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Abstract— In recent years, climate change has led to 
a rise in intense precipitation events, presenting the need 
for efficient and cost-effective flood management 
infrastructure. In Charlottesville, VA, one key area 
identified for improvement is Meadow Creek. This paper 
examines different infrastructure options for flood 
management in Meadow Creek under various climate 
change scenarios. This analysis is carried out by 
optimizing infrastructure designs with the 
Environmental Protection Agency’s Storm Water 
Management Model under uncertain future conditions 
captured by climate projections from the Coupled Model 
Intercomparison Project 6. The optimization seeks to 
minimize cost and runoff volume while maximizing 
cobenefits. Our findings provide a set of non-dominated 
green infrastructure solutions and provide a 
methodology for selecting a recommended compromise 
solution. This analysis contributes to our goal of 
addressing flood risks and long-term sustainability in the 
Charlottesville area.  

I. INTRODUCTION 

Storm events have grown more intense as time 
progresses, with nine of the ten costliest hurricanes in United 
States history occurring in the 21st century [1]. This 
phenomenon is largely attributed to climate change, and 
although scientists have observed both increasing CO2 
emissions and larger storms, predicting the future state of 
climate change remains difficult [2]. As a result, improved 
infrastructure for flooding is necessary, but how much is 
needed or how effective it will be under future conditions is 
uncertain. 

In Charlottesville, VA, extreme precipitation events pose 
challenges exacerbated by local geography. Meadow Creek 
is a tributary of the Rivanna River, winding through 
numerous residential areas and beneath major roads. In 
October 2024, Hurricane Helene caused intense flooding 
around the Rivanna River closing roads, overwhelming 

pump stations, and destroying property across Central 
Virginia [3]. 

The most recent Federal Emergency Management 
Agency (FEMA) risk assessments classify roughly 200 
properties in Charlottesville as being in a Special Flood 
Hazard Area (SHFA).  These are areas with a 1% probability 
of being inundated by extreme flooding in any given year, 
referred to as 100-year flood events. However, FEMA 
projections fail to account for two-thirds of the mileage of 
rivers and streams around the United States, and many 
researchers suggest that they underestimate risk in key areas. 
The private research entity First Street Technology has tried 
to improve understanding of flood risk by working with 
corporations and universities. Their model shows as many as 
1,800 properties at risk of major flooding in Charlottesville 
[4]. By incorporating climate change projections into our 
study, we aim to discover more resilient infrastructure 
solutions that will reduce future harm. 

Green Infrastructure (GI) is a class of engineered 
solutions which address flood management issues by 
restoring an urban area’s natural hydrologic processes. GI 
can be difficult to implement depending on the complexity 
of existing gray infrastructure solutions, such as stormwater 
pipes, already built [5]. However, the use of GI in flood 
resilience engineering has benefits including adaptation to 
the changing climate, addressing the specific issues of 
urbanization, flow rate reduction, climate regulation, and 
local health and habitat support. The use of green 
infrastructure in effective modeling and research is at the 
frontier of current flood management studies [6]. GI is the 
solution type used in this study because of their effectiveness 
and benefits to the restoration of environmental processes.  

II. METHODS 

To model the benefits of different flood infrastructure 
solutions for Meadow Creek in the future, analysis was 
divided into three main steps: 1) projecting future storm 
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events, 2) modeling precipitation and runoff, and 3) 
optimizing green infrastructure. 

A. Projecting future storm events 

To better understand flood risk and how it can be 
expected to change throughout the coming century, it is vital 
to consider climate change uncertainty. The Coupled Model 
Intercomparison Project (CMIP) is a coordinated effort to 
collate climate research from nations and research 
institutions around the world [7]. The sixth phase of the 
project ran from approximately 2016 to 2022, considering 
historical trends as well as four possible scenarios for the 
progression of climate change. 

The four scenarios, also referred to as Shared 
Socio-economic Pathways or SSPs, define a potential 
progression of industry and climate policy around the world 
and subsequent expectations for climate [8]. These scenarios 
can be classified by their assumptions on mitigation 
(reducing emissions at the source) and adaptation 
(addressing the second-order effects of fossil-fuel use). In 
CMIP6, four scenarios were deemed to be top priority for 
consideration to span a range of possible futures: 

Table 1. Shared Socio-Economic Pathways and Definitions. 

