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Numerical approach to Evolution equations for Generalized Par-
ton Distributions

Sorawich Maichum

(ABSTRACT)

We present a numerical code in Python to calculate the evolution equation in pertur-

bative Quantum Chromodynamics (PQCD) for both the parton distributions which

are obtained in inclusive deep inelastic scattering experiments, and the generalized

parton distributions which can be extracted from deeply virtual exclusive experi-

ments. To solve the integro-differential equations, we adopt the Adams method as

an alternative technique to the standard Runge-Kutta algorithm. We compare the

relative efficiency of various algorithms for solving the PQCD evolution calculation.

The methods are: backward difference, Adams and Runge-Kutta (RK4) We found

that the Adams method is the most efficient one in that it decreases the calculation

time about four times compared to RK4, while leaving the calculational error about

the same.These studies provide an initial step to calculate GPDs evolution.
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Chapter 1

Introduction

High energy physics studies at present colliders involve both increasingly higher ener-

gies of the colliding beams and high luminosity which, in turn, can be accomplished

using innovative and expensive equipment. Even though the Large Hadron Col-

lider(LHC) can be used to study very high energy collisions, up to 13.6 TeV, and the

Electron Ion Collider (EIC) will probe nucleons and nuclei at the highest luminosity,

there is no limit to the inquisitiveness of humanity. What physics can be discovered at

even higher energies and what unknowns aspects of all interacting subatomic matter

would we like to to explore?

The evolution equations in perturbative Quantum Chromodynamics (pQCD) are one

of the many ingredients that help determining the worthiness to build experimental

colliders in a, so far, unexplored range of energy. Many physicists can use the evolution

equations to explore these new regions, which will be soon at reach with current

technology, unraveling both interesting behavior from pQCD evolution and perhaps

new physics.

The pQCD evolution equations in this thesis are mainly used with parton distribution

functions (PDFs) and subsequently applied to generalized parton distribution (GPD).

The PDFs are an important ingredient for high energy predictions. The PDFs are

extracted from experimental data at a given four-momentum scale, Q2, by devising

a parameterization with fitted parameters. The evolution process requires PDFs
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calculated at an initial four-momentum scale, Q2
o. Solving the equations allows us to

connect the PDFs at the initial scale, Q2
o, with the scale of the measurement that is

interesting for experimental comparison, Q2.

This thesis focuses on improving the efficiency – measured in both accuracy and

calculation speed – of the numerical programming of the pQCD evolution equations.

We focused on the Adams method to improve the efficiency. Python was chosen to

be the main programming language. Indeed, there exist many previous numerical

programs which cannot be used efficiently in global analyses because they are based

on FORTRAN-77. Due to its user friendly nature Python is widely considered the

univeral computer language.

Moreover, with the aim of helping new students in high energy and nuclear physics, I

provide many details clarifying the working of the fundamental equations underlying

pQCD evolution, which are quite intricate and not shown in mainstream textbooks.

The outline of the thesis consists of the following points:

- a brief introduction to the evolution equations in pQCD and necessary background

knowledge.

- introduction to the Adams method for solving differential equations and the new

form of generalized Adams method which I found during my thesis work.

- A step-by-step checklist as a useful tool for whoever is interested in reproducing

results in pQCD evolution.

- Results from a comparison of the efficiencies of the Adams method with the Runge-

Kutta 4(RK4), the most popular method and the Backward difference, the first order

difference of the Adams method.

- Extension of results to GPD evolution and comparison to sum rules.

- Discussion of results.
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- Summary of the interesting features found in my numerical study.
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Chapter 2

QCD Physics and Evolution

2.1 History of Nuclear Physics through QCD

After humanity learned about atomic structure, a variety of fields were discovered.

One of these is nuclear physics or the study of atomic nuclei and their substruc-

tures and interactions. These interactions happen at five orders of magnitude smaller

distance scales compared to the scales of atomic physics.

The first essential discovery came from Henri Becquerel who discovered radioactiv-

ity of uranium salts in 1896. This discovery subsequently inspired other physicists

including J.J. Thompson and Ernest Rutherford to perform more in depth studies

of radioactivity and particle scattering. In 1911 Rutherford interpreted a most fa-

mous experiment in nuclear physics on the scattering of alpha particles off a gold

foil performed by Hans Geiger and Ernest Marsden, who were his students. Based

on the angular distribution of the scattered alpha particles, Rutherford discovered

that the positively charged particles inside the atom where concentrated in a small

volume defining the atomic nucleus. A long list of discoveries followed afterwards

among which we mention Eddington’s stellar nuclear fusion, Rasetti’s nuclear spin,

Chacwick’s discovery of the neutron, Proca’s equations of the massive vector boson

field and Yukawa’s meson.
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In the years that followed, nuclear experiments were performed at higher and higher

energies, requiring the use of special relativity for the description of the scattering

processes as well as for the interpretation of all experiments. Antiparticles were

discovered, thus allowing for novel particles production in the laboratory. But the

question remained of what was the origin the newly discovered particles which were

all subject to the strong interaction.

2.1.1 The Prediction and Discovery of Quarks and Gluons

In 1961, Murray Gell-Mann introduced a symmetry of the strong interaction in par-

ticle physics called the Eightfold Way or SU(3). The SU(3) symmetry required three

new elementary particles.

In 1964, Gell-Mann and George Zweig, independently proposed that the three elemen-

tary particles would be identified as “quarks”. In 1968, the MIT-SLAC collaboration

revealed the first signs of the existence of the inner structure of a nucleon by the

electron-proton scattering experiments. This discovery then was combined with the

results from neutrino-scattering in the Gargamelle bubble chamber at CERN. The

combination clearly showed that these particle had fractional charges of 2/3 (u quarks)

and -1/3 (d quarks), as a predicted from the SU(3) model of quarks.

The prediction of gluons as carrier of the strong interactions was confirmed by the

experiments only much later, in 1979 in electron-positron collision experiment at the

collider PETRA of DESY, Germany.

The discovery of the gluon, or the mediator between the strong interactions among

quarks, marks the origin of Quantum ChromoDynamics(QCD), the theory of strong

interactions, which is modeled in analogy to Quantum ElectroDynamics(QED). Quarks

and gluons, as consituents of all strongly interactiong particles (the hadrons) were
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defined as “partons” by Richard Feynmann.

The number and momentum distribution of gluons in the proton were measured by

H1 and ZEUS. The gluon contribution and gluon density to the proton spin was

studied by the HERMES experiment at HERA.

Color confinement is verified by the failure of free quark searches. Even if quarks are

produced in pairs (quark-antiquark) these hadronize, or they transform into mesons.

Deconfinement is also possible, as investigated in heavy-ion collisions at CERN, but

only in a new state of matter called Quark-Gluon Plasma (QGP) which is defined as

an extremely hot “soup” of quarks and gluons.

The US Department of Energy facilities funds several facilities to research strongly

interacting systems and the role of gluons. One of them is, in particular, Jefferson

Laboratory’s Continuous Electron Beam Accelerator Facility in Virginia.

2.2 Bjorken Scaling Variable

The Bjorken scaling variable (XBj), introduced by James Bjorken in 1969, is the most

essential kinematic building block for the parton distribution functions (PDFs) and

QCD evolution equation.

Let us introduce XBj by both the kinematics and Feynman diagram underlying a

deep inelastic scattering event.
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Figure 2.1: Kinematics

Bjorken x was defined as

XBj = x =
Q2

2p2 · q
(2.1)

XBj is the momentum fraction that the parton takes of the incoming proton lon-

gitudinal momentum. At the same time, it provides a measure of the elasticity or

inelasticity of the scattering process.

