios 

(algorithm generated) by following the five-step filtering procedure explained in section 3. A summary of 

the selected scenarios’ configuration of future projections is offered in Table 2, below. The consistency and 

diversity scores for each selected scenario (shown in Table 3) show no obstructive relations (no -2 score), 

additive scores above 45, and multiplicative consistencies greater than 1.5E+13. This provides confidence 

about the plausibility of the scenarios.  The high Distance-to-Selected (dts) values (≥60) and their low 

deviation (<6) scores satisfy a high diversity level between the final scenarios (Kuzdas and Wiek, 2014). 

 

Table 2-3 Consistency and diversity analyses. Statistical results are reported for each scenario with four different tests for 

consistency and diversity, as measured by distance-to-selected. Note: Major inconsistencies (scores of -2) were filtered out during 

the scenario construction process, thus all remaining scenarios have zero major inconsistencies  
SCENARIO 

#1 STATUS 

QUO 

SCENARIO #2 

FREE MARKET 

SCENARIO 

#3 

REFORMED 

TOP- DOWN 

SCENARIO 

#4 

LOCAL POWER 

SCENARIO 

#5 

RURAL 

DEVELOPMENT 

ADDITIVE 

CONSISTENCY 

76 53 66 48 67 

MULTIPLICATIVE 

CONSISTENCY 

3.2E+21 9.0E+16 1.7E+18 1.6E+13 8.3E+18 

NUMBER OF MAJOR 

INCONSISTENCIES 

0 0 0 0 0 

DISTANCE-TO-

SELECTED (%) 

61 66 67 60 75 

 

2.4.2. Scenario Interpretation 

The key systemic features of each scenario are depicted in Fig. 4a – Fig. 4e. These diagrams along with 

deliberation and participatory research methods informed the following interpretations and insights about 

each scenario and the alternative approaches to ameliorating the ongoing water crisis in Zayandehrud 

watershed. 

Scenario #1- Status quo continues. 

This scenario carries forward the dominant governance system since the 1970s into the year 2040 (Fig. 4a). 

The central objective for Iranian agricultural water management in this scenario is to safeguard food 

security by achieving self-sufficiency and decreasing the nation’s dependence on imported foods, 

specifically staple crops. The key challenge to overcome is water shortage, and that is addressed through 

supply augmentation via large-scale technical developments with a focus on building new infrastructure, 

such as dams and water transfer tunnels. This scenario is characterized by a top-down governance system 

where agricultural water policies are made at the national level, while regional and local water managers, 

who mediate interactions between the farmers and policymakers, have limited decision-making authority. 
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Farmers and other residents have minimum participation in national policy decisions, which makes them 

highly dependent on government decisions and affords them little recourse. 

This top-down approach does not yield coordinated decision-making across different levels of governance 

to support comprehensive mitigation strategies. For instance, the water management authority remains 

fragmented based on provincial political borders, rather than watershed borders. This exacerbates 

competition over limited resources among different stakeholders. There are legally documented water 

rights, which have been followed for several centuries, that guide the distribution of water among farmers 

in Zayandehrud watershed. Currently, decisions about which farmers get water are made in an unclear and 

unfair process in which residential and industry water users have the highest priority, while the remaining 

water is allocated to the agricultural sector based on government discretion. In other words, the current 

water allocation system doesn’t comply with the traditional documented water sharing system which 

specifies the water apportioned each month to each of the 33 districts (boluks) along the river based on their 

water rights (Molle and Mamanpoush, 2012). As a result, many downstream rightsholders receive almost 

no water. Moreover, the Gavkhooni wetland water rights are de-prioritized in this scenario. Water shortages 

are addressed (where possible) through overexploitation of nonrenewable groundwater resources 

(Mahdavinia and Mokhtar, 2018). Safe yield for the watershed in terms of meeting social and ecological 

water demand is not achieved. 

To achieve food self-sufficiency, market manipulation tools are extensively used to facilitate domestic 

production and national security. For instance, trading of food products, especially staple crops, is highly 

regulated and strictly controlled by the central government. Therefore, only the deficit (gap between 

demand and domestic production) is imported, which is done directly by government- or semi-public 

companies. The water pricing system is unchanged and calculates the surface water price as 1-3% of total 

production value, while groundwater is free of charge, with farmers only paying for the capital to drill wells 

and operate pumps. Market interventions that affect the final sale price of domestic products are not 

competitive with global prices. So, to support domestic production and control food price inflation, the 

government compensates part of the production costs in the form of direct and indirect subsidies to farmers 

and customers. Restrictions on unauthorized water extraction are not prohibitive enough to dissuade 

farmers, and the administration process is ineffective and often corrupted, meaning that farmers create 

illegal wells.  
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Figure 4a.  Scenario #1- Status quo continues                            Figure 4b. Scenario #2- Iranian capitalism reins 

 

Figure 4c. Scenario #3- Planned agricultural economy      Figure 4d. Scenario#4- Interpreting traditions to shape the future 

 

Figure 4e. Scenario #5- Collaborative rural development 

 

 

Figure 2-4 a - e. System diagrams for each scenario (1 to 5). This series of figures show the interactions between the future projections of each variable based upon the impact 

analysis for drivers, mediating, passive and state variables for every scenario.



CHAPTER 2: DIVERGENT AGRICULTURAL WATER GOVERNANCE SCENARIOS: THE CASE 

OF ZAYANDERUD BASIN, IRAN 

 

 24 

 

Scenario #2- Iranian capitalism reigns 

This scenario carries forward many economists’ notions of free-market governance (Fig. 4b). The extensive 

market manipulation during the last decades is dissolved and deregulated markets correct for the value of 

limited resources like water  (Chong and Sunding, 2006; Rosegrant, Ringler and Zhu, 2009; Madani, 2014). 

The core concept is that both the water and agricultural sector exist within deregulated conditions in which 

market equilibrium redefines the water governance system. The water markets yielded positive outcomes 

in both ecological and socio-economic systems. The primary objective of this scenario is to provide a de 

minimis regulatory framework in which water creates the greatest economic value (Debaere, 2014). This 

scenario is not plausible without effective foreign diplomacy efforts that provide stable and constructive 

economic relationships between Iran and the vast majority of foreign nations. 

Water governance is still top-down, but with the central government’s role and responsibilities curtailed to 

mediating market conditions, monitoring, and facilitating trade processes. Subsequently, the central 

government works to remove regulations that hinder international and inter-watershed food trading to create 

open markets where individuals and firms seek maximum economic profits. Government regulations have 

no impact on farm-level decisions like crop choice, irrigation methods, total cultivated area and education.  

All available water rights (that were traditionally allocated) are traded among farmers, industries and even 

government entities throughout the watershed. This water allocation system does not afford water rights to 

critical ecosystems like the Gavkhooni wetland. The volumetric value of allocated water is calculated and 

priced by water markets with high accuracy. The water price covers all human-related costs such as supply, 

distribution and maintenance. Yet, all forms of direct subsidies, including energy, agricultural equipment 

and other supplies like seed and fertilizer as well as indirect subsidies like specific food subsidies are totally 

removed.  

 

Scenario #3- Planned agricultural economy 

This scenario resonated with many participants and entailed reformed and integrated national planning 

efforts (Fig. 4c). Water efficiency and agricultural and economic productivity are increased through 

integrated planning and strategic policies. Such a national integrated plan does not “solve” the ongoing 

water crisis, but rather assures food self-sufficiency and economic growth in the agricultural sector. This 

scenario responds to the current lack of integration and shared objectives, which do not encourage adaptive 

agricultural water management strategies.   

This scenario focuses on achieving food self-sufficiency and safeguarding people (especially farmers) from 

water scarcity through an integrated approach and comprehensive plan (at the national level). The planning 

efforts aim to develop a productive and water-efficient agricultural sector. To fulfill this goal, a 

comprehensive cultivation plan is prepared dynamically, based on soil properties, available water, and food 

demands. To execute this plan, incentive-based policies like directed subsidies are used for energy, 

equipment, seeds and fertilizer. Water allocation is based on this comprehensive plan rather than traditional 

water rights. Similarly, incentives are used to encourage the use of efficient irrigation technologies and 

improved practices. In addition to a traditional education system, the governing system uses a “knowledge 

push” approach to inform farmers about adaptive strategies.  
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Development of large infrastructure is still followed intensively, including new tunnel projects, lining and 

covering channels and reservoirs to prevent extra evaporation, and recycling the marginal quality effluent 

to be used as irrigation water.  On the other hand, the extent of cultivated land is controlled and water 

resources are allocated to ensure safe yield of groundwater. However, wetland water rights are not a priority 

in this allocation system. 

 

Scenario#4- Interpreting traditions to shape the future 

The periodic cycles of drought in Iran no longer create a crisis among farmers, rather water management is 

understood as part of daily life by rural farmers.  Darius the Great’s famous prayer from 500 BC, that 

wished for the Persian Empire to be preserved from enemies, drought and lies offers inspiration and a 

backdrop for the cultural significance of water. People rediscover the important role of water in human 

flourishing in this region by returning to those origin stories. This water governance system includes every 

citizen from ‘kings to kids’ and employs all traditional sociocultural tools to establish a fair, legitimate, 

productive and, most importantly, sustainable governance system. This unique water governance system 

that gave rise to the great civilization of Persia and survived for thousands of years was abandoned by 

technocrats during the 19th and early 20th century. This scenario expresses an idea for how a decentralized, 

pluralistic governance system with minimum top-down intervention might positively affect agricultural 

water management (Fig. 4d). The scenario revives a traditional water governance framework by 

acknowledging water resource ownerships and allowing the owners to govern the waterways that preserves 

their long-term profits and celebrates farming as a way of life.  

Subsequently, all kinds of subsidies and regulations are rescinded, trade restrictions are removed, and water 

is allocated per traditional water rights, while the water pricing system remains intact. New water transfer 

tunnel projects are canceled, and once again qanats (traditional underground tunnels) become the dominant 

groundwater distribution system.  The governing structure is held by the collective local villagers, farmers, 

and water right holders. There is no official mediating or watershed governing system at the federal level, 

rather there is an extensive network of local research projects that are designed to share best practices and 

offer demonstration sites for farmers in other regions. Accordingly, the education system that was once 

limited to intra- family/clan knowledge transfer is expanded to knowledge sharing between local 

communities. 

 

Scenario #5- Collaborative rural development 

The final scenario supports some interviewees’ idea that the most effective and least harmful strategy to 

manage agricultural water demand in this watershed is to downsize the agriculture sector by supporting 

alternative, less water-intensive businesses in rural communities (Fig. 4e). Given the highly variable rainfall 

amounts related to climate change and resulting water crisis, continued investments in the agricultural sector 

are neither economically nor environmentally defensible. Participants suggested downsizing agriculture 

from 20% of the labor force and 11% of GDP. However, this is not possible without a strategy to transition 

towards less water-intensive employment. Otherwise, higher unemployment rates (than the current 12% 

unemployment rates) will cause more social distress in the region. The key goal in this scenario is to have 

flourishing and resilient rural communities with less reliance on income from agriculture.  

http://www.persiangulfstudies.com/fa/index.asp?p=pages&id=438
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This goal cannot be fulfilled without a close collaboration between all parties, including the local 

population, policy and lawmakers as well as academia and NGOs. This scenario requires an integrated 

effort to foster new economic opportunities by federal and state policy-makers, and NGOs to support the 

robust local governing system. The guiding vision for the collaboration and new industries would be to 

achieve sustainable development without compromising water and food security. Yet, it must be noted that 

national food self-sufficiency is not a central tenet of this plan.  

Traditional water allocation is modified to disincentivize the cultivation of marginal lands and greater value 

is placed on cultural uses for water, as well as ecological water demand. Irrigation water is measured and 

priced properly to cover all supply and maintenance fees. The “life giving” force of the river is reframed as 

a cultural attraction with daytime river cruises and restaurants competing for “river front” property in the 

heart of Isfahan.  Wetland water rights are secured by an allocation system and appreciation for the 

sightseeing tours to see exotic birds that provide new jobs. Water markets are effective and trade regulations 

support more positive virtual water import. The subsidy option is also available to incentivize this transition 

from farming to rural industries. 

Despite the regulations and policies at the local level, there is a democratic, inclusive and legitimate water 

governing system, which is run by farmers’ representatives and in coordination with businesses that benefit 

directly and indirectly from the river. An elected board of representatives facilitates a collective decision-

making process, as well as administers the rules and regulations. This elected board cooperates closely with 

the court system to handle potential disputes. Elected boards across the regional engage in semi-annual 

conferences to facilitate knowledge sharing and develop collaborative projects that span state boundaries.  

 

2.5. Discussion 
Scenarios presented here are intended to move decision-makers beyond a binary selection of good or bad 

futures, many water-centric scenarios have fallen victim to this duality, presenting two (or maybe three) 

options, e.g. build the dam or not. In contrast, the future, like the present, is rarely so simple. This study 

aims to “open up” those constrained decisions and place them within a broader decision-making governance 

context that systematically connects the dots between economic, technological, societal and ecological 

forces. To isolate any single adaptation choice and hold the rest of the system constant ignores the 

interrelations within socio-eco-techno systems (SETS). To be clear, there are quite a few alternative 

pathways (and outcomes) for Iran and many other nations facing serious water resource management 

challenges. By exploring several alternatives to water governance, this research shows that there are far 

more choices than simply building a tunnel or not, and such a narrow framing of alternatives has 

implications far beyond the mere presence or absence of a piece of infrastructure. Rather, there are entirely 

different governance arrangements that can support socio-technological changes, and that combination has 

significant implications for the economic and ecological well-being of the region. 

Our research shows that scenario 1 (Status quo continues) is the most consistent failure scenario for 

Zayandehrud watershed. Food self-sufficiency is politicized and buttressed as a necessity of independence 

and geopolitical stability (Madani, 2014). Such stability will be supported by policies and regulations like 

protectionism that will decrease food trading, development of canals for water distribution and expanding 

irrigated land area, underpriced irrigation water and indiscriminative subsidies (Molle and Mamanpoush, 
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2012). By 2040, it is plausible that socio-economic sustainability of the Zayandehrud watershed will be 

degraded, while neither food security nor water security will be achieved (Heslot, 2018). 

If food self-sufficiency remains the central guiding policy in Iran, then Planned Agriculture (Scenario #3) 

would offer a means to secure production of essential crops without compromising the water security of the 

watershed. However, absolute food self-sufficiency is not a plausible plan given current and future 

projections of water availability (Heslot, 2018; Mesgaran and Azadi, 2018). To achieve this goal, Planned 

Agriculture pursues new heavy infrastructure projects to augment the irrigation water supply. Yet, irrigation 

efficiency and water productivity are improved in the Planned Agriculture scenario through an integrated 

and dynamic national planning effort. This comprehensive plan dictates who gets water and how much; 

and, what should be cultivated and how much. This plan will be supported by incentive policies like 

subsidies and pre-purchase plans. The Planned Agriculture scenario portrays an extensive and costly 

governance scheme which is greatly dependent on supportive monetary policies.  

In contrast to this extensive top-down governance system, scenario 2 (Capitalism Reigns) offers a 

minimalistic governance system, in which water markets will determine the distribution of irrigation water. 

Food self-sufficiency is no longer a central principle in the Capitalism Reigns scenario, and a free trade 

environment facilitates the shift of water rights from small traditional farms to consolidated highly 

productive ones. This means water will go where it yields the greatest value (Bekchanov, Bhaduri and 

Ringler, 2015). Debaere et.al (2014) empirically demonstrated the positive impact of a cap and trade 

approach that was facilitated by a water market in seven different watersheds. For instance, total well 

pumping from the Edwards aquifer in Texas has generally decreased since 1990, while the population of 

the region increased by nearly 50% (Debaere et al., 2014). Subsequently, it is expected that relatively lower 

world prices for certain commodity crops and small or even negative marginal profit will discourage new 

entrants to farming, and existing small farmers may shift their investments from farming to other businesses 

(Nazemi et al., 2018). Therefore, the demand for irrigation water will be slightly reduced and is replaced 

by industrial and/or residential demand. Since traditional water rights are acknowledged in the Capitalism 

Reigns scenario, it is expected that the Gavkhooni wetland ecological water right will be recognized again.  

