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Adaptive Control of a Dual-Mode Scramjet Flow Path utilizing
Optical Emission Spectroscopy

Andrew J. Wanchek∗

The University of Virginia, Charlottesville, VA 22903

Optical emission spectroscopy (OES) was utilized for shock train leading edge (STLE)

location control within a Dual-Mode Scramjet (DMSJ) flow path. Electronically excited

chemical species, OH∗ and C∗2, were observed and implemented for control of the STLE

within the DMSJ isolator. This control strategy was then experimentally demonstrated with a

Proportional-Integral (PI) controller and compared to a more standard method of feedback

using pressure measurements. Utilizing an OES sensor for feedback was an effective method to

estimate and control the STLE location whereas utilizing the pressure measurements showed

evidence of a bias in estimated STLE which provided difficulty when attempting to follow a

reference signal in-between pressure measurement locations. A Characteristic Model-Based

All-Coefficient Adaptive Control (ACAC) was then experimentally demonstrated and compared

to a PI controller response using the OES signal as feedback. Plant changes were introduced

in the form of mass addition downstream of the combustor, to increase the plant gain and

introduce an offset, and a reduction of fuel valve response, to simulate a malfunctioning fuel

valve. Experiments showed that the ACAC and PI controllers behave very similarly both

during nominal conditions and with plant changes, though the ACAC controller provided a

more efficient control response during all conditions. This is the first time closed-loop control

of the STLE location within a scramjet isolator flow path utilizing OES sensor feedback is

experimentally demonstrated. This is also the first time adaptive control was experimentally

proven viable within this system utilizing OES sensor feedback.

∗Graduate Researcher, Mechanical and Aerospace Engineering, 570 Edgemont Rd., Charlottesville, VA 22903, and AIAA Student Member
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Nomenclature

Acronyms

ACAC = Characteristic Model-Based All-Coefficient Adaptive Control

ER = Equivalence Ratio

PI = proportional-integral

TCA = Total Controller Action

RMS = Root-Mean-Square

DMSJ = Dual-Mode Scramjet

STLE = Shock Train Leading Edge

OES = Optical Emission Spectroscopy

AoA = Angle of Attack

MRAC = Model Reference Adaptive Controller

DAQ = Data Acquisition System

TCP = Transmission Control Protocol

PRM = Pressure Ratio Method

Variables

𝑎, 𝑏, 𝛾, 𝛿, 𝑘 𝐼 , 𝜆, 𝑘 𝑓 𝑖𝑙𝑡 = Constants

𝑓 , 𝑔 = Characteristic parameters

𝑙𝑐 = Golden section ratio constants

𝑦 = Controller input

𝑢 = Controller output

𝜃 = Characteristic parameter vector

𝜔 = Regressor vector

𝑘 = Discrete time sample

𝑇𝑠 = Sample period

𝑇 = Time constant

𝜖 = Estimation error
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I. Introduction

Scramjets offer the promise of a reusable launch vehicles for responsive space access. Concepts such as the NASA

X-43A have been designed to demonstrate the use of scramjets for this purpose [1, 2]. Traditional scramjets do

not come without their disadvantages though. Traditional scramjets can only effectively work in a small range of

flight conditions due to the requirement of the flow in the combustor being supersonic. A dual-mode scramjet (DMSJ)

alleviates this problem by adding an isolator upstream of the combustor. The added isolator reduces the incoming flow

at lower vehicle Mach numbers to subsonic efficiently and thus extends the operational range of the engine. During

cruise between about Mach 4-8, a dual-mode scramjet typically operates with subsonic combustion where the flow

entering the combustor has been reduced to subsonic within the isolator. Due to the combustor pressure rise and the

presence of a boundary layer, a shock train is formed within the isolator, rather than a single normal shock, to reduce the

incoming flow velocity. The location of the shock train leading edge (STLE) is affected by the ratio of static pressure at

the upstream end of the isolator versus the pressure within the combustor. If the pressure ratio is increased enough from

nominal, the STLE can travel forward into the scramjet inlet and create subsonic flow in the inlet. The inlet becoming

subsonic is called unstart. Unstart is a detrimental event to a flight vehicle as it greatly reduces mass flow into the engine

which, in turn, reduces thrust and increases drag. Unstart prevention is required for hypersonic air-breathing engines

as an unexpected unstart event while traveling at high Mach within the atmosphere is likely to lead to the loss of the

vehicle affected. Passive control methods attempt to prevent this unstart phenomena from occuring by increasing the

designed length of the isolator. Vehicle length and weight considerations mean that this is not a good solution, though,

and active control of the STLE must be incorporated.

Many different active control methods of preventing unstart have been proposed, such as boundary layer suction

[3], mass addition via vortex generator jets [4], plasma actuation [5], back pressure regulation via ramp actuation

downstream of the combustor [6, 7], and by active fueling control [8–11]. An advantage to using active fueling control

for unstart prevention is that it can largely use the fuel system in-place, reducing the complexity of the hardware design

and fabrication. Controlling fuel as a method of controlling STLE location is possible because of the pressure balance

taking place within the engine. As fuel rate increases, combustor pressure increases and the STLE moves forward within

the isolator. The opposite occurs when decreasing fuel. If the inlet conditions remain constant, this relationship between

the combustor conditions and STLE location remains steady. This coupling enables the utilization of combustor states

for STLE estimation and control. Typically, pressure sensors are used to measure combustor state, but recent studies

have shown benefits to using optical sensors, such as optical emission spectroscopy (OES) [11, 12], for combustor

state measurements as the information captured travels at the speed of light rather than the acoustic speed. OES

provides spectrally resolved chemiluminescence measurements of the light emitted during combustion. During ethylene

combustion, or any hydrocarbon combustion, electronically excited OH∗, CH∗ and C∗2 are formed as intermediate species

[13]. Using the intensities of the emitted light from the relaxation of these excited species, combustion properties can be
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determined using a calibration found a priori. Specifically, as shown in [11], the ratio between integrated C∗2 and OH∗

emission intensities near each bandhead establishes a well-resolved relationship to combustor global equivalence ratio

(ER) and was then used for control of the ER. Although Refs. [11] and [12] establish a link between the OES signal

and combustor state, more specifically global ER, the link between the OES signal and STLE location has yet to be

examined experimentally for control although Ref. [14] discussed the possibility of this control method.

If the inlet conditions remain constant, the relationship between the combustor states and STLE location remains

constant. Unfortunately, this is not the case during flight. Many factors can cause inlet conditions to change during flight,

such as elevation and weather [15], and Angle-of-Attack (AoA) [16, 17] of the vehicle. These factors will cause the

STLE behavior to change from the modeled behavior which can lead to unfavorable controller response. Other changes

such as hardware malfunctioning (i.e. a reduction in valve response) or a engine geometry change due to thermal

expansion will cause a change in the dynamics of the control system. An adaptive controller can be designed to enable

plant uncertainty to exist while still providing a favorable response. A Model Reference Adaptive Controller (MRAC)

was examined in this publication: an approach titled "Characteristic Model-Based All-Coefficient Adaptive Control

(ACAC)." MRAC is typically deployed on uncertain plants where uncertainties can be in the form of degradation,

uncertain plant dynamics, or any other unmodeled phenomenon [18]. Direct MRAC utilizes adaptive parameters that

are used to adjust controller gains and provide a defined system performance, whereas indirect MRAC utilizes adaptive

parameters to model the system dynamics which is then directly used in the control law. Many different forms of MRAC

have been developed since it’s inception in the 1950’s. The form used in this research, ACAC, is an indirect MRAC

method developed by Wu in the 1990’s [19] and has been used for many engineering plants since, such as for the control

of a rotor for magnetic bearings [20], simulated altitude control for the X-34 launch vehicle[21], and many more [22].

This method was chosen for use in this study over other methods due to it’s relatively simple implementation and its

guarantee of stability during transient processes [19] (i.e. during plant changes). The method utilizes a plant estimation

method known as characteristic modelling to provide an on-line estimation of the plant response. This estimation is

then implemented directly into the golden section adaptive control law to provide a robustly stable system, even during

transient processes [19]. Other control laws can be implemented to aid in the performance of the ACAC controller

while taking advantage of the stability properties; Maintaining/tracking, derivative, and integral control laws have been

implemented into ACAC to provide good closed-loop performance for engineering systems [22]. Although ACAC has

been around since the 1990’s, there is little experimental results published using the controller. This study provides an

experimental analysis of this controller when compared to the more standard proportional-integral (PI) controller. Due

to the uncertain and non-linear nature of DMSJ operation and link to combustor emission, ACAC is a good candidate

for the control of the DMSJ flowbath using the OES sensors as feedback due to its adaptive qualities.

This study builds on the work of Ref. [14] where the possibility of utilizing OES for STLE control was explored

through simulation. Ref. [14] predicted the possibility of the use of OES feedback for control and the present study set
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out to confirm the possibility through experimental demonstration. Further, the use of an adaptive control approach is

adopted because of the uncertain and nonlinear nature of DMSJ control. This publication therefore has two objectives:

(1) demonstrate experimental closed-loop control of the STLE location in a scramjet isolator flow path utilizing OES

feedback and (2) explore an adaptive control method in comparison to a standard PI control method for this system.

