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ABSTRACT

Behavior Based Algorithmic Trading Strategy Identification

by

Steve Y. Yang

Electronic markets have emerged as popular venues for the trading of a wide variety

of financial assets, and computer based algorithmic trading has also asserted itself as

a dominant force in financial markets across the world. Identifying and understand-

ing the impact of algorithmic trading on financial markets has become a critical issue

for market operators and regulators. We propose to characterize traders’ behavior in

terms of the reward functions most likely to have given rise to the observed trading

actions. Our approach is to model trading decisions as a Markov Decision Process

(MDP), and use observations of an optimal decision policy to find the reward function.

This is known as Inverse Reinforcement Learning (IRL), and a variety of approaches

for this problem are known. Our IRL-based approach to characterizing trader behav-

ior strikes a balance between two desirable features in that it captures key empirical

properties of order book dynamics and yet remains computationally tractable. Using

an IRL algorithm based on linear programming, we are able to achieve more than 90%

classification accuracy in distinguishing High Frequency Trading from other trading

strategies in experiments on a simulated E-Mini S&P 500 futures market.

Furthermore we investigate and address incomplete observation and non-deterministic

xiii



police issues related to real market observations. We develop models based on Gaus-

sian Process Inverse Reinforcement Learning as well. The primary objective of this

study is to model Algorithmic trading behavior using Bayesian inference under the

framework of inverse reinforcement learning (IRL). We model trader’s behavior as

a Gaussian process in the reward space. With incomplete observations of different

market participants, we aim to recover the optimal policies and the corresponding

reward functions to explain their behaviors under different circumstances. We show

that Algorithmic trading behavior can be accurately identified using Gaussian Process

Inverse Reinforcement Learning (GPIRL) algorithm developed by Qiao and Beling

(Qiao and Beling [2011]), and it is superior to the linear features maximization ap-

proach. Real market data experiments using GPIRL model give more than 95% trader

identification accuracy consistently using support vector machines (SVM) based clas-

sification method. We also show that there is a clear connection between the existing

summary statistic based trader classification (Kirilenko et al. [2011]) and our behav-

ior based classification. In order to address potential change of trading behavior over

time, we propose a score based classification approach to address variations of Al-

gorithmic trading behavior under different market conditions. We further conjecture

that because our behavior based identification is a better reflection of traders’ choice

of actions and value propositions under different market conditions than the summary

statistic based method, it is therefore more informative and robust than the summary

statistic based approach, and it is well suited for discovering new behavior patterns

of market participants.

Overall, we prove the hypothesis that that Algorithmic Trading strategies can

be accurately identified using behavior based modeling techniques under the Inverse

Reinforcement Learning framework and these strategies can be profiled based on

observations of individual trading actions for market surveillance and other economic

researches regarding the impact of different Algorithmic Trading strategies to financial

xiv



market quality in general.
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CHAPTER I

Introduction

Electronic markets have emerged as popular venues for the trading of a wide

variety of financial assets, such as stocks, commodities, options and futures, etc.

Many such electronic markets are organized as electronic limit order books. Through

reduction in the frictions and costs of trading, electronic trading has the potential

to enable more efficient risk sharing, facilitate hedging, improve liquidity, and make

prices more efficient (Hasbrouck [2007], Mike and Farmer [2008], Potters and Wyart

[2004], Kockelkoren and Potters [2006], Lyons [2006], Farmer and Lillo [2009], and

Hasbrouchk and Seppi [2001a]). Ultimately, these benefits have the potential to lead

to a reduction in the cost of capital for firms.

Many market participants now employ algorithmic trading, commonly defined

as the use of computer algorithms to automatically make certain trading decisions,

submit orders, and manage those orders after submission. By the time of the “Flash

Crash (On May 6, 2010 during 25 minutes, stock index futures, options, and exchange-

traded funds experienced a sudden price drop of more than 5 percent, followed by a

rapid and near complete rebound.), algorithmic trading was thought to be responsible

for more than 70% of trading volume in the U.S. Brogaard [2010]. Moreover, Kirilenko

et al. (Kirilenko et al. [2011]) have shown that the key events in the Flash Crash

have a clear interpretation in terms of algorithmic trading.
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The rise of algorithmic trading has obvious broad and direct impacts on the fi-

nancial markets. For example, the intense activity generated by algorithms threatens

to overwhelm exchanges and market data providers, forcing significant upgrades to

data management infrastructure. Researchers, regulators, and policymakers should

be keenly interested in the broader implications of this sea change in trading. Im-

portant research and policy issues focus on the nature of the impact that algorithmic

trading has on the markets and ways in which this impact can be shaped through reg-

ulation (Brogaard [2010], Jones and Menkveld [2011]). Important questions include:

Should algorithmic trading be encouraged because it provides beneficial liquidity?

Should regulation be used to limit the speed advantages that certain algorithmic

trading firms enjoy?

Many machine learning techniques have been applied in financial market analy-

sis and modeling to assist economists, policy makers and regulators to understand

the behaviors of the market participants, market dynamics, and the price discov-

ery process of the new electronic market phenomena algorithmic trading. We are

particularly interested in modeling traders behavior as a Markov Decision Process

(Puterman [1994]), and use the observations obtained in the past to infer traders

trading strategies. More specifically, we aim to learn traders reward function in the

context of multi-agent environments where agents/traders competing fast algorithmic

trading strategies to explore and exploit the market microstructure within the preset

market trading rules to maximize their profits.

Our proposed approach is based on the machine learning technique (Schaeffer and

Szafron [1998], Russell [1998], Sutton and Barto [1998], Barto and Williams [1991],

Ng and Russel [2000], Abbeel and Ng [2004], Ramachandran and Amir [2007], and

Bagnell and Dey [2008]) known as Inverse Reinforcement Learning (IRL) (Ng and

Russel [2000], Abbeel and Ng [2004]). In IRL, one aim is to estimate and infer the

model that underlies solutions that have been chosen by decision makers. This model

2



might then later be used to control an autonomous process that is governed by a model

with the desirable characteristics that are implied by the observed solutions. For

example, Pokerbots can improve performance against suboptimal human opponents

by learning reward functions that account for the utility of money, preferences for

certain hands or situations and other idiosyncrasies (Schaeffer and Szafron [1998]).

Another objective in IRL is to use observations of the agents/traders actions to decide

ones own behaviors. It is possible in this case to directly learn the policy from the

past observations. The premise of this reward learning (IRL) is generally the most

succinct, robust and transferable of the task, and completely determines the optimal

policy (or a set of policies). It provides a better metric to measure agents/traders

behaviors.

One of the important goals of learning traders trading strategies is to be able

to identify and categorize the market participants, and be able to further under-

stand their influences related to such important economic issues as multiple charac-

terizations of price formation processes, market liquidity, and order flow, etc (Has-

brouchk and Seppi [2001a], Gabaix and Gopikrishnan [2004], Gatheral [2010], Has-

brouck [1991], Jones et al. [1994], Karpoff [2004]). We assert that enhanced under-

standing of the economic implication of these different algorithmic trading strategies

will yield quantitative evidence of value to market policy makers and regulators seek-

ing to maintain transparency, fairness and overall health in the financial markets.

The rest of the dissertation is as follows. In Chapter 2, we introduce and define the

concept of behavior based Algorithmic trading stragety identification using Markov

Decision Process and Inverse Reinforcement Learning. We postulate that Algorithmic

trading behavior can be identified when we impose stationarity and rational expec-

tion constraints on non-experimenal observations under a stochastic control process

framework. Chapter 3 studies order book events and their price impact using an

order flow imbalance model through an empirical study of several futures markets.
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We analyze a unique market dataset where an exchange accidentally injected arti-

ficial orders into several markets and caused numerous errant trades during a very

short period of time . We use this as a natural experiment, and compare these

concentrated trading activities with the normal markets in terms of volatility and

price impact based on an order flow imbalance model (Kukanov and Stoikov [2011]).

We first analyze volatility variation across different markets through this incident,

and then we postulate an order flow model of price impact and show that order

flow events of this incident significantly changed the market volatility and moved the

market prices. This empirical evidence then corroborates an MDP model that we

propose later for trader behavior modeling. In Chapter 4, we propose to characterize

traders behavior in terms of the reward functions most likely to have given rise to the

observed trading actions. Our approach is to model trading decisions as a Markov

Decision Process (MDP), and use observations of an optimal decision policy to find

the reward function. This is known as Inverse Reinforcement Learning (IRL). Our

IRL-based approach to characterizing trader behavior strikes a balance between two

desirable features in that it captures key empirical properties of order book dynamics

and yet remains computationally tractable. Using an IRL algorithm based on lin-

ear programming, we are able to achieve more than 90% classification accuracy in

distinguishing high frequency trading from other trading strategies in experiments

on a simulated E-Mini S&P 500 futures market. The results of these empirical tests

suggest that high frequency trading strategies can be accurately identified and pro-

filed based on observations of individual trading actions. In Chapter 5, we propose a

non-parametric Bayesian model using Gaussian process and preference graph theory.

Using this model, we address incomplete observation and errant observation issues in

the inverse reinforcement learning process. This approach only requires a finite num-

ber of observations that is much less stringent than the approaches based on feature

expectations or value functions. It also presents itself as a robust framework to obtain

4



computational efficiency for practical problems due to its convexity in the optimiza-

tion process. We further prove that this Gaussian Process based IRL approach is a

better way of modeling Algorithmic trading behaviors than the linear IRL approach

we proposed in Chapter 4 due to its specific features in addressing market uncertainty

and incomplete information. We apply the model on a month of actual E-Mini S&P

500 futures market data, and show that the identification rate has been greatly im-

proved over the linear approach. Lastly, we summarize our general conclusions from

this study in Chapter 6, and address some the critical issues we encounter in modeling

Algorithmic trading strategies and point out some future research directions.
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CHAPTER II

Problem Definitions

2.1 Introduction to Behavior Modeling

Markov Decision Processes (MDP) provide a broad framework for modeling se-

quencial decision making under uncertainty. MDP’s have two sorts of variables:

state variables st and control variables dt, both of which are indexed by time t =

0, 1, 2, 3...., T , where the horizon T may be infinity. A decision-maker or agent can

be represented by a set of primitives (r, p, β) where r(st, dt) is a reward function

representing the agent’s preferences at time t, p(st+1|st, d) is a Markov transition

probability representing the agent’s subjective beliefs about uncertain future states,

and β ∈ (0, 1) is the rate at which the agent discounts reward in future periods.

Agents are assumed to be rational: they behave according to an optimal decision

rule dt = δ(st) that solves V T
0 (s) ≡ maxδ Eδ

∑T
t=0 β

tr(st, dt)|s0 = s where Eδ denotes

expectation with respect to the controlled stochastic process st, dt induced by the

decision rule δ.

MDPs have been extensively used in theoretical studies because the framework is

rich enough to model most economic problems involving choices made over time and

under uncertainty. Applications include the pioneering work on optimal inventory

policy by Arrow et al. (1951), investment under uncertainty [Lucas and Prescott

(1971)] optimal intertemporal consumption/savings and portfolio selection under un-
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certainty [Phelps (1962), Hakansson (1970), Levhari and Srinivasan (1969), Merton

(1969) and Samuelson (1969)], optimal growth under uncertainty [-Brock and Mir-

man (1972), Leland (1974)], models of asset pricing [Lucas (1978), Brock (1982)],

and models of equilibrium business cycles [Kydland and Prescott (1982), Long and

Plosser (1983)]. By the early 1980’s the use of MDP’s had become widespread in

both micro- and macroeconomic theory as well as in finance and operations research.

The first to develop this type of discrete decision model was John Rust (Rust [1987]),

and provided a more complete description of the DP approach in Rust (Rust [1995a],

and Rust [1995b]). Some applied economists have used various similar methods in

explaining various economic behaviors (Miranda and Schnitkey [1995], Baerenklau

and Provencher [2005], and Hendel and Aviv [2006]).

In addition to providing a normative theory of how rational agents “should” be-

have, econometricians soon realized that MDP’s might provide good empirical models

of how real-world decision-makers actually behave. Most data sets take the form dat , s
a
t

where dat is the decision and sat is the state of an agent a at time t. Stochastic con-

trol theory can also be used to model ”learning” behavior in which agents update

beliefs about unobserved state variables and unknown parameters of the transition

probabilities according to the Bayes rule. Reduced-form estimation methods can be

viewed as uncovering agents’ decision rules or, more generally, the stochastic process

from which the realizations (dt, st) were ”drawn”, but are generally independent of

any particular behavioral theory. Our focus is on uncovering (estimating) the prim-

itives (r, p, β) that generated it under the hypothesis that dat , s
a
t is a realization of a

controlled stochastic process.

The first question to be answered is whether this is even logically possible, i.e.

whether (r, p, β) is identified. Rust [Rust [1997]] discussed the identification prob-

lem, and showed that the question of identification depends on what type of data

we have access to (i.e. experimental vs. non-experimental), and what kinds of a
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priori restrictions we are willing to impose on (r, p, β). If we only have access to non-

experimental data (i.e. uncontrolled observations of agents ”in the wild”), and if we

are unwilling to impose any prior restrictions on (r, p, β) beyond basic measurability

and regularity conditions on r and p, then it is impossible to consistently estimate

(r, p, β), i.e. the class of all MDP’s is non-parametrically unidentified. On the other

hand, if we are willing to restrict r and p to a finite-dimensional parametric family, say

r = rθ, p = pθ,|θ ∈ Θ ⊆ RK , then the primitives (r, p, β) are identified (generically). If

we are willing to impose an even stronger prior restriction, stationarity and Rational

Expectations (RE), then we only need parametric restrictions on r in order to iden-

tify (r, p, β) since stationarity and the RE hypothesis allow us to use non-parametric

methods to consistently estimate agents’ subjective beliefs from observations of their

past states and decisions. Given that we are already imposing strong prior assump-

tions by modelling agents’ behavior as an optimal decision rule to an MDP, it would

be somewhat schizophrenic to be unwilling to impose any additional prior restrictions

on (r, p, β). In the sequel, I assume that the econometrician is willing to bring to bear

prior knowledge in the form of a parametric representation for (r, p, fl). This reduces

the problem of structural estimation to the technical issue of estimating a parameter

vector θ ∈ Θ where Θ is a compact subset of RK .

Furthermore, Rust (Rust [1997]) showed that, from an econometric standpoint,

the expected-reward framework is sufficiently rich to model virtually any type of

observed behavior. Our ability to discriminate between expected reward and the more

subtle non-expected-reward theories of choice under uncertainty may require quasi-

econometric methods such as controlled experiments. The justification for focusing

on expected reward is that it remains the most tractable framework for modelling

choice under uncertainty.

Ng and Russel [2000] formulate IRL problem as an optimization problem to max-

imize the sum of differences between the quality of the optimal action and the quality
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of the next-best action. Based on this linear approximation of reward function, other

algorithms have been developed or integrated into apprenticeship learning. The prin-

cipal idea of apprenticeship learning using IRL is to search mixed solutions in a

space of learned policies with the goal that the accumulative feature expectation is

near that of the expert Abbeel and Ng [2004], Bowling and Schapire [2008]. Recent

theoretical works on IRL improve the learning performance through various other

methods, such as the framework of linear-solvable MDP in Dvijotham and Todorov

[2010], the bootstrap learning in Boularias and Chaib-draa [2010] and feature con-

struction in Popovic and Koltun [2010]. IRL has also been successfully applied to

many real-world problems, such as automatic control of helicopter flight Coates and

Ng [2010] and motion control of an animation system in computer graphics Lee and

Zoran [2010]. In Baker et al. [2009], IRL is viewed from the perspective of human de-

cision making as a method for modeling human action understanding, and the results

of psychophysical experiments using animated stimuli of agents moving in simple

masses provide quantitative evidence that the inverse planning models can predict

human goal function.

Based on the existing work on modeling economic behaviors and recent devel-

opment in reward learning, we aim to develop a framework to quantify Algorithmic

trading behavior by solving an inverse Markov decision process. We first try to un-

derstand the financial microstructure through an emperical study. Through literature

review and our own market modeling effort, we establish empirical basis for describing

financial market using MDP models. We then develop a model and cast the behavior

learning problems as the reward learning through linear approximation, which under-

lies a number of IRL approaches. And then we explore the non-parametric modeling

techniques and postulate a prior distribution over the variables we wish to predict and

consider them in a random field. By applying Bayesian rule, we employ an Gaussian

based approach (?) to predict traders’ behavior with the assumption that we have
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only incomplete observations. We prove our IRL based behavior framework is able

to consistently predict future behavior of incomplete recent observations.

2.2 Background and Related Work

The purpose of this section is to introduce the notations that will be used through-

out this study and lay out the existing theories that we need to quantify trading

behavior under the Stochastic modeling framework - Markov Decision Processes.

2.2.1 Inverse Markov Decision Process (IMDP)

The input data to IRL is collected from the observations of an expert whose

decision process is modeled as Markov decision processes. We restrict our attention

to countable MDP here for easy exposition, but our algorithms can be extended to

the MDP problems in continuous domains. A discounted finite MDP is defined as a

tuple M = (S,A,P , γ, r), where

• S = {sn}Nn=1 is a set of N states. Let N = {1, 2, · · · , N}.

• A = {am}Mm=1 is a set of M actions. Let M = {1, 2, · · · ,M}.

• P = {Pam}
M
m=1 is a set of state transition probabilities (Here Pam is a N × N

matrix. Each row, denoted as Pam(sn, :), contains the transition probabilities

upon taking action am in state sn. The entry Pam(sn, sn′) is the probability of

moving to state sn′ , n
′ ∈ N in the next stage.).

• γ ∈ [0, 1] is a discount factor.

• r denotes the reward function, mapping from S × A to < with the property

that

r(sn, am) ,
∑
n′∈N

Pam(sn, sn′)r(sn, am, sn′)
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where r(sn, am, s) denotes the function giving the reward of moving to next state sn′

after taking action am in current state sn. The reward function r(sn, am) may be

further reduced to r(sn), if we neglect the action’s influence.

In MDP, an agent selects an action at each sequential stage. A rule describing

the way the actions are selected is called a policy (behavior), some mapping between

state and action. A behavior of an agent defines a random state-action sequence

(s0, a0, s1, a1, · · · st, at, · · · ), 1 where st+1 is connected to (st, at) by Pat(s
t, st+1). The

policy, which makes the agent reach the goal, is called proper policy.

The rational agents in MDP model behave according to the optimal decision

rule that each action selected at any stage should maximize the value function.

The value function for a policy π evaluated at any state s0 is given as V π(s0) =

E[
∑∞

t=0 γ
tr(st, at)|π]. This expectation is over the distribution of the state sequence

{s0, s1, ...} given policy π = {µ0, µ1, · · · }, where at = µt(st), µt(st) ∈ U(st) and

U(st) ⊂ A. The objective at state s is to choose a policy maximizing the value of

V π(s). Similarly, there is another function called Q-functions (Q-factors) that judges

how good an action is performed in a given state. Notation Qπ(s, a) represents the

expected return from state s, taking action a and thereafter following policy π.

Some essential facts that we will need from the theory of MDPs R. [1957] are

listed as follows,

Theorem II.1 (Bellman Equations). Given a stationary policy π, ∀n ∈ N ,m ∈M,

V π(sn) and Qπ(sn, am) satisfy

V π(sn) = r(sn, π(sn)) + γ
∑
n′∈N

Pπ(sn)(sn, sn′)V
π(sn′),

Qπ(sn, am) = r(sn, am) + γ
∑
n′∈N

Pam(sn, sn′)V
π(sn′).

1Superscripts index time. E.g. st and at, with the upper-index t ∈ {1, 2, · · · }, denote state and
action at t-th horizon stage, while sn (or am) represents the n-th state (or m-th action) in S (or A).
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Lemma II.2. The optimal value functions and Q-functions are defined as,

V ∗(s) = sup
a
Q∗(s, a)

Q∗(s, a) = r(s, a) + γ
∑
s′

Pa,s(s
′)V ∗(s′)

Theorem II.3 (Bellman Optimality). π is optimal if and only if, ∀n ∈ N , π(sn) ∈

arg maxa∈AQ
π(s, a).

Based on the above definitions of MDP, let us define the inverse Markov Decision

Process (IMDP).

Definition II.4. An IMDP model, denoted as MI = (S,A,P , γ,O), contains MDP

variables such as, state set S, action set A, state transition probability set P and

the discount factor γ. The variable O is a set of observations sampled from the

decision-making process.

Remark II.5. The set O can be viewed as a subset of the Cartesian product of Ŝ

and Â, where Ŝ ⊂ S and Â ⊂ A. So ∀s ∈ Ŝ, there is at least one action a ∈ Â

providing (s, a) ∈ O. We treat every (s, a) ∈ O as optimal in the expert’s decision

making process. The goal of IRL is to learn the reward function of the MDP model

that generates O.

2.2.2 Inverse Reinforcement Learning (IRL)

The primary objective of IRL is to determine the reward function that an agent

is optimizing to achieve its optimal decision rules. It is formulated via MDP model

by Ng and Russel in Ng and Russel [2000], under the assumption that the reward

r = ωTφ(s), where ω is a coefficient vector and φ(s) : s → [0, 1]k is a function

mapping state s to a k dimensional vector. Under this formulation IRL is casted

as an optimization problem to maximize the sum of differences between the quality
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of the optimal action and the quality of the next-best action. Based on this linear

approximation of reward function, other algorithms have been developed or integrated

into apprenticeship learning. The principal idea of apprenticeship learning using IRL

is to search mixed solutions in a space of learned policies with the goal that the

accumulative feature expectation is near that of the expert Abbeel and Ng [2004],

Bowling and Schapire [2008]. A game-theoretic approach to apprenticeship learning

using IRL is developed in the context of a two-player zero-sum game in which the

apprentice chooses a policy and the environment chooses a reward function Schapire

[2008]. Another algorithm for IRL is policy matching in which the loss function

penalizing deviations from expert’s policy is minimized by tuning the parameters

of reward functions Neu and Szepesvari [2007]. Maximum entropy IRL is proposed

in the context of modeling real-world navigation and driving behaviors in ?. The

algorithms for apprenticeship learning using IRL do not actually aim to recover the

reward function but only the optimal policy.

Recent theoretical works on IRL improve the learning performance through vari-

ous methods, such as the framework of linear-solvable MDP in Dvijotham and Todorov

[2010], the bootstrap learning in Boularias and Chaib-draa [2010] and feature con-

struction in Popovic and Koltun [2010]. IRL has also been successfully applied to

many real-world problems, such as automatic control of helicopter flight Coates and

Ng [2010] and motion control of an animation system in computer graphics Lee and

Zoran [2010]. In Baker et al. [2009], IRL is viewed from the perspective of human de-

cision making as a method for modeling human action understanding, and the results

of psychophysical experiments using animated stimuli of agents moving in simple

masses provide quantitative evidence that the inverse planning models can predict

human goal function.

The assumption that the reward function can be linearly approximated, which

underlies a number of IRL approaches, may not be reasonable for many problems
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of practical interest. The failure to satisfy this assumption may result in divergent

algorithms. At this point, the non-parametric modeling can be more powerful than the

parametric method. In this study we explore two different approaches in estimating

the reward function, and use reward functions to characterize agents’ behaviors.

