
 1

The Application of Cloud Technology to The Onion Network

A Technical Report
presented to the faculty of the

School of Engineering and Applied Science
University of Virginia

by

Brandie Young

with

Jack Good
Vineet Kalpathi

November 2, 2020

On my honor as a University student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Brandie Young

 Technical advisors: Ashish Venkat, Department of Computer Science
 Xiaozhu Lin, Department of Computer Science

UVA, November 2020, Charlottesville, VA, USA J. Good, B. Young, & V. Kalpathi

 2

Improving Onion Routing: A Cloud-Based Approach

Jack Good
Computer Science

 University of Virginia
 Charlottesville, Virginia US

 jg8dp@virginia.edu

Brandie Young
 Computer Science

 University of Virginia
 Charlottesville, Virginia US

brandieyoung98@gmail.com

Vineet Kalpathi
 Computer Science

 University of Virginia
 Charlottesville, Virginia US

vsk6ab@virginia.edu

ABSTRACT

The Onion Router (TOR), a free worldwide network run by
volunteers, allows its users to access the internet anonymously by
obfuscating their connection. The Onion Router enables the
proliferation of cybercrime such as illegal markets and pedophilia
rings; however, in an age of increased internet censorship, data
mining, and surveillance, these systems also grant users with
increased security, privacy, and freedom especially in cases of state
oppression. The Onion Router is not without its drawbacks; TOR’s
network can exhibit poor performance, reliability, and has the
potential to be blocked. The advent of cloud computing, which has
the ability to solve TOR’s shortcomings, allows for on-demand
provisioning of massive computing performance and connectivity.
How can the security of the TOR network be strengthened by the
use of cloud technologies, for the purpose of protecting the privacy
of users on the Internet and promoting Internet freedom? Current
research on this topic shows that a cloud-based onion router
network is feasible, but has left the tradeoffs of cloud computing
configurations for future research. The purpose of this technical
report is to examine the tradeoffs in the context of onion routing in
the cloud and prescribe a recommendation for the optimal
configuration. The target metrics will likely include latency,
throughput, monetary cost per user, usability, and of course, the
preservation of security from local and global network adversaries.

1 Background
Although the dark web’s volunteer-based infrastructure model

preserves anonymity through its decentralized nature, it also poses
adverse effects on the network’s overall performance and security.
There are a limited number of volunteer-run relays located
worldwide, subject to highly variable network performance
depending on the host’s location and Internet Service Provider plan.
Relays with limited access to network bandwidth create bottlenecks
within onion-routed circuits, negatively affecting the latency of
TOR connections [16]. Additionally, the dark web relies on a few
well-known entry nodes for onboarding users to the network, which
allows for network administrators to easily censor content or block
all anonymous traffic by blacklisting all known TOR addresses
[17]. This is also how authoritarian governments can censor the

spread of information amongst and beyond its populations, stifle
criticism, and ultimately oppress citizens.

Several studies suggest the potential for cloud infrastructure to
greatly mitigate these performance and security issues caused by
TOR’s current infrastructure model, presenting an incredibly
efficient and secure method of browsing the internet freely. Thus,
the objective of our project is to explore the fairly novel design
space of applying cloud computing to TOR. Our technical research
will utilize existing literature, documentation, and data to analyze
the tradeoffs of different types of cloud compute resources and
network configurations and their effect on the key metrics of secure
communications within a cloud-based onion routing network.

2 Related Work

The sheer scalability and elasticity of services presented by

major cloud hosting providers (CHP), such as Amazon Web
Services, Microsoft Azure, or Google Cloud, could tremendously
enhance TOR’s user experience. An experimental implementation
and analysis of COR yielded results that exhibit client download
times 7.6× faster than TOR [16]. Another small-scale
implementation that utilized dynamically-addressed virtual
machine (VM) relays proved to be highly tolerant against denial-
of-service attacks, given that CHPs can simply spin up new VM
relay instances to handle overwhelming amounts of traffic [18].
These initial results are extraordinarily promising; however, these
experiments fail to encompass the added complexity of involving
CHPs in the anonymity network’s infrastructure at a large scale.