This is the first time closed-loop control of the STLE location within a scramjet isolator flow path utilizing OES sensor

feedback is experimentally demonstrated. This is also the first time ACAC was experimentally demonstrated within this

system utilizing OES sensor feedback.

This paper is structured in the following way: first the ACAC law is introduced mathematically, then the experimental

setup is discussed including an introduction of the facility conditions and instrumentation setup, the spectrometer and

optical setup, the control loop hardware integration, the STLE detection method, and finally a description of the duty

cycles and conditions ran to evaluate each method of control. After the experiment has been described, the results are

presented. The results are split into two sections to assist in the separation of the two objectives of this study listed above.

The first section, closed-loop STLE control using OES sensor feedback, presents the results of utilizing the OES sensor

for feedback and compares it to a more standard isolator pressure measurement method for feedback. This section keeps

the controller type and parameters constant to ensure it is only the feedback method being evaluated. The next section,

adaptive STLE control using OES sensor feedback, presents the results from implementing the ACAC controller into the

system and compares the response to the PI controller. In this section only the OES sensor is used for feedback so the

controllers can be evaluated on this new proposed system. Finally, the conclusions from the experimental results are

discussed and the implications from the conclusions are provided.

II. Control Law
The ACAC law used in this work is similar to the form in [23]. The controller creates an on-line estimation of the

plant dynamics in the form of a characteristic model. The parameters within the characteristic model are then used

directly in the control law to provide a desired system response. A block diagram of the ACAC controller is provided in

Figure 1. As shown in the block diagram, the controller mainly consists of 2 parts: The ACAC law and the characteristic

model. The characteristic model utilizes the plant states shown to create an online estimation of the plant dynamics

which is then used to inform the ACAC law. The characteristic model and ACAC law are described mathematically

below.
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෍

Fig. 1 Block diagram of the ACAC controller.

Assuming the plant to be controlled can be described by a linear time-invariant transfer function given by

𝐺 (𝑠) = 𝑏𝑚𝑠
𝑚 + 𝑏𝑚−1𝑠

𝑚−1 + ... + 𝑏1𝑠 + 𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 + ... + 𝑎1𝑠 + 𝑎0

, (1)

then the plant can be represented by a time-varying difference equation of lower order. This time-varying difference

equation is called the characteristic equation, which will take the form of a second order difference equation in this case

and is defined as

𝑦(𝑘) = 𝑓1 (𝑘)𝑦(𝑘 − 1) + 𝑓2 (𝑘)𝑦(𝑘 − 2) + 𝑔0 (𝑘)𝑢(𝑘 − 1) + 𝑔1 (𝑘)𝑢(𝑘 − 2), (2)

where 𝑘 is the discrete sample point with a sample period of 𝑇𝑠, 𝑢(𝑘) and 𝑦(𝑘) are the inputs and outputs of

the system, and 𝑓1 (𝑘), 𝑓2 (𝑘), 𝑔0 (𝑘), and 𝑔1 (𝑘) are the characteristic parameters. The vector of characteristic

parameters will be defined as 𝜃 (𝑘) = [ 𝑓1 (𝑘) 𝑓2 (𝑘) 𝑔0 (𝑘) 𝑔1 (𝑘)]𝑇 with the regressor vector defined as 𝜔(𝑘) =

[𝑦(𝑘 − 1) 𝑦(𝑘 − 2) 𝑢(𝑘 − 1) 𝑢(𝑘 − 2)]𝑇 which means 𝑦(𝑘) = 𝜃 (𝑘)𝑇𝜔(𝑘). The characteristic parameters are

projected within a closed set that can be defined a-priori [22]. It is important to note that the characteristic model is not

a truncated model as there is no loss of information when using the characteristic model to estimate the plant, in other

words, the output of 1 is identical to that of 6 when under the same input.

The characteristic parameters are estimated on-line to minimize the error between the estimated characteristic model

output, 𝑦̂(𝑘), and the system output,𝑦(𝑘). The estimated parameters are defined as 𝑓1 (𝑘), 𝑓2 (𝑘), 𝑔0 (𝑘), and 𝑔1 (𝑘) with
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a corresponding estimated parameter vector, 𝜃 (𝑘) = [ 𝑓1 (𝑘) 𝑓2 (𝑘) 𝑔0 (𝑘) 𝑔1 (𝑘)]𝑇 . The estimation error can now be

defined as

𝜖 (𝑘) = 𝑦(𝑘) − 𝜔𝑇 (𝑘)𝜃 (𝑘). (3)

The characteristic parameter update law used is a gradient descent method where

𝜃 (𝑘 + 1) = 𝜃 (𝑘) + 𝛾𝜔(𝑘)𝜖 (𝑘)
𝛿 + 𝜔𝑇 (𝑘)𝜔(𝑘) , (4)

where 𝛾 and 𝛿 are user-defined constants that belong to {(𝛾, 𝛿) : 0 < 𝛾 < 2, 0 ≤ 𝛿}. As mentioned prior, the

characteristic parameters are projected into a closed set which was found using the equations defined in Ref. [20]. The

closed set used in these experiments is given by

N = {( 𝑓1, 𝑓2) : 1.9989 ≤ 𝑓1 ≤ 2.0678, −1.0689 ≤ 𝑓2 ≤ −1}, (5)

where 𝑔0 and 𝑔1 are not projected since they are defined in Ref. [20] by the plant in 1 which is known to be uncertain.

The control law comprises of three components and is constructed as

𝑢𝑐 (𝑘) = 𝑢𝑐1 (𝑘) + 𝑢𝑐2 (𝑘) + 𝑢𝐼 (𝑘), (6)

where 𝑢𝑐1 (𝑘), 𝑢𝑐2 (𝑘), and 𝑢𝐼 (𝑘) are defined below:

• 𝑢𝑐1

𝑢𝑐1 is a maintaining/tracking control law formulated as

𝑢𝑐1 (𝑘) =
𝑦𝑟 (𝑘) − 𝑓1 (𝑘) 𝑦̃(𝑘) − 𝑓2 (𝑘) 𝑦̃(𝑘 − 1) − 𝑔1 (𝑘)𝑢𝑐1 (𝑘 − 1)

𝑔0 (𝑘) + 𝜆
, (7)

where 𝜆 is a positive user-defined constant.

• 𝑢𝑐1

𝑢𝑐1 is the golden section adaptive control law defined as

𝑢𝑐2 (𝑘) =
𝑙𝑐1 𝑓1 (𝑘) 𝑦̃(𝑘) + 𝑙𝑐2 𝑓2 (𝑘) 𝑦̃(𝑘 − 1) − 𝑔1 (𝑘)𝑢𝑐2 (𝑘 − 1)

𝑔0 (𝑘) + 𝜆
, (8)

where 𝑦̃(𝑘) = 𝑦𝑟 (𝑘) − 𝑦(𝑘) and 𝑙𝑐1 and 𝑙𝑐2 are defined by the golden section ratio and are 0.382 and 0.618,

respectively.

• 𝑢𝐼

𝑢𝐼 is the logical integral control law. The integral control law used in this controller is of the same form as
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a standard PI control law and is defined as

𝑢𝐼 (𝑘) = 𝑢𝐼 (𝑘 − 1) + 𝑘 𝐼𝑇𝑠 𝑦̃(𝑘), (9)

where 𝑘 𝐼 is a switching constant defined by

𝑘 𝐼 (𝑘) =


𝑘 𝐼1, 𝑦̃(𝑘) ( 𝑦̃(𝑘) − 𝑦̃(𝑘 − 1)) < 0,

𝑘 𝐼2, 𝑦̃(𝑘) ( 𝑦̃(𝑘) − 𝑦̃(𝑘 − 1)) ≥ 0,
(10)

where 𝑘 𝐼1 and 𝑘 𝐼2 are user-defined constants and typically 0 ≤ 𝑘 𝐼2 ≤ 𝑘 𝐼1.

Since the control outputs are calculated using estimated parameters which have a non-smooth property, a control

filter was incorporated to the control law, as recommended by Ref. [22]. A first-order low-pass filter was defined for this

purpose and is the last process in the controller before sending the control signal to the control valve. The filter output,

𝑢𝑐, 𝑓 𝑖𝑙𝑡 , is defined as

𝑢𝑐, 𝑓 𝑖𝑙𝑡 (𝑘) =
(
1 − 𝑇𝑠

𝑇 + 𝑇𝑠

)
𝑢𝑐, 𝑓 𝑖𝑙𝑡 (𝑘 − 1) + 𝑘 𝑓 𝑖𝑙𝑡

(
𝑇𝑠

𝑇 + 𝑇𝑠

)
𝑢𝑐 (𝑘), (11)

where 𝑇 is the filter time constant and 𝑘 𝑓 𝑖𝑙𝑡 is the filter coefficient. For these experiments, 𝑇 = 0.012 and 𝑘 𝑓 𝑖𝑙𝑡 = 1.