2.2.3 Financial Algorithmic Trading

Algorithmic trading (AT) is commonly defined as the use of computer algorithms

to automatically make certain trading decisions, submit orders, and manage those

orders after submission (Jones and Menkveld [2011]). There are many different algo-

rithms, used by many different types of market participants. Some hedge funds and

broker-dealers supply liquidity using algorithms, competing with designated market-

makers and other liquidity suppliers (e.g., Jovanovic and Menkveld [2010]). For assets

that trade on multiple venues, liquidity demanders often use smart order routers to

determine where to send an order (e.g., Foucault and Menkveld [2008]). Statisti-

cal arbitrage funds use computers to quickly process large amounts of information

contained in the order flow and price moves in various securities, trading at high

frequency based on patterns in the data. Last but not least, algorithms are used by

institutional investors to trade large quantities of stock gradually over time. High

Frequency Trading (HFT) refers to a super-fast algorithmic trading strategy where a

trader moves in and out of stocks with extremely short holding intervals in an attempt

to capture small profits per trade. In 2010, the Securities and Exchange Commission

(SEC) published a concept release paper regarding current financial market conditions

in which the Commission describe the HFTs with the following key characteristics:

(1) the use of extraordinarily high-speed and sophisticated computer programs for

generating, routing, and executing orders; (2) use of co-location services and individ-

ual data feeds offered by exchanges and others to minimize network and other types

of latencies; (3) very short time frames for establishing and liquidating positions; (4)
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the submission of numerous orders that are cancelled shortly after submission; and

(5) ending the trading day in as close to a flat position as possible. Estimate of HFT

volume in the equity markets vary widely, though they typically are 50% or higher 2.

However there are only few academic papers address questions regarding HFT.

The theoretical work relating to HFT is mostly devoted to address its economic

implication to the financial market quality. However it is still too earlier to draw any

decisive conclusions: some show that, depending on the model, HFTrs may improve

market quality while still others claim HFTs degrade market characteristics. Cvitanic

and Kirilenko [2010] build the first theoretical model to address how HFTrs impact

market conditions. They find that the presence of HFTrs yield transaction prices

that differ from the HFTr-free price; when a HFTr is present, the distribution of

transaction prices will have thinner tails and more mass near the mean; and as humans

increase their order submissions, liquidity proportionally increases. While Cvitanic

and Kirilenko [2010] build a theoretical framework that directly addresses HFT, other

work has been conducted to understand how market quality will be impacted when

investors have different investment time horizons. Scharfstein and Stein [1992] find

that short-term speculators may put too much emphasis on short term information

and not enough on stock fundamental information. The result is a decrease in the

informational quality of asset prices. Vives [1995] finds that the market impact of

short term investors depends on how information arrives. The informativeness of asset

prices is impacted differently based on the arrival of information: “with concentrated

arrival of information, short horizons reduce final price informativeness; with discover

arrival of information, short horizons enhance it” (Vives [1995]). The theoretical

work on short horizon investors suggests that HFT may either benetit or harm the

informational quality of asset prices. So far, no one has attempted to characterize

behaviors of Algorithmic trading practices using structural decision models. A major

2Jonathan Spicer and Herbert Lash, Who’s Afraid of High-Frequency Trading?, Reuters.com,
December 2, 2009
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contribution of this study is to model Algorithmic trading strategies from behavior

perspective, and eventually these behaviors manifested in the corresponding trading

strategies can be used to explain the market quality and price formation proceses.

2.3 Primary Objectives and Hypothsis

The primary objective of this research is to model Algorithmic trading behavior

under the framework of inverse reinforcement learning. With the advent of the elec-

tronic financial markets, technologies have dramatically improved the speed, capacity

and sophistication of the trading functions that are available to market participants.

Advanced data feed and audit trail information from the market operators also pro-

vide the possibility that the market participants’ behavior can be fully observed.

With the observations of certain market participant, we aim to recover the optimal

policies that the market participants employ and the corresponding reward functions

to explain their behaviors under different circumstances.

However, the observations we acquire often present the behavior of our sub-

jects with probabilistic nature. Therefore understanding and addressing the non-

deterministic policies and establish the connections with deterministic policies bear

important ramification to strategy identification. In order to answer this question,

we need to first understand the relationship between a deterministic policy versus

non-deterministic policy. We use notation MD for Markov deterministic policy, and

MR for Markov non-deterministic policy. We can establish the relationship between

the optimality of a deterministic policy versus a non-deterministic policy through the

proposition 1 (A) in the following theorems:

Theorem II.6. Suppose 0 ≤ γ ≤ 1, S is finite or countable, and r(s, a) is is bounded.

(a) Then there exists a v∗ ∈ V satisfying Lv∗ = v∗. Further, v∗ is the only element

of V with this property and equals v∗γ.
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(b) For each d ∈ DMR, there exists a unique v ∈ V satisfying Ldv = v. Further, v is

the unique solution and equals vd
∞
γ .

Theorem II.7. Let S be discrete, and suppose that the supremum is attained in 5.1

for all v ∈ V . Then

(a) There exists a conserving policy d∗ ∈ DMD;

(b) If d∗ is conserving, the deterministic stationary policy (d∗)∞ is optimal; and

(c) v∗γ = supd∈DMD(vd
∞
γ ).

For policy d∗ ∈ DMD, a policy d∗ is conserving if

Ldv
∗
γ ≡ rd∗ + γPd∗v

∗
γ (2.1)

or, alternatively, if

d∗ ∈ argmax
d∈DMD

rd + γPd∗v
∗
γ (2.2)

A policy prescribes a procedure for action selection in each state at a specified

decision epoch. Policies range in general from deterministic Markovian to randomized

history dependent, depending on how they incorporate past information and how

they select actions. In the financial trading world, traders deploy different trading

strategies where each strategy has a unique value proposition. We can theoretically

use reward functions to represent the value system that encapsulated in the various

different trading strategies. For example, a simple keep-or-cancel strategy for buying

one unit, the trader has to decide when to place the order and when to cancel the order

based on the market environment (may likely be characterized stochastic processes).

However the value system under which the trader is looking for gaining profit is to buy
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one unit of the security at a lowest price possible. This could be realized in number

of ways. It could be described as a function R(s) meaning when the system is in state

s the trader is always looking fixed reward. This notion of value proposition drives

the trader to take corresponding actions according to the market conditions. This

ultimately constitutes policies. Therefore a strategy under certain value proposition

can be consistently programmed in algorithms to achieve its goal of buy-one-unit in

an optimal way.

However for a learning agent to recover the optimal policy, it is a challenge to

even just capture all the states in a discrete Markov Decision Process (MDP) model.

In other words, the model we develop for the environment may likely be imperfect.

Moreover, when the learning agent tries to infer the reward function of traders, often

we encounter certain unknowns in the learning process:

(a) whether the trader is deploying a randomized policy or deterministic one;

(b) the observations of the traders behavior are noisy;

(c) unobservable features.

The problem is motivated to estimate the unknown reward function as accurately

as possible. This reward function should reflect the traders optimal policy as closely

as possible.

Let us say that we receive a series of observations of a particular traders behav-

ior (si, ai) ∈ O where the trader is in state si and takes action ai at time step i.

Furthermore we defined the traders reward function as R and make the following

assumptions:

(a) Attempts to maximize the total accumulated reward according to R;

(b) Executes a stationary policy, i.e. it is invariant w.r.t time and does not change

depending on the actions and observations made in previous time steps.
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Based on the proposition 1 A, the optimal value attained by a randomized policy

is the same as the one attained by a deterministic policy, and there exists an optimal

value and it is unique in V by the Theorem 1. We also know from Theorem 1 that

each policy in the non-deterministic set has a unique value v. Combining with the

Theorem 2, we know that supremum value obtained from all policies can be used to

recover the an equivalent optimal stationary deterministic policy.

Use a formalism, we assume the problem we undertake is in an ergodic MDP

environment. Intuitively if an MDP is finite, stationary and ergodic, then it should

be possible for an adaptive policy to eventually achieve an optimal level of expected

reward per cycle. We introduce definition of ergoic MDP by Shane Legg, et al. (Legg

and Hutter [2004]).

Definition II.8. A MDP is ergodic, if there exists an agent that under policy p every

possible observation o ∈ O occurs infinitely often with probability 1.

Intuitively this means that the environment never becomes restricted to some

subset of possibilities, instead everything that is possible in the environment initially

always remains possible. It means that when we observe a traders behavior long

enough (assume that the trader has a stationary policy), we observe a set of stationary

policies. Furthermore, if we defined a set of policies by:

π =
n∑
i=1

λiπi, λi ≥ 0,
∑
i

λi = 1, (2.3)

where λi is a random variable.

Essentially we are looking for an optimal deterministic stationary policy which

achieves the same optimal value as the non-deterministic policy. This will guarantee

the learning agent to obtain a unique reward function that achieves the optimal value.

The merit of this approach is that the reward function will be unique for a specific
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set of observations. We will not be concerned about whether the traders’ real policy

is deterministic or not. This is especially useful in the problem where we attempt to

identify traders trading strategies based on a series of observations.

Our hypothesis is that under this reward learning framework, Algorith-

mic trading strategies can be identified with a targeted accuarcy based on

past observations.
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CHAPTER III

The Price Impact of Order Events

3.1 Introduction

Most of the existing market price studies have focused on modelling the price

impact as a function of trade volume. Earlier empirical studies (Mike and Sen [2004],

Jones et al. [1994], Karpoff [2004]) extensively investigated this relationship using

various data and statistical tools. In the empirical literature, price impact has been

characterized by numerous authors as transient, temporary, instantaneous, perma-

nent, long-memory. In general, there are three very important findings in the field of

studying market price impact thus far. First of all, it seems to confirm the intuitive

notion that buy trades push prices up and sell trade push price down. This notion is

deeply rooted in the market demand and supply model and information propagation

during the market price formation process. Secondly, there is a seemingly unanimous

consensus: it is that the price impact of trades is an increasing concave function of

their sizes (Farmer and Lillo [2004]). Lastly, the sign of market orders is strongly

autocorrelated in time (Farmer and Lillo [2009]). However, there is strong evidence

that the limit orders and market activities play an important role in modelling price

dynamics (Potters and Wyart [2004], Plerou and Stanley [2003]). Knez and Ready

(Gatheral [2010]) have shown that outstanding limit orders (also known as market

depth) significantly affect the impact of an individual trade and low depth is a nec-
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essary condition for large price changes (Knez and Ready [1996]). Bouchaud et al.

Potters and Wyart [2004] model the dynamic interaction between market orders, limit

orders and cancelations on the level of individual events. R. Cont et al. (?) also cre-

ate market order imbalance variables to model their price impact functions. These

studies generally expand the analysis of price impact of trades to different forms of

limit order events.

The primary objective of this study is to understand empirically how market

prices and volatility react to the impact of a series of intensive exogenous order

events. We take advantage of the unique characteristics of a dataset collected from

a number of Futures markets during a market incident. Since these orders were

accidentally injected into the subject markets during an illiquid time period, the

expected volatility and price impact should be significant, and furthermore we view

this case as a natural experiment where no informational traders are present during

the short injection period. We argue that the insight we gain from this study may shed

lights on the market impact of High Frequency Trading (HFT) where information is

not central among the HFT strategies and yet HFTs share several key characteristics

of this natural experiment.

This chapter is structured as follows. Section 2 describes our dataset, and high-

lights the key characteristics that will be explored in the analysis later. Section 3

studies market volatility impact on both outright markets and spread markets. Sec-

tion 4 expands the findings from the Section 3 and establishes characteristics of price

impact of these high intensity trading activities to the ordinary illiquid markets. Sec-

tion 5 summarizes the observations from the Section 3 and Section 4 and concludes

the implications of the findings to studying high frequency trading strategies and

provides precautions of events as such in the future.
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3.2 Data and Market Characterization

In this study, we use an order book dataset on September 13, 2010. On that day,

between 14:38pm CDT 1 and 14:44pm CDT, test data intended to be placed into

the GLOBEX test environment as part of CME Groups normal testing regimen was

inadvertently injected into the life system. During the 6 minutes injection period,

a total number of 102,154 erroneous messages were injected, and as a result 27,325

errant orders were executed and turned into 42,056 errant contracts. These errant

contracts affected 8 energy and metals markets, such as Brent Crude Oil Last Day

Financial Futures, Heating Oil Futures, E-mini Natural Gas Futures, Silver Futures,

etc.

During the six-minute injection period, a total of 79,325 contracts traded in all

contract months in subject markets. Of this volume, 38,116 contracts (48%) involved

enormous orders on at least one side of the transactions, and 41,209 contracts (52%)

were executed where neither side was generated by an erroneous order. Additional

24,473 contracts traded in the subject markets between 14:44 and the close of the

GLOBEX session. Of this volume, 3,940 contracts (16%) involved erroneous orders

on at least one side of the transaction and 20533 (84%) contracts were executed that

contained no erroneous orders. Those involved with erroneous orders were the orders

resting in the market. The total volume associated with trades involving erroneous

orders for the period was 42,056 contracts or 40.5%; non-erroneous volume was 61,742

contracts or 59.5%.

As part of the investigation, the Office of Chief Economist (OCE) at the Commod-

ity Futures Trading Commission (CFTC) called audit trial data for Sep. 13 and three

other regular trading days from the CME Group, and performed price impact analysis

and economic impact assessment. In order to see the changes of trading activities,

reference data include first trading day of the two weeks prior Sep. 13, 2010 (i.e. Aug.

1All time cited in the body of this document is Central Daylight Time (CDT).
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30, 2010 and Sep. 07, 2010) and the day immediately after the incident (i.e. Sep. 14,

2010). For the 8 affected markets, the total volume transacted during the 6 minutes

on Sep. 13th is 65 times the size of the other regular trading days (Table 3.1 shows

the trade volume of the eight outright markets, and Figure 3.1 show the proportion

of the affected markets in comparison with that of the regular trading days). Even

for the relatively liquid market (Light Sweet Crude Oil), it is more than 20 times

of the regular size. Furthermore, if we look at the total trade volume throughout

the 6 minutes injection period second-by-second in comparison with the three regular

trading days, we see that the injection period present a relatively liquid market. The

volume traded per second is 16 times higher than the normal trading days (see Table

3.2). It is even more evident, if we look at the order and trade activities in Figure

3.2 and Figure 3.3.

Table 3.1: Trade Volume by Market (6 minutes)

Trading Date

Market Symbol 08/30/2010 09/07/2010 09/13/2010 09/14/2010GrandTotal

Heating Oil HO 59 124 15,814 52 16,049

Light Sweet Crude Oil CL 515 550 11,328 453 12,846

RBOB Gasoline RB 59 69 9,290 11 9,429

Brent Crude Oil BZ 1 1,211 7 1,219

E-Mini Natural Gas QG 2 568 1 571

Silver Futures SI 8 20 434 59 521

Henry Hub Natural Gas NN 160 160

Oman Crude OQ 32 32

Grand Total 644 763 38,837 583 48,827

This incident provides a perfect experimental environment to understand the char-

acteristics of market reaction to high frequency trading activities. There are two im-

portant aspects of this dataset that highlight the value of this empirical study: First

of all, since no one had prior information about this incident, we can safely assume

all the traders are uninformed during this time period about the incoming orders.

Secondly, since market is normally illiquid during this period, and the injection of
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(a) Order Volume by Trading Date

(b) Order Volume by Trading Date

Figure 3.1: Order Volume a). Trade Volume on Outright Markets b). Trade Vol-
ume on Spread Markets

(a) Order Volume by Trading Date

Figure 3.2: Order Volume by Trading Date This figure shows the total order
volume throughout the six minutes period in comparison with other three
regular trading days. The order volume per minute is 310 times larger
than that of the regular trading day.
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(a) Trade Volume by Trading Date

Figure 3.3: Trade Volume by Trading Date This figure shows the total volume
traded throughout the six minutes period in comparison with other three
regular trading days.

the erroneous orders bears the key characteristics of the high frequency trading to

the regular relatively low frequency trading. This parallel rests on the fact that the

trading volume ratio 70% [Brogaard [2010]] is strikingly similar to the ratio of erro-

neous trading to the regular trading (on average the errant trade consists of 71% of

the total trade volume). Lastly, the intensity of the trades is 23 times that of the reg-

ular trading. Therefore the effect of the injection of these erroneous orders presents

itself a perfect opportunity to understand the resulting market volatility and price

movement when the high frequency trading is introduced into an ordinary financial

market. The goal of this study is to characterize how inactive markets respond to

intensive high frequency trading activities. We hope the empirical results from this

study will provide a valuable evidence for better understanding of impact of high

frequency trading strategies to the market, and help future price impact modelling in

the high frequency trading paradigm.
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Table 3.2: Trade Volume per Second (6 minutes)
Analysis Variable: Trade Volume per Second

TradeDate NumofObservations Mean StdDev Minimum Maximum

08/03/2010 121 7 24 1 253

09/07/2010 131 7 13 1 74

09/13/2010 418 114 95 2 653

09/14/2010 153 5 14 1 150

3.3 Volitility Impact Of The Concentrated Trading

3.3.1 Realized Volatility on Intraday Data

In this section, we treat the erroneous orders as exogenous shock to an illiquid

market and to study their impact on market volatility. Financial market volatility

is indispensable for asset and derivative pricing, asset allocation, and risk manage-

ment. By far the most popular approach is to obtain volatility estimates using the

statistical models that have been proposed in the ARCH and Stochastic Volatility

literature (Weber and Bernd [2006]). But this approach of measuring volatility is

only valid under the specific assumptions of the models used. Yet, the concept of

volatility itself is somewhat elusive, as many ways exist to measure it and hence to

model it (Bollerslev and Diebold [2002]). Moreover, in recent times, the availability

of ultra-high frequency data and the work done on them has shed new light on the

concept of volatility: as a matter of fact, data sampled at regular intra-daily inter-

vals can be summarized into a measure called realized volatility which under some

assumptions is a consistent estimator of the quadratic variation of the underlying

diffusion process. Such a measure was widely adopted as a target of forecast accu-

racy, but the dependence of the measure upon the frequency of observation of the

data makes it difficult to come to clear conclusions. Moreover, as shown by Oomen

R.C.A. (Oomen [2005]) such a measure may be biased if returns used to compute it

are serially correlated. In principle, the volatility measures derived from ultra-high
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frequency data should prove to be more accurate, hence allowing for forecast effi-

ciency gains. We look volatility changes for 8 heavily treaded outright markets and

related heavily traded spread markets to understand the volatility impact. The rea-

son we choose these representative markets is partly because the other less frequently

markets may fall short the assumption for intra-daily realized volatility. Therefore it

may invalidate the applicability of this volatility measure. Nevertheless using the 8

indicative markets is sufficient to understand the general direction of the exogenous

shock impact.

To set forth the notation, let pn,t denote the time n ≥ 0 logarithmic price at time

t. The discretely observed time series of continuously compounded returns with N

observations per period is then defined as follows:

rn,t = pn,t − pn−1,t (3.1)

rn,t = pHn,t − pLn−1,t (3.2)

where n = 1, ..., N and t = 1, ..., T . IfN = 1, and pHn,t is the highest logarithm price

and pLn,t is the lowest logarithmic price. For any series we ignore the first subscript n

and thus rt dontes the time series of periodic return.

We assume following:

E[rn,t] = 0 (3.3)

E[rn,t, rm,s] = 0, n,m, s, tbutnotn = mands = t (3.4)

E[r2
n,t, r

2
m,s] <∞n,m, s, andt (3.5)

Hence, returns are assumed to have mean zero and to be uncorrelated and it is

assumed that the variance and covariance of squared returns exist and are finite.
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The continuously compounded squared returns may be decomposed as:

s2
t =

N∑
n=1

r2
n,t (3.6)

as:

E[s2
t ] = σ2

t (3.7)

where σ2
t is population variance for period t. We need to take note that it has

long been recognized that the spread between the highest price and the lowest price

is a function of the volatility during a period, and it is proven a better estimate of

volatility. We will use this method in our realized volatility calculation.

3.3.2 Empirical Data Analysis

In the data section, we mentioned that there are only eight markets were affected

by the erroneous orders (Table 3.3). We further define an errant trade as those trades

that either side of the transaction contains an erroneous order. For a spread market, if

either leg involves an erroneous order, we then identify the spread as an errant trade.

In order to satisfy the sufficient frequency of activities for computing volatility, we

focus our attention to the top four heavily traded markets. Within each of these

four markets, we then picked 2 markets which have the top two highest volumes to

represent that market. We compute realized volatility through the 6 minutes injection

period for all 8 markets.

Furthermore, this time period, i.e. between 14:38 and 14:44, is generally a period

of low liquidity, because it occurs after the close of Regular Trading Hours, following

settlement of the markets. Sep. 13, 2010 was no exception. We divide the 6 minutes

into 360-second periods, and we use (3.2) and (3.6) to estimate the realized volatility.

We present these results in Table 4. From this table, we see that volatility is mostly
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low for the 8 outright markets, and they are relatively high among the 8 spread

markets. These realized volatility estimates are consistent with the observations we

have on these spread markets.

From Table 3.4, we see that the spread market RBV0-RBZ0 (RBOB Gasoline

Futures) experienced extremely high price volatility. We reviewed the RBV0-RBZ0

spread for the period from 14:38 through 14:45. This spread is barely traded during

this period from data we have on Aug 30. 2010, Sep 07, 2010 and Sep 14, 2010. On

September 07 the first trading day a week prior the incident, during the six minutes

period, the RBV0-RBZ0 order book reflected bids and offers (20 ticks wide) with no

volume trading. The order books for the component legs RBV0 and RBZ0 during

the same period were very thin. This pattern is consistent with the data we have for

the first trading day of two weeks prior the incident and the day after the incident.

However on Sep. 13, 2010, during the injection period, the differential between bid

and offer traded for the RBV0-RBZ0 spread fluctuated to up to 51 ticks wide. The

market traded, with the spread moving from 21 (the first trade at 14:38:03) to -30 by

14:43:40. The spread widened because orders injected in outright and related spread

market were executed against the RBV0-RBZ0 spread bids. As bids for the RBV0-

RBZ0 spread were matched against outright and related spread legs, new orders at

lower differentials replaced them. The price of the RBV0-RBZ0 bid moved down as

the top of the order book was executed. The decline was not steady; prices fluctuated

reflecting the effect of orders injected into outright and related spread order books.

The market traded in a range of -10 to 30 through 14:44:19. By 14:44:43 most of the

offers had been withdrawn from the market and very few trades occurred through the

end of the period reviewed. In excess of from 75

Another spread market that experienced large volatility is RBV0-RBF1, but it

is almost 35 times less than RBV0-RBZ0 that we mentioned earlier. However its

magnitude is in line with the rest of the spread markets we studied. It experienced
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Table 3.3: Market Volume Affected by the Erroneous Orders
MarketName V olume %Total Trades %Total

Heating Oil 19,154 45.50 12,378 45.30

Light Sweet Crude Oil 11,031 26.20 5,679 20.80

RBOB Gasoline 7,041 16.70 6,384 23.40

Brent Crude Oil 2,617 6.20 1,659 6.10

E-Mini Natural Gas 1,232 2.90 483 1.80

Silver Futures 600 1.40 400 1.50

Henry Hub Natural Gas 286 0.70 286 1.00

Oman Crude 95 0.20 56 0.20

Grand Total 42,056 100.00 27,325 100.00

larger swing from -173 (14:38:03) to -283 (14:43:27). In other words, it fluctuated up

to 110 ticks. After 14:42:32, the market traded in a range of -211 to -283, and the

volume started to thin out toward the end of the injection. The dramatic volatility

difference between these two markets can be explain by the fact that the compo-

nent leg RBF1(Figure 3.5 a) has experienced much less volatility compared with the

component leg RBZ0 (Figure 3.5 b).

3.3.3 Results

Because orders injected entered the markets during this relatively illiquid time

period, for many spreads in the subject markets, the effect on spread pricing was

pronounced. Two examples of how the presence of this relatively less liquid state

was impacted by the flow of the erroneous orders are analysed above. Using real-

ized volatility measure, we show that this intensive exogenous order flow has more

significant impacted on market volatility of the spread markets than that of the out-

right markets (Table 3.4). Unfortunately, due to the illiquid nature of this trading

period on regular trading days, we find extremely low trading volume for the subject

markets, and we cannot measure volatility for regular trading days for comparison.