The preservation of anonymity provided by TOR lies within the
trust of users and the volunteers running and maintaining the
network’s relays. A cloud-based model adds several relationships
to the picture, including the relationship between CHPs and end
users. Given that direct payment systems between CHPs and users
could completely deanonymize all network activity and render all
onion routing useless, a large concern for implementing COR is
deciding who is responsible for the cost of running relays provided
by CHPs. Jones et al [16] suggest the need for an additional entity,
called an “anonymity service provider” (ASP), to purchase relays
and provide a secure, anonymous transaction for users to pay for
access to these nodes. Additionally, a fully anonymized
implementation of COR requires the existence of multiple ASPs to

 1

ensure that no single entity has the ability to oversee and discern
which relays are carrying a given user’s traffic. The issue of
designing an anonymous payment framework for COR is an
untapped area of research that our team is looking to dive into.

3 System Design

Table of Contents

3.1 Instance Purchasing Options…………………….2

3.2 Instance Family Types…………………………..2

3.3 Typical TOR Applications & Bandwidth……….3

3.4 Regions and Availability Zones…………………5

3.5 Network Topology……………………………...6

3.1 Instance Purchasing Options
There are various instance purchasing options to consider for

the use case of COR. To start off, we look at on-demand instances.
At first glance, these make the most sense for our COR use case.
They can be quickly spun up or blown away, and the ASP will only
pay per second of use, effectively scaling the relay fleet with the
amount of COR network traffic [1]. Upon being spun up, an
instance will also have a new IP address, which is useful in that it
will by default prevent wholesale blocking from censors attempting
to blacklist known TOR addresses. Prices of on-demand instances
are volatile, subject to the fluctuating supply and demand of the
instance market. Historically, the price of instances has dropped
with the booming success of cloud technology and providers
cutting prices, competing for customers [12].

Next, we look at reserved instances. Reserved options allow the
purchaser to “lock in” a cheaper price than the on-demand price, by
committing to an instance type and Region for a period of 1-3 years.
With reserved instances, there is full upfront, partial upfront, and
no upfront options. Generally speaking, you can save more money
making a higher upfront payment for a reserved instance. With
Reserved Instances, you can save up to 75% over equivalent on-
demand capacity. The reserved option is tempting, as it locks in a
much lower cost for users of the COR network, and would likely
make the COR network more appealing to more users, thereby
further driving down the price. However, upfront RI options would
require ASPs to somehow fundraise enough money to be able to
pay for the full year of the reservation, meaning enough tokens
would need to have been purchased in time. That brings up the
issue—what if not enough money is on hand for the ASP to pay?
And even if a less upfront option was used, the issue still exists;
what if there is not enough money on hand to pay the hourly rate of
the no upfront RI? This option is ultimately somewhat of a problem
because the number of reservations made at the yearly turnover is
not dependent on the real-time, potentially constantly changing

demand of the COR network. It’s also important to note that the IP
address of the reserved instances would only change when it was
stopped or hibernated (which is important to deter censors
attempting to blacklist known TOR addresses) so there would need
to be some extra overhead to ensure the stopping/restarting of the
instance [1].

Lastly, we look at spot instances. Similarly to on-demand
instances, you can cancel a spot instance at any time and you only
pay for per second of usage. However, spot instances offer the
largest potential discount from on-demand prices, up to 90% in the
right conditions. Spot instances prices are extremely volatile
(updated every five minutes), and represent the excess capacity
Amazon has on hand, in case of surges in customer demand [10].
So the low price has a cost—it’s that Amazon can “pull the plug”
and terminate spot instances with just a 2 minute warning. This may
be doable with the COR network, but it would mean that this
instance would need to be quickly removed from the pool of
available relays, so that traffic is not lost. It would also require extra
overhead in the form of a protocol to notify clients that are
attempting to route through this instance, that it needs to reroute its
traffic through other relays. Another worthwhile thing to consider
is that there wouldn’t always be Spot instances available for the
ASP to bid on, so some kind of backup plan would be needed when
there aren’t Spot instances available—perhaps backfilling with on-
demand instances. Ultimately, Spot instances seem extremely
attractive as a way to make the COR network as cheap as possible
for users.