Defining the final state invariant mass W > M , as,

W 2 = p4
2 = (E4

2 − |p⃗4|2) (2.2)

where Q2 ≡ − q2 and Q2 > 0

W 2 = p4
2 = (q + p2)

2 = −Q2 + 2p2 · q +M2

Q2 = 2p2 · q +M2 −W 2
(2.3)
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Including the proton intact case, W = M

Q2 ≤ 2p2 · q (2.4)

refer to eq.(2.1),
0 < x < 1 → inelastic

x = 1 → elastic
(2.5)

Finally, define the energy lost by the incoming particle as

ν ≡ p2q

M
(2.6)

Therefore, XBj takes the following form:

x =
Q2

2Mν
(2.7)

2.3 Parton Distribution Functions and Parameter-

ized Equation

The Parton Distribution Functions is the momentum distribution of partons (quarks

and gluons) inside a proton.

PDFs cannot be calculated from first principles, namely, knowing the QCD La-

grangian, but they have to be determined from experiment. In practice one uses

a fitting method, or parameterization, on a large set of cross section data points.

Various criteria, or benchmarking, underlying the parametrizations definitions, in-

cluding, for instance the initial conditions for PQCD evolution, have been set up at
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the Les Houches meeting (reference).

In this thesis we use as a typical parametrization, the one from CTEQ5M parametriza-

tion given at the initial four-momentum scale,

Q2
0 = 2 GeV2 (2.8)

The distributions are,

xuv(x,Q0
2) = 5.107200x0.8(1− x)3 (2.9)

xdv(x,Q0
2) = 3.064320x0.8(1− x)4 (2.10)

xg(x,Q0
2) = 1.700000x−0.1(1− x)5 (2.11)

xd(x,Q0
2) = 0.1939875x−0.1(1− x)6 (2.12)

xu(x,Q0
2) = (1− x)xdv(x,Q0

2) (2.13)

xs(x,Q0
2) = xs(x,Q0

2) = 0.2x(u+ d)(x,Q0
2) (2.14)

Let us look at the above initial distributions. For instance, the pattern of PDFs might

be assumed to be
xPDF (x,Q0

2) = axb(1− x)c,
(2.15)

however, the pattern of parameterization might be in other forms. Here one introduces

a model dependence on the initial parameterization which is, however, mitigated

by the fact that all of the parameterized xPDFs are subject to various constraints,

including, for example the baryon number and momentum conservation sum rules.
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2.4 Mellin Moment

The moment of non-singlet structure functions have a Q2 dependence given by

Mn
NS(Q2) =

∫ 1

0

dxxn−2FNS
2 (x,Q2) = Mn

NS(Q0
2)

[
αs(Q

2)

αs(Q0
2)

]dNS
n

(2.16)

where the dNS
n = γn,NS

0 /2β0 Note that at n=1, Mellin moment is a total number of

quarks and gluon inside the structure function.

In addition, the αs of the running constant is in this form.

αs(Q
2) =

4π

β0 ln(Q2/Λ2)
(2.17)

and

β0 = 11− 2

3
Nf (2.18)

We should notice that the running constant changes with Q2. The energy level Q2

≤ mc
2, Nf = 3. Then, when mc

2 ≤ Q2 ≤ mb
2, Nf = 4. Lastly, when mb

2 ≤ Q2,

Nf = 5.

Moreover, there are more corresponding corrections of Λ(Nf ) which can be described

with the set of following equations and a number of flavors.

Λ(3) = Λ(4)

(
mc

Λ(4)

) 2
27

Λ(5) = Λ(4)

(
mb

Λ(4)

)− 2
23

(2.19)

Where Λ(4) ≈ 200 MeV for a proton, m(c) = 2 GeV 2, m(b) = 4.5 GeV 2,

and m(t) = 175 GeV 2
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2.5 DGLAP Equation

The Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations de-

scribe the variation of parton distribution function at different energy/four-momentum

squared.

Look at the Deep Inelastic Scattering (DIS) diagram below. Let us focus on the upper

right vertex of each diagram. There are four splitting types.

Figure 2.2: Splitting functions illustration [Field and Pines 1995]

The splitting function determines the probability of quark-gluon radiation. As you

can see from the diagrams, the upper 2 splitting types are Pqq and PqG which the first

q is the outcoming quark and the second one indicates the incoming quark and gluon

respectively.

Similarly, the lower two splitting types are are PGq and PGG which the first G is the

out-coming gluon and another is the incoming parton.

For example, the Pqq evolution only case can be written in this following form. This

case is also called Non-Singlet(NS) structure function case, where the Non-singlet
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structure function is a measured structure function of partons with the valence quark

number.

d

d lnQ2
fq(x,Q

2) = CF
αS

2π

∫ 1

x

dy fq(y,Q
2)Pqq (2.20)

And the full formula is,

d

d lnQ2
fq(x,Q

2) = CF
αS

2π

[∫ 1

x

dy

y

[
1 +

(
x

y

)2
]
fq(y,Q

2)− 2fq(x,Q
2)

1− x

y

+ fq(x,Q
2)

(
2 ln(1− x) +

3

2

)]
(2.21)

where we introduced the notation, fq, for the parton distribution, labeling the different

quark types with: q = u, d, s, c, b.

The reason why the formula is lengthy is because the PDFs are written in terms of

the auxilliary variables, x− y dependence, replacing the z dependence.

Next, let us derive the DGLAP equation with Pqq, Pgg, Pqg and Pgq in term of x and

y.
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2.5.1 Derivation of DGLAP Equation with Pqq

The Pqq in term of z can be written as,

Pqq = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
(2.22)

and the DGLAP equation with Pqq function is,

dqNS(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dy

y
Pqq(z)q

NS(y,Q2) (2.23)

dqNS(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dy

y
CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
qNS(y,Q2) (2.24)

1

x

dxqNS(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dy

y2
CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
yqNS(y,Q2) (2.25)

By the definition of a structure function,

FNS(y,Q2) = yq(y,Q2), FNS(x,Q2) = xq(x,Q2) (2.26)

Then, eq.(2.25) becomes,

1

x

dFNS(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dy

y2
CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
FNS(y,Q2) (2.27)

dFNS(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

xdy

y2
CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
FNS(y,Q2) (2.28)
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the relation of x, y and z can be written as z =
x

y

dz

dy
=

y
dx

dy
− x

dy

dy

y2
= − x

y2
(2.29)

Thus,

dz = − x

y2
dy (2.30)

and z =
x

y
defines the limit of the integral at y = 1 , z = x and when y = x , z = 1.

Then, Eq.(2.28) becomes,

dFNS(x,Q2)

dlnQ2
= −CF

αs

2π

∫ x

1

dz

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
FNS

(
x

z
,Q2

)
(2.31)

Afterward, let us switch the integral limit from z = 1 to z = x into z = x to z = 1,

using this relation, ∫ b

a

f(x)dx = −
∫ a

b

f(x)dx (2.32)

dFNS(x,Q2)

d lnQ2
= CF

αs

2π

∫ 1

x

dz

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
FNS

(
x

z
,Q2

)
(2.33)

dFNS(x,Q2)

d lnQ2
= CF

αs

2π

∫ 1

x

dz

[
1 + z2

(1− z)+
FNS

(
x

z
,Q2

)
+

3

2
δ(1− z)FNS

(
x

z
,Q2

)]
(2.34)

In the next step, let consider the plus function,

∫ 1

x

dz
f(x

z
)

(1− z)+
=

∫ 1

0

dz
f(x

z
)

(1− z)+
−

∫ x

0

dz
f(x

z
)

(1− z)+
(2.35)
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and the definition of the plus function is,

∫ 1

0

dz
f(z)

(1− z)+
=

∫ 1

0

dz
f(z)− f(1)

1− z
(2.36)

Then, Eq.(2.35) becomes,

∫ 1

x

dz
f(x

z
)

(1− z)+
=

∫ 1

0

dz
f(x

z
)− f(x

1
)

1− z
−
∫ x

0

dz
f(x

z
)− f(x

x
)

1− z
(2.37)

∫ 1

x

dz
f(x

z
)

(1− z)+
=

∫ 1

0

dz
f(x

z
)− f(x)

