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1. Abstract 

Neurons of the primary visual cortex (V1) process spatial frequency information in a sequential 

fashion whereby low spatial frequencies (SFs) are processed prior to high SFs. This 

phenomenon, known as coarse-to-fine processing, has been well documented across several 

mammalian species and is involved in several important visual computations such as feature-

linking, core object recognition, and the efficient coding of natural scenes. Despite the 

importance of coarse-to-fine processing in visual computation, a complete description of the 

mechanisms behind this phenomenon has yet to be established. Prior studies have questioned 

whether coarse-to-fine processing stems from the primary feedforward visual pathway or from 

local cortical interactions and feedback from higher visual areas. This study attempts to 

investigate this question by determining whether a purely feedforward model can produce 

coarse-to-fine-like responses and whether such a model is biologically plausible. I have found 

that a biologically plausible feedforward model can only produce coarse-to-fine-like responses 

that are limited to the lower band of SFs; that is, the model responded to progressively higher 

SFs with progressively longer time lags but did not respond to SFs beyond a certain value. This 

result indicates that a purely feedforward model cannot explain the high SF portion of the 

coarse-to-fine response but may explain the low SF portion. However, because recorded V1 

neurons still show prominent responses to high SF, high SF information is likely present in the 

feedforward pathway and is potentially enhanced via intracortical interactions or feedback from 

higher visual areas. 

2. Introduction 

Generally, the global features of visual scenes are perceived prior to the local details of a visual 

stimulus. For example, human participants can be asked to discriminate between the global and 



local identity of a figure resembling a large letter which is composed of a different, smaller letter. 

In such a task, the identity of the large letter will typically interfere with the participants’ ability to 

identify the identity of the small letters; however, the large letters are typically identified with no 

hesitation. The fact that attention cannot be efficiently diverted from global features during this 

task suggests that global processing is a necessary and early stage of visual perception 

(Navon, D., 1977).   

 Neurons in the primary visual cortex of several animals physiologically respond to 

coarse and fine visual features in a similar temporal fashion to how human participants 

behaviorally respond to global and local visual features. In experiments that explore this 

similarity, neurons are extracellularly recorded as animals are shown sinusoidal grating stimuli 

on a computer monitor. Experimenters vary the spatial frequencies (SFs) of these stimuli to 

build a picture of how SF preference changes over time. Studies of this nature have shown that 

in monkeys (Bredfeldt, C. E. & Ringach, D. L., 2002.), cats (Tanaka, H. & Sawada, R., 2022), 

and mice (Skyberg, R., Tanabe, S., Chen, H. & Cang, J., 2022), neurons of the primary visual 

cortex shift their SF preference over short timescales from low SF in the early stage of the 

response to high SF in the later stage. Results from my study also show that coarse-to-fine 

processing is a continuous and smooth process, with responses to progressively higher SFs 

occurring at progressively longer time lags even if the bandwidth of SF preference is limited to 

lower SFs.  

Understanding coarse-to-fine processing is important to understanding many elements of 

visual perception. For instance, coarse-to-fine processing has been implicated as a mechanism 

facilitating feature-linking (Sceniak, M. P., Ringach, D. L., Hawken, M. J. & Shapley, R., 1999). 

Coarse-to-fine processing may also be a mechanism facilitating core object recognition 

(Sceniak, M. P., Ringach, D. L., Hawken, M. J. & Shapley, R., 1999). In concert with core object 

recognition, coarse-to-fine processing helps to reduce ambiguities within the local space of 



visual analysis (Purushothaman, G., Chen, X., Yampolsky, D. & Casagrande, V. A., 2014). For 

instance, at an immediate glance a reader may not be able to differentiate between the words 

“cat” and “cut” without allocating attention to the middle letters. Furthermore, coarse-to-fine 

processing provides a computational advantage to V1 for processing natural scenes. When 

neurons in V1 respond to natural scenes, their responses become decorrelated as SF 

preference shifts from low SF to high SF, eliminating redundancies in the population response 

(Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D., 2019; Skyberg, R., 

Tanabe, S., Chen, H. & Cang, J., 2022). 

The relevance of coarse-to-fine processing to such a wide array of visual functions results in 

a strong need for a mechanistic explanation behind the phenomenon. Previous research has 

focused on determining whether coarse-to-fine processing occurs because of hierarchical 

feedforward local inhibition, or feedback mechanisms; however, this question has not yet had a 

definitive answer. Some of the earliest studies that have attempted to answer this question 

claim that coarse-to-fine processing is facilitated by cortical inhibition because coarse-to-fine 

processing does not occur in upstream stages of visual processing such as the dorsal lateral 

geniculate nucleus (dLGN) (Bredfeldt, C. E. & Ringach, D. L., 2002). However, other early and 

more recent studies have claimed that coarse-to-fine processing is indeed present in dLGN and 

even retinal ganglion cells (RGCs) (Suder, K., Funke, K., Zhao, Y., Kerscher, N., Wennekers, T. 

& Wörgötter, F., 2002; Einevoll, G. T., Jurkus, P. & Heggelund, P., 2011; Purushothaman, G., 

Chen, X., Yampolsky, D. & Casagrande, V. A., 2014), suggesting that coarse-to-fine processing 

occurs via feedforward mechanisms.  

In this study, I have attempted to determine whether a purely feedforward mechanism can 

explain why responses shift their SF frequency from low SF to high SF in neurons of the V1 of 

mice. Feedforward mechanisms produce linear spatiotemporal receptive fields (STRFs). These 

are defined as a set of filters in space and time that describe the features of the visual field that 



maximally elicit excitatory or suppressive activity in visual neurons. Taking the linear 

combination of a visual input with the STRF can produce an estimate of the expected response 

of visual neurons whose activity relies on feedforward mechanisms. Thus, I first set out to 

determine if there exist certain STRF dynamics which can reproduce coarse-to-fine-like 

responses using a linear-nonlinear Poisson (LNP) cascade model. Modeling allowed me to 

parameterize certain features of the STRF and analyze the relative importance of these 

parameters to producing the coarse-to-fine response. I then mapped STRFs from neurons 

recorded from the V1 of mice using a stimulus which could reliably elicit coarse-to-fine 

responses to get a ground-truth picture of how V1 STRFs change over time. Finally, I compared 

the similarity between ground-truth STRFs and simulated STRFs used in the model to provide 

an inference of whether the model is biologically plausible. 

Results from the LNP model showed that coarse-to-fine-like responses are possible with 

feedforward mechanisms because a set of simulated STRF dynamics was able to produce 

responses resembling those appearing in V1 recordings. Indeed, manipulation of two 

parameters of the simulated STRFs, frequency and diameter, produced responses resembling 

most of the response varieties observed from recorded neurons. However, upon comparing 

simulated STRFs to ground-truth STRFs, several discrepancies appeared, suggesting that the 

model is not biologically plausible. Furthermore, modeling the response with STRFs that 

resembled ground-truth STRFs produced coarse-to-fine-like responses which were limited to 

the lower band of SFs. Ultimately, these results are inconclusive regarding whether coarse-to-

fine processing is purely a feedforward or feedback process; however, the results do suggest 

that a feedforward process may facilitate coarse-to-fine processing while a feedback process 

may enhance responses to higher SFs.  



3. Methods 

3.1) Surgical procedure and running wheel acclimation 

All experiments were conducted using awake C57BL mice (N(male) = 7, N(female) = 4) which 

were approved by the Animal Care and Use Committee of the University of Virginia. I followed 

laboratory surgical procedures previously published (Skyberg, R., Tanabe, S., Chen, H. & Cang, 

J., 2022). All procedures were performed in accordance with approved guidelines and 

regulations. A surgery was first conducted to implant the head plate. Anesthesia was induced 

via isoflurane (3-4% for induction, 2% for maintenance, in O2, ~0.5-0.6L/min, VetFlo, Kent 

Scientific). 0.1ml Atropine (0.3mg/kg in 10% saline) and 0.1ml dexamethasone (2mg/kg in 10% 

saline) were injected subcutaneously to reduce secretions and edema. Body temperature was 

continuously monitored and held at approximately 37 degrees Celsius via an external heating 

pad. Artificial tears (Henry Schein Medical) were applied to the eyes for protection during the 

surgery. After surgery, 0.2ml carprofen (5mg/kg) was injected subcutaneously for analgesia. 

