
A Data Capture and Gesture Recognition System to Enable Human-Robot Collaboration 

 

 

A Technical Report submitted to the Department of Systems and Information Engineering 

 

Presented to the Faculty of the School of Engineering and Applied Science 

University of Virginia • Charlottesville, Virginia 

 

In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 

 

 

Evan Smith 

Spring 2025 

Capstone Project Team Members 

Camp Hagood 

Sarah Naidu 

Aramis Rolly 

 

 

 

On my honor as a University Student, I have neither given nor received unauthorized aid on this 
assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

 

 

Signature _______________________________________ Date __________ 
Evan Smith 
 
 
Advisor: Tariq Iqbal, Department of Computer Science, Department of Systems and Information 
Engineering 

 

g o o ffMth¥¥ 430125



A Data Capture and Gesture Recognition System
to Enable Human-Robot Collaboration

Sarah Naidu, Evan Smith, Camp Hagood, Aramis Rolly, Sujan Sarker, Cory Hayes, and Tariq Iqbal

Abstract—Effective human-robot collaboration (HRC) relies
on intuitive and reliable communication modalities, particularly
in dynamic environments where traditional verbal or wearable
sensor-based systems may be unreliable. While gesture-based
communication offers a natural and non-intrusive alternative,
it remains challenging due to limitations in current recognition
systems, such as their dependence on large labeled datasets
and lack of adaptability in various environmental conditions.
Recent advances in vision-language models (VLMs) have shown
promise in video understanding and general reasoning. How-
ever, they often lack the domain-specific context required for
accurate classification in specialized applications. To address
these challenges, we introduce a novel gesture recognition
system that leverages a vision-language model (VLM) guided
by retrieval-augmented generation (RAG) and chain-of-thought
(CoT) prompting to introduce contextual understanding and
reasoning. Our system captures upper-body gestures using an
Azure Kinect, extracts sampled frames, and classifies them
using GPT-4o enhanced by RAG from military gesture docu-
mentation and CoT reasoning strategies. Recognized gestures
are encoded as ROS 2 messages and transmitted using a
publisher-subscriber model to command a mobile robot to
execute the corresponding actions. We validate our approach
through controlled experiments using seven U.S. Marine Corps
(USMC) gestures. The system achieved an accuracy of 80%,
an F1 score of 89.9%, and demonstrated effective gesture-to-
robot execution. Our results highlight the potential of VLMs for
zero-shot gesture classification and robotic control, providing a
foundation for robust, scalable, and field-deployable gesture-
based HRC systems.

I. INTRODUCTION

Collaborative robotic systems capable of understanding
and safely operating alongside humans have the potential to
significantly enhance operational effectiveness across various
domains such as manufacturing, disaster response, search and
rescue, and healthcare assistance [1]–[4]. Effective human-
robot collaboration (HRC) relies on the robot’s ability not
only to anticipate but also to recognize and interpret human
direction, and to act upon the perceived action [5]–[8]. In
this process, nonverbal cues—such as hand, arm and leg
gestures—serve as essential channels through which human
intent can be communicated to robots [9], [10]. In partic-
ular, gestures are more useful than other cues in dynamic
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Fig. 1: Example interaction between a robot and person
giving a “Freeze” command.

environments with noise. Enabling robots to interpret these
signals accurately introduces unique technical challenges
related to vision-based perception, motion disambiguation,
and response in dynamic conditions.

Gesture-based communication is a form of nonverbal
communication in which a human performs a gesture to
be recognized by a robot to perform an intended action.
Establishing a robust gesture recognition system between
humans and robots will facilitate intuitive, efficient commu-
nication in dynamic, fast-paced environments with limited
verbal communication [11]. The goal is for the robot to
autonomously perform the task based on the user’s gesture.

Current gesture recognition or communication approaches
include external sensors, vision-based machine learning, and
vision-based deep learning [12]. There are limitations with
existing approaches for gesture recognition. External sensor-
based approaches can constrain user movement due to their
fixed placement and connection wires, which is not ideal for
prolonged use [12].