1− z
−
∫ x

0

dz
f(x

z
)− f(1)

1− z
. (2.38)

As the definition of the plus function (see Appendix), the function which is convoluted

with the plus function will reach 0 as x approachws 1. Therefore, f(1) = 0. Next,

Eq.(2.38) is,

∫ 1

x

dz
f(x

z
)

(1− z)+
= (

∫ 1

x

dz
f(x

z
)− f(x)

1− z
+

∫ x

0

dz
f(x

z
)− f(x)

1− z
)−

∫ x

0

dz
f(x

z
)

1− z
(2.39)

∫ 1

x

dz
f(x

z
)

(1− z)+
=

∫ 1

x

dz
f(x

z
)− f(x)

1− z
−
∫ x

0

dz
f(x)

1− z
(2.40)

∫ 1

x

dz
f(x

z
)

(1− z)+
=

∫ 1

x

dz
f(x

z
)− f(x)

1− z
+ ln(1− x)f(x) (2.41)

with the help of Eq.(2.41) where,

f

(
x

z

)
= FNS

(
x

z
,Q2

)
(1 + z2) (2.42)

Consider 1st term of Eq.(2.34),

CF
αs

2π

∫ 1

x

dzFNS

(
x

z
,Q2

)
1 + z2

(1− z)+
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= CF
αs

2π

{∫ 1

x

dz
FNS

(
x
z
, Q2

)
(1 + z2)− FNS

(
x,Q2

)
(1 + 12)

1− z
+ln(1−x)FNS

(
x,Q2

)
(1+12)

}

= CF
αs

2π

{∫ 1

x

dz

1− z

[
(1 + z2)FNS

(x
z
,Q2

)
− 2FNS

(
x,Q2

)]
+2ln(1− x)FNS

(
x,Q2

)}
(2.43)

and the 2nd term,

CF
αs

2π

∫ 1

x

dz
3

2
δ(1− z)FNS

(
x

z
,Q2

)
= CF

αs

2π

(
3

2
FNS

(
x,Q2

))
(2.44)

Finally,

dFNS(x,Q2)

d lnQ2
= CF

αs

2π

{∫ 1

x

dz

1− z

[
(1 + z2)FNS

(x
z
,Q2

)
− 2FNS

(
x,Q2

)]
+

[
3

2
+ 2 ln(1− x)

]
FNS

(
x,Q2

)}
(2.45)

2.5.2 Derivation of DGLAP Equation with PGG

The PGG in term of z can be written as,

PGG = 2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+

1

2
β0δ(1− z) (2.46)

and the DGLAP equation with PGG function is

dg(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dy

y
PGG(z)g(y,Q

2) (2.47)

1

x

dxg(x,Q2)

dlnQ2
=

αs

2π

∫ 1

x

dy

y2
PGG(z)yg(y,Q

2) (2.48)
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1

x

dG(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dy

y2
G(y,Q2)

{
2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+

1

2
β0δ(1− z)

}
(2.49)

dG(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

xdy

y2
G(y,Q2)

{
2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+

1

2
β0δ(1− z)

}
(2.50)

as the same step as in Pqq case,

dG(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dzG

(
x

z
,Q2

){
2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+

1

2
β0δ(1− z)

}
(2.51)

Let focus on the 1st term,

αs

2π

∫ 1

x

dzG

(
x

z
,Q2

)
2CA

[
z

(1− z)+

]
=

CAαs

π

∫ 1

x

dz
zG

(x
z
,Q2

)
(1− z)+

(2.52)

with the help of Eq.(2.41) where,

f(
x

z
) = zG

(
x

z
,Q2

)
(2.53)

After evaluating it, Eq.(2.52) will be,

CAαs

π

∫ 1

x

dz
zG

(x
z
,Q2

)
(1− z)+

=
CAαs

π

[ ∫ 1

x

dz
zG

(
x
z
, Q2

)
−G

(
x,Q2

)
1− z

+ ln(1−x)G
(
x,Q2

)]
.

(2.54)

Then, all terms become,

dG(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dzG

(
x

z
,Q2

){
2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+

1

2
β0δ(1− z)

}
(2.55)
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dG(x,Q2)

d lnQ2
=

CAαs

π

{∫ 1

x

dz

[zG(
x
z
, Q2

)
(1− z)+

+

∫ 1

x

dz

[
1− z

z
+z(1−z)

]
G

(
x

z
,Q2

)}
+
αs

4π
β0G

(
x,Q2

)
(2.56)

dG(x,Q2)

d lnQ2
=

CAαs

π

{[∫ 1

x

dz
zG

(
x
z
, Q2

)
−G

(
x,Q2

)
1− z

+ ln(1− x)G
(
x,Q2

)]

+

∫ 1

x

dz

[
1− z

z
+ z(1− z)

]
G

(
x

z
,Q2

)}
+

αs

4π
β0G

(
x,Q2

) (2.57)

Therefore, the DGLAP equation for PGG case is,

dG(x,Q2)

d lnQ2
=

CAαs

π

{∫ 1

x

dz

[
z

1− z
+

1− z

z
+ z(1− z)

]
G

(
x

z
,Q2

)
−

G
(
x,Q2

)
1− z

}
+

αs

4π
β0G

(
x,Q2

)
+

CAαs

π
ln(1− x)G

(
x,Q2

)
(2.58)

2.5.3 Derivation of DGLAP Equation with PqG

The PqG in term of z can be written as,

PqG = TF [z
2 + (1− z)2] (2.59)

and the DGLAP equation with PqG function is

dg(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dy

y
PqG(z)g(y,Q

2) (2.60)

dg(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dy

y
TF [z

2 + (1− z)2]g(y,Q2) (2.61)
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1

x

dxg(x,Q2)

dlnQ2
= TF

αs

2π

∫ 1

x

dy

y2
[z2 + (1− z)2]yg(y,Q2) (2.62)

dG(x,Q2)

d lnQ2
= TF

αs

2π

∫ 1

x

xdy

y2
[z2 + (1− z)2]G(y,Q2) (2.63)

Finally, changing a variable y into x,z

dG(x,Q2)

d lnQ2
= TF

αs

2π

∫ 1

x

dz[z2 + (1− z)2]G

(
x

z
,Q2

)
(2.64)

2.5.4 Derivation of DGLAP Equation with PGq

The PGq in term of z can be written as,

PGq = CF

[
1 + (1− z)2

z

]
(2.65)

and the DGLAP equation with PGq function is

dq(x,Q2)

dlnQ2
=

αs

2π

∫ 1

x

dy

y
PGq(z)q(y,Q

2) (2.66)

1

x

dxq(x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

dy

y2
PGq(z)yq(y,Q

2) (2.67)

dF (x,Q2)

d lnQ2
=

αs

2π

∫ 1

x

xdy

y2
PGq(z)F (y,Q2) (2.68)

The final equation for a PGq case is

dF (x,Q2)

d lnQ2
= CF

αs

2π

∫ 1

x

dz

[
1 + (1− z)2

z

]
F

(
x

z
,Q2

)
(2.69)
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2.6 Sum Rules

The splitting functions have their conservation rules. The thesis use the following

four rules to indicate the correction of the program.

These rules are

∫ 1

0

dzPqq(z) = 0∫ 1

0

dzuv(z,Q
2),= 2

∫ 1

0

dzdv(z,Q
2) = 1∫ 1

0

dzz[Pqq(z) + PGq(z)] = 0∫ 1

0

dzz[2NfPqG(z) + PGG(z)] = 0

(2.70)

where we define the valence/flavor non-singlet NS, quarks as uv = u(x,Q2)−ū(x,Q2),

and dv = d(x,Q2)− d̄(x,Q2).