The characteristic parameters are initialized to assist in quicker convergence of the characteristic model. This

is important since 𝑔0 and 𝑔1 are not projected into the closed set N and thus do not have a pre-specified range

within the control logic. The initial values are given as 𝑓0 (0) = 2.0678, 𝑓1 (0) = −1, 𝑔0 (0) = 4.663 × 10−4, and

𝑔1 (0) = 4.7677 × 10−4. Notice that ( 𝑓0 (0), 𝑓1 (0)) ∈ N and all initial parameter values are defined as the upper limit to

the parameter ranges given by the equations in Ref. [20]. The key differences between this implementation of ACAC and

the implementation in Ref. [23] are as follows: the addition of the logical integral, a fix of the characteristic parameter

projection, the initialization of the characteristic parameters, the change in the range of the characteristic parameters,

and the addition of the output filter.

III. Experimental Setup
In this section the experimental facility and instrumentation , optics, control loop hardware integration setup, and

STLE detection method are discussed. A description of the duty cycles and test conditions are also provided in Section

III.E. The OES sensor was integrated in the form of a commercially available spectrometer with a setup that mimics the

setup in Ref. [11] and further discussed in Section III.B.
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A. Facility Setup

The experiments in this paper were conducted at the University of Virginia Supersonic Combustion Facility

(UVASCF). The facility consists of an electrically-heated, continuous-flow, direct-connect wind tunnel which was used

to provide air at 1200 K and 300 psia total conditions to a DMSJ flow path through a Mach 2 nozzle. This set condition

simulates the engine inflow Mach number and enthalpy of a flight vehicle at Mach 5 [24, 25]. The facility conditions

are measured and recorded on a facility data acquisition system (DAQ) throughout an experiment to ensure the test

conditions are maintained and steady. The facility uncertainties are discussed in [26] and are about ±1% on tunnel total

conditions. The facility nozzle connects directly to an experimental DMSJ flow path as can be seen schematically in

Figure 2. The DMSJ flow path includes a 53.6 cm long, 2.54 by 3.81 cm rectangular isolator and a combustor with a

cavity flame-holder configuration that has a step height of 9 mm. Additional information on the cavity flame-holder

configuration used for these experiments can be found in Ref. [27]. The combustor features a 2.9° divergence starting at

-5.9 x/H and continues until a constant area section at 15.89 x/H. The constant area section then leads to the extender

that continues the 2.9° divergence until exhausting to open atmosphere. Additional room-temperature air injection

(identified as the air throttle) was introduced in some experiments utilizing two slotted sonic injection orifices (injection

area of 279 mm2) on opposing walls at 42.32 x/H with 20 psia stagnation injection pressure. The flow path also features

a fused-silica window that allows for optical access to the combustor as seen in Figure 2.

Optical field of view

-59.54 -5.91 0 5.90 15.89 31.81 55.07

Combustor Extender

Mach 2 nozzle

Constant Area

2.9 divergence
Cavity

Divergence start

Isolator (2.54 x 3.81 cm)

Air throttle

Injector Location B

(a)

(b)

Pressure tap 

location axis

x

y

Spectrometer measurement Location

Fig. 2 Schematic of important locations on the DMSJ flow path. Locations are given in x/H where H is the
height of the cavity step (H = 9 mm). The origin is as shown by the x and y axis and the spectrometer

measurement location is marked by the red dot. a) is the side view of the flow path and b) is the top view.

Gaseous ethylene fuel was injected through two rows of five 0.53 mm diameter injectors at -2.72 and -1.69 x/H

(also referred to as Injector Location B). The ethylene pressure at the injectors was controlled by a pintle control valve

(Jansen’s Aircraft Systems Controls, Inc. (JASC) Pintle Metering Valve) that can be modelled as a first order lag with a

time constant of 0.026 seconds. The JASC valve is connected to the injectors through about 3 feet of 3/8" tubing. This
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large volume between the control valve and injectors limits the response of the system and can cause a slower response

time when compared to more direct methods of fueling. The fuel system between the valve voltage input and fuel

injection pressure was characterized using experimental data; the time constant of the fuel system was determined from

this characterization to be about 0.21 seconds in total due to the extra length of tubing within the system. The ethylene

total pressure varied slightly but was between 350 and 400 psig. The ethylene is at 289K ±5K total temperature as its

injected into the combustor. The fuel system can provide global equivalence ratios (ER) up to 0.6, but was kept between

0.38 and 0.5 to prevent saturation of the controllers if fuel pressure dropped below the operating range. The lower ER

limit was chosen to ensure the JASC control valve did not choke during testing. In the current fuel system setup, the

JASC valve will switch between choked and unchoked if the fuel injection pressure increases beyond the critical pressure

of ethylene. A valve switching between unchoked and choked changes the dynamics of the fuel system completely and

thus for consistency during the tests described below, the valve was kept within the unchoked regime of operation.

The isolator and combustor was instrumented with 21 OMEGA Engineering PX-309 Series pressure transducers

(0-30 psia range). The transducers connect to 1 mm diameter pressure taps along the center-line of the flow path on the

cavity flame-holder wall (see Pressure tap location axis in Figure 2) with length-wise positions provided in Table 1.

Due to the smaller scale of the UVASCF, the transducers could not be directly connected to wall of the flow path and

instead are connected through about 0.6 meter of 1/16" tubing. The lag caused by this extra tubing between the pressure

transducers and flow path was quantified to be about 3-6 ms using the method described in Ref. [28] and [29]. The

ethylene fuel stagnation pressure and injection pressure were also measured using OMEGA PX-309 series transducers

(0-500 psia range) and the air throttle pressure was measured using an off-the-shelf Ashcroft transducer (0-100 psig

range). The OMEGA PX-309 Series transducers are rated at ±0.5% of full-scale accuracy with a response time of <1

ms and the air throttle transducer is rated at ±1.5% full-scale accuracy with a response time near 1 ms. These flow path

pressure transducers were recorded at 2 kHz using a dSpace MicroLabBox.
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Table 1 Pressure tap locations. Locations are given in x/H.

Tap Location Tap Location Tap Location

1 -58.84 8 -36.79 15 -12.58

2 -53.92 9 -33.59 16 -9.14

3 -51.17 10 -30.47 17 -5.65

4 -48.31 11 -26.82 18 -3.04

5 -45.86 12 -23.45 19 0.30

6 -43.67 13 -20.64 20 2.60

7 -40.61 14 -16.73 21 6.81

A flowchart of the closed-loop control system is provided in Figure 3, including the sensors, computers, and control

programs used within the loop. The green lines indicate control inputs, such as the spectrometer signal and isolator

pressure transducers, and the red line indicates the control output, i.e. the ethylene control signal and fueling. Starting

from the scramjet flow path, the spectrometer (Ocean Insight FX-UV-VIS) and isolator pressure transducers (OMEGA

PX-309 as described above) measure the data and sends the signal to the dSpace MicroLabBox. The spectrometer is

processed through an auxiliary computer prior, as discussed in the Section III.B. The control file is programmed to the

dSpace MicroLabBox using Simulink, as described in Section III.C. The control signal is then sent through Digital I/O

and BNC to the JASC valve which controls the fuel injection. All control inputs and outputs connect to the dSpace

MicroLabBox for use in the control program. The Low Frequency Pressure Scanner and Thermocouple Brick are used

to monitor the scramjet conditions and connect to a separate computer through the Scramjet Flow Path DAQ. The air

throttle is regulated separately but the air throttle pressure is recorded by the dSpace MicroLabBox.
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Fig. 3 Flowchart of the closed loop control system used for experiments.

B. Spectrometer and Optical Setup

Spectroscopy measurements were recorded using an Ocean Insight FX-UV-VIS spectrometer as seen in Figure 3.

The spectrometer collected light from the flow path through a fiber optic cable connected to a collection optic mounted

in a ThorLabs 2" cage system. The collection optic was a 100 mm focal length lens placed 200 mm from the flow path

and 200 mm from the fiber optic in a 2 𝑓 -2 𝑓 configuration. The lens was focused to the center-plane of the combustor

(coincident to the pressure tap location axis) through the fused-silica window on a location of x = +4.5 cm and y = -1.17

cm from the x and y axes marked in Figure 2a. The spectrometer detector exposure was set to 3 ms and was found to

have a collection area of 1.23 mm2 in this arrangement [11]. Each measurement with the spectrometer through the

collection optics and optical fiber yielded an intensity (counts) vs. wavelength emission spectrum in the UV and visible

light range of 200 nm to 700 nm. A background spectrum was collected during the flame off condition and used for

background subtraction. An example of a single background subtracted emission spectrum captured by the spectrometer

is shown in Figure 4.
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Fig. 4 Normalized emission spectrum as collected by the spectrometer. Cutoff wavelengths for calculation of
integrated intensities of 𝐶∗2 and 𝑂𝐻∗ bands are indicated as black lines.

In order to generate a statistic from each emission spectrum to use as a controls feedback signal, the ratio of

intensities of emission from two excited species can be calculated. Relative intensity of emission can be found by

integrating the emission spectra within a wavelength range that corresponds to the spontaneous emission transition of

the excited state species. In these experiments, the ratio of intensities from 𝐶∗2 and 𝑂𝐻∗ bands is used to estimate the

STLE location. This ratio was used as it was found to be the most sensitive to global ER in this configuration [11]

and global ER had a direct relationship with STLE. To determine the total intensities of each combustion intermediate

species, the intensities from the spectrometer between wavelengths of 295 and 330 nm was integrated and defined as the

𝑂𝐻∗ intensity. and the wavelengths between 495 and 520 nm was integrated and defined as the 𝐶∗2 intensity. These

wavelengths are marked in Figure 4 by black vertical lines. Additional discussion on the optical set up is given in Ref.

