
Cinder Pipeline Improvements: Automation of Droplet Administrative Overhead

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Sion Kim

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Cinder Pipeline Improvements:
Automation of Droplet Administrative Overhead

CS4991 Capstone Report, 2022

Sion Kim

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia, USA

sk9uth@virginia.edu

Abstract
The Amazon EC2 Nitro Firmware team spends around 130
hours of manual work per week on obtaining droplet loans
and generating host config files in order to run the Cinder
Qualification Testing Pipeline. I created a system that
automates this administrative overhead. The system utilizes
a droplet capacity management service (re:Stack) to obtain
droplet loans, and a python script plus an internal API
(AskEC2 Coral) to generate the host config files. The
system cuts down on hours of labor weekly and provides a
reliable structure that is scalable and maintainable to future
Cinder developments and changes. Future work consists of
obtaining permanent team credentials for AskEC2 Coral,
linking in firmware types from the Cinder configuration
page, and adding more usages for the script.

1 Introduction and Background
The EC2 Nitro Firmware Team (NFT) is a division of
Amazon AWS. One of the NFT’s key project workstreams
is Cinder Qualification Automation. Cinder is a bootable
binary responsible for bringing in the Carbon Operating
system on host servers (droplets) used by AWS customers.
Before a new update to Cinder is released, NFT needs to
run tests on the update. This process is called Cinder
Qualification.

Previously, NFT ran Cinder Qualification manually. In
the past year, they have implemented a semi-automatic
testing pipeline that runs Cinder Qualification. Since the
pipeline was bootstrapped quickly, it is not yet fully
automatic and requires significant manual administrative
overhead. For NFT to run the pipeline, they must borrow
droplets of certain host types to run the tests on by applying
for loans. Then, they must generate a host configuration file
to specify these droplets to the pipeline. In total, droplet
administrative overhead takes around 130 hours of manual
work per week, which is a significant loss of time. Loss of
time (and other problems) arise for these reasons:

1. When applying for droplet loans, NFT must manually
click through a UI system called Pawnshark which
takes manual effort. In addition, the host types they
need may not be available for loaning at all.

2. If a new loan is acquired, the NFT must wait for the
loan to build to their testing stack, which takes 5+
hours.

3. NFT has a previously existing script to assist with
generating the host config file. However, there are
three problems with this script:
a. The script requires manual updates for values of

local variables in code before each use. Changing
the code for each use case instead of taking in script
parameters takes manual effort and is bad practice.

b. The script gets droplet information by parsing html
from the droplet admiral web page. This is not
maintainable long term since the html source can
change. This is not scalable since the host config
file will eventually need droplet information not
displayed on the web page.

c. Admiral access is required to execute the script
because it works by accessing the droplet admiral
web page. This is a problem because some
employees (including interns) are not allowed
admiral access and cannot use the script.

NFT required an automated, scalable, and maintainable
solution to these problems in order to reduce droplet
administrative overhead and make their Cinder
Qualification pipeline fully automatic.

2 Related Works
In the computer science industry, there are commonly
practiced automation work overflows that handle
administrative overhead to increase productivity and shorten
the systems’ development life cycle. Continuous Integration
(CI), Continuous Delivery (CD), and Continuous Testing
(CT) are well-used examples. Issue and Project tracking
software (such as JIRA) automates the coordination
required to delegate tasks across individual workers
resulting in efficient collaboration.

Previous works either: 1) presented practical approaches
to design and implement such automated systems; 2)
conducted socio-technical studies that evaluate the impact
of such systems; or 3) designed a new system for a specific
use case:

1. Kazlauskas and Picus (1990) presented a “systems
approach” to design and implement automated
systems for educational administrative purposes
using microcomputers.

2. Olson and Lucas (1982) conducted evaluations of the
impact of office automation on organizations. Levine
and Aurand (1994) developed an event simulation
model to evaluate the impact of employing work-
flow automation at Pacific Northwest Laboratory.

3. Ganger, et. al. (2003) designed a self-managing
system for storage bricks by borrowing
organizational ideas from corporate structure and
automation technologies from Artificial Intelligence
(AI) and control systems.

While automation for administrative work has certainly
been done before, the solution NFT needed was for a very
specialized use case. Automation technology is designed to
perform well only in the context of its intended task. It is
hard to design a general all-purpose technology that will
have good performance in every situation, since it requires
adaptable intelligence lacking in traditional computational
systems. Even with the use of AI, true human-like thinking
is difficult to achieve across all domains. Therefore, it was
reasonable to implement a new solution for this specific
situation with NFT.

3 Project Design
The NFT has a previously existing semi-automatic pipeline
to handle Cinder Qualification. Stage 2 of the pipeline
requires manual droplet administrative overhead of
obtaining droplet loans and generating host configuration
files. I designed an independent system that automates
these tasks that fully automates the existing pipeline.

3.1 Overview of Cinder Qualification Pipeline
Cinder Qualification is the process of testing a new commit
to the mainline Cinder image before release. Cinder
Qualification is run through a semi-automatic testing
pipeline. The steps of the testing pipeline can be seen in
Figure 1. The stages of the Cinder Qualification pipeline
are activated by a new commit to the mainline Cinder
image. This pipeline is semi-automatic; all other Stages are
automatically handled by the pipeline except for Stage 2.
NFT must manually obtain droplets of certain required host
types by applying for loans. Then, they must generate a
host configuration file to specify these droplets to the
pipeline. Stage 2 contains significant manual droplet
administrative overhead.

