
 
 
 
 
 

Location Information Algorithms 
 
 
 
 
 
 
 

A Technical Report Submitted to the 
 

Faculty of the School of Engineering and Applied Science 
University of Virginia, Charlottesville, Virginia 

 
In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science in Computer Science 
 
 
 
 
 
 
 
 
 

Bhaskar Singhvi 
 

Spring 2021 
 
 
 
 
 
 
 
 
 
 

On my honor as a University student, I have neither given nor received unauthorized aid on this 
assignment as defined by the Honor Guidelines for Thesis-Related Assignments. 

 

Signed: ________________________Bhaskar Singhvi____________________________ 



Location Information Algorithms
A Technical Report for UVa CS Capstone

Bhaskar Singhvi

Abstract—As the world becomes increasingly complex, there
is a growing need for efficient algorithms that can parse through
large amounts of data quickly. In this report, I outline two
different scenarios of parsing information about certain locations
for which two different approaches were needed. One highlights
the how timed geolocation data can be used to understand areas
of high interaction within a city. The second attempts to predict
energy consumption of a particular area. The purpose of this
exploration is to provide additional tools in generating insights
about locations.

I. INTRODUCTION

This research was conducted as part of the Capstone Re-
search track of University of Virginia’s Capstone sequence
for the Bachelor of Science Degree in Computer Science. For
these tasks, I was interested in how location data can better
inform our understanding of the needs of the community. In
this report, I will discuss two tools I implemented through
Python 3.8 and software libraries, such as NetworkX and
Keras, that attempt to address the two scenarios discussed
earlier.

II. TASK 1 - TRACKING INTERACTIONS

A. Task Motivation

The COVID-19 pandemic in 2020 illustrated the importance
of the need for data-based tools that can help public officials
make more informed decisions. In this case, technology can
help by processing large amounts of data to determine where
are the places with the most interactions between people and
what times. Through this, the intention of the task was to
figure out what ares needed more attention to better mitigate
a public health threat such as a virus.

B. Task Description

Interactions in a city can be analyzed in many ways, where
two specific ways were studied in this task. The first was
calculating the total movement occurring in a city across a
day.The second method of analysis was determining what parts
of the city were most densely populated in any given day.
This could be done via using anonymous location data and
matching it to points of interest (POI) across a city.

C. Task Method

Both these subtasks were completed by creating algorithms
using Python, a powerful language for which there are ex-
tensive data processing libraries. For the movement patterns,
adjacency matrices were used to record spots in a place visited
by people at specific times, such as every hour in a day. Then
by using the NetworkX library the matrices could be converted

into digraphs from which the mean edit distances could
be calculated. By continuously computing the edit distance
between graphs and storing the appropriate results, plots can
be created of edit distance vs time. The second algorithm
concerning the interactions matched all the cell phone location
data to the POIs. To make this process faster, a city was split
into bounding boxes so that the total search area was reduced
by a factor of 10.

D. Task Results

The first algorithm computes mean edit distance for each
of the hourly intervals between one hour to four hours and
creates separate graphs for each. Fig. 1 shows one of the
graphs yielded from the first analysis where the goal was to
find mean edit distance across time intervals of four hours.

Fig. 1. Graph of mean edit distance with an time intervals of 4 hours.

By using these graphs, one can gauge both small and large
trends in movement depending on the time interval used. From
Figure 1, it can be deduced that the most changes in interaction
occurred between hour 0 and 4 of the data as the highest mean
edit distance indicated by the graph is on hour 0.

Next, Table I shows a sample of the output of the interaction
algorithm. There’s two IDs for every interaction which is
matched to a POI identified by its type and unique id.

Unfortunately, the algorithm was not quick enough to run
for all of the interaction data provided as search times grow as
inputs and POIs increase. However, if optimized, the algorithm
can be key in discovering what POIs are most densely packed
at a given time in the day on a continuous rolling basis.

1



TABLE I
RESULT OF INTERACTION ALGORITHM

Index ID 1 ID 2 POI Name POI Number
0 “9E5E369...” “402B0171...” Restaurant 3
1 “DBAD261D..” “891210E0...” Restaurant 9
...

III. TASK 2 - PREDICTING ENERGY CONSUMPTION

A. Task Motivation

Modelling energy can be used to understand how energy
consumption varies by time and therefore can help predict
energy demand. This can be particularly useful for areas such
as individual buildings to localities as they plan ahead for
patterned energy spikes. This information can be used to
better allocate resources over time in order to reduce energy
inefficiencies. For example, if it can be predicted that the
energy demand will dip at certain hours, energy input and
production can be reduced during that period of time which
ideally could help reduce energy cost.

B. Task Description

For this particular task, the area in question was Rice Hall, a
building at UVa. Meters at Rice Hall monitor many aspects of
energy consumption, such as Voltage, Power, etc. The goal was
to create a model using machine learning that could accurately
process total energy consumption data and predict the energy
fluctuations using time series data.