[11].

The spectrometer was triggered to ensure the OES signal was temporally synchronized with the isolator pressure

measurements. The dSpace MicroLabBox sends a bit high signal to the spectrometer which triggers it to acquire a

spectra. The spectrometer was connected to an auxiliary laptop through ethernet which processes, background subtracts,

and encodes the spectra with Matlab to send it over ethernet again to the dSpace MicroLabBox for use in the control

system. The ethernet protocol used was TCP (Transmission Control Protocol). This extra step through an auxiliary

computer was required because of incompatibility between the dSpace MicroLabBox and OceanDirect, the Ocean

Insight spectrometer software. Once the ethernet package was received by the MicroLabBox from the auxiliary laptop,
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it decodes it and runs the rest of the control loop process until sending the next trigger to the spectrometer. This loop

was variable in time but would typically take between .006 and .010 seconds per step. This variable time step required

additional consideration when implementing the controllers as both the integral control laws and signal filters required

knowledge of the system sample time (see Equations 9 and 11 in Section II). This meant the control system had to be

programmed to allow for a variable time step which increased the complexity of the Simulink code.

C. Control Loop

A schematic of the control loop including spectrometer feedback is given in Figure 5. A reference STLE location

is input and compared against the estimated STLE location and sent to the controller. The controller is either a PI

controller or ACAC controller, depending on experiment case. The controller outputs a voltage that is sent to the

control valve (JASC valve seen in Figure 3) which controls the fuel to the combustor. The spectrometer (Ocean Insight

FX-UV-VIS-ES in Figure 3) then senses the light given off by the combustion process and the𝐶∗2/𝑂𝐻∗ ratio is calculated.

The 𝐶∗2/𝑂𝐻∗ ratio is then filtered using a first order discrete low-pass filter with a time constant of 0.012 seconds to

reduce the noise seen from the spectrometer. Lastly, a calibration curve is used to determine the estimated STLE location

from the filtered 𝐶∗2/𝑂𝐻∗ ratio. The calibration between 𝐶∗2/𝑂𝐻∗ ratio and STLE location can change if scramjet flow

path conditions change (such as addition of air throttle) or even during the course of an experiment due to window

transmission changes as discussed in Ref. [11]. Re-calibration was done multiple times throughout an experiment day

to ensure an accurate calibration for each experiment. The calibration curve was implemented using a piece-wise linear

curve fit with 6 distinct segments. Linear interpolation was done on the piece-wise linear fit to calculate the estimated

STLE location per 𝐶∗2/𝑂𝐻∗ ratio input. Further detail on the methodology used to build the calibration data set and

develop the curve fit is given in Appendix B.
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Fig. 5 Block Diagram of the OES Control System.

D. STLE Location Detection Method

In some experiments, pressure measurements within the isolator were used to estimate the STLE location rather

than the spectrometer. This method uses the same control loop as shown in Figure 5 but the spectrometer, lowpass

filter, and calibration curve are replace with the pressure transducers and a STLE location detection algorithm. These

experiments are done to compare the controller response using estimated STLE location from OES sensor as feedback

to the more common pressure-based STLE location estimation, as discussed in Section I. A few methods have been

proposed and shown to effectively measure STLE location based off of isolator pressure measurements [30, 31]. The

pressure ratio method (PRM) as described in Ref. [30] was used for these experiments. The PRM normalizes the

isolator pressures based off of tare pressures and then utilizes a threshold and linear interpolation to locate the STLE

location with stated accuracy greater than the distance between the isolator pressure taps[30]. The threshold value used

for these experiments was 10% greater than the tare pressure. An example of the isolator pressure contour at 0.38 ER

with the outputted PRM estimated STLE location is given in Figure 6. Also included is the tare pressure trace to show

the pressure rise from the fuel-off condition. The PRM will output a location between the first pressure measurement

with a rise above 10% from the tare and the pressure measurement location immediately upstream from the pressure

rise. This can be seen in the figure where the outputted location is -20 x/H, which is between the first transducer with

pressure rise at -16.73 and the pressure measurement location immediately upstream at -20.64 x/H. As stated prior, the

uncertainty of the PRM STLE location output is expected to be about the length in-between pressure tap locations thus

the true STLE location can be anywhere between -16.73 and -20.64 x/H in this example.
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Fig. 6 Isolator pressure contour during a fueling of 0.38 ER with the fuel off tare pressure and estimated STLE
location as given by PRM.

E. Test Matrix

In order to fully examine control effectiveness, two duty cycles with step changes of reference STLE location was

exercised with each controller: the "Constant Step Size" duty cycle with steps of ±5 x/H between -20 and -35 x/H, and

the "Differing Step Size" duty cycle with steps of different sizes between -20 and -35 x/H. The time between the step

changes was 3 seconds to allow the STLE location to stabilize at each location. Each duty cycle was repeated at least

twice for each controller at each test condition. The Constant Step Size duty cycle was conducted to enable quantitative

analysis to be done between control methods as it provides a large number of repeated steps of the same size, whereas

the Differing Step Size duty cycle allows for more qualitative analysis of the controller responses due to the larger step

sizes that amplify the controller performance for visualization.

Each controller was exercised through three different test conditions: nominal, air throttled, and filtered valve (these

test conditions are later referred to test 1, 2, and 3, respectively). These three test conditions allow for analysis to be

done on the controllers’ ability to adapt to changes to the system. The nominal condition is the condition for which

the controllers were tuned and is the nominal DMSJ flow path operation with no added disturbances and with facility

conditions as described in Section III.A. The air throttled condition includes air injection through the air throttle which

models an offset and thus a gain change due to the non-linearity of the system from the nominal condition. The air

throttle pressure was kept constant with a regulator throughout the tested duty cycles. Lastly, the filtered valve condition
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introduces a filter between the controller output and the signal being sent to the control valve. The filter is a first order

discrete low-pass filter with time constant of 0.1 seconds and simulates reduced valve time response (i.e. a slower valve)

from the controller signal. All conditions were applied prior to the start of the duty cycles unless otherwise stated.

F. Calibration

As discussed in Section III.D, a calibration is done of the 𝐶∗2/𝑂𝐻∗ ratio to STLE location multiple times throughout

a test series to ensure accurate calibration. The calibrations were run immediately prior to conducting the experiments

described later in this section. The STLE location was determined using the PRM and the 𝐶∗2/𝑂𝐻∗ ratio was filtered

using the filter described in III.C for use in these calibrations. A 60-point budgeted dictionary, on-line regression method

was used to develop the calibration curve prior to closed-loop experiments. This method was used to remove the need for

post-processing to create the calibration curve. The system was exercised through an open-loop ramp of fuel pressure

and ranks the sequentially arriving data by the distance it is away from other dictionary data points. This ranking is

done to ensure a well distributed dictionary along the whole range of operation. During each update of the dictionary, a

new piece-wise linear line with 5 segments was developed using a least-squares fit algorithm. Further discussion on the

algorithm used to develop the calibration curves is provided in Appendix B. The results from these pre-test calibrations

are provided in Figure 7, where test 1, 2, and 3 refer to the nominal, air throttled, and filtered valve test conditions as

described in Section III.E. The dictionary points are also shown for each calibration. The pre-test 1 and 3 curves align

very well which is expected since there is no change to the the scramjet flow path conditions between the nominal and

filtered valve conditions. While degradation of window transmission, and thus a change in 𝐶∗2/𝑂𝐻∗ ratio calibration,

has been noticed in prior experiments [11], the time between test 1 and test 3 was likely not long enough to allow for

this degradation to significantly occur and it is theorized that the degradation seen in Ref. [11] was due to testing over

multiple days. The pre-test 2 calibration is shifted and has different curvature than the other two calibration curves. This

change in calibration is due to the addition of the air throttle which causes an offset and thus modifies the gain of the

non-linear system. It is assumed that because the degradation of window transmission is not seen between pre-test 1 and

3, and pre-test 2 calibration occured between, that there is no change in window transmission for pre-test 2.

18



Fig. 7 Pre-test calibrations of the 𝐶∗2/𝑂𝐻∗ ratio to STLE location where STLE location was determined using
the PRM.

IV. Results
The results are presented in two sections: closed-loop STLE control using OES sensor feedback and adaptive STLE

control using OES sensor feedback.

The first section compares controller performance utilizing the estimated STLE location from the OES sensor as

feedback versus estimated STLE location from the PRM as feedback. This is to compare the system behavior using the

proposed OES feedback loop to a more common feedback loop, such as in Ref. [7]. This section only utilizes the PI

control law and both feedback methods utilize the same PI gains. Both methods of feedback are also sampled at the

same sampling period (defined by the spectrometer as discussed in Section III.C) so changes in response are not tied to

controller sampling period.

The second section then examines the ACAC controller performance along-side the PI controller performance.

This section discusses the similarities and differences between the response of the two controllers and their ability to

effectively follow the reference STLE location at each condition discussed in Section III.E. The experimental results

presented in this section only utilize the OES sensor estimated STLE location as the feedback mechanism unless

otherwise stated.