Scenario Description 

SSP1 Sustainability - low challenges to mitigation 
and adaptation 

SSP2 Middle of the road - medium challenges to 
mitigation and adaptation 

SSP3 Regional rivalry - high challenges to 
mitigation and adaptation 

SSP5 Fossil-fueled development - high challenges 
to mitigation, low challenges to adaptation 

For each of these scenarios and the CMIP6 simulated 
historical data, we obtained data from the Copernicus 
Climate Change Service (C3S). This service, sponsored by 
the European Union, provides open-source climate tools and 
data, including from CMIP6 [9]. To accomplish this goal, 
daily precipitation simulations from the Community Earth 
System Model (CESM) were obtained for the years 
1984-2014 (historical observations) and 2035-2099 (future 
projections). The projection data was divided into one time 
series for mid-century (2035-2065) and another for 
late-century (2069-2099). 

To translate these projected data points of daily 
precipitation into expectations for how flooding might 
change, the depth of precipitation for 100-year rainfall 
events was calculated. First, the maximum precipitation in 
each year was identified, and the resulting series was fit to a 
right-hand Gumbel distribution over each period, as this 
distribution was found to result in the best fit diagnostics. 
The return value at an interval of 100 years was compared 
between historical and projected time periods: 

 . (1) 𝑆𝑆𝑃_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝑆𝑆𝑃_100𝑦𝑟_𝑑𝑒𝑝𝑡ℎ
𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_100𝑦𝑟_𝑑𝑒𝑝𝑡ℎ

The data must be in the form of a precipitation event in 
15-minute intervals to be used. To generate such a time 
series, we started with the Soil Conservation Service (SCS, 
now National Resource Conservation Service) Type-II 
synthetic rainfall distribution, which approximates the 
intensity of rainfall over a 24-hour period for the majority of 
the United States given a depth of total precipitation [10]. 
NOAA’s Atlas 14 estimates the depth of precipitation events 
with a given probability at locations across the United States 
[11]. For the region of Charlottesville within which Meadow 
Creek resides, a 100-year rainfall event was 9.14 inches. 
Scenario multipliers were calculated using equation (1) and 
applied to this quantity, resulting in 24-hour storm events for 
each of the projection scenarios. 

B. Modeling Precipitation and Runoff 

We model how infrastructure routes precipitation into 
runoff using the Environmental Protection Agency’s (EPA) 
Storm Water Management Model (SWMM), a free software 
tool used for runoff simulations of natural water systems 
worldwide. The Meadow Creek SWMM model input file 
was obtained from a GitHub repository associated with a 
study in 2023 [12]. The model divides the watershed into 26 
subcatchments with differing amounts of available area that 
can be converted to green infrastructure. The calculated time 
series were added to the Meadow Creek input file, from 
which a specific time series is selected for the optimization.  

To optimize infrastructure designs for Meadow Creek, 
we use Rhodium-SWMM, a recently developed tool which 
combines the SWMM input file with Rhodium, an 
open-source Python library used for multi-objective 
optimization and uncertainty analysis. Our model is similar 
to a 2023 study by [12] in Meadow Creek, however we use 
Rhodium-SWMM to address some gaps in that work by 
taking into account the potential benefits of trading optimal 
model performance under one climate projection scenario to 
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reduce the sensitivity to the other climate projection 
scenarios. Rhodium-SWMM enables this in two ways. First, 
it allows users to manipulate levers (decision variables) in 
the SWMM input file, such as new GI, and to frame 
objective values for their multi-objective optimization 
problem [6]. Second, it evaluates the magnitude of impact 
that incorrect assumptions about future uncertain factors 
(e.g. climate change) will have on solution strategies [13]. 