If we plot distribution of the realized volatility for both the selected outright

and spread markets (see Figure 3.4 b), we observe that the volatility of the outright
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(a) Volatility and Trade Volume for 24 Markets (6 minutes)

(b) Fraction of Errant Trade Volume for RBV0-RBZ0(6 minutes)

Figure 3.4: Volatility and Trade Volume
a). The figure shows the total volume traded and the realized volatility during the

injection period. Volatility of RBV0-RBZ0 market is extremely higher than the rest
of the markets. But on average the volatility of spread markets is significantly

higher than the outright markets. b). This spread market experienced the highest
volatility among all the affected markets. We observe that 70% 80% of trades

involved erroneous orders.
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(a) Outright Market Volatility (6 minutes)

(b) Spread Market Volatility (6 minutes)

Figure 3.5: Market Volatility a). This graph shows that overall volatility of the
outright markets are low with mean of 0.000738 and median of 0.000521.
The largest volatility coincides with the market with highest trading vol-
ume (most liquid market). b). This graph shows that volatility of the
spread markets is relatively high with mean of 4.921221 and median of
0.072359. The volatility of RBV0-RBZ0 market is substantially higher
than the other spread markets.
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Table 3.4: Market Volatility
Market Outright Trade Realized

Name Indicator V olume V olatility

RBV0-RBZ0 0 1133 51.22053

RBV0-RBF1 0 1019 1.453483

BZV0-BZX0 0 973 0.771852

RBX0-RBZ0 0 3731 0.385033

HOV0-HOZ0 0 3165 0.150942

HOV0-HOX0 0 4849 0.072359

CLF1-CLG1 0 3481 0.030538

HOZ0-HOF1 0 7745 0.026175

CLZ0-CLF1 0 1951 0.009393

CLV0-CLX0 0 1557 0.008441

BZZ0-BZF1 0 423 0.003741

HOZ0 1 18002 0.001508

HOF1 1 11916 0.001382

RBZ0 1 9254 0.001204

RBX0 1 10136 0.000859

HOX0 1 11472 0.000815

BZX0 1 1352 0.000620

CLX0 1 6786 0.000422

BZZ0 1 924 0.000406

RBV0 1 7808 0.000338

CLF1 1 7272 0.000309

BZV0 1 1436 0.000127

markets follows roughly a Gaussian distribution with mean of 0.000738 and median

of 0.000521. However the distribution of that of the spread markets is highly skewed

with mean of 4.921221 and median of 0.072359. It is clear that the volatility of the

spread markets is significantly higher than the outright markets.

There is an extreme outlier which is RBV0-RBZ0 market. As we analyzed above,

this extreme volatility can be attributed to the extreme movement of its component

legs. On average, the number of erroneous orders is 47.80% of the total order volume,

and the number of erroneous trades is 71.32% of the total trade volume during this

incident. Among all the relatively liquid markets, the two leg components of this

spread have relatively low proportion of erroneous trades (40.28% for RBV0 and

30.70% for RBZ0). It means that large portion of the trades came from regular orders.
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It indicates that the erroneous orders have triggered more regular order inflow to the

related outright markets. Since there is no clear information to incorporate into the

price, the market price moved in a much more disorientated fashion which caused

extra volatility.

3.4 Order Events Based Impact Model

3.4.1 Price Impact Model based on Limit Order Events

The relation between order flow and price changes has attracted considerable

attention in the recent years (Hasbrouck [2007], Mike and Farmer [2008], Potters and

Wyart [2004], Kockelkoren and Potters [2006], Lyons [2006] and Farmer and Lillo

[2009]). The aim of this section is to provide an estimate of the impact of all order

book events: market orders, limit orders and cancellations. We study the correlation

between all event types and signs. Assuming a second order model of impact, we map

out from empirical data the average impact of these orders.

Stephens et al. (Waelbroeck and Mendoza [2009]) showed that the concurrent limit

order activity can make a difference in terms of trades’ impact. They argued that

the shape of the price impact function essentially depends on the contemporaneous

limit order activity. R. Cont et al. (Kukanov and Stoikov [2010]) took a different

approach suggested that order book events have a linear impact on prices which can

be related to the model proposed by Bouchaud et al. (Bouchaud and Kockelkoren).

The major difference between these two models lies in the aggregation across time

and events. As argued by Bouchaud et al., order book events have complicated auto-

and cross-correlation structures on the timescale of individual events, which typically

vanish after 10 seconds. This allows us to measure more accurately the average impact

of all types of orders, and to assess precisely the importance of impact fluctuations

due to changes in the gaps behind the best quotes. The order flow imbalance (OFI)
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represents the net order flow at the bid and ask, and it tracks changes in the size

of the bid and ask queues. They found that this aggregate variable explains mid-

price changes over short time scales in a linear fashion. Taking a similar approach

suggested by R. Cont et al. (Stoikov and Talreja [2010b]), we assume that the price

impact coefficient is a constant over a given interval [t(k − 1), tk] and estimate the

model by ordinary least squares regression:

∇pt = pn,t − pn−1,t (3.8)

where, n = 1, ..., N period, and p(n, t) is the logarithm price at the end of period

n at day t.

∇pt = β0,t + β1,tOFIt + β2,tOFIt ∗OFIt + εt (3.9)

∇OFIt =

N(tk∑
n=N(tk−1+1

[qbid−ordern,t − qask−ordern,t + qask−cancellationn,t − qbid−cancellationn,t ] (3.10)

where N(tk−1) + 1 and N(tk) are the index of the first and the index of the last

event in the interval [tk−1, tk].The order flow imbalance is a measure of supply/demand

imbalance, which encompasses limit orders and cancelations. We define here qeventn as

the quantity of each order book event at n in the interval [tk−1, tk]. We consider four

types of events ask order, bid order, ask cancellation, bid cancellation. This single

variable allows us to keep track of the net order flow at the bid and ask, and changes

in the size of the bid and ask queues.
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3.4.2 Empirical Data Analysis

We take 5 levels order book data, and assume that the price impact coefficient β

is constant over the period of our interest. We also consider higher order/nonlinear

dependence with a quadratic term in equation 3.9. Every observation of the bid and

the ask consists of the bid price PB, the size qB of the bid queue (in number of

shares), the ask price PA and the size qA of the ask queue (in number of shares).

As it is argued by Bouchaud et al. (Farmer and Lillo [2009]), order book events

have complicated auto-correlation and cross-correlation structures on the timescale

of individual events, which typically vanish after 10 seconds. We therefore choose

this time scale for our intraday data. We calculate OFI for every 10 seconds and

build a least square regression models for each of the 24 markets we choose. We also

run the regression on the data from the 3 regular trading days. We list the R2 in

3.5. The average R2 value is 3.21%, which indicates the percentage influence of order

flow imbalance to the corresponding market prices. However on Sep. 13, 2010, the

average R2 value is 14.85% which is 4.6 times larger than the normal market. If we

consider the outright and spread markets separately, we find the average R2 value

for the outright markets is 13.52% and the average R2 value for spread markets is

17.23%. It can be translated to that the price impact of the order flow imbalance for

spread markets is 27% higher than that of the outright markets.

Furthermore, we use stepwise model selection method on the OFI and OFI*OFI

dependent variables with entrance significant level of .15 to check whether the impact

of order flow imbalance to market prices is statistically significant. For stepwise model

selection method, variables are added one by one to the model, and the statistic for a

variable to be added must be significant at a preset entry level. The stepwise process

ends when none of the variables outside the model has an statistic significant at the

entry level and every variable in the model is significant at the stay level, or when

the variable to be added to the model is the one just deleted from it. We show the
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results in 3.6. The blank cell means that the impact model does not pass statistical

test (z-test at 10% significant level). Since there is only 6 minutes, we require at least

30 observations for regression. If there are not enough observations, we assume the

model is not statistically significant. For the models on the incident data, we not

only use the total imbalance during the period, but we also considered the erroneous

order imbalance as another dependent variable 2.

Table 3.5: Explanation Power of Price Change over Order Flow Imbalance
R2

8/30/2010 9/7/2010 9/13/2010 9/14/2010

BZV0 1.34% 1.25% 0.96% 10.95%

BZX0 0.00% 3.47% 4.31% 5.90%

BZZ0 0.00% 0.00% 1.44% 0.00%

RBV0 22.77% 50.00% 6.14% 1.33%

RBX0 0.00% 1.32% 17.67% 0.90%

RBZ0 0.00% 0.00% 24.78% 0.00%

HOX0 0.00% 0.00% 10.36% 0.00%

HOZ0 0.00% 0.00% 11.64% 3.34%

HOF1 0.00% 0.00% 6.46% 0.00%

CLX0 2.80% 3.50% 16.46% 1.60%

CLF1 0.83% 0.36% 29.09% 2.66%

CLF1 2.85% 7.56% 20.36% 8.22%

BZV0-BZX0 0.00% 0.00% 13.58% 0.00%

BZV0-BZZ0 0.00% 0.00% 9.35% 0.00%

BZZ0-BZF1 0.00% 0.00% 9.34% 0.00%

RBV0-RBZ0 7.68% 1.42% 10.70% 1.74%

RBV0-RBF1 2.51% 24.49% 45.15% 6.02%

RBX0-RBZ0 7.68% 1.42% 24.90% 1.74%

HOZ0-HOF1 0.00% 6.06% 15.40% 1.53%

HOV0-HOZ0 12.05% 0.79% 5.01% 2.30%

HOV0-HOX0 2.38% 1.69% 12.13% 0.42%

CLV0-CLX0 0.00% 0.00% 28.03% 0.00%

CLF1-CLG1 6.16% 0.66% 8.73% 0.57%

CLZ0-CLF1 0.50% 6.67% 24.41% 1.92%

Average 2.90% 4.61% 14.85% 2.13%

From this result, we see that the percentage of the markets that experienced price

2We note that OFI2t enters the model at 90% level of z-test for most of the cases (80%), where
the price impact is statistically significant. This suggests a strong non-linear price impact function
for order flow imbalance.
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impact on Sep. 13, 2010 is 5.5 times higher than the average of that of the regular

trading days before and after the incident. If we consider the outright and spread

markets separately, the number of impacted spread markets is 21 times more than

that of the normal trading days. The number of impacted outright markets is 2.4

times more than that of the normal trading days. More interestingly, the erroneous

order imbalance variable alone has significant price impact in most of the impacted

markets. This may not be a surprise, because the most of the order events involve

erroneous orders.

Table 3.6: Price Impact Statistical Significance Test
8/30/2010 9/7/2010 9/13/2010 9/14/2010

FV alue Pr > F FV alue Pr > F FV alue Pr > F FV alue Pr > F

BZV0 2.97 0.09360

BZX0

BZZ0 12.55 0.001800

RBV0 6.89 0.014600 33.04 0.000100

RBX0

RBZ0 6.17 0.0048

HOX0 3.84 0.0574

HOZ0 3.61 0.0650

HOF1

CLX0

CLF1 4.12 0.023900 14.49 0.0005

CLF1

BZV0-BZX0 4.09 0.0524

BZV0-BZZ0

BZZ0-BZF1 4.20 0.0516

RBV0-RBZ0

RBV0-RBF1 5.51 0.008400 24.53 0.0001

RBX0-RBZ0 2.99 0.0315

HOZ0-HOF1 4.85 0.0336

HOV0-HOZ0

HOV0-HOX0

CLV0-CLX0 6.36 0.0042

CLF1-CLG1

CLZ0-CLF1 5.05 0.0303

Impacted 1 4 11 1

% Impacted 4% 17% 46% 4%
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3.4.3 Results

From our price impact analysis of the 24 representative markets using the order

flow imbalance variable, we conclude that the order flow events on Sep. 13, 2010

exerted higher price impact on both the number of markets and the proportional

influence on price change compared with the regular trading days. Furthermore, the

effect is consistent with the volatility impact in that the impact to spread markets

was more pronounced than the outright markets. Out of the 24 markets studied,

58% of spread markets had significant price impact, while 33% of outright markets

had significant price impact. Compared with the regular trading days, the number

of impacted markets is 5.5 times more on Sep. 13, 2010.

3.5 Conclusions

In this study, we analyzed the market impact of some intensive exogenous order

events to relatively illiquid markets as a natural experiment. The unique contribu-

tion of this study is to characterize the market responds to large intensive orders in

a relatively short period of time without true supply and demand information on the

horizon. In this case, the exogenous order volumes are 3-10 times larger than the

normal market orders (Figure 3.2). We show that intensive orders as such generate

significant market impact in terms of both volatility and prices. Using realized volatil-

ity and order flow imbalance variable, we examined the impact of market volatility

and market prices, and we conclude following:

(a) Intensive exogenous order events generate more market volatility in spread mar-

kets than that in outright markets.

(b) On average, intensive exogenous order events change market prices in the mag-

nitude of 3-5 times than that of the normal market condition, and
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(c) Price impact is more pronounced in spread markets than outright markets.

Although it is intuitive that the market would respond to large quantity of ex-

ogenous order events in the similar way it would under the regular market condition,

market impact under the normal market condition is much more complex due to

many reasons, such as supply and demand, the interplay of informed and uninformed

traders, etc. This study provides an empirical evidence to such events where there is

almost no information inflow in the process, and yet the volatility and price impact

dynamics are evident. In the HFT context, most of the high frequency traders are not

informed, and they trade close to 70% of the market volume. The implication of this

kind of events may help draw parallel to the HFT to the traditional low frequency

market.

Furthermore, these results would also provide cautionary evidence for market

participants and regulators to understand the impact of the unexpected events as

such would do to the market. Therefore it may help them to design mitigation plans

to reduced their risk exposures accordingly.
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CHAPTER IV

Behavior Based Learning in Identifying High

Frequency Trading Strategies

4.1 Introduction

Many financial market participants now employ algorithmic trading, commonly

defined as the use of computer algorithms to automatically make certain trading

decisions, submit orders, and manage those orders after submission. By the time of

the “Flash Crash” (On May 6, 2010 during 25 minutes, stock index futures, options,

and exchange-traded funds experienced a sudden price drop of more than 5 percent,

followed by a rapid and near complete rebound), algorithmic trading was thought to

be responsible for more than 70% of trading volume in the U.S. ([Hendershott and

Riordan, 2008], [Brogaard , 2010], [Jones and Menkveld , 2011], and [Kirilenko et al.,

2011]). Moreover, Kirilenko et al. [Kirilenko et al., 2011] have shown that the key

events in the Flash Crash have a clear interpretation in terms of algorithmic trading.

A variety of machine learning techniques have been applied in financial mar-

ket analysis and modeling to assist market operators, regulators, and policy makers

to understand the behaviors of the market participants, market dynamics, and the

price discovery process of the new electronic market phenomena of algorithmic trad-

ing(Hasbrouchk and Seppi [2001a], Hendershott and Riordan [2008], Gatheral [2010],
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?, Jones et al. [1994], and Karpoff [2004]). We propose modeling traders’ behavior as

a Markov Decision Process (MDP), using observations of individual trading actions

to characterize or infer trading strategies. More specifically, we aim to learn traders’

reward functions in the context of multi-agent environments where traders compete

using fast algorithmic trading strategies to explore and exploit market microstructure.

Our proposed approach is based on a machine learning technique (Sutton and

Barto [1998], Barto and Williams [1991], and Bagnell and Dey [2008]) known as In-

verse Reinforcement Learning (IRL) (Ng and Russel [2000], Abbeel and Ng [2004],

Syed and Schapire [2007], Russell [1998], and Ramachandran and Amir [2007]). In

IRL, one aims to infer the model that underlies solutions that have been chosen by

decision makers. In this case the reward function is of interest by itself in character-

izing agent’s behavior irregardless of its circumstances. For example, Pokerbots can

improve performance against suboptimal human opponents by learning reward func-

tions that account for the utility of money, preferences for certain hands or situations,

and other idiosyncrasies (Schaeffer and Szafron [1998]) Another objective in IRL is to

use observations of the traders’ actions to decide ones’ own behaviors. It is possible

in this case to directly learn the reward functions from the past observations and be

able derive new policies based on the reward functions learned in a new environment

to govern a new autonomous process (apprenticeship learning). In this paper, we

focus our attention on the former problem to identify trader’s behavior using reward

functions.

The rest of the paper is structured as follows: In Section 2, we define notation

and formulate the IRL model. In Section 3, we first propose a concise MDP model

of the limit order book to obtain reward functions of different trading strategies,

and then solve the IRL problem using a linear programming approach based on an

assumption of rational decision making. In Section 4, we present our agent-based

simulation model for E-Mini S&P 500 futures market and provide validation results
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that suggest this model replicates with high fidelity the real E-Mini S&P 500 futures

market. Using this simulation model we generate simulated market data and perform

two experiments. In the first experiment, we show that we can reliably identify

High Frequency Trading (HFT) strategies from other algorithmic trading strategies

using IRL. In the second experiment, we apply IRL on HFTs and show that we

can accurately identify a manipulative HFT strategy (Spoofing) from the other HFT

strategies. Section 5 discusses the conclusion of this study and the future work.

4.2 Problem Formulation - Inverse Reinforcement Learning

Model

The primary objective of our study is to find the reward function that, in some

sense, best explains the observed behavior of a decision agent. In the field of rein-

forcement learning, it is a principle that the reward function is the most succinct,

robust and transferable representation of a decision task, and completely determines

the optimal policy (or set of policies) (Ramachandran and Amir [2007]). In addi-

tion, knowledge of the reward function allows a learning agent to generalize better,

since such knowledge is necessary to compute new policies in response to changes in

environment. These points motive our hypothesis that IRL is a suitable method for

characterizing trading strategies.

4.2.1 General Problem Definition

Lets define a (infinite horizon, discounted) MDP model first. LetM = {S,A,P , γ,R},

where:

s ∈ S where S = {s1, s2, ..., sN} is a set of N states;

A = {a1, a2, ..., ak} is a set of k possible actions;
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P = {Paj}kj=1, where Paj is a transition matrix such that Psaj(s
′) is the proba-

bility of transitioning to state s′ given action aj taken in state s;

γ ∈ (0, 1) is a discount factor;

R is a reward function such that R or R(s, a) is the reward received given action

a is taken when in state s.

Within the MDP construct, a trader or an algorithmic trading strategy can be

represented by a set of primitives (P , γ,R) where R is a reward function representing

the trader’s preferences, P is a Markov transition probability representing the trader’s

subjective beliefs about uncertain future states, and γ is the rate at which the agent

discounts reward in future periods. In using IRL to identify trading strategies, the

first question that needs to be answered is whether (P , γ,R) is identified. Rust (Rust

[1997]) discussed this identification problem in his earlier work in economic decision

modeling. He concluded that if we are willing to impose an even stronger prior

restriction, stationarity and rational expectations, then we can use non-parametric

methods to consistently estimate decision makers’ subjective beliefs from observations

of their past states and decisions. Hence in formulating the IRL problem in identifying

trading strategies, we will have to make two basic assumptions: first, we assume the

policies we model are stationary; second, the trading strategies are rational expected-

reward maximizers.

Here we define the value function at state s with respect to policy π and discount γ

to be V π
γ (s) = E[

∑∝
t=0 γR(st, π(st))|π], where the expectation is over the distribution

of the state sequence {s0, s1, ..., st} given policy π (superscripts index time). We also

define the Qπ
γ(s, a) for state s and action a under policy π and discount γ to be the

expected return from state s, taking action a and thereafter following policy π. And

then we have the following two classical results for MDPs (see, e.g., Sutton and Barto

[1998], Bertsekas [2007]):
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Theorem 1: (Bellman Equations) Let an MDP M = {S,A,P , γ,R}, and a policy

π : S → A be given. Then, for all s ∈ S, a ∈ A, V π
γ and Qπ

γ satisfy:

V π
γ (s) = Rπ(s, π(s)) + γ

∑
j∈S

Psπ(s)(j)V
π
γ (j),∀s ∈ S (4.1)

Qπ
γ(s, a) = Rπ(s, π(s)) + γ

∑
j∈S

Psa(j)V
π
γ (j),∀s ∈ S (4.2)

Theorem 2: (Bellman Optimality) Let an MDP M = {S,A,P , γ,R}, and a policy

π : S → A be given. Then, π is an optimal policy for M if and only if, for all s ∈ S:

V π∗

γ (s) = max
a∈A

[Rπ(s, π(s)) + γ
∑
j∈S

Psπ(s)(j)V
π
γ (j)],

∀s ∈ S (4.3)

The Bellman Optimality condition can be written in matrix format as follows:

Theorem 3: Let a finite state space S, a set of a ∈ A, transition probability matrix

Pa and a discount factor γ ∈ (0, 1) be given. The a policy given by π is an optimal

policy for M if and only if, for all a ∈ A \ π, the reward R satisfies:

(Pπ − Pa)(I − γPπ)R � 0 (4.4)

4.2.2 Linear Programming Approach to IRL

The IRL problem is, in general, highly underspecified, which has led researchers to

consider various models for restricting the set of reward vectors under consideration.

The only reward vectors consistent with an optimal policy π are those that satisfy the

set of inequalities in Theorem 3. Note that the degenerate solution R = 0 satisfies

these constraints, which highlights the underspecified nature of the problem and the

need for reward selection mechanisms. Ng and Russel (Ng and Russel [2000]) advance

the idea choosing the reward function to maximize the difference between the optimal
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and suboptimal policies, which can be done using a linear programming formulation.

We adopt this approach, maximizing:

∑
s∈S

[Qπ
γ(s, a′)− γ max

a∈A\a′
Qπ
γ ],∀a ∈ A (4.5)

Putting theorem 4.4 and 4.5 together, we have an optimization problem to solve

to obtain a reward function under an optimal policy:

max
R

[
∑
s∈S

β(s)− λ
∑
s∈S

α(s)]

s.t.

α(s) � β(s),∀s ∈ S

(Pπ − Pa)(I − γPπ)R � β(s),∀a ∈ A,∀s ∈ S

(Pπ − Pa)(I − γPπ)R � 0 (4.6)

In summary, we assume an ergodic MDP process. In particular, we assume the

policy defined in the system has a proper stationary distribution. And we further as-

sume that trader’s trading strategies are rational expected reward maximizers. There

are specific issues regarding the non-deterministic nature of trader’s trading strategies

when dealing with empirical observations, and we will address them later in the next

section.

4.2.3 Key Modeling Issues

One of the key issues that arise in applications of IRL or apprenticeship learning

to algorithmic trading is that the trader under observation may not appear to follow

a deterministic policy. In particular, a trader observed in the same state on two dif-

ferent occasions may take two different actions, either because the trader is following

a randomized policy or because the state space used in the model lacks the fidelity
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to capture all the factors that influence the trader’s decision. To address the issue

of non-deterministic policies, we need to first understand the relationship between a

deterministic policy versus non-deterministic policy under the assumption we made

earlier. We use notation MD for Markov deterministic policy, and MR for Markov

non-deterministic policy. We can establish the relationship between the optimality of

a deterministic policy versus a non-deterministic policy through the following propo-

sition (Puterman [1994]):

Proposition: For all v ∈ V and 0 ≤ γ ≤ 1:

sup
d∈DMD

{Rd + γPdv} = sup
d∈DMR

{Rd + γPdv},∀d ∈ A (4.7)

Policies range in general from deterministic Markovian to randomized history de-

pendent, depending on how they incorporate past information and how they select

actions. In the financial trading world, traders deploy different trading strategies

where each strategy has a unique value proposition. We can theoretically use cu-

mulative reward to represent the value system encapsulated in the various different

trading strategies. For example in a simple keep-or-cancel strategy for buying one

unit, the trader has to decide when to place an order and when to cancel the order

based on the market environment (can be characterized as Stochastic processes) to

maximize its cumulative reward under the constraint of the traders’ risk utility and

capital limit. This can be realized in a number of ways. It can be described as a

function R(s) meaning when the system is in state s the trader is always looking for a

fixed reward. This notion of value proposition drives the traders to take corresponding

optimal actions according to the market conditions. However due to the uncertainty

of the environment and the random error of the measurement in the observations, a

deterministic policy could very likely be perceived to have a non-deterministic nature.