The Status Quo stands in stark contrast to the traditional water allocation system in which a fair distribution 

of water was guaranteed (scenario 4). Interpreting Traditions scenario offers a return to traditional cultural 

practices of community-based traditions that celebrate and place great value on water (Yazdanpanah, 

Thompson, et al., 2013). In this scenario, as in the Capitalism Reins scenario, ecological water rights 

(Gavkhooni water rights) have been incorporated into the water allocation system. The dominance of 

traditional water distribution networks (qanats) guarantees safe yield3 for groundwater extraction (Molle 

and Mamanpoush, 2012). This is compatible with traditional, family-based subsistence farming practices. 

Therefore, it is expected that domestic food production would decrease because it cannot compete with 

global prices, which means the farmer income would also decline. However, the collective and fair 

governance system, which is based on great respect for a community’s values and traditions (i.e. the respect 

for nature and contentment with simple country life), can provide a high degree of stability and ecological 

and socio-economic sustainability (Yazdanpanah, Hayati, et al., 2013).  

 

 

3The maximum amount of water that can be withdrawn, yet still the supply is maintained and unimpaired. 
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Collaborative Rural Development (scenario#5) supports the idea of reducing the agricultural activities in 

Zayandehrud watershed  through a  collaborative rural development plan to support farmers’ career shift 

from farming to less water-intensive businesses, which is an approach advocated by Heslot (2018). Such a 

scenario plausibly will allow rural communities to flourish and foster resilience against changing climatic 

and economic conditions through building local capacity for development (Louis, Nazemi and Remer 

Technology, 2017). Rug weaving is an ancient art and important industry in this watershed, especially in 

rural areas, and it might well be expected that by 2040, rug weaving workshops and other local crafts could 

be thriving. Reducing irrigation water consumption, will increase the level of water in the river, which is 

essential for absorbing eco-tourism to this region (Abyareh, 2009).  

With respect to ecological sustainability, Collaborative Rural Development is the only scenario which 

acknowledges the Gavkhooni wetland water rights in the allocation system. The Capitalism Reigns scenario 

may meet the wetland water rights intermittently because of shrinking of the agricultural sector, although 

this is not guaranteed. Nikoui et al. (2012), argue that incentivizing farmers to adopt water efficiency 

measures would help to save water to preserve the Gavkhouni wetland, although scenario 3 of this research 

proves that increasing the water efficiency and productivity does not necessarily secure the sustainability 

of wetlands, since the water demand in this watershed is always greater than the supply. Furthermore, 

increasing productivity and efficiency will incentivize farmers to put more land under cultivation (Nikouei, 

Zibaei and Ward, 2012). Safe yield, in which annual groundwater withdrawals do not exceed the natural 

recharge rate, is also considered a central governance principle in scenarios 3,4, and 5. This relieves stress 

on the aquifers, but does not fully resolve the tension between agricultural water use and the ecological 

requirements of healthy wetlands.  

Even though each selected scenario represents a systematically different governance system, four of them 

(all except the status quo scenario) contributes positively to managing agriculture water demand. However, 

the watershed experiences different socio-economic conditions under each governance scenario. For 

example, it is expected that in the absence of supportive plans and limited capacity for job creation, the 

Capitalism Reigns scenario, which is grounded on free market principles, will cause the most intensive 

transition for farmers who will lose their jobs (Mesgaran and Azadi, 2018). It may cause a long lag phase 

before efficient and productive farms can emerge. This also can worsen water disputes and public 

dissatisfaction, which are already a big issue in the watershed (Kuzdas et al., 2016).  

The scenario, Collaborative rural development shares similar trade regulations with the Capitalism Reigns 

scenario; the difference is that inexpensive water, in addition to robust local governance, facilitates the 

adaptation process and dampens the shock of market change. When compared to the Capitalism Reigns 

scenario, Collaborative rural development, causes a smoother transition and ends in more resilient rural 

communities (Yazdanpanah, Thompson, et al., 2013). Ricart et. al (2019) studies ten successful cases, 

which use different tools to promote stakeholder engagement. They conclude that engagement of 

stakeholders in irrigation water governance will reduce tension between stakeholders and help with easier 

conflict resolution in these communities (Ricart et al., 2019). The Planned Agriculture scenario, causes the 

least shock to the agricultural sector. It is anticipated that AWD reduction is less noticeable than the other 

three scenarios while domestic food production is higher than the others. Although this scenario includes 

many supportive plans for farmers, it is projected that it will not reduce water disputes, since it does not 

recognize traditional water rights (Molle, Hoogesteger and Mamanpoush, 2008). Moreover, dictating the 

national cultivation plan makes the governance system responsible for most risks and may generate greater 

protests if farmers are not satisfied with the outcome. More accurate evaluation of the transition phase and 
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its impact on different stakeholders requires a comprehensive study, which was beyond the scope of this 

paper.  

To deal with the challenging trade-off between the comprehensiveness (to include all important variables 

and their interconnections) and coherence of governance scenarios (to avoid too much complexity), the 

scope of the current study focused on irrigation water demand and rural communities. Thus, the impacts of 

selected scenarios on industry or residential water security was not assessed. Future studies can focus on 

urban water demand and/or industrial water demand governance scenarios and a holistic study to develop 

signature scenarios which support the overall watershed sustainability. Moreover, this study’s model was 

kept as qualitative and conceptual as possible, which helped to include many governance features that 

cannot be integrated to computational models. Future researches can acquire relevant data on water resource 

availability, distribution and use by sector, and develop a computational model to reassess the findings of 

this study in a quantitative framework.   

2.6. Conclusion 
Formative scenarios offer a means to explore the interplay between socio-economic, technical and 

ecological forces.  This approach moves away from assessing discrete interventions and engages with the 

complex geo-political and societal context of regional water resources management.  This study walked 

through a methodical approach for constructing scenarios in a systematic process and then evaluated a set 

of distinct, consistent and normative governance alternatives for agricultural water governance. Such a 

technique can help decision-makers consider a greater range of choices and allow them to take into account 

more alternatives without applying strict boundaries to the analysis. Indeed, the flexible participatory 

approach of this study also helped to develop scenarios that represent the watershed’s diverse stakeholders 

and their different and conflicting interests and values. It also provided these stakeholders with a great 

opportunity to communicate their concerns with each other, which can induce and facilitate collective 

informed decision-making in the Zayandehrud watershed and other regions in search of approaches to 

sustainable water resources management. Each scenario also reflects a combination of mitigation policies 

and actions from the domains of supply, delivery, uses, outflow and cross-cutting aspects to fully account 

for the system’s features. The scenarios portrayed above are not the blue-print for sustainable water resource 

management. Rather they offer critical reflection upon a diversity of alternatives. It remains to be seen if 

key decision-makers in Iran and other water constrained regions move toward sustainable water resource 

management. This research does not portend to know what will happen in the future, rather our intention 

was to embrace uncertainty and complexity and explore alternative pathways and outcomes.  
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Abstract  
In water-scarce regions, such as the Middle East and North Africa (MENA), the agricultural sector 

consumes most of the freshwater resources. It makes irrigation water demand management an issue of 

critical concern, especially since it involves trade-offs between water security and food security. Market 

features like water markets, trade policies, and land-use subsidies are common tools that policymakers use 

to manage water demand. Nevertheless, these instruments can lead to water market failures and 

unsustainable outcomes. Current research tends to study the impact of water markets under different 

agricultural trade regimes, including protectionism and free trade policies, especially in resource-

constrained regions where the trade-offs are stark. This study offers a partial equilibrium economic model 

to explain the influence of the water market and food trade policies on the agricultural sector and the effects 

on farmers’ welfare and ecological sustainability. The Zayandehrud, a critical watershed in central Iran, 

was chosen as a case study to test this model. The results portray that an intra-national water market in a 

closed economy can yield increased utility, though it may not lead to less irrigation water demand. In 

contrast, free trade conditions coupled with water markets can decrease pressure on water resources, offer 

more consumer utility, and better conditions in terms of unauthorized extraction. This research could be 

instructive for sustainable economic development, strategic planning, and optimal resource allocation in 

semi-arid regions. Future research will explore the framework via a dynamic stochastic general equilibrium 

(DSGE) model to get clearer and more accurate forecasts.  
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3.1. Introduction 
 

 Due to the complexities at the intersection of food security and water security, agricultural water demand 

management is a major global challenge. It is especially the case for arid and semi-arid regions, like the 

countries of the Middle East and North Africa (MENA), where water resources are extremely limited and 

in decline due to factors like climate change and rapid population growth. Currently, over 85% of available 

fresh water in this region is being used for crop irrigation, yet many nations cannot entirely satisfy the food 

requirements of their population (Bucknall, 2007). This condition puts extra pressure on both renewable 

and non-renewable water resources, i.e., surface and deep groundwater, which results in the 

overexploitation of water resources in most MENA countries. Moreover, declining water tables have led to 

high concentrations of contaminants such as heavy metals, nitrates, and phosphates in aquifers. 

Overexploitation of groundwater is also causing land subsidence and soil degradation, negatively affecting 

farming yield (Madani, 2014). There are many cases where this has caused irreversible damage to 

ecological and socio-economic sustainability.  

The village of Ashan is quite emblematic of many arid regions in Persia and the MENA region, more 

broadly. The dire consequences of groundwater overexploitation are obviously observable in the dry and 

empty qanats, ancient hand-dug underground tunnels that distribute water. For centuries qanats conveyed 

groundwater from mountainous to low-lying arid regions like Ashan. For hundreds of years, a single qanat 

network was used to provide water to this small village's residents, farms, and orchards. However, 

contemporary diesel-electric pumps allowed farmers to extract groundwater which led them to convert arid 

lands to agriculture in upstream areas, which drained the water supply that fed the qanats. That created the 

pressure that led to many farmers digging unauthorized deeper wells to extract groundwater (Yazdanpanah, 

Thompson, et al., 2013). Consequently, not only the Ashan qanat network is now totally dried out, but even 

as the farmers dig deep wells, they barely yield enough water. Consequently, all the farms and livestock are 

dying, younger residents are leaving for the cities, and those who remain behind mostly rely on small 

governmental monetary aid (~$10 per month).  

It is crucial to investigate alternative water management practices to avoid overexploitation problems. Since 

irrigation water accounts for the majority of freshwater use in many parts of the world, agricultural demand 

management is one of the critical intervention points in the system. One promising intervention is the 

concept of the water market. Water markets are institutions that facilitate trading water rights in the form 

of permanent sales or temporary leases, which might motivate water rights holders (primarily farmers) to 

transfer water rights to economic activities that yield a higher value (Bjornlund, 2003). Water markets could 

be employed to stimulate food-water trade-offs in compliance with the guiding principles of policymakers.  

Debaere et al (2014) empirically demonstrated the positive impact of a cap and trade approach facilitated 

by a water market in seven different watersheds, four inside the US and three in Australia, Chile, and 

Mexico. The water markets yielded positive outcomes in both ecological and socio-economic systems 

(Debaere, 2014). However, previous studies reveal that establishing a successful water market requires 

various essential prerequisites like geographic connection, proper water allocation, water rights systems, 

suitable water pricing systems, well-indicated and enforced caps as well as enough social awareness and 

cultural compatibility (Livingston, 1995; Debaere, 2014; Beruvides Mario, 2015; Nazari, 2016). Therefore, 
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without a deeper understanding of these settings, water markets can add to the complexity, fail or backfire, 

and worsen the problem.  

A second promising intervention is trade policies, which indicate how closed or open economies are to 

trade water. Food trade policies and regulations are other essential tools utilized extensively by governments 

to support domestic production and resource management. Two major approaches to food trade regulation 

include protectionism (closed market) and free-market (minimal regulation). Protectionism tends to restrict 

food trade to stimulate domestic production toward the ultimate goal of food self-sufficiency and security 

(Clapp, 2017). Regulating the food trade increases the transaction cost, disturbing supply-demand market 

dynamics, and pricing adjustments. This school of thought believes that the market's supply-demand 

relationship will change based on water resource availability (Walton and Seddon, 2008). The food trade 

regulation systems can significantly affect the performance of a water market. Nazemi, et al. (2018) 

developed governance scenarios for the Zayandehrud watershed in Iran, one of which incorporated water 

markets. They perform a wholistic consistency analysis through a participatory approach to ensure the 

consistency and plausibility of water markets. In such a scenario, establishing a water market along with 

free trade regulations is projected to decrease irrigation water demand (Nazemi et al., 2020). However, 

there is a paucity of empirical evidence, nor are there sufficient case studies that involve water markets to 

validate this theory and, thus, evaluate the impacts on the ecological and socio-economic sustainability in 

a given watershed.  

This gap leads to the question: How will water markets affect the irrigation water demand and overall utility 

in a watershed under a free trade regulation scenario? Given the state of affairs in the MENA region, trade 

policies are in flux, and water resources are scarce. This question is of grave importance to the people in 

the region and for global security and stability. This research explores this question and considers different 

possible outcomes when trade policy changes between closed markets or a free trade approach. Further, 

this research paper aims to evaluate outcomes regarding safe water yield, consumer utility, and rule 

enforcement to maximize the efficacy of water markets.  

 

3.2. Case Study Context 
 

Zayandehrud is a seasonal river located in an arid and semi-arid part of Iran. It extends from the northwest 

to central Iran and includes a 16000 square miles catchment area called by the same name (Figure 3-1). It 

provides residential water to 4.5 million citizens in this catchment, in addition to the neighboring cities of 

Yazd and Kashan. The Zayandehrud also provides irrigation water for over one million farmers (Mohajeri 

et al., 2016b). Moreover, this watershed is vital to many heavy industries like cement, steel, oil, and 

petrochemical plants along this river, making this area one of Iran's major industrial hubs. Furthermore, the 

river passes through Isfahan City, an important tourism hub, and ends in the Gavkhouni, a wetland 

preserved under the 1971 Ramsar convention. During the past three decades, rapid population growth and 

frequent and long-lasting drought have endangered this critical river's viability and the Gavkhouni wetland. 

Despite severe water scarcity in this region, the agricultural sector still uses over 92% of available water 

for irrigation for 180,000 ha, which mainly includes small farms with flood irrigation (approximately 90%). 

The major agricultural products in this area are water-intensive commodities such as wheat, barley, rice, 

and alfalfa. The water productivity of these products is much less than the global average due to high 
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evaporation rates and inefficient irrigation (Felmeden, 2014). Unauthorized water extraction is prevalent as 

about half of the wells in this watershed are illegal. Following the government measures to increase  

 

 

Figure 3-1 Zayandehrud basin location (Gohari et al., 2013) 

 

domestic agricultural production to gain food self-sufficiency, the practice of food trade became highly 

restricted, especially for staple crops like wheat and barley. 

Moreover, there is no volumetric measurement for irrigation water consumption, and it is not priced 

appropriately. Subsequently, surface water prices are insignificant compared to other production costs, and 

groundwater price is zero. Moreover, farmers benefit from subsidized energy, fertilizer, pesticides, and 

seeds to support domestic agricultural production (NationalResearchCouncil, 2005). The government lacks 

law enforcement capacity in this watershed. This has led to frequent and violent farmer-farmer and farmers-

government disputes and protests. The complexity of the Zayandehrud watershed makes it an ideal case 

study to explore alternative governance settings and market arrangements and thus offer findings for other 

watersheds in Iran and throughout the MENA region. 