Figure 1. Diagram of the Semi-Automatic Cinder

Qualification Pipeline

3.2 Problems with Manual Droplet Loans and Host

Config File Generation
The manual droplet administrative overhead in Stage 2 of
the Cinder Qualification Pipeline arises from droplet loans
and host configuration files. When applying for droplet
loans, NFT must manually click through a UI system called
Pawnshark. In addition, the host types they need may not be
available for loaning at all. If the required host type is
available and a new loan is acquired, NFT must wait for the
loan to build to the right testing stack, which takes five or
more hours. Since NFT runs Cinder Qualification for up to
26 required host types per week, the total process can take
around 130 hours per week.

After obtaining droplets, NFT must generate a host
configuration file to specify these droplets to the pipeline.
NFT has a previously existing script to assist with
generating the host config file. However, this script relies
on html parsing of each droplet’s web page to obtain
droplet information, which causes four problems. First, the
script requires copying and pasting the url for each
droplet’s web page to a local variable before each use.
Second, the script is not maintainable since the html source
code can change. Third, the script is not scalable since the
host config file will need droplet information not available
on the web page in the future. Fourth, the script requires
admiral permissions to execute, they are required to access
the droplet web page.

3.3 Implemented Solution
I designed an independent system that can be run and used
by the existing Cinder Qualification Pipeline to make the
pipeline fully automatic. To implement the system, I
utilized python scripting and two internal services: reStack
and AskEC2 Coral API. re:Stack automatically maintains a
set capacity of droplets. The service automatically creates
loans to maintain a set number of droplets of certain host
types, and automatically builds the loaned droplets to
NFT’s testing stack. With re:Stack, NFT always has a pool
of correctly configured, “ready to go” droplets that can be
used instantly for Cinder qualification. AskEC2 Coral API
can return droplet information queried by request
parameters. AskEC2 Coral has a wide range of schema and

many input parameters that allow specific queries and
return of detailed information about droplets.

Figure 2. Workflow of System for Droplet Administrative

Overhead Automation

The workflow of the system is shown in Figure 2. The
system is started when the Cinder Qualification pipeline
runs the python script. The python script makes an API
request to AskEC2 Coral to obtain droplet information for
all droplets owned by NFT configured to the testing stack.
The response returns droplet information for correctly
configured droplets loaned by re:Stack, and also existing
droplet loans obtained manually. The python script then
parses the returned droplet information into the correct
format and writes it into a host config file. The generated
host config file is fed back into the Cinder Qualification
Pipeline to run Cinder Qualification testing.

4 Results
The Amazon EC2 Nitro Firmware team spends around 130
hours of manual work per week on obtaining droplet loans
and generating host config files in order to run the Cinder
Qualification Testing Pipeline. I created a system that
automates this administrative overhead, and fully automates
Cinder Qualification testing pipeline. The system utilizes
re:Stack and the AskEC2 Coral API to eliminate manual
work and previous problem points, and provides a reliable
structure that is scalable and maintainable to future Cinder
developments.

5 Conclusion
The Amazon EC2 Nitro Firmware team spends around 130
hours of manual work per week on obtaining droplet loans
and generating host config files in order to run the Cinder
Qualification Testing Pipeline. I created a system that
automates this administrative overhead, and fully automates
Cinder Qualification testing pipeline. The system utilizes
re:Stack and the AskEC2 Coral API to eliminate manual
work and previous problem points, and provides a reliable

structure that is scalable and maintainable to future Cinder
developments.

6 Future Work
The AskEC2 Coral API does not require admiral
permissions. However, it does require a certificate from the
client obtained through registration. I was able to register
my Amazon user id to obtain a temporary certificate. I was
not able to accomplish permanent team registration due to
the short duration of my internship. The next step would be
registering the team’s group alias to obtain a permanent
team certificate that members of the NFT and the Cinder
Automatic Pipeline could use.

Another future step would be adding command line
parameters to the python script so that different types of
queries and droplet information generation would be
possible. For instance, the script could generate a host
config file for droplets of a specific host type only, or for
only ten droplets, based on the command line parameters.
The NFT will have different test cases for Cinder
Qualification and their other products to make use of
command line parameters.

7 Acknowledgments
I would like to thank the members of the EC2
NitroFirmware Team (NFT) for their support, and for
giving me this internship opportunity. I would like to
especially thank my mentor, Gauri Bendre, and my
manager, Paru Subbiah. In addition, I would like to
acknowledge Jarrett Tinerney and Tasnim Makada from the
EC2 NitroService Team (NST) for their assistance.

References
[1] Gregory R Ganger, John D Strunk, and Andrew J
Klosterman. 2003. Self-storage: Brick-based storage with
automated administration. Technical Report. Carnegie-
Mellon University, Pittsburgh PA School of Computer
Science.
[2] Edward John Kazlauskas and Lawrence O Picus. 1990.
A Systems Analysis Approach to Selecting, Designing and
Implementing Automated Systems: Administrative Uses of
Microcomputers in Schools. ERIC.
[3] Lawrence O Levine and Steven S Aurand. 1994.
Evaluating automated work-flow systems for administrative
processes. Interfaces 24, 5 (1994), 141–151.
[4] Margrethe H. Olson and Henry C. Lucas. 1982. The
Impact of Office Automation on the Organization: Some
Implications for Research and Practice. Commun. ACM 25,
11 (nov 1982), 838–847. https://doi.org/10.
1145/358690.358720

