
Robust Real-Time Event Services in Wireless Sensor Networks

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Krasimira Kapitanova

May 2012

© 2012 Krasimira Kapitanova

Abstract

E
vent detection is one of the main components in numerous wireless sensor network (WSN) appli-

cations. Regardless of the specific application, the network should be able to detect if particular

events of interest have occurred or are about to. Traditional event services allow for the definition

of events including correlated events, registering for events, and upon occurrence of events, detection and

notification of events. In WSNs, events are not binary, but are based on sensor fusion from many noisy

sensors in complicated environments. Sensor data may be missing, wrong, or out of date. Consequently,

event services must operate in real-time, support data fusion and confidence calculations, and conserve power.

Event services must also fundamentally recognize location, since sensor network events are a function of

where they occur. Sensor network event services must be highly decentralized in order to work on the limited

capacity devices. The services must also minimize false alarms. All these features make building event services

for WSNs very challenging.

This research focuses on enabling the design and development of robust real-time event services. More

specifically this work investigates the following research problems:

Event specification: We have developed a formal event description language which is an enhanced Petri

net and combines features from Colored, Timed and Stochastic Petri nets. This language, coMpact Event

Detection and Analysis Language (MEDAL), can capture the structural, spatial, and temporal properties

of a complex event detection system. MEDAL also addresses key aspects of sensor networks, such as

communication, actuation, and feedback control. MEDAL’s graphical support, inherited from Petri nets,

makes the application models easy to understand and accessible to a wide range of users.

Event detection: The majority of current event detection approaches rely on using precise, also called

“crisp”, values to specify WSN events. However, we believe that crisp values cannot adequately handle the

often imprecise sensor readings. In this work we have studied how using fuzzy values could improve the

accuracy, timeliness, and resource requirements of event detection. Our experiments with real-world fire data

have shown that using fuzzy values results in more accurate event detection than when crisp logic is used,

since fuzzy logic is more resilient to imprecise sensor readings.

ii

Abstract iii

Robustness to node failures: Even if an event detection system has been correctly designed and built,

its continuous and reliable operation is difficult to guarantee due to hardware degradation and environmental

changes. However, not all node failures have the same effect on applications’ behavior. Some node failures

are critical and lead to significant application degradation, while others may not affect the application at all.

We have designed techniques to detect node failures that affect the application-level behavior of the system

and minimize the number of maintenance dispatches without sacrificing the event detection accuracy of the

application.

The techniques and approaches presented in this dissertation have the potential to:

� Broaden the range of events detected by sensor network applications.

� Provide formal specification and broad analysis capabilities for event-driven sensor network applications.

� Improve the accuracy of event detection.

� Help verify at runtime that a WSN application is able to satisfy its high-level requirements.

� Improve the accuracy of event detection applications in the presence of node failures.

� Decrease the number of necessary maintenance dispatches needed to preserve satisfactory application

behavior.

Acknowledgments

I would like to take this opportunity to thank the people who have helped me through this journey.

The role played by my advisor, Sang Son, in shaping this work and my career cannot be expressed in just

a few words. I cannot thank him enough for his support, advice, and encouragement. I will always be in his

debt for taking me as a student at a really hard time for my graduate student career and for believing in me.

I would also like to thank Jack Stankovic and Kamin Whitehouse for all of their help and advice. I am

incredibly lucky that, rather than having only one academic advisor, I also had the two of them to guide me

in my research. To my fellow graduate students and coworkers - Yafeng Wu, Jingyuan Li, and Enamul Hoque

- thanks a lot for all of your work and for putting up with me.

Wes Weimer has also helped me a lot through these years. I would like to thank him for all of his invaluable

advice on academic issues, job applications, and various other dilemmas, as well as for his continuous support

for whatever departmental endeavor Ray and I decided to pursue.

Jim Cohoon has also provided me with a lot of help and encouragement. I will always be grateful for his

time and enthusiasm in helping me prepare for my Theory qual. In addition, being a TA for his class for so

many semesters was an extremely valuable experience that made me realize how much I really enjoy teaching.

