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ABSTRACT 

The Onion Router (TOR), a free worldwide network run by 
volunteers, allows its users to access the internet anonymously by 
obfuscating their connection. The Onion Router enables the 
proliferation of cybercrime such as illegal markets and pedophilia 
rings; however, in an age of increased internet censorship, data 
mining, and surveillance, these systems also grant users with 
increased security, privacy, and freedom especially in cases of state 
oppression. The Onion Router is not without its drawbacks; TOR’s 
network can exhibit poor performance, reliability, and has the 
potential to be blocked. The advent of cloud computing, which has 
the ability to solve TOR’s shortcomings, allows for on-demand 
provisioning of massive computing performance and connectivity. 
How can the security of the TOR network be strengthened by the 
use of cloud technologies, for the purpose of protecting the privacy 
of users on the Internet and promoting Internet freedom? Current 
research on this topic shows that a cloud-based onion router 
network is feasible, but has left the tradeoffs of cloud computing 
configurations for future research. The purpose of this technical 
report is to examine the tradeoffs in the context of onion routing in 
the cloud and prescribe a recommendation for the optimal 
configuration. The target metrics will likely include latency, 
throughput, monetary cost per user, usability, and of course, the 
preservation of security from local and global network adversaries. 

1 Background 
Although the dark web’s volunteer-based infrastructure model 

preserves anonymity through its decentralized nature, it also poses 
adverse effects on the network’s overall performance and security. 
There are a limited number of volunteer-run relays located 
worldwide, subject to highly variable network performance 
depending on the host’s location and Internet Service Provider plan. 
Relays with limited access to network bandwidth create bottlenecks 
within onion-routed circuits, negatively affecting the latency of 
TOR connections [16]. Additionally, the dark web relies on a few 
well-known entry nodes for onboarding users to the network, which 
allows for network administrators to easily censor content or block 
all anonymous traffic by blacklisting all known TOR addresses 
[17]. This is also how authoritarian governments can censor the 

spread of information amongst and beyond its populations, stifle 
criticism, and ultimately oppress citizens. 

Several studies suggest the potential for cloud infrastructure to 
greatly mitigate these performance and security issues caused by 
TOR’s current infrastructure model, presenting an incredibly 
efficient and secure method of browsing the internet freely. Thus, 
the objective of our project is to explore the fairly novel design 
space of applying cloud computing to TOR. Our technical research 
will utilize existing literature, documentation, and data to analyze 
the tradeoffs of different types of cloud compute resources and 
network configurations and their effect on the key metrics of secure 
communications within a cloud-based onion routing network. 

2 Related Work 
 
The sheer scalability and elasticity of services presented by 

major cloud hosting providers (CHP), such as Amazon Web 
Services, Microsoft Azure, or Google Cloud, could tremendously 
enhance TOR’s user experience. An experimental implementation 
and analysis of COR yielded results that exhibit client download 
times 7.6× faster than TOR [16]. Another small-scale 
implementation that utilized dynamically-addressed virtual 
machine (VM) relays proved to be highly tolerant against denial-
of-service attacks, given that CHPs can simply spin up new VM 
relay instances to handle overwhelming amounts of traffic [18]. 
These initial results are extraordinarily promising; however, these 
experiments fail to encompass the added complexity of involving 
CHPs in the anonymity network’s infrastructure at a large scale. 

The preservation of anonymity provided by TOR lies within the 
trust of users and the volunteers running and maintaining the 
network’s relays. A cloud-based model adds several relationships 
to the picture, including the relationship between CHPs and end 
users. Given that direct payment systems between CHPs and users 
could completely deanonymize all network activity and render all 
onion routing useless, a large concern for implementing COR is 
deciding who is responsible for the cost of running relays provided 
by CHPs. Jones et al [16] suggest the need for an additional entity, 
called an “anonymity service provider” (ASP), to purchase relays 
and provide a secure, anonymous transaction for users to pay for 
access to these nodes. Additionally, a fully anonymized 
implementation of COR requires the existence of multiple ASPs to 
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ensure that no single entity has the ability to oversee and discern 
which relays are carrying a given user’s traffic. The issue of 
designing an anonymous payment framework for COR is an 
untapped area of research that our team is looking to dive into. 