Based on the proposition or equation 4.7, the optimal value attained by a random-
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ized policy is the same as the one attained by a deterministic policy, and there exists

an optimal value and it is unique in V . Therefore, we know that the supremum value

obtained from all policies can be used to recover an equivalent optimal stationary de-

terministic policy. Essentially we are looking for an optimal deterministic stationary

policy which achieves the same optimal value as the non-deterministic policy. This

guarantees the learning agent to obtain a unique reward function that achieves the

optimal value. The merit of this approach is that the reward function will be unique

for a specific set of observations. We will not be concerned about whether the trader’s

real policy is deterministic or not. This is especially useful in the problem where we

attempt to identify traders’ trading strategies based on a series of observations.

4.3 A MDP Model for Limit Order Book

Cont et al. (Stoikov and Talreja [2010b], and Kukanov and Stoikov [2011]) make

the claim that order flow imbalance and order volume imbalance have the strongest

link with the price changes. It seems that these two variables can best capture the

limit order book dynamics. It has been proven effective in modeling buy-one-unit

and make-the-spread strategies by Hunt, et al. Hult and Kiessling [2010] where three

price levels have shown significantly good resemblance to the real market character-

istics. Other financial market microstructure studies also provide strong evidence of

using order book imbalance to represent the market supply and demand dynamics or

information asymmetry (Hasbrouchk and Seppi [2001b], Karpoff [2004], Jones et al.

[1994], Bouchaud and Kockelkoren and Obizhaeva and Wang [2005]). Based on this

evidence, we choose two bid/ask volume imbalance variables to capture the mar-

ket environment, and we choose position/inventory level as a private variable of the

trader. In summary, we use three sensory variables to characterize the environment

in which the traders operate. Now we can define state s = [TIM,NIM,POS]T , and

each variable takes following discrete values:
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TIM - volume imbalance at the best bid/ask: {-1, 0, 1};

NIM - volume imbalance at the 3rd best bid/ask: {-1, 0, 1};

POS - position status: {-1, 0, 1}.

When the variable takes value 0 (in neutral state), it means that the variable takes

mean (µ) value within µ± 1.96σ; when the value is above µ + 1.96σ, we define it as

high; and when the value is below µ− 1.96σ, we define it as low. Essentially we have

two external variables: TIM and NIM. Variables TIM and NIM inform the traders

whether volume imbalance is moving toward sell side (low), neutral, or toward buy

side (high), as well as the momentum of the market price movement. The private

variable POS informs traders whether his or her inventory is low, neutral or high. All

three variables are very essential for algorithmic traders to make their trade decisions.

We also define a set of actions that correspond to traders’ trading choices at each state

a = {PBL, PBH, PSL, PSH, CBL, CBH, CSL, CSH, TBL, TBH, TSL, TSH}, and

each value is defined in TABLE 4.1.

Table 4.1: Action definition.
Action Action Description
Code

1 PBH - place buy order higher than the 3rd best bid price

2 PBL - place buy order lower than the 3rd best bid price

3 PSH - place sell order higher than the 3rd best ask price

4 PSL - place sell order lower than the 3rd best ask price

5 CBH - cancel buy order higher than the 3rd best bid price

6 CBL - cancel buy order lower than the 3rd best bid price

7 CSH - cancel sell order higher than the 3rd best ask price

8 CSL - cancel sell order lower than the 3rd best ask price

9 TBH - Trade buy order higher than the 3rd best bid price

10 TBL - Trade buy order lower than the 3rd best bid price

11 TSH - Trade sell order higher than the 3rd best ask price

12 TSL - Trade sell order lower than the 3rd best ask price

We assume a highly liquid market where market orders will always be filled, and

we apply the model to a simulated order book where both limit orders and market
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orders are equally present.

4.4 Experiments

In this section, we conduct two experiments using the MDP model defined earlier

to identify algorithmic trading strategies. We use the six trader classes defined by

Kirilenko et. al. (Kirilenko et al. [2011]), namely High Frequency Traders, Market

Makers, Opportunistic Traders, Fundamental Buyers, Fundamental Sellers and Small

Traders. In general, HFTs have a set of distinctive characteristics, such as, very high

activity volume throughout a trading day, frequent modification of orders, mainte-

nance of very low inventory levels, and an agnostic orientation toward long or short

positions. Market Makers are short horizon investors who follow a strategy of buying

and selling a large number of contracts to stay around a relatively low target level

of inventory. Opportunistic Traders sometimes behave as Market Makers buying and

selling around a target position, and sometimes they act as Fundamental Traders

accumulating long or short positions. Fundamental Buyers and Sellers are net buyers

and sellers who accumulate positions in one single direction in general. Small Traders

are the ones who have significant less activities during a typical trading day.

In the first experiment, we are interested in separating HFT strategies from Mar-

ket Making and Opportunistic Trading strategies in the simulated E-Mini S&P 500

futures market. From Figure (b) in Fig. 4.1, we see that the behaviors of the Funda-

mental Buyers/Sellers are distinctively different from the other algorithmic traders.

It is clear that classification between the HFTs and these classes of trading strategies

are relatively trivial. We therefore devote our attention to separate HFT strategies

from the Market Marking and the Opportunistic Trading strategies. We will start

this section with a description of the design of our agent-based simulation for E-Mini

S&P 500 futures market (Paddrik et al. [2011]). We will then use the data generated

from this simulation as observations to recover the reward functions of different kinds
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of trading strategies, and we apply various classification methods on these trading

strategies in the reward space to see whether we can accurately identify the different

trading strategy classes. In the second experiment, we will focus on a specific HFT

strategy called Spoofing, and try to separate this trading strategy from the other HFT

strategies. In general, we test the hypothesis that reward functions can be used to

effectively identify HFT strategies in both within-group and across-group situations.

4.4.1 Simulated E-Mini S&P 500 Futures Market

When simulating a system it is convenient to decompose the system into its basic

parts. A financial market can be understood as a set of market participants, a trading

mechanism, and a security. Agent-based models have a similar structure and include

a set of agents, a topology and an environment. Through this framework it is possible

to describe market participants as a set of agents with a set of actions and constraints,

the market mechanism as the topology, and the exogenous flow of information relevant

to market as the environment (Macal and North [1999]).

Using this framework, the simulation is tuned to replicate the same market con-

ditions and variables as that of the nearest month E-Mini S&P 500 futures contract

market. The agents in the model reflect closely the classes of participants observed in

the actual S&P 500 E-mini futures market and the market mechanism is implemented

as an electronic limit order book (see Fig. 4.1). Each class of participants is then

characterized by their trade speed, position limit, order size distribution, and order

price distribution. All these characterizations are based on the order book data from

the E-Mini S&P 500 futures contracts provided by the Commodity Futures Trading

Commission (CFTC). (see TABLE 4.2).

After the model is simulated there are two stages of validation. The first stage

consists of a validation of the basic statistics for each set of agents, such as arrival

rates, cancellations rates, and trade volume (see TABLE 4.3). The values observed
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Table 4.2: Trader group characterization

Tr
ad

er

Num
be

r o
f

Sp
ee
d
of

Po
sit

ion

M
ar
ke
t

Type Traders Order Limits Volume

Small 6880 2 hours −30 ∼ 30 1%

Fundamental 1268 1 minute − ∝∼∝ 9%
Buyers

Fundamental 1276 1 minute − ∝∼∝ 9%
Sellers

Market 176 20 seconds −120 ∼ 120 10%
Makers

Opportunistic 5808 2 minutes −120 ∼ 120 33%

HFTs 16 0.35 seconds −3000 ∼ 3000 38%

in the simulation are compared to data of participants in the actual market. The

second stage of validation consists of verifying that the price time-series produced

by the simulation exhibits “stylized facts” (Kullmann,1999 Kanto and Kaski [1999])

that characterize financial data. These include heavy tailed distribution of returns1

(Appendix A Fig. 4.7), absence of autocorrelation of returns2 (Appendix A Fig. 4.8),

volatility clustering3 (Appendix A Fig. 4.9), and aggregational normality4 (Appendix

A Fig. 4.10).

1The empirical distributions of financial returns and log-returns are fat-tailed. It has been widely
observed starting from Mandelbrot Mandelbrot [1963] and Gopikrishnan et al. Meyer and Stanley
[1999]. Even though it is the most widely acknowledged and the most elementary one, this stylized
fact is not easily met by all financial modelling.

2There is no evidence of correlation between successive returns. As it is pointed out by Pagan
Pagan [1996] and Cont et al. Potters and Bouchaud [1997], the autocorrelation function decays very
rapidly to zero, even for a few lags of 1 minute.

3Absolute returns or squared returns exhibit a long-range slowly decaying autocorrelation func-
tion. It is first formulated by Mandelbrot Mandelbrot [1963] as “large changes tend to be followed
by large changes of either sign, and small changes tend to be followed by small changes”.

4As the time scale increases, the fat-tail property diminishes and the return distribution ap-
proaches Gaussian distribution. This cross-over phenomenon is documented by Kullmann et al.
Kanto and Kaski [1999].
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Table 4.3: Trader group validation

Tr
ad

er

Sim
ula

ted

Actu
al

Ra
te-

Sim
ula

ted

Ra
te-

Actu
al

Type Volume Volume Cancellation Cancellation

Small 1% 1% 40% 20− 40%

Fundamental 10% 9% 44% 20− 40%
Buyers

Fundamental 10% 9% 44% 20− 40%
Sellers

Market 10% 10% 35% 20− 40%
Makers

Opportunistic 31% 33% 50% 40− 60%

HFTs 38% 38% 77% 70− 80%

4.4.2 Identify HFTs from Market Making and Opportunistic Trading

Strategies

Using the IRL model that we formulated above, we learn the corresponding reward

functions from 18 simulation runs where each run consists of approximately 300,000

activities including orders, cancellations, and trades. We then use the different clas-

sification methods on the rewards to see how well we can separate the HFTs from the

other two different trading strategies.

From Fig. 4.2, we see that reward space has a very succinct structure, which

tends to confirm the observations made in (Ramachandran and Amir [2007], and

Qiao and Beling [2011]) that policies are generally noisier than reward functions. We

also observe that the reward function converges faster than the policy as observation

time increases. In addition to the lack of robustness in policy space, the lack of

portability of learned policies is another important drawback in the use of policies to

characterize trading strategies. Furthermore, the fact that actions are notional makes

it unclear how one could use policies to measure differences among trading strategies.

Hence, our study focuses attention on reward space. Using Principal Component
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(a) Actual E-Mini S&P 500 futures traders

(b) Simulated E-Mini S&P 500 futures traders

Figure 4.1: E-Mini S&P 500 Actual vs. Simulated E-Mini S&P 500 futures
traders’ end-of-day position vs. trading volume.

Figure 4.2: Reward Space Convergence For a series of observations of a particular
trader, as time interval increases, the reward at state 5 converges from
10 to 0, and the reward at state 14 converges from 0.66 to 0. At all the
other states, the reward remains at -1.
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dimension shrinkage method, we are able to compare the two trading strategies in a

three dimensional space visually. Fig. 3 and Fig. 4 show a clear separation of the

HFT strategies from the other two classes of trading strategies.

Three different classification methods are then applied on the learned reward

functions. From the comparison (Table 4.4) of the results of the three different clas-

sification methods, i.e. Linear Discriminant Analysis (LDA), Quadratic Discriminant

Analysis (QDA), and Multi-Gaussian Discriminant Analysis (MDA). The two non-

linear methods perform better than the linear one. It can be seen from the visualiza-

tion reward distributions. The highest classification accuracy achieved by all three

methods is 100%. In general, all of them achieved relatively high accuracy in the

range between 95% and 100%. The sensitivity (i.e. true positive) is in the range

between 89% and 94%. The specificity (i.e. true negative) is in general better, and

it is 100% across all three classification methods.

Table 4.4: Trading Strategy Classification Results
High Frequency Traders vs. Opportunistic Traders

LDA QDA MDA
Accuracy 97% 100% 97%
Sensitivity 94% 100% 94%
Specificity 100% 100% 100%

High Frequency Traders vs. Market Makers
LDA QDA MDA

Accuracy 95% 97% 95%
Sensitivity 88% 94% 88%
Specificity 100% 100% 100%

Opportunistic Traders vs. Market Makers
LDA QDA MDA

Accuracy 70% 75% 83%
Sensitivity 39% 100% 72%
Specificity 100% 100% 94%

The results using this model for separating Opportunistic Traders vs. Market

Makers are not as good compared with those between HFT vs. Market Making

and HFT vs. Opportunistic strategies (TABLE 4.4). From the classification results,
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Figure 4.3: Reward Space Clustering Reward space clustering between HFT
strategies vs. Opportunistic Trading strategies

Figure 4.4: Reward Space Clustering Reward space clustering between HFT
strategies vs. Market Marking Trading strategies
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we can see that MDA classification performed the best and achieved 83% accuracy,

72% sensitivity, and 94% specificity. However, this result is expected in that the

current order book model is specifically targeted at characterizing HFT strategies. In

order to achieve better results between Opportunistic and Market Making strategies,

we will have to consider other factors that can best characterize the Opportunistic

Trader’s behaviors. Further study of the these two classes’ behaviors will be critical

in improving the classification performance between these two classes’ of trading

strategies.

4.4.3 Identify A Spoofing Strategy from Other HFTs

In this section, we are interested in one particular manipulative strategy in the

High Frequency Trading paradigm: Spoofing, which sometimes is referred to as “Hype

and Dump” manipulation (Aggarwal and Wu [2003], and Eren and Ozsoylev [2006]).

Both empirical and theoretical evidence show that the manipulators can profit from

this manipulative trading practice. In this scheme, the manipulator artificially inflates

the asset price through promotion in order to sell at the inflated price, or deflates

the asset price through false hype in order to buy at the deflated price. One con-

crete example of this trading strategy is illustrated in Fig. 4.5 A. Suppose a trader

intends to sell 5 shares of an asset, he first submits a large limit-buy order with a

bid at or below the current market price making the buy side of the order book seem

large. Based on the market information infusion process or supply-demand theory,

the market price will tend to move higher. And the spoofing trader will then submit

a market-sell order and consequently cancels the original buy order as it is illustrated

in Fig. 4.5 B.

This manipulative practice is illegal under the U.S. securities law, yet it has been

frequently discovered in both equity and futures markets. Our simulated spoofing

trading strategy is based on our observations on a futures market where a trader

58



Figure 4.5: Spoofing Example Market microstructure-based manipulation exam-
ple: buy spoofing

repeatedly exercised the spoofing pattern over a month period. Due to the nature of

the CFTC investigation, we will not be able to disclose the specifics for publications,

but we are able to capture the deterministic nature of their strategy in the simulation.

Specifically, in our discrete time agent-based simulation model, we design a spoofing

agent as one of the HFTs except that it deploys additional trading plots: first they

engage in a signaling game and then a trading game. In the signaling stage, the

spoofing agent places a large buy order at the best bid price. After 600 milliseconds

(it is designed with relative to the speed of HFT’s cancellation rate), it transitions

into the trading stage where they cancel the original limit order and places a market

order. Since the trader is a HFT, in order to maintain the constraint of his inventory,

the trader will have to spoof and trade on the other side of the book at certain point.

As we have done for the general simulation, we run 18 times of the simulation

to generate 18 market instances. And then we randomly select 18 samples for all

the general HFT trading strategies, and select 18 samples for the Spoofing trading

strategy for IRL. We then obtain 36 reward functions with labels and apply three
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classification methods on these samples, and obtain results in TABLE 4.5. From

these results, we see that we can identify the Spoofing strategy from the other HFT

strategies with at least 92% accuracy. We also observe again that the non-linear

classification rule works better in general.

Figure 4.6: Reward Clustering Reward space clustering between HFT strategies
vs. the Spoofing strategy

Table 4.5: Spoofing Trading Strategy vs. Other HFT Classification Results

Market Makers vs. Opportunistic Traders
LDA QDA MDA

Accuracy 92% 97% 97%
Sensitivity 100% 100% 100%
Specificity 83% 94% 94%

4.5 Conclusions

The primary focus of this paper is to use Inverse Reinforcement Learning method

to capture the key characteristics of the HFT strategies. From the results using a

linear programming method for solving IRL with simulated E-Mini S&P 500 futures

market data, we attain a high identification accuracy ranging between 95% and 100%

for the targeted trading strategy class, namely High Frequency Trading from Market
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Making and Opportunistic strategies. We also show that the algorithm can accurately

(between 92% and 95%) identify a particular type of HFT spoofing strategy from

other HFT strategies. And we also argue that the reward space is better suited for

identification of trading strategies than the policy space.

We investigate and address the issues of modeling algorithmic trading strategies

using IRL models such as, addressing non-deterministic nature of the observed poli-

cies in learning, constructing efficient MDP models to capture order book dynamics,

achieving better identification accuracy in reward space, etc. With a reliably vali-

dated agent based market simulation, we capture the essential characteristics of the

algorithmic trading strategies. The practical implication of this research is that we

demonstrate that the market operators and regulators can use this behavior based

learning approach to perform trader behavior based profiling, and consequently mon-

itor the emergence of new HFTs and study their impact to the market.

Here is a list of future research to be done:

• Apply both the linear programming approach and maximum likelihood ap-

proaches to the simulated trading strategies and the Spoofing data collected

from the actual market, and compare the results of these two approaches in

terms of identification accuracy.

• Create simulation agent based on reward functions learned from the actual

market observations, and study the new trading strategy’s impact to the market

quality.
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(a) Actual E-Mini S&P 500

(b) Simulated E-Mini S&P 500

Figure 4.7: E-Mini S&P 500 Heavy Tailed Distribution of Returns From panel
(a) and (b), we see normality tests of returns for both actual and simulated
E-Mini S&P 500 show deviation from Gaussian distribution toward both
tails.
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(a) Actual E-Mini S&P 500

(b) Simulated E-Mini S&P 500

Figure 4.8: E-Mini S&P 500 Absence of Autocorrelation of Returns From
panel (a) and (b), we see autocorrelation of returns for both actual and
simulated E-Mini S&P 500 are all close to zero within 95% confidence
level.
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(a) Actual E-Mini S&P 500

(b) Simulated E-Mini S&P 500

Figure 4.9: E-Mini S&P 500 Autocorrelation Clustering From panel (a) and
(b), we see returns decay slowly for both actual and simulated market.
Even though there are few lags outside the 95% confidence lines, the
simulation decaying pattern closely resembles that of the actual market
as lag increases.
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(a) Actual E-Mini S&P 500

(b) Simulated E-Mini S&P 500

Figure 4.10: E-Mini S&P 500 Aggregational Normality As shown in panel (a)
and (b), returns approaches to Gaussian distribution as the time scale
increase for both actual and the simulated market.
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CHAPTER V

Gaussian Process Based Trading Strategy

Identification

5.1 Introduction

Financial market has changed dramatically in recent years. These changes reflect

the culmination of a decade-long trend from a market structure with primarily man-

ual floor trading to a market structure with primarily computer automated trading.

A primary driving force of this accelerated transformation has been the increased

evolution of technologies for generating, routing, and executing orders. These tech-

nologies have dramatically improved the speed, capacity, and sophistication of the

trading functions that are available to market participants.

High quality trading markets promote capital raising and capital allocation by

establishing prices for securities and by enabling investors to enter and exit their po-

sitions in securities whenever they wish to do so. The one important feature of all

kinds of Algorithmic trading strategies is discovering the underlying persistent trad-

able phenomena and generating trading opportunities. These trading opportunities

range from microsecond price movement allowing a trader to benefit from market-

making trades, to several minute-long strategies that trade on momentum forecast-ed

by micro-structure theories, to several hour-long market moves surrounding recurring
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events and deviations from statistical relationship (Aldridge [2010]). Algorithmic

traders then design their trading algorithms and systems aiming to generate sig-

nals that result in consistent positive outcomes under different market circumstances.

These market circumstances can be described in high frequency terms. Different

strategies may target different frequencies, and the profitability of a trading strategy

is often measured by certain return metric. The most commonly used measure is

Sharpe ratio, a risk-adjusted return metric first proposed by Sharpe (Sharpe [1966]).

In this study, we model trading behavior of different market participants from

the solution to inverse Markov decision process (MDP). We try to describe how the

traders are able to take actions in a highly uncertain environment to reach its return

goals at different horizons. This task can be solved by using dynamic programming

(DP) and reinforcement learning (RL) based on MDP. The model accounts for trader’s

preferences and expectations of uncertain state variables. In a general MDP modeling

setting we describe these variables in two spaces: state space and action space. From

trading decision perspective, we can parameterize learning agents using the reward

functions that depend on state and action. We consider the market dynamics in

view of the learning agents’ subjective beliefs. The agents perform DP/RL through

a sense, trial and learn cycle. First, the agents gain state information from sensory

input. Based on the current state, knowledge and goals, agents find and choose a

best action. Upon the new feedback, the agents learn to update the knowledge with

a goal of maximizing their accumulative expected reward. In discrete-valued state

and action problem space, DP and RL methods take similar techniques involving

policy iteration and value iteration algorithms (Bertsekas [2007], and Sutton and

Barto [1998]) to solve the MDP problems. Formalisms for solving forward problems

of RL are often divided into model based and model free approaches (D. et al. [2005],

and Sutton and Barto [1998]).

As it is framed by Abbeel et al. (Abbeel and Ng [2004]) under the Inverse Re-
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inforcement Learning (IRL) framework, the entire field of reinforcement learning is

founded on the presupposition that the reward function, rather than the policy is

the most succinct, robust, and transferable definition of the task. However, the re-

ward function is often difficult to know in advance for some real-world tasks. Such

difficulties may arise in the following situations: 1) We have no experience to tackle

the problem; 2) We have experience but can not interpret the reward function ex-

plicitly; 3) The problem we solve may be interacting with the adversarial decision

makers who make all their effort to keep the reward function secrete. In comparison

with the difficulty of accessing the true reward function, it is easier to observe some

other agent’s (or we call teacher/expert) behavior showing how to solve the problems.

Hence, we have the motivation to learn from observations. Technical approaches to

learning from observations generally fall into two broad categories Dey and Srinivasa

[2009]. The first one, called imitation learning, attempts to use supervised learning

to predict actions directly from observations of features of the environment, which

is unstable and vulnerable to highly uncertain environment. The other is concerned

with how to learn the reward function that characterizes the agent’s objectives and

preferences in MDP, which is called IRL (Ng and Russel [2000]).

IRL was first introduced in machine learning research by Ng and Russel (Ng

and Russel [2000]), under the assumption that the reward r = ωTφ(s), where ω

is a coefficient vector and φ(s) : s → [0, 1]k is a function mapping state s to a k

dimensional vector. Then they formulate IRL problem as an optimization problem

to maximize the sum of differences between the quality of the optimal action and the

quality of the next-best action. Based on this linear approximation of reward function,

other algorithms have been developed or integrated into apprenticeship learning. The

principal idea of apprenticeship learning using IRL is to search mixed solutions in a

space of learned policies with the goal that the accumulative feature expectation is

near that of the expert (Abbeel and Ng [2004] and Bowling and Schapire [2008]).
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Other algorithms have also developed under the IRL framework. A game-theoretic

approach to apprenticeship learning using IRL is developed in the context of a two-

player zero-sum game in which the apprentice chooses a policy and the environment

chooses a reward function (Schapire [2008]). Another algorithm for IRL is policy

matching in which the loss function penalizing deviations from expert’s policy that is

minimized by tuning the parameters of reward functions (Neu and Szepesvari [2007]).