A notable challenge with using gesture-based communi-
cation within HRC is the computational complexity behind
the algorithms that interpret and classify the gesture for the
robot [13]. Vision-based machine learning and deep learning
approaches rely on supervised learning with large labeled
datasets, which is often infeasible for dynamic field condi-
tions [14]–[16]. Recent progress in vision-language models
(VLMs) has introduced promising new pathways for gesture
understanding, enabling more flexible, data-efficient systems
for interpreting human behavior. Coupled with retrieval-
augmented generation (RAG) and chain-of-thought (CoT)



prompting, VLMs can generate descriptive interpretations of
gestures and classify them effectively without prior training
[17]. RAG improves the reliability of responses generated
from VLMs by enhancing the contextual information it
draws upon from an external knowledge base [17]. Chain-of-
thought prompting instructs the VLM to execute reasoning
when performing the instructed task [18]. The addition of
chain-of-thought prompting has improved the performance of
generative models, including VLMs [18]. The introduction
and growth of VLMs offer novel approaches for gesture
recognition. However, these models often suffer from hallu-
cinations, which occur when generated responses incorporate
information about images that were not supplied in the
original image input, generate factually incorrect responses,
or require greater computational resources to fine-tune the
model for specific applications [17], [18].

To address this gap, we develop a gesture recognition
system that maximizes the accuracy of identifying upper-
body gestures by integrating RAG and CoT prompting. The
combination of RAG and CoT improve the VLM’s gesture
recognition capability by introducing task-specific context
and structured reasoning to facilitate informed decisions
when generating a gesture label. Alongside our gesture
classification pipeline, we have curated robot movements that
correspond to each unique gesture (Fig. 3). We demonstrate
how to use a gesture description-classification pipeline in-
volving a VLM. The VLM is guided by RAG and chain-of-
thought prompting to improve the identification accuracy. The
system operates in conjunction with a publisher-subscriber
architecture to send commands to the robot once the per-
formed gesture has been classified. Our experimental results
validate the system’s ability to accurately recognize gestures
and act upon them. Ultimately, this work presents a VLM-
based system for a gesture-based communication system that
can enhance human-robot collaboration in complex environ-
ments, laying the groundwork for more intuitive human-robot
collaboration.

II. BACKGROUND AND RELATED WORK

A. Modalities for Gesture Recognition

Vision-based and sensor-based approaches are the two
primary ways to acquire data for gesture recognition. While
vision-based approaches rely on the usage of a camera to
capture images or videos of motion, sensor-based approaches
use wearable sensors attached to the body to capture motion
[19]. Sensor-based approaches are less likely to be affected
by environmental conditions, such as lighting and sound [20].
However, sensor-based approaches can cause skin reactions,
discomfort with prolonged use, and can restrict the user’s
movement due to wire connections or the weight of the
sensor [21]. Vision-based approaches can provide additional
information regarding texture and distance without restricting
movement [22]. Although, vision-based approaches require
that the gesture be visible to the camera and can be affected
by occlusion and lighting [22].

B. Learning-based Gesture Recognition

Traditional machine learning techniques, such as Support
Vector Machines (SVMs), K-Means, K-Nearest neighbors
(K-NNs), and hidden Markov models (HMMs), are used to
classify gestures based on extracted features from captured
images or videos. In addition to machine learning, deep
learning techniques, such as convolution neural networks
(CNNs), recurrent neural networks (RNNs), and artificial
neural networks (ANNs) are also used to classify gestures
within vision-based approaches. SVMs are effective in bi-
nary classification tasks. However, they are computationally
expensive and difficult to implement for multi-class classi-
fication [23], [24]. k-Means works by performing clustering
to group similar gesture features, but does not perform well
in the presence of outliers [25]. k-NN classifies gestures by
voting based on the nearest neighbor (feature vector). While
it is robust method, its computationally expense increases as
the size of the dataset increases [26]. HMMs are beneficial for
modeling temporal data, but they require predefined states for
each gesture, limiting flexibility [27]. While CNNs are more
robust in handling spatial features and RNNs are better at
handling temporal data, both types of deep networks require
large training datasets [28], [29].

C. VLM-based Gesture Recognition

The growth and advancements in VLMs, with models such
as CLIP and GPT-4o, have led to their visual and textual
understanding capabilities leveraged for gesture recognition
tasks [30], [31]. Contrastive Language-Image Pretraining
(CLIP) offers robust zero-shot learning, allowing for flexible
classification without the need for training data pertaining to
the task [30]. Pretrained VLMs, such as GPT-4o, have been
leveraged for gesture classification tasks for medical imaging
in computationally efficient manner, demonstrating the effi-
cacy of VLMs without the computational intensiveness of
fine-tuning [31]. However, VLMs have shown to hallucinate
items not present in the initial video or image provided to
it and face difficulty in differentiating hallucinated details
compared to original details, raising concerns regarding the
reliability of VLMs [32].