3 System Design 

Table of Contents 
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3.1 Instance Purchasing Options 
There are various instance purchasing options to consider for 

the use case of COR. To start off, we look at on-demand instances. 
At first glance, these make the most sense for our COR use case. 
They can be quickly spun up or blown away, and the ASP will only 
pay per second of use, effectively scaling the relay fleet with the 
amount of COR network traffic [1]. Upon being spun up, an 
instance will also have a new IP address, which is useful in that it 
will by default prevent wholesale blocking from censors attempting 
to blacklist known TOR addresses. Prices of on-demand instances 
are volatile, subject to the fluctuating supply and demand of the 
instance market. Historically, the price of instances has dropped 
with the booming success of cloud technology and providers 
cutting prices, competing for customers [12]. 

Next, we look at reserved instances. Reserved options allow the 
purchaser to “lock in” a cheaper price than the on-demand price, by 
committing to an instance type and Region for a period of 1-3 years. 
With reserved instances, there is full upfront, partial upfront, and 
no upfront options. Generally speaking, you can save more money 
making a higher upfront payment for a reserved instance. With 
Reserved Instances, you can save up to 75% over equivalent on-
demand capacity. The reserved option is tempting, as it locks in a 
much lower cost for users of the COR network, and would likely 
make the COR network more appealing to more users, thereby 
further driving down the price. However, upfront RI options would 
require ASPs to somehow fundraise enough money to be able to 
pay for the full year of the reservation, meaning enough tokens 
would need to have been purchased in time. That brings up the 
issue—what if not enough money is on hand for the ASP to pay? 
And even if a less upfront option was used, the issue still exists; 
what if there is not enough money on hand to pay the hourly rate of 
the no upfront RI? This option is ultimately somewhat of a problem 
because the number of reservations made at the yearly turnover is 
not dependent on the real-time, potentially constantly changing 

demand of the COR network. It’s also important to note that the IP 
address of the reserved instances would only change when it was 
stopped or hibernated (which is important to deter censors 
attempting to blacklist known TOR addresses) so there would need 
to be some extra overhead to ensure the stopping/restarting of the 
instance [1]. 

Lastly, we look at spot instances. Similarly to on-demand 
instances, you can cancel a spot instance at any time and you only 
pay for per second of usage. However, spot instances offer the 
largest potential discount from on-demand prices, up to 90% in the 
right conditions. Spot instances prices are extremely volatile 
(updated every five minutes), and represent the excess capacity 
Amazon has on hand, in case of surges in customer demand [10]. 
So the low price has a cost—it’s that Amazon can “pull the plug” 
and terminate spot instances with just a 2 minute warning. This may 
be doable with the COR network, but it would mean that this 
instance would need to be quickly removed from the pool of 
available relays, so that traffic is not lost. It would also require extra 
overhead in the form of a protocol to notify clients that are 
attempting to route through this instance, that it needs to reroute its 
traffic through other relays. Another worthwhile thing to consider 
is that there wouldn’t always be Spot instances available for the 
ASP to bid on, so some kind of backup plan would be needed when 
there aren’t Spot instances available—perhaps backfilling with on-
demand instances. Ultimately, Spot instances seem extremely 
attractive as a way to make the COR network as cheap as possible 
for users. 

3.2 Instance Family Types 
Within Amazon EC2, there exists a number of instance families 

an ASP can consider for use as a COR relay. Each type of instance 
offers a distinct set of computational resources to cater to varying 
general purpose, compute-optimized, memory-optimized, and 
storage-optimized use-cases [2]. An analysis of COR relay resource 
usage is dependent on the function of the node within the onion 
routing algorithm. TOR’s routing scheme currently uses three 
primary types of relays within a single circuit: entry (or guard) 
relays, middle relays, and exit relays. In a typical connection, 
clients connect directly to a guard node, which routes traffic 
through one or more middle relays, subsequently accessing a 
destination through an exit node. This separation of functionality 
creates varying resource considerations for each type of relay, 
given that each relay faces slightly different requirements regarding 
the handling of user traffic. Therefore, our investigation of potential 
instance types for use as a COR relay must evaluate operating 
system, compute, storage, and memory requirements for each type 
of node. We utilize the relay requirements expressed by the TOR 
Relay Guide on torproject.org [23]. 