3.3. Model Development 
Here we present a partial equilibrium economic model which builds upon supply-demand mechanisms to 

formulate the status quo and water markets under different regimes of food trade regulations Table 3-1 

Evaluated scenarios and their settings . The model considers only one representative agricultural 

commodity produced and consumed in this economy as a proxy for all agricultural production. The 

heterogeneous supply side comprises two firms (called “farms”). Farm A has high productivity, and farm 

B has low productivity, which are representatives of diverse farms in the economy. Indeed, these are 
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considered price-taking farms, which avoids any claims or notions that the farms are oligopolistic, which 

is an unnecessary complication to pricing.  

On the demand side, we assume a simplistic, log-linear function depicting the decreasing demand trend 

regarding price. Equilibrium in the model occurs at the supply intersect, as the aggregated behavior of the 

firms and the demand function shows that consumption achieves equilibrium. Interpreting the results of the 

model, we take advantage of assumptions from economics regarding higher consumption as equivalent to 

higher public welfare for society. 

 

Table 3-1 Evaluated scenarios and their settings 

No. Scenario Description 

1 Status quo (No water market, closed economy) 

2 Water market in closed economy 

3 Water market under free trade economy 

 

 

Scenario 1: Status quo 

As discussed previously, currently, there is no free trade nor water market in Iran, generally, or in the 

Zayandehrud, specifically. Water is allocated to each farm (shown as "s") and incurs no additional cost for 

the farmers per additional unit demanded. The production function takes a Cobb-Douglass formulation  

(Cobb and Douglas, 1928), which is widely used in economics to demonstrate the relationship between 

production inputs and outputs, with one input, water (shown as "X"). Firm A has higher productivity (A1) 

while firm B yields lower productivity (A2). There is a fixed cost of production, which is equal for both 

farms. The fixed cost is assumed at a level that makes it possible for both farms to produce and exist in the 

economy. Equations (3-1) and (3-2) portray the profit functions of both farms. The product's price (𝑃∗) is 

the market price, which is determined by equalizing supply and demand. The model assumes that subsidy 

(shown as "sb") is allocated to each production unit, which takes the form of a price multiplier.  

It is necessary to highlight two points here. First, since the water is provided for free, it is not considered as 

a cost. Second, regarding water as the only production factor does not mean that no other factors contribute 

to the production. However, this means that we are focusing on water for modeling. Equation (3-3) depicts 

the demand function, which is technically the consumption side of the economy. It is a log-linear function 

that is negatively affected by the price of the product in the market, price elasticity of demand (b) having a 

negative value. Demand function parameters (a) and (b) are estimated in the later sections of this paper. 

 

𝜋1 = 𝑃∗(1 + 𝑠𝑏) ∗  𝑦1 − 𝐶𝑜𝑠𝑡 = 𝐴1 ∗ 𝑤1
𝛼 − 𝐹 , 0 < 𝛼 ≤ 1 (3-1) 

𝜋2 = 𝑃∗(1 + 𝑠𝑏) ∗ 𝑦2 − 𝐶𝑜𝑠𝑡 = 𝐴2 ∗ 𝑤2
𝛼 − 𝐹, 0 < 𝛼 ≤ 1 (3-2) 

ln (𝐷𝑒𝑚𝑎𝑛𝑑) = 𝑎 − 𝑏 ∗ ln (𝑃) or 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝑒𝑎 ∗ 𝑃−𝑏 (3-3) 
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Scenario 2: Water market in a closed economy 

In this scenario, we add the "water market" to the model. Within the water market framework, each farm 

can sell (or buy) part of its water rights in the market. It happens through one farm selling part of their water 

rights (x) to the other one. The transaction cost is assumed to be zero, and the price of the transacted water 

(pw) would be determined in the market (discussed in the next section). The rule of supply and demand 

would also realize the product's price in this setting (Pwm). Equations (3-4) and (3-5) represent profit 

functions for farms A and B, respectively. The demand side of the market remains the same as the status 

quo scenario. 

 

 

Scenario 3: Water market in an open economy 

Free trade is the new element within this scenario. Free trade requires products to enter the domestic market 

without any restrictions. It implies that the price in the domestic market would equal the international price 

for all farm products (pint). It is assumed that the international price is lower than the domestic prices 

established in the previous scenario (closed economy) mainly because domestic farms' productivity is lower 

than the international average (National Research Council, 2005). Consequently, domestic producers would 

remain in the local market. Indeed, the lower productivity will be the main impediment for them to bear the 

cost and risk of entering the international market and having exports. Equations (3-6) and (3-7) show the 

profit function of the farms. Demand is assumed to be the same as in the previous scenario. 

 

𝜋1 =  𝑃𝑖𝑛𝑡 ∗ [ 𝐴1 ∗ (𝑠 + 𝑥)𝛼] − 𝑝𝑤 ∗ 𝑥 −  𝐹 (3-6) 

𝜋2 =  𝑃𝑖𝑛𝑡  ∗ [𝐴2 ∗ (𝑠 − 𝑥)𝛼] + 𝑝𝑤 ∗ 𝑥 −  𝐹 (3-7) 

 

3.4. Results  
The results demonstrate that a water market within a closed economy yields positive outcomes for the 

Zayandehrud watershed in terms of increased public welfare increase that takes the form of increased 

consumption. Other positive outcomes include increased productivity and water consumption decreases as 

illegal water extraction is curtailed. The combination of water markets and free trade achieves further public 

welfare increase; while it does change the water allocation among the productive and unproductive farms, 

the overall water consumption would decrease further as illegal water extraction is controlled.  

The model achieved market equilibrium within each scenario as each agent (farm) optimized its decisions 

to gain the highest profits. It occurred by deriving the first-order conditions of each firm and intersecting 

two sides of supply and demand in the market. Each scenario yields different outcomes regarding the 

production and consumption of the representative agricultural commodity (wheat), and changes occur in its 

price, water consumption, and public welfare. The modeling outputs from each scenario suggest how the 

interaction of different forces in an equilibrium sense would pave the way for scenario analysis. There is 

𝜋1 =  𝑃𝑤𝑚 ∗ [ 𝐴1 ∗ (𝑠 + 𝑥)𝛼]  − 𝑝𝑤 ∗ 𝑥 −  𝐹 (3-4) 

𝜋2 = 𝑃𝑤𝑚  ∗ [𝐴2 ∗ (𝑠 − 𝑥)𝛼]  + 𝑝𝑤 ∗ 𝑥 −  𝐹 (3-5) 
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no dynamic analysis in the model in the sense of capital accumulation or technology investments, as the 

model is static and tries to explain events by comparative statics. 

 

Scenario 1: Status quo 

Since water is free of charge and there is no mechanism (or price incentive) for water transactions, each 

farm would consume all their water right (s) and yield products that generate an equilibrium between supply 

and demand. Thus, as portrayed in equations (3-8) and (3-9), the price equilibrium of the market can be 

found by assuming there are 𝑛1 and 𝑛2 farms like A and B in the market. 

 

𝑦1 =  𝐴1 ∗ 𝑠𝛼  , 𝑦2 =  𝐴2 ∗ 𝑠𝛼  (3-8) 

ln (𝑃∗) =  
𝑎 − ln [𝑠𝛼 ∗  (𝑛1 ∗  𝐴1 +  𝑛2 ∗  𝐴2)]

𝑏
 

(3-9) 

 

As an economic assumption, if there is free entry and exit in a market, the model predicts an observation of 

zero profit on the firm side, which is the definition of subsistent farming. However, there is no free entry to 

new water rights, limiting the entrance by allocating all renewable water to water right (s) for the farmers  

( 𝑤𝑎𝑡𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 = (𝑛1 + 𝑛2) ∗ 𝑠). Thus, farms would have positive profit due to the constraints maintained 

by the water rights. This theoretical analysis ignores the lack of rule enforcement for water rights, which 

encourages new farmers to extract water illegally and enter the market. It implies that water consumption 

is higher than the sustainable, safe yield, which puts groundwater and surface water resources at risk. The 

sustainable, safe yield is defined as the level of extraction that can be replaced annually through 

precipitation. It is compatible with the observations that this watershed has a large and unknown number of 

unauthorized operational wells (Molle, Hoogesteger, & Mamanpoush, 2008). Thus, the model describes 

the phenomenon of unauthorized extraction in the market's current situation in the given context. This 

model successfully identifies that illegitimate extraction happens as incentives are given to new entrants to 

take advantage of the not-zero profit conditions on the supply side of agricultural commodities. 

Moreover, subsidies for agricultural production do not show up on the model's outputs. We can see it is not 

affecting the equilibrium price in the equation (3-9). It, indeed, positively affects the profitability of the 

representative farms resulting in higher incentives for new entrants and putting extra pressure on water 

resources. Subsidies partly describe the unauthorized water extraction in the existing conditions of the 

market. Subsidies for wheat, for instance, are about 47 percent of current international wheat prices, which 

are about 180 euros per 1000 kg, while the guaranteed purchase price offered by the Iranian government is 

about 264 euros per 1000 kg. As shown in equation (3-10), if we consider the productivity of wheat-

producing firms as a continuum [0 𝑡𝑜 𝐴𝑚𝑎𝑥],, this subsidy explains how inefficient wheat farms, with 

productivity 32 percent lower than the minimum viable threshold in a no-subsidy situation (𝑎𝑖
∗(𝑛𝑜−𝑠𝑏)) 

have the opportunity to continue producing under the subsidy regime present in the status quo. 
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𝐴𝑖 = 𝑎𝑖 ∗ 𝐴𝑚𝑎𝑥 , 𝑎𝑖 ∈ [0,1] 

𝑎𝑖
∗(𝑛𝑜−𝑠𝑏)− 𝑎𝑖

∗(𝑠𝑏)

𝑎𝑖
∗(𝑛𝑜−𝑠𝑏)

=

𝐹
𝐴𝑚𝑎𝑥 ∗ 𝑠𝛼 −  

𝐹
𝐴𝑚𝑎𝑥 ∗ 𝑠𝛼 ∗ (1 + 𝑠𝑏)

𝐹
𝐴𝑚𝑎𝑥 ∗ 𝑠𝛼

=  
𝑠𝑏

1 + 𝑠𝑏
 ≈  0.32 

(3-10) 

 

  

Scenario 2: Water market in a closed economy 

This scenario illustrates that farms need to optimize their behavior in terms of selling (and buying) water. 

Doing so for each farm and making the price of water equal in the equilibrium, we reach equation (3-11). 

Solving this would bring us to the equilibrium price and quantity of transacted water between the two farms 

(equations (3-12) and (3-13)). It would increase the production and water consumption of the more 

productive firm (A) while the opposite affects the less productive farm. Thus, the water market changes the 

water allocation between the farms, encouraging the farms with higher productivity to produce more. It 

implies that as there is a gap in productivity of two farms, in a water market setting, the low productivity 

farm would sell a large portion of their water rights (46 percent) to the productive one, which would bring 

about lower production (exit) of low productivity farms (farm B) with a replacement of higher productivity 

ones (farm A). Overall, the production (y1+y2) will be higher compared to the previous scenario in which 

no water market existed.  

Wheat is the main cultivated crop which covers about half of the irrigated land area in the Zayandehrud 

watershed and at the national scale (Felmeden, 2014). We estimate alpha as the share of value added by 

water in the value of the wheat product, based on the data provided by Khoshakhlagh (2007). Averaging 

and rounding the value over the available years of data would lead us to 0.3 as share of value added by 

water. Given the assumption that the productive firm creates twice the value as the unproductive one, our 

estimates show that production of the commodity would be 2.4 percent higher in the water market regime, 

bringing about an 18 percent drop in market prices for wheat. It is an exciting finding as it is often assumed 

that water markets would make farms pay for the water they use, which would boost the price through the 

higher cost of production. 

 

𝑃𝑤𝑚 ∗  𝛼 ∗   𝐴1 (𝑠 + 𝑥)𝛼−1 =  𝑃𝑤𝑚 ∗  𝛼 ∗   𝐴2 (𝑠 − 𝑥)𝛼−1 (3-11) 

𝑥 =  
𝜃−1

𝜃+1
∗ 𝑠 = 0.46 ∗ 𝑠 ,  𝜃 =  (

𝐴1

𝐴2
)

1

1−𝛼
= 2.7 (3-12) 

𝑝𝑤 =  𝛼 ∗ 𝐴1 ∗  𝑠𝛼−1 ∗  (
2 ∗ 𝜃

𝜃 + 1
)

𝛼−1

 (3-13) 

ln (𝑃𝑤𝑚) =  
𝑎 − ln [𝑠𝛼 ∗  (𝑛1 ∗  𝐴1 ∗ (

2𝜃
𝜃 + 1)

𝛼

+  𝑛2 ∗  𝐴2 ∗ (
2

𝜃 + 1)
𝛼

)]

𝑏
 

(3-14) 
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As production of agricultural commodities are higher in the closed economy, commodity prices fall 

compared to the status quo. The price elasticity of demand is -0.12, according to (Najafi Alamdarlo, Riyahi 

and Vakilpour, 2017) and this means that the price of the commodity would fall 18 percent as compared to 

the no water market scenario. Thus, the water market not only reallocates water toward higher productivity 

but encourages higher production levels in the economy resulting in lower prices, higher consumption and 

greater consumers welfare, see equation (3-14).  

It is worth mentioning that the estimated values for price and production are a minimum change level in 

a water market regime in that we assume the higher productivity farm has twice the production level. The 

higher difference of productivity would result in higher increase of consumption across the economy. Thus, 

due to an abundance of low productivity farms, which are being managed traditionally based on outdated 

technologies, this level of increase acts as a lower bound for our expectation of welfare improvement by 

establishing a water market. Of course, finding the exact number for welfare and price improvements 

requires in depth knowledge about the distribution of productivity among the farms in our target area which 

is beyond the scope of this work. 

In terms of water consumption, the model reveals only reallocation of water and not decreasing water 

consumption level. However, according to the argument in the previous scenario, profit levels fall for both 

farms in comparison to no-market setting as a consequence of lower market price of the commodity – about 

8 and 32 percent for the productive and non-productive farms, respectively. This would significantly 

discourage illegitimate extraction of water and would bring down water use within this scenario. This effect 

would be intensified as establishing a water market requires high levels of law enforcement during the 

implementation of water caps for each water right holder. An exact number for this water consumption 

decrease has not been achieved here due to lack of data regarding distribution of farm productivity in this 

case study.  

Scenario 3: Water market in an open economy 

Introducing free trade into the model does not change the allocation of water among the two farms in 

comparison with the second scenario. Both farms are price takers, and while the price is lower in this 

scenario, it does not affect their decision to buy (or sell) water rights. On the other hand, free trade results 

in a lower market price for the commodity and means higher consumption and public welfare for 

consumers. The level of consumption depends on price differences in the closed economy and the 

international price, and also the price elasticity of demand. The higher price difference or price elasticity of 

demand, the more improvement in welfare. Regarding the equilibrium price of wheat, this scenario yields 

a 17 percent drop in the price of the commodity and implies a 2.3 percent increase in consumption. The gap 

between domestic production and consumption would be filled with commodity imports. In terms of water 

use, this scenario discourages unauthorized water consumption even more than the closed economy 

scenario. This is due to lower prices that yield a 17 percent decrease in profit for both farms in comparison 

to scenario 2. This would disincentivize illegal water extraction and trade openness would further lead to 

greater markets efficiency in agriculture. The new settings would tremendously discourage illegal water 

consumption, as it is playing an important role in water consumption in Zayandehrud watershed, and in 

Iran more generally. The combination of the water market and free trade would improve wheat consumption 

by about 4.7 percent.  
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3.5. Discussion 
The different scenarios provide several insights on the effectuality of market manipulation tools, including 

the water markets and trade policies and their synergic influence on ecological and socio-economic 

sustainability for arid and semi-arid watersheds like Zayandehrud in Iran. Table 3-2Figure 3-2 summarizes 

each scenario's impact on farm water productivity, economic growth, food self-sufficiency, irrigation water 

demand, and unauthorized water consumption. The water market will increase the farms' average water 

productivity in scenarios 2 and 3 by facilitating the water rights transactions between farmers and water 

rights holders.  