3.2 Instance Family Types
Within Amazon EC2, there exists a number of instance families

an ASP can consider for use as a COR relay. Each type of instance
offers a distinct set of computational resources to cater to varying
general purpose, compute-optimized, memory-optimized, and
storage-optimized use-cases [2]. An analysis of COR relay resource
usage is dependent on the function of the node within the onion
routing algorithm. TOR’s routing scheme currently uses three
primary types of relays within a single circuit: entry (or guard)
relays, middle relays, and exit relays. In a typical connection,
clients connect directly to a guard node, which routes traffic
through one or more middle relays, subsequently accessing a
destination through an exit node. This separation of functionality
creates varying resource considerations for each type of relay,
given that each relay faces slightly different requirements regarding
the handling of user traffic. Therefore, our investigation of potential
instance types for use as a COR relay must evaluate operating
system, compute, storage, and memory requirements for each type
of node. We utilize the relay requirements expressed by the TOR
Relay Guide on torproject.org [23].

Like most modern software, onion routing is completely
independent of the operating system it runs on. The TOR
community recommends that relay administrators run the operating
system that they are most familiar with, in an attempt to further
diversify and decentralize the set of nodes that run TOR, thereby
improving the overall security of the network. Figure 1 lists the

UVA, November 2020, Charlottesville, VA, USA J. Good, B. Young, & V. Kalpathi

 2

current distribution of operating systems across relays on the TOR
network.

Figure 1: Operating System Distribution Across the Onion
Router Network [19]

It can be observed that the large majority of TOR relays run
Linux (specifically Debian) images. In the context of COR, this
recommendation gives ASPs free reign over the operating systems
run on the relays they provide, allowing for a much more even OS
distribution across COR nodes. Amazon EC2 offers seven different
Linux images, four Microsoft Server images, and an option for
custom images for users to choose from. Microsoft and custom
images cost slightly more than Linux alternatives, illustrating a
tradeoff between cost and the added security from a diversification
of relays. An ASP must therefore decide on an optimal ratio of relay
OSs to maximize security while minimizing cost for themselves
and the end user. However, the ease of deploying COR nodes with
a large assortment of operating systems exhibits a security
advantage over TOR’s current infrastructure.

Relays on the TOR network do not have stringent CPU
requirements, given that most modern processors can easily handle
running TOR on a single server. The only recommendation for
relay processors is support for Intel’s Advanced Encryption
Standard New Instructions (AES-NI), an instruction set that
accelerates data encryption on contemporary intel processors [15].
This feature improves overall relay performance, allowing for
approximately 400-450 Mbps upstream and downstream
connections [23]—greatly exceeding the minimum requirement of
10 Mbps, the recommended non-exit relay bandwidth of 16 Mbps,
and the ‘fast exit relay’ requirement of 100 Mbps. Fortunately, all
EC2 instances support AES-NI and therefore meet the compute
requirements of COR guard, middle, and exit nodes [2]. Similarly,
relays do not typically utilize a large amount of disk storage due to
the dynamic nature of onion routing. The algorithm itself does not
require more than 200 MB of disk space to operate, allowing for all
instance families to meet storage requirements for COR operation.

Memory requirements for COR relays are minimal, relative to
the options that CHPs provide for compute instances. Guard and
middle nodes require at least 512 MB of RAM for relays that
support less than 40 Mbps connections, and 1 GB for relays that
support 40 Mbps or higher. Given that all EC2 instances support a
minimum of 400 Mbps, we can assume a 1 GB RAM requirement
for non-exit COR relays. Exit nodes require at least 1.5 GB of RAM
per instance [23]. This differentiation stems from the separation of
relay functions; non-exit nodes are only responsible for routing and
obfuscating traffic via encryption, while exit nodes have the added
responsibility of maintaining the users’ intended requests and
responses. Furthermore, all non-nano EC2 instances meet the

memory requirements for COR relays, offering a large selection of
low-cost options for ASPs to provide relay access to users.

Given the resource considerations for guard, middle, exit, and
bridge relays, ASPs have a considerable amount of flexibility in
choosing which instance types to use for COR nodes. Memory is
the only limiting factor in choosing an instance; therefore,
assuming an on-demand pricing model, ASPs could minimize costs
by utilizing the T-family of instances for use as COR relays—the
size of the instance remains contingent upon network bandwidth
requirements, which will be discussed in the next section. However,
the anonymity of COR relies on the existence of multiple ASP
entities, giving rise to inherent competition among such
institutions. This competitive force presents an additional
motivation for ASPs to provide greater performance and security to
COR users by offering compute-optimized relays or a larger variety
of operating systems. Although our analysis exhibits the lowest-
cost options for ASPs and end-users, there is an immanent tradeoff
between cost and performance when selecting instance types for
COR relays. Anonymity-providing entities must consider
providing relay access with higher performance and security to
appeal to the myriad of COR users.