D. Gesture-based Human-Robot Collaboration

Gesture recognition provides an instinctive form of com-
munication to enable effective human-robot collaboration
[33]–[35]. Gesture recognition is most effective in dynamic,
fast-paced environments where sensors and voice-based com-
munication are not reliable. Vision-based hand gestures allow
for intuitive and expressive communication, which is vital in
conveying information for collaborative tasks [36]. Hand ges-
tures have been used to issue commands for remote robotic
operations, reducing the dependence on verbal commands
and manual operation [37]. Upper-body gesture recognition
is ideal in dynamic environments where the distance between
the human and robot is further. It is more difficult for a



robot to parse out distinct hand movements compared to arm
movements from a distance.

III. APPROACH

In this section, we discuss the different components of the
developed gesture-based human-robot collaboration system
(Fig. 2).

A. Gestures

The gestures used in our approach are sourced from
the USMC Patrolling document, which includes common
upper-body gestures [38]. The particular gestures used from
this document are: change direction, freeze, halt, assemble,
forward, decrease speed, and disregard previous command
(Fig. 3). These gestures were chosen because they are cur-
rently in use by the U.S. Military and can be learned easily by
the majority of the public. These gestures were also chosen
because they can be interpreted as realistic actions that a
robot may have to perform during human robot collaboration
in a dynamic environment.

B. Gesture Capture and Preprocessing

The initial steps in our classification pipeline are video
capture and preprocessing. We use a Microsoft Azure Kinect
to collect RGB-D video of an individual performing one of
the hand and arm gestures. After the video has been recorded,
it is extracted into a series of frames. This is due to GPT-4o’s
ability to accept only image and text input. We then extract
every 15th frame to be sent for classification, maintaining
temporal information while reducing inference time.

C. VLM-RAG-based Gesture Classification

To perform gesture classification, we run GPT-4o on the
same machine on which the preprocessing step was per-
formed. Once the sampled frames are selected from the video,
the model processes the series of images to describe and clas-
sify the gesture being performed. Although GPT-4o excels
at generating descriptions, it requires domain knowledge to
perform domain-specific tasks, such as descriptions or classi-
fication. To enhance GPT-4o’s contextual understanding, we
incorporate RAG to enrich the VLM’s descriptions and align
it with the performed gesture. RAG is fed into the VLM when
it is initially informed by the prompt to generate an accurate
description that aligns with one of the seven gestures (Fig. 3).
To perform RAG, an external knowledge base—the USMC
Patrolling Document—is supplied to the VLM, which then
processes each page of the manual containing images and
descriptions of hand and arm gestures, and incorporates it
into the VLM [39]. The implementation of RAG has shown
to improve the performance of generative models, such as
VLMs, by incorporating additional contextual information
through the form of a knowledge base. This results in less
model hallucinations and incorrect responses [17].

After the VLM generates a description informed by RAG
for the frames, it is then instructed to classify the de-
scription with one gesture label from the seven gesture

TABLE I: Gestures and Corresponding Robot Actions

Gesture Robot Action

Forward (F) Moves forward at constant speed
Halt (H) Stops immediately
Change Direction (CD) Reverses direction
Decrease Speed (DS) Halves current speed
Disregard Prev. Cmd (DPC) Restores command before the last
Freeze (Fr) Pauses for 3s, then resumes
Assemble (A) Moves diagonally right, then left

options. During the classification stage, we employ chain-
of-thought prompting to guide the VLM through structured
reasoning when classifying the description [18]. Specifically,
we instruct the VLM to think through step-by-step before
settling on a final classification. The inclusion of CoT leads
the VLM to methodically evaluate the generated description
with the provided gesture descriptions in the prompt before
settling on a classification. The combination of RAG and CoT
introduces additional knowledge and reasoning, improving
the performance of the gesture classification system.