The results show that these transactions will ultimately transfer water rights from unproductive to 

productive farmers. While the current global average productivity for wheat is 0.7 kg per m3 of water 

(National Research Council, 2005), 1 kg per m3 is an estimated expected outcome in scenarios 2 and 3. It 

means that a productivity increase of at least 50% could be achieved, and Iran could reach the average 

world productivity of wheat per unit of water. The resultant model also depicts that the overall production 

will increase by 2.4% in these two scenarios. Thus, launching a water market will escalate the contribution 

of agriculture to the gross domestic production through increasing production. Further, it will lead to more 

consumption of agricultural commodities, which can be interpreted as improving consumers' welfare. 

However, this model cannot explain the transient period in scenarios 2 and 3, before the water market is 

mature and trade policies are fully established, and trades are negotiated. 

 

Table 3-2 The impact analysis results for evaluated scenarios. Note: Green cells indicate greater sustainability, gray indicates 

no change and red indicates a negative outcome in terms of sustainability. 

Output Variable/ 

Scenario 
Status Quo 

Water Market in 

closed Economy 

Water Market in 

Open Economy 

Water Productivity No change Increase Increase 

Utility/Economic Growth No change Increase Increase 

Food Self-sufficiency Slightly increase Slightly increase No change 

Irrigation Water Demand Increase No change Slightly Decrease 

Unauthorized Extraction Increase Decrease Decrease 

 

Food self-sufficiency is a guiding policy in Iran due to national security concerns and the desire for greater 

autonomy. Iranian leaders have executed this strategy through capital investments in the agricultural sector 

instead of relying on international trade. This investment covers a wide range of infrastructures and policies 

such as expensive dams, expansive irrigation canals, high tariffs on imported foods especially staple crops 

like wheat, and extensive subsidies on energy and farming necessities (Bucknall, 2007; Clapp, 2017; 

Madani, 2014; Wichelns, 2005). 

Iranian policymakers believe that creating a water market and liberalizing the economy will lead to less 

domestic production and consider it a win-lose trade-off between ecological and economic outcomes. In 

direct contrast to those sentiments, this study reveals that the water market and open trade policy will 

increase the water productivity of farms and cause an improvement of 2.4% in agricultural production, even 
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without current protections and subsidies. It may also decrease governmental budgets and free up capital 

for other long-term projects like renewable energy, and solar desalination plants. 

Furthermore, agricultural water demand, which consumes over 90% of water in this watershed, will decline 

by establishing a water market and trade policy reforms toward a more open economy (scenario 3). If that 

occurs, the production of agricultural goods will be on par with world market prices (Debaere, 2014). 

Subsequently, it is expected that lower world prices and small or even negative marginal profit will 

discourage new entrants to farming, and existing farmers may trade their water rights and shift their 

investments to other businesses.  

Unauthorized water extraction will also decrease in the second and third scenarios due to the lack of a 

marginal profit in farming, though this effect would be more severe in scenario 3. Despite a projected 

decline in irrigation water demand and a decrease in the unauthorized extraction of water in this scenario, 

it is not enough to secure the ecological sustainability of the watershed. As shown by Sarhadi & Soltani 

(2013), the ecological water rights will be insufficient for the Gavkhouni wetland in terms of water 

requirements. To address this problem, the water requirements for Gavkhouni should be calculated and 

considered as an equal holder of water rights. The groundwater safe yield (cap) should be indicated and 

enforced strictly to ensure that the water market can contribute to ecological sustainability (Debaere et al., 

2014).  

Finally, the results show that linking the water market and free trade policies contributes positively to 

sustainability in this watershed. This mathematical approach supports the plausibility of the "Free market" 

water governance scenario generated during a participatory study in this watershed (Nazemi et al., 2018). 

Exhibit 4 illustrates a systemic diagram for the third scenario and shows how its governance settings, like 

modified pricing and water allocation system, and its legitimacy and the rule of law are prerequisites for 

market settings. It also shows that linking these two market features can positively affect the irrigation water 

demand, farm productivity, unauthorized extraction, and consumers' welfare. 

 

Figure 3-2 Scenario 3(Water Market in Open Economy) systemic block diagram 

 

3.6. Conclusion and Recommendations 
This study offers a partial equilibrium model to investigate the impact of the water market on the ecological 

and socio-economic sustainability of the Zayandehrud watershed in central Iran. The results demonstrate 
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that launching water markets in the Zayandehrud watershed can positively affect agricultural productivity 

by shifting water rights from unproductive to productive farmers. It will also contribute to water demand 

management by curbing unauthorized water extraction. In a free trade environment, this model projects that 

a water market can lead to productive farms, less overall irrigation water demand, and unauthorized 

extraction.   

In response to an ever-growing demand for fresh water in the agricultural sector, while most available water 

resources are already exhausted, irrigation demand management strategies are now more essential than ever 

in arid and semi-arid regions like MENA. The water market is one approach that can be used as a tool to 

guide farms toward less wasteful consumption of available freshwater by facilitating the water rights 

transactions between water rights holders and water users. It should be noted that many interactions between 

variables significantly affect outputs in a high complexity system like water governance systems. Other 

governance conditions should also be adjusted to achieve expected outcomes in the open market scenario, 

e.g., irrigation water measurement and pricing system, water allocation, and law enforcement capacity. 

Despite their importance, such governance conditions are not included in the scope of this paper. An 

essential prerequisite for this scenario to succeed is a well-defined and enforced cap based on the safe yield 

of the watershed.  

There are several paths to advance this research. The First would be introducing a dynamic stochastic 

general equilibrium model, which can include more factors in the scenarios and thus make the results more 

accurate and elaborate. Moreover, clear measures should be defined for sustainability to assess each 

scenario and offer specific recommendations to high-level policymakers. Each possible scenario would 

bring about some changes, and there would be winners and losers. Outcomes are not distributed equally 

according to an optimal economic model; rather, the outcomes arise through interactions among different 

stakeholders who are influencing the political processes. It opens up another exciting avenue to include an 

analysis of political economy to consider the feasibility of the recommendations
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Abstract 
Algal blooms in freshwater sources pose a significant environmental challenge, disrupting the ecological 

balance of water bodies, threatening community water supplies, and causing economic losses in industries 

such as aquaculture. Forecasting near-term Chlorophyll-a (Chl-a) concentrations, a proxy for algal biomass, 

can help make informed decisions and proactively manage algal blooms. While conventional algal bloom 

forecasting models require various water quality and climate data inputs, univariate deep neural networks 

can predict algal biomass using only the temporal nature of Chl-a time series. In this study, we employed 

past Chl-a observations (2008-2019) from Peter Lake to develop three univariate deep neural networks: 

multilayer perceptron (MLP), one-dimensional convolutional neural network (1-D CNN), and Long short-

term memory network (LSTM) for predicting Chl-a concentrations one to seven days in advance. A 

persistence forecast served as the benchmark to assess each model's accuracy. The results demonstrated 

that all three models outperformed the persistence forecast at forecast horizons of three days or longer. The 

performance of the CNN, MLP, and persistence forecasts declined rapidly with increasing forecast 

horizons, whereas the LSTM model exhibited marginally more accurate forecasts at longer forecast lengths, 

which are crucial for decision-makers and stakeholders. These findings can enhance algal bloom prevention 

by eliminating the need for collecting and processing multiple variables over an extended period. 

Furthermore, this study's results can provide a reference for evaluating the performance of multivariate 

models. 
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4.1. Introduction 
Algae are simple photosynthetic organisms that proliferate in seawater and freshwater. When their growth 

becomes excessive, it results in an "Algal Bloom". In some cases, this can lead to negative outcomes, which 

is referred to as a "Harmful Algal Bloom (HAB)" (Finlayson et al., 2005). 

HABs may affect the health of people and marine ecosystems. They cause dissolved oxygen depletion in 

water resources and release biotoxins that harm fish and their consumers (Buelo, Carpenter and Pace, 2018). 

Drinking HAB-contaminated water directly or consuming sea foods harvested from these resources, 

especially shellfish, may cause illness or even death in humans (Jeppesen et al., 2005). HABs that occur in 

water reservoirs, put pressure on water supply systems to treat and remove the algal byproducts or seek 

other water sources to service their customers. HABs also may damage local and regional economies like 

aquaculture, fisheries, recreational beaches, and local real estate businesses.  

The most sustainable solution to HABs is to prevent them by addressing the root cause of the problem, 

which is usually reducing and controlling the nutrient discharge to water bodies. However, in many cases, 

decades of nutrient input have made entirely avoiding blooms difficult or impossible.  

Given this context, forecasting the timing and intensity of HABs would be highly useful for water managers, 

the aquaculture industry, and public health managers. With sufficient warning, actions could be taken to 

avoid or at least minimize the impacts of blooms, such as shifting water treatment plants to alternative 

sources or closing recreational beaches (Davidson et al., 2016). Such proactive strategies could minimize 

the treatment costs and economic losses and prevent ecological disturbance and potential health issues 

caused by algal blooms (Carmichael et al., 2001). 

Excess nutrients are often the most critical driver of HABs. However, several other factors can contribute 

to bloom timing and severity, including weather conditions (i.e., water temperature, the amount of sunlight, 

and wind condition), in addition to variability in algae species and their different biological characteristics. 

Other components of the food web, such as which zooplankton and fish species are present and their 

prevalence, can promote or suppress a bloom. However, these variables are hard to measure and can change 

quickly. These interacting variables make the prediction of HABs difficult  (Oliver et al., 2012). 

Several different modeling approaches have been employed to capture the dynamics of blooms to predict 

them eventually. These methods comprise processed-based, statistical, and recent advanced machine 

learning models. Mechanistic models, such as PROTECH (Reynolds, Oliver and Walsby, 1987), 

DYRESM-CAEDYM (Hamilton and Schladow, 1997), CLAMM (Easthope and Howard, 1999), MyLake 

(Soranno, 1997), PCLake (Janse and van Liere, 1995), SALMO (Benndorf and Recknagel, 1982), seek to 

capture explicitly the physical and biological processes that lead to algal proliferation. These models usually 

rely on prior assumptions about the interactions and mechanisms that regulate phytoplankton . Due to the 

complex and non-linear nature of these mechanisms, process-based models have difficulties in accurately 

predicting the future biomass of algae (Shimoda and Arhonditsis, 2016). 

Statistical forecasting methods, on the other hand, are effective when the physical relationships are not fully 

known (Muttil and Chau, 2006) and do not require the a-priori assumptions used by the process-based 

models (Derot, Yajima and Jacquet, 2020). These models utilize past data to identify patterns between 

phytoplankton biomass and potentially causative environmental variables, then use those patterns to predict 

what the future will look like (Davidson et al., 2016).  
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Autoregressive Models, a traditional class of statistical methods for time-series forecasting, like ARIMA 

and VAR, offer more flexibility and simplicity. However, they neither model the non-linearity of the 

ecological system nor can they forecast algal biomass except at short time scales. Moreover, they focus on 

complete series, so missing data is generally not supported by autoregression models (Chen et al., 2015; 

Qin, Li and Du, 2017).    

4.1.1. Deep Learning Models 

Recent advancement in collecting high-frequency data provides the opportunity to use machine learning 

methods to advance bloom prediction. Specifically, state-of-the-art deep learning networks (DNN) can 

automatically learn the temporal dependence structures for challenging time series problems. Although the 

complex structure of deep neural networks is not as interpretable and provides less insight into the system's 

physical and biological processes compared to mechanistic models, they often result in more accurate 

predictions because such models can explain dynamic, non-linear, and noisy data. Therefore, deep learning 

might be a desirable methodology when the objective is to provide more reliable and accurate bloom 

forecasts (Cruz et al., 2021).  

DNNs can be used to develop both univariate and multivariate forecasting models. Univariate deep 

networks project the behavior of a time series solely based on its past trend but not on any other variable. 

In contrast, multivariate models feed all possible causative variables into the model to predict future algal 

biomass.  

Univariate models are simple, easy to develop, and computationally inexpensive. They can also be used as 

a baseline to assess multivariate DNN models. In this study, we focused on developing and comparing three 

different univariate DNNs and evaluating their performance and skillfulness through a comprehensive 

framework. We used three major categories of neural network architectures (or their hybrid format).  

Multilayer Perceptron (MLP) 

The first and oldest category is the MLP or feed-forward neural networks. This architecture usually 

comprises a single input layer that receives inputs variables, one output layer, which returns the network’s 

response, and one or more intermediate hidden layers that approximates a mapping function from input 

variables to output variables (Brownlee, 2018). The MLP models are simple and easy to develop. As a 

result, this is the most explored type of ANN models to forecast algal blooms (Recknagel et al., 1997; 

Maier, Dandy and Burch, 1998; Lee et al., 2003; Shamshirband et al., 2019).  

One-dimensional Convolutional Neural Networks (1-D CNNs) 

Convolutional Neural Networks or CNNs are a type of neural network initially designed to process three-

dimensional data (i.e., image data). In this approach, the model learns how to automatically extract the 

features from the raw data that are directly useful in solving the problem. This capability can be applied to 

time series forecasting problems by treating a sequence of observations like a one-dimensional image that 

a CNN model can read and distill into the most salient elements (Brownlee, 2018). The current study applied 

1-D CNN architecture for algal bloom forecasting for the first time.  

Long Short-Term Memory network (LSTM) 

Recurrent neural networks like the Long Short-Term Memory network (LSTM) are another type of neural 

network that designed to handle sequential data types such as time series, speech, and text. This capability 
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of LSTMs has been used to great effect in complex natural language processing problems such as neural 

machine translation, where the model must learn the complex inter-relationships between words within a 

given language and across languages in translating from one language to another. This capability can be 

leveraged in time series forecasting since the method can automatically learn the temporal dependence from 

the data. The model both learns a mapping from inputs to outputs and learns what context from the input 

sequence is beneficial for the mapping and can dynamically change this context as needed (Brownlee, 

2018). 

Algal bloom forecasting studies suffer  from lack of a standard model evaluation framework, making it 

difficult to compare the performance of different modeling techniques (Rousso et al., 2020). In this study, 

we developed a comprehensive performance evaluation to assess the skillfulness of each model overall and 

for different forecast horizons. We then developed and compared three univariate DNN models; MLP, 1D-

CNN, and LSTM, to assess their capability in forecasting algal biomass from one day to seven days in 

advance. This research introduces the application of novel 1D-CNN architecture for algal bloom 

forecasting. 

 

4.2. Method of Study 

4.2.1. Proposed Approach 

The objective of this investigation is to develop univariate models to predict algal blooms for proactive 

management of harmful algal blooms (HAB). While various methods exist for measuring algal biomass, 

chlorophyll-a (Chl-a) is commonly used as an indicator for the total phytoplankton biomass (Kim et al., 

2021). Therefore, the main aim of this study is to forecast Chl-a concentration as a proxy for algal biomass. 

Figure 4-1 outlines the proposed approach, which employs deep neural networks to predict Chl-a 

concentration for the following seven days based on the time-series data of daily Chl-a concentration. The 

temporal correlation of the dependent variable, Chl-a, is leveraged to construct accurate forecasting models. 

To enable the use of sequential models, the daily time-series data for Chl-a were converted into a supervised 

dataset that comprised of overlapping moving windows of size M (the input sequence size) and output 

windows of size N (the forecast window size). Validation of time series models cannot be done using 

random split methods due to the presence of temporal correlation and lag effects. It is crucial to select a 

testing set that occurs after the training set to ensure that the test set remains entirely unseen during model 

fitting. Accordingly, the last year of the time-series data were utilized as the testing set, consisting of 

completely unseen data. Using this configuration, each deep learning model acquires knowledge and 

constructs a function that maps the input sequence of M past observations to an output sequence of N 

predictions. The evaluation of model performance was carried out using the 2019 testing set. 