C. Optimizing Green Infrastructure 

The third step of analysis involved setting up the 
optimization model using the Rhodium-SWMM tool and 
connecting it to the High Performance Computing (HPC) 
system at UVA. The base code for the optimization was 
pulled from the Rhodium-SWMM GitHub repository 
developed by [6]. Four GI, or low impact development 
(LID), types are included in Rhodium-SWMM and three 
more were added for our project. The five used in our study 
are: 

● Bioretention Cells: Ground depressions with soil 
mixture and vegetation over a gravel drainage layer 

● Green Roofs: Soil and vegetation above specially 
matted roofs for water retention and percolation 

● Permeable Pavement: Pavement with immediate 
drainage to lower gravel layer for natural drainage 

● Rain Gardens: Ground depressions with vegetation 
that collects water for drainage 

● Grass Swales: Ground depression channels with 
vegetated slopes for increased drainage time [14]. 

Each of these LID types has their own set of parameters 
pertaining to its surface layer, pavement, soil, storage, and 
drainage (not all LIDs require every category). The 
parameters for each of the LIDs were sourced from [10] with 
some modifications. Each LID also has specific cost and 
benefit parameters that contribute to the objectives of the 
optimization. The costs include installation costs, projected 
lifetime, and operation and maintenance costs, while the 
benefits include a per tree benefit for smaller areas, a park 
benefit for larger areas, and the efficacy of the infrastructure, 
which is a range between 0 and 1 determining the extent to 
which these benefits are actually realized [11]. 

After finalizing the input file and LID specifications, 
some changes were also made to the optimization script. 
First, we chose our objective functions to minimize the 
average flow rate , minimize the total cost , and maximize 
the amount of co-benefits gained from the solutions. The 

average flow rate is defined as the average flow through the 
stream at the outlet of the basin. We choose to minimize this 
since greater flow results in more flooding under the 
simulated 100-yr event. Cost includes the construction, 
operation, and maintenance of the infrastructure. Co-benefits 
refer to the ecosystem benefits provided by green space 
creation, expressed as a dollar value. Then, the decision 
variables - the number of each type of 40 ft2 LID units to 
build in each subcatchment - were loaded in, as well as a 
CSV file containing the amount of land in each 
subcatchment available to be converted into each LID type.  

The Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) was used to optimize infrastructure options 
across the three competing objectives [15]. The process 
loops through each subcatchment individually, extracting the 
amount of available area for each LID and supplying that 
value as a parameter for each LID lever to ensure that the 
maximum amount of any LID does not exceed the available 
area. At each iteration of the optimization, SWMM simulates 
the set of infrastructure options provided by NSGA-II and 
returns values for the cost, average flow rate, and 
co-benefits. After all of the iterations are completed, a set of 
non-dominated solutions (Pareto set) is returned to provide a 
final set of potential solutions to choose from. This set is 
returned in the form of a CSV and contains the counts for 
each infrastructure type in each subcatchment and the 
objective values. We ran each optimization for 1,000 
iterations. 

III. RESULTS 

The optimization was run on each of the five different 
climate projections and periods (mid/late-century) and the 
historical data. Each scenario resulted in a Pareto set of 
non-dominated solutions.  

Figure 1 displays the solution sets for the two most 
contrasting scenarios: the historical case and the worst-case 
(SSP3_late) scenario. Each point on the plots represents a 
different combination of infrastructure choices that offers its 
own unique objective values. A recommended compromise 
solution (as defined later in this section) is circled in red on 
each plot. The average flow values are closely correlated 
with the severity of projected storms in the different climate 
scenarios, with the SSP3_late scenario resulting in much 
greater runoff than the historical scenario. The other Pareto 
set plots appear very similar to these, although the exact 
values on the axes vary. 
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Figure 1. Pareto Set of Optimized Solutions for Historical Scenario and 
SSP3_late Scenario.   

        To explore the decisions behind the solutions identified 
in Figure 1, we defined a recommended optimal solution 
from each optimization that prioritizes balancing all 
objectives. This solution was identified by calculating the 
Euclidean distance of each solution to the ideal point and 
selecting the solution with the smallest distance after scaling 
all objectives between 0 and 1 to account for their different 
magnitudes. The optimal normalized values were 0 for cost 
and runoff and 1 for co-benefits, since cost and runoff should 
be minimized while co-benefits should be maximized. Table 
2 shows the performance of the compromise solution from 
the historical scenario as well as the most optimistic (SSP1) 
and pessimistic (SSP3) climate scenarios at mid/late-century. 