The mice were kept in a heated chamber to recover from the surgery until ambulatory then 

transferred to their home cage and monitored daily for pain and wound health. 

Following head plating, mice were acclimated to running on the wheel under head-fixed 

conditions for 4 days for 30-minute sessions per day. The first three days of running wheel 

acclimation were done with the absence of visual stimulation. On the fourth day, a sign 

switching (once per 500ms) checkerboard stimulus generated via the MATLAB Psychophysics 

toolbox was shown on an LCD monitor placed 25 cm away from the head fixation post (52.7cm 

x 29.6cm, 60Hz refresh rate, ~50cd/m2 mean luminance, gamma corrected) to acclimate mice 

to the presence of stimuli. On the day of the recording, a craniotomy was done under isoflurane 

anesthesia above the left primary visual cortex (~1.0 X 1.0 mm2, ~2.8mm lateral and ~0.5mm 

anterior from lambda). Recordings were done approximately 3 hours after craniotomy. 



3.2) Visual stimulation 

All stimuli were generated via the MATLAB Psychophysics toolbox and shown on the monitor 

setup previously mentioned. The monitor covered approximately a 128-degree azimuth and 72-

degree elevation at the given distance from the head fixation post. The location of the receptive 

field was manually approximated via a flashing dot stimulus at the beginning of every recording. 

Once the receptive field was found, the monitor was carefully moved until stimuli were centered 

on the receptive field. 

The main stimulus used for this experiment was an ensemble of sinusoidal gratings that 

changed at each frame at a refresh rate of 60hz. The stimulus was confined to a 50-degree 

diameter window in the center of the monitor. The gratings varied with respect to SF (0, 0.02, 

0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32), orientation (in 

degrees: 0, 30, 60, 90, 120, 150), and spatial phase (in radians: 0, 
π

2
, π, 

3π

2
) comprising 408 

conditions (384 stimuli + 24 blanks). Gratings randomly transitioned from condition to condition 

with blank images of uniform luminance (0 SF) interleaved in between to provide a measure of 

the baseline neuronal firing rate. Each condition was repeated 200 times for a total recording 

time of ~24 min. This stimulus paradigm was inspired by the paradigm described by Bredfeldt 

and Ringach, 2002. 

3.3) Physiological recordings and spike sorting 

Recordings were done using high-density multielectron silicon microprobes developed by Sotiris 

Masmanidis from the University of California, Los Angeles (Yang et al., 2020). I used single 

probe 64M designs. The probe was carefully inserted into the craniotomy and lowered to a 

depth of ~0.8-0.9mm below the cortical surface. After reaching its final depth, the probe was left 

to settle for ~10-15 min before recordings began. 



Voltage signals from the probes were band-pass filtered (300-6000 hz) and recorded at a 

sampling rate of 20kHz (RHD Evaluation System, Intan Technologies, RRID:SCR_017446). 

Spike waveforms were sorted offline using the software package MountainSort (Chung, et al., 

2017; RRID:SCR_017446). Single spikes were identified using two clustering metrics given by 

the spike sorting algorithm. The first is noise overlap, which measures how much overlap the 

cluster has to a cluster composed of randomly sampled spikes from noise. The second is 

isolation, which indicates how well isolated a cluster is from other clusters. I classified single 

units as clusters whose noise overlap was <0.07 and isolation was >0.96. Visually responsive 

units were classified as units which showed a peak or valley in the trial averaged stimulus 

triggered response rate relative to a blank stimulus between 50-150ms time lag. 

3.4) Stimulus triggered response functions 

Grating stimuli varied with respect to three parameters: orientation (𝜃), SF (𝑓), and phase (ϕ). 

Each unique combination of the values of the three parameters produced a unique stimulus 

condition (s). Processed data from spike sorting was output as a point process of stimulus and 

spike onset times given in 20kHz time bins following the start of the recording. The onset times 

were binned into 1ms time bins by dividing the entire array by 20. Spike rasters centered on the 

onset time of each repeat of a stimulus condition were generated for each unit to produce a raw 

stimulus triggered response with respect to time, 𝑅(𝑠, 𝑡)𝑟𝑎𝑤. Each raster was thresholded to only 

include spikes occurring up to 200ms following the onset time of a stimulus. The vector sum of 

individual rasters corresponding to repeats of a stimulus condition was taken and divided by the 

number of repeats to produce a trial averaged stimulus triggered response 𝑅(𝑠, 𝑡)𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑. The 

same procedure was repeated for blank stimuli to produce an averaged blank triggered 

response 𝑅(𝑏, 𝑡)𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑. The vectors of 𝑅(𝑏, 𝑡)𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 therefore served as a measure of the 

neuronal baseline firing rate. The vectors of 𝑅(𝑠, 𝑡)𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑  were marginalized with respect to 

orientation and phase by averaging over the two parameters to produce the raw stimulus 



triggered response functions with respect to time and SF, 𝑅(𝑓, 𝑡)𝑟𝑎𝑤. The vectors 𝑅(𝑓, 𝑡)𝑟𝑎𝑤 

were then baseline subtracted ( 𝑅(𝑓, 𝑡)𝑟𝑎𝑤   - 𝑅(𝑏, 𝑡)𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 ) to produce vectors describing the 

relative strength of the SF triggered response with respect to time 𝑅(𝑓, 𝑡).  In essence, positive 

values of 𝑅(𝑓, 𝑡) at any time point indicate that a particular unit had a higher average firing rate 

to a stimulus of the given SF than to the blank stimulus. The opposite is true for negative values 

of 𝑅(𝑓, 𝑡). Finally, the vectors of 𝑅(𝑓, 𝑡) were smoothed by applying a 25ms rolling average. 

3.5) Modeling of neuronal response profiles 

Neuronal responses were simulated using a Linear-Nonlinear Poisson (LNP) cascade model. 

Given a spatiotemporal stimulus ensemble, X, and a simulated spatiotemporal receptive field 

(STRF), K, I first calculated the convolution between X and K: 

𝑌(𝑡) = ∑ 𝐾(𝑡 − τ𝑖)𝑋(τ𝑖) 

The stimulus ensemble in this analysis is identical to the one used in the 

electrophysiological recordings. For this analysis, the convolution between X and K was 

calculated by creating a Toeplitz matrix of the stimulus ensemble, 𝑋𝑇𝑜𝑒𝑝 and taking the dot 

product of 𝑋𝑇𝑜𝑒𝑝 with K. Since X is a structure containing the grayscale values of each two-

dimensional frame of the stimulus ensemble, it has a dimension of MxNxT, where M and N 

correspond to the height and width of each frame and T corresponds to the duration of the 

stimulus ensemble. Similarly, K is a structure containing the grayscale values of each frame of 

the simulated STRF and has a dimension of PxQxR. Each frame of the structures X and K was 

flattened to produce the 2D matrices 𝑋𝑓𝑙𝑎𝑡 and 𝐾𝑓𝑙𝑎𝑡 of dimension VxT and WxR respectively. 