D. Robot Execution

To enable communication between the gesture classifica-
tion module and the Stretch 3 mobile robot, we implemented
a publisher-subscriber architecture over a shared wireless lo-
cal area network (WLAN). This setup was chosen because it
is modular, scalable, and makes it easy for nearby computing
agents to quickly share data with each other.

1) Gesture Classification System: The gesture recognition
subsystem operates on a laptop equipped with an Azure
Kinect DK camera. The system continuously captures a
video stream and uses the Gesture Classification Program’s
distinct military gestures: forward, halt, change direction,
decrease speed, disregard previous command, freeze, and
assemble (Table I, Fig. 3). Upon successful recognition, each
gesture is encoded as a plain-text command string (e.g.,
decrease_speed). These commands are intended to map
directly to predefined robot behaviors.

2) Publisher-Subscriber Architecture: The architecture is
structured as a publisher-subscriber model using a TCP/IP
socket-based protocol over a local wireless network. The
gesture recognition laptop serves as the client and publisher
of command messages, while the Stretch robot hosts a
lightweight server that acts as the subscriber and command
interpreter. The publisher and subscriber are configured to
monitor for gesture events in real time. When a gesture
is recognized, the system transmits a text-based command
string to the robot using a socket connection. On the robot’s
end, a subscriber program runs continuously, listening for
incoming socket messages and interpreting them to determine
the intended gesture. This subscriber is set up as a ROS2
node on the robot’s onboard computer and works seamlessly
with Hello Robot’s Stretch 3 control system. When a gesture
command comes in, the robot uses ROS2 service calls or
action interfaces to convert it to a behavior.



Fig. 2: Overview of the system components: 1. Kinect records the participant’s gesture; 2. every 15th frame is sampled and
sent to the VLM; 3. RAG provides context and CoT guides gesture classification 4. ROS 2 publisher-subscriber architecture
triggers corresponding robot action.

3) Action Execution on the Robot: Each gesture com-
mand triggers a specific robot behavior, implemented using
ROS 2 control primitives and Hello Robot’s Stretch Body
Python API. For example, the forward command moves
the robot forward at a preset speed until a halt or freeze
command is received, while change_direction reverses
its motion. This hardware-agnostic setup supports flexible
adaptation to new gesture models or robotic platforms with
minimal modifications.

IV. EXPLORATORY STUDY

We seek to validate our gesture recognition system through
a preliminary study. We sought to observe the accuracy of
the gesture classification pipeline, the delay induced by the
gesture classification process, and the subsequent movement
of the robot.

A. Study Procedure

Participants performed seven USMC gestures—assemble,
change direction, decrease speed, disregard the previous
command, forward, freeze, and halt—twice each (Fig. 3).
They first completed a training session where they watched
prerecorded videos demonstrating each gesture, and we in-
formed them of the corresponding robot action. Following

Fig. 3: U.S. Marine Corps gestures [39] used in the study.

an errorless practice run, participants replicated the gestures
in front of an Azure Kinect to trigger the robot’s actions
(Fig. 1). Recordings occurred under bright lighting, with
participants standing before a white background. Once a ges-
ture began, the experimenter initiated the Kinect recording,
which continued until the gesture ended. After recording, we
uniformly sampled a subset of frames and sent those to a
VLM to classify the performed gesture. The VLM outputs the
most probable gesture label, and we send it to the publisher
program that publishes the detected gesture. The subscriber
program receives the gesture label and triggers appropriate
robotic action. Participants proceeded to the next gesture after
the robot completed its movement. After the study, we briefed
the participants on the study’s purpose.

B. Participants

4 adults participated in the study (75% male (n = 3),
25% female (n = 1); mean age = 22.19, SD = 0.17), all
with engineering backgrounds. 1 participant reported limited
experience with robots. None had a military background or
prior familiarity with the USMC gestures (Fig. 3).