19



A. Closed-Loop STLE Control Using OES Sensor Feedback

To examine the controllers ability to follow a reference signal utilizing the OES sensor as feedback, the system was

tested using the Constant Step Size duty cycle and the STLE location as estimated by the PRM and OES sensor are

compared. Using the above Pre-test 1 calibration, the Constant Step Size duty cycle was exercised during closed-loop

control with the OES sensor estimated STLE as feedback during the nominal condition. Figure 8 gives the STLE

location response of the controller during this test. Figure 8a and 8b show the results from the same test but 8a is the

OES Sensor estimated STLE location which is used as feedback and 8b is the observed PRM estimated STLE location.

Both Figure 8a and 8b include gray horizontal lines that denote the location of the isolator pressure measurement

locations. The responses are presented this way to compare the output of both estimation methods using the same

control response. Since both feedback methods only provide estimates of the STLE location, and there is no "true"

STLE location available, a comparison of the STLE location using both estimations methods is provided. The responses

presented show that tracking a reference signal utilizing the OES sensor as feedback is viable but provides a error of the

PRM estimated STLE location when comparing to the reference signal. The OES sensor estimated STLE location

also exhibits a large amount of noise when compared to the PRM estimated STLE location. This noise was seen in

Ref. [11] and is caused by the flame dynamics within the combustor. Though as seen by Figure 8b the noise does not

affect the PRM estimated STLE location which appears steady throughout the duty cycle. This steadiness of the PRM

estimated STLE location is likely due to a biasing of the PRM output which is further discussed below. The controller

performance for this condition and other conditions is analyzed in Section IV.B.
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a)

b)

Fig. 8 STLE location response to the Constant Step duty cycle using the OES sensor as feedback. a) shows the
OES sensor estimated STLE location and b) shows the PRM estimated STLE location during the same test as a).

As noticed in Figure 8b, there is an error between the setpoint and the PRM estimated STLE location. This error

exists due to the calibration curve not accounting for the discretization effects within the PRM algorithm. These

discretization effects can be noticed during closed-loop control with the PRM estimated STLE location as feedback.

This is explored further in Figure 9 where the Constant Step Size duty cycle is exercised again but now using the PRM as

feedback. In this figure, the PRM estimated STLE location is plotted. The PRM estimated STLE location is seen steady

when controlled at some locations (i.e. -30 x/H) but oscillating when controlled at others (i.e. -25 and -35 x/H) This is

due to the STLE location estimated by the PRM exhibiting biased behavior. The effect of this biased behavior causes

issue during control as the utilizing the PRM does not allow for stable control in-between the locations of bias. This is a

significant finding and shows that utilizing the OES sensor as feedback is more suited for control than the PRM.

The biasing in the PRM STLE location was explored further. A strong correlation between the biased locations and

the location of the pressure measurements can be noticed in Figure 9 and Figure 8b. To see this correlation more clearly,

Figure 10 is included where the open-loop response of STLE is presented when increasing fueling pressure linearly.

The STLE location as estimated by the PRM is provided on the left y-axis and the fuel pressure as controlled by the

JASC valve is on the right y-axis. The pressure measurement locations are shown by the horizontal lines. Similar sticky

points are seen in Figure 10 as in 9 and Figure 8b where there is sharp changes in estimated STLE location in-between

pressure measurement locations but level off as they approach each measurement location. The apparent locations with

bias are slightly upstream of each pressure tap. This biasing causes a non-linearity in 𝐶∗2/𝑂𝐻∗ ratio to STLE location
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that cannot be accounted for in a calibration curve and thus causes an error between the two STLE estimation techniques

as seen in Figure 8.

Fig. 9 STLE location, as estimated by the PRM, response to the Constant Step duty cycle using the PRM as
feedback. The thin black horizontal lines represent isolator pressure tap locations.

Fig. 10 STLE location, as estimated by the isolator pressure measurements, response to the Constant Step duty
cycle. a) used the OES sensor as feedback and b) plot used the pressure measurements as feedback.

It is theorized that this bias is not a physical phenomenon and is due to the linear interpolation done in the PRM

and the incorporation of a different interpolation method might improve the biased STLE location estimation. To

examine the existence of the biasing and the correlation to the pressure tap locations, virtual pressure measurements

were introduced by linearly interpolating the real pressure measurements to new locations and then adding gaussian
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noise. These virtual pressure measurements were then ran through the pressure ratio method with the same threshold as

the real pressure measurements (i.e. 10% greater than tare). The results of the pressure ratio method STLE location

output with both the real pressure measurement input and virtual pressure measurement input to the same open-loop

ramp signal in fuel pressure as in Figure 10 is shown in Figure 11. The locations of the virtual pressure taps are marked

by a black dashed line and the y-axis tick marks are the locations of the real pressure tap locations. It is obvious through

Figure 11 that the locations of the pressure taps within the algorithm plays a large role as to where the STLE location is

estimated by the algorithm. In the current state, the pressure ratio method appears to have a bias in STLE location

estimation toward the forward end of the space between the input pressure tap locations. This is an issue for control as

the STLE will be estimated to be unsteady if the reference location is between a biased location and could cause true

STLE location unsteadiness. This can be seen in Figures 8 and 9 during control using the pressure ratio method as

feedback. The controller can be seen forcing the STLE location to jump between biased location in an effort to control it

to the reference location. Additional discussion on this biased behavior of the PRM algorithm is provided in Appendix

C.

Fig. 11 Open-loop response of the STLE location as estimated by the pressure ratio method using the physical
(true) pressure measurements and the virtual pressure measurements.

Overall, utilizing the OES sensor estimated STLE location was shown to be able to track a reference signal effectively

and provides similar performance when compared to using the PRM for feedback. The PRM was shown to exhibit bias
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when estimating STLE location which caused oscillatory behavior at some reference locations during control. Both

STLE estimation methods require prior knowledge of the system to operate but the PRM requires many sensors lining

the isolator where-as utilizing optical emission only requires the single sensor.

B. Adaptive STLE Control using OES Sensor Feedback

The following section examines the ACAC controller along-side the PI controller and its ability to effectively follow

the reference STLE location. The experimental results presented in this section only utilize the OES sensor estimated

STLE location as the feedback mechanism. A stated prior, the tests during the nominal, air throttled, and filtered valve

conditions used the calibrations as described by pre-test 1, 2, and 3 in Figure 7, respectively. Each duty cycle was

repeated multiple times (twice for the nominal condition and three times for the air throttle and filtered valve conditions)

to assess repeatability. A filtered signal was incorperated for visualization in this section. The filtered signal was filtered

during post-processing with a 1 Hz zero-phase low-pass filter. All signals labelled as "filtered" in this section utilize this

filtering technique.

1. Nominal Condition

The duty cycles were applied to the system using both the PI and ACAC controllers during the nominal condition to

examine their performance with no disturbances. Figure 12 gives the STLE location versus time during the Constant Step

Size duty cycle using both controllers where Figure 12a) is the system with the PI controller and 12b) is with the ACAC

controller along with the reference signal for both. The filtered response is included along with the unfiltered response

to highlight the trend of the signal rather than the noise. Both controllers provided a stable control response and were

able to follow the reference signal at a similar time scale. Upon close examination, the ACAC controller response can be

seen slightly lagging behind the PI controller response but by an almost unnoticeable amount. The similar responses

seen here provide the basis to compare each controllers’ response during the other conditions described in Section III.E.

Further quantitative analysis on the steps shown here and during the other conditions is provided in Section IV.B.4.
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a)

b)

Fig. 12 STLE location response to the Constant Step Size duty cycle with the PI and ACAC controllers. a) is the
system with the PI controller and b) is with the ACAC controller.

The filtered STLE location response to the Differing Step Size duty cycle with both controllers is shown overlapped

in Figure 13. The Differing Step Size duty cycle puts more of a strain on the controllers and allows the difference

between them to be seen more clearly. Again, a very similar response is seen from both controllers. Both controllers

were able to track the reference signal during the large step sizes well without noticeable overshoot. Again, the similar

responses seen by both controllers highlight the similar level of tuning conducted on both controllers and help provide a

benchmark when examining the results of the controllers responses to other conditions.
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Fig. 13 Filtered STLE location response to the Differing Step Size duty cycle with the PI and ACAC controllers.

2. Air Throttled Condition

Air addition via air throttle was introduced during the air throttled condition to simulate an offset and change in gain

of the STLE location versus 𝐶∗2/𝑂𝐻∗ ratio from the nominal condition. The air throttle was applied and allowed to

stabilize prior to starting the duty cycles and was held constant for the duration of the tests. The Filtered STLE location

response during both PI control and ACAC to the Differing Step Size duty cycle is provided in Figure 14. The air

throttle addition caused both controllers to now have an overshoot in STLE location response to step signals, especially

during the decreasing STLE location steps. The change in performance seen during this condition is expected as the

air throttle simulates a change in system gain. The overshoot seen in these responses is evidence that the air throttle

increases the system gain. Increased overshoot is noticed from the ACAC controller during large increasing STLE

step functions, such as the steps at times 12 seconds and 18 seconds. During decreasing STLE location steps, both

controllers have consistently equivalent sized overshoots. Overall the controllers give very comparable results with only

slight differences when large steps in increasing STLE location are exercised.
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Fig. 14 Filtered STLE location response to the Differing Step Size duty cycles with the PI and ACAC controllers
during the air throttled condition.