Flattening was achieved by directly indexing the values falling within the 50-degree circular 

window of the X and K. This method of flattening did not affect the final calculation. 𝑋𝑇𝑜𝑒𝑝 was 

therefore generated using 𝑋𝑓𝑙𝑎𝑡 and thus had a dimension of V*RxT. The convolution between 

the X and K was then ultimately calculated as: 



𝑌(𝑡) = 𝑋𝑇𝑜𝑒𝑝 ⋅ 𝐾𝑓𝑙𝑎𝑡  

The output of the convolution is an array of values with a length equal to T. Because the 

convolution produces negative values, it is passed through an exponential function to generate 

a function of the response rate with respect to time. This function is additionally scaled by a 

constant factor of 0.0125 to constrain the range between extreme high and low values that 

result from the exponential operation: 

𝑅(𝑡) = 0.0125𝑒𝑌(𝑡)  

The simulated STRFs, used to generate the response rate functions were a series of two-

dimensional Gabor filters given by the following equation:  

𝑔(𝑥, 𝑦, θ, 𝑓, ϕ, σ, γ) = 𝑒
𝑥’2+γ𝑦’2

2σ2 cos(2π𝑥’𝑓 + ϕ)  

Where x’ and y’ are transformations of the coordinate space applying a rotation of the given 

orientation θ: 

𝑥’ = 𝑥 cos(θ) + 𝑦 sin(θ) 

𝑦’ = −𝑥 sin(θ) + 𝑦 cos(θ) 

σ is the standard deviation of the Gaussian envelope, γ is the aspect ratio of the Gabor, and 

𝑓 and ϕ are the frequency and the phase of the sinusoidal component respectively. The filters 

used for all the modeling conditions had constant θ values of 0-degrees and constant ϕ values 

of -90-degrees. Because the stimulus is discretized into 60hz bins, the duration of the simulated 

STRFs was chosen to be 13 frames long to approximate the 200ms length of the stimulus 

triggered response functions. The first 7 frames of the simulated STRFs were set as blanks to 

simulate the natural lag in the neuronal response. The last 6 frames of the simulated STRFs 

contained Gabor filters which changed from frame to frame with respect to the values of the 𝑓 



and σ parameters. The way the parameters changed with over time formed curves which took 

on one of three shapes: a power law shape, logarithmic shape, or a linear shape (Fig 1). The 

values for these curves were calculated by passing power law, logarithmic and linear functions 

through a minmax normalization function with specifically chosen upper and lower bounds: 

𝑚𝑖𝑛𝑚𝑎𝑥(𝑓(𝑥), 𝐿, 𝑈) = 𝐿 +
𝑓(𝑥) − 𝑚𝑖𝑛(𝑓(𝑥))

𝑚𝑎𝑥(𝑓(𝑥)) − 𝑚𝑖𝑛(𝑓(𝑥))
(𝑈 − 𝐿) 

Where L denotes the lower bound and U denotes the upper bound of the function. The 

following equations describe each of the individual curves: 

𝑓𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤 = 𝑚𝑖𝑛𝑚𝑎𝑥 (−
1

𝑥
, 0.04,0.2) 

σ𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤 = 𝑚𝑖𝑛𝑚𝑎𝑥 (
1

𝑥
, 1,5) 

𝑓𝑙𝑜𝑔 = 𝑚𝑖𝑛𝑚𝑎𝑥(𝑙𝑜𝑔(𝑥), 0.04,0.2) 

σ𝑙𝑜𝑔 = 𝑚𝑖𝑛𝑚𝑎𝑥(−𝑙𝑜𝑔(𝑥), 1,5) 

𝑓𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑚𝑖𝑛𝑚𝑎𝑥(𝑥, 0.04,0.2) 

σ𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑚𝑖𝑛𝑚𝑎𝑥(−𝑥, 1,5) 



Figure 1: A schematic illustrating how the Gabor filters used in the STRFs change over time with respect to 𝜎 (The standard 
deviation of the Gaussian window) and 𝑓 (The frequency of the sinusoidal component). For condition 1, 𝜎 and 𝑓 co-evolved in 
every possible combination of curves shown in the figure (see Table 1). 

  The way that 𝑓 and σ co-evolved comprised three conditions. In the first condition, 𝑓 and 

σ co-evolved in every one of 9 possible combinations of the three curves (Table 1). In the 

second condition, σ was held at a constant value of 3 while 𝑓 changed according to the three 

curves (Fig 2). Conversely, in the third condition 𝑓 was held at a constant value of 0.06 and σ 

changed according to the 3 curves (Fig 3). The range of σ values was chosen because it closely 

approximated the range of receptive field sizes mapped from recorded units. Similarly, the 

range of 𝑓 values was chosen because it closely approximated the range of SFs to which 

recorded units were responsive. 

 𝑓𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤 𝑓𝑙𝑜𝑔 𝑓𝑙𝑖𝑛𝑒𝑎𝑟 

σ𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤 𝑓𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤 𝑥 σ𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤  𝑓𝑙𝑜𝑔 𝑥 σ𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤 𝑓𝑙𝑖𝑛𝑒𝑎𝑟 𝑥 σ𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤 

σ𝑙𝑜𝑔 𝑓𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤 𝑥 σ𝑙𝑜𝑔  𝑓𝑙𝑜𝑔 𝑥 σ𝑙𝑜𝑔 𝑓𝑙𝑖𝑛𝑒𝑎𝑟 𝑥 σ𝑙𝑜𝑔 

σ𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤 𝑥 σ𝑙𝑖𝑛𝑒𝑎𝑟  𝑓𝑙𝑜𝑔 𝑥 σ𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑙𝑖𝑛𝑒𝑎𝑟 𝑥 σ𝑙𝑖𝑛𝑒𝑎𝑟 

Table 1: The first row shows functions of the 𝑓 parameter. The first column shows functions of the 𝜎 parameter. Individual cells 
show the possible combinations between 𝑓 parameter functions and 𝜎 parameter functions. 



 

Figure 2: A schematic illustrating how the values of the 𝜎 and 𝑓 parameters change over time in condition 2. 𝜎 

remains at a constant value of 3 while 𝑓 could take on a power law, logarithmic or linear shape. 

 

Figure 3: A schematic illustrating how the values of the 𝜎 and 𝑓 parameters change over time in condition 3. 𝑓 

remains at a constant value of 0.06 while 𝜎 could take on a powerlaw, logarithmic or linear shape. 



After generating the rate functions with the simulated STRFs described above, the rate 

functions were used to generate vectors, 𝑅(𝑓, 𝑡)𝑠𝑖𝑚, in an equivalent fashion to how they were 

generated in section 3.4. 

3.6) STRF mapping 

For each unit, a trial averaged stimulus triggered response function is calculated prior to 

marginalization ( 𝑅(𝑠, 𝑡)𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 ) for all 384 non-blank stimulus conditions over a duration of 

200ms. The response functions are subsequently baseline subtracted (𝑅(𝑠, 𝑡)𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑  −

 𝑅(𝑏, 𝑡)𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 ) to produce vectors describing the relative strength of the stimulus triggered 

response with respect to time and each unique stimulus condition, 𝑅(𝑠, 𝑡). Furthermore, each 

baseline subtracted response function is smoothed with a 20ms rolling average to reduce the 

impact of noise. Finally, for each unit, a matrix 𝑊 (Fig 4) is generated using the function 𝑅(𝑠, 𝑡) 

such that: 

𝑊 =  [
𝑅(𝑠 = 1, 𝑡 = 1) ⋯ 𝑅(𝑠 = 1, 𝑡 = 200)

⋮ ⋱ ⋮
𝑅(𝑠 = 384, 𝑡 = 1) ⋯ 𝑅(𝑠 = 384, 𝑡 = 200)

] 

In essence, each row of W is a vector corresponding to the unit’s response to a unique 

stimulus condition. Furthermore, a three-dimensional matrix C (Fig 4) is generated to describe 

the spatial features of each stimulus condition. Matrix C is composed of a series of two-

dimensional matrices each containing the grayscale values of a sinusoidal grating 

corresponding to each stimulus condition. Matrix C has a dimension of MxNxS, where M and N 

correspond to the height and width of each stimulus frame and S corresponds to the stimulus 

condition id and has a length of 384. To produce the STRF for a particular unit, I simply take the 

dot-product of matrix C and the matrix W generated for the unit. I.e.: 

𝑆𝑇𝑅𝐹𝑢𝑛𝑖𝑡 = 𝐶 ⋅ 𝑊𝑢𝑛𝑖𝑡 

 



 

Figure 4: Schematic demonstrating how the STRFs are generated for each unit. Matrix C is a structure containing the 

grayscale values of gratings corresponding to each stimulus condition. Matrix W is a structure containing the unit’s 

response over time to each condition. The dot product of C and W produces the STRF, a structure containing a 

picture of the spatial receptive field at each timepoint of the response.   