The first rule just come from the integration of Pqq(z) which I will show herebelow,

∫ 1

0

dzPqq(z) =

∫ 1

0

dz

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
(2.71)
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with the definition of the plus function, the eq.(2.71) becomes,

∫ 1

0

dzPqq(z) =

∫ 1

0

dz
1 + z2 − (1 + 12)

1− z
+

3

2

=

∫ 1

0

dz
1 + z2 − 2

1− z
+

3

2

=

∫ 1

0

dz − 1− z2

1− z
+

3

2

=

∫ 1

0

dz − (1 + z) +
3

2

= −

[
z +

z2

2

]z=1

z=0

+
3

2
= 0 (2.72)

2.7 Generalized Parton Distribution Function

Figure 2.3: The proton and quark momentum fractions with respect to the initial
proton momentum P corresponding to the off-diagonal distributions F̂ (X, z) defined
in the domain 0<X<1. [Golec-Biernat and Martin 1999]

The asymmetry of the scattering show the new variable describing the new parton dis-

tribution function. The new functions are know as Generalized Parton Density(GPD).

An extension to the higher dimension allow us to explore the more generalized cases

in the nature. Indeed, The GPD(F̂ (x, ζ,Q2)) is different from PDF(F (x,Q2)). The

GPD using in the thesis is the special case of ζ = 0. Then, F̂ (x, ζ,Q2) = F (x,Q2))
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Therefore ,the evolution equation of the Non-singlet case becomes

∂FNS(x, ζ,Q2)

∂lnQ2
= CF

αs

2π

{∫ 1

x

dz

1− z

[
(1 + zz′)FNS

(x
z
,Q2

)
− (1 +

z′

z
)FNS

(
x,Q2

)]
+

[
3

2
+ ln

(1− x)2

1− ζ

]
FNS

(
x,Q2

)}
(2.73)
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Chapter 3

Adams’ Method

3.1 Adams 2d and Linear x-space

The Adams’ Method is the numerical method to solve a first order ordinary differential

equation with this form,
dy

dx
= f(x, y) (3.1)

within range of [a, b] and N steps of iteration with an assumption about every function

can be expressed by an expansion of Taylor’s series about the xn,

yn+1 = y(n) + (
dy

dx
)
n
(x− xn) +

1

2
(
d2y

dx2
)
n
(x− xn)

2 + ... (3.2)

The derivatives of y are given by the backward difference

qn ≡ (
dy

dx
)
n
=

yn+1 − yn
xn+1 − xn

(3.3)

∇qn ≡ (
d2y

dx2
)
n
= qn − qn−1 (3.4)

∇2qn ≡ (
d3y

dx3
)
n
= ∇qn −∇qn−1 (3.5)

For the higher orders, they can be obtained by using the same iterations.

To receive the same form as the Taylor’s series, the Beyer’s finite difference integration
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formula can be used to extended to arbitrary order.

∫ 1

0

fpdp = (1 +
1

2
∇+

5

12
∇2 +

3

8
∇3 +

251

720
∇4 +

95

288
∇5 +

19087

60480
∇6 + ...)fp (3.6)

Then,

yn+1 = yn+H(qn+
1

2
∇qn−1+

5

12
∇2qn−2+

3

8
∇3qn−3+

251

720
∇4qn−4+

95

288
∇5qn−5+

19087

60480
∇6qn−6+...)

(3.7)

where h = xn+1 − xn = xn+2 − xn+1 = ...

and H = (b−a)
N

Let expand qn, ∇qn , ∇2qn , ∇3qn ,

qn = (
dy

dx
)
n
= f(xn, yn) =

1

h
(yn+1 − yn) (3.8)

∇qn = (
d2y

dx2
)
n
= qn − qn−1 =

yn+1 − yn
h

− yn − yn−1

h

∇qn =
1

h
(yn+1 − 2yn + yn−1) (3.9)

∇2qn = (
d3y

dx3
)
n
= ∇qn −∇qn−1 =

1

h
(yn+1 − 2yn + yn−1)−

1

h
(yn − 2yn−1 + yn−2)

∇2qn =
1

h
(yn+1 − 3yn + 3yn−1 − yn−2) (3.10)

∇3qn = (
d4y

dx4
)
n
= ∇2qn−∇2qn−1 =

1

h
(yn+1−3yn+3yn−1−yn−2)−

1

h
(yn−3yn−1+3yn−2−yn−3)

∇3qn =
1

h
(yn+1 − 4yn + 6yn−1 − 4yn−2 + yn−3) (3.11)
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Let shift the subscripts to be ∇qn−1 , ∇2qn−2 , ∇3qn−3 ,

∇qn−1 =
1

h
(yn − 2yn−1 + yn−2) (3.12)

∇2qn−2 =
1

h
(yn−1 − 3yn−2 + 3yn−3 − yn−4) (3.13)

∇3qn−3 =
1

h
(yn−2 − 4yn−3 + 6yn−4 − 4yn−5 + yn−6) (3.14)

Afterward, eq. (7) becomes

yn+1 = yn +H[f(xn, yn) +
1

2h
(yn − 2yn−1 + yn−2) +

5

12h
(yn−1 − 3yn−2 +3yn−3 − yn−4)

+
3

8h
(yn−2 − 4yn−3 + 6yn−4 − 4yn−5 + yn−6) (3.15)

All elements in (15) can be found by using,

xn−1 = xn − h, yn−1 = yn − qnh (3.16)

The eq.(15) will be used with other more functions and compared these results with

RK4 in next section.
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3.2 Adams 2d and Nonlinear x-space

For a nonlinear x-space, the different between each x point is unequal. Then, the

qn,∇qn,∇2qn must be written in other forms.

qn ≡ (
dy

dx
)
n
=

yn+1 − yn
xn+1 − xn

(3.17)

∇qn ≡ (
d2y

dx2
)
n
= qn − qn−1 =

yn+1 − yn
xn+1 − xn

− yn − yn−1

xn − xn−1

(3.18)

∇2qn ≡ (
d3y

dx3
)
n
= ∇qn−∇qn−1 = [

yn+1 − yn
xn+1 − xn

− yn − yn−1

xn − xn−1

]−[
yn − yn−1

xn − xn−1

− yn−1 − yn−2

xn−1 − xn−2

]

(3.19)

∇3qn−3 = ∇2qn −∇2qn−1 =

[[
yn+1 − yn
xn+1 − xn

− yn − yn−1

xn − xn−1

]− [
yn − yn−1

xn − xn−1

− yn−1 − yn−2

xn−1 − xn−2

]]−

[[
yn − yn−1

xn − xn−1

− yn−1 − yn−2

xn−1 − xn−2

]− [
yn−1 − yn−2

xn−1 − xn−2

− yn−2 − yn−3

xn−2 − xn−3

]] (3.20)

These equations are incredibly complicated and too long because the inequality in

x-space cannot be written in the universal form. However, I found that these equation

can be simplified like this.

qn ≡ (
dy

dx
)
n
= f(x, y)n (3.21)

∇qn ≡ (
d2y

dx2
)
n
= qn − qn−1 = f(x, y)n − f(x, y)n−1 (3.22)

∇2qn ≡ (
d3y

dx3
)
n
= ∇qn −∇qn−1

= [f(x, y)n − f(x, y)n−1]− [f(x, y)n−1 − f(x, y)n−2]

= f(x, y)n − 2f(x, y)n−1 + f(x, y)n−2 (3.23)
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∇3qn−3 = ∇2qn −∇2qn−1 =

= [f(x, y)n − 2f(x, y)n−1 + f(x, y)n−2]− [f(x, y)n−1 − 2f(x, y)n−2 + f(x, y)n−3]

= f(x, y)n − 3f(x, y)n−1 + 3f(x, y)n−2 − f(x, y)n−3 (3.24)

Therefore, the whole Adams’ equation can be written in the following form.

yn+1 = yn+h[f(xn, yn)+
1

2
(f(x, y)n−f(x, y)n−1)+

5

12
(f(x, y)n−2f(x, y)n−1+f(x, y)n−2)

+
3

8
(f(x, y)n − 3f(x, y)n−1 + 3f(x, y)n−2 − f(x, y)n−3) (3.25)

3.3 Toy Model Functions

The toy models we implemented are functions of sin(x), cos(x), exp(x), exp(−x), as

well as polynomials in x and Gaussian functions. The scope of the toy models study is

to determine the capability of the Adams method to improve the numerical efficiency

of the integro-differential evolution equations.