3. Filtered Valve Condition

Lastly, a discrete first order low-pass filter was applied to the output of the controllers to simulate a reduced valve

response. The valve filter was applied prior to the start of the duty cycle. The filtered STLE location response with

both PI control and ACAC to both duty cycles during the filtered valve condition is given in Figure 15. Since the filter

reduces the valve response time, a more damped response is expected and seen from the STLE location response with

both controllers. Again, qualitatively, both controllers provide a near equivalent response to the step duty cycles. This is

unexpected as an adaptive controller should be able to adapt to the change in valve performance and provide a different

response (i.e. more similar to the nominal condition response) than the PI controller.
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Fig. 15 Filtered STLE location response to the Differing Step Size duty cycles with the PI and ACAC controllers
during the filtered valve condition.

4. Further Analysis

Figure 16 shows the average rise times of both controllers of a series of tests using the Constant Step Size duty cycle

at each condition. The rise time was defined as the difference in time between the filtered signal at 90% of the step by

the time it is at 10% of the step. The rise times were averaged based on starting location due to the non-linearity in

the plant which causes a non-uniform controller response throughout the range of operation within the isolator. These

non-linearities mean that while the PI controller could provide a better responses at one STLE location, the ACAC

controller might provide a better response at a separate location. This can be seen in Figure 16, where the PI controller

provides a faster response in some conditions and starting STLE locations (e.g. all starting STLE locations for the

decreasing steps in the air throttled and filtered valve conditions) but not in others (e.g. the decreasing step at the -30

x/H starting STLE location in the nominal condition). The nominal condition leads to the most variability between the

rise times of the two controllers, whereas during the air throttled condition and the filtered valve condition, the rise times

are very similar at most starting STLE locations. Overall, the qualitative conclusions discussed previously are confirmed

here where both controllers provide similar responses but the ACAC controller lags behind slightly in most conditions.

The cause of this slight lag could be due to the output filter within ACAC which is used to alleviate the non-smooth

property of the update law. Without this output filter, there would likely be less lag between the two controllers, but

would cause a non-smooth controller output. Again, the similar responses from both controllers is surprising because an

adaptive controller would be expected to handle changes in the plant better than a non-adaptive controller.
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a) b) c)

d) e) f)

Fig. 16 Average rise times of of the STLE location with both the PI and ACAC controllers at different starting
locations. a), b), and c) are the decreasing STLE location steps at the nominal, air throttled, and filtered valve

conditions, respectively, and d), e), and f) are the increasing STLE location steps at each of the respective
conditions.

In addition to the rise times, other metrics, such as the Total Controller Action (TCA), RMS error, and Total Cost,

are analysed to quantitatively describe each controllers’ performance. TCA is defined as

𝑇𝐶𝐴 =

∑𝑛

𝑘=2 |𝑢𝑐 (𝑘) − 𝑢𝑐 (𝑘 − 1) |
Δ𝑡

, (12)

where 𝑛 is the total number of samples, or 𝑛 = Δ𝑡/𝑇𝑠, and Δ𝑡 is the time elapsed. A reduced TCA means that in

summation at each sample time, the controller requires less of a change in control actuator position to control the

plant; TCA is thus a measurement of controller efficiency where a lower TCA is a more efficient controller. This is an

important metric as a reduced controller action can lead to reduced power requirements for the system and an increased

actuator life-span. Although the ACAC controller is not advertised as an optimal controller, it is theorized that it’s ability

to adapt controller parameters based off of the estimated plant model enable it to provide a more efficient response when

following a reference signal when compared to the PI controller. The Root-Mean-Square (RMS) error between the

estimated STLE location and the reference signal is also calculated to examine the ability of each controller to follow

the reference signal accurately. A efficient controller will typically have to sacrifice accuracy; to account for this, a third

metric, termed "total cost", is calculated. Total cost is defined as the TCA multiplied by the RMS error which assists

normalizing the efficiency of the controller with the performance of the controller when following a reference signal.
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The TCA, RMS error, and total cost of both controllers during each of the tested conditions are provided in Table 2.

Table 2 Total controller action, RMS error, and Total Cost of PI and ACAC controller responses in Figures 13,
14 and 15. All metrics were calculated for the Differing Step Size duty cycle.

Condition Controller TCA RMS Error Total Cost

Nominal PI 0.456 2.97 1.427

ACAC 0.336 3.12 1.133

Air Throttled PI 0.290 2.44 0.708

ACAC 0.221 2.58 0.570

Filtered Valve PI 0.151 3.01 0.455

ACAC 0.118 3.35 0.395

During the nominal condition, the ACAC controller provided a 26% more efficient response than the PI controller

but came with a 5% higher RMS error. The reduced ACAC performance causes a larger RMS error between the STLE

location and the setpoint as a controller with reduced performance will spend more time away from the reference signal

than a controller with better performance. When examining the total cost, the increase in efficiency of the ACAC

controller largely outweighed the increase in RMS error as the total cost during ACAC was 21% lower than during PI

control. Similar to the nominal condition, increased controller efficiency is noticed by the ACAC controller over the PI

controller during the air throttled condition but gave a 6% larger RMS error when compared to PI control. This larger

error is likely due to the larger overshoot seen by the ACAC response that were observed in Figure 14b. Even though

this condition caused a larger RMS error from the ACAC controller, it still had a 20% reduced total cost when compared

to PI control. Lastly, the ACAC controller provided a more 22% efficient response when compared to the PI controller

response during the filtered valve condition. The RMS error increase from the PI controller to the ACAC controller was

slightly higher at this condition at an 11% increase. Continuing the trend, ACAC provide a lower total cost compared

to PI control during this condition; ACAC had a 13% lower total cost than PI control. Overall, the ACAC controller

provided a 25% more efficient response on average when compared to the PI controller for all conditions but came with

an average RMS error 4.3% higher than the PI controller over all conditions. While the controller did exhibit reduced

performance, the efficiency of the controller largely outweighed the effect of the reduced performance. This is given

by the total cost for which the ACAC had 18% less total cost when compared to PI control. Unexpectedly, the RMS

error difference between the ACAC controller and the PI controller increased when the air throttled and filtered valve

conditions were examined. This is typically not expected from an adaptive control method but aligns with what was
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seen when viewing the step responses. The adaptive law does not seem to provide any enhancement to the tracking

ability of the controller during plant changes versus a standard, non-adaptive method.

As stated, the increased efficiency provided by ACAC is theorized to be due to the characteristic model within the

controller which estimates and updates the control law based on current plant dynamics. While the PI has no adaptive

properties and will have a set response to setpoint changes, the ACAC controller can adapt to the non-linearities and

time-varying aspects of the plant to help inform the control law at each time step. To visualize the ACAC controller

adapting to a plant change on-line, the estimated characteristic parameters, as given by 𝜃 (𝑘), are plotted in Figure 17

when the air throttle is turned on and off. a) gives the STLE location (left axis), as estimated by the isolator pressure

measurements, and the air throttle pressure (right axis). b), c), d), and e) are the four characteristic parameters over

the same time as shown in a). The STLE was held at a location of -30 x/H by the ACAC controller while the air

throttle was turned on and brought to 20 psia at ∼4.5 seconds and held for ∼9 seconds until being turned off again. The

STLE location as estimated by the isolator pressure measurements was used as feedback for this test due to the change

in calibration of the 𝐶∗2/𝑂𝐻∗ ratio to STLE location required during the air throttled condition. The characteristic

parameters can be seen to undergo transient behavior once the air throttle condition changes but eventually converge to a

value as the condition stabilizes. Since the characteristic model has an infinite number solutions, the characteristic

parameters do not revert to their original values when the air throttle is turned back off, but rather converge to a new

solution. The characteristic parameters exhibit a large amount of noise due to the noise in the STLE location signal.

This noise is expected though and is the reason behind the built-in control output filter.
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a)

b) c)

d) e)

Fig. 17 ACAC Characteristic Parameters adapting to the air throttle being turned on and off. a) is the STLE
location and air throttle pressure with respect to time and b), c), d), and e) are 𝑓1, 𝑓2, 𝑔̂0, and 𝑔̂1 responding to the

air throttle, respectively.

V. Conclusion
The control of the STLE location using OES sensor as feedback was experimentally demonstrated and shown to

be a viable method of feedback. Utilizing the OES sensor as feedback during experiments provided a comparable

response to using the PRM as feedback. Bias in STLE location was noticed during control with the PRM, though, as the

algorithm favored locations near pressure measurement locations. This bias caused an error between PRM and OES
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sensor estimated STLE location. Introducing imaging of the isolator flow path is recommended in future experiments to

determine the source of the error and the accuracy of each estimation method. The bias in the PRM output caused

oscillatory behavior when controlling to locations in-between the bias locations. This is a significant finding and shows

that utilizing the OES sensor as feedback is more suited for control than the PRM in its current state. Both methods

require prior knowledge of the system to provide an accurate STLE estimation but the PRM requires many sensors

lining the isolator whereas utilizing the 𝐶∗2/𝑂𝐻∗ ratio only requires a single sensor within the combustor.