In summary, we developed MLP, LSTM, and 1-D CNN models, optimized the settings of these models 

(referred to as “hyperparameters”), and compared their performance against a baseline naïve (persistence) 

model. The selected model would be updated regularly with new observations to generate subsequent 

forecasts in real-time applications. Below, we detail the model development, selection, and final 

performance evaluation procedures. 
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Figure 4-1 Overview of Proposed Method- *No data was available for 2012, 2016 and 2017 

 

4.2.2. Model Development 

To facilitate the application of supervised learning models, it is necessary to first transform the time series 

data into a supervised data frame through a sliding window or lag method, which involves selecting a lag 

size (M input) and a number of forecast steps (N output). This transformation enables the time series to be 

represented as independent observations, which can be used to train a model. Each lag input is treated as a 

distinct feature, while each forecast step is considered an independent output. In the present study, we aimed 

to forecast Chl-a levels for the subsequent 7-day period; thus the N output value was set to 7. The optimal 

number of inputs (M input) was determined through a validation process, in which the model was tuned to 

achieve optimal performance. For additional information on model development, please refer to Appendix 

4-1. 

Persistence Model (Naïve model) 

To provide a basis for evaluating the performance of developed models, it is essential to establish a naïve 

unskilled model as a baseline. This enables the learning capabilities of each model to be quantified in 

comparison to the baseline. In the present study, we employed a persistence model as the naïve baseline. 

This model operates under the assumption that Chl-a concentrations will remain constant for the next seven 

days. Specifically, the model predicts the Chl-a concentration for the next seven days as the average 

concentration on the current day. Any model that surpasses the performance of the persistence model is 

considered to be skillful. This approach provides a reliable means for assessing the predictive skill of the 

developed models. 

MLP model 

As illustrated in Figure 4-2 the developed Multilayer Perceptron (MLP) model in this research comprises a 

single hidden layer of nodes, followed by an output layer responsible for generating predictions. The 

Rectified Linear Unit (ReLU) function serves as the activation function, while the model fitting relies on 

the efficient Adam variant of stochastic gradient descent. The optimization process employs the mean 
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squared error (MSE) loss function. A comprehensive grid search was conducted to determine the optimal 

number of hidden layer nodes, input window length, epochs, and batch size. 

 
Figure 4-2 Architecture of the MLP model featuring a single hidden layer. The number of nodes within the hidden layer was 

optimized as a hyperparameter. 

1-D CNN model 

In the one-dimensional CNN model (Figure 4-3), a convolutional hidden layer operates over a 1D sequence, 

followed by an additional convolutional layer and a subsequent pooling layer responsible for extracting the 

most significant features from the convolutional layer output. The convolutional and pooling layers precede 

a densely connected layer that interprets the features acquired by the convolutional components of the 

model. To reduce the feature maps to a single one-dimensional vector, a flattening layer is incorporated 

between the convolutional layers and the dense layer.  

The model fitting employs the efficient Adam variant of stochastic gradient descent, with optimization 

based on the mean squared error loss function. A grid search was conducted to optimize parameters such 

as input window size, number of filters, kernel size, epochs, and batch sizes. 

 

Figure 4-3- Schematic representation of the 1D-CNN model, comprising a solitary convolutional layer succeeded by a fully 

connected hidden layer. The number of convolutional filters was fine-tuned as a hyperparameter. 
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Figure 4-4 Schematic representation of the Encoder-Decoder LSTM model, comprising a single encoder layer and a single 

decoder layer, succeeded by a densely connected hidden layer. The number of memory units was optimized in hyperparameter 

tuning process. 

Encoder-Decoder LSTM model 

The Encoder-Decoder LSTM architecture (Figure 4-4) consists of two primary components: an encoder 

responsible for processing the input sequence and converting it into a fixed-length vector, and a decoder 

that interprets the fixed-length vector to generate the predicted output sequence. This architecture has 

demonstrated its effectiveness in various sequence-to-sequence forecasting tasks (Brownlee, 2017). 

The encoder model was implemented using a single LSTM layer, which outputs a fixed-size vector 

representing the input sequence's internal representation. The decoder's role is to transform the learned 

internal representation of the input sequence into the correct output sequence. To achieve this, another 

LSTM layer was utilized to construct the decoder model, which reads the fixed-sized output generated by 

the encoder model. As with any deep neural network (DNN), a Dense layer was employed as the network's 

output layer. By wrapping the Dense layer in a TimeDistributed wrapper, the same weights were used to 

generate each time step within the output sequence. Additionally, a RepeatVector layer was employed to 

bridge the encoder and decoder components of the model. 

The output layer leverages the mean squared error (MSE) loss function and the efficient Adam 

implementation of gradient descent for weight optimization. During the model selection step, 

hyperparameters such as the number of memory cells in the encoder and decoder LSTM layers, batch size, 

and epoch count were tuned. 
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4.2.3. Model Selection and Evaluation 

In order to optimize the hyperparameters of the model, a grid search was conducted with the objective of 

identifying the model configuration that yields the lowest root mean squared error (RMSE) and, 

consequently, the highest prediction accuracy for each deep neural network category. Given the stochastic 

nature of DNNs, which results in varying estimated weights even when trained with identical 

configurations, the training process was repeated 50 times for each configuration setting. The average 

across all iterations was then used as the basis for comparison. 

Apart from RMSE, we employed additional evaluation metrics, including the Nash-Sutcliffe Model 

Efficiency Coefficient (NSC) and the Model Skillfulness Coefficient, a novel metric introduced to assess 

the learning capabilities of each DNN model. Furthermore, a t-test was performed to confirm the statistical 

significance of the results in comparison to a naïve model, as detailed in the subsequent sections. 

Root Mean Square Error (RMSE) 

To comparatively assess the accuracy of predictions between the models, we examined the root mean 

squared error (RMSE) values, which are commonly employed to gauge model performance. For each 

forecast window, the RMSE was calculated separately, indicating the dispersion of residuals. The RMSE 

for an i-day forecast can be expressed using Equation 4-1: 

    𝑅𝑀𝑆𝐸𝑖 = √∑ (𝑦𝑗 − �̂�𝑗)2𝑛
𝑗 𝑁⁄    (Eq. 4-1)  

𝑅𝑀𝑆𝐸𝑖 : Root Mean Square Error of i-day forecasts 

i: Forecast length (day) 

𝑦𝑗 : Actual Chl-a observation in day j 

�̂�𝑗: Forecasted Chl-a concentration in day j 

𝑁: number of observations 

The overall forecast error is determined by computing the average across various forecast horizons, ranging 

from 1 to 7 days (equation 4-2): 

    𝑅𝑀𝑆𝐸 =  ∑ 𝑅𝑀𝑆𝐸𝑖
7
𝑖 7⁄     (Eq. 4-2) 

𝑅𝑀𝑆𝐸: Overall Root Mean Square Error  

Nash–Sutcliffe model efficiency coefficient (NSC) 

The Nash-Sutcliffe model efficiency coefficient (NSE) is employed to evaluate the predictive capabilities 

of forecasting models (Nash and Sutcliffe, 1970) . We computed the NSE for each forecasting step (1 to 7 

days). The NSE is defined by Equation 4-3: 

   𝑁𝑆𝐸𝑖 =  1 − ∑ (𝑦𝑗 − �̂�𝑗)2𝑛
𝑗 ∑ (𝑦𝑗 − 𝑦)2𝑛

𝑗⁄   (Eq. 4-3) 

𝑦: Mean value of Chl-a observations 

Indeed, the NSE normalizes the sum of squared residuals by the total variance. A coefficient of 1 signifies 

a perfect match between the model and the observed data, as it accounts for the entire bias of the test data. 
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An NSE coefficient of 0 indicates that the model's skillfulness is equivalent to the mean of the observed 

data. NSE values less than zero suggest that the observed mean outperforms the forecasting model. 

A limitation of this metric is that it does not adequately represent the variation in predictive power across 

different forecasting horizons. This is because the denominator of the equation remains constant for all 

forecasting steps. 

Model Skillfulness Coefficient (MSC)  

To address the limitations of the NSE, this study introduces an innovative metric capable of more effectively 

differentiating the predictive power of each model at individual forecast horizons. This new measure 

normalizes the model residuals by the residuals of persistence forecasts within the same forecast horizon. 

(Eq. 4-4).  

  𝑀𝑆𝐶𝑖 =  1 − ∑ (𝑦𝑗 − �̂�𝑗)2𝑛
𝑗 ∑ (𝑦𝑗 − �̂�𝑗)2𝑛

𝑗⁄   (Eq. 4-4) 

�̂�𝑗: Persistent Chl-a forecast in day j 

The difference between NSC and MSC is that NSC considers the average value of observed data as the 

naïve model, which is stationary for any forecast length. However, the persistence forecasts are different 

for each forecast horizon. It also sets a more rigorous baseline to measure the skillfulness of the model. For 

example, the one-day persistence model may outperform any sophisticated model because considering 

tomorrow's Chl-a concentration equal to today’s average value would probably be a close approximation 

of reality. A value of 1 represents a perfect model with sum square residuals of zero. A value of zero shows 

that model is not skillful enough to outperform the persistence model. A more positive value means the 

model has higher predictive power than the persistent forecast.  In contrast, the negative value shows that 

the model is unskilled, and the persistence model is a better forecaster. 

Significance Analysis 

To assess the performance of the deep neural network (DNN) models, a single-sample t-test was conducted 

to determine if the average root mean square error (RMSE) values of each DNN model were significantly 

lower than the RMSE value of the naïve model. The null and alternative hypotheses were established as 

follows: 

H0: The average RMSE value of each DNN model is equal to or less than the RMSE value of the naïve 

model. 

H1: The average RMSE value of each DNN model is greater than the RMSE value of the naïve model. 

This statistical test enables a comparison of the DNN models' performances with the benchmark naïve 

model, facilitating the identification of any significant improvements in prediction accuracy. 

4.2.4. Data Collection and Pre-Processing 

This work utilizes collected data from Peter Lake an experimental lake situated at the University of Notre 

Dame Environmental Research Center in the Upper Peninsula of Michigan, United States. In this lake, algal 

blooms do not occur naturally without experimental fertilization due to the unique characteristics of the 

lake (Carpenter and Pace, 2018). Chlorophyll-a was measured daily using a surface water sample that were 

filtered. Filters were frozen and extracted in methanol with pigment concentration determined 



CHAPTER 4: UNIVARIATE DEEP LEARNING FOR SHORT-TERM ALGAL BLOOM PREDICTION: 

A COMPARATIVE ANALYSIS OF MLP, 1D-CNN, AND LSTM MODELS 

 

 

 55 

fluorometrically (Buelo et al., 2022) . The time series encompasses Chl-a data from 2008 to 2019, although 

data were not collected in 2012, 2016, and 2017. 

 
Figure 4-5- Chlorophyll-a Concentration Time series- Peter Lake 

*No data was collected in 2012, 2016 and  2017 

 

The entire series consists of nine lake years, with fertilization occurring in 2013, 2014, 2015, and 2019. 

Figure 6 depicts the Chl-a time series for these nine years. Notably, the majority of data were collected 

during spring and summer, when algal blooms are most likely to transpire. This series features two major 

bloom events in 2015 and 2019, the later serving as unseen dataset to evaluate the performance of the 

selected models. 

4.3. Results  

Three different categories of neural networks, namely MLP, 1-D CNN, and LSTM, were investigated for 

short-term prediction of Chl-a concentration. Each model was fitted to the training set and evaluated against 

the test set. The hyperparameters of each model were tuned and selected using a grid search approach, with 

50 iterations performed for each configuration setting. The complete configuration list for each model can 

be found in Appendix 4-2. The distribution of average RMSE for each configuration can be found in 

Appendix 4-3. Ultimately, the model with the lowest root mean square error in each group was chosen. 

Table 4-1 summarizes the configuration of the selected model for each category and their average and 7-

day RMSE values on validation and test sets. 

The summary of the results indicates that the input window size of seven yields the best accuracy for the 

MLP model, while for CNN and LSTM models, the optimal window sizes are 7 and 5, respectively.  

In addition, comparing the test errors reveals that, on average (mean of one to seven days forecast error), 

all three models outperform the naïve model. This observation remains valid for 7-day forecasts, which is 

crucial for decision-making purposes. The performances of the MLP and 1-D CNN models are found to be 

similar, while the LSTM model exhibits a slight advantage over the other two models. 
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Upon examining the p-values, which are close to zero for all three models, it is confirmed that the average 

RMSE of each of the three models is significantly lower than the average RMSE of the naïve model. 

 

Table 4-1- Selected models’' configuration and their accuracy and significance 

 

 

Figure 4-6 zooms into the selected models and shows how RMSE scores of the 50 iterations for each model 

are distributed across each forecast horizon. It reveals that the LSTM model has a significantly wider 

distribution, while the other two models demonstrate more robust results. As expected intuitively, the 

accuracy of forecasts for all models consistently declines as the forecast horizon expands. However, for the 

LSTM model, the accuracy declines more slowly than for the MLP and CNN models. It is also observed 

that for shorter forecasts, such as one-day and two-day predictions, the MLP and CNN models outperform 

Figure 4-7 the LSTM model. However, as the forecast horizon expands, the median RMSE score of the 

LSTM model consistently remains lower than the other two models, proving that the LSTM model returns 

more accurate forecasts at longer forecast horizons. 

 

Figure 4-6- Selected models distribution of RMSE scores for each forecast horizon 

 
 Model Configuration Performance Significance 

 

Inputs 

Size 

Nodes/ 

Units 
Filters 

Epoch 

No. 

Bath 

No. 

Overall 

RMSE 

7-days 

RMSE 
t-statistic P-value 

NAÏVE  - - - - - 7.25 10.30 - - 

MLP 3 128 - 40 10 6.83 9.46 -14.93 0 

1-D CNN 7 100 64 20 1 6.70 9.01 -6.62 1.27e-08 

LSTM 5 200/100 - 20 16 6.48 8.58 -4.22 5.18e-5 
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Figure 4-7 compares the performance of these four models using the Nash Coefficient metric on the test set 

for forecast windows of one day to seven days. The results show that while nearly all of these models do 

not outperform the naïve model at short forecast horizons (one and two days), they demonstrate significant 

improvement over the naïve forecast at longer forecast lengths, especially at 7-day forecasting. The figure 

also illustrates that the performance of the LSTM model declines less with increasing forecast steps. 

Ranking the models based on their Nash coefficient, it can be concluded that the LSTM performs best, 

followed by the 1D-CNN and MLP models, while the persistence model performs worst, particularly at 

longer forecast lengths. 

 

Figure 4-7- Nash-Sutcliff coefficient on the test set for different models and forecast horizons. 

Figure 4-8 illustrates the skillfulness coefficient (MSC) for each model across various forecast horizons. 

Skillfulness is defined as a relative measure that demonstrates a model's predictive power compared to 

Naïve (persistent) forecasts. The results confirm that in shorter forecast windows, all three models perform 

worse than the persistent model (naïve); however, as the forecast length increases, deep learning models 

gradually exhibit greater skill than the naïve model. This is particularly evident for the LSTM model: while 

its skillfulness coefficient is strongly negative (around -0.2) for the one-day forecast, its comparative 

skillfulness improves for longer forecast horizons. Consequently, the LSTM model's MSC consistently 

increases as the forecast horizon expands. The same increasing trend is visible for the CNN model, while 

the MLP model's relative performance remains constant after three forecast steps. 
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Figure 4-8- Skillfulness Coefficient for each of the three deep learning models versus seven-day forecasts; negative values 

indicate the inability of a model to outperform the naïve model for that specific forecast horizon. 