3.3 Typical TOR Applications and Bandwidth
When it comes to appropriating the egress/ingress capabilities

that a TOR relay should have, we investigate the average
bandwidth usage of a TOR relay and resulting cost of this in the
cloud, mostly commonly used services used in the Dark Web, and
finally, which instance types would best fit the COR use case in
terms of bandwidth.
To start off, note that Amazon charges nothing for downstream
traffic and traffic between its own data centers. However, we must
take into account upstream traffic and traffic between relays in
different Cloud Hosting Providers. This yields another piece of
consideration when trying to determine the number of CHPs to
route through—it adds another upstream connection, thereby
increasing bandwidth costs. For example, in a COR circuit with 2
nodes in different CHPs, we have 2 upstream connections and 2
downstream connections in our route to appropriate bandwidth to
[16].
By looking at the metrics provided by torproject.org [26], the upper
bound of traffic through a TOR relay is .9 Gbits/s which equals
112.5 MB/s in November of 2020. To determine upstream traffic,
we take roughly half of this, so on average 56.25 MB/s. For a month
of usage, we get 56.25 MB/s * 3600 s/hr * 24 hr/day * 31
days/month = 150,660,000 MB = 150,660 GB, which is

 3

approximately 150 TB/month of traffic. To estimate what this
would cost with COR we use Amazon’s pricing. Amazon uses a
pay-as-you-go, sliding-scale for upstream traffic pictured below in
Figure 2. Therefore, we have $1500 for the first 10 TB, $4400 for
the next 40 TB, and $9000 for the last 100 TB. That brings us to

Figure 2: Cost of Data In/Out of Amazon [3]

$14,900 to run an Amazon EC2 instance at the current bandwidth
requirements. Note that these prices, like that of the actual
instances, have been on the decline over time, making the cost of
running these relays even cheaper over time.
Figure 3 shows the percentages of various web-based onion
services, in which Dr. Gareth Owen [20] in one of the largest

Figure 3: Percentages of Web-Based Onion Services

studies into TOR to date, categorized known sites based on content.
This indicates that the most TOR services are sites that are
associated with drugs, the black market, fraudulent papers, bitcoin,
and mail.

We dive deeper. Given each of these categories, Figure 4 [20]
shows us what proportion of directory requests went to each of
these categories. These percentages of “successful hidden service
requests” likely loosely correlate with visits by users (although we
can’t know for sure the proportion of users vs. automated requests
by nature of the dark web). These numbers may also be inflated by
“crawlers”, groups that visit these sites on a regular basis, for
example child protection agencies. Figure 2 would indicate an

alarming percentage
of requests went to
web-based services
about

Figure 4: Content vs.
Popularity in Web-
Based Services [20]

abuse, one would
hope the numbers are
inflated by these child
protection agencies.
Following abuse, the
other top requested
services look to be
porn, search, forum,
wiki, market, and
drugs. These services
would all have
various bandwidth
requirements per
user, most no
different than a

normal website, but some on par with that of a Netflix or other
video streaming service.
In light of this information and how much bandwidth a common
TOR relay utilizes, we investigate which instance size would fit our
bandwidth. Note that AWS does not disclose the network capacity
of all their instance types in detail. But we can find baseline
throughputs for various instance types as found in practice, see
Figure 5 [27]. Note that as a general rule, larger instance types have
increasingly larger baseline Gbit/s network

UVA, November 2020, Charlottesville, VA, USA J. Good, B. Young, & V. Kalpathi

 4

throughputs.

Figure 5: Baseline Network Throughput by Instance Type [27]

With our average bandwidth around .9 Gbits/s, and our various
use cases, it seems it would make sense to have a variety of instance
sizes. In general however, we prescribe the t3.xlarge instance type
to be able to support this average bandwidth and all the computing
resources mentioned above, at the lowest cost to the user. In times
of increased traffic, the T-family will also have the ability to burst
to support even greater bandwidth. Lastly, it may be worthwhile to
include some t3.2xlarge instances, especially if we find that the
COR network is strained and needs to be able to better support the
bandwidth requirements of onion streaming services.