These functions are defined as f(x) and tested with Adams’ method, RK4 and Back-

ward Difference (BD). The results are described below.

I firstly used the polynomials of order 3-6, obtaining the results displayed in Figures

3.1a, 3.1b, 3.1c, 3.1d, 3.1e, 3.1f, 3.1g and 3.1h, for the polynomial of order 3; in Fig-

ures 3.2a, 3.2b, 3.2c, 3.2d, 3.2e, 3.2f, 3.2g, 3.2h, for the polynomial of order 4; 3.3a,

3.3a, 3.3b, 3.3c, 3.3d, 3.3e, 3.3f, 3.3g, 3.3g, 3.3h, for the polynomials of order 5; for

the polynomial of order 5, and finally, 3.4a, 3.4b, 3.4c, 3.4d, 3.4e, 3.4f, 3.4g, 3.4h, for

the polynomials of order 5 for the polynomial or order 6.

In each figure the upper panels, labeled a − d, show the numerical evaluations com-
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pared with the known, analytic value of the function, g(x), increasing the number of

steps from 10 to 100. The lower panels, labeled e − h, show the error for the corre-

sponding number of steps. From these results we conclude that the Adams’ and BD

method are more precise than RK4, for all order polynomials. Note that the erros

increase with x.
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(a) numerical calculation of g(x) = x3 with
the number of step = 10

(b) numerical calculation of g(x) = x3 with
the number of step = 20

(c) numerical calculation of g(x) = x3 with
the number of step = 50

(d) numerical calculation of g(x) = x3 with
the number of step = 100

(e) Absolute error of g(x) = x3 with the num-
ber of step = 10

(f) Absolute error of g(x) = x3 with the num-
ber of step = 20

(g) Absolute error of g(x) = x3 with the num-
ber of step = 50

(h) Absolute error of g(x) = x3 with the num-
ber of step = 100

Figure 3.1: Polynomial of order 3
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(a) g(x) = x4 with the number of step = 10 (b) g(x) = x4 with the number of step = 20

(c) g(x) = x4 with the number of step = 50 (d) g(x) = x4 with the number of step = 100

(e) Absolute error of g(x) = x4 with the num-
ber of step = 10

(f) Absolute error of g(x) = x4 with the num-
ber of step = 20

(g) Absolute error of g(x) = x4 with the num-
ber of step = 50

(h) Absolute error of g(x) = x4 with the num-
ber of step = 100

Figure 3.2: polynomial of order 4
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(a) g(x) = x5 with the number of step = 10 (b) g(x) = x5 with the number of step = 20

(c) g(x) = x5 with the number of step = 50 (d) g(x) = x5 with the number of step = 100

(e) g(x) = x5 with the number of step = 10 (f) g(x) = x5 with the number of step = 20

(g) g(x) = x5 with the number of step = 50 (h) g(x) = x5 with the number of step = 100

Figure 3.3: Polynomial of order 5
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(a) g(x) = x6 with the number of step = 10 (b) g(x) = x6 with the number of step = 20

(c) g(x) = x6 with the number of step = 50 (d) g(x) = x6 with the number of step = 100

(e) g(x) = x6 with the number of step = 10 (f) g(x) = x6 with the number of step = 20

(g) g(x) = x6 with the number of step = 50 (h) g(x) = x6 with the number of step = 100

Figure 3.4: Polynomial of order 6

The second set of test functions, the sinusoidal shapes and combinations of polynomial

shapes and sinusoidal shapes are shown in what follows. Similarly to the polynomials’
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case, the four upper panels in each figure, labeled a−d show the numerical evaluations

compared to the analytic solution, while the lower panels labeled e − h show the

numerical error. The latter shows more varied patterns than in the polynomial case.

Summarizing results, one can conclude that for the sin/cos functions and polynomial

combinations the Adams and Backward difference methods work better in most cases

than RK4, if limited to the interval on [0, 1]. We focus on this interval because it is

the region of interest for our final study of PDFs and GPDs.
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(a) g(x) = sin(10x) with the number of step
= 10

(b) g(x) = sin(10x) with the number of step
= 20

(c) g(x) = sin(10x) with the number of step
= 50

(d) g(x) = sin(10x) with the number of step
= 100

(e) g(x) = sin(10x) with the number of step
= 10

(f) g(x) = sin(10x) with the number of step
= 20

(g) g(x) = sin(10x) with the number of step
= 50

(h) f(x) = g′(x) = 6x5 , g(x) = sin(10x) and
g(x) = sin(10x) with the number of step =
100

Figure 3.5: Sinusoidal functions
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(a) g(x) = −x4 − cos(10x) with the number
of step = 10

(b) g(x) = −x4 − cos(10x) with the number
of step = 20

(c) g(x) = −x4−cos(10x) with the number of
step = 50

(d) g(x) = −x4 − cos(10x) with the number
of step = 100

(e) g(x) = −x4−cos(10x) with the number of
step = 10

(f) g(x) = −x4− cos(10x) with the number of
step = 20

(g) g(x) = −x4 − cos(10x) with the number
of step = 50

(h) g(x) = −x4 − cos(10x) with the number
of step = 100

Figure 3.6: Combination of polynomial of order 4 and cos function
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(a) g(x) = 0.3 cos(10x) + sin  (10x) with the
number of step = 10

(b) g(x) = 0.3 cos(10x) + sin  (10x) with the
number of step = 20

(c) g(x) = 0.3 cos(10x) + sin  (10x) with the
number of step = 50

(d) g(x) = 0.3 cos(10x) + sin  (10x) with the
number of step = 100

(e) g(x) = 0.3 cos(10x) + sin  (10x) with the
number of step = 10

(f) g(x) = 0.3 cos(10x) + sin  (10x) with the
number of step = 20

(g) g(x) = 0.3 cos(10x) + sin  (10x) with the
number of step = 50

(h) g(x) = 0.3 cos(10x) + sin  (10x) with the
number of step = 100

Figure 3.7: Combination of sin and cos function
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Finally, results for the exponential and Gaussian functions are presented below with

the same labeling scheme as for the previous cases. As one can see from the analysis

of the errors’ behavior in the lower four panels in each figure, the RK4 method works

better for exp(−x) and Gaussian functions.
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(a) g(x) = exp(−x) with the number of step
= 10

(b) g(x) = exp(−x) with the number of step
= 20

(c) g(x) = exp(−x) with the number of step
= 50

(d) g(x) = exp(−x) with the number of step
= 100

(e) g(x) = exp(−x) with the number of step
= 10

(f) g(x) = exp(−x) with the number of step
= 20

(g) g(x) = exp(−x) with the number of step
= 50

(h) g(x) = exp(−x) with the number of step
= 100

Figure 3.8: exp(−x)function
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(a) g(x) = exp(x) with the number of step =
10

(b) g(x) = exp(x) with the number of step =
20

(c) g(x) = exp(x) with the number of step =
50

(d) g(x) = exp(x) with the number of step =
100

(e) g(x) = exp(x) with the number of step =
10

(f) g(x) = exp(x) with the number of step =
20

(g) g(x) = exp(x) with the number of step =
50

(h) g(x) = exp(x) with the number of step =
100

Figure 3.9: exp(x)function
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(a) f(x) = g′(x) = −2x exp(−x2), g(x)=
Gaussian, with the number of step = 10