Table 2. Objective Values for the Selected Solution for Each Scenario. 

 Cost  
($ millions) 

Average 
Runoff 
(ft3/s) 

Scenario 
Average 
Runoff 
(ft3/s) 

Co-benefits  
($ millions) 

Historical 241.18 589.19 595.40 1.77 

SSP1_mid 240.87 599.58 605.32 1.78 

SSP1_late 236.87 512.19 518.05 1.74 

SSP3_mid 246.46 601.20 606.18 1.82 

SSP3_late 246.75 993.02 1002.06 1.82 

When looking at Table 2, the average runoff values 
corresponding to each scenario should not be compared 
directly across scenarios, as each utilizes a different 
precipitation pattern and therefore has different ranges of 
values for potential runoff. This is particularly evident for 
the SSP1_late and SSP3_late scenarios which represent the 
best and worst case scenarios respectively, explaining why 
the average runoff value is significantly lower and higher 
than the other three scenarios. As evidenced by Figure 1, 
these optimal solutions were one of, if not the best 
performing solution with regards to runoff in their respective 
scenario, typically performing between 5 to 10 ft3/s better 
than the average proposed solution for each scenario. The 
costs of these optimal solutions are understandably 
correlated with the severity of the climate scenario. The 
historical and short term, best case scenario solutions are 
almost identical in cost, while the long term, best case 
scenario is the cheapest since there is less infrastructure 
needed to deal with the reduction in precipitation levels. In 
contrast, both the short and long term, worst case solutions 
are the most expensive options due to increased 
infrastructure requirements to deal with the worsening storm 
conditions. Unlike in the best case scenario, the costs for the 
short and long term solutions are virtually the same for 
SSP3. The financial returns in the form of co-benefits follow 
the same trends as costs, mainly just based on the actual 
number of LIDs implemented in the respective solutions. 
The SSP3 solutions, while the most expensive, provide the 
largest cobenefit returns, followed fairly closely by the SSP1 
and historical solutions. 

 

Figure 2. Percent of Feasible Area Converted to LIDs by Subcatchment.  

 



   Table 3. Percent of Feasible Area for Each LID That Is Converted. 

 

Figure 2 shows the amount of feasible area converted to 
any LID in the compromise solution across various 
scenarios, while Table 3 shows the portion of feasible area 
for each LID that the compromise solutions convert to GI. 
The figure shows substantial variance in the amount of area 
converted to GI across the different subcatchments. The fact 
that the distribution of the selected LIDs varies dramatically 
depending on the amount of precipitation suggests one of 
two things: the optimal arrangement of LIDs is highly 
sensitive to the climate projections, or there are several 
different distributions of LIDs that could yield similar 
performance on the objectives. The first highlights the 
importance of considering uncertainty, while the latter 
suggests it could be important to add an equity objective, as 
two solutions could achieve similar benefits at the outlet, but 
those benefits might be unevenly distributed across the 
watershed.  

While Figure 2 highlights differences in the spatial 
distribution of LIDs, Table 3 shows bioretention cells are 
prevalent across the climate scenario projections due to their 
high performance at relatively low costs (while providing 
less co-benefits due to their greater size). This allows the 
SSP3_late solution to be comparable in cost and co-benefits 
to the SSP1 solutions (though the average runoff in this case 
is much higher due to the elevated precipitation levels). The 
table also indicates a significant reduction in the usage of 
permeable pavement in the SSP3_late solution for this 
reason, as those LIDs are less effective for runoff reduction 
but provide more co-benefits. This strategy is not employed 
as extensively in the other solutions since the lower 
precipitation levels allow for other LIDs that provide more 
co-benefits to be used while maintaining similar 
performance levels. The LID usage between the SSP1_mid 
and SSP1_late solutions are virtually identical, which 
contrasts with the more stark differences between the SSP3 
solutions. Finally, despite Table 2 showing that the historical 
solution yielded similar objective values to the SSP1_mid 

solution, the LID implementation is fairly different, with 
fewer bioretention cells. This may be because of the 
increased emphasis on co-benefits in this scenario, as the 
precipitation levels are not as high as in the projection 
scenarios. 