Like most modern software, onion routing is completely 
independent of the operating system it runs on. The TOR 
community recommends that relay administrators run the operating 
system that they are most familiar with, in an attempt to further 
diversify and decentralize the set of nodes that run TOR, thereby 
improving the overall security of the network. Figure 1 lists the 



UVA, November 2020, Charlottesville, VA, USA J. Good, B. Young, & V. Kalpathi 
 

 2 

current distribution of operating systems across relays on the TOR 
network.  

 

Figure 1: Operating System Distribution Across the Onion 
Router Network [19] 

It can be observed that the large majority of TOR relays run 
Linux (specifically Debian) images. In the context of COR, this 
recommendation gives ASPs free reign over the operating systems 
run on the relays they provide, allowing for a much more even OS 
distribution across COR nodes. Amazon EC2 offers seven different 
Linux images, four Microsoft Server images, and an option for 
custom images for users to choose from. Microsoft and custom 
images cost slightly more than Linux alternatives, illustrating a 
tradeoff between cost and the added security from a diversification 
of relays. An ASP must therefore decide on an optimal ratio of relay 
OSs to maximize security while minimizing cost for themselves 
and the end user. However, the ease of deploying COR nodes with 
a large assortment of operating systems exhibits a security 
advantage over TOR’s current infrastructure. 

Relays on the TOR network do not have stringent CPU 
requirements, given that most modern processors can easily handle 
running TOR on a single server. The only recommendation for 
relay processors is support for Intel’s Advanced Encryption 
Standard New Instructions (AES-NI), an instruction set that 
accelerates data encryption on contemporary intel processors [15]. 
This feature improves overall relay performance, allowing for 
approximately 400-450 Mbps upstream and downstream 
connections [23]—greatly exceeding the minimum requirement of 
10 Mbps, the recommended non-exit relay bandwidth of 16 Mbps, 
and the ‘fast exit relay’ requirement of 100 Mbps. Fortunately, all 
EC2 instances support AES-NI and therefore meet the compute 
requirements of COR guard, middle, and exit nodes [2]. Similarly, 
relays do not typically utilize a large amount of disk storage due to 
the dynamic nature of onion routing. The algorithm itself does not 
require more than 200 MB of disk space to operate, allowing for all 
instance families to meet storage requirements for COR operation. 

Memory requirements for COR relays are minimal, relative to 
the options that CHPs provide for compute instances. Guard and 
middle nodes require at least 512 MB of RAM for relays that 
support less than 40 Mbps connections, and 1 GB for relays that 
support 40 Mbps or higher. Given that all EC2 instances support a 
minimum of 400 Mbps, we can assume a 1 GB RAM requirement 
for non-exit COR relays. Exit nodes require at least 1.5 GB of RAM 
per instance [23]. This differentiation stems from the separation of 
relay functions; non-exit nodes are only responsible for routing and 
obfuscating traffic via encryption, while exit nodes have the added 
responsibility of maintaining the users’ intended requests and 
responses. Furthermore, all non-nano EC2 instances meet the 

memory requirements for COR relays, offering a large selection of 
low-cost options for ASPs to provide relay access to users. 

Given the resource considerations for guard, middle, exit, and 
bridge relays, ASPs have a considerable amount of flexibility in 
choosing which instance types to use for COR nodes. Memory is 
the only limiting factor in choosing an instance; therefore, 
assuming an on-demand pricing model, ASPs could minimize costs 
by utilizing the T-family of instances for use as COR relays—the 
size of the instance remains contingent upon network bandwidth 
requirements, which will be discussed in the next section. However, 
the anonymity of COR relies on the existence of multiple ASP 
entities, giving rise to inherent competition among such 
institutions. This competitive force presents an additional 
motivation for ASPs to provide greater performance and security to 
COR users by offering compute-optimized relays or a larger variety 
of operating systems. Although our analysis exhibits the lowest-
cost options for ASPs and end-users, there is an immanent tradeoff 
between cost and performance when selecting instance types for 
COR relays. Anonymity-providing entities must consider 
providing relay access with higher performance and security to 
appeal to the myriad of COR users. 
 