I would also like to thank my family, Kurt, and my friends - you mean the world to me. I am very grateful

for all of your support and for providing all of those much-needed distractions from school.

iv

Contents

Acknowledgments iv

Contents v
List of Tables . viii
List of Figures . ix

I Introduction 1

1 Introduction 2
1.1 Problem statement . 3
1.2 Contributions . 4

1.2.1 Event specification . 4
1.2.2 Event detection . 4
1.2.3 Robustness to node failures . 5

1.3 Dissertation organization . 7

2 State of the art 8
2.1 Event specification . 8

2.1.1 Modeling sensor network events . 8
2.1.2 Modeling data streams . 10

2.2 Event detection . 10
2.2.1 Stochastic methods . 10
2.2.2 Fuzzy logic . 11

2.3 Robustness to sensor node failures . 11
2.3.1 Sensor network testing . 11
2.3.2 General fault tolerance techniques . 11
2.3.3 Sensor network debugging . 12
2.3.4 Sensor network hardware verification . 12
2.3.5 Sensor network fault identification . 12
2.3.6 Classifier ensembles . 13

II Event specification 14

3 coMpact Event Description and Analysis Language (MEDAL) 15
3.1 Introduction to Petri nets . 18
3.2 MEDAL . 20

3.2.1 Semantics . 20
3.2.2 Temporal and spatial logic . 22

3.3 Extending MEDAL’s expressiveness . 23
3.3.1 Communication . 23
3.3.2 Actuation . 24

v

Contents vi

3.3.3 Feedback control . 27
3.4 Additional modeling concerns . 29

3.4.1 Node mobility . 29
3.4.2 Prioritization . 30

3.5 MEDAL aided analysis for sensor network applications . 31
3.5.1 Real-time analysis . 31
3.5.2 Safety analysis . 32

3.6 Evaluating MEDAL’s modeling properties . 34
3.6.1 SQL . 34
3.6.2 Snlog . 34
3.6.3 Macroprogramming . 35
3.6.4 TLA+ . 35
3.6.5 Abstract regions . 36
3.6.6 SNEDL . 36
3.6.7 MEDAL . 36

3.7 Experience with MEDAL: Beef monitoring . 37
3.8 MEDAL models of existing applications . 39

3.8.1 Volcano monitoring application . 39
3.8.2 Rural fire detection application . 41
3.8.3 Early warning flood detection application . 42

3.9 Summary . 44

4 Applying Formal Methods to Modeling and Analysis of Real-Time Data Streams 45
4.1 System model . 46

4.1.1 Periodic query model . 47
4.1.2 Query plan and query execution . 48
4.1.3 Data admission controller . 49

4.2 Modeling queries and control . 51
4.2.1 MEDAL query plans . 51
4.2.2 Data admission control . 52

4.3 MEDAL analysis . 53
4.3.1 Query optimization analysis . 53
4.3.2 Real-time stream analysis . 54

4.4 Modeling DSMS configurations with MEDAL . 54
4.4.1 Single query service class . 54
4.4.2 Multiple query service classes, no controller . 55
4.4.3 Multiple query service classes, single controller . 56
4.4.4 Multiple query service classes, multiple controllers . 57

4.5 Summary . 57

III Event detection 59

5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 60
5.1 Overview of fuzzy logic . 62

5.1.1 Fuzzification . 62
5.1.2 Decision making . 63
5.1.3 Defuzzification . 63

5.2 Event semantics . 64
5.2.1 Spatial semantics . 65
5.2.2 Temporal semantics . 66

5.3 Decreasing the size of the rule-base . 66
5.3.1 Separating the rule-base . 67
5.3.2 Combining rules with similar outcomes . 68