V. RESULTS

Across all of the gestures, our approach achieved an 80%
classification accuracy. It also achieved a weighted F1 score
of 89.9%, a weighted precision of 96.4%, and a weighted
recall of 86.5% (Fig. II). 4 unknown classifications out of 56
total performed gesture movements were omitted from the
calculations for weighted F1, precision, and recall. Unknown
was not a distinct gesture category provided to the VLM
in the prompt. However, it was outputted by the VLM to
indicate its inability to classify the gesture. Although each
gesture was performed a total of 8 times, in certain instances

TABLE II: Overall Performance of VLM

Metric F1 Score Precision Recall Accuracy

VLM Performance 89.9% 96.4% 86.5% 80%



TABLE III: Gesture Classification Result

Gesture Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Assemble (A) 12.5 14.3 100.0 25.0
Change (C) 100.0 100.0 100.0 100.0
Decrease (DS) 100.0 100.0 72.7 84.2
Disregard (DPC) 100.0 100.0 100.0 100.0
Forward (F) 87.5 100.0 70.0 82.4
Freeze (Fr) 62.5 83.3 83.3 83.3
Halt (H) 100.0 100.0 100.0 100.0

some gestures were unable to be classified by the VLM. The
assemble and forward gestures were classified as unknown
once, while the freeze gesture was classified as unknown
twice. Additionally, the assemble gesture was misclassified
as the forward gesture 3 times (Fig. 5).

The correlation between video duration and inference
delay is 0.927. The assemble gesture had the longest average
video duration (5.95 seconds), longest average inference
delay (18.3 seconds), and the lowest F1 score of 25%. The
freeze gesture had the shortest average video duration (2.33
seconds), shortest average inference delay (7.88 seconds),
and an F1 score of 83%. The change, disregard previous
command, and halt gestures had the highset F1 scores of
100%. Their respective average video durations (in seconds)
are 2.72, 2.46, and 2.67 and their respective average inference
delays (in seconds) are 9.51, 9.11, and 8.60 (Table III).

VI. DISCUSSION

A. Summary of Key Findings

The study highlights a strong correlation between video
duration and inference delay, which is attributed to the
uniform selection of frames. As the video duration increases,
more frames are sent to the VLM, resulting in longer infer-
ence times (Fig. 4. This finding suggests that implementing
key frame extraction could significantly reduce inference time
for prolonged gestures by minimizing the number of frames
analyzed by the VLM. The reduction in inference time would
improve the robot’s responsiveness, allowing it to act sooner
after a gesture is performed.

Accurately classified gestures were characterized by dis-
tinct arm position and movement, even when analyzed using

Fig. 4: Average Delay (seconds) and Average Duration (sec-
onds) for each gesture.

Fig. 5: Confusion matrix displaying the number of correct
gesture classifications for each trial.

only every 15th frame of the recordings. This distinctive-
ness facilitated their correct classification relative to other
gestures, except for the assemble gesture.

The low classification accuracy for assemble may stem
from its movement similarities with other gestures when
analyzed frame-by-frame. Its prompt description may also
lack sufficient detail, contributing to misclassification.

B. Implications

Our preliminary results show that careful prompt engineer-
ing can significantly improve gesture classification accuracy
without extensive labeled training data. By providing multiple
example descriptions and instructing the VLM to dissect
gestures frame-by-frame, we have guided the models toward
more accurate interpretations of complex hand signals.

C. Future Research

Our work is a foundational project for future gesture
recognition-based HRC. We identify several future directions
for the proposed gesture classification system. The incor-
poration of key frame extraction techniques is expected to
enhance classification accuracy while simultaneously reduc-
ing processing times for gestures that have a long movement
duration, allowing the system to focus on critical moments
within a gesture. Additionally, implementing a skeleton over-
lay on top of the subject may improve the VLM’s ability to
recognize gestures, emphasizing critical movements and arm
positions, which could improve recognition accuracy.

Further validation through expanded studies is essential.
Involving a larger participant base and a more diverse
range of upper-body gestures would improve the validity
of our findings. Moreover, conducting field tests in varied
environments–such as forests, mountains, and deserts–with
robots specifically designed for these conditions will provide
crucial insights into the practical application of this work.



VII. CONCLUSION

In this work, we developed a system to recognize com-
plex, domain-specific gestures (such as USMC hand and
arm signals). The system uses a VLM guided by retrieval-
augmented generation and chain of thought to control a robot.
Our findings indicate that this approach has the potential to
accurately classify gestures through zero-shot classification
to enable a robust, field-deployable HRC system. As part
of our future work, we will incorporate more modalities,
such as skeleton overlay, depth, and speech, and evaluate the
system across various gesture domains. Such a system can
enhance HRC in industries like manufacturing, healthcare,
and education, where intuitive, gesture-based interaction can
streamline operations.
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