The ACAC controller was experimentally demonstrated and analyzed alongside a PI controller. Under step inputs of

STLE location setpoint, both controllers provided almost equivalent responses in terms of rise times. A slight increase

in rise time is noticed utilizing ACAC which is likely caused by the output filter in the controller. The same nearly

equivalent responses were seen during conditions that simulated an increased gain and reduced valve response as both

controllers reacted similarly to the changed system operation. This is a surprising result as an adaptive controller

would be expected to provide a better response to off-nominal operation than a non-adaptive controller. While dynamic

responses of the STLE location were nearly equivalent, the ACAC controller provided a 25% more efficient response

on average when compared to the PI controller for all conditions. The increased efficiency was accompanied with an

increased RMS error between STLE location and the setpoint though as ACAC had on average an RMS error 4.3%

higher than PI control over all conditions.

This publication is the first time experimental closed-loop control of the STLE in a scramjet isolator flow path

utilizing OES feedback is demonstrated. It is also the first time adaptive control is proven viable for use in this system

and characterized in comparison to PI control. The demonstration of control utilizing OES sensors is important as it

allows for more robust control strategies to be designed and implemented on scramjet flight systems. The tie between the

isolator shock system and combustor allowed for STLE location estimation with reduced sensor requirements: from 21

pressure sensors to 1 OES sensor. Further-more, the ACAC controller produced reliably more efficient control than the

industry standard PI controller. Efficient control can increase actuator life-span and reduce the amount of power required

to run a certain duty cycle. These findings provide the potential for important enhancements to scramjet systems in

terms of both reliability and efficiency and may aid in the development of practical systems.
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VI. Appendix A: System Identification and Controller Parameter Tuning

A. System Identification

PI and ACAC controller parameters were first tuned during simulation in MATLAB Simulink®. A plant model was

found in open-loop experiments. The fuel pressure was controlled while measuring 𝐶∗2/𝑂𝐻∗ and STLE location to

enable a model to be developed between the two states. A step function from the open-loop experiments is shown in

Figure 18. The top plot shows the inverted 𝐶∗2/𝑂𝐻∗ ratio and STLE location response and the bottom plot shows the

controlled fuel pressure over the same time. A zero-phase, 1 Hz low-pass filter was applied to the 𝐶∗2/𝑂𝐻∗ ratio and

plotted along with the unfiltered ratio to aid in visualization of the signal response. As seen, there is a close relationship

between 𝐶∗2/𝑂𝐻∗ ratio and STLE location. As fuel pressure rises, both signals respond and, qualitatively, no inherit

lags can be noticed between them.

When viewing a ramp function of fuel pressure though, provided in Figure 19, non-linearities begin to emerge. At

low fuel pressure, there is high non-linearity within the 𝐶∗2/𝑂𝐻∗ ratio when comparing it to the fuel pressure or the

STLE location. There is also an inversion of the 𝐶∗2/𝑂𝐻∗ ratio to fuel pressure relationship between a pressure of

145 psia and 155 psia. Additional non-linearities are seen on the STLE location signal as it seems to have multiple

"dead-zones" where the STLE location is held at a certain isolator position until the pressure reaches a level that allows

it to escape that location and jump to the next. These "dead-zones" are further discussed in the results section.

37



a)

b)

Fig. 18 Open loop system response of 𝐶∗2/𝑂𝐻∗ ratio and STLE location with controlled fuel pressure during a
step function. Note the 𝐶∗2/𝑂𝐻∗ ratio is inverted to allow for better visualization of the signal with STLE location.
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a)

b)

Fig. 19 Open loop system response of 𝐶∗2/𝑂𝐻∗ ratio and STLE location with controlled fuel pressure during a
ramp function. Note the 𝐶∗2/𝑂𝐻∗ ratio is inverted to allow for better visualization of the signal with STLE

location.

A Hammerstein-Wiener Model was chosen to model the STLE location as a function of 𝐶∗2/𝑂𝐻∗ ratio due to

the described non-linearities. A Hammerstein-Wiener Model consists of three models connected in series to form

the complete non-linear model: an input non-linearity, a linear transfer function, and an output non-linearity. The

Hammerstein-Wiener Model for this system was constructed using MATLAB’s nlhw() function. This function requires

inputs of the order of the linear transfer function and the type of input and output non-linearities. Since the system

will be implemented into the controller for experiments using a piece-wise linear calibration curve, as discussed in

the Experimental Setup section, the input non-linearity was chosen to be of type piece-wise linear and no output

non-linearity was included. The breakpoints (input values) and output data describing this piece-wise linear input

non-linearity, 𝑃1 (𝑥), are given in Table 3 where linear interpolation is used for the input values between the breakpoint

values and linear extrapolation is used for values outside of the breakpoint extrema. The order of the linear transfer

function was chosen through trial and error and a first order discrete transfer function,

𝐺1 (𝑧) =
1

1 − 0.8155𝑧−1
, (13)
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was found to provide good agreement to experimental data (the piece-wise linear non-linearity acts in-place of the

linear gain for this model). The sample time was set as 8 ms as it was the average sample time of the spectrometer

used in these experiments. MATLAB’s compare() function was used to verify the model accuracy. The compare()

function takes input-output data and a model and compares the output data to the model response to the input data;

the results of this function when using 𝐶∗2/𝑂𝐻∗ ratio as input data, STLE location as output data, and the developed

Hammerstein-Wiener model as the model is provided in Figure 20. The results show a 92.71% agreement between the

experimental data and Hammerstein-Wiener model. The model response provides a substantially more noisy output at

certain isolator locations than the experimental data. This is due to the different noise profiles between the data. The

𝐶∗2/𝑂𝐻∗ ratio has a more uniform random noise profile whereas the STLE location as measured by the isolator pressure

transducers has a much more unpredictable and location-oriented noise profile (as discussed in the Results section in

this paper). Overall, this model was shown to be well-suited for use in the control simulation as it was able to accurately

model the non-linearities in the 𝐶∗2/𝑂𝐻∗ ratio while providing good agreement in the frequency response of the system.

Fig. 20 Experimental Shock Location versus Hammerstein-Wiener model output. The 𝐶∗2/𝑂𝐻∗ ratio was used
as the input data to the model.
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Table 3 Breakpoint and output values for Piece-wise Linear Input Non-linearity of the 𝐶∗2/𝑂𝐻∗ ratio to STLE
location Hammerstein-Wiener Model.

Breakpoint -0.426 0.278 0.312 0.663 0.679 0.950 1.126 1.420 2.224

Output -0.200 0.146 -0.547 -0.9123 -0.836 -2.119 -4.837 -7.270 -4.826

B. Controller Parameter Tuning and Simulation

Once a good model between the 𝐶∗2/𝑂𝐻∗ ratio and STLE location was found, a control simulation was done to

determine controller parameters prior to experiments. The control simulation was based off of the simulation work

done in Ref. [32]. Updated models were created to improve the accuracy of the simulation. The block diagram for the

simulation is provided in Figure 21.

Reference 
STLE Location

Controller

𝐶2
∗

𝑂𝐻∗

Valve 
Model, 
𝐺3(𝑧)

Control voltage, 𝑢𝑐,𝑓𝑖𝑙𝑡𝑦𝑟 Error, ෤𝑦

Estimated STLE 
Location, 𝑦

Fuel 
System, 
𝐺4(𝑧) 

Fuel to 
𝐶2
∗/𝑂𝐻∗, 
𝐻2

Fuel to 
𝐶2
∗/𝑂𝐻∗, 
𝐻2

Fuel Pressure

Fig. 21 Block diagram of the simulation used for controller parameter tuning.

As seen, two Hammerstein-Wiener models are used within the simulation; the 𝐶∗2/𝑂𝐻∗ to STLE location model, 𝐻1

and the fuel pressure to 𝐶∗2/𝑂𝐻∗ ratio model, 𝐻2. The Hammerstein-Wiener model developed for the fuel-pressure to

𝐶∗2/𝑂𝐻∗ ratio is of the same form as the 𝐶∗2/𝑂𝐻∗ to STLE location model except with a linear transfer function given by

𝐺2 (𝑧) =
𝑧−1 + 0.2403𝑧−2 − 0.2039𝑧−3

1 + 0.6725𝑧−1 + 0.1755𝑧−2 + 0.1349𝑧−3
(14)

also with a sample time of 8 ms. The piece-wise linear input non-linearity, 𝑃2 (𝑥), is described using the breakpoints

and output data in Table 4
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Table 4 Breakpoint and output values for Piece-wise Linear Input Non-linearity of the 𝐶∗2/𝑂𝐻∗ ratio to STLE
location Hammerstein-Wiener Model.

Breakpoint 140.43 140.55 149.41 152.59 192.63 217.29 229.41 326.26 333.19 333.29

Output 1.366 1.362 1.239 1.222 1.696 7 1.854 1.875 2.516 2.560 2.567

Due to the highly non-linear fuel system used in these experiments, as discussed in the Experimental Setup section,

the fuel system was constrained to the domain for which the valve is unchoked and was described using the transfer

function

𝐺4 (𝑠) = 2
4111𝑠 + 1085

𝑠2 + 5.797𝑠 + 0.997
. (15)

The model for the control valve was a first order lag transfer function with a time constant of 26 ms (JASC valve model

as described in the Experimental Setup section), or

𝐺3 (𝑠) =
1

𝑠

0.026 + 1
. (16)

Lastly, to close the loop to the controller, a discrete first order low-pass filter with a time constant of 0.012 seconds was

added to mimic the filter used in the experimental system.