(b) f(x) = g′(x) = −2x exp(−x2),
g(x)=Gaussian with the number of step = 20

(c) f(x) = g′(x) = −2x exp(−x2), g(x)=
Gaussian with the number of step = 50

(d) f(x) = g′(x) = −2x exp(−x2), g(x)=
Gaussian with the number of step = 100

(e) f(x) = g′(x) = −2x exp(−x2), g(x)=
Gaussian with the number of step = 10

(f) f(x) = g′(x) = −2x exp(−x2), g(x)=
Gaussian with the number of step = 20

(g) f(x) = g′(x) = −2x exp(−x2), g(x)=
Gaussian with the number of step = 50

(h) f(x) = g′(x) = −2x exp(−x2), g(x)=
Gaussian with the number of step = 100

Figure 3.10: Gaussian function
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(a) f(x) = g′(x) = [(1 − 20x)(−8x) −
20] exp(−4x2) , g(x)= derivative of Gaussian
with the number of step = 10

(b) f(x) = g′(x) = [(1 − 20x)(−8x) −
20] exp(−4x2) , g(x)=derivative of Gaussian
with the number of step = 20

(c) f(x) = g′(x) = [(1 − 20x)(−8x) −
20] exp(−4x2) , g(x)=derivative of Gaussian
with the number of step = 50

(d) f(x) = g′(x) = [(1 − 20x)(−8x) −
20] exp(−4x2) , g(x)=derivative of Gaussian
with the number of step = 100

(e) f(x) = g′(x) = [(1 − 20x)(−8x) −
20] exp(−4x2) , g(x)=derivative of Gaussian
with the number of step = 10

(f) f(x) = g′(x) = [(1 − 20x)(−8x) −
20] exp(−4x2) , g(x)=derivative of Gaussian
with the number of step = 20

(g) f(x) = g′(x) = [(1 − 20x)(−8x) −
20] exp(−4x2) , g(x)=derivative of Gaussian
with the number of step = 50

(h) f(x) = g′(x) = [(1 − 20x)(−8x) −
20] exp(−4x2) , g(x)=derivative of Gaussian
with the number of step = 100

Figure 3.11: Derivative Gaussian function
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In conclusion, while the Adams method works better with Polynomial, sinusoidal

(Periodic) functions and exp(x), the RK4 method is shown to produce smaller errors

for the exp(−x) and Gaussian shapes. The PDFs, and xPDFs have parametric forms

that behave similarly to all of the examples above for x in the interval [0, 1]. Since we

find no major divergences in the error trend, and actually, sometimes (for polynomials

and sinusoidals) a net improvement, the preliminary study presented in this thesis

demonstrates that it is justified to use the Adams method for a more efficient and

precise evaluation of PQCD Q2 evolution.
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Chapter 4

Procedure Checklist

There is a lot of complexity involved in the QCD evolution equations program. In

what follows, I would illustrate the various processes addressed in this thesis project

with the goal of producing a product that is useful for anyone that would like to run

the evolution equations and faithfully reproduce results according to a well defined

set of steps and benchmarks.

The DGLAP equation mentioned earlier, is shown again here,

dFNS(x,Q2)

d lnQ2
= CF

αs

2π

{∫ 1

x

dz

1− z

[
(1 + z2)FNS

(x
z
,Q2

)
− 2FNS

(
x,Q2

)]
+

[
3

2
+ 2 ln(1− x)

]
FNS

(
x,Q2

)} (4.1)

The variables which I use in the numerical calculation are x and y. Therefore, let’s

transform Eq.(4.1) in terms of x and y,

dFNS(x,Q2)

d2
= CF

αs

2π

{∫ 1

x

xdy

y2

[
1−

(
x

y

)2
]{[

1 +

(
x

y

)2]
FNS

(
y,Q2

)
− 2FNS

(
x,Q2

)}
+

[
3

2
+ 2 ln(1− x)

]
FNS

(
x,Q2

)}
(4.2)
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4.1 x-y Spacing

The first step is to construct x and y space as we can see clearly that whole Eq.(4.2)

could be computed just only using x and y as building blocks.

How would the x and y be built? The key involves with the initial xPDFs which we

used in our work.

The initial conditions have been set up at the Les Houches meeting (reference). The

initial energy is at

Q2
0 = 2GeV2 (4.3)

The initial distributions are from CTEQ5M parametrization. The distributions are

xuv(x,Q0
2) = 5.107200x0.8(1− x)3 (4.4)

xdv(x,Q0
2) = 3.064320x0.8(1− x)4 (4.5)

xg(x,Q0
2) = 1.700000x−0.1(1− x)5 (4.6)

xd(x,Q0
2) = 0.1939875x−0.1(1− x)6 (4.7)

xu(x,Q0
2) = (1− x)xdv(x,Q0

2) (4.8)

xs(x,Q0
2) = xs(x,Q0

2) = 0.2x(u+ d)(x,Q0
2) (4.9)

Let’s look at the following figure thoroughly. The figure is our used initial xPDFs of

a proton (Eqs.(4.4) to (4.9).



45

Figure 4.1: Distribution of all xPDFs

The behaviors of any xPDF can be clustered into an exponential decay and a Log-

normal distribution.

As you can see from the graph, xPDFs of up and down quarks are the Log-normal

distribution corresponding to the conservation of up and down quarks. In the oppo-

sition, the xPDFs of gluon, other quarks and anti-quarks behave like the exponential

decay curve according to zero conservation rules.

This is the reason why there must be a specific way to do a spacing of x and y. I did

both linear spacing and exponential spacing of x and y.
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Figure 4.2: Linear Vs exponential spacing

To illustrate the importance of spacing of x and y, I did both linear and exponential

technique as I mentioned earlier and did a calculation of a total number of up and

down quarks.

The conservation number of up and down quarks for a proton are 2 and 1 in order.

With the same number of elements in a range of x, y = 0 to x, y = 1, the exponential

spacing works better than the linear spacing.

As a result, the exponential spacing was used in this project. The spacing of x and y

would be shown in the following graph.
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Figure 4.3: Distribution of x-space

The distribution of x in this work is the exponential decay at the first 800 elements

and distribute as a linear at the rest.

Figure 4.4: Difference of x-space
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or the exponential distribution can be shown by a difference of x in the interval [0,1]

as in the figure 4.4 above.

We believe the reason why exponential x-spacing works better because the exponential

curve behave more similarly to the initial xPDF than a linear scale. Maybe other

better spacing types would be found in the future, but this one works efficiently for

now.
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4.2 Evaluation of the Running Coupling constant(αs)

The basic knowledge of this section can be found in chapter 2 of Ref.Roberts 1990.

αs is defined as,

αs(Q
2) =

4π

β0 ln(Q2/Λ2)
, (4.10)

where,

β0 = 11− 2

3
Nf . (4.11)

As we remember from chapter 2, the running constant changes with the value of Q2.

When the number of flavors, Nf = 3, Q2 ≤ mc
2, mc being the mass of the charmed

quark, c; when Nf = 4, mc
2 ≤ Q2 ≤ mb

2, mb being the mass of the b quark; lastly,

when mb
2 ≤ Q2, Nf = 5.

The corresponding corrections to the Λ parameter Λ ⇒ Λ(Nf ), which can be described

with the set of following equations with varying number of flavors, Nf ,

Λ(3) = Λ(4)

(
mc

Λ(4)

) 2
27

(4.12)

Λ(5) = Λ(4)

(
mb

Λ(4)

)− 2
23

(4.13)

Where Λ(4) ≈ 200 MeV for a proton, m(c) = 2 GeV 2, m(b) = 4.5 GeV 2,

and m(t) = 175 GeV 2
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Figure 4.5: αs without the correction of Λ

These curves show the running coupling constant without using the correction of Λ.

You can see that will be a discontinuous connection among Nf = 3, 4, 5, 6 while the

Q2 is increasing.

The discontinuity could be more smoother using the correction which we mentioned

above. The following graph using the correction and the discontinuity was disap-

peared. This graph show Nf = 3, 4, 5 , mc
2(blue dot) and mb

2(orange dot)
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Figure 4.6: αs with the correction of Λ

And then, I keep only the intersected αs related with the condition of Nf and Q2.

Finally, this blue curve in a figure 4.7is the running coupling which was used in this

project.