3.4 Regions and Availability Zones
There are approximately two million TOR users spanning the

entire globe, subject to varied network connectivity and
authoritarian censorship. Figure 6 [21] is a cartogram created by the
Oxford Internet Institute, illustrating the number of TOR users per
country, as well as the number of daily TOR users per 100,000
internet users. From the cartogram, we can see that the majority of

Figure 6: Cartogram of the Number of TOR Users per 100,000
Internet Users [21]

TOR’s userbase is located within the United States and Europe,
followed by middle eastern countries like Iran and Israel. A large
percentage of internet users in Africa are also TOR users [24, 25].

The number of TOR users is likely influenced by the prevalence
of relays within the same geographic region, as physical proximity
is directly proportional to network latency—a connection between
two nearby machines is much faster than a connection between two
geographically separated machines. Figure 7 [14] shows a
histogram of the locations of known TOR exit nodes based on their
IP addresses from torproject.org. Assuming that this distribution is
representative of the prevalence of guard and middle nodes, we can
reason that users in the US or Europe experience much less latency
within TOR connections than users in other countries.

Figure 7: Number of TOR Exit Relays per Country [14]

In designing an ASP to provide relay access to COR users, the
relative geographic locations of relays and users should be taken
into account. AWS currently spans 77 availability zones within 24
geographic regions and plans to expand to include 12 additional
zones in 4 additional geographic regions [4]. Figure 8 shows a map
of the current and upcoming regions supported by AWS. Given the

Figure 8: Geographical Visualization of Current and
Upcoming Amazon Web Service Regions [4]

widespread availability of Amazon’s data centers, COR can greatly
improve the accessibility of onion routing networks across the

 5

world. By purchasing COR relays within a wide-ranging set of
AWS availability zones, ASPs can cater to users across the world
by providing users with access to geographically closeby relays.
However, ASPs must consider the varying costs of hosting EC2
instances in certain regions [4]—yet another tradeoff between cost
and the global availability of the COR network.

3.5 Network Topology
Jones et al. [16] recommends building a COR circuit where each

COR tunnel has at least two relays within each datacenter it
traverses. This property increases the difficulty for an adversary to
monitor COR connections by requiring the adversary to eavesdrop
on most ISP connections to each data center [16]. How should COR
nodes within each datacenter be connected on the network? This
presents a network topology design decision in the context of cloud
computing.

All CHP have many of the same characteristics when it comes
to networking like public and private subnets [11, 13]. We will
focus on Amazon Web Services’ Virtual Private Cloud (VPC) for
this discussion. A VPC is a virtual network that is logically isolated
from other networks in the AWS cloud. Within a VPC, a user can
create multiple subnets, which are ranges of IP addresses. Public
subnets are used for resources that must be connected to the
internet, and private subnets are used for resources that are isolated
from the internet [5].

 We have chosen two of the most common and robust
VPC implementations to explore for COR. We will analyze them
across four different criteria: sender anonymity, receiver
anonymity, performance, and security.

The first configuration, VPC with a single public subnet or
VPC-public, is the simplest implementation of a possible COR
VPC. As seen in Figure 9 below, it consists of a single public
subnet, and an internet gateway to enable communication over the
internet [6].

Figure 9: VPC-public is a VPC with a single public subnet, and
an internet gateway to enable communication over the Internet

Elastic IP addresses can be assigned to Elastic Cloud Compute
(EC2) instances that can be spun up and torn down within the VPC,
eliminating wholesale blocking of COR. This will preserve, and
even strengthen, sender anonymity compared to the traditional
TOR implementation. By the same token, receiver anonymity will
be strengthened compared to TOR since these ephemeral EC2
instance IP addresses will be more difficult for an adversary to
monitor than static IP addresses like seen in TOR. Since this
approach uses an internet gateway, performance will not be
affected [22]. A downside of the VPC-public implementation is
security. Since EC2 instances reside in a public subnet, all relays
are accessible by the entirety of the internet.

The next configuration is a VPC with public and private subnets
or VPC-public-private. As seen in Figure 10 below, the instances
in the public subnet can send outbound traffic directly to the
Internet, whereas the instances in the private subnet cannot. Instead,
the instances in the private subnet can access the Internet by using
a network address translation (NAT) gateway that resides in the
public subnet [7]. This would allow TOR users to connect through
EC2 instances in the

Figure 10: VPC-public-private is a VPC with where instances
in the private subnet can access the Internet by using a network
address translation (NAT) gateway that resides in the public
subnet

public subnet then route traffic to one or many relays in its private
subnet. From there, it can be sent to the end user or another CHP.
This will provide similar sender anonymity like in the previous
VPC-public implementation by leveraging floating EC2 IP
addresses. However, VPC-public-private will have worse receiver
anonymity since all traffic will be sent through the same NAT
gateway, therefore having one IP address [8]. The NAT gateway
could also impose limitations on performance at extreme traffic
loads. When the bandwidth on a NAT exceeds 45 Gbps, additional
overhead and cost will be required to distribute NATs across
multiple subnets [9]. The VPC-public-private implementation

UVA, November 2020, Charlottesville, VA, USA J. Good, B. Young, & V. Kalpathi

 6

provides better security than the VPC-public implementation since
some, but not all relays are accessible from the public internet.