3.3 Typical TOR Applications and Bandwidth 
When it comes to appropriating the egress/ingress capabilities 

that a TOR relay should have, we investigate the average 
bandwidth usage of a TOR relay and resulting cost of this in the 
cloud, mostly commonly used services used in the Dark Web, and 
finally, which instance types would best fit the COR use case in 
terms of bandwidth. 
To start off, note that Amazon charges nothing for downstream 
traffic and traffic between its own data centers. However, we must 
take into account upstream traffic and traffic between relays in 
different Cloud Hosting Providers. This yields another piece of 
consideration when trying to determine the number of CHPs to 
route through—it adds another upstream connection, thereby 
increasing bandwidth costs. For example, in a COR circuit with 2 
nodes in different CHPs, we have 2 upstream connections and 2 
downstream connections in our route to appropriate bandwidth to 
[16]. 
By looking at the metrics provided by torproject.org [26], the upper 
bound of traffic through a TOR relay is .9 Gbits/s which equals 
112.5 MB/s in November of 2020. To determine upstream traffic, 
we take roughly half of this, so on average 56.25 MB/s. For a month 
of usage, we get 56.25 MB/s * 3600 s/hr * 24 hr/day * 31 
days/month = 150,660,000 MB = 150,660 GB, which is 
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approximately 150 TB/month of traffic. To estimate what this 
would cost with COR we use Amazon’s pricing. Amazon uses a 
pay-as-you-go, sliding-scale for upstream traffic pictured below in 
Figure 2. Therefore, we have $1500 for the first 10 TB, $4400 for 
the next 40 TB, and $9000 for the last 100 TB. That brings us to  

Figure 2: Cost of Data In/Out of Amazon [3] 

$14,900 to run an Amazon EC2 instance at the current bandwidth 
requirements. Note that these prices, like that of the actual 
instances, have been on the decline over time, making the cost of 
running these relays even cheaper over time. 
Figure 3 shows the percentages of various web-based onion 
services, in which Dr. Gareth Owen [20] in one of the largest  

Figure 3: Percentages of Web-Based Onion Services 

studies into TOR to date, categorized known sites based on content. 
This indicates that the most TOR services are sites that are 
associated with drugs, the black market, fraudulent papers, bitcoin, 
and mail. 

We dive deeper. Given each of these categories, Figure 4 [20] 
shows us what proportion of directory requests went to each of 
these categories. These percentages of “successful hidden service 
requests” likely loosely correlate with visits by users (although we 
can’t know for sure the proportion of users vs. automated requests 
by nature of the dark web). These numbers may also be inflated by 
“crawlers”, groups that visit these sites on a regular basis, for 
example child protection agencies. Figure 2 would indicate an 

alarming percentage 
of requests went to 
web-based services 
about  

Figure 4: Content vs. 
Popularity in Web-
Based Services [20] 

abuse, one would 
hope the numbers are 
inflated by these child 
protection agencies. 
Following abuse, the 
other top requested 
services look to be 
porn, search, forum, 
wiki, market, and 
drugs. These services 
would all have 
various bandwidth 
requirements per 
user, most no 
different than a 

normal website, but some on par with that of a Netflix or other 
video streaming service. 
In light of this information and how much bandwidth a common 
TOR relay utilizes, we investigate which instance size would fit our 
bandwidth. Note that AWS does not disclose the network capacity 
of all their instance types in detail. But we can find baseline 
throughputs for various instance types as found in practice, see 
Figure 5 [27]. Note that as a general rule, larger instance types have 
increasingly larger baseline Gbit/s network 
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throughputs. 

 

Figure 5: Baseline Network Throughput by Instance Type [27] 

With our average bandwidth around .9 Gbits/s, and our various 
use cases, it seems it would make sense to have a variety of instance 
sizes. In general however, we prescribe the t3.xlarge instance type 
to be able to support this average bandwidth and all the computing 
resources mentioned above, at the lowest cost to the user. In times 
of increased traffic, the T-family will also have the ability to burst 
to support even greater bandwidth. Lastly, it may be worthwhile to 
include some t3.2xlarge instances, especially if we find that the 
COR network is strained and needs to be able to better support the 
bandwidth requirements of onion streaming services. 
 