 Essentially, this operation is a linear combination of C with each column of W and 

produces a new three-dimensional matrix 𝑆𝑇𝑅𝐹𝑢𝑛𝑖𝑡.  Put another way, for each value in a 



column of W, I take the product of the value with every corresponding frame in C and then sum 

the frames to create a new frame (fig 4). I then concatenate the new frame to 𝑆𝑇𝑅𝐹𝑢𝑛𝑖𝑡 and 

subsequently repeat this process for each column in W. 𝑆𝑇𝑅𝐹𝑢𝑛𝑖𝑡 is composed of a series of 

two-dimensional matrices each containing the grayscale values of the unit’s spatial receptive 

field at each timepoint of the unit’s response. In essence, 𝑆𝑇𝑅𝐹𝑢𝑛𝑖𝑡 has a dimension of 

MxNx𝑡𝑚𝑎𝑥 where M and N correspond to the height and width of each STRF frame and 

𝑡𝑚𝑎𝑥 corresponds to the duration of the STRF and has a length of 200. 

3.7) Quantification of STRF parameters 

To quantify the parameters of STRFs mapped from recorded units, Gabor filters were fitted to 

each frame of a unit’s STRF. Fitting of Gabor filters was achieved using cross-validated mean 

squared error (MSE) minimization. For each frame of a unit’s STRF a Gabor filter was 

generated using an initial guess of parameters bounded within an expected range. The STRF 

frame and the Gabor filter were then subsequently flattened. The flattened vectors were 

subtracted and squared, and the mean of the resulting vector was calculated to produce a MSE 

score. The MSE score was then minimized via the minimize function from the Scipy optimize 

Python library using the Nelder-Mead algorithm (Singer, S., & Nelder, J., 2009) to fit the 

parameters of the Gabor filter to the STRF frame. Fitting was repeated 30 times and the 

Pearson’s correlation score between each fit and the STRF frame was calculated and stored for 

cross-validation. The parameters from the fitting which produced the highest Pearson’s 

correlation score were retrieved and used as the best fitting parameters.   

 Because the neuronal response to a stimulus occurs at a delay and is transient, the 

STRF is only visible for a short duration which was labeled manually and defined as the active 

range. Active ranges varied from unit to unit and typically spanned 70ms to 130ms. Only the 

parameters retrieved from STRF frames falling within the active range were used for analysis in 

this study. This analysis focuses on the σ and 𝑓 parameters recovered from the fits. Functions 



of how these parameters change with respect to time, 𝑓fit and σ𝑓𝑖𝑡, were generated to compare 

the spatiotemporal dynamics of mapped STRFs to the simulated STRFs. Because 𝑓fit and σ𝑓𝑖𝑡 

had some noise, they were smoothed using a second order Savitzky-Golay filter with a window 

equivalent to the length of each active range (the window was subtracted by 1 if the length of 

the active range was even). Savitzky-Golay filtering was applied using the savgol_filter function 

from the Scipy signal Python library. Savitzky-Golay filtering was applied only for visualization 

and only the original values were used for data analysis.  

4. Results 

4.1) Stimulus triggered response profiles 

Stimulus triggered response functions with respect to SF and time 𝑅(𝑓, 𝑡) were generated for 72 

units total by taking 200ms of the unit’s response following stimulus presentations, averaging 

across repeats of the same stimulus condition, and marginalizing across orientation and phase. 

The criterion for visually evoked responses (VERs) was defined as responses which rose above 

the mean response rate during the first 40ms + 4 standard deviations of the mean response rate 

during the first 40ms. This VER criterion is identical to the one used in Bredfeldt, C. E. & 

Ringach, D. L. 2002. For each unit, onset time of a response to a particular SF was calculated 

as the time at which the response rate first rose above the VER criterion. Across the population 

of units analyzed in this study, onsets to higher SFs occurred later than onsets to lower SFs (fig 

5a & 5b). This response phenomenon agrees with the results shown in (Skyberg, R., Tanabe, 

S., Chen, H. & Cang, J., 2022) and is defined as the coarse-to-fine response. These results also 

show that the temporal progression of responses to SFs occurs in a smooth and continuous 

fashion rather than a discrete and abrupt fashion (fig 5b & 5c). For each unit, linear regressions 

were fit to the distributions of onset times with respect to SF (fig 5c). The mean of the 



coefficients retrieved from the linear regressions showed that, on average, neurons in V1 shift 

their preferred SF positively by 0.004cpd per millisecond (fig 5b).  

 

Figure 5: Analysis of coarse-to-fine responses. A: Distribution of onset times with respect to SF for the population of units 

observed in the study. The blue trace indicates the mean onset time for each SF. Onset times for higher SFs occur later. B: 

Histogram of coefficients from linear regression fits to onset times. C: Example 𝑅(𝑓, 𝑡) responses from four units included in the 

study. The white line is the linear regression fit to onset times with respect to spatial frequency. The length of each white line 

indicates the bandwidth of the unit. D: Population averaged spatial frequency tuning curve. E: Individual unit spatial frequency 



tuning curves calculated with the method described in the text, sorted in ascending order from lowest bandwidth to highest 

bandwidth. F: Bandwidth of each unit sorted in ascending order. G: Histogram of bandwidths. H: Bandwidth center of each unit 

sorted in ascending order. I: Histogram of bandwidth centers.  

Coarse-to-fine responses tended to have an enhanced response to low SFs (0.02 – 0.16 

cpd) compared to high SFs (0.18 – 0.32 cpd) (fig 5d). To quantify how the response rates 

differed between low SFs and high SFs, I defined the response window as all the time points in 

which response rates rose above the VER criterion. Subsequently, I calculated the average 

response rate to each SF over the entire response window to create SF tuning curves for each 

unit (fig 5e). If no responses rose above the VER criterion for a particular SF, the average 

response to that SF was set as 0. Among all the units, 46 only responded to low SFs and 26 

responded to both low and high SFs (fig 5e). Among the units which only responded to low SFs, 

12 showed no temporal SF dynamics. Among the units which responded to low and high SFs, 

there was a wide variety in the ratio of peak average response rates between low and high SFs. 

A total of two units had slightly higher peaks to high SFs. A total of 8 units had low SF peaks 1-

2x higher than high SF peaks. Another set of 8 units had low SF peaks 2-3x higher than high SF 

peaks. 5 units had low SF peaks 3-5x higher than high SF peaks and 3 units had low SF peaks 

5-10x higher than high SF peaks. Taking the average of all tuning curves showed that the 

population is tuned to 0.04cpd on average (fig 5d). 

For each unit, the bandwidth was calculated as the difference between the highest SF to 

elicit a response above the VER criterion and the lowest SF to elicit a response above the VER 

criterion. The distribution of bandwidths from the population of units analyzed in this study 

spanned the entire range of possible bandwidths (fig 5e & 5f). Furthermore, a histogram of the 

bandwidths shows that there is a bimodal distribution of bandwidths in the population of units 

analyzed in this study (fig 5g). Additionally, the center of the bandwidth for each unit was 

defined as the midpoint between the lowest and highest SF to elicit a response above the VER 



criterion. The distribution of bandwidth centers was nearly identical to the distribution of 

bandwidths, indicating that as the bandwidth increased, the center shifted towards higher SFs. 

Furthermore, across the whole variety of response profiles that were observed, over half of the 

units had responses to low SFs that were suppressed near onset times which correlated with 

high SFs. This phenomenon of late suppression of low SFs agrees with observations from 

multiple studies. (Bredfeldt, C. E., & Ringach, D. L., 2002; Purushothaman, G., Chen, X., 

Yampolsky, D. & Casagrande, V. A., 2014; Skyberg, R., Tanabe, S., Chen, H. & Cang, J., 

2022). The following experiments are an attempt to investigate the mechanisms behind the 

variety of response profiles observed. 