The PI controller parameter gains were found using the built in Simulink® PID Tuner app and then further refined to

get the desired system performance. The gains were 0.005 for the proportional gain and 0.02 for the integral gain. The

ACAC parameter gains found through trial and error were as follows: 𝜆 = 300, 𝐾𝐼,1 = 𝐾𝐼,2 = 0.018, 𝛾 = 0.1, and 𝛿 = 1.

The two controller responses to a step of a) increasing STLE location and b) decreasing STLE location to the simulated

plant model described previously are provided in Figure 22. The STLE location is given in x/H where increasing x/H is

shifting the STLE downstream toward the combustor. The STLE location can be seen lagging slightly behind with

ACAC when compared to PI control. The slower response with ACAC is likely due to the extra output filter built into

the ACAC controller that reduces the non-smooth effect of the characteristic parameter estimation. Both controllers

show a similar amount of overshoot for both increasing and decreasing STLE location steps. These responses were

found to be the optimal responses for each of these controllers and thus the parameter gains found were the gains used

within the experimental system.
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a) b)

Fig. 22 Step responses of the STLE location with PI control and ACAC.
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VII. Appendix B: Pretest Calibration Procedure
Since the calibration of the 𝐶∗2/𝑂𝐻∗ ratio to STLE location can change depending on flow path and window

conditions, a pretest calibration was done prior to testing at each test condition. To reduce the amount of time required

between tests, a method was developed to conduct the calibration on-line with a single open-loop ramp of fuel pressure.

The method is similar to the on-line regression method as described by Hunt et al. in Ref. [31]. The method utilizes a

budgeted dictionary to gather appropriate data that is sequentially arriving and then uses that dictionary create a curve.

The data is deemed "appropriate" using a budgeting scheme that ranks each data entry in the dictionary by it’s distance

away from all of the other entries in the dictionary. If the current data point has a higher rank than the lowest ranked

entry in the dictionary, the entry is replaced by the new data point. This ranking scheme develops a dictionary of well

distributed entries.

Defining the current time data point as 𝑋 𝑡
𝑚×1 = [𝜙𝑡 𝜃𝑡]𝑇 , where 𝜙(𝑡) is the𝐶∗2/𝑂𝐻∗ ratio, 𝜃 (𝑡) is the STLE location.

The dictionary of 𝐵 entries is defined as D (𝑡 )
𝑚×𝐵 = [𝑋1 𝑋2 . . . 𝑋𝐵] = [𝜙1 𝜙2 . . . 𝜙𝐵; 𝜃1 𝜃2 . . . 𝜃𝐵].

The rank of each data point is calculated at each time step, whereas the the rank of each entry within the dictionary is

only calculated when the dictionary is updated with a new entry. The rank is defined by

𝑟 (𝑋) =
𝑚∏
𝑖=1

𝑑𝑖, (17)

where 𝑑 𝑗 is the minimum distances of X from each dictionary entry in D, or

𝑑𝑖 = min
𝑖∈𝑚,
R+

( |𝑋 𝑗 − D𝑖, 𝑗 |), 𝑗 = 1, . . . , 𝐵. (18)

A piece-wise linear fit is then done to the dictionary to develop a calibration curve usable in a lookup table. An

equally spaced vector, 𝑍 ∈ R𝑝×1, of 𝑝 points was created where 𝑍1 ≡ min𝑖=1 (D (𝑡 )𝑖, 𝑗 ) and 𝑍𝑝 ≡ max𝑖=1(D (𝑡 )𝑖, 𝑗 )}. Defining a

column vector of sets as

𝑆 = {[𝑆1, . . . , 𝑆𝑝−1]𝑇 ∈ R𝑝×1 | 𝑍1 ≥ 𝑆1 ≥ 𝑍2, . . . , 𝑍𝑝−1 ≥ 𝑆𝑝−1 ≥ 𝑍𝑝}, (19)

a new matrix L can be defined as the projected D (𝑡 ) entry pairs (𝑋 𝑗) into each set 𝑆.

L = 𝜋 𝑗=1 [D (𝑡 )𝑖, 𝑗 ] (20)

where 𝜋 is the projection into each set in 𝑆. In simpler terms, if the 𝜙 of an entry pair is within a set in 𝑆, the entry pair

is added to L. Once every entry in D (𝑡 ) has been projected into their subsequent sets, linear interpolation was done to

determine the best fit line through all values in each set. 𝑍 and the corresponding best fit value, 𝐹 ∈ R𝑝×1, are reported
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for use in the lookup table.

The pseudo-code for the algorithm is provided below:

Algorithm 1 Online Calibration Algorithm
Results: 𝑍 (𝑡 ) , 𝐹 (𝑡 )

for 𝑡 = 1, 2, 3, . . . do
if 𝑁 ≤ 𝐵 then
D (𝑡 ) ←concatenate(D𝑡−1, 𝑋 𝑡) ⊲ Initialize Dictionary with first B samples
update← true

else
𝑑
(𝑡 )
𝑗 ← 𝑑 𝑗 (𝑋 (𝑡 ) ) ⊲ Calculate data point distances from current dictionary
𝑟 (𝑡 ) ← 𝑟 (𝑑 (𝑡 )𝑗 ) ⊲ Calculate rank of current data point
if update = true then ⊲ If the dictionary was updated on last 𝑡,

for 𝑗 = 1, 2, . . . , 𝐵 do ⊲ Recalculate ranks of each entry in dictionary
𝑑
(𝑖)
𝑗 ← 𝑑 𝑗 (𝑋 (𝑖) )
𝑟 (𝑖) ← 𝑟 (𝑑 (𝑖)𝑗 )

end for
end if
if 𝑟 (𝑡 ) > min(𝑟 (𝑖) ) then ⊲ If current entry rank is higher than lowest dictionary entry,

𝑚 ← min rank location 𝑗 in D (𝑡−1)
𝑖, 𝑗 ⊲ Replace lowest ranked dictionary entry with current entry

D (𝑡 )𝑖,𝑚 ← 𝑋 (𝑡 )

update← true
else

update← false
end if

end if
if update = true then ⊲ Recalculate calibration curve if dictionary was updated

𝑍 (𝑡 ) ← 𝑓 (D (𝑡 )1, 𝑗 )
𝑆 (𝑡 ) ← 𝑓 (𝑍 (𝑡 ) )
L (𝑡 ) ← 𝑓 (𝑆 (𝑡 ) ,D (𝑡 )𝑖, 𝑗 )
𝐹 (𝑡 ) ← 𝑓 (L (𝑡 ) , 𝑍 (𝑡 )

else
𝑍 (𝑡 ) ← 𝑍 (𝑡−1)

𝐹 (𝑡 ) ← 𝐹 (𝑡−1)

end if
end for
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VIII. Appendix C: STLE Location Estimation Discretization
During experiments, the STLE location as given by the pressure ratio method and isolator pressure measurements

exhibited biasing. The biasing was locations that the STLE "preferred" to be and would cause the STLE to jump between

biased locations during changes in fueling. As shown in Figure 9, the biased locations seemed to be located near the

pressure tap locations. Since the biased behavior has been determined to likely be a artifact of the STLE locating

algorithm, a different algorithm configuration was tested. A theory as to the cause of this biased behavior stems from

how PRM estimates the STLE location. A sharp pressure rise is caused by the STLE which is captured by the isolator

pressure transducers that are immediately downstream of it. In the absence of boundary layers, the STLE would not

have any effect on the pressure transducers located upstream of its current location. Due to the presence of the subsonic

boundary layer, some pressure information from the STLE propagates upstream and the sharp pressure increase becomes

smoothed by the propagated pressure information. This smoothing is the rational behind the threshold since the STLE is

not necessarily located at the first instance of pressure rise. Since there are limited pressure measurement locations,

an interpolation is done in an attempt to estimate the STLE location between them and provide a higher accuracy

estimation. While the interpolation does give some level of increased accuracy, it still provide a somewhat discretized

output which can cause difficulty during control. An initial theory is that that the low threshold used could encourage a

more discrete behavior from this estimation method. In Ref. [7], a threshold of 50% was said to provide good estimation

when compared to shadowgraph measurements. A comparison between the PRM estimated STLE location with a

threshold of 10%, which was used in this research, and 50% is given in Figure23. The pressure tap locations are shown

as horizontal black lines. Both thresholding methods used the same pressure versus time data to output the shown

curves. The 50% threshold is seen giving a further upstream STLE location which is expected due to the curvature of

the isolator pressure contour. The 50% threshold estimation also exhibits the step-like behavior although it does provide

some smoothing when compared to the 10% threshold. The 50% threshold biased locations are less predictable as to

their location but tend to lie towards the middle of the pressure measurement locations rather than directly near them as

is the case for the 10% threshold. The 10% gives a more conservative estimation though and would be a better choice

for unstart prevention. To remove the step-like behavior of the PRM estimation, a different interpolation algorithm

should be incorporated in the future that can smooth the effect of the discretized isolator pressure contour.
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Fig. 23 Open-loop response of the STLE location as estimated by the pressure ratio method using a 10% above
tare threshold and a 50% above tare threshold.
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