Figure 4.7: αs with the correction of Λ which we used
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4.3 Derivative of the Structure Function

(a) Produced derivative of xPDF of an up
quark

(b) A derivative of structure function F2

measured in moun-proton scattering by
EMC(Aubert et al.1986). The curve corre-
sponds to a leading order with Λ = 90 MeV
in [Roberts 1990]

Figure 4.8: Derivative of a structure function

These figures show the similar behavior of a derivative of the structure function and

XPDFs. The checklist idea is about there are 2 parts beyond and under the zero

line. In my experience, the graph will be only at the upside or downside, if there are

something wrong with the DGLAP formula for a Non-singlet case.

Therefore, the produced derivative of xPDFs should corresponds to the derivative of

the structure function F2 above.
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4.4 Sum Rules

There are several conservation rules.

∫ 1

0

dzPqq(z) = 0∫ 1

0

dzuv(x) = 2

(4.14)

The meaning of the second rule is summing over all of the xPDF of an up valence

quark give the total number of up quarks inside the proton which is 2.

(a) Pqq sum rule

(b) uv sum rule

Figure 4.9: Sum rules

The figure on the left is a graph of x vs a summation of x going from x=0 to x=1. It

shows to 1st sum rule is valid in our work.

The next one is showing the conservation of the sum rule of uv. The total number of

up valence quark must be always extremely close to 2, even we make a very high final

energy level or extremely high number of step in the calculation. For here, I show a

100 number of steps and it still conserve.
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∫ 1

0

dzz[Pqq(z) + PGq(z)] = 0∫ 1

0

dzz[2NfPqG(z) + PGG(z)] = 0

(4.15)

These 2 equations mean the momentum conservation of a parent quark and gluon in

order.

Here again, I attached the best picture to describe the momentum conservation of

the parent quark and gluon[R.Field]

Figure 4.10: Splitting function and their parent quark and gluon [Field and Pines
1995]

The vertexes on the upper right of the Feynman diagrams show the illustration of

splitting functions. The 2 upper diagrams show the combination of getting the final

quark from quark and produces gluon as (Pqg) and from gluon and produces another

quark as (Pqq).

others also show the combination of getting the final gluon from quark and produces

quark as (Pgq) and from gluon and produces another gluon as (Pgg).
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(a) Pqq and PGq sum rule (b) PqG and PGG sum rule

Figure 4.11: Momentum sum rules

Hence, these are the results were produced to confirm the analytic results. The left-

hand side show the x’ element vs the sum rule of the parent quark on from x’=0 to

x’=x. Similarly, the right-hand side show the x’ element vs the sum rule of the parent

gluon on from x’=0 to x’=x.

Moreover, the evolution results still show the validity of the sum rules by the following

graphs.

(a) The evolution of xuv from Q2 = 2GeV 2 to
Q2 = 10GeV 2

(b) The evolution of xuv from Q2 = 2GeV 2

to Q2 = 100GeV 2

Figure 4.12: Evolutions to Q2 = 10GeV 2 and Q2 = 100GeV 2
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The blue line is the initial xPDF and the orange line is the final xPDF in the evolution

process.

The evolution from initial energy level 2 GeV 2 to the energy level 10 GeV 2 was shown

on the left and the evolution from initial energy level 2 GeV 2 to the energy level 100

GeV 2 was shown on the right. These graphs show decreasing on the right-region

and increasing on the left-region. As we know about the Bjorken, the maximum

distribution point will go to x=0 as Q2 go to ∞

And the all above results confirm that the sum rules are valid in our work.

4.5 Mellin Moment

As the equations in the Mellin Moment in Chapter1, we can used those equations

and get the relation of Mn
−1/dn and lnQ2 as

Mn
NS(Q2) = Mn

NS(Q0
2)

[
αs(Q

2)

αs(Q0
2)

]dNS
n

(4.16)

and

αs(Q
2) =

4π

β0ln
(
Q2/Λ2

) (4.17)

Let substitue eq.(4.17) into eq. (4.16) and rearrange into

Mn
NS(Q2)

Mn
NS(Q0

2)
=

[
4π

αs(Q0
2)β0ln

(
Q2/Λ2

)]dNS
n

(4.18)

[
Mn

NS(Q2)

Mn
NS(Q0

2)

]1/dNS
n

=
4π

αs(Q0
2)β0ln

(
Q2/Λ2

) (4.19)
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[
Mn

NS(Q2)

]−1/dNS
n

=
αs(Q0

2)β0

4π[Mn
NS(Q0

2)]1/dNS
n

ln
(
Q2/Λ2

)
(4.20)

[
Mn

NS(Q2)

]−1/dNS
n

=
αs(Q0

2)β0

4π[Mn
NS(Q0

2)]1/dNS
n

[
ln
(
Q2

)
− ln

(
Λ2

)]
(4.21)

Lastly, the equation shows the linearity of Mn
−1/dn and lnQ2. According to the

equation above, the numerical results were produced in the similar way to the results

of muon and neutrino data provided in [Robert]. The calculated orders of Mellin

moment start from n=3 to n=8.

To calculate the NS Mellin moment of each order, the table of constants of asymptotic

freedom for Nf = 4 (Gross-Wilczek convention)

n dn
qq

3 0.6667

4 0.8373

5 0.9707

6 1.0804

7 1.1737

8 1.2550

Table 4.1: Constants of asymptotic freedom for Nf = 4 (Gross-Wilczek convention)
[Roberts 1990]
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(a) Our computed Mn
NS to the power

−1/dNS
n against lnQ2

(b) Non-singlet moments Mn
NS computed

from muon and neutrino data, to the power
−1/dNS

n against lnQ2 [Roberts 1990]

Figure 4.13: Calculated a linear character of Mellin moments

As a result, the results were produced to confirm the analytic results of the linearity

of the Mellin moment. The left-hand side show the linear curves of computed Mellin

moments from n=3 to n=8 and they behave like we expected. Similarly, the right-

hand side is the real data illustrates the linearity of the Mellin moment from muon

and neutrino[Roberts 1990].

And the 2 results above confirm the correct behavior of Mellin moment with the

energy level.
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Chapter 5

Results

The main results which I would like to present are the variation of the number of

step(N) and the final energy scale(Q2) of all 3 methods. Then, the comparison of

error percentages(%) and time(s) are shown in the following graphs.

The variation of N is a list of N=[1,2,3,4,5] and the variations of Q2 is a list of Q2 =[

10,20,50,100,200,500,1000].

Where time is measured by the help of library namely time in Python.

I analyze and show the data into 6 topics which are number of steps vs error(%) of

all methods at each energy level, number of steps vs time(s) of all methods at each

energy level, Q2 vs error(%) of all methods at each number of steps, Q2 vs time(s)

of all methods at each number of step, number of steps vs error(%) of all Q2 of each

method, number of steps vs time(s) of all Q2 of each method, and DGLAP Evolution

Limit using the GPD Evolution Equation.
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5.1 Number of Steps Vs Error of all Methods at

Each Energy Level

(a) N vs Error percentage of Q2 = 10GeV 2 (b) N vs Error percentage of Q2 = 20GeV 2

(c) N vs Error percentage of Q2 = 50GeV 2 (d) N vs Error percentage of Q2 = 100GeV 2

(e) N vs Error percentage of Q2 = 200GeV 2 (f) N vs Error percentage of Q2 = 500GeV 2

(g) N vs Error percentage of Q2 = 1000GeV 2

Figure 5.1: Number of Steps Vs Error of all Methods at Each Energy Level
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5.2 Number of Steps Vs Time of all Methods at

Each Energy Level

(a) N vs Time(s) of Q2 = 10GeV 2 (b) N vs Time(s) of Q2 = 20GeV 2

(c) N vs Time(s) of Q2 = 50GeV 2 (d) N vs Time(s) of Q2 = 100GeV 2

(e) N vs Time(s) of Q2 = 200GeV 2 (f) N vs Time(s) of Q2 = 500GeV 2

(g) N vs Time(s) of Q2 = 1000GeV 2

Figure 5.2: Number of Steps Vs Time of all Methods at Each Energy Level
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5.3 Q2 Vs Error of all Methods at Each Number of