The comparison between the VPC-public and VPC-public-
private implementations provides insights into some of the
tradeoffs required when following Jones et al’s recommendation
for building a COR circuit.
We recommend using the VPC-public-private implementation
because when prioritizing security this implementation presents the
best compromise between sender anonymity, receiver anonymity,
performance, and security. The VPC-public-private
implementation is similar to the VPC-public implementation since
both increase sender anonymity compared to a traditional TOR
implementation. Although the VPC-public-private implementation
does not augment receiver anonymity like VPC-public, it will
perform similar to a traditional TOR implementation. Furthermore,
the VPC-public-private will require additional overhead when
network bandwidth exceeds 45 Gbps. However, this is a tradeoff
we are willing to make because it will increase security of the
overall COR network by allowing CHP to utilize private subnets in
the VPC-public-private implementation.

4 Results
Based on our in-depth analysis of the tradeoffs of network

topology, instance purchasing options, instance family types,
typical applications on TOR and their required bandwidth, and
regions and availability zones we now prescribe the most optimal
configuration based on latency, throughput, monetary cost per user,
usability, and of course the preservation of security from local and
global network adversaries.

We recommend a network topology implementation that
consists of a VPC with public and private subnets where the private
subnet can access the Internet by using a network address NAT
gateway that resides in the public subnet. When prioritizing
security this implementation presents the best compromise between
sender anonymity, receiver anonymity, performance, and security.

As for reservation type, spot instances, while available and of
large enough size to support the 0.9 Gbit/s bandwidth requirement,
are the best choice to make COR as cheap as possible for end users.
If a relay is about to be turned off by the CHP, the CHP will give a
5 minute warning to the ASP. This 5 minutes provides adequate
time for the ASP to request sufficient on-demand resources to
replace these spot instances in the network and for the ASP to
advertise these new routes. On-demand instances can supplement
the supply of spot instances to ensure adequate coverage among all
regions and global availability.

 When considering instance family and size for use as
COR relays, we consider memory and bandwidth restraints for
guard, middle, and exit relays. Given the minimum requirements of
1 GB RAM for non-exit nodes, 1.5 GB RAM for exit nodes, and
0.9 Gbit/s bandwidth for all nodes, an ASP can minimize costs by
leveraging the T-family of EC2 instances, with a minimum size
requirement of ‘xlarge’. An ASP should consider offering more
performant instances to serve more bandwidth-heavy services like
streaming services.

5 Conclusion and Future Work
 We sincerely hope that our work will add value to the fairly

novel design space of COR, and that once implemented, COR will
better defend the Internet freedom and privacy of users over the
existing TOR. We leave quantitative experiments based on our
recommendations for future work. It would be useful to explore
how the additional overhead of adding NAT gateways when traffic
increases over 45 Gbps affects performance in the VPC-public-
private implementation. Furthermore, measuring how our choice of
a mixture of spot and on-demand T-family instances performs in
real-world production environments against latency, availability,
and throughput as compared to current TOR relays.

REFERENCES
[1] Amazon Web Services. 2020. Instance purchasing options. (2020). Retrieved

November 7, 2020 from
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-purchasing-
options.html

[2] Amazon Web Services. 2020. Amazon EC2 Instance Types. (2020). Retrieved
from https://aws.amazon.com/ec2/instance-types/.

[3] Amazon Web Services. 2020. Amazon EC2 On-Demand Pricing. (2020).
Retrieved from https://aws.amazon.com/ec2/pricing/on-demand/.

[4] Amazon Web Services. 2020. Global Infrastructure. (2020). Retrieved from
https://aws.amazon.com/about-aws/global-infrastructure/.