3.4 Regions and Availability Zones 
There are approximately two million TOR users spanning the 

entire globe, subject to varied network connectivity and 
authoritarian censorship. Figure 6 [21] is a cartogram created by the 
Oxford Internet Institute, illustrating the number of TOR users per 
country, as well as the number of daily TOR users per 100,000 
internet users. From the cartogram, we can see that the majority of  

Figure 6: Cartogram of the Number of TOR Users per 100,000 
Internet Users [21] 

TOR’s userbase is located within the United States and Europe, 
followed by middle eastern countries like Iran and Israel. A large 
percentage of internet users in Africa are also TOR users [24, 25].  

The number of TOR users is likely influenced by the prevalence 
of relays within the same geographic region, as physical proximity 
is directly proportional to network latency—a connection between 
two nearby machines is much faster than a connection between two 
geographically separated machines. Figure 7 [14] shows a 
histogram of the locations of known TOR exit nodes based on their 
IP addresses from torproject.org. Assuming that this distribution is 
representative of the prevalence of guard and middle nodes, we can 
reason that users in the US or Europe experience much less latency 
within TOR connections than users in other countries.

 

Figure 7: Number of TOR Exit Relays per Country [14] 

In designing an ASP to provide relay access to COR users, the 
relative geographic locations of relays and users should be taken 
into account. AWS currently spans 77 availability zones within 24 
geographic regions and plans to expand to include 12 additional 
zones in 4 additional geographic regions [4]. Figure 8 shows a map 
of the current and upcoming regions supported by AWS. Given the  

Figure 8: Geographical Visualization of Current and 
Upcoming Amazon Web Service Regions [4] 

widespread availability of Amazon’s data centers, COR can greatly 
improve the accessibility of onion routing networks across the 
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world. By purchasing COR relays within a wide-ranging set of 
AWS availability zones, ASPs can cater to users across the world 
by providing users with access to geographically closeby relays. 
However, ASPs must consider the varying costs of hosting EC2 
instances in certain regions [4]—yet another tradeoff between cost 
and the global availability of the COR network. 

3.5 Network Topology 
Jones et al. [16] recommends building a COR circuit where each 

COR tunnel has at least two relays within each datacenter it 
traverses. This property increases the difficulty for an adversary to 
monitor COR connections by requiring the adversary to eavesdrop 
on most ISP connections to each data center [16]. How should COR 
nodes within each datacenter be connected on the network? This 
presents a network topology design decision in the context of cloud 
computing.  

All CHP have many of the same characteristics when it comes 
to networking like public and private subnets [11, 13]. We will 
focus on Amazon Web Services’ Virtual Private Cloud (VPC) for 
this discussion. A VPC is a virtual network that is logically isolated 
from other networks in the AWS cloud. Within a VPC, a user can 
create multiple subnets, which are ranges of IP addresses. Public 
subnets are used for resources that must be connected to the 
internet, and private subnets are used for resources that are isolated 
from the internet [5].  

 We have chosen two of the most common and robust 
VPC implementations to explore for COR. We will analyze them 
across four different criteria: sender anonymity, receiver 
anonymity, performance, and security.  

The first configuration, VPC with a single public subnet or 
VPC-public, is the simplest implementation of a possible COR 
VPC. As seen in Figure 9 below, it consists of a single public 
subnet, and an internet gateway to enable communication over the 
internet [6].

 

Figure 9: VPC-public is a VPC with a single public subnet, and 
an internet gateway to enable communication over the Internet 

Elastic IP addresses can be assigned to Elastic Cloud Compute 
(EC2) instances that can be spun up and torn down within the VPC, 
eliminating wholesale blocking of COR. This will preserve, and 
even strengthen, sender anonymity compared to the traditional 
TOR implementation. By the same token, receiver anonymity will 
be strengthened compared to TOR since these ephemeral EC2 
instance IP addresses will be more difficult for an adversary to 
monitor than static IP addresses like seen in TOR. Since this 
approach uses an internet gateway, performance will not be 
affected [22]. A downside of the VPC-public implementation is 
security. Since EC2 instances reside in a public subnet, all relays 
are accessible by the entirety of the internet. 