4.3.1. 1-day forecasts 

Figure 4-9 displays the Chl-a predictions for the next day generated by each deep learning model using the 

test set, alongside the actual observations. The shaded area represents the 95% confidence interval, and the 

solid lines indicate the average forecast. Although all three models are capable of accurately predicting the 

next day's Chl-a concentration, the figure reveals a one-day delay in the timing of the forecasts for the CNN 

and MLP models. This suggests that these two models perform comparably to the one-day persistent model. 

In contrast, the LSTM model exhibits an even greater delay, leading to inferior outcomes compared to the 

naïve model. Figure 4-10 further supports this observation, revealing a strong agreement between the 

forecasts and actual observations for the MLP and CNN models. Conversely, the LSTM model appears to 

perform less effectively, particularly at higher Chl-a values. 

 

Figure 4-9- Comparison of one-day forecasts on the test set (2019) 
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Figure 4-10-1-day forecasts and actual observation agreement 

 

4.3.2. 3-day forecasts 

Figure 4-11 presents a comparison between the three-day-ahead forecasts and the actual observations, 

demonstrating that the CNN model performs better at predicting the intensity of major blooms. However, 

both the MLP and LSTM models tend to under-predict the intensity of these blooms. All three models 

exhibit a delay in forecasting bloom events. 

Figure 4-12 indicates that the agreement between forecasts and actual observations is weaker for all three 

models in the three-day-ahead forecasts compared to one-day forecasts. The LSTM model exhibits a 

tendency to under-forecast the actual values, as most of the points fall below the perfect agreement line, 

especially at higher Chl-a values. 

 

Figure 4-11- Comparison of three-day forecasts on the test set (2019) 
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Figure 4-12-Three-day forecasts and actual observation agreement 

 

4.3.3. 7-day forecasts 

Figure 5-13 displays the 7-day forecasts of the models compared to the actual observations. The LSTM 

model demonstrates a reasonable ability to predict the timing of major bloom event but under-predicts its 

intensity. In contrast, both MLP and CNN models exhibit significant delays and less accurate forecasts of 

bloom intensity. 

Figure 5-14 supports these findings, revealing that all three models tend to under-predict Chl-a values, 

particularly at higher Chl-a concentrations. 

 
Figure 4-13-Comparison of 7-day forecasts on the test set (2019) 
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Figure 4-14- 7-day forecasts and actual observation agreement 

 

4.4. Discussion 
Deep artificial neural networks have become more prevalent in the realm of short-term, multi-step 

ecological forecasting as a result of their aptitude for managing complex and non-linear systems (Borowiec 

et al., 2022; Perry et al., 2022) . These networks also possess the ability to efficiently process and analyze 

disordered data, which is often a challenge associated with high-frequency time series data. As such, the 

adoption of these advanced computational techniques is enhancing the accuracy and reliability of ecological 

predictions. 

However, The absence of a standardized performance evaluation framework makes it difficult to directly 

compare various artificial neural network (ANN) models or contrast them with mechanistic and statistical 

models.(Rousso et al., 2020). Rousso et al. 2020 report that approximately 50% of algal bloom forecasting 

studies rely on determination coefficients (R2) or Pearson correlation coefficients (R) as performance 

indicators. However, a high R2 value doesn't necessarily guarantee accurate forecasting. This is because 

some models can be overfitted to the training datasets, leading to excellent performance on the training data 

but poor performance when applied to new, unseen data (Cawley and Talbot, 2010). In the present study, 

it is proposed to employ the Nash-Sutcliffe efficiency coefficient and the Root Mean Square Error (RMSE) 

as evaluation metrics to ascertain the accuracy of forecast models. These measures serve as valuable 

alternatives to the determination coefficient (R2) or Pearson correlation coefficient (R), which have been 

previously discussed as potentially inadequate in certain situations. 

Moreover, a notable limitation of the extant literature is the absence of an efficacious metric for appraising 

the skillfulness of the models under investigation. To address this shortcoming, the current paper introduces 

the Skillfulness coefficient. This novel metric juxtaposes the forecast at each step with a persistent 

(unskillful) prediction that possesses an identical forecast horizon. By contrasting the model's 

prognostications with a rudimentary unskillful prediction, the Skillfulness coefficient can effectively gauge 

the degree to which the model's predictions surpass the utilization of the most recent observed value as the 

forecast.  

This study demonstrates that the predictive capabilities of all three deep neural network (DNN) models 

exhibit an improvement as the forecast horizon (steps) expands compared to the naïve model. This 

phenomenon can be elucidated by considering a hypothetical unskillful weather forecaster who predicts 
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tomorrow's temperature by assuming it will be identical to today's temperature (persistent forecast). While 

this approach might yield reasonable short-term forecasts, its efficacy would diminish for longer-term 

predictions, such as forecasting the temperature for the following week. This is where a skillful weather 

forecasting model could distinguish itself. This analogy clarifies why the skillfulness metric is negative for 

all three models in the case of one-day forecasts, while it becomes positive after day two.  

The skillfulness of the one-dimensional convolutional neural network (1D-CNN) and Long Short-Term 

Memory (LSTM) models both exhibit a marked increase after day three in comparison to the Multi-Layer 

Perceptron (MLP) model. For seven-day forecasts, their average skillfulness coefficients are 0.24 and 0.32, 

respectively. This highlights the enhanced predictive capabilities of the 1D-CNN and LSTM models, 

particularly for longer-term forecasts, in contrast to the MLP model. 

In this study, a one-dimensional convolutional neural network (1D-CNN) was applied for the first time to 

forecast algal blooms, demonstrating its potential to significantly enhance the performance of conventional 

artificial neural networks, such as the Multi-Layer Perceptron (MLP), particularly at longer forecast 

horizons. The average Nash coefficients for seven-day forecasts using the 1D-CNN and MLP models were 

found to be 0.35 and 0.28, respectively, indicating the superior performance of the 1D-CNN approach. 

4.5. Conclusions and Recommendations for Future Research 

This study applied and compared three categories of deep learning neural networks - multilayer perceptron 

(MLP), one-dimensional convolutional neural network (1-D CNN), and long short-term memory (LSTM) 

as a subcategory of recurrent neural networks (RNNs) - to predict chlorophyll-a concentrations as a proxy 

for algal biomass in Peter Lake. All three models were univariate, utilizing only past Chl-a concentration 

sequences to forecast future values. This approach eliminates the need for and cost of collecting and 

processing multiple climate and water quality variables over extended periods. Furthermore, it significantly 

reduces computational costs as it operates with a single variable instead of multiple variables. 

The architecture and hyperparameters of the models were tuned, and their performance was evaluated using 

a test set. Each model provided Chl-a forecasts for 1 to 7 days in advance. The results revealed that all three 

models outperformed the naïve model at forecast horizons longer than three days. 

This study presented a comprehensive evaluation criterion for algal bloom forecasting models, which can 

be employed in future forecasting studies to better compare different modeling approaches. Additionally, 

this research marks the first application of the one-dimensional convolutional neural network (1D-CNN) 

model for algal bloom forecasting. Since both the 1D-CNN and LSTM models outperformed the MLP 

model, it suggests that developing hybrid CNN-LSTM models might help achieve better forecasting 

capacity. 

The study of univariate deep learning models can also serve as a baseline to assess the performance of 

multivariate models. Therefore, it is recommended to examine the impact of water quality and climate 

variables, such as water temperature profiles, dissolved oxygen, and nutrient loading rates, on the 

performance of deep learning models. It would also be worthwhile to compare univariate deep learning 

models with traditional statistical models like ARIMA and mechanistic process-based models like GLM to 

better understand each category's forecasting power. 

Finally, we recommend exploring regularization methods at the model selection step to investigate the 

potential for reducing overfitting and achieving more robust models. 
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Appendices 
 

Appendix 4-1 More details on model development 

The data wrangling, model development, and result analysis for this project were all carried out 

using Python 3. The deep neural networks were implemented in the Keras environment, which is an open-

source high-level neural network library that prioritizes user-friendliness, modularity, and flexibility. Keras 

supports a wide range of neural network architectures, including multi-layer perceptron, convolutional, and 

recurrent neural networks, as well as combinations of these. The library includes pre-built layers for 

different types of neural networks, such as fully connected, convolutional, and pooling layers. Keras is built 

on top of TensorFlow and Theano, which provide efficient computation of mathematical operations on 

CPUs and GPUs. With Keras, users can quickly prototype and experiment with deep learning models by 

defining models, compiling them with different optimization options, and training them on various datasets 

using an easy-to-use API. If you would like to access the dataset and the full Python scripts for each model, 

please refer to our GitHub repository. 

 

 

  

https://github.com/nenazemi/Algal-Bloom-Forecasting
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Appendix 4-2- Configuration list tested for different models 

 
Table 4-2- Configuration list tested for MLP model 

Iteration 

Index 

Input 

Window 

Size 

Hidden 

Layer 

Nodes No. 

Epoch 

No. 

Batch 

No. 

0 3 128 20 10 

1 3 128 20 50 

2 3 128 40 10 

3 3 128 40 50 

4 3 256 20 10 

5 3 256 20 50 

6 3 256 40 10 

7 3 256 40 50 

8 5 128 20 10 

9 5 128 20 50 

10 5 128 40 10 

11 5 128 40 50 

12 5 256 20 10 

13 5 256 20 50 

14 5 256 40 10 

15 5 256 40 50 

16 7 128 20 10 

17 7 128 20 50 

18 7 128 40 10 

19 7 128 40 50 

20 7 256 20 10 

21 7 256 20 50 

22 7 256 40 10 

23 7 256 40 50 
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Table 4-3- Configuration list tested for CNN model 

Iteration Index 
Input 

Window Size 

 Convolution 

Layer Filter No. 

Epoch 

No. 
Batch No. 

0 5 32 10 1 

1 5 32 10 10 

2 5 32 20 1 

3 5 32 20 10 

4 5 64 10 1 

5 5 64 10 10 

6 5 64 20 1 

7 5 64 20 10 

8 5 128 10 1 

9 5 128 10 10 

10 5 128 20 1 

11 5 128 20 10 

12 5 256 10 1 

13 5 256 10 10 

14 5 256 20 1 

15 5 256 20 10 

16 7 32 10 1 

17 7 32 10 10 

18 7 32 20 1 

19 7 32 20 10 

20 7 64 10 1 

21 7 64 10 10 

22 7 64 20 1 

23 7 64 20 10 

24 7 128 10 1 

25 7 128 10 10 

26 7 128 20 1 

27 7 128 20 10 

28 7 256 10 1 

29 7 256 10 10 

30 7 256 20 1 

31 7 256 20 10 

32 14 32 10 1 

33 14 32 10 10 

34 14 32 20 1 

35 14 32 20 10 

36 14 64 10 1 

37 14 64 10 10 

38 14 64 20 1 

39 14 64 20 10 

40 14 128 10 1 

41 14 128 10 10 

42 14 128 20 1 

43 14 128 20 10 

44 14 256 10 1 

45 14 256 10 10 

46 14 256 20 1 

47 14 256 20 10 
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Table 4-4- Configuration list tested for LSTM model 

Iteration 

Index 

Input 

Window 

Size 

LSTM layer 

memory units 

Epoch 

No. 

Batch 

No. 

0 5 200 10 1 

1 5 200 10 16 

2 5 200 20 1 

3 5 200 20 16 

4 7 200 10 1 

5 7 200 10 16 

6 7 200 20 1 

7 7 200 20 16 
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Appendix 4-3- The distribution of average RMSE values for the deep learning models across 50 

iterations for each configuration set 

 

 

 

Figure 4-15-  The distribution of average RMSE values for the MLP model across 50 iterations for each configuration set 

 

 

 

Figure 4-16- The distribution of average RMSE values for the 1D-CNN model across 50 iterations for each configuration 

setting. 
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Figure 4-17-  The distribution of average RMSE values for the LSTM model across 50 iterations for each configuration setting. 
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Abstract 
Algal blooms present a substantial threat to aquatic ecosystems and aquaculture economies, 

underscoring the need for accurate forecasting models for these events. This study employed deep neural 

networks, known for their ability to identify complex patterns in multivariate time series data, to develop 

predictive models for algal blooms. Utilizing a multivariate time series from Peter Lake between 2008 and 

2019, we created two multivariate, multi-step deep neural networks: a one-dimensional convolutional 

neural network (1D-CNN) and a long short-term memory network (LSTM) to forecast Chlorophyll-a (Chl-

a) concentrations from one to seven days in advance. The mixed layer depth, mixed layer temperature, and 

color-normalized cumulative phosphorus loading rate emerged as the three important variables for 

multivariate models. Both 1D-CNN and LSTM multivariate models were evaluated, revealing that they 

significantly outperformed persistence (naïve) models in terms of forecast accuracy from day 2 to day 7 of 

the forecast window. Furthermore, the multivariate models considerably enhanced the performance of their 

univariate counterparts. Although both multivariate models exhibited similar performance, the 1D-CNN 

model demonstrated superior capabilities in predicting the intensity of blooms, particularly over longer 

forecast horizons. These findings hold significant implications for algal bloom forecasting and can 

potentially contribute to improved environmental management efforts. 

Keywords 

Ecological Forecasting, Multivariate Time Series Forecasting, Recurrent Networks, One-Dimensional 

Convolutional Neural Network (1-D CNN), Algal Bloom Management, Long Short-term Memory (LSTM), 

Proactive Water Resource Management
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5.1. Introduction 
Algal blooms are a natural phenomenon that can lead to severe ecological and economic damage. With the 

increasing occurrence and severity of harmful algal blooms, accurate forecasting models are necessary to 

prevent or mitigate their adverse effects. Forecasting models can provide early warning systems, enabling 

policymakers and stakeholders to take proactive measures to manage  blooms (Cruz et al., 2021).  

When the priority is on achieving more accurate forecasts at longer forecasting windows, advanced machine 

learning techniques like deep neural networks are generally favored over other methods, although they 

sacrifice some interpretability (Borowiec et al., 2022; Perry et al., 2022). These techniques are better suited 

for dealing with complex, nonlinear, and noisy datasets, particularly when the underlying physical 

relationships are not fully understood. Unlike process-based models, which require prior assumptions about 

interactions and mechanisms of phytoplankton dynamics, machine learning (ML) models do not need such 

a priori assumptions (Shimoda and Arhonditsis, 2016). By leveraging the powerful ability of deep neural 

networks to analyze large amounts of data and identify intricate patterns, more robust and accurate 

forecasting models can be developed (Muttil and Chau, 2006; Derot, Yajima and Jacquet, 2020). 

There are two types of time series forecasting methods: univariate and multivariate. Univariate methods 

solely rely on the current and past values of a single series being forecasted. On the other hand, multivariate 

methods incorporate the values of one or more additional time-series variables, referred to as predictor or 

explanatory variables, to forecast the given variable. 

Univariate time series forecasting models offer simplicity and ease of implementation as they require data 

from a single variable. Moreover, the interpretability and transparency of univariate models are higher than 

multivariate models, as they solely focus on the dynamics of the target variable without accounting for the 

complexities of interdependence with other variables. Additionally, utilizing an increased number of 

features in multivariate models can raise the risk of overfitting, which is a concern for forecasting models 

that could affect their generalizability and performance on new data (Chapter 4). 

Despite the advantages of univariate models, multivariate forecasting models offer several advantages as 

well. The use of multivariate models allows for the incorporation of additional information from other 

relevant variables, which can improve the accuracy of the forecasts. Multivariate models can also capture 

complex relationships between variables and identify patterns that might not be apparent in a univariate 

analysis. Additionally, the inclusion of explanatory variables can provide insights into the underlying 

mechanisms driving the observed patterns, which can be valuable for decision-making and policy 

development. Finally, multivariate models can handle situations where the target variable is influenced by 

multiple predictors, which can be useful in many real-world applications (Lai et al., 2018; Shih, Sun and 

Lee, 2019). 