Steps

(a) Q2 vs Error percentage of N=1 (b) Q2 vs Error percentage of N=2

(c) Q2 vs Error percentage of N=3 (d) Q2 vs Error percentage of N=4

(e) Q2 vs Error percentage of N=5

Figure 5.3: Q2 Vs Error of all Methods at Each Number of Steps
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5.4 Q2 Vs Time of all Methods at Each Number of

Steps

(a) Q2 vs Time(s) of N=1 (b) Q2 vs Time(s) of N=2

(c) Q2 vs Time(s) of N=3 (d) Q2 vs Time(s) of N=4

(e) Q2 vs Time(s) of N=5

Figure 5.4: Q2 Vs Time of all Methods at Each Number of Steps
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5.5 Number of Steps Vs Error of all Q2 of Each

Method

(a) N vs Error percentage of Backward (b) N vs Error percentage of RK4

(c) N vs Error percentage of Adams

Figure 5.5: Number of Steps Vs Error of all Q2 of Each Method
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5.6 Number of Steps Vs Time of all Q2 of Each

Method

(a) N vs Time(s) of Backward (b) N vs Time(s) of RK4

(c) N vs Time(s) of Adams

Figure 5.6: Number of Steps Vs Time of all Q2 of Each Method
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Figure 5.7: N vs Time(s) of All methods
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5.7 DGLAP Evolution Limit using the GPD Evo-

lution Equation

The Non-singlet case was used as a checkpoint in this work. As remember in the

Chapter1, The DGLAP equation of PDF is

dFNS(x,Q2)

dlnQ2
= CF

αs

2π

{∫ 1

x

dz

1− z

[
(1 + z2)FNS

(x
z
,Q2

)
− 2FNS

(
x,Q2

)]
+

[
3

2
+ 2ln(1− x)

]
FNS

(
x,Q2

)} (5.1)

And the evolution equation for GPD is

∂FNS(x, ζ,Q2)

∂lnQ2
= CF

αs

2π

{∫ 1

x

dz

1− z

[
(1 + zz′)FNS

(x
z
,Q2

)
− (1 +

z′

z
)FNS

(
x,Q2

)]
+

[
3

2
+ ln

(1− x)2

1− ζ

]
FNS

(
x,Q2

)}
(5.2)

When ζ = 0, the GPD evolution equation will become the DGLAP equation.

Therefore, another checklist is compare the GPD evolution equation and DGLAP

equation in the case of ζ = 0. There should be the same result and sum rules.
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(a) GPD evolution using Adams method (b) GPD evolution using RK4

(c) Total u quark and time execution of the
GPD evolution using Adams

(d) Total u quark and time execution of the
GPD evolution using RK4

Figure 5.8: GPD evolution with Adams and RK4
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Chapter 6

Discussion and Conclusions

There are several topics which are discussed and summarized here.

Firstly, I have to clarify that the percentage error which is mentioned in Chapter 4,

is the error of every final total number of up quark compare with the initial total

number of up quark.

The reason behind this error is the xPDFs only can be retrieved by a fitting process.

There are no analytic xPDFs for any energy level except the xPDFs from experiment.

6.1 Number of Steps Vs Error of all Methods at

Each Energy Level

The results show the interesting convergence of a decreasing of errors using Adams

and Backward methods. They trend to approach the limiting precision of RK4 if the

number of steps is increasing. While, the precision of the RK4 always the same even

if the number of steps are increased. Moreover, the precision of Adams and Backward

are closer at the higher energy scale.
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6.2 Number of Steps Vs Time of all Methods at

Each Energy Level

The results are as I expect to be. Let compare the Adams and RK4 method

Adams Method :

yn+1 = yn + h[f(xn, yn) +
1

2
(f(x, y)n − f(x, y)n−1) +

5

12
(f(x, y)n − 2f(x, y)n−1 + f(x, y)n−2)

+
3

8
(f(x, y)n − 3f(x, y)n−1 + 3f(x, y)n−2 − f(x, y)n−3)]

(6.1)

RK4 Method :

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

tn+1 − tn + h

k1 = f(tn, yn)

k2 = f(tn + 0.5h, yn + 0.5hk1)

k3 = f(tn + 0.5h, yn + 0.5hk2)

k4 = f(tn + h, yn + hk3)

(6.2)

According to the DGLAP equation, there is a derivative on the left-hand side and an

integral of the right-hand side. To solve the equation, the numerical calculation of an

integration use a loop to get the array of a derivative.

The k1, k2, k3, k4 are 4 different loops of integration whereas there is only 1 array of

the derivative calling here for the Adams method. The Adams method will pick 4

elements inside the Adams’ array. That means the loop of integrations occur 1 time
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for the Adams method and 4 times for the RK4 method.

With the same reason, look closely to the results in the chapter 5.2, the time com-

sumption of the RK4 always about 4 times of Adams method.

6.3 Q2 Vs Error of all Methods at Each Number of

Steps

From the data analysis, the behavior of the precision with energy level of RK4 look

quadratic.

While, the behavior of Adams and Backward look like a linear at N=1,2,3. For-

tunately, I do increase the number of steps to N=4,5. The results of Adams and

Backward tend to be a quadratic as well.

We believe that the precision of Adams and Backward will be more precise at the

higher number of step. The increasing of a number of steps still show the significant

difference of Adams and Backwards.

6.4 Q2 Vs Time of all Methods at Each Number of

Steps

The results of section 5.4 clearly show that the consumption time of RK4 is about 4

times of the time consumed of Adams and Backward methods.

I believe the reason of inflating of time(s) is the discretization of a computer clock(Hz).
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6.5 Number of Steps Vs Error of all Q2 of Each

Method

The reults of RK4 method show that the RK4 is a N-independence. In contrary,

Adams and Backward methods is a N-dependence.

That means the precision of RK4 is limited, but the precision of Adams and Backward

can be improved if the number of steps is increased.

6.6 Number of Steps Vs Time of all Q2 of Each

Method

The comparison of a time consuming with a number of steps show the increasing of

time belong with a number of steps linearly.

While the results are plotted with the same scale, the prominent point is the higher

rate of time per N of RK4 compared to the Adams and Backward methods.

6.7 Overall Conclusion

All results of the variation of a number of steps and the final energy level are explored

to determine the possibility of a precision and time improvement for the DGLAP

evolution.

The combination of the execution time vs. the number of steps, the number of steps

vs error, and the energy level vs error could lead to an optimization of Adams and
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Backward method to further increase the efficiency of the evolution program.

6.8 DGLAP Evolution Limit using the GPD Evo-

lution Equation

As a result, the GPD evolution still conserve total u quark for the NS case as we

expected.

This is a good checkpoint as this program will be developed to be a fully GPD

evolution in the future.
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Appendix A

The Plus function

The plus function[Field and Pines 1995] are well behaved distribution when con-

voluted with a smooth function that vanish sufficiently, rapidly as x → 1. The

important property is

∫ 1

0

dx(F (x))+ = 0 (A.1)

and are defined mathematically by

(F (x))+ ≡ lim
β→0

{
F (x)θ(1− x− β)− δ(1− x− β)

∫ 1−β

0

F (y)dy

}
(A.2)

where

θ(y) = 0, y ≤ 0 (A.3)

θ(y) = 1, y > 0 (A.4)

The main plus function is

1

(1− x)+
≡ lim

β→0

{
1

1− x
θ(1− x− β) + log(β)δ(1− x− β)

}
(A.5)
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When the plus function convoluted with a well behaved function G(y), the general

formula is

∫ 1

x

dy

y

G(z/y)

(1− y)+
= G(z)log(1− z) +

∫ 1

x

dy

y

G(z/y)− yG(z)

1− y
(A.6)
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