The next configuration is a VPC with public and private subnets 
or VPC-public-private. As seen in Figure 10 below, the instances 
in the public subnet can send outbound traffic directly to the 
Internet, whereas the instances in the private subnet cannot. Instead, 
the instances in the private subnet can access the Internet by using 
a network address translation (NAT) gateway that resides in the 
public subnet [7]. This would allow TOR users to connect through 
EC2 instances in the  
 

Figure 10: VPC-public-private is a VPC with where instances 
in the private subnet can access the Internet by using a network 
address translation (NAT) gateway that resides in the public 
subnet 

public subnet then route traffic to one or many relays in its private 
subnet. From there, it can be sent to the end user or another CHP. 
This will provide similar sender anonymity like in the previous 
VPC-public implementation by leveraging floating EC2 IP 
addresses. However, VPC-public-private will have worse receiver 
anonymity since all traffic will be sent through the same NAT 
gateway, therefore having one IP address [8]. The NAT gateway 
could also impose limitations on performance at extreme traffic 
loads. When the bandwidth on a NAT exceeds 45 Gbps, additional 
overhead and cost will be required to distribute NATs across 
multiple subnets [9]. The VPC-public-private implementation 
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provides better security than the VPC-public implementation since 
some, but not all relays are accessible from the public internet.  

The comparison between the VPC-public and VPC-public-
private implementations provides insights into some of the 
tradeoffs required when following Jones et al’s recommendation 
for building a COR circuit.  
We recommend using the VPC-public-private implementation 
because when prioritizing security this implementation presents the 
best compromise between sender anonymity, receiver anonymity, 
performance, and security. The VPC-public-private 
implementation is similar to the VPC-public implementation since 
both increase sender anonymity compared to a traditional TOR 
implementation. Although the VPC-public-private implementation 
does not augment receiver anonymity like VPC-public, it will 
perform similar to a traditional TOR implementation. Furthermore, 
the VPC-public-private will require additional overhead when 
network bandwidth exceeds 45 Gbps. However, this is a tradeoff 
we are willing to make because it will increase security of the 
overall COR network by allowing CHP to utilize private subnets in 
the VPC-public-private implementation.  
 

4 Results 
Based on our in-depth analysis of the tradeoffs of network 

topology, instance purchasing options, instance family types, 
typical applications on TOR and their required bandwidth, and 
regions and availability zones we now prescribe the most optimal 
configuration based on latency, throughput, monetary cost per user, 
usability, and of course the preservation of security from local and 
global network adversaries.  

We recommend a network topology implementation that 
consists of a VPC with public and private subnets where the private 
subnet can access the Internet by using a network address NAT 
gateway that resides in the public subnet. When prioritizing 
security this implementation presents the best compromise between 
sender anonymity, receiver anonymity, performance, and security. 

As for reservation type, spot instances, while available and of 
large enough size to support the 0.9 Gbit/s bandwidth requirement, 
are the best choice to make COR as cheap as possible for end users. 
If a relay is about to be turned off by the CHP, the CHP will give a 
5 minute warning to the ASP. This 5 minutes provides adequate 
time for the ASP to request sufficient on-demand resources to 
replace these spot instances in the network and for the ASP to 
advertise these new routes. On-demand instances can supplement 
the supply of spot instances to ensure adequate coverage among all 
regions and global availability. 

 When considering instance family and size for use as 
COR relays, we consider memory and bandwidth restraints for 
guard, middle, and exit relays. Given the minimum requirements of 
1 GB RAM for non-exit nodes, 1.5 GB RAM for exit nodes, and 
0.9 Gbit/s bandwidth for all nodes, an ASP can minimize costs by 
leveraging the T-family of EC2 instances, with a minimum size 
requirement of ‘xlarge’. An ASP should consider offering more 
performant instances to serve more bandwidth-heavy services like 
streaming services. 

5 Conclusion and Future Work 
 We sincerely hope that our work will add value to the fairly 

novel design space of COR, and that once implemented, COR will 
better defend the Internet freedom and privacy of users over the 
existing TOR. We leave quantitative experiments based on our 
recommendations for future work. It would be useful to explore 
how the additional overhead of adding NAT gateways when traffic 
increases over 45 Gbps affects performance in the VPC-public-
private implementation. Furthermore, measuring how our choice of 
a mixture of spot and on-demand T-family instances performs in 
real-world production environments against latency, availability, 
and throughput as compared to current TOR relays. 
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