Maximum entropy IRL is proposed in the context of modeling real-world navigation

and driving behaviors (Bagnell and Dey [2008]). The algorithms for apprenticeship

learning using IRL do not actually aim to recover the reward function but only the

optimal policy. Ramachandran and Amir consider IRL from a Bayesian perspective

without assuming the linear approximation of the reward function (Deepak and Eyal

[2007]). Their model interprets the observations from the expert as the evidence that

is used to obtain a posterior distribution over reward using Markov Chain Monte

Carlo simulation. Recent theoretical works on IRL such as the framework of linear-

solvable MDP (Dvijotham and Todorov [2010]), the bootstrap learning (Boularias and

Chaib-draa [2010]) and feature construction (Popovic and Koltun [2010]), have also

published to improve the learning performance. IRL has also been successfully applied

to many real-world problems, such as automatic control of helicopter flight (Coates

and Ng [2010]) and motion control of an animation system in computer graphics (Lee

and Zoran [2010]).

We apply an Gaussian process based IRL (GPIRL) model proposed by Qiao et

al. (Qiao and Beling [2011]) to learning trading behavior of a particular financial

market. In this GPIRL, a Gaussian prior is assigned on the reward function and

the reward function is treated as a Gaussian process. This approach is similar in

perspective to that Ramachandran and Eyal (Deepak and Eyal [2007]), who view the

state-action samples from the expert as the evidence that will be used to update a

prior on the reward function, under a Bayesian framework. The solution (Deepak
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and Eyal [2007]) depends on non-convex optimization using Markov Chain Monte

Carlo simulation. Moreover, the ill-posed nature of the inverse learning problem also

presents difficulties. Multiple reward functions may yield the same optimal policy,

and there may be multiple observations at a state given the true reward function.

GPIRL model aims to deal with the ill-posed nature by applying Bayesian inference

and preference graphs. One of the main novelties of this approach is that it not only

bears a probabilistically coherent view but also is computationally tractable.

Due to the dynamic nature of the financial markets, it is possible to postulate a

priori a relationship between the market variables we observe and those we wish to

predict. The main contributions of this study can be summarized as follows,

1. We model the reward function using Gaussian process, which offers the ad-

vantage that is relatively insensitive to the number of the observations and it

performs better than other algorithms when we only have partial market obser-

vations on the trading strategies we try to recover.

2. We apply preference graphs to address non-deterministic nature of the observed

trading behaviors, reducing the uncertainty and computation burden caused by

the ill-posed nature of the inverse learning problem. We build new likelihood

functions for preference graphs and prove the effectiveness of these formulations

in experiments.

3. We also perform clustering of behavior representation of the trading strate-

gies, and we make connections between the existing summary statistic based

trader type classification approach (Kirilenko et al. [2011]) with our behavior

based classification approach. We propose a quantitative behavior approach to

categorizing Algorithmic trading strategies using weighted scores over time.

The rest of this paper is organized as follows: First we go through related work and

preliminaries in Section 5.2. In Section 5.3, we discuss IRL formulations and provide
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a Bayesian probabilistic model to infer the reward function using Gaussian processes.

We apply the GPIRL algorithm to the most active financial market E-Mini S&P 500

Futures market as experiments in Section 5.4. We show that the GPIRL algorithm

can accurately capture algorithmic trading behaviors based on observations taken

from the high frequency data. We also compare our behavior based classification

results with the results from Kirilenko et al. (Kirilenko et al. [2011]), and show a

consistency and improvement of our behavior approach. Finally we offer concluding

remarks in Section 5.5 about GPIRL and its application.

5.2 Background and Related Work

Our solution to the inference from observations is based on the general Inverse

Reinforcement Learning framework. In this section, we first introduce notations that

will be used throughout this paper, and we then discuss some essential facts that we

need from the theory of Markov Decision Processes.

5.2.1 Inverse MDP Problem

The primary aim of our trading behavior based learning approach is to uncover

decision maker’s policies and reward functions through observations of an expert

whose decision process is modeled as Markov Decision Processes. In this paper, we

restrict our attention to finite countable MDP for easy exposition, but our approach

can be extended to continuous problems if so desires. A discounted finite MDP is

defined as a tuple M = (S,A,P , γ, r), where

• S = {sn}Nn=1 is a set of N states. Let N = {1, 2, · · · , N}.

• A = {am}Mm=1 is a set of M actions. Let M = {1, 2, · · · ,M}.

• P = {Pam}
M
m=1 is a set of state transition probabilities (Here Pam is a N × N

matrix. Each row, denoted as Pam(sn, :), contains the transition probabilities
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upon taking action am in state sn. The entry Pam(sn, sn′) is the probability of

moving to state sn′ , n
′ ∈ N in the next stage.).

• γ ∈ [0, 1] is a discount factor.

• r denotes the reward function, mapping from S × A to < with the property

that

r(sn, am) ,
∑
n′∈N

Pam(sn, sn′)r(sn, am, sn′)

where r(sn, am, s) denotes the function giving the reward of moving to next state sn′

after taking action am in current state sn. The reward function r(sn, am) may be

further reduced to r(sn), if we neglect the action’s influence.

In MDP, an agent selects an action at each sequential stage, and we define a

policy (behavior) as the way the actions are selected by a decision maker/agent.

Hence it can be described as a mapping between state and action i.e. a random

state-action sequence (s0, a0, s1, a1, · · · st, at, · · · ), 1 where st+1 is connected to (st, at)

by Pat(s
t, st+1). The policy, which makes the agent reach its goal, is called proper

policy.

We also define rational agents as those that behave according to the optimal

decision rule where each action selected at any stage maximizes the value function.

The value function for a policy π evaluated at any state s0 is given as V π(s0) =

E[
∑∞

t=0 γ
tr(st, at)|π]. This expectation is over the distribution of the state sequence

{s0, s1, ...} given policy π = {µ0, µ1, · · · }, where at = µt(st), µt(st) ∈ U(st) and

U(st) ⊂ A. The objective at state s is to choose a policy maximizing the value of

V π(s). Similarly, there is another function called Q-functions (Q-factors) that judges

how good an action is performed in a given state. Notation Qπ(s, a) represents the

1Superscripts index time. E.g. st and at, with the upper-index t ∈ {1, 2, · · · }, denote state and
action at t-th horizon stage, while sn (or am) represents the n-th state (or m-th action) in S (or A).
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expected return from state s, taking action a and thereafter following policy π.

In the infinite-horizon case, the stationarity Markovian structure of the problem

implies that the only variable that affects the agent’s decision rule and corresponding

value function should be time invariant. We then have the essential theory of MDPs

R. [1957] as follows,

Theorem V.1 (Bellman Equations). Given a stationary policy π, ∀n ∈ N ,m ∈M,

V π(sn) and Qπ(sn, am) satisfy

V π(sn) = r(sn, π(sn)) + γ
∑
n′∈N

Pπ(sn)(sn, sn′)V
π(sn′),

Qπ(sn, am) = r(sn, am) + γ
∑
n′∈N

Pam(sn, sn′)V
π(sn′).

Theorem V.2 (Bellman Optimality). π is optimal if and only if, ∀n ∈ N , π(sn) ∈

arg maxa∈AQ
π(s, a).

Based on the above definitions of MDP, we further introduce the inverse Markov

Decision Process (IMDP).

Definition V.3. An IMDP model, denoted as MI = (S,A,P , γ,O), contains MDP

variables such as, state set S, action set A, state transition probability set P and

the discount factor γ. The variable O is a set of observations sampled from the

decision-making process.

The set O can be viewed as a subset of the Cartesian product of Ŝ and Â, where

Ŝ ⊂ S and Â ⊂ A. So ∀s ∈ Ŝ, there is at least one action a ∈ Â providing (s, a) ∈ O.

We treat every (s, a) ∈ O as optimal in the expert’s decision making process. The

goal of IRL is to learn the reward function of the MDP model that generates O.
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5.3 Gaussian Process for Generalized IRL Problem

We now turn to an IRL problem that deals with observations from a decision

making process in which the reward function has been contaminated by Gaussian

noise. In particular, we assume that the reward vector can be modeled as r+N (0, σ2),

where N (0, σ2) is Gaussian noise. In the financial trading problem setting, we may

observe certain trading behavior over a period of time, but we may not observe the

complete polices behind a particular trading strategy. As we have discussed earlier,

different trading strategies tend to look at different time horizons. Therefore the

observation period becomes critical in the learning process. Furthermore, there are

potentially two kinds of errors may be introduced into our observations: The first

source of errors may be introduced during our modeling process. Resolution of these

discrete models will introduce errors into our observations. The second source of

errors potentially comes from the strategy execution process. Due to the uncertainty

of market movements, execution errors will occur and eventually be transfered into our

observations in determining the true policy. Overall there are two kinds of challenges

in this learning problem: One is the uncertainty about reward functions given the

observation of decision behavior and the other is the ambiguity of observing multiple

actions at a state.

Qiao and Belling (Qiao and Beling [2011]) argue two different modeling techniques

in learning reward functions. To lessen the ambiguity of observing multiple actions

at a state, they argue that Bayesian inference should be the basis for understanding

the agent’s preferences over the action space. This argument is reasonable because

the goal of IRL is to learn the reward subjectively perceived by the decision maker

from whom we have collected the observation data. The intuition is that the decision

makers will select some actions at a given state because they prefer these actions

to others. These preferences among countable actions can be used to represent the

multiple observations at one state. In the following, we introduce the preference
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theory for IMDP model first. Then, we formalize the ideas here.

(a) (b)

Figure 5.1: Examples of Preference Graph (a) An example of observing two ac-
tions at a state. (b) An example of unique observation at a state.

5.3.1 Action Preference Learning

In this section, we first define the action preference relationship and action pref-

erence graph. At state sn, ∀â, ǎ ∈ A, we define the action preference relation as:

1. Action â is weakly preferred to ǎ, denoted as â �sn ǎ, if Q(sn, â) ≥ Q(sn, ǎ);

2. Action â is strictly preferred to ǎ, denoted as â �sn ǎ, if Q(sn, â) > Q(sn, ǎ);

3. Action â is equivalent to ǎ, denoted as â ∼sn ǎ, if and only if â �sn ǎ and

ǎ �sn â.

An action preference graph is a simple directed graph showing preference relations

among the countable actions at a given state. At state sn, its action preference graph

Gn = (Vn, En) comprising a set Vn of nodes together with a set En of edges. About

node and edge in graph Gn, let us define

1. Each node represents an action in A. Define a one-to-one mapping ϕ : Vn → A.

2. Each edge indicates a preference relation.

Furthermore, we give Lemma (V.4) as a rule to build the preference graph, and

then we show how to draw a preference graph at state sn.

Lemma V.4. At state sn, if action â is observed, we have these preference relations:

â �sn ǎ,∀ǎ ∈ A \ {â}.
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It is therefore straightforward to show the following according to Bellman opti-

mality. â is observed if and only if â ∈ arg maxa∈AQ(sn, a). Therefore, we have

Q(sn, â) > Q(sn, ǎ), ∀ǎ ∈ A \ {â}

According to the definition on preference relations, it follows that if Q(sn, â) >

Q(sn, ǎ), we have â �sn ǎ. Hence, we can show that preference relationship has

the following properties:

1. If â, ǎ ∈ A, then at state sn either â �sn ǎ or ǎ �sn â.

2. If â �sn ǎ or ǎ �sn ã, then â �sn ã.

At this point, we have a simple representation of the action preference graph that

is constructed by a two-layer directed graph. We may have either Figure (5.1) (a)

multiple actions at sn and Figure (5.1) (b) unique action at sn. In this two-layer

directed graph, the top layer V+
n is a set of nodes representing the observed actions

and the bottom layer V−n has the nodes denoting other actions. The edge in the edge

set En can be represented by a formulation of its beginning node u and ending node

v. We write the k-th edge as (u → v)k if u ∈ V+
n , v ∈ V−n , or the l-th edge (u ↔ v)l

if u ∈ V−n , v ∈ V−n . Recall the mapping between Vn and A, the representation u→ v

indicates that action ϕ(u) is preferred to ϕ(v). Similarly, u ↔ v means that action

ϕ(u) is equivalent to ϕ(v).

In the context of financial trading decision process, we may observe multiple ac-

tions from one particular trader under certain market conditions. That is to say

that the observation data O may be multiple decision trajectories generated by non-

deterministic policies. To address IRL problems in those cases, Qiao and Belling

(Qiao and Beling [2011]) propose to process O into the form of pairs of state and

preference graph, e.g. the representation shown in Figure (5.2), and then we apply

Bayesian inference using the new formulation.
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(a)

Figure 5.2: Proposed observation structure for MDP.

In order to apply Bayesian inference on reward function, we need to show equiva-

lence of evidence for inference of reward function between the use of decision trajec-

tories and the independent pairs of state and preference graph (See Proposition V.5).

We need the following proposition (see a proof from Appendix Gaussian Processes).

Proposition V.5. The observation dataset O1 is given as a set of decision trajec-

tories. Assume independence among the observed decision trajectories. Observation

of policy at a state can be specified by an action preference graph. Let O2 be the

set of independent pairs of state and action preference graph, which is written as

O2 = {(sn, Gn)}Nn=1. The inference of reward function drawn from O1 and O2 is iden-

tical. There is a constant factor C that makes likelihood function p(O1|r) = Cp(O2|r).

Based on Proposition V.5, we can represent O as shown in Figure (5.2). At state

sn, its action preference graph is constructed by a two-layer directed graph: a set

of nodes V+
n in the top layer and a set of nodes V−n in the bottom layer. Under the

non-deterministic policy assumption, we adopt a reward structure depending on both

state and action.
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5.3.2 Bayesian Inference of Gaussian Reward Process

We adopt a variation of likelihood function proposed by Chu and Ghahramani in

Wei and Zoubin [2005] to capture the strict and equivalent preference relations. The

likelihood function for the reward without noise is as follows,

pideal(â �sn ǎ|râ(sn), rǎ(sn)) =


1 if Q(sn, â, r) > Q(sn, ǎ, r)

0 otherwise

(5.1)

p((â ∼sn â′)l|r) ∝ e−
1
2

(Q(sn,â)−Q(sn,â′))2 = e−σ
2f2(r,sn,l) (5.2)

As we stated earlier, if we model the reward functions as being contaminated with

Gaussian noise that has zero mean and unknown variance σ2, we can then define

the likelihood function for both k-th strict preference relation and l-th equivalent

preference relation. Finally we can formulate the following proposition:

Proposition V.6. The likelihood function, giving the evidence of the observation

data O in the form of pairs of state and action preference graph, is calculated by

p(G|S, r) =
N∏
n=1

p(Gn|sn, r) =
N∏
n=1

nn∏
k=1

Φ(f(r, sn, k))e
∑N

n=1

∑mn
l=1−σ

2f2(r,sn,l) (5.3)

In conclusion, the probabilistic IRL model is controlled by kernel parameters κam

and σam for computing the covariance matrix of reward realizations, and σ to tune

the noise level in the likelihood function. We put these parameters into the hyper-

parameter vector θθθ = (κam , σam , σ). More often than not, we do not know beforehand

the knowledge about the hyper-parameters. And then we can apply maximum a

posterior estimate to evaluate the hyper-parameters.

Essentially we now have a hierarchical model. At the lowest level we have reward
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function values encoded as a parameter vector r. At the top level we have hyper-

parameters in θθθ controlling the distribution of the parameters. Inference takes place

one level at a time. At the bottom level, the posterior over function values is given

by Bayes’ rule:

p(r|S,G, θθθ) =
p(G|S, θθθ, r)p(r|S, θθθ)

p(G|S, θθθ)
. (5.4)

The posterior combines the information from the prior and the data, which reflects

the updated belief about r after observing the decision behavior. We can calculate

the denominator in Eq.5.4 by integrating p(G|S, θθθ, r) over the function space with

respect to r, which requires high computation capacity. Fortunately, we are able to

maximize the unnormalized posterior density of r without calculating the normalizing

denominator, since the denominator p(G|S, θθθ) is independent of the values of r. In

practice, we obtain the maximum posterior by minimizing the negative log posterior,

which is written as

U(r) ,
1

2

M∑
m=1

rTamK−1
amram −

N∑
n=1

nn∑
k=1

ln Φ(
M∑
m=1

ρnkamram)

+
N∑
n=1

mn∑
l=1

1

2
(
M∑
m=1

ρnlamram)2 (5.5)

where given (â ∼sn â′)l, let ∆l , γ(Pâ(sn, :)−Pâ′(sn, :))(IN − γPπ(sn)(sn, :))
−1, then

we have

ρnlam = en[1(am = â)− 1(am = â′)] + ∆lÎam

where en is a 1×N vector whose entry en(n) = 1, and en(j) = 0,∀j ∈ N \ {n}. The
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notation 1(.) is an indicator function. Similarly, ρnkam denotes the coefficient vector for

the k-th strict preference relation â �sn ǎ.

Qiao and Beling (Qiao and Beling [2011]) give a proof that Proposition (5.5) is a

convex optimization problem (see Appendix Convex Optimization Problem). At the

minimum of U(r) we have

∂U

∂ram
= 0⇒ r̂am = Kam(∇ logP (G|S, r̂, θθθ)) (5.6)

where r̂ = (r̂1, · · · , r̂am , · · · , r̂m). In Eq.5.6, we can use Newton’s method to find the

maximum of U with the iteration,

rnew
am = ram − (

∂2U

∂ram∂ram
)−1 ∂U

∂ram

5.4 Experiment with E-Mini S&P 500 Equity Index Futures

Market

5.4.1 Market Data Description

E-Mini S&P 500 is a stock market index futures contract traded on the Chicago

Mercantile Exchange’s (CME) Globex electronic trading platform. The notional value

of one contract is $50 times the value of the S&P 500 stock index. The tick size for the

E-Mini S&P 500 is 0.25 index points or $12.50. If, for example, the S&P 500 Index

futures contract is trading at $1,400.00, the value of one contract is $70,000. The

advantages to trading E-mini S&P 500 contracts include liquidity, greater affordability

for individual investors and around-the-clock trading.

Trading takes place 24 hours a day with the exception of short technical mainte-

nance shutdown from 4:30 p.m. to 5:00 p.m. The E-Mini S&P 500 expiration months

are March, June, September, and December. On any given day, the contract with
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the nearest expiration date is called the front-month contract. The E-Mini S&P 500

is cash-settled against the value of the underlying index and the last trading day is

the third Friday of the contract expiration month. Initial margin for speculators and

hedgers are $5,625 and $4,500 respectively. Maintenance margins for both speculators

and hedgers are $4,500. There is no limit on how many contracts can be outstanding

at any given time.

The CME Globex matching algorithm for the E-Mini S&P 500 offers strict price

and time priority. Specifically, limit orders that offer more favorable terms of trade

(sell at lower prices and buy at higher prices) are executed prior to pre-existing

orders. Orders that arrived earlier are matched against the orders from the other side

of book before other orders at the same price. This market operates under complete

price transparency. This straight forward matching algorithm allows us to reconstruct

the order book using audit trail messages archived by the exchanges. Hence we can

replay the market dynamics at any given moment.

Under the classification rule documented by Kirilenko et al. (Kirilenko et al.

[2011]), we can designate individual trading accounts into six categories based on their

trading activities. These categories include: High Frequency Traders (high volume

and low inventory), Intermediaries (low inventory), Fundamental Buyers (consistent

intraday net buyers), Fundamental Sellers (consistent intraday net sellers), Oppor-

tunistic Traders (all other traders not classified) and Small Traders (low volume). For

Fundamental Traders, we apply calculation of their end of day net position. And if

it is more than 15% of their total trading volume of that day, we categorize them

either as Fundamental Buyers or Fundamental Sellers depending on their trading di-

rections. We can also easily identify Small Traders as those accounts with 9 or less

trading volume. We also apply the criteria (Kirilenko et al. [2011]) for Intermediaries,

Opportunistic Traders and High Frequency Traders, and we found that we can get

pretty consistent results for Intermediaries for the one-month data. There are two
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steps involved. First, we make sure the account’s net holdings fluctuate within 1.5%

of its end of day level, and second, we make sure the account’s end of day net position

is no more than 5% of its daily trading volume. Then if we define HFTs as a subset

of Intermediaries (top 7% in daily trading volume), we found there is a significant

amount of overlap between HFTs and Opportunistic Traders. The problem is that

the first criteria is not well defined. The definition of fluctuation of net holdings is

very vague. It could be measure in different ways. After talking to the authors, we

decided to use standard deviation of an account’s net position measured in event clock

as a measure of an account’s holding fluctuation. With this definition, it turns out

that 1.5% fluctuation is too stringent for HFTs. It is manifested in the fact that a lot

of accounts with high trading volume are getting classified as Opportunistic Traders.

But in reality their end of day positions are still very low compared with other Op-

portunistic traders. Therefore we decided to relax the first criteria as the standard

deviation of the account’s net holdings throughout the day that is less than its end of

day holding level. From Figure 5.3 (a), we see that with the newly adjusted criteria

most of high volume trading accounts are classified as HFTs (without this adjustment

almost all the top trading accounts are classified as Opportunistic Traders). After

applying the new classification rule, we summarized the statistics in Table 5.1. From

this result, we find that we have more HFTs identified using the modified classifica-

tion criteria. On average there are 38 HTF accounts, and 118 Intermediary accounts,

2,658 Opportunistic accounts, 906 Fundamental Buyer accounts, 775 Fundamental

Seller accounts, and 5,127 Small Trader accounts. We then look over the 4 weeks

period and found that amount the 120 accounts that consistently traded over this

period only 36% of them are consistently classified as the same type of traders. If

we rank these accounts by their daily trading volume, we find that only 40% of the

top 10 accounts are consistently classified as the same trader types. The variation is

among the three types i.e. HFTs, Intermediaries, and Opportunistic Traders. Next
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we will show how our IRL based behavior identification approach is much superior

to the summary statistics based approach. We will use the top 10 trading accounts

as examples to demonstrate further improvement of behavior based trading strategy

identification using Gaussian Preference IRL model.

(a) (b)

(c) (d)

Figure 5.3: E-mini S&P 500 Market Participant Classification: (a) All market
participants by the total volume traded and the end of day position. (b)
Opportunistic traders by the total volume traded and the end of day
position. (c) Intermediaries by the total volume traded and the end of
day position. (d) High Frequency traders by the total volume traded and
the end of day position.