In Chapter 4 of this dissertation, the performance of three categories of univariate deep neural networks, 

namely, multilayer perceptron (MLP), one-dimensional convolutional neural network (1-D CNN), and long 

short-term memory network (LSTM), was investigated to predict Chl-a concentrations one to seven days 

in advance. The results demonstrated that all three models outperformed the persistence forecast at forecast 

horizons of three days or longer. In this chapter, the aim is to harness the power of deep neural networks to 

capture the intricate and complex patterns in multivariate data, thereby enhancing the forecasting capability 
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of the developed models. Due to the higher complexity of multivariate models and the computational cost 

of running multiple iterations, two types of more complex models, 1D-CNN and LSTM models were 

selected for this investigation. 

Overall, the objective of this study was to enhance the accuracy of forecasting models for proactive 

measures toward preventing or mitigating harmful algal blooms. The approach included the selection and 

manipulation of independent variables, known to impact the occurrence of algal blooms, followed by a 

comparative evaluation of the performance of multivariate 1D-CNN and LSTM deep learning models. 

5.2. Method of Study 
The aim of this study was to harness the potential of deep neural networks for developing multivariate, 

multi-step forecasting models for algal blooms. As indicated by the results in Chapter 4, two types of neural 

networks demonstrated superior forecasting capabilities: one-dimensional convolutional neural networks 

(1D-CNNs) and Long Short-Term Memory networks (LSTMs). In this chapter, we investigate their 

performance when provided with multiple variables as input, as opposed to a single variable.  

5.2.1. Data Collection and Pre-Processing 

The data used in this study was gathered from Peter Lake, which is an experimental lake situated at the 

University of Notre Dame Environmental Research Center in the Upper Peninsula of Michigan, USA. Algal 

blooms are artificially induced in this lake through the additions of inorganic nitrogen and phosphorus 

(Carpenter and Pace, 2018). The time series data spans from 2008 to 2019, excluding data for 2012, 2016, 

and 2017 where high frequency observations of phytoplankton were not made. Lake fertilization occurred 

in 2013, 2014, 2015, and 2019, and it's worth noting that data collection was mainly carried out during the 

spring and summer seasons, which are prime bloom periods. Water samples for chlorophyll-a (chl-a) 

were collected daily at the center of the lake at a depth of 0.5m. Additionally, water quality parameters 

(phycocyanin, dissolved oxygen, pH) and temperature were measured in-situ at 0.75m every 5 minutes 

using automated sensors. Water temperature was also recorded every 5 minutes with a string of 

thermistors at intervals of 0.5m from 0.5 to 5 meters below the surface. Meteorological conditions (air 

temperature, wind speed, photosynthetically active radiation [PAR]) were measured every 5 minutes 

from a raft on Peter Lake. Other potential bloom drivers and limnological variables, such as light 

extinction profiles, water color (g440), nutrient concentrations (TN and TP), dissolved oxygen profiles, 

and zooplankton biomass, were measured on a weekly basis. (Buelo, 2021; Buelo et al., 2022). 

Finally, the available data was first cleaned by filling any missing values and removing outliers. The moving 

average method was then used to smoothen the data to daily values. Table 5-1 lists the parameters included 

in the pre-processed dataset.  
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Table 5-1- Raw Data Summary 

Variable Units 

Year - 

Day of Year (doy) - 

Chlorophyll-a  𝜇𝑔/𝑙 

Water Temperature profile (every 30 cm) 𝐶0  

PH - 

Saturated Dissolved Oxygen Concentration % 

Dissolved Oxygen Concentration 𝑚𝑔/𝑙 

Photosynthetically Active Radiation (PAR) 𝜇𝐸/ 𝑚2. 𝑠 

Air Temperature 𝐶0  

Wind Speed 𝑚𝑝ℎ 

Wind Gust 𝑚𝑝ℎ 

Wind Direction 𝑑𝑒𝑔𝑟𝑒𝑒 

Phosphorus loading  𝑚𝑔𝑃/𝑚2/𝑑𝑎𝑦 

Color 𝐿𝑖𝑔ℎ𝑡 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 440 𝑛𝑚 (𝑚−1) 

 

5.2.2. Feature Selection 

Deep neural networks have a substantial number of parameters, necessitating a considerable volume of 

training data for effective learning. Feature selection can assist in reducing the input data's dimensionality, 

thereby decreasing the amount of data needed for training and allowing the model to learn more complex 

relationships and improve its predictive accuracy. Furthermore, feature selection aids in preventing 

overfitting by providing the model with more relevant and informative features. It is also worth noting that 

recurrent neural networks, such as LSTMs, can be computationally intensive to train, especially when 

dealing with large datasets. In light of these factors, feature selection becomes an essential pre-processing 

step before training the model. 

To reduce the dimensionality of raw data, two approaches are commonly employed. The first approach 

involves generic transformation methods, such as Principal Component Analysis (PCA), which generates 

new features that are linear combinations of the original features while preserving most of the data 

variability. The second approach, known as feature engineering, leverages domain expertise to create new 

features or transform existing ones, making them more relevant and informative for the specific problem at 

hand (Zaki and Meira, 2014). 

This study opted for the second approach, feature engineering, with the goal of creating meaningful and 

interpretable features based on domain knowledge. After an extensive analysis, we identified two features 

that could significantly reduce the data dimensionality without sacrificing the interpretability of the results. 

These two features are described as follows: 
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Mixed layer depth (Zmix) and the average temperature at Zmix 

The mixed layer depth of a lake refers to the uppermost stratum in which water temperature, dissolved 

gases, and other properties exhibit relative uniformity due to mixing processes. Fluctuations in Zmix may 

occur due to factors such as seasonal changes, weather conditions, and lake morphology. The depth of the 

mixed layer (Zmix) can impact phytoplankton distribution and growth, and consequently, chlorophyll-a (chl-

a) concentrations, by altering light availability, nutrient accessibility, and water temperature. In this study, 

Zmix depth and the average temperature of the Zmix layer were incorporated as input variables for the 

multivariate deep neural networks (Pace, Buelo and Carpenter, 2021). Figure 5-1 illustrates the variations 

in chl-a concentration and Zmix temperature for each lake year. 

Cumulative Nutrient Loading Normalized by Color (CNCP) 

The phosphorus loading was converted into annual cumulative values and then normalized by the lake's 

color represented as g440, which is the absorbance at 440 nm with units in m⁻¹. This particular feature 

was chosen as it exhibited a threshold-like behavior, suggesting that blooms occur once the loading 

threshold is reached (Buelo, 2021; Buelo et al., 2022). 

5.2.3. Model Development 

To prepare multivariate time series data for input into sequential models, the data must be transformed into 

a supervised learning problem by generating input-output sequences comprising M past observations as the 

input sequence and the subsequent N observations as the output sequence. In this context, M represents the 

number of lag observations, while N denotes the number of time steps targeted for forecasting. This study 

aims to forecast chlorophyll-a concentration up to seven days in advance, setting N to seven, while the input 

sequence size will be determined and optimized during the model selection process. 

Subsequently, the supervised dataset should be divided into a training set and a test set, maintaining the 

temporal order of the data during the split to prevent data leakage. As such, the final year of data, 2019, 

was designated as the test dataset. 

Additionally, it is necessary to reshape the input data into a 3D array with dimensions (samples, time steps, 

features), as this format is required by both LSTM and 1D-CNN sequential models. The architectures of 

each deep neural network model are detailed in the following sections. 
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Figure 5-1- Chlorophyll-a (Chl-a) concentration (blue line, left y-axis) and Mixed Layer Depth (Zmix) Temperature (green line, 

right y-axis) time series 

 

DNN structure (multi-channel) 

As depicted in Figure 5-2 the one-dimensional CNN model consists of two convolutional hidden layers, 

with each followed by a max pooling layer responsible for downsampling the feature maps while retaining 

the most salient information. The convolutional and pooling layers precede a densely connected layer that 

interprets the features extracted by the convolutional components of the model. To reduce the feature maps 

to a single one-dimensional vector, a flattening layer is incorporated between the convolutional layers and 

the dense layer. 

Model fitting employs the efficient Adam variant of stochastic gradient descent, optimizing based on the 

mean squared error loss function. A grid search was conducted to optimize parameters such as input window 

size, number of filters, kernel size, epochs, and batch sizes. 
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Figure 5-2- The structure of Multichannel One-Dimensional Convolutional Neural Network (1D-CNN) 

 

LSTM structure (encoder-decoder) 

The Encoder-Decoder LSTM architecture as shown in Figure 5-3 consists of two primary components: an 

encoder and a decoder.  

The encoder model was implemented using a single LSTM layer, which outputs a fixed-size vector 

representing the input sequence's internal representation. The decoder's role is to transform the learned 

internal representation of the input sequence into the correct output sequence. To achieve this, another 

LSTM layer was utilized to construct the decoder model, which reads the fixed-sized output generated by 

the encoder model. As with any deep neural network (DNN), a Dense layer was employed as the network's 

output layer. By wrapping the Dense layer in a TimeDistributed wrapper, the same weights were used to 

generate each time step within the output sequence. Additionally, a RepeatVector layer was employed to 

bridge the encoder and decoder components of the model. 
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Figure 5-3- Graphical illustration of the multivariate time series forecasting framework via a sequence-to-sequence encoder-

decoder model 

 

The output layer leverages the mean squared error (MSE) loss function and the efficient Adam 

implementation of gradient descent for weight optimization. During the model selection step, 

hyperparameters such as the number of memory cells in the encoder and decoder LSTM layers, batch size, 

and epoch count were tuned. 

5.2.4. Model Selection and Evaluation 

The hyperparameter tuning process was conducted for each model using the grid search technique, with 

50 iterations performed for each configuration setting to ensure robust forecasts. The Root Mean Square 

Error (RMSE) served as the accuracy measure for the model selection process. RMSE was computed for 

each forecast horizon (1-7 days), and the overall model accuracy was determined by averaging the accuracy 

scores for all seven forecasting steps. The model with the highest overall accuracy (lowest average RMSE) 

was chosen from each Deep Neural Network (DNN) category. 

In addition to RMSE, the Nash-Sutcliffe model efficiency coefficient (NSC) was calculated to further 

illustrate the predictive power of each model at each forecast horizon. Moreover, the Model Skillfulness 

Coefficient (MSC), introduced in Chapter 4, was computed for each model and each forecast step. This 

coefficient compares the performance of each developed model to the persistence model at each forecast 

step. Positive MSC values indicate the model's superiority over the persistence forecasts, while negative 

values confirm that the selected model does not outperform the naïve model. 

Finally, a t-test was conducted to evaluate the significance of the results in comparison to naïve forecasts. 

For more information on each evaluation approach, please refer to Chapter 4. 

https://www.sciencedirect.com/topics/computer-science/graphical-illustration
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5.3. Results and Discussion  
This study examined two categories of neural networks, namely 1-D CNN and LSTM, for the purpose of 

multivariate multi-step short-term algae bloom forecasting. Each model was trained on the training set 

spanning from 2008 to 2018 and then evaluated on the test set from 2019. A grid search approach was used 

to tune and select the hyperparameters of each model, with 50 iterations performed for each configuration 

setting. The complete configuration list for each model can be found in Appendices 1 and 2. The model 

with the lowest average test error in each group was selected as the optimal model. 

As shown in Figure 5-4the average root mean squared error (RMSE) over all seven forecasting steps was 

calculated for the LSTM model. The results indicate that configuration 10 achieved the least average error. 

Furthermore, this configuration produced more consistent results when compared to configurations like 13 

and 22, which showed a wide distribution of results. 

 

Figure 5-4- The distribution of average RMSE values for the LSTM model across 50 iterations for each configuration setting.   
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Figure 5-5- The distribution of average RMSE values for the 1-D CNN model across 50 iterations for each configuration 

setting. 

Likewise, Figure 5-5 presents the distribution of average RMSE values for the 1D-CNN model for each 

configuration setting based on 50 iterations. The findings reveal that the configuration number 4 produced 

the lowest average error and resulted in more consistent forecasts. The selected configuration is provided 

in Table 5-2 which presents a summary of the selected models, including their overall performance in 

comparison to the naive (persistence) model.  

 

Table 5-2- Configuration and Summary of Selected Models: This table summarizes the configuration of the selected models, 

along with their performance evaluation based on the average RMSE over all seven forecasting steps and the RMSE of 7-day 

forecasts. 

  Model Configuration Performance Significance 

 
Inputs 

Size 

Nodes/ 

Units   

Filters 
Epoch 

No. 

Batch 

No. 

Overall 

RMSE 

7-days 

RMSE 
t-statistic P-value 

NAÏVE - -  - - 7.25 10.30 - - 

1-D CNN 5 100 64 70 10 5.26 6.69 -55.00 0 

LSTM 5 200/100 - 20 16 5.50 6.75 -21.22 0 

 

 

The findings indicate that both models demonstrated superior performance when the input sequence 

consisted of the previous five days of observations. Specifically, the 1D-CNN model was trained with 64 

convolution filters, 70 epochs, and 10 batches, while the selected LSTM model was trained on 20 epochs, 

16 batches, and 200 and 100 memory units for its encoder and decoder layer respectively. The LSTM and 

1D-CNN models outperformed the Naive model significantly, with overall RMSE values of 5.5 and 5.26, 

respectively, compared to the Naive model's overall RMSE value of 7.25. Furthermore, both models  
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Figure 5-6- Selected models RMSE distribution of 50 iterations for each model 

 

demonstrated more noteworthy outcomes when challenged with a seven-day forecast, which is the most 

demanding forecasting task for all models in this study, with 7-day RMSE values of 6.75 and 6.69, 

respectively, in contrast to the Naive model's 10.30 RMSE value. 

Figure 5-6 illustrates that the RMSE scores of both multivariate and compare it with their corresponding 

univariate models. All four models consistently lose their forecasting power as the forecast horizon 

advances further into the future. Notably, the distribution of the LSTM models for all forecast steps 

exhibited greater variability than that of the 1D-CNN models; however, this variability is more significant 

in univariate models compared to the multivariate model. These results suggest that the 1D-CNN model is 

more robust than the LSTM model. Furthermore, the average error of the multivariate 1D-CNN model was 

smaller than that of the multivariate LSTM model for all forecast horizons. It is also evident that as of the 

third day both multivariate models outperformed the univariate models, and the gap becomes more apparent 

at longer forecast horizons. This conclusion is more visible when their Nash-Sutcliff coefficients are 

compared (Figure 5-7) All four selected models outperformed the naive model significantly, with the 

difference being more pronounced in longer forecast horizons. The difference between multivariate at 

longer forecast lengths is less significant; however, both multivariate models outperformed the univariate 

ones, which leads us to the conclusion that multivariate models enhance the algal bloom forecasting. 
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Figure 5-7- Nash-Sutcliff coefficient on the test set for different models and forecast horizons 

 

The skillfulness measure (Figure 5-8) validates the above assertion. It shows that neither of the DNN models 

could forecast the algal bloom of the next day (1-day horizon) better than the persistence model. As a result, 

both models exhibited negative skillfulness values, indicating their inferiority when compared to the 

persistence model. However, for forecast horizons ranging from day 2 to day 7, the skillfulness measure 

consistently increases for both models. The DNN models are more accurate predictions as the forecast 

horizon expands.  

 
Figure 5-8- Skillfulness Coefficient for each of the two deep learning models versus seven days forecasts; negative values show 

their  failure to outperform the naïve model for that forecast horizon  
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5.3.1. 1-day forecast 

Figure 5-9- Comparison of one-day forecasts on the test set (2019)Figure 5-9 presents the Chl-a predictions of each deep 

learning model for the next day, as well as the actual observations based on the test set. Qualitatively, it 

indicates that both DNN models were able to accurately predict the Chl-a concentration for the following 

day. These findings are further supported Figure 5-10, which depicts a strong agreement between the 

forecasts and the actual observations. However, the LSTM model appeared to perform slightly weaker than 

the CNN models. 