C. Task Method

Since the data from Rice Hall included a multitude of data
across several files, certain processing needed to be done. This
was done through 3 Python programs. One filtered the data
relevant to the task such as energy values and timestamps.
The next program sorted the data by days separate the data
into 2 hour time intervals. The last program combined all the
sorted files into one large file that would serve as the input
for the machine learning model.

For this task, the Long short-term memory (LSTM) re-
curring neural network (RNN) architecture was used. The
benefit of LSTM is that its architecture is set up to overcome
vanishing gradient problem, which is an issue that regular
neural networks face where the network fails to persist useful
data. It follows that the LSTM architecture can be key for
modelling time series data such as energy consumption data.

The Keras machine learning library was selected for this
task due to its ease of use and extensive documentation on
machine learning tasks. The algorithm implemented the a
modified version of Brownlee’s tutorial as it gave an in-
depth breakdown of a a simple time series model [1]. One
issue that was encountered was that LSTM requires exten-
sive hyperparameter tuning. Hyperparameters are needed to
adjusted manually in order to control the model’s learning
process. Doing test trials was a time consuming process so
automation was used. The automation was made possible by

the Adaptive Experimentation (Ax) Platform, which contains
API for running experimental runs and picking the run with
the best outcome. For this task, another resource by Lianne
and Justin was key in learning hyperparameter tuning with the
Ax Platform [2]. By appropriately incorporating the automa-
tion process from the aforementioned resource, the following
hyperparameters in Table II were found.

TABLE II
HYPERPARAMETER TABLE

Hyperparameter Value
Learning Rate 0.05407427952920797
Dropout Rate 0.011616500171118609

Neurons per Layer 199
Momentum 0.21804596483707428
Batch Size 128
Activation ‘relu’
Optimizer ‘sgd’

Then, these hyperparameters were used to create the model’s
architecture.

D. Task Results

The data was split into one training set, and one test set.
which would test the trained model on novel values. The total
data set spanned from 0 to 936 hours, and the training was
done on hours 0 to 800, and the testing was done on hours
800 to 936. The model was then run for 101 epochs because
more epochs yielded marginal reductions in loss rate. The final
result on the test data set can be seen in Fig. 2.

Fig. 2. Output of the ML model on the test data.

The final loss rate in terms of mean squared error was
0.0103. When the Mean Absolute Percentage Error (MAPE)
was calculated, the initial result was inconclusive due to the
original data having 0s leading to a divide by zero error. To
account for this, the 0s were normalized to the value calculated
by the model and the resulting MAPE was roughly 18.79.
Both these metrics suggest that the model was close to the
actual values but not was not completely accurate. This is a
desirable outcome because the model needs to be generalizable
to energy consumption data beyond the current dataset in order
to be useful for future predictions.

2



CONCLUSION

This capstone research produced two tools which had differ-
ent purposes yet were similar in the utility they provide. Both
attempt to help gain insights about a particular location where
the first can be useful on a fully local scale, while the second
task can be beneficial for buildings such as Rice Hall. Further
work can make these tools more robust and scalable, however
they still illustrate how simple technological tools can helping
process large sums of data in powerful ways.

FURTHER WORK

With these tasks, it is important to note that there is much
work needed in order to be able to implement the tools on the
industry level. The first task needs to scale with large amounts
of data. This can be done by implementing the algorithm in
Spark, a framework that can take advantage of distributed
file systems such as Hadoop File System (HDFS). By using
Spark’s MapReduce, the workload can be parallelized across
many nodes and thus the total computation time can be
reduced.

For the second task, it is evident that the model predicted the
energy consumption on the test data set very well. However
it can be the case that the model is overfitting on the data. In
order to avoid this possibility, more thorough experimentation
can be done to create a model that can be better generalized
for this use case. This also requires a consistent and thorough
handling of zero values. Lastly, this computation is also very
time intensive - some trials can take over 10 minutes. By
adding GPU support, computation time can be reduced.

ACKNOWLEDGMENT

This research was conducted under the supervision of
Professor Haiying Shen and her graduate assistant Shohaib
Mahmud. In undertaking this 3-credit Capstone Research
course, I learned about technologies such as Spark, HDFS,
and LSTM, and also used ones I was experienced in such as
Python.

REFERENCES

[1] Brownlee, J. (2020, August 28). Time Series Prediction with LSTM
Recurrent Neural Networks in Python with Keras. Machine Learn-
ing Mastery. https://machinelearningmastery.com/time-series-prediction-
lstm-recurrent-neural-networks-python-keras/

[2] Lianne & Justin (2020, March 15). Hyperparameter Tuning with Python:
Keras Step-by-Step Guide Why and How to use with an example
of Keras. Just into Data. https://www.justintodata.com/hyperparameter-
tuning-with-python-keras-guide/

3