5.4.2 A MDP Model for Market Dynamics

In this study we use a month of order book audit trial data from the E-Mini

S&P 500 Futures contract market. The audit trail data includes all the order book

events timestamped at millisecond time resolution. We use the following data fields:
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Table 5.1: E-Mini S&P 500 Futures Market Data Summary
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Date HFTs Makers Traders Buyers Sellers of Accounts Volume

10/04/2012 39 193 2,833 940 818 10,425 3,261,852

10/05/2012 38 162 2,598 1191 1055 11,495 3,875,232

10/06/2012 38 167 2,401 895 712 9,065 2,852,244

10/07/2012 39 196 2,726 919 747 9,841 3,424,768

10/08/2012 32 162 2,511 847 812 9,210 3,096,800

10/11/2012 21 118 1,428 636 573 6,230 1,765,254

10/12/2012 38 186 2,687 896 745 9,771 3,236,904

10/13/2012 38 187 2,582 1020 840 10,297 3,699,108

10/14/2012 30 198 3,001 1070 795 10,591 4,057,824

10/15/2012 46 210 3,109 890 773 9,918 4,437,826

10/18/2012 37 173 2,126 869 724 8,735 2,458,510

10/19/2012 52 216 3,651 1030 974 11,600 5,272,672

10/20/2012 39 176 2,949 951 877 10,745 3,956,790

10/21/2012 43 240 3,370 952 771 10,980 4,230,194

10/22/2012 32 143 1,837 676 629 7,370 2,026,234

10/25/2012 38 181 2,533 888 684 9,228 3,074,558

10/26/2012 37 175 2,726 816 709 9,568 3,000,628

10/27/2012 45 186 2,973 919 820 10,472 3,850,556

10/28/2012 39 185 2,873 914 705 9,777 3,485,910

10/29/2012 37 160 2,247 794 744 8,369 3,012,860

date, time (time when order is submitted to the exchange from clients), conf time

(time when the order is confirmed by the matching engine), customer account, tag 50

(trader identification number), buy or sell flag, price, quantity, order ID, order type

(market or limit), and func code (message type, i.e. order, modification, cancellation,

trade, etc.).

Figure 5.4 shows the entire life-cycle of any given order initiated by a client. The

order book audit trial data contains these messages, and the entire order history

(i.e. order creation, order modifications, fills, cancellation, etc.) can be retrieved and

analyzed. The first step of our study is to reconstruct the limit order book using the
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(a) Order Lifecycle on CME Globex

Figure 5.4: CME Globex Order Lifecycle. T1: Trader submits a new order; T2:
The state of an order is changed, if a stop is activated; T3: A trader may
choose to cancel an order, and the state of an order can be modified mul-
tiple times; T4: When an order is partially filled, the quantity remaining
decreases; T5: Order elimination is similar to order cancellation except it
is initiated by the trading engine; T7: An order may be filled completely;
T6: Trades can be busted after the fact by the exchanges.

audit trail messages. The order book will then give us bid/ask prices, market depth,

liquidity, etc. During this process, we process billions of messages for each trading

date, and we build price queues using the price and time priority rule.

Once we have the order book at any given event tick, we take market depth at five

different levels as our base variables and then discretize these variables and generate

our MDP model state space. In this study we extend the MDP model documented by

Yang et al. (Yang et al. [2012]), and we end up with five variables, i.e. order volume

imbalance between the best bid and the best ask prices, order volume imbalance

between the 2nd best bid and the 2nd best ask prices, order volume imbalance between
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the 3rd best bid and the 3rd best ask prices, the order book imbalance at the 5th best

bid and the 5th ask prices, and inventory level/holding position (see Figure 5.5 (b)).

And then we discretize the values of the five variables into three levels defined as high

(above µ+ 1.96σ), neutral (µ±1.96), and low (µ−1.96σ). As it is argued by Yang et

al. (Yang et al. [2012]), these volume related variables reflect the market dynamics on

which the traders/algorithms depend to place their orders at different prices. With

the volume imbalance at the best bid/ask prices being the most sensitive indicator of

trading behavior of HFTs, Intermediaries and some of the Opportunistic traders, we

also hypothesize that volume imbalance at other prices close to the book prices will

enhance the information we need to infer trader’s behavior. As it is demonstrated in

the previous work (Yang et al. [2012]), the private variable, trader’s inventory levels,

provides very critical information about trader’s behavior. It has been documented

(Kirilenko et al. [2011], Easley et al. [2010] and Brogaard [2010]) that traders in a high

frequency environment strive to control their inventory level as a critical measure of

controlling their position risk. It is also reported that the HFTs and Market Makers

tend to turn over their inventory levels 5 or more times a day, and target to hold very

small or even zero inventory positions at the end of the trading session. All these

provide us strong evidence to introduce a position variable to characterize trader’s

behavior in our model. Therefore, together with the volume imbalance variables, we

propose 35(243) states in our computational model.

And then the next we need to define the action space. In general we have three

types of actions: place new order, cancel an existing order, or place a market order.

We divide the limit order book into 10 buckets at any given point of time by the

following price markers: the best bid price, the 2nd best bid price, the 3rd best bid

price, between the 4th and the 5th bid price, below 5th bid price, the best ask price,

the 2nd best ask price, the 3rd best ask price, between the 4th and the 5th ask price,

and above the 5th ask price. And then at any given point of time, a trader can take
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(a)

Figure 5.5: Order Book MDP Model: This graph shows the state variables using
in the MDP model.

30 actions. The price markers used to define the price ranges are illustrated in Figure

(5.5).

Table 5.2: Action Preference Graph Examples
State Action Frequency Observed State Action Frequency Observed

14 1 0.23 158 1 0.30

14 2 0.14 158 3 0.07

14 7 0.06 158 7 0.11

14 11 0.26 158 11 0.30

14 12 0.09 158 17 0.07

14 16 0.17 158 18 0.07

14 26 0.06 158 20 0.07

Once we have the state and action space defined, we can create action preference

graph based on the statistics of actions under different states. Here we use two

examples to demonstrate how the action preference graphs have been constructed

based on the MDP model and observed actions. Table 5.2 shows two example states

where we have multiple actions observed. We then sort the frequency in descending

order and construct a two-layer graph: top layer has the most frequently observed
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actions and the bottom layer are all the other actions. Based on this preference

observation, we can construct two preference graphs as shown in Figure (5.6). The

state transition matrix can be constructed for the entire market for the observation

period. In our MDP model, we have a 243x243 matrix for every single action.

(a) (b)

Figure 5.6: Action Preference Graph Examples: (a). This graph shows an ex-
ample action preference graph at state 158; (b). This graph shows an
example action preference graph at state 14.

5.4.3 Trader Behavior Identification

Yang et al. (Yang et al. [2012]) examine different trading behaviors using a linear

IRL (LNIRL) algorithm with simulated E-Mini S&P 500 market data. In that MDP

model, there are three variables selected: volume imbalance at the bid/ask prices,

volume imbalance at the 3rd best bid/ask prices, and position level. Even though

this MDP model is a relatively simple one, it is evident from the experiment results

that IRL reward space is effective in identifying trading strategies with a relatively

high accuracy rate.

In this paper, we are trying to address two important issues during the modeling

process in order to solve realistic market strategy learning problem using the real mar-

ket data. The first issue is that in reality we often may not have complete observations

of trader’s policies. Since the market presents itself as a random process in terms of

both prices and volume, it is unlikely that during our observation window that we

will be able to capture all the possible states. While in the study performed by Yang

et al. (Yang et al. [2012]), they assume a complete observation of trader’s decision
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policies for the simulated trading strategies. In other words, the simulated policies

by distribution can be completely captured when the simulation is run long enough.

The study of the convergence of these simulated policies and the testing results are

consistent with their assumptions. However, when we use real market data for strat-

egy learning, we will have to address the incomplete observation problem. The second

issue is in regard to deterministic policy vs. non-deterministic policy assumption. In

the earlier work, Yang et al. (Yang et al. [2012]) make deterministic policy assump-

tion. Under the linear feature optimization framework, non-deterministic policies can

be represented by a single maximum deterministic policy (see proof in Appendix De-

terministic Policy vs. Randomized Policy). In this study, we relax the deterministic

policy assumption, and allow non-deterministic ones under a Gaussian process frame-

work. As we argue earlier Gaussian process learning allows us to infer policies even

when we have very limited observations. At the same time, we incorporate Gaus-

sian preference learning into our inference process. It helps us to incorporate less

frequently observed policies into our reward learning process. Together the proposed

GPIRL approach induces a model which makes less requirement on observations, and

fewer assumptions on the polices we are to learn.

5.4.4 Multi-class SVM Trader Classifier using GPIRL vs. LNIRL

In this section, we use support vector machine (SVM) classification method to

identify traders based on reward functions that we recover from the observations of

the trader’s behaviors. We select a group of traders whose behaviors are consistently

observed during the period we study. The primary reason for choosing SVM classi-

fication method is its flexibility that we can explore feature separation in different

high dimensional spaces using kernel functions. We aim to compare performance of

the two behavior learning algorithms i.e. LNIRL and GPIRL, and show that GPIRL

has superior performance in addressing real world trading strategy identification.
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We first review SVM formulation. The recent results in pattern recognition have

shown that SVM classifiers often have superior recognition rates in comparison to

other classification methods. The support vector machine is originally a binary clas-

sification method developed by Vapnik and colleagues at Bell laboratories (Vapnik

[1999], Burges [1998], and Joachims [1998]). For a binary problem, we have training

data points: xi, yi, i = 1, ..., l, yi ∈ −1, 1,xi ∈ Rd. Suppose we have some hyperplane

which separates the positive from the negative examples - (“separating hyperplane”).

|b|/||w|| is the perpendicular distance from the hyperplane to the origin, and ||w|| is

the Euclidean norm of w. For the linearly separable case, the support vector algo-

rithm simply looks for the separating hyperplane with largest margin. This can be

formulated as following inequalities:

yi(xi ·w + b)− 1 ≥ 0∀i, (5.7)

Thus we find the pair of hyperplanes which gives the maximum margin by min-

imizing ||w||, subject to constraint (5.7). We then introduce nonnegative Lagrange

multipliers αi, i = 1, ..., l, for each of the inequality constraint (5.7). For equality

constraints, the Lagrangian multipliers are unconstrained. This then gives a primal

and dual problem:

w ≡
∑
i

αiyixi (5.8)∑
i

αiyi = 0 (5.9)
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LP ≡
1

2
||w||2 −

l∑
i=1

αiyi(xi ·w + b) +
l∑

i=1

αi (5.10)

LD ≡
∑
i

αi −
1

2

l∑
i,j

αiαjyiyjxi · xj (5.11)

Support vector training therefore amounts to maximizing LD with respect to the

αi, subject to constraints 5.9. In the solution, those points for which αi > 0 are

called ”support vectors”, and lie on one of the hyperplanes defined in 5.7. If all

other training points were removed (or moved around, but so as not to cross the

hyperplanes), and training was repeated, the same separating hyperplane would be

found.

Notice that the only way in which data appears in the training problem is in the

form of dot product, xi ·xj. Now we can map the data to some other Euclidean space

H, using a mapping called Φ, and then the training algorithm would only depend on

the data through dot products in H, i.e. on functions of the form Φ(xi) ·Φ(xj). This

is called ”kernel function” K(xi,xj = Φ(xi) · Φ(xj)). We would only need K in the

training algorithm, and would never need to explicitly know what Φ is. Now we have

a separation plane in a different space. In test phase ans SVM is used by computing

dot products of a given test point x with w, or more specifically by computing the

sign of (5.12):

{(x) ≡ 1

2
||w||2 −

l∑
i=1

αiyi(xi ·w + b) +
l∑

i=1

αi (5.12)

Here we constructed 80 sample trajectories/observations for each of the top 10

trading accounts. There are 121 trading accounts consistently traded over the 4

weeks period. In this study we will only focus our attention on the top 10 trading
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accounts. We apply both the LNIRL (Ng and Russel [2000] and Yang et al. [2012]),

and GPIRL (Qiao and Beling [2011]) to these 800 samples. And then we apply SVM

algorithm on the 10 traders using pair-wise classification. For each pair, we first

training a SVM classifier (with Gaussian kernel) with randomly selected 60 samples,

and test the classification on the remaining 20 samples. We repeat the sampling

100 times and then take the average classification accuracy. We list both LNIRL

classification results in Table 5.9, and GPIRL results in Table 5.10. On average,

LNIRL gives 0.6039 classification accuracy, while GPIRL gives 0.9650 classification

accuracy. This result confirms our earlier assumption that GPIRL performs better

when we have incomplete observations, and also incorporate nondeterministic policies

through Gaussian preference learning.

However, pair-wise classification only provides us a basis for comparing two dif-

ferent behavior learning algorithms. Next we propose a binary tree based SVM algo-

rithms for trading strategy identification.

As we know that the SVM was originally developed for binary decision problems,

and its extension to multi-class problems is not straight-forward. How to effectively

extend it for solving multi-class classification problem is still an on-going research

issue. The popular methods for applying SVMs to multi-class classification problems

usually decompose the multi-class problems into several two-class problems that can

be addressed directly using several SVMs. A variety of techniques for decomposition

of the multi-class problem into several binary problems using SVM as binary clas-

sification have been proposed, such as One-Against-All, One-Against-One, Directed

Acyclic Graph SVM, and Binary Tree of SVM, and SVM using Binary Decision Tree,

etc.

Here we chose One-Against-All method. In this method, the N-class problems

(N > 2), N two-class SVM classifiers are constructed (Vapnik [1998]). The ith SVM

is trained while labeling the samples in the ith class as positive examples and all
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the rest as negative examples (see Figure 5.7 (a)). In the recognition phase, a test

example is presented to all N SVMs and is labeled according to the maximum output

among the N classifiers. The disadvantage of this method is its training complexity,

as the number of training samples is large. Each of the N classifiers is trained using

all available samples. We use Gaussian kernel function, and Figure 5.7 (b) shows the

separation boundary and support vectors in a projected two dimensional space of one

class versus other classes separation.

(a) (b)

Figure 5.7: SVM Multi-class Classification: (a). This graph shows the One-
Against-All binary SVM method; (b). This graph shows a SVM separa-
tion and the support vectors at each step of the series of binary decisions.

When we compare the two IRL methods, we again see only slightly higher accuracy

using GPIRL approach. On average with the binary tree search algorithm, the LNIRL

gives 0.9413 classification accuracy while GPIRL yields 0.9973 accuracy rate. The

difference is only about 6%. Intuitively we may attribute this improvement to SVM

algorithm in which the One-Against-All method is able to take advantage of the

increased sample and class population. Furthermore, we are dealing with the top

10 trading accounts, and the number of activities observed from them also greatly

increase the reliability of the policies we can observe. Moreover, these accounts are

most likely HFTs with very short trading horizons. We may not see a big advantage
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of using GPIRL over this population. But overall, we can conclude that GPIRL has

superior classification in identifying a specific trading strategy based on incomplete

observations.

5.4.5 Trading Strategy Clustering and Comparison with Summary Statis-

tic Based Approach

In the previous section, we discovered that using reward functions we can reliably

identify a particular trading strategy over a period of time with a relatively high

accuracy. In this section, we want to study similarity among the different trading

strategies based on their reward characterization. This problem can be characterized

as unstructured learning problem - clustering. We have the characterization of re-

wards over the state space and action space, and we aim to group trading strategies

based on their similarity over the Cartesian product of the state and action space.

We also attempt to establish connections between these trading strategy classification

definitions established by Kirilenko et al. (Kirilenko et al. [2011]) and our behavior

based trading strategy clustering.

The first problem we have to address is dimensionality of the feature space. We

essentially have a reward structure over a large set of feature set. This feature set is a

product of the state space and action space in our computational model. Fortunately,

under the LNIRL algorithm, we reduce the feature space to only the state space,

because in this linear feature expectation optimization problem we only consider

reward at a particular state. Under the deterministic policy assumption, we assume

value function converge at a particular state. In another word, reward function is not

a function of actions. In this case we have 243 features to be considered during the

clustering. However, under the GPIRL framework we do not assume deterministic

policy, and we have reward as a function of both states and actions. Therefore

we have 243x30 features for the later approach. We also observe that the reward
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matrix is relatively sparse where there are zero values at many states. To consider

computational tractability and efficiency, we examine the data structure through

Principal Component Analysis first.

In the LNIRL case, the first two Principal Components (PCs) explain 79.78% of

the data variation, and from the upper left plot in Figure (5.8) (a) we see that the first

200 PCs give us nearly 100% explanation power on the observations. While we look at

the GPIRL case, the first two PCs only explain 38.98% of the data variation. Looking

at the upper left plot in Figure (5.8) (b), we see that we have to select more PCs

to have better representation of the data. To balance the accuracy and computing

efficiency, we choose the first 200 PCs for the LNIRL and the first 400 PCs for the

GPIRL case. With this reduction choice, we gain significant computing efficiency

and we loose only less than 2% data variation (lower left figure in both Figure (5.8)

(a) and (b)). From the upper right plots in both the IRL and the GPIRL space,

we see that the first two PCs give us good representation along the first PC, and

in the LNIRL case the feature vector representation is evenly distributed between

the first two PCs. From data observation perspective, the LNIRL space has pretty

distinct separation of the observations. On the other hand in the GPIRL space we

see concentrations of these observations, but boundaries are not very clear. In both

case, we would expect relatively good representation of the data variation using the

PC dimension reduction technique.

Now we apply unsupervised learning method to group the trading behavior ob-

served on a selected group of trading accounts over the observation period. We select

10 trading accounts with the highest average daily trading volume over a period of

4 weeks (20 days) in our first experiment. We define an observation instance as a

continuous period covering two hours where we take all the activities from a particu-

lar trader including placing new orders, modifying and canceling existing orders, and

placing market orders. For each trader, we take four observation instances on each
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trading date: two observation instances in the morning trading and two observation

instances in the afternoon trading. The two observation periods in the morning and

in the afternoon have an hour overlapping time, but the observations in the morning

and the afternoon do not overlap. We do so based on the general theory of intraday

U-shaped patterns in volume - namely, the heavy trading in the beginning and the

end of the trading day and the relatively light trading in the middle of of the day. This

has been documented in a numbers of studies (Ekman [1992], Admati and Pfleiderer

[1988], Lee et al. [2001], and Chordia et al. [2001]). We also examined the traders’

actions through out the entire trading day. We found that two-hour observation time

is a good cut-off, and with the overlapping instances both in the morning and the

afternoon we expect to capture U-shaped pattern for the market.

We then perform hierarchical clustering and generate a heat map and dendrogram

of the observations in both the LNIRL reward space and the GPIRL reward space.

The simplest form of matrix clustering clusters the rows and columns of a dataset

using Euclidean distance metric and average linkage. For both Figure (5.9) (a) and

(b), the left dendrogram shows the clustering of the observations (rows), and the

top dendrogram shows the clustering of the PCs (columns). It is evident that there

is a clear division of the observations (rows) in both cases. And then we take a

closer look at the left dendrogram, and we see that we have two clusters: the top

cluster and the bottom cluster. And there is a black divide strip lie in the middle

of the the second small cluster. We then zoom into the small cluster and check the

sources of these observations2. While in the LNIRL reward space, we find the small

cluster consists observations mostly from trader 1 (observations numbered from 1 to

80) and trader 2 (observations numbered from 81 to 160). And observations from

2Note: In both Figure (5.8) (a) and (b), we group observations from the same trader together
in our data matrix. We have 10 traders and each has 80 observations. From the lower left graph in
both (a) and (b), observations are ordered by trader IDs sequentially. For example, observation 1
through observation 80 come from trader 1, and observation 81 through observation 160 come from
trader 2. We do this toward right along the X-axis, and at the end we have observation 721 through
observation 800 come from trader 10.
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trader 9 (observations numbered from 641 to 720) form the black divide between

these two groups. In the GPIRL reward space, we find the small cluster consists of

three traders: trader 1 (observations numbered from 1 to 80), trader 2 (observations

numbered from 81 to 160), and trader 5 (observations numbered from 321 to 400).

And the observations from the rest of the traders lie on the other side of the divide.

Moreover we find the observations from trader 9 (observations numbered from 641

to 720) form the black divide between these two groups. From these observations we

see that majority of the top 10 traders form one group and there are 2 or 3 traders

behave a little different from others. Furthermore, we observe that the clustering has

less than perfect purity. In other words, there are individual observations from the

top cluster lie in the small cluster at the bottom occasionally. It means change of

behavior overtime. The interpretation of this observation is that there are times that

the HFTs may behave like Opportunistic traders during a perhaps a short period

of time. We also occasionally observe that Opportunistic traders behave like HFTs.

That is when we have observations cross the divide and get into the top cluster.

Next we propose a continuous measure of clustering using hierarchical clustering

method. We use summary statistic based trader classification method proposed by

Kirilenko et al. (Kirilenko et al. [2011]) to create reference labels. For this market

data, we do not have true labels on those trading accounts. We aim to improve the

labeling methods documented by Kirilenko et al. The motivation for creating a con-

tinuous measure of clustering is to address the potential change of trading behavior

over time. As we mentioned earlier, we applied the summary statistic based classi-

fication rule on the 200 observations over the 4 weeks period, and we only find 40%

time that we can consistently label the traders as the same type of traders. Now we

define a weighted scoring system to evaluate both the rule based classifier and the

behavior based classifier. Within the 6 types of traders that we defined in the data

section, we only concerned about labeling HFTs, Intermediaries, and Opportunistic
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Traders. Other three types of traders, e.g. Fundamental Buyers, Fundamental Sell-

ers, and Small Traders can be reliably identify using their daily volume and their

end of day positions. Here we assign score 2, if a trader is classified as a HFT; we

assign score 1, if it is classified as an Opportunistic Trader; and we assign 0, if it is

classified as an Intermediary. Labels for clustering are assigned using majority voting

rule based on the summary statistic classification rule. We then combine the scores

using a weight which is defined as the frequency that a particular score being assigned

to a particular trader. Here we want to compare the summary statistic based trader

type classification with the behavior based trader type classification. We aim to find

connections between these two methods.

From visual representations in Figure (5.10) (a), we see that trader 1 and trader

5 have a wide range of end of day positions, but their daily trading volume remains

relatively at the same level. It is likely that we may sometime classify them as HFTs

and sometime as Opportunistic traders. While for trader 2, even though the end

day position range is smaller than trader 1 and trader 5. It shows a general pattern

very similar to trader 1 and 5, and we should classify it as an Opportunistic trader.

Based on this manual examination we should have trader 1, trader 2 and trader 5

as Opportunistic Traders and the rest as HFTs. Now we look at the comparison

between the result from the summary statistic based classification rule an that from

our behavior based classification results. From Figure (5.11) (a), we see in the LNIRL

reward space we identify two groups traders. Eight out of ten are identified as HFTs

and only trader 1 and trader 2 are classified as Opportunistic traders. This result

is consistent with what we observe from the dendrogram in Figure (5.9) (a). When

we compare this result from the GPIRL reward space and we can pick up all three

traders, e.g. trader 1, trader 2 and trader 5, that we identified through the manual

process. This result is also consistent with our observation from the heat map in

Figure (5.9) (b). While the rule classification method misclassified trader 2. It is
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because in the rule based approach, the cut-off is based on a simple ratio between

the trading volume and end position. We can see that trader 2 has a relatively small

spread in terms of end position. However, the behavior based approach can catch

this pattern and is able to cluster it with other traders with the similar pattern.

We run another experiment using randomly selected 10 traders from the top 30

traders based on their trading volume. We know this selection will only result in three

types of traders, e.g. HFTs, Intermediaries and Opportunistic Traders. We feed these

800 observations to both LNIRL and GPIRL algorithms to get reward representations

of their trading behavior. Based on visual examination (see Figure (5.10) (b)), we

see that trader 1, trader 2 and trader 7 are Opportunistic Traders and the rest are

HFTs. We apply the same technique as before and we use the same cut-off score

(1.85 in LNIRL reward space, and 1.75 in GPIRL reward space). As a result we can

accurately identified the two classes of traders using the same cut-off score we used

for the top 10 case (see Figure (5.12)). And in this experiment the classification in

LNIRL reward space gives the same result as that in GPIRL reward space. While

the rule classification method misclassified trader 3 as an Opportunistic trader. But

if we look at its daily end position, its daily total trading volume and its inventory

variance, it should be classified as a HFT. And again this misclassification is due

to the aggregate cut-off ratio. However, the behavior based approach can catch this

pattern and is able to cluster it with other traders with the similar behavior pattern.