[5] Amazon Web Services. 2020. What is Amazon VPC?. (2020). Retrieved from
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

[6] Amazon Web Services. 2020. VPC with a single public subnet. (2020). Retrieved
November 8, 2020 from
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario1.html

[7] Amazon Web Services. 2020. VPC with public and private subnets (NAT).
(2020). Retrieved November 8, 2020 from
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html

[8] Amazon Web Services. 2020. NAT gateways. (2020). Retrieved November 8,
2020 from https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-
gateway.html

[9] Amazon Web Services. 2020. Amazon VPC pricing. (2020). Retrieved
November 8, 2020 from https://docs.aws.amazon.com/vpc/latest/userguide/vpc-
nat-gateway.html

[10] Gavin Cahill. 2020. Definitive Guide to AWS EC2 Pricing and How to Control
Costs. (October 2020). Retrieved November 7, 2020 from
https://www.apptio.com/blog/guide-to-aws-ec2-costs/

[11] Fidelis Ekezue. 2017. Differentiating between Azure Virtual Network (VNet)
and AWS Virtual Private Cloud (VPC). (September 2017). Retrieved November
8, 2020 from https://devblogs.microsoft.com/premier-developer/differentiating-
between-azure-virtual-network-vnet-and-aws-virtual-private-cloud-vpc/

[12] Sylvia Engdahl. 2018. New Research From TSO Logic Shows AWS Costs Get
Lower Every Year. (2018). Retrieved November 7, 2020 from
https://aws.amazon.com/blogs/apn/new-research-from-tso-logic-shows-aws-
costs-get-lower-every-year/

[13] Google Cloud. 2020. Patterns for connecting other cloud service providers with
Google Cloud. (2020). Retrieved November 8, 2020 from
https://cloud.google.com/solutions/patterns-for-connecting-other-csps-with-gcp

[14] Hacker Target. Tor Exit Nodes Located and Mapperd. Retrieved from
https://hackertarget.com/tor-exit-node-visualization/.

[15] Intel. Advanced Encryption Standard New Instructions. Retrieved from
https://www.intel.com/content/www/us/en/architecture-and-
technology/advanced-encryption-standard-aes/data-protection-aes-general-
technology.html.

[16] Nicholas Jones, Matvey Arye, Jacopo Cesareo, and Michael J. Freedman. Aug.
2011. Hiding amongst the clouds: A proposal for cloud-based onion routing. In
FOCI.

[17] Risto Laurikainen. 2010. Secure and anonymous communication in the cloud.
Aalto University School of Science and Technology—Department of Computer
Science and Engineering, Tech. Rep. TKK-CSE-B10, 1-5.

[18] Galia Novakova Nedeltcheva, Elior Vila, and Marina Marinova. 2019. The onion
router: Is the onion network suitable for cloud technologies. In Smart
Technologies and Innovation for a Sustainable Future, 389-398.

[19] ORNetStats. 2020. Onion Routing Network Statistics. (2020). Retrieved from
https://nusenu.github.io/OrNetStats/#os-distribution-relays.

 7

[20] Dr. Gareth Owen. 2015. Tor: Hidden Services and Deanonymisation. Retrieved
November 7, 2020 from https://www.youtube.com/watch?v=-oTEoLB-
ses&t=1998

[21] Oxford Internet Institute. 2014. The Anonymous Internet. (2014). Retrieved from
http://geography.oii.ox.ac.uk/the-anonymous-internet/.

[22] Ashish Patel. 2019. AWS — Difference between Internet gateway and NAT
gateway. (May 2019). Retrieved November 8, 2020 from
https://medium.com/awesome-cloud/aws-vpc-difference-between-internet-
gateway-and-nat-gateway-c9177e710af6

[23] TorCommunity. Relay Requirements. Retrieved from
https://community.torproject.org/relay/relays-requirements/.

[24] TorMetrics. 2020. Top-10 countries by relay users. (2020). Retrieved from
https://metrics.torproject.org/userstats-relay-table.html.

[25] TorMetrics. 2020. Top-10 countries by bridge users. (2020). Retrieved from
https://metrics.torproject.org/userstats-bridge-table.html.

[26] The Tor Project. 2018. Tor Metrics: Traffic. (2018). Retrieved November 7, 2020
from https://metrics.torproject.org/advbwdist-perc.html

[27] Andreas Wittig. 2018. EC2 Network Performance Cheat Sheet. (January 2018).
Retrieved November 7, 2020 from https://cloudonaut.io/ec2-network-
performance-cheat-sheet/