4.2) Modeling of the neuronal response profiles 

For this analysis, I assume that coarse-to-fine processing is the result of classical hierarchical 

feedforward processing described by Hubel, D. & Wiesel, T., 1962. Given this assumption, I 

hypothesized that the coarse-to-fine response could be observed in the STRFs of V1 neurons 

as dynamic changes occurring in spatial structure over short timescales. To explore this 

possibility, I first wanted to explore what STRF dynamics are necessary to produce response 

profiles resembling those observed from recorded V1 neurons. I therefore modeled responses 

using a Linear-Nonlinear Poisson (LNP) cascade model. This type of model was chosen for its 

simplicity and because it can be used to predict how biological neurons with specific receptive 

fields respond to a variety of stimuli. It should be noted that because the LNP model is a type of 

generalized linear model, it is unable to recreate nonlinear response dynamics present in real 

neurons. This analysis is also limited by the fact that only simple-cell receptive field structures 

were used. Nonetheless, this analysis is informative because it can test whether coarse-to-fine 

processing is caused by feedforward mechanisms. Essentially, if the simulated STRFs used in 

the model produce coarse-to-fine responses and are biologically plausible, this would constitute 

strong evidence that coarse-to-fine processing occurs via feedforward mechanisms.  



 Feedforward mechanism dependent changes in STRF structure have previously been 

observed in the V1 of cats (Suder, K., Funke, K., Zhao, Y., Kerscher, N., Wennekers, T. & 

Wörgötter, F., 2002). Over stimulus presentations of 300ms in duration, the diameters of STRFs 

in V1 neurons shrank by 22% on average. These reductions in STRF diameter were caused by 

a transition of dLGN firing from phasic to tonic, implicating feedforward activity as a causal 

mechanism of the observed STRF changes. Given this finding and the fact that the coarse-to-

fine response is a SF dependent phenomenon, I designed the simulated STRFs as series of 2D 

Gabor filters which varied over time with regards to the 𝜎 parameter, governing the diameter of 

the filter’s Gaussian envelope, and the 𝑓 parameter, governing the frequency of the filter’s 

sinusoidal component. The Gabor filters appeared within the last 6 frames of a series of 1-

frames; the first seven frames of this series were blank (fig 6a). This temporal design was 

chosen for two reasons. The first reason is that the stimulus ensemble used in experiments had 

a refresh rate of 60hz and the stimulus triggered responses were 200ms long. A 13-frame long 

simulated STRF approximated the 200ms duration of the stimulus triggered responses binned 

at 60hz. Second, responses to stimuli in real neurons typically appeared within a range between 

65 - 135ms. Designing the simulated STRFs such that the active range spanned the last 6 

frames allowed the model to generate responses with similar ranges (fig 6a & 6b).   

 The way that the values f and σ changed over the course of the simulated STRF active 

range was generated by either a power law function, logarithmic function, or linear function with 

respect to time (Fig 1). For f values, the trend was increasing and for σ values the trend was 

decreasing. For all of the generating functions, the range of 𝑓 values was bounded between 

0.04 and 0.2 and the range of σ values was bounded between 1 and 5. These values were 

chosen because they approximately matched values seen in STRFs mapped from recorded 

neurons. The temporal dynamics of simulated STRF parameters fell into one of 3 conditions 

(Fig 1). In condition 1, the values 𝑓 and σ both varied over the duration of the active range and 



could take on any of the 9 combinations of generating functions (Table 1). In condition 2 (Fig 2), 

𝑓 values were produced by any of its 3 generating functions and σ remained at a constant value 

of 3. Condition 3 (Fig 3) was the opposite of condition 2; 𝑓 remained at a constant value of 0.06 

and σ values were produced by any of its 3 generating functions. 

In Condition 1, where σ decreased as 𝑓 increased, the model produced response 

profiles in which the peak response to low SFs was ~3x higher than the peak response to high 

SFs (fig 6a & fig 7a). The response rate to high SFs and the band of high SFs to which a 

response occurred depended on two factors. The first factor was the rate of change of 𝑓 values. 

In cases where 𝑓 values changed faster than σ values, the model generated higher responses 

to high SFs and responses occurred to wider band of SFs. In contrast, if 𝑓 values changed more 

slowly than σ values, the model generated lower responses to high SFs and responses 

occurred to narrower band of SFs (fig 7d & 7e). The second factor was the contribution of the 

rate of change of σ values, which had an antagonistic effect on the 𝑓 parameter contribution. 

Generally, if σ values had a faster rate of change, the model’s response to high SFs was 

suppressed (fig 7d & 7e). For example, in the extreme case where 𝑓 increased linearly and σ 

decreased in a power law fashion (𝑓𝑙𝑖𝑛𝑒𝑎𝑟 x σ𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤), the simulated responses resembled 

coarse-to-fine response profiles that were limited to the lower band of SFs (fig 6b). The results 

from this condition suggest that STRF diameter and frequency have an antagonistic relationship 

such that responses to high SFs only occur when frequency increases at a faster rate than 

diameter decreases.   



 

Figure 6: Model responses. A: An example response showing how the 𝜎 and 𝑓 parameters change over the active duration (left 
top and bottom panels, a visual representation of the simulated STRF (top 6 panels on the right), and the R(𝑓, 𝑡) response from 
the modeling condition. B: R(𝑓, 𝑡) responses from all modeling conditions explored in the study.  

 



 

 

Figure 7: Analysis of the model responses. A: Peak response rate at each spatial frequency taken from an example from 
condition 1. Red line indicates the baseline response threshold defined in an identical manner to the VER criterion from section 
4.1. B: Same as A but from an example response from condition 2.  C: Same as A but from an example response from condition 
3. D: Individual response spatial frequency tuning curves calculated in an identical manner to the one in section 4.1, sorted in 
ascending order from lowest bandwidth to highest bandwidth.  E: Same as D sorted in ascending order from lowest peak 
response rate to highest peak response rate.  F: Bandwidths of responses sorted in ascending order. G: Bandwidth centers of 
the responses sorted in ascending order.  H: Spatial frequency tuning curve averaged over all responses.  

In condition 2, the model produced low and high SF responses with nearly equivalent 

peaks (fig 7b). Because σ remained constant in this condition, it had no antagonistic effect on 

the contribution of the 𝑓 parameter. If 𝑓 values had a high rate of change, the model generated 



response to high SFs response that were slightly higher than the responses to low SFs. If 𝑓 

values had a low rate of change, the model generated responses to high SFs that were slightly 

lower than the response to low SFs. If 𝑓 values had a stable rate of change, the model 

generated response to high and low SFs that were essentially equivalent (fig 7d & 7e). The 

results from this condition suggest STRF diameter must remain constant for the high SF peak to 

be equal to or higher than the low SF peak. 

In condition 3, the model produced response profiles in which the response only 

occurred to low SFs (fig 7c). Furthermore, response onset times to each low SF were relatively 

similar (fig 6b). Although this condition did not elicit any temporal SF dynamics, it did influence 

the width of responses. When σ had a slower rate of change, responses became wider and vice 

versa. The results from this model condition suggest that STRF frequency must remain constant 

to produce responses without temporal SF dynamics.  

The bandwidths of the responses generated by the model were analyzed in an identical 

fashion to section 4.1. Bandwidths had a similar distribution to the population of units analyzed 

in the study but were limited to a range between 0 and 0.2cpd (fig 7d, 7f & 7g). The modeled 

responses also tended to have enhanced responses to low SFs compared to high SFs (fig 7h). 