Overall, we conjecture that GPIRL reward space score based classification rule is

better than the summary statistic based approach in that it is based on the similarity

in behavior and it has clear interpretation. Because it a better reflection of traders’

choice of actions under different market conditions than the summary statistics, it

is well suited for discover new behavior patterns of market participants. We also

conclude that the GPIRL reward space is more informative than and is a superior

measure of trading behavior to the LNIRL reward space.
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5.5 Conclusion

We assume incomplete observation of Algorithmic Trading strategies, and we

model trader’s reward function as a Gaussian process. We also incorporate trader’s

action preference under different market conditions through preference graphs learn-

ing. The aim of this study is to quantify trader’s behavior based on the IRL reward

learning under a Bayesian inference framework. We apply both linear (a linear com-

bination of known features) approach (Abbeel and Ng [2004]) and GPIRL (Qiao and

Beling [2011]) on a real market dataset (E-Mini S&P 500 Futures), and we conclude

that GPIRL is superior to the LNIRL methods with 6% increase in identification ac-

curacy rate. Furthermore, we establish a connection between the summary statistic

based classification (Kirilenko et al. [2011]) and our behavior based classification. We

propose a score based method to classify trader types, and because of the transferable

property of the reward structure the cut-off score for classifying a group of traders

can be applied to different market conditions.

The implication of this research is that the reward/utility based trading behav-

ior identification can be applied to real market data to accurately identify specific

trading strategies. As it is documented by Abbeel et al. (Abbeel and Ng [2004]) and

confirmed by many other researchers, reward function is the most succinct, robust,

and transferable definition of a control task. Therefore, the behavior learned under

the reward space has much broader application than policies observed. Furthermore,

these learned reward functions will allow us to replicate a particular trading behavior

in a different environment to understand their impact to the market price movement

and market quality in general.

We also want to point out some future research suggestions in the area of both

improvement of identification accuracy and application of the behavior characteriza-

tion:
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- During our preference learning inference phase, we only considered a simple

two layer preference graph. However, trader’s preferences can be further distin-

guished with multi-layer graphs or other preference learning techniques;

- Our study focused on the top 10 Algorithmic traders on a market. Future

study can extend this results to a large scale experimentation to include mar-

ket participants (specifically Opportunistic traders), and study their behavior

similarity through clustering. We can then associate the group behavior with

market quality measures;

- Under the GPIRL framework, we are able to recover a detailed reward structure.

These reward functions can be used to generate new policies under a simulated

market condition to understand the complete behavior of certain trading strate-

gies. It will be particularly interesting to the market regulator to see how the

various trading strategies will interact during a stressed market condition;
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Table 5.3: Pair-wise Trader Classification Accuracy using SVM Binary Classifier us-
ing LNIRL
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.0000 0.5437 0.5187 0.4812 0.6375 0.4812 0.5312 0.5750 0.7750 0.5937

[2,] 0.5437 0.0000 0.5250 0.5125 0.7437 0.5562 0.4937 0.4250 0.7625 0.6812

[3,] 0.5187 0.5250 0.0000 0.4687 0.6875 0.5250 0.5187 0.5250 0.7312 0.6250

[4,] 0.4812 0.5125 0.4687 0.0000 0.6937 0.5000 0.4937 0.5062 0.6562 0.6625

[5,] 0.6375 0.7437 0.6875 0.6937 0.0000 0.6625 0.7375 0.6875 0.7750 0.5437

[6,] 0.4812 0.5562 0.5250 0.5000 0.6625 0.0000 0.5500 0.5500 0.6500 0.6375

[7,] 0.5312 0.4937 0.5187 0.4937 0.7375 0.5500 0.0000 0.4937 0.8000 0.6125

[8,] 0.5750 0.4250 0.5250 0.5062 0.6875 0.5500 0.4937 0.0000 0.6437 0.6562

[9,] 0.7750 0.7625 0.7312 0.6562 0.7750 0.6500 0.8000 0.6437 0.0000 0.7437

[10,] 0.5937 0.6812 0.6250 0.6625 0.5437 0.6375 0.6125 0.6562 0.7437 0.0000

Notes: Columns and rows of this table represent all the traders by their anonymous IDs.

Table 5.4: Pair-wise Trader Classification Sensitivity using SVM Binary Classifier in
LNIRL Reward Space
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[,1] 0 0.4625 0.6625 0.6125 0.8125 0.5750 0.7125 0.7125 0.6875 0.8125

[,2] 0.4625 0 0.9250 0.8375 0.8375 0.8250 0.8625 0.7875 0.7750 0.8500

[,3] 0.6625 0.9250 0 0.6000 0.7875 0.6375 0.4625 0.4500 0.6375 0.6875

[,4] 0.6125 0.8375 0.6000 0 0.7000 0.4125 0.4625 0.3750 0.6500 0.6500

[,5] 0.8125 0.8375 0.7875 0.7000 0 0.4875 0.6000 0.5500 0.6875 0.3500

[,6] 0.5750 0.8250 0.6375 0.4125 0.4875 0 0.5500 0.4875 0.5625 0.6125

[,7] 0.7125 0.8625 0.4625 0.4625 0.6000 0.5500 0 0.3625 0.6750 0.6250

[,8] 0.7125 0.7875 0.4500 0.3750 0.5500 0.4875 0.3625 0 0.6375 0.6125

[,9] 0.6875 0.7750 0.6375 0.6500 0.6875 0.5625 0.6750 0.6375 0 0.8500

[,10] 0.8125 0.8500 0.6875 0.6500 0.3500 0.6125 0.6250 0.6125 0.8500 0

Notes: Columns and rows of this table represent all the traders by their anonymous IDs.

Table 5.5: Pair-wise Trader Classification Specificity using SVM Binary Classifier in
LNIRL Reward Space
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[,1] 0 0.6125 0.7000 0.7750 0.5875 0.7375 0.7750 0.7250 0.8125 0.5125

[,2] 0.6125 0 0.6625 0.6625 0.7250 0.6875 0.6875 0.6750 0.7625 0.6875

[,3] 0.7000 0.6625 0 0.5250 0.6875 0.5000 0.5125 0.6500 0.7625 0.5375

[,4] 0.7750 0.6625 0.5250 0 0.5500 0.4375 0.4500 0.4750 0.7875 0.4250

[,5] 0.5875 0.7250 0.6875 0.5500 0 0.7125 0.7000 0.6750 0.8250 0.7500

[,6] 0.7375 0.6875 0.5000 0.4375 0.7125 0 0.5250 0.4750 0.7750 0.4000

[,7] 0.7750 0.6875 0.5125 0.4500 0.7000 0.5250 0 0.5250 0.8625 0.5500

[,8] 0.7250 0.6750 0.6500 0.4750 0.6750 0.4750 0.5250 0 0.6375 0.4875

[,9] 0.8125 0.7625 0.7625 0.7875 0.8250 0.7750 0.8625 0.6375 0 0.6375

[,10] 0.5125 0.6875 0.5375 0.4250 0.7500 0.4000 0.5500 0.4875 0.6375 0

Notes: Columns and rows of this table represent all the traders by their anonymous IDs.
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Table 5.6: Pair-wise Trader Classification Accuracy using SVM Binary Classifier us-
ing GPIRL
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.0000 1.0000 0.9875 0.9750 0.9500 0.9750 0.9625 1.0000 0.9750 1.0000

[2,] 1.0000 0.0000 0.9750 0.9375 0.9875 0.9750 0.9625 0.9625 0.9875 1.0000

[3,] 0.9875 0.9750 0.0000 0.9750 0.9625 0.9875 1.0000 0.9750 0.9750 0.9875

[4,] 0.9750 0.9375 0.9750 0.0000 0.9750 0.9500 0.9375 0.9875 0.9875 0.9750

[5,] 0.9500 0.9875 0.9625 0.9750 0.0000 1.0000 1.0000 0.9625 0.9875 1.0000

[6,] 0.9750 0.9750 0.9875 0.9500 1.0000 0.0000 0.9625 0.8750 0.9125 0.9750

[7,] 0.9625 0.9625 1.0000 0.9375 1.0000 0.9625 0.0000 0.8625 0.9625 0.9875

[8,] 1.0000 0.9625 0.9750 0.9875 0.9625 0.8750 0.8625 0.0000 0.8000 1.0000

[9,] 0.9750 0.9875 0.9750 0.9875 0.9875 0.9125 0.9625 0.8000 0.0000 0.9625

[10,] 1.0000 1.0000 0.9875 0.9750 1.0000 0.9750 0.9875 1.0000 0.9625 0.0000

Notes: Columns and rows of this table represent all the traders by their anonymous IDs.

Table 5.7: Pair-wise Trader Classification Sensitivity using SVM Binary Classifier in
GPIRL Reward Space
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[,1] 0 1.0000 1.0000 1.0000 0.9750 1.0000 1.0000 1.0000 1.0000 1.0000

[,2] 1.0000 0 1.0000 1.0000 0.9875 1.0000 1.0000 1.0000 1.0000 1.0000

[,3] 1.0000 1.0000 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

[,4] 1.0000 1.0000 1.0000 0 0.9875 1.0000 0.9625 0.9875 1.0000 0.9875

[,5] 0.9750 0.9875 1.0000 0.9875 0 1.0000 1.0000 0.9875 1.0000 1.0000

[,6] 1.0000 1.0000 1.0000 1.0000 1.0000 0 0.9500 0.7875 0.8875 0.9500

[,7] 1.0000 1.0000 1.0000 0.9625 1.0000 0.9500 0 0.8750 0.9125 1.0000

[,8] 1.0000 1.0000 1.0000 0.9875 0.9875 0.7875 0.8750 0 0.7875 0.9875

[,9] 1.0000 1.0000 1.0000 1.0000 1.0000 0.8875 0.9125 0.7875 0 1.0000

[,10] 1.0000 1.0000 1.0000 0.9875 1.0000 0.9500 1.0000 0.9875 1.0000 0

Notes: Columns and rows of this table represent all the traders by their anonymous IDs.

Table 5.8: Pair-wise Trader Classification Specificity using SVM Binary Classifier in
GPIRL Reward Space
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[,1] 0 0.9625 1.0000 1.0000 1.0000 1.0000 0.9875 1.0000 1.0000 0.9875

[,2] 0.9625 0 1.0000 0.9875 1.0000 0.9875 0.9875 0.9875 0.9875 1.0000

[,3] 1.0000 1.0000 0 0.9750 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

[,4] 1.0000 0.9875 0.9750 0 1.0000 1.0000 0.9875 1.0000 0.9875 1.0000

[,5] 1.0000 1.0000 1.0000 1.0000 0 1.0000 0.9875 0.9750 0.9875 0.9875

[,6] 1.0000 0.9875 1.0000 1.0000 1.0000 0 0.9750 0.8750 0.9125 0.9875

[,7] 0.9875 0.9875 1.0000 0.9875 0.9875 0.9750 0 0.8375 0.9125 1.0000

[,8] 1.0000 0.9875 1.0000 1.0000 0.9750 0.8750 0.8375 0 0.8250 0.9625

[,9] 1.0000 0.9875 1.0000 0.9875 0.9875 0.9125 0.9125 0.8250 0 0.9625

[,10] 0.9875 1.0000 1.0000 1.0000 0.9875 0.9875 1.0000 0.9625 0.9625 0

Notes: Columns and rows of this table represent all the traders by their anonymous IDs.
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Table 5.9: One-Against-All Trader Classification using SVM Binary Classifier using
LNIRL
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.9275 0.9475 0.9275 0.9350 0.9300 0.9425 0.9450 0.9450 0.9525 0.9550

[2,] 0.9300 0.9350 0.9450 0.9325 0.9400 0.9475 0.9375 0.9175 0.9350 0.9300

[3,] 0.9425 0.9500 0.9375 0.9350 0.9225 0.9475 0.9375 0.9450 0.9275 0.9350

[4,] 0.9375 0.9350 0.9250 0.9425 0.9450 0.9350 0.9375 0.9400 0.9375 0.9350

[5,] 0.9350 0.9375 0.9325 0.9450 0.9475 0.9475 0.9400 0.9550 0.9325 0.9350

[6,] 0.9425 0.9500 0.9375 0.9350 0.9225 0.9475 0.9375 0.9450 0.9275 0.9350

[7,] 0.9400 0.9350 0.9450 0.9475 0.9525 0.9400 0.9525 0.9450 0.9400 0.9500

[8,] 0.9300 0.9350 0.9450 0.9325 0.9400 0.9475 0.9375 0.9175 0.9350 0.9300

[9,] 0.9375 0.9350 0.9250 0.9425 0.9450 0.9350 0.9375 0.9400 0.9375 0.9350

[10,] 0.9350 0.9375 0.9325 0.9450 0.9475 0.9475 0.9400 0.9550 0.9325 0.9350

Notes: Columns of the table represent all the traders by their anonymous IDs, and
the rows represent 10 fold cross-validation results.

Table 5.10: One-Against-All Trader Classification using SVM Binary Classifier using
GPIRL

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.9975 0.9975 0.9975 0.9975 0.9975 1.0000 0.9950 1.0000 1.0000 0.9975

[2,] 0.9950 0.9975 0.9750 0.9375 0.9875 0.9750 0.9625 0.9625 0.9875 1.0000

[3,] 0.9875 0.9750 1.0000 0.9750 0.9625 0.9875 1.0000 0.9750 0.9750 0.9875

[4,] 0.9750 0.9375 0.9750 1.0000 0.9750 0.9500 0.9375 0.9875 0.9875 0.9750

[5,] 0.9500 0.9875 0.9625 0.9750 1.0000 1.0000 1.0000 0.9625 0.9875 1.0000

[6,] 0.9750 0.9750 0.9875 0.9500 1.0000 1.0000 0.9625 0.8750 0.9125 0.9750

[7,] 0.9625 0.9625 1.0000 0.9375 1.0000 0.9625 1.0000 0.8625 0.9625 0.9875

[8,] 1.0000 0.9625 0.9750 0.9875 0.9625 0.8750 0.8625 1.0000 0.8000 1.0000

[9,] 0.9750 0.9875 0.9750 0.9875 0.9875 0.9125 0.9625 1.0000 1.0000 0.9625

[10,] 1.0000 1.0000 0.9875 0.9750 1.0000 0.9750 0.9875 1.0000 0.9625 1.0000

Notes: Columns of the table represent all the traders by their anonymous IDs, and
the rows represent 10 fold cross-validation results.
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(a) The upper left figure is cumulative percentage of the data variance explained by PCs; The lower left figure is
the plot of loadings of all the observations on to the first two PCs; The upper right figure shows the observation
and feature vector projection onto the first two PCs; The lower right is the observation projection onto the first
two PCs with boundary point markers.

(b) The upper left figure is cumulative percentage of the data variance explained by PCs; The lower left figure is
the plot of loadings of all the observations on to the first two PCs; The upper right figure shows the observation
and feature vector projection onto the first two PCs; The lower right is the observation projection onto the first
two PCs with boundary point markers.

Figure 5.8: Principal Component Representation of the Reward Data: (a).
Data representation under the first two Principal Components in the
LNIRL Reward Space; (b). Data representation under the first two Prin-
cipal Components in the GPIRL Reward Space.
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(a)

(b)

Figure 5.9: Hierarchical Clustering of Data Matrix: (a). Heat map of 800
observations of the Linear Rewards in the first 200 PCs; (b). Heat map
of 800 observations in GPIRL Rewards in the first 400 PCs.
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(a) Top 10 Traders

(b) Randomly Selected 10 Traders

Figure 5.10: Trader’s Daily Trading Volume vs. Daily End Position during
20 Day’s Period. (a) Trader 1, 2 and 5 have varying end positions.
(b) Trader 1, 2, and 7 have varying end positions.
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(a) Hierarchical clustering in LNIRL reward space

(b) Hierarchical clustering in GPIRL reward space

Figure 5.11: Trader Type Classification Compared with the Summary
Statistic Based Rule Classification for the Top 10 Traders.
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(a) Hierarchical clustering in LNIRL reward space

(b) Hierarchical clustering in GPIRL reward space

Figure 5.12: Trader Type Classification Compared with the Summary Statistic Based
Rule Classification for the Random 10 Traders.

109



CHAPTER VI

Conclusion and Future Work

6.1 Conclusions

We hypothesize that the Algorithmic Trading behavior can be accurately charac-

terized in the reward space using IRL algorithms. This hypothysis is based on the

research advancement in Reinforcement learning under the Markov Decision Process

framework. We first establish the connection between market participants’ activities

including placing new orders, cancelling existing orders and placing market orders,

etc. to market prices movement and price volatilities. Through an experical study

of serveral Futures markets, we identified the volume imbalance variables as strong

indicator of market movement and risk associated with it. We then construct a sim-

ple discrete MDP model with two volume imbalance variables and a position level

variable. Using this MDP model and a simulated E-Mini S&P 500 Futures market,

we formulate a linear algorithm (Ng and Russel [2000]) to learn traders’s behavior

in the reward space under the presuposition that the reward function, rather than

the policy or the value function, is the most succinct, robust, and transferable defi-

nition of the task. The results are pretty satisfactory in that we can clearly separate

High Frequency Trading strategies from other trading strategies with 90% accuracy

rate, while the separation accuracy rate between Market Makers and Opportunistic

Traders is 83%. When we apply the this model to real market data, we find the overall
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identification accuracy drop 10%. We attribute the accuracy limit to twofold factors.

1). For the real market data, we do not have full observation for some of the trading

strategies, especially Opportunistic trading strategies. They generally tend to have

longer policy horizon. Therefore the it is evident that the separation rate between

HFTs and Opportunistic Traders, and between Market Makers and Opportunistic

Traders will be relatively low. 2). In this model we assume stationary deterministic

policies. This assumption may be two strong. In reality, some of the Algorithmic

trading strategies may be designed to be non-deterministic in nature.

We further investigated a Baysian inference based model to identify trading strate-

gies. We specifically targeted to address the incomplete observation issue and try

to relax our assumption on the deterministric nature of the original trading strate-

gies. We also incorporate traders’ action preference under different market conditions

through Preference graph learning technique. We model the traders’ behavior as a

Gaussian process in the reward space, and aim to recover the optimal policies and the

corresponding reward functions to explain their behaviors. We prove that Algorith-

mic trading strategies can be accurately identified using GPIRL, and it is superior to

the linear approach we studied earlier. Using the real market data (E-Mini S&P 500

Futures market), GPIRL consistently identify individual trading strategies with more

than 95% accuracy. Compared with the linear IRL algorithm, it is a 60% better than

the linear approach. However, using binary one-against-all SVM algorithm the gap

is signifcantly arrowed to only 6%. This is purely because that SVM binary search

algorithm is able to incorporate more information and be able to achive better classi-

fication accuracy using a poor classifier. But there are cost associated with this higher

level search algorithm. From purely feature characterization perspective, GPIRL is

better than the linear IRL approach by 60%.

The major contribution of this dissertation lies in the following areas:

1. We survey the currently established research results in the area of order flow
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event impact to market prices and volatility. We also analyze the market impact

of some intensive exogenous order events to relatively illiquid markets as a

natural experiment, and we show that intensive order flow imbalance generate

significant market impact in terms of both volatility and prices.

2. We investigate and address the issues of modeling algorithmic trading strategies

using IRL models such as, addressing non-deterministic nature of the observed

policies in learning, constructing efficient MDP models using order flow imbal-

ances at different prices levels along with traders inventory levels to capture

order book dynamics, achieving better identification accuracy in reward space,

etc. With a reliably validated agent based market simulation, we capture the

essential characteristics of the algorithmic trading strategies.

3. We model the reward function using Gaussian process, which offers the advan-

tage that IRL using Gaussian process is relatively insensitive to the number of

the observations and it performs better than other algorithms when we only

have partial observations on the policies we try to recover.

4. We apply preference graphs to address non-deterministic nature of the observed

trading behaviors, reducing the uncertainty and computation burden caused by

the ill-posed nature of the inverse learning problem. We build new likelihood

functions for preference graphs and prove the effectiveness of these formulations

in experiments.

5. We also perform clustering of behavior representation of the trading strategies,

and we make connections between the existing summary statistic based trader

classification approach (Kirilenko et al. [2011]) with our behavior based clas-

sification approach. We further propose a score based classification approach

to address variations of Algorithmic trading behavior under different market

conditions. This approach provides a more quantitative method to categorizing
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Algorithmic trading strategies, and we also show that this approach is more

robust than the summary statistic based approach.

Overall, we conclude that behavor based behavior modeling based on IRL can

dentify Algorithmic trading strategies with relativley hgih accuracy. With Gaussian

process based Baysian inference, we can have algorithm that can work with real

market trading strategies.

6.2 Future Work

This research concludes that the reward/utility based trading behavior identifica-

tion can be applied to real market data to accurately identify specific trading strate-

gies. Furthermore, the behaviors learned under the reward space has much broader

application than policies observed. These learned reward functions will not only allow

us accurately identify and classify market participants’ behavior, but also help us to

replicate a particular trading behavior in a different environment to understand their

impact the market price movement and market quality in general.

We want to point out some future research suggestions in the area of both im-

provement of identification accuracy and application of the behavior characterization:

- During our preference learning inference phase, we only considered a simple

two layer preference graph. However, trader’s preferences can be further distin-

guished with multi-layer graphs or other preference learning techniques;

- Our study focused on the top 10 Algorithmic traders on a market. Future

study can extend this results to a large scale experimentation to include mar-

ket participants (specifically Opportunistic traders), and study their behavior

similarity through clustering. We can then associate the group behavior with

market quality measures;
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- Under the GPIRL framework, we are able to recover a detailed reward structure.

These reward functions can be used to generate new policies under a simulated

market condition to understand the complete behavior of certain trading strate-

gies. It will be particularly interesting to the market regulator to see how the

various trading strategies will interact during a stressed market condition;

- Since reward can uniquely determine a control task, we explore construction of

reward functions to generate better trading strategies.

- We may further understand the reward function and its relation to market

risks. The idea here is that under current IRL framework, we only optimize

the expected value. But in reality, algorithm designers also target to reduce

trading system risks they may bear. Even though volatility may be implicitly

considered in the order book dynamics (imbalances at different price levels),

explicit modeling of risk may yield better results.
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APPENDIX A

Deterministic Policy versus Randomized Policy

Let π = (d1, d2, ...) ∈ DMR. The expected total discounted reward of this policy

is defined by

vπγ =
∞∑
t=1

γt−1P t−1
π rdt

= rd1 + γPd1rd2 + γ2Pd1Pd2rd3+

= rd1 + γPd1(rd2 + γPd2rd2 + γ2Pd2Pd3rd4 + ...)

vπγ = rd1 + vπ
′

γ , where, π
′ = (d2, d3, ...) ∈ ΠMR (A.1)

or it can be expressed in component notation as:

vπγ (s) = rd1(s) +
∑
j∈S

γPd1(j|s)vπ
′

γ (j) (A.2)

The interpretation of this equation is that the discounted reward corresponding

to policy p equals the discounted reward in a one-period problem in which the de-

cision maker uses decision rule d1 in the first period and receives the expected total

discounted reward of policy π as a terminal reward. However, when p is stationary so
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that π = π, they simplify further. Let d∞ ≡ (d, d, ) denote the stationary policy which

uses policy d∞ ≡ (d, d, ) ∈ DMR at each decision epoch. For this policy equation A.2

becomes

vd
∞

γ (s) = rd1(s) +
∑
j∈S

γPd1(j|s)vd
∞

γ (j) (A.3)

and equation A.3 becomes

vd
∞

γ = rd1 + γpdv
d∞

γ , where, d∞ = (d2, d3, ...) ∈ ΠMR (A.4)

Thus, vd
∞
γ satisfies the system equations

v = rd + γPdv, orv = (I − γPd)−1rd (A.5)

The matrix v = (I − γPd)−1rd plays a crucial role in the theory of discounted

Markov decision problems. The optimality equation or Bellman equations can be

written as:

v∗(s) = sup
a∈As

rd + γPdv (A.6)

Note that when the supremum on the right-hand side of A.7 is attained for all

v ∈ V , we define L an operator on V by:

Lv ≡ sup
d∈DMD

rd + γPdv (A.7)
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Lemma A.1. Let w be a real-valued function on an arbitrary discrete set W and let

q(.) be a probability distribution on W . Then

sup
u∈W

w(u) ≥
∑
u∈W

q(u)w(u) (A.8)

Proof. Let w∗ = supu∈W w(u). Then

w∗ = sup
u∈W

q(u)w∗ ≥
∑
u∈W

q(u)w(u) (A.9)

Note that the lemma remain valid with W a Borel subset of a measurable space,

w(u) an integrable function on W , and the summation replaced by Integration.