Based on these findings, we can make different 
recommendations for implementing flood infrastructure 
depending on what stakeholders prioritize. If preparation for 
the most severe storms is valued (SSP3_late), then a 
long-term solution that focuses on bioretention cells and 
green roof conversions would be the most cost-effective 
option (but offer minimal co-benefits). For stakeholders who 
prioritize ecosystem improvements (measured in co-benefits) 
at a greater expense, a solution that uses more permeable 
pavement and grass swales (like the SSP3_mid compromise) 
would be the better option. Across all scenarios, bioretention 
cells most efficiently reduce runoff for the area they take up, 
though they provide less co-benefits. Expanding the amount 
of potential area for bioretention cells would likely be a 
worthwhile investment regardless of what the future holds. 

IV. DISCUSSION 

Table 2 provides interesting insights about how to best 
balance our three objectives under different possible climate 
futures. However, these represent the optimal solutions for 
only one possible set of preferences that may not capture 
stakeholders’ true values. One region missing from our 
Pareto sets in particular is ultra-low cost solutions that make 
minimal impact on the average flow rate. While these 
omitted solutions may not substantially reduce flooding, 
ignoring them from consideration puts unintended 
constraints on the cost of proposed solutions that may be 
harmful if minimizing cost is the sole priority.  

There are also limitations in the estimated objective 
values. The LID performance parameters were pulled from 
previous flood studies in the region, but these parameters 
could be changed to describe alterations to the LIDs, which 
would also give different results. Furthermore, different LID 
types were not included in this model, such as rain barrels 
and infiltration trenches. Another area of concern is that the 
calculated values for the objectives are entirely dependent on 
the accuracy of the cost/benefit parameters for different LIDs 
and the climate projections. While the cost/benefit 
parameters were all pulled from different studies, many of 
these values were given as ranges that were then distilled to 
a single value. This is especially true for the co-benefits 
values, as calculating the expected ecosystem benefits from 



new infrastructure as a dollar value is an ambiguous process 
and yields wide ranges of values. The GI efficacy value 
enables some fluctuations in the efficiency of each 
infrastructure type, but still results in a few static values 
across the entire model. Future work could explore the 
effects of changing some of these assumed values to create a 
more robust optimization.  

There is also uncertainty in the climate projections, both 
in which scenario(s) will occur and in the simulated values 
under those scenarios. While these projections are the best 
predictions we could utilize, there is still substantial 
uncertainty surrounding the exact precipitation levels 
Charlottesville will experience. Future work could consider a 
wider range of climate scenarios (e.g., from different climate 
models) and infrastructure options to equip city leadership to 
make more informed decisions about flood mitigation. 
Combining consideration of climate projections with social 
vulnerability modeling could also serve to improve the 
impact of this work. 

Finally, there is currently no measure of how these 
infrastructure options will affect nearby residents. A social 
equity objective could help ensure that the costs/benefits of 
building infrastructure is evenly distributed across the 
subcatchments, a concern highlighted by the variability seen 
in the spatial distribution of LIDs from selected solutions in 
Figure 2. This metric could be paired with (or replace) the 
co-benefits objective, given that both metrics are more fluid 
than the runoff/cost ones. 

V. CONCLUSION 

This project uses optimization to recommend 
infrastructure to combat a variety of climate scenarios in 
Charlottesville, VA. Though the city is not located near any 
large bodies of water, many households are at risk of 
flooding during major storms, particularly those along 
streams like Meadow Creek. With climate change becoming 
a more pressing concern every year, more robust and 
sustainable means of reducing stormwater runoff will be 
required. The implementation of green infrastructure in the 
region surrounding Meadow Creek will reduce flood risks in 
the region while promoting ecosystem health. 
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