Overall, the results from the modeling indicate that short timescale STRF changes can produce 

coarse-to-fine-like responses. The responses generated from the model closely resemble a 

large subset of the response profiles observed from extracellularly recorded neurons. The 

model was, however, unable to reproduce fully suppressive response profiles and was unable to 

reproduce the low SF suppression observed during the high SF response. Nonetheless, these 

results provide support for the idea that coarse-to-fine responses may arise from feedforward 

processing. In the next section, I explore whether STRF structures from extracellularly recorded 

neurons resemble the simulated STRF structures which produced coarse-to-fine responses in 

the model. 



4.3) Quantification of STRF parameters 

If coarse-to-fine responses occur because of feedforward mechanisms, at least three 

assumptions must be true. The first assumption is that there must exist some STRF dynamics 

which can recreate the coarse-to-fine response profiles observed from recorded units. The 

second assumption is that these proposed STRF dynamics must be biologically plausible. The 

third assumption is, for units which exhibited coarse-to-fine response profiles, coarse-to-fine 

STRF dynamics must also be observed. The LNP model has shown that the evolution of the 𝑓 

and σ parameter values of a set of Gabor filters over time can recreate a large repertoire of the 

response profiles observed from recorded units. I next set out to test whether the latter two 

assumptions hold true. To do this, I first mapped STRFs from recorded units by transforming the 

neural responses from the frequency domain to the spatial domain. I subsequently fit Gabor 

filters to the mapped STRFs. Finally, I extracted the 𝑓 and σ parameter values from the fits to 

quantify how the mapped STRFs change over time in reference to the parameters used in the 

model. 

 Mapping of STRFs was achieved by transforming the neuronal firing signal from the 

frequency domain to the spatial domain (ie: an inverse Fourier transform). The first step to 

achieve this was to generate a 3-dimensional matrix, C. This matrix contained 2-dimensional 

frames corresponding the grayscale values of each unique grating condition used for visual 

stimulation. Furthermore, a 200ms stimulus triggered response to each of these unique 

conditions was calculated; each of these responses formed the rows of a 2-dimensional 

response matrix, W. The second step was to calculate the linear combination of the frames of C 

with each column of W. Each of these linear combinations formed a frame representing the 

STRF at a single timepoint. This calculation is essentially equivalent to taking the dot product of 

C and W (fig 4). This method of mapping the STRFs was successful only in neurons with 

sufficiently linear responses. Clear STRFs were successfully mapped in ~60/72 neurons. 



Furthermore, the following analysis was restricted to simple-cells because complex-cell STRFs 

do not have Gabor-like shapes. This further restricted the analysis down to 22 of the recorded 

units. This subset of units had STRFs with clear parallel, flanking excitatory and suppressive 

subregions which followed a Gabor-like pattern (fig 8b & 8f). The STRFs of these units typically 

appeared within a range between 65 – 90ms and disappeared within a range of between 100 – 

135ms (mean onset time = 78.64±1.25ms; mean offset time = 115.91±2.22ms). The STRFs 

were active for a mean duration of 37.27±1.63ms (fig 8a).  

 To quantify how these STRFs changed over time, Gabor filters were fitted to each 

timeframe of the STRFs using mean-squared-error (MSE) minimization. For each frame in time 

of a STRF, a Gabor filter was initialized with a random guess of parameters bounded within an 

expected range. The MSE between the STRF frame and the Gabor filter was then minimized to 

produce a Gabor filter that best fit the frame. A 30-fold cross-validation was then performed by 

calculating the Pearson correlation between the Gabor fit and the STRF frame. The parameters 

of the fits with the highest cross-validation score (𝐶𝑉𝑚𝑎𝑥) were used for quantifying how the 

STRFs changed over time (fig 8b). The fitting procedure produced a function of 𝐶𝑉𝑚𝑎𝑥 with 

respect to time for each unit analyzed, 𝐶𝑉(𝑡). The 𝐶𝑉(𝑡) functions for all 22 units produced a 

mean curve which peaked at 90ms with a value of 0.62±0.02 (fig 8c). Therefore, at 90ms fitting 

accuracy peaked because STRFs had less noise and became more Gabor-like on average. 

 I next wanted to test whether parameter values from the fits differed significantly 

between the onset time and offset time of the STRF active ranges. Active ranges for each STRF 

were defined manually and Gabor filters were subsequently fit to only the STRF frames of the 

active range. The σ and 𝑓 parameters from the best fits to each frame of the active range were 

retrieved to produce functions describing how the parameters change over the duration of the 

active range. These functions are respectively labeled as σ𝑓𝑖𝑡 and 𝑓fit (fig 8f, left top and bottom 

panels). The values of these functions differed significantly between onset and offset. Typically, 



𝑓fit became higher over time, with an average onset value of 0.03±0.1 and an average offset 

value of 0.06±0.2 (paired t-test, p = 0.0002) (fig 8d). In contrast, σ𝑓𝑖𝑡 typically became smaller 

over time with an average onset value of 3.34± 0.71 and an average offset value of 2.2±0.52 

(paired t-test, p = 0.0003) (fig 8e). Therefore, STRFs in analyzed units generally increased with 

respect to 𝑓 and decreased with respect to σ, suggesting that coarse-to-fine dynamics are 

indeed observable in the STRF. However, this general pattern was mostly inconsistent with the 

modeling paradigm which produced coarse-to-fine-like responses because the range of 𝑓 and σ 

values used in the model was much wider. Furthermore, 𝑓fit and σ𝑓𝑖𝑡 typically changed at similar 

rates, yet responses to high SFs were still observed (fig 6b).  

In a few instances, the values of 𝑓fit and σ𝑓𝑖𝑡 seemed to follow trends that recapitulated 

some of the paradigms used in the LNP model.  For instance, units which only responded to low 

SFs with no difference in response delay had 𝑓fit curves which mostly remained stable over time 

as expected from the model. Furthermore, in a representative unit where the low SF response 

peak was 2x higher than the high SF response peak, 𝑓fit increased from 0.04 to 0.16 and σ𝑓𝑖𝑡(t) 

decreased from 4 to 1 in a linear-like fashion over time (fig 8f). Based on the results from the 

model, this range of 𝑓fit increase is expected, however the range of σ𝑓𝑖𝑡 decrease is not. I tested 

whether the LNP model can produce a similar response to this representative unit with similar 

parameter values and observed a coarse-to-fine-like response which was bounded to the lower 

range of SFs (fig 8g). Therefore, the simulated STRFs which were able to reproduce responses 

akin to the representative unit do not appear to be biologically plausible.  



 

Figure 8: Quantification of STRF parameters. A: Distribution of onset and offset times for STRFs. B: Example of a Gabor fit to a 
mapped STRF using the method described in the text. C: CVmax curves for all fitted STRFs. D: Difference in initial and final 𝑓 



values retrieved from the Gabor fits. E: Difference in initial and final 𝜎 values retrieved from the Gabor fits.  F: Data from an 
example neuron. Left top and bottom panels show the 𝜎𝑓𝑖𝑡  and 𝑓𝑓𝑖𝑡  curves from the Gabor fitting procedure. The series of 

panels in the upper right show the mapped STRF for the unit. The bottom panel shows the R(𝑓, t) response curves for each SF.  
G:  Data from an attempt to model the response in F. Left top and bottom panels show how the 𝜎 and 𝑓 parameters change 
over the active duration, the series of panels in the top right show a visual representation of the simulated STRF, the bottom 
panel shows and R(𝑓, 𝑡) responses from the modeling attempt. The modeling attempt was only able to capture the low SF 
portion of the response.  

Due to the limited amount of data, most units with a high SF response that were analyzed 

had low response rates. This made it difficult to assess whether there was a relationship 

between 𝑓fit and σ𝑓𝑖𝑡 values and high SF response rate. However, I had some expectations of 

what the relationship should look like based on the results of the model. If high SF response 

rate is function of the 𝑓fit rate of change, there should be a positive relationship between the 

high SF peak response rate and the average rate of change of 𝑓fit. Furthermore, if high SF 

response rate is also a function of the stability of σ𝑓𝑖𝑡, there should be a negative relationship 

between the high SF peak response rate and the average rate of change of σ𝑓𝑖𝑡. To test if this 

was the case, I calculated the average rates of change for 𝑓fit and σ𝑓𝑖𝑡 in all units (
1

𝑇
∆𝑓 and 

1

𝑇
∆σ  

respectively, where T is the total number of time steps in each respective function; ∆f and ∆σ is 

the difference between initial and final values). I then calculated the high SF peak response rate 

in each unit as the peak response to SFs ranging from 0.18 – 0.32 cpd. However, I found no 

significant correlation between the high SF peak response rate and average rates of change for 

𝑓 or σ.  