Proposition A.2. For all v ∈ V and 0 ≤ γ ≤ 1,

sup
d∈DMD

rd + γPdv = sup
d∈DMR

rd + γPdv (A.10)

Proof. Since DMR ⊃ DMD, the right-hand side of A.10 must be at least as great as

the left-hand side. To establish the reverse inequality, choose v ∈ V, δ ∈ DMR and

apply A.1 at each s ∈ S with W = As, q(�) = qδ(�), and

w(�) = r(s, �) +
∑
j∈S

γPd(j|s, �)v(j)

to show that
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sup
d∈As

r(s, �) +
∑
j∈S

γPd(j|s, �)v(j) ≥
∑
a∈As

qδ(a)[
∑
j∈S

γPd(j|s, �)v(j)]

Therefore, for any δ ∈ DMR,

sup
d∈DMD

rd + γPdv ≥ rd + γPdv

From which it follows that the left-hand side of A.10 is at least as great as the

right-hand side. Hence we show that we obtain the same value of the supremum in a

deterministic policy as if we were to allow randomized policy.

119



APPENDIX B

Gaussian Processes

B.1 Gaussian Processes

Gaussian processes, as mathematical models of random phenomena that are Gaus-

sian distribution, have attracted more and more attention in machine learning field,

and they are very useful in applications. Since our work use Gaussian processes,

we will give a brief introduction based on the work in Rasmussen and K.I.Williams

[2006], Wei and Zoubin [2005], Seeger [2004], and Hida and Hitsuda [1993].

B.1.1 Gaussian Processes Regression and Classification

Given a data set {X,y}, where X is a matrix that is composed of N input example

vectors xc, c ∈ N and y is a vector of corresponding targets value yc (real value for

regression or categorical value for classification). Gaussian process model treats the

latent functions as random processes with Gaussian prior, which is different from the

parametric form in classical statistical models. Denote the latent function by u(xc),

which is assumed to be a random process. Then the first and second order statistics

of u(xc) are its mean function m(xc) and covariance function k(xc,xd), ∀c, d ∈ N .
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Both estimation of mean function and variance function depend on the finite

dimensional distribution. Since Gaussian process is a process whose finite dimensional

distributions are Gaussian, a Gaussian process is determined by its mean and variance

functions. For every set of realizations of random variables of a Gaussian process, the

symmetric matrix K, whose entries are calculated by the covariance function k(xc,xd),

is positive semi-definite1. It is sufficient that for K is positive semi-definite, there

exists a Gaussian random field with this covariance matrix and zero-mean function

m(xc) = 0 (Kolmogorov’s theorem Kolmogorov [1956]).We denote such random field

as u(xc) ∼ N(0,K).

The simplest Gaussian process model is yc = u(xc) + ε, where ε is an independent

Gaussian noise, written as ε ∼ N(0, σ2
ε ). Within a Bayesian framework, the inference

of u(x) at the test location x is described by maximization of the posterior probability

p(u(x)|X,y) =
p(y|X, u(x))p(u(x))

p(y|X)
.

The joint distribution of the observed target values and the function values follows a

Gaussian distribution. Therefor the posterior conditional distribution is written as

u(x)|X,y ∼ N(K(σ2
ε I + K)−1y, σ2

ε (σ
2
ε I + K)−1K).

The generative model based on Gaussian processes paves an efficient road in which

we are able to perform inference with finite observations in the large space. And it is

also worth mentioning that it keeps tractable computation while offering a guarantee

of performance.

1Positive semi-definite implies that xTKx ≥ 0 for all x.
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B.1.2 Gaussian Process Preference Learning

In machine learning field, a learning scenario, called learning label preference,

studies how to find the latent function that predicts preference relations among a

finite set of labels, for an instance from the instance space. This scenario is a general-

ization of some standard settings, such as classification and label ranking Furnkranz

and Hullermeier [2005]. Considering the latent function values as Gaussian process,

Chu and Ghahramani observed that Bayesian framework is an efficient and competi-

tive method for learning label preferences Wei and Zoubin [2005]. They proposed a

novel likelihood function to capture the preference relations using preference graph,

a directed graph encoding the label preferences of each sample Aiolli and Sperduti

[2004], Manning and Singer [2004].

Let u(x, y) denote the latent function depending on both label y and instance x,

and G denote the observed preference graphs. The Bayesian inference is written as

û(x, y) , arg max
u(x,y)

p(u(x, y)|G) ∝ arg max
u(x,y)

p(G|u(x, y))p(u(x, y)) (B.1)

where p(G|u(x, y)) is the likelihood function derived from preference relations. Given

a new instance x∗, the labels y∗ can be predicted by ranking the values of latent

function, y∗ = arg maxy û(x∗, y), y ∈ Y , where Y is a finite set of labels.

We also use Bayesian inference and build off several of the ideas in [10] and related

work, but our method differs from label preference learning for classification and label

ranking. Our input data depends on states and actions in the context of an MDP.

Moreover, we are learning the reward that indirectly determines how actions are

chosen during the sequential evolution of an MDP, while preference learning studies

the latent functions preserving preferences. On the grounds of Bellman optimality

for MDPs, the decision maker chooses optimal actions with the maximum value of Q-

function at a given state. The preference relation will be determined by Q-functions,
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the expected long-term reward, while the random variable we concern is the immediate

reward function, the intrinsic function determining the decision maker’s behavior.

Next, we give the details of our method.
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APPENDIX C

Convex Optimization Problem

Proof. The second order derivative with respect to ram is

∂2U

∂ram∂rTam
= K−1

am +
∂2
∑n

i=1

∑ni

k=1− ln Φ(
∑m

j=1 ρ
ik
am r̂am)

∂ram∂rTam

+
n∑
i=1

mi∑
l=1

(ρilam)Tρilam (C.1)

It is obvious that K−1
am and (ρilam)Tρilam are positive definite matrix. If the second part

in Eq.C.1 is also positive definite, the minimization of Eq.5.5 is a convex problem.

Let W denote the n×n matrix for the second part and Wcd be the entry at c-th row

and d-th column, which is calculated in the following,

Wcd =
∂2
∑n

i=1

∑ni

k=1− ln Φ(
∑m

j=1 ρ
ik
am r̂am)

∂ram(sc)∂ram(sd)
(C.2)
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and let zki ,
∑m

j=1 ρ
ik
am r̂am . We have

−∂lnΦ(zki )

∂ram(sc)
= −

ρikam(xc)N(zki |0, 1)
√

2σΦ(zki )

−∂2 ln Φ(zki )

∂ram(sc)∂ram(sd)
=

ρikam(sc)ρ
ij
am(sd)N(

∑m
j=1 ρ

ik
am r̂am|0, 1)

2σ2Φ(zki )

[
zki +

N(zki |0, 1)

Φ(zki )

]

where let ωik =
N(zki |0,1)

2σ2Φ(zki )

[
zki +

N(zki |0,1)

Φ(zki )

]
, we have

Wcd =


∑n

i=1

∑ni

k=1

[
ρikam(sc)

]2
ωik ≥ 0 if c=d∑n

i=1

∑ni

k=1 ρ
ik
am(sc)ρ

ik
am(sd) = Wdc otherwise

(C.3)

Let y = [y1, y2, · · · , yn] denotes a n× 1 vector. Then

yTWy =
n∑
i=1

ni∑
k=1

y1

n∑
b=1

ρikam(sb)ρ
ik
am(s1)yb

+
n∑
i=1

ni∑
k=1

y2

n∑
b=1

ρikam(sb)ρ
ik
am(s2)yb

+ · · ·+
n∑
i=1

ni∑
k=1

yn

n∑
b=1

ρikam(sb)ρ
ik
am(sn)yb

=
n∑
i=1

ni∑
k=1

[
n∑
b=1

y2
b [ρ

ik
am(sb)]

2

+2
n∑
b=1

∑
b′ 6=b

ybyb′ρ
ik
am(sb)ρ

ik
am(sb′)]

=
n∑
i=1

ni∑
k=1

(
n∑
b=1

ybρ
ik
am(sb)

)2

≥ 0 (C.4)

we prove the matrix W is semi-positive definite. So the Hessian matrix of Eq.5.5 is

positive semi-definite on the interior of a convex set. Hence, minimizing Eq.5.5 is a

convex programming problem.

125



BIBLIOGRAPHY

126



BIBLIOGRAPHY

127



BIBLIOGRAPHY

Abbeel, P., and A. Y. Ng (2004), Apprenticeship learning via inverse reinforce-
ment learning, pp. 1–.

Admati, A., and P. Pfleiderer (1988), A theory of intraday patterns: Volume and
price variability, The Review of Financial Studies, 1, 3–40.

Aggarwal, R. K., and G. Wu (2003), Stock market manipulation-theory and
evidence, AFA 2004 San Diego Meetings.

Aiolli, F., and A. Sperduti (2004), Learning preferences for multiclass problems,
in Advances in Neural Information Processing Systems 17, pp. 17–24, MIT Press.

Aldridge, I. (2010), A Practical Guide to Algorithmic Strategies and Trading
Systems - High Frequency Trading, 339 pp., John Wiley & Sons, Inc.

Baerenklau, K., and B. Provencher (2005), Static modeling of dynamic recre-
ation behavior: implications for prediction and welfare estimation, Journal of
Environmental Economics and Management, 50(3), 617–636.

Bagnell, B. D. Z. A. M. J. A., and A. K. Dey (2008), Maximum entropy inverse
reinforcement learning, In Proceedings of the Twenty-Third AAAI on Artifical
Intelligence, p. 14331438.

Baker, C. L., R. Saxe, and J. B. Tenenbaum (2009), Action understanding as
inverse planning, Cognition.

Barto, R. S. S. A. G., and R. J. Williams (1991), Reinforcement learning is direct
adaptive optimal control, American Control Conference, pp. 26–28.

Bertsekas, D. (2007), Neuro-Dynamic Programming, Athena Scientific.

Bollerslev, T. A. T., and F. Diebold (2002), Parametric and nonparametric
volatility measurement, Handbook of Financial Econometrics. North-Holland,
Amsterdam.

Bouchaud, Z. E. J., and J. Kockelkoren (), The price impact of order book events:
market orders, limit orders and cancellations, Quantitative Finance, 0 (0), 1–25.

Boularias, A., and B. Chaib-draa (2010), Bootstrapping apprenticeship learning,
in Advances in Neural Information Processing Systems 24, MIT press.

128



Bowling, U. S. M., and R. E. Schapire (2008), Apprenticeship learning using
linear programming, in Proc. 25th international Conf. on Machine learning, pp.
1032–1039, ACM.

Brogaard, J. (2010), High frequency trading and its impact on market quality,
Ph.D. Dissertation, Kellogg School of Management, Northwestern University.

Burges, C. (1998), A tutorial on support vector machine for pattern recognition,
Data Mining Knowledge Discovery, 2, 121.

Chordia, T., R. Roll, and A. Subrahmanyam (2001), Market liquidity and trading
activity, Journal of Finance, 56, 501–530.

Coates, P. A. A., and A. Y. Ng (2010), Autonomous helicopter aerobatics through
apprenticeship learning, The International Journal of Robotics Research, (1-31).

Cvitanic, J., and A. Kirilenko (2010), High frequency traders and asset prices,
Cal Tech Working Paper, California.

D., D. N., N. Yael, and D. Peter (2005), Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control, Nature Neu-
roscience, 8, 1704–1711.

Deepak, R., and A. Eyal (2007), Bayesian inverse reinforcement learning, in Proc.
20th International Joint Conf. on Artificial Intelligence.

Dey, N. R. B. Z. K. P. J. A. B. M. H. A. K., and S. Srinivasa (2009), Inverse
optimal heuristic control for imitation learning, in Proc. AISTATS, pp. 424–431.

Dvijotham, K., and E. Todorov (2010), Inverse optimal control with linearly-
solvable mdps, in Proc. 27th International Conf. on Machine learning, ACM.

Easley, D., M. L. de Prado, and M. O’Hara (2010), The microstructure of the
”flash crash”, Cornell University Working Paper, 2010.

Ekman, P. (1992), Intraday patterns in the s&p 500 index futures market, The
Journal of Futures Markets, 12, 365–381.

Eren, N., and H. N. Ozsoylev (2006), Hype and dump manipulation, AFA 2008
New Orleans Meetings Paper.

Farmer, J. B. J., and F. Lillo (2009), How markets slowly digest changes in supply
and demand, in Handbook of Financial Markets: Dynamics and Evolution, 584
pp.

Farmer, J. D., and F. Lillo (2004), On the origin of power-law tails in price
fluctuations, Quantitative Finance, 4 (1), 7–11.

Foucault, T., and A. Menkveld (2008), Competition for order flow and smart
order routing systems, Journal of Finance, 63, 119–158.

129



Furnkranz, J., and E. Hullermeier (2005), Preference learning, in Kunstliche
Intelligenz.

Gabaix, V. P. H. E. S. X., and P. Gopikrishnan (2004), On the origin of power-law
fluctuations in stock prices, Quantitative Finance, 4 (1), 11–15.

Gatheral, J. (2010), No-dynamic-arbitrage and market impact, Quantitative Fi-
nance, 10 (7), 749–759.

Hasbrouchk, J., and D. J. Seppi (2001a), Common factors in prices, order flows
and liquidity, Journal of Financial Economics, 59, 383–411.

Hasbrouchk, J., and D. J. Seppi (2001b), Common factors in prices, order flows,
and liquidity, Journal of Financial Economics, 59, 383–411.

Hasbrouck, J. (1991), Measuring the information content of stock trades, The
Journal of Finance, 46, 179–207.

Hasbrouck, J. (2007), Empirical Market Microstructure: The Institutions, Eco-
nomics, and Econometrics of Securities Trading, 196 pp., Oxford University
Press, 198 Madison Avenue, New York, New York 10016.

Hendel, I., and N. Aviv (2006), Measuring the implications of sales and consumer
inventory behavior, Econometrica, 74(6), 1637–1673.

Hendershott, T., and R. Riordan (2008), Algorithmic trading and information,
NET Institute Working Paper, pp. 09–08.

Hida, T., and M. Hitsuda (1993), Gaussian Processes, American Mathematical
Society.

Hult, H., and J. Kiessling (2010), Algorithmic trading with markov chains, Doc-
toral thesis, Stockholm University, Sweden 2010.

Joachims, T. (1998), Making large scale SVM learning practical, MIT Press,
Cambridge, MA.

Jones, C., G. Kaul, and M. Lipson (1994), Transactions, volume, and volatility,
7 (4), 631–651.

Jones, T. H. C. M., and A. J. Menkveld (2011), Does algorithmic trading improve
liquidity?, Journal of Finance, 66, 1–33.

Jovanovic, B., and A. Menkveld (2010), Middlemen in limit-order markets, NYU
Working Paper, New York.

Kanto, L. K. J. T. A., and K. Kaski (1999), Characteristic times in stock market
indices, Physica A: Statistical Mechanics and its Applications, 269, 98–110.

130



Karpoff, J. M. (2004), The relation between price changes and trading volume:
A survey, Journal of Financial and Quantitative Analysis, 22, 109–126.

Kirilenko, A., A. S. Kyle, M. Samadi, and T. Tuzun (2011), The flash crash: The
impact of high frequency trading on an electronic market, (1686004).

Knez, P., and M. Ready (1996), Estimating the profits from trading strategies,
Review of Financial Studies, 9, 1121.

Kockelkoren, J. B. J., and M. Potters (2006), Random walks, liquidity molasses
and critical response in financial markets, Quantitative Finance, 6, 115–123.

Kolmogorov, A. (1956), Foundations of the Theory of Probability, 2nd ed., AMS
Chelsea.

Kukanov, R. C. A., and S. Stoikov (2010), Order book dynamics and price im-
pact, Columbia University, Working Paper.

Kukanov, R. C. A., and S. Stoikov (2011), The price impact of order book events,
SSRN eLibrary.

Lee, S., and P. Zoran (2010), Learning behavior styles with inverse reinforcement
learning, in SIGGRAPH ’10: ACM SIGGRAPH 2010 papers, pp. 1–7, ACM,
New York, NY, USA.

Lee, Y., R. Fox, and Y. Liu (2001), Explaining intraday pattern of trading volume
from the order flow data, Journal of Business Finance and Accounting, 28, 306–
686.

Legg, S., and M. Hutter (2004), Ergodic mdps admit self-optimising policies,
Working Paper.

Lyons, R. K. (2006), The Microstructure Approach to Exchange Rates, MIT
Press, Cambridge, MA US.

Macal, C. M., and M. J. North (1999), Tutorial on agent-based modelling and
simulation, Journal of Simulation, 4, 151162.

Mandelbrot, B. (1963), The variation of certain speculative prices, Journal of
Business, 4, 3082–3139.

Manning, O. D. C. D., and Y. Singer (2004), Log-linear models for label ranking,
in 21st International Conference on Machine Learning.

Meyer, P. G. V. P. L. A. M., and H. Stanley (1999), Scaling of the distribution
of fluctuations of financial market indices, Phys. Rev. E, 60, 53055316.

Mike, J. D. F. L. G. F. L. S., and A. Sen (2004), What really causes large price
changes?, Quantitative Finance, 4, 383–397.

131



Mike, S., and J. D. Farmer (2008), An empirical behavioral model of liquidity
and volatility, Journal of Economic Dynamics and Control, 32, 200234.

Miranda, M., and G. Schnitkey (1995), Estimation of dynamic agricultural deci-
sion models: The case of dairy cow replacement, Journal of Applied Economet-
rics, 10, 41–56.

Neu, G., and C. Szepesvari (2007), Apprenticeship learning using inverse re-
inforcement learning and gradient methods, in Proc. Uncertainty in Artificial
Intelligence.

Ng, A. Y., and S. Russel (2000), Algorithms for inverse reinforcement learning,
In Proc. ICML, pp. 663–670.

Obizhaeva, A. A., and J. Wang (2005), Optimal trading strategy and sup-
ply/demand dynamics, SSRN eLibrary.

Oomen, R. (2005), Properties of bias-corrected realized variance under alterna-
tive sampling schemes, Journal of Econometics, 3, 555–577.

Paddrik, M. E., R. H. Jr., A. Todd, S. Yang, W. Scherer, and P. Beling (2011),
An agent based model of the e-mini s&p 500 and the flash crash, SSRN Working
Paper.

Pagan, A. (1996), The econometrics of financial markets, Journal of Empirical
Finance, 3, 15–102.

Plerou, X. G. P. G. V., and H. E. Stanley (2003), A theory of power-law distri-
butions in financial market fluctuations, Nature, 423, 267–270.

Popovic, S. L. Z., and V. Koltun (2010), Feature construction for inverse rein-
forcement learning, in Advances in Neural Information Processing Systems 24,
MIT press.

Potters, J. B. Y. G. M., and M. Wyart (2004), Fluctuations and response in
financial markets: the subtle nature of random price changes, Quantitative Fi-
nance, 4, 176–190.

Potters, R. C. M., and J. Bouchaud (1997), Scale invariance and beyond, Les
Houches Workshop 1997.

Puterman, M. L. (1994), Markov Decision Process: Discrete Stochastic Program-
ming, John Wiley and Sons, Inc, New York.

Qiao, Q., and P. Beling (2011), Inverse reinforcement learning with gaussian
process, Proceedings of 2011 American Control Conference.

R., B. (1957), Dynamic programming, Princeton University Press.

132



Ramachandran, D., and E. Amir (2007), Bayesian inverse reinforcement learning,
In Proc. IJCAI, p. 25862591.

Rasmussen, C. E., and C. K.I.Williams (2006), Gaussian Processes for Machine
Learning, MIT Press.

Russell, S. (1998), Learning agents for uncertain environments, Proceedings of
the Eleventh Annual Conference on Computational Learning Theory.

Rust, J. (1987), Optimal replacement of gmc bus engines: An empirical model
of harold zurcher, Econometirca, 55, 999–1033.

Rust, J. (1995a), Structural estimation of markov decision processes, Handbook
of Econometrics, IV, 3082–3143.

Rust, J. (1995b), Estimation of dynamic structural models, problems and
prospects: discrete decision processes, Proceedings of the 6th World Congress
of the Econometic Society, 4, 119–170.

Rust, J. (1997), Structural estimation of markov decision processes, Review of
Financial Studies, 4, 3082–3139.

Schaeffer, D. B. D. P. J., and D. Szafron (1998), Opponent modeling in poker,
AAAI, p. 493498.

Schapire, U. S. R. E. (2008), A game-theoretic approach to apprenticeship learn-
ing, in In Advances in Neural Information Processing Systems, pp. 1449–1456,
MIT Press.

Scharfstein, K. F. D., and J. Stein (1992), Herd on the street: Informational
inefficiencies in a market with short-term speculation, Journal of Finance, 47,
1461–1484.

Seeger, M. (2004), Gaussian processes for machine learning, International Jour-
nal of Neural Systems, 14, 2004.

Sharpe, W. (1966), Mutual fund performance, Journal of Business, 39, 119–138.

Stoikov, R. C. S., and R. Talreja (2010b), A stochastic model for order book
dynamics, SSRN Working Paper.

Sutton, R. S., and A. G. Barto (1998), Reinforcement Learning: An Introduction,
The MIT Press, Cambridge, Massachusetts.

Syed, U., and R. E. Schapire (2007), A game-theoretic approach to apprentice-
ship learning, NIP, pp. 663–670.

Vapnik, V. (1998), Statistical Learning Theory, Wiley, New York.

133



Vapnik, V. (1999), The Nature of Statistical Learning Theory, 2nd Edition, Sp-
inger, New York, 1999.

Vives, X. (1995), Short-term investment and the informational efficiency of the
market, Review of Financial Studies, 8, 125–160.

Waelbroeck, C. S. H., and A. Mendoza (2009), Relating market impact to ag-
gregate order flow: the role of supply and demand in explaining concavity and
order flow dynamics, Working Paper Series.

Weber, P., and R. Bernd (2006), Large stock price changes: volume or liquidity?,
Quantitative Finance, 6 (1), 7–14.

Wei, C., and G. Zoubin (2005), Preference learning with gaussian processes, in
Proc. 22th Iinternational Conf. on Machine learning, pp. 137–144, ACM.

Yang, S., M. Paddrik, R. Hayes, T. Andrew, A. Kirilenko, P. Beling, and
W. Scherer (2012), Behavior based learning in identifying high frequency trading
strategies, Proceedings of IEEE Computational Intelligence in Financial Engi-
neering and Economics, 2012.

134


	Approval sheet with signature
	2012_05_04_10_17_25
	PhD-Dissertation-BehaviorBasedAlgorithmicTradingStrategyIdentification