 

 

Figure 5-9- Comparison of one-day forecasts on the test set (2019) 

 

Figure 5-10- 1-day forecasts and actual observation agreement 
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5.3.2. 3-day forecast 

A comparison between the three-day forecasts and actual observations was also conducted, as illustrated in 

Figure 5-11. The results demonstrate a strong agreement between the projections and actual values. 

Nevertheless, the 1D-CNN model performs slightly better than the other models at predicting the timing of 

major blooms. 

Moreover, Figure 5-12 indicates that residuals are higher in three-day forecasts, particularly at higher Chl-

a values. Nonetheless, the 1D-CNN forecasts exhibit better agreement with actual observations, as the 

points are less scattered. 

 

Figure 5-11- Comparison of 3-day forecasts on the test set (2019) 

 

Figure 5-12- 3-day forecasts and actual observation agreement 
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5.3.3. 7-day forecast 

The results indicate that both models performed reasonably well in predicting the timing of major bloom 

event. However, the 1D-CNN models showed more accurate forecasts of the intensity of the event. 

Furthermore, Figure 15 demonstrates that both models under-predicted the Chl-a values, as most of the 

points fell below the perfect agreement line. 

In summary, these findings suggest that both models are effective in predicting the timing of major bloom 

event, but the 1D-CNN models may offer better accuracy in forecasting its intensity. Nonetheless, there is 

room for further improvement to enhance the forecasting accuracy of both models for Chl-a concentrations 

in Peter Lake. 

 

Figure 5-13- Comparison of seven-day forecasts on the test set (2019) 

Figure 5-14- 7-days forecasts and actual observation agreement 
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5.4. Conclusions and Recommendations for Future Research 
In this study, we investigated two multivariate deep neural network models, a one-dimensional 

Convolutional Neural Network (1-D CNN) and a Long Short-term Memory (LSTM), for near-term algal 

bloom forecasting in Peter Lake. The multivariate models are more complex than univariate models, which 

solely utilize the past observation of the target variable to predict its future values. To minimize the risk of 

overfitting and maintain reasonable computational costs, we only added three extra predictors to univariate 

models, including mixed layer depth and temperature and cumulative phosphorus loading rate normalized 

by watercolor. We employed the persistence model and univariate CNN and LSTM models as baselines to 

evaluate the performance of multivariate models. 

The models were trained to provide Chl-a forecasts up to 7 days in advance. The results demonstrated that 

both LSTM and 1D-CNN models significantly outperformed the naïve model and their univariate 

counterparts, especially at forecast horizons longer than two days. While the performance of the persistence 

and univariate models declined with increasing forecast steps, the multivariate models displayed more 

robust forecasts across all forecast horizons. 

Overall, our comparative investigation revealed that despite the increased complexity introduced by 

additional variables in deep neural network models, their inclusion helped enhance the forecasting accuracy 

of these models. Since both the LSTM and 1D-CNN models were able to improve significantly upon the 

univariate models, developing hybrid CNN-LSTM models might lead to achieving even better forecasting 

accuracy. 

As a further step, we recommend applying the trained models to predict Chl-a concentration in other lakes 

to gain a better understanding of their generalization capabilities. This will help determine if the models 

can maintain their forecasting accuracy across different ecosystems, providing valuable insight into the 

broader applicability of the developed models for algal bloom forecasting and management. 
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Appendices 

Appendix 5-1- Configuration list tested for each model. 

 

Table 5-3- Configuration list tested for CNN model 

Iteration 

Index 

Input 

Window Size 

 Convolution 

Layer Filter No. 

Epoch 

No. 

Batch 

No. 

0 7 64 20 4 

1 7 64 20 10 

2 7 64 70 4 

3 7 64 70 10 

4 7 128 20 4 

5 7 128 20 10 

6 7 128 70 4 

7 7 128 70 10 

8 7 256 20 4 

9 7 256 20 10 

10 7 256 70 4 

11 7 256 70 10 

12 5 64 20 4 

13 5 64 20 10 

14 5 64 70 4 

15 5 64 70 10 

16 5 128 20 4 

17 5 128 20 10 

18 5 128 70 4 

19 5 128 70 10 

20 5 256 20 4 

21 5 256 20 10 

22 5 256 70 4 

23 5 256 70 10 
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Table 5-4- Configuration list tested for LSTM model 

Iteration 

Index 

Input 

Window 

Size 

LSTM layer 

memory units 

Epoch 

No. 
Batch No. 

0 5 200 20 4 

1 5 200 20 16 

2 5 200 50 4 

3 5 200 50 16 

4 5 400 20 4 

5 5 400 20 16 

6 5 400 50 4 

7 5 400 50 16 

8 7 200 20 4 

9 7 200 20 16 

10 7 200 50 4 

11 7 200 50 16 

12 7 400 20 4 

13 7 400 20 16 

14 7 400 50 4 

15 7 400 50 16 

16 9 200 20 4 

17 9 200 20 16 

18 9 200 50 4 

19 9 200 50 16 

20 9 400 20 4 

21 9 400 20 16 

22 9 400 50 4 

23 9 400 50 16 
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Chapter 6  

Conclusion 

In this chapter, the key insights and significant contributions of the present dissertation are thoroughly 

synthesized, offering a comprehensive overview of the work. Additionally, it identifies potential directions 

for further research in the field, exploring new opportunities for advancing knowledge. Lastly, the chapter 

outlines the author's professional journey post-graduation, highlighting the impact of their academic 

achievements on career development.  

6.1. Overview of Findings and Contributions 
In this dissertation, we conducted a thorough investigation of two distinct foresight perspectives, namely 

exploratory and predictive, as they relate to adaptive water resource management (WRM). Our research is 

divided into two main parts, each focusing on a specific approach. 

In the first part, encompassing chapters 2 and 3, we delved into an exploratory approach to water 

governance, particularly in arid and semi-arid regions, where managing water supply represents a 

formidable challenge. The focus of Part 1 is a case study that examines agricultural water demand 

management within the Zayandehrud watershed in Iran.  

Chapter 2 employed an exploratory, formative scenario planning method to pinpoint crucial adaptation 

strategies and create a coherent, plausible, and diverse set of regional agricultural water governance 

scenarios for the Zayandehroud watershed in Iran by 2040. This led to five scenarios illustrating varied 

adaptation and mitigation approaches to agricultural water demand, including maintaining the status quo. 

Each scenario represents distinct economic and political priorities, showcasing their effects on the 

ecological, social, and economic sustainability of the watershed. 

Building on the findings from Chapter 2, Chapter 3 developed a partial equilibrium economic model to 

examine the long-term impact of water markets and various food trade policies on the agricultural sector, 

as well as their effects on farmers' welfare and ecological sustainability within the Zayandehrud watershed. 

The results confirmed that an intra-national water market in a closed economy can lead to increased utility, 

although it might not necessarily reduce irrigation water demand. Conversely, free trade conditions 

combined with water markets can alleviate pressure on water resources, provide greater consumer utility, 

and improve conditions concerning unauthorized extraction. The primary contributions of this section of 

the research can be summarized as: 

• Actively involving stakeholders in the identification of key adaptation strategies and policy 

interventions for agricultural water management (AgWM), ensuring diverse perspectives.  

• Presenting a comprehensive framework for exploring a range of normative water governance 

scenarios 

• Utilizing the formative scenario planning approach to develop a select set of plausible, distinct 

regional agricultural water governance alternative scenarios. 

• Evaluating the potential impacts of these scenarios on the overall sustainability and adaptability of 

the watershed to identify effective strategies for long-term water resource management. 
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The results of this part can inform policy development and decision-making processes in this watershed. 

Ultimately, this in-depth examination of the Zayandehrud watershed case study serves as a foundation for 

further research on exploratory foresight methods in similar contexts around the world. 

In the subsequent segment of this investigation, the emphasis transitioned from the governance aspect of 

water resource management to the operational dimension, and from an exploratory perspective to a 

predictive approach. Consequently, rather than examining the spectrum of plausible futures, our 

concentration was directed towards the projection of the most likely outcome, which can facilitate proactive 

water resource management at the operational level. This section of the research delved into the utilization 

of deep neural networks as a cutting-edge short-term forecasting methodology in the decision-making 

process for operational water resource management. 

This section's focus was centered on water quality, specifically scrutinizing Harmful Algal Blooms (HABs) 

in freshwater resources. In particular, Chapter 4 utilized historical Chl-a observations (2008-2019) from 

Peter Lake to develop three univariate deep neural networks: multilayer perceptron (MLP), one-

dimensional convolutional neural network (1-D CNN), and Long short-term memory network (LSTM) for 

predicting Chl-a concentrations with a one to seven-day lead time. A persistence forecast functioned as the 

benchmark to evaluate each model's precision. The outcomes indicated that all three models surpassed the 

persistence forecast for prediction horizons of three days or longer. Chapter 5 broadened the scope of 

Chapter 4 by integrating water quality and environmental variables to augment the performance of 

univariate models. Both 1D-CNN and LSTM multivariate models were assessed, demonstrating that they 

significantly outperformed persistence (naïve) models concerning forecast accuracy from day 2 to day 7 of 

the forecast window. Moreover, the multivariate models substantially improved the performance of their 

univariate counterparts. 

The principal contributions of this segment of the investigation can be encapsulated as follows: 

• Establishing a holistic framework for appraising the performance of short-term forecasting models, 

which empowers stakeholders to effectively assess and compare diverse predictive instruments.  

• Ameliorating existing algal bloom predictions by employing high-frequency data and sophisticated 

deep learning methodologies, culminating in more precise and timely forecasts that can more 

adequately inform water management decisions. 

Focusing on water quality and HABs, this segment of the research underscored the significance of 

incorporating predictive methodologies in operational water resource management. The creation of a robust 

evaluation framework for forecasting models and the employment of state-of-the-art deep learning 

techniques facilitates enhanced prediction of algal blooms, thereby enabling informed decision-making and 

proactive management of algal blooms, ultimately contributing to water quality management. These 

advancements provide valuable insights applicable to diverse operational water resource management 

challenges, accentuating the potential of predictive approaches in devising effective water resource 

management strategies. Moreover, the findings of this study extend beyond the realm of water resource 

management, demonstrating applicability in other domains of knowledge as the methodologies and 

frameworks developed can be applied to a variety of fields that require short-term forecasting and decision-

making. For example, the comprehensive framework for evaluating near-term forecasting models and the 

use of advanced deep learning techniques can be applied to predict energy demand or renewable energy 

generation, such as solar and wind power. Accurate and timely forecasts in this domain can inform grid 
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operators, enabling them to manage power distribution more efficiently and optimize the integration of 

renewable energy sources. This, in turn, can contribute to enhanced energy reliability, reduced costs, and 

decreased greenhouse gas emissions. As another example, the enhanced predictive capabilities derived from 

high-frequency data and deep learning methodologies can be utilized for forecasting the spread of infectious 

diseases or predicting the occurrence of disease outbreaks. Accurate and timely predictions in public health 

can inform policymakers and healthcare professionals, allowing them to allocate resources efficiently, 

develop targeted interventions, and implement preventive measures.  

In its entirety, this dissertation aimed to provide exploratory and predictive foresight methodologies and 

their application to the pressing issue of water resource management. The research sought to delineate the 

suitability of these two distinct approaches, elucidating how and when each perspective can contribute to 

adaptive policy-making and proactive water resource management. 

The exploratory approach was used to examine a wide range of plausible futures, identifying critical 

adaptation strategies and formulating diverse regional agricultural water governance scenarios. Through 

this method, the research emphasized the importance of considering all plausible futures rather than just the 

most likely ones. This process allowed for the development of well-rounded, adaptable strategies that can 

accommodate future uncertainties and shifts in regional dynamics. 

In contrast, the predictive foresight methodology concentrated on generating short-term, data-driven 

forecasts for specific water resource management challenges, such as water quality and harmful algal 

blooms. This part focused on predicting the most probable short-term future. 

Throughout the dissertation, the interplay between these two foresight approaches was highlighted, 

demonstrating that a combination of both perspectives can offer comprehensive, well-rounded solutions for 

water resource management. By employing exploratory methods to develop adaptable strategies and using 

predictive techniques for operational decision-making, policymakers and water resource managers can 

better navigate the complexities and uncertainties surrounding water resource management. 

6.2. Suggestions for Future Research 
Based on the analyses performed and reported in this dissertation, the following future work is 

recommended to further improve the water resource management: 

1. Expanding the application of exploratory and predictive foresight approaches to other water 

resource management challenges, such as flood management, drought resilience, and ecosystem 

conservation. Investigating these areas could help identify new adaptation strategies and advance 

decision-making processes across various aspects of water resource management. 

2. Exploring the integration of additional data sources and novel deep learning techniques to enhance 

the accuracy and timeliness of short-term forecasts. This could involve examining the potential of 

incorporating remote sensing data, real-time monitoring systems, or other emerging technologies 

to augment the existing models and improve their performance. 

3. Investigating the effectiveness of the developed methodologies and frameworks in different 

geographical contexts and diverse socio-economic settings. Comparing the outcomes of various 

case studies can offer valuable insights into the transferability and generalizability of the 

exploratory and predictive foresight approaches, thus enriching the knowledge base for adaptive 

policy-making and proactive management in water resource management worldwide. 
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4. Assessing the long-term effectiveness and adaptability of the developed strategies and policies in 

real-world scenarios, including their ability to respond to changing climatic conditions, socio-

economic transformations, and technological advancements. This could involve periodic 

evaluations and updates to ensure their continued relevance and effectiveness. 

5. Investigating the potential for cross-sectoral applications of the developed methodologies and 

frameworks, particularly in sectors such as energy, public health, and environmental conservation, 

where short-term forecasting and decision-making are critical. The versatility of exploratory and 

predictive foresight approaches may offer innovative solutions to complex problems in these 

domains, further enhancing their value and applicability. 

6.3. Career Forward 
I began my career as an Assistant General Faculty member at the Gianforte School of Computing at 

Montana State University, Bozeman. My educational and research experience in the Ph.D. program in 

Systems Engineering equipped me with a diverse skillset, enabling me to promote interdisciplinary research 

and tackle pressing real-world challenges. I am currently working on establishing a new lab called "AI for 

Sustainability, Resilience, and Security," leveraging my multidisciplinary research background and 

technical expertise to advance knowledge in this field. 

6.4. Publications 
This research has resulted in the following publications: 

1. Nazemi, N., Foley, R.W, Louis, G., Keeler, L.W. (2020) ‘Divergent agricultural water governance 

scenarios: The case of Zayanderud basin, Iran’, Agricultural Water Management, 229. doi: 

10.1016/j.agwat.2019.105921. 

 

2. Nazemi, N., Eghdami, S. and Foley, R. W., Louis, G. (2018) ‘Modeling water market and food free-

trade policies as instruments for governance of agricultural water demand in arid and semi-arid 

regions’, in proceeding of 39th International Annual Conference of the American Society for 
Engineering Management, ASEM 2018: Bridging the Gap Between Engineering and Business. 

 

3. Nazemi N, Buelo C.D., Pace M.L., Louis G.E. ‘Univariate Deep Learning for Short-Term Algal 

Bloom Prediction: A Comparative Analysis of MLP, 1D-CNN, and LSTM Models’ (To be 

submitted) 

 

4. Nazemi N, Buelo C.D., Pace M.L., Louis G.E. Comparative Assessment of Multivariate and 

Univariate Deep Neural Networks for Near-Term Algal Bloom Forecasting: 1D-CNN and LSTM 

Approaches (To be submitted) 
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