 In summary, the LNP model was able to generate responses resembling a large 

repertoire of responses observed from recorded units. Furthermore, STRFs from recorded units 

showed changes over short timescales which reflect coarse-to-fine dynamics. However, STRFs 

from recorded units did not resemble the simulated STRFs which produced coarse-to-fine 

dynamics in the LNP model. Therefore, the simulated STRFs which were able to generate 

coarse-to-fine-like responses are likely not biologically plausible. More modeling paradigms 



should be explored to determine whether different simulated STRFs can reproduce the 

responses observed from recording data.   

5. Discussion 

In this study, I set out to determine whether a purely feedforward model could explain the 

diversity of coarse-to-fine responses observed from recording data. Interpretations of the results 

are made given the following assumptions: 1) There must exist some STRF dynamics which 

can produce coarse-to-fine-like responses; 2) Any STRF dynamics which can produce coarse-

to-fine-like responses must be biologically plausible; 3) Recorded units with coarse-to-fine 

responses must also have coarse-to-fine STRF dynamics. Results from the model demonstrate 

that coarse-to-fine responses can indeed be produced with a feedforward model. Furthermore, 

STRFs mapped from recorded units with coarse-to-fine responses had a SF component that 

increased over time, demonstrating that coarse-to-fine dynamics are indeed observable in the 

STRF. However, STRFs mapped from recorded units did not resemble simulated STRFs which 

were able to generate coarse-to-fine-like responses. Given the starting assumptions, it is 

therefore unlikely that a purely feedforward mechanism can explain responses observed in the 

recording data because the simulated STRFs that produced coarse-to-fine-like responses are 

not biologically plausible. However, responses modeled with STRFs resembling those observed 

in recorded units produced simulated response profiles closely resembling the early portion of 

the recorded response. This finding suggests that coarse-to-fine responses occur because of a 

mechanism with both a feedforward and feedback component. 

5.1) Coarse-to-fine response profile diversity 

The results show that V1 generally processes SF information in a temporally dynamic fashion in 

which SF preference evolves from low SF to high SF over short times scales. Furthermore, a 

wide variety of response profiles was observed with respect to the firing rates of low SF vs. high 



SF responses. The full repertoire of response profiles was typically dominated by units that had 

an enhanced low SF response rate. However, many units fell outside of this typical 

presentation, with units that had nearly equal low SF and high SF response rates and units that 

had enhanced high SF response rates. Additionally, the results show that the temporal 

progression of coarse-to-fine responses occurs in a smooth, continuous fashion rather than an 

abrupt discontinuous fashion. Because of this, many of the units recorded showed responses 

which had a coarse-to-fine temporal progression that was limited to the lower band of SFs. In 

essence, these “low bandwidth” coarse-to-fine cells responded to each progressively higher SF 

with a progressively higher time lag but did not respond to SFs above 0.18cpd. Furthermore, a 

small subset of the units recorded showed responses that were either excitatory or suppressive 

but had no temporal dynamics with respect to SF.  

 A recent study exploring coarse-to-fine processing (Skyberg, R., Tanabe, S., Chen, H. & 

Cang, J., 2022) demonstrates both similarities and differences to the results obtained from this 

study. The main similarities between both studies include the observation that SF preference in 

V1 evolves over short timescales from low SF to high SF. Furthermore, a wide variety of 

response profiles with respect low SF vs. high SF firing rate was observed. However, the main 

difference is that coarse-to-fine responses in this study occurred in a smooth continuous fashion 

rather than a discrete and abrupt fashion. This difference in results may have occurred due to 

the difference in stimulus sets used to trigger the responses. In this study, the SFs of the 

gratings were defined as a harmonic series of the fundamental frequency (0.02cpd) which 

ranged from 0.02cpd to 0.32cpd. The decision to use this set of SFs was made to enable 

mapping of the STRF from the neuronal responses, however the regular step size between SFs 

may explain why smooth responses were observed. Initially, a stimulus set identical to the one 

used in Skyberg, R., Tanabe, S., Chen, H. & Cang, J., 2022 was used in the current study 

(results not shown). Stimulus triggered responses acquired with this stimulus set also had 



abrupt and discrete responses, lending support to the idea that the difference in responses 

between both studies is due to the difference in stimulus sets used. 

5.2) Interpretations of the LNP modeling results 

The results from the LNP model show that the variation of two parameters of the simulated 

STRFs can produce results that resemble a large portion of the responses observed from 

recorded units. These parameters are the frequency (𝑓) and diameter (σ) of the Gabor filters 

used to simulate the STRFs in the model. The model is set up such that 𝑓 and 𝜎 evolve in an 

opposite manner over time where 𝑓 increases as 𝜎 decreases. The relative rates of the low SF 

and high SF responses from the model depend mainly on the rates of change of 𝑓 and 𝜎. 

Furthermore, the way these parameters co-evolve affects the band of SFs to which the model is 

responsive. As the initial rate of change of 𝑓 increases, the response to high SFs increases and 

a response to a wider band of high SFs is observed. However, as the rate of change of σ 

decreases in concert with 𝑓, the response to high SFs becomes suppressed. In extreme cases 

where the initial rate of change of 𝜎 is very high, responses to high SFs barely rise above 

baseline and the overall response resembles a low bandwidth coarse-to-fine unit response. 

Although the model was able to capture a wide range of responses observed in recorded data, it 

was not able produce a fully suppressive response and it was not able to produce suppression 

of low SFs during the high SF response. Further experiments will explore whether varying 

different STRF parameters or using complex STRFs can produce the response properties that 

were not observed in this study. 

Although the 𝑓 parameter influenced both the response rates and the band of SFs to 

which responses were observed, it had a larger contribution to the bandwidth of the response. 

Conversely, the main influence of 𝜎 appeared to be the relative rates of the low SF vs high SF 

responses. Indeed, in condition 2, where 𝜎 remained constant, the rates of the low SF vs high 

SF responses were nearly identical. Furthermore, in condition 3, where 𝑓 remained constant, 



responses were only observed to low SFs. These results demonstrate that coarse-to-fine 

responses may depend on two distinct aspects of the STRF. The first is the overall diameter of 

the STRF which mainly determines how the response rate changes over time. The second is 

the width of each excitatory and suppressive STRF subfield in the direction orthogonal to its 

orientation (parameterized as frequency), which mainly determines how the SF preference of 

the unit evolves over time.    

5.3) Comparison of simulated STRFs and recorded unit STRFs 

STRFs mapped from recorded units had dynamics which mostly differed from the simulated 

STRFs that were able to produce coarse-to-fine-like responses. Results from the model suggest 

that the 𝑓 parameter must increase over a wide range of SFs, at least 0.04-0.16cpd, for a 

response to be observed at a wide enough band of spatial frequencies such that there is a low 

SF and high SF peak. Furthermore, the model also suggests that 𝑓 must have a higher rate of 

change than σ to overcome suppression from the decreasing diameter of the STRF. In most 

cases, mapped STRFs had 𝑓𝑓𝑖𝑡 values that only increased from 0.03-0.06cpd. Furthermore, 𝑓𝑓𝑖𝑡 

typically increased at an equal rate to which σ𝑓𝑖𝑡 decreased; therefore, the rate of change of 𝑓𝑓𝑖𝑡  

was not fast enough to overcome the suppressive contribution of decreasing σ𝑓𝑖𝑡 values. These 

results suggest that the feedforward pathway contains high SF information, but that information 

is progressively suppressed along the pathway. Indeed, attempts to model responses with 

parameters retrieved from the fits to the mapped STRFs produced coarse-to-fine-like responses 

which were limited to the lower bound of SFs. Therefore, a potential explanation behind coarse-

to-fine processing is that it begins as a feedforward process where high SF information is 

progressively suppressed and then subsequently enhanced/recovered through a different 

mechanism.  

 The question of what mechanisms could enhance the neuronal response to high SFs 

remains to be answered. A potential explanation for this could be feedback input from higher 



visual areas. This feedback input, specifically stemming from area LM, has been shown to be a 

driving factor in creating a second receptive field in excitatory V1 neurons (Keller, A. J., Roth, M. 

M. & Scanziani, M., 2020). This so-called feedback receptive field (fbRF) is primarily driven by 

stimuli outside of the classical feedforward receptive field (ffRF). Stimulation of fbRFs generates 

response curves that highly resemble the high SF portion of a coarse-to-fine response. That is, 

responses elicited via fbRF stimulation are temporally delayed and tend to have a lower 

amplitude than responses elicited via ffRF stimulation. Importantly, responses elicited via co-

activation of the fbRF and ffRF are antagonistic when stimuli are uniform in space and 

synergistic when stimuli are nonuniform in space. Coarse-to-fine responses have been 

observed to naturalistic images (Skyberg, R., Tanabe, S., Chen, H. & Cang, J., 2022) which are 

nonuniform in space; therefore, responses to these stimuli may be driven by co-activation of the 

fbRF and ffRF. It remains to be seen whether stimuli that are nonuniform in time lead to 

synergistic fbRF and ffRF driven responses; if this is the case, responses triggered by 60hz 

random gratings may also be driven by fbRF and ffRF co-activation. 

 If coarse-to-fine processing does indeed elicit co-activation of the fbRF and ffRF, then 

the enhancement of the high SF response in V1 cells could be due to a convergence feedback 

mechanism. In essence, several V1 cells with low rate high SF responses may converge onto a 

single neuron in area LM. The convergence of activity from many V1 cells would result in an 

area LM response with higher SF tuning across the board. Feedback projections to V1 would 

therefore increase the firing rate of the entire V1 response, thus raising the rate of high SF 

responses significantly above the threshold firing rate. A quick way to provide support for this 

idea would be to record V1 responses to 60hz random gratings while an animal is under 

anesthesia. Because anesthesia affects HVAs to a higher degree than V1 (Lamme, V. A. F., 

Zipser, K. & Spekreijse, H., 1998), one would expect anesthesia to suppress the high SF portion 

of V1 responses to a such a degree that they are indistinguishable from baseline firing. This has 



indeed been shown to be the case (Skyberg, R., Tanabe, S., Chen, H. & Cang, J., 2022), further 

supporting the hypothesis that feedback from HVA may contribute to coarse-to-fine processing. 

However, further experiments must be done to test how and to what degree HVAs contribute to 

coarse-to-fine processing.  

5.4) Future Directions 

The main question raised by the results of this study is whether the high SF portion of the V1 

response is enhanced via feedback from HVAs. Therefore, a preliminary analysis to provide 

support for this hypothesis would be to determine whether high SF response rates change as a 

function of V1 layers. Because all V1 layers except layer 4 (the main dLGN input layer) receive 

input strong input from HVAs (Keller, A. J., Roth, M. M. & Scanziani, M., 2020), the expectation 

is that units originating from these layers will have enhanced high SF response rates. Units 

recorded from V1 can be sorted by layer via current sink density (CSD) analysis. I will therefore 

use CSD analysis to separate my data into two populations: input layer units (ILUs) and non-

input layer units (NILUs). I will subsequently conduct a statistical test to determine whether the 

mean high SF response amplitudes between the populations significantly differ. If the mean high 

SF response rate of the NILU group is significantly higher, this would provide good preliminary 

evidence that HVAs are involved in enhancing the high SF portion of the response. 

 Beyond this preliminary analysis, further experiments should be done to link HVA 

feedback to coarse-to-fine processing. An informative experiment would be to silence individual 

HVAs while simultaneously recording from V1. This can be done by expressing 

channelrhodopsin (ChR2) to HVAs via viral injection and targeting individual HVAs with a laser 

to optogenetically activate inhibitory neurons. This protocol has been successfully implemented 

previously with minimal direct impact of scattered laser light on V1 (Keller, A. J., Roth, M. M. & 

Scanziani, M., 2020). After successfully expressing ChR2, I would record responses of V1 

neurons to several repeats of each stimulus condition with and without optogenetic silencing of 



an individual HVA. From this experiment, I expect the same single units within the NILU group 

to have suppressed high SF response rates during silencing. Furthermore, I would expect no 

change in units within the ILU group between silenced and unsilenced conditions. Finally, I 

would repeat this experiment for each individual HVA to determine which HVA has the highest 

impact on high SF response rates in V1. 

 Upon identifying the HVA with the highest impact on high SF response rates in V1, I 

would conduct simultaneous extracellular recordings in V1 and the HVA during visual stimulus 

presentation. By conducting a simultaneous recording, I hope to establish a final link between 

HVA feedback and high SF enhancement in coarse-to-fine processing. This link would be 

established by conducting an analysis of the time course of the response in V1 and the HVA. 

Essentially, if HVA feedback is truly enhancing the high SF portion of the V1 response, the peak 

of the response in the HVA must occur prior to the peak of the high SF response and follow the 

peak of the low SF response in V1.  

Beyond investigating potential HVA mechanisms contributing to coarse-to-fine 

processing, future experiments must also include analysis of complex STRFs. This may require 

a more direct method of estimating STRF parameters because complex STRFs are composed 

of multiple simple Gabor-like STRFs. Alternatively, complex STRFs can be separated into 

corresponding simple components; under this protocol, the fitting procedure used in this study 

can be applied to each individual simple component of the STRF. In either case, a full picture of 

the mechanisms facilitating coarse-to-fine processing will require analysis of both simple and 

complex cells. Furthermore, future experiments should also explore potential contributions of 

inhibitory cell types in V1, however it is not currently clear how this can be achieved with 

resources available. One could potentially mark and record inhibitory cell types in V1 via 

optotagging, however previous attempts of cortical optotagging have typically netted a low yield. 

Nonetheless, a feasible analysis would be to look at the temporal SF dynamics of broad vs. 



narrow spiking cells. Although narrow spiking is a nonspecific trait of inhibitory neurons in V1, 

characterizing their dynamics could still provide an interesting preliminary picture of how 

inhibitory neurons process SF. 

5.5) Limitations 

A major limitation to this study is the size of the dataset used for analysis. The full dataset 

includes a total of 72 single units recorded from 11 mice. The low yield of single units is a 

consequence of ongoing troubleshooting of the electrophysiological recording procedure. 

Results from section 4.3 are made with a dataset of only 22 units because analysis of complex 

cells is not included. Furthermore, the cells which exhibited a coarse-to-fine response tended to 

have very low high SF response rates. Because of this, analysis of the correlation between 𝑓𝑓𝑖𝑡 

and 𝜎𝑓𝑖𝑡 average rates of change and peak high SF response may be unreliable.  

Another limitation is that the modeling results are still preliminary. Therefore, much of the 

interpretations of the modeling results are made via qualitative assessment rather than 

statistical analysis. Furthermore, the extent to which the parameter space of the model was 

explored is limited. Therefore, a more systematic exploration of the parameter space of the 

model is needed. Additionally, the response of the model is generated at a 60hz temporal 

resolution whereas recorded responses are binned at 1ms intervals. Therefore, the model may 

be missing dynamics only present at higher temporal resolutions.  

Finally, the estimation of the parameters from STRFs mapped from recorded units was 

achieved with nonlinear curve fitting. This method may be prone to biases which arise due to 

the minimization algorithm falling into local minima that do not capture the true parameters of 

mapped STRFs. Therefore, a more direct method for estimating the STRF parameters is 

needed.  
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