Contents vii

5.3.3 Incomplete rule-base . 68
5.4 Evaluation . 69

5.4.1 Experiments using real fire data . 69
5.4.2 Experiments using nuisance fire data . 75
5.4.3 Analysis . 77

5.5 Summary . 80

IV Robustness to node failures 81

6 Run time assurance (RTA) 82
6.1 RTA Methodology . 84
6.2 Implementation Framework . 85

6.2.1 The MEDAL Programming Model . 85
6.2.2 Automated Test Generation . 86
6.2.3 Automated Code Generation . 89
6.2.4 Translating MEDAL into a script . 90
6.2.5 Code structure . 91
6.2.6 Test Execution Support . 92

6.3 Case Study . 92
6.4 Evaluation . 94

6.4.1 Test reduction . 94
6.4.2 Robustness to Failure . 96
6.4.3 Overhead . 101

6.5 Summary . 101

7 Simultaneous Multi-classifier Activity Recognition Technique (SMART) 102
7.1 State of the art . 104
7.2 Approach . 105

7.2.1 Using multiple simultaneous classifiers . 106
7.2.2 Failure detection . 107
7.2.3 Node failure severity analysis . 109
7.2.4 Maintaining detection accuracy under failures . 110

7.3 Experimental setup . 111
7.4 Results . 113

7.4.1 Detecting sensor node failures . 113
7.4.2 Node failure severity assessment . 114
7.4.3 Maintaining high activity recognition accuracy under failures 117

7.5 Discussion . 118
7.6 Summary . 119

V Conclusions and future work 121

8 Conclusions and future work 122
8.1 Results and contributions . 122

8.1.1 Event specification . 122
8.1.2 Event detection . 124
8.1.3 Robustness to node failures . 124

8.2 Limitations and future work . 126
8.2.1 Event specification . 126
8.2.2 Event detection . 126
8.2.3 Robustness to node failures . 126

Bibliography 128

List of Tables

3.1 Modeling properties of sensor network event description languages Legend:�- a language
partially has the property; X- a language has the property. 34

5.1 An example fire detection rule-base. The size of the rule-base is determined by the number of
linguistic variables and what values they can hold. In this rule-base, there are six linguistic
variables, T1, ∆T1, T2, ∆T2, S, ∆S, each of which can hold a value of Low (L), Medium (M),
or High (H). 65

5.2 Rule-base for a temperature sensor. The two linguistic input variables and the fire confidence
consequent can be classified as Low (L), Medium (M), or High (H). 67

5.3 Reduced rule-base for a temperature sensor. In this rule-base, rules with similar consequents
have been combined with the help of the ≤ and ≥ operators. 68

5.4 Fire detection rule-base for the scenario where a node decides if there is a fire based only on its
own sensor readings. The Temperature, Temperature difference, Smoke, and Smoke difference
variables take Low (L), Medium (M), and High (H) values. 73

5.5 Number of incorrect classifications by a Naive Bayes classifier and a J48 Tree. 79
5.6 Fire detection delay in seconds. 79

6.1 Combining static analysis techniques and knowledge about the network topology and node
redundancy reduces the size of the test suite for the FD application by 35 orders of magnitude. 95

6.2 When all three reduction steps are applied, adding an extra sensor only doubles the number of
necessary tests instead of causing an exponential increase. 95

6.3 Compared to HM, RTA has a larger memory footprint. 101

7.1 Sensors participating in the prepare breakfast, prepare lunch, and prepare dinner activities in
the WSU house, prepare breakfast and preparing dinner activities in House A and House B. . 112

7.2 Average MTTF for all five activities. Our approach increases the MTTF 3.2 times on average.
The MTTF improvement achieved with each classifier varies with the nature of the activity.
SMART chooses the most suitable classifier at any time and thus achieves the highest MTTF. 115

7.3 We evaluate how using SMART instead of classifiers trained on all nodes affects the activity
recognition accuracy. The average accuracy improvement under the presence for failures the
classifiers we analyze is 15%. 118

viii

List of Figures

3.1 Probabilistic events scenario. 17

3.2 An example Petri net consisting of four places and two transitions. In the initial marking of the
Petri net place p1 and place p2 each have a token, which enables both transitions. Depending
on which transition fires first, the Petri net could end up in 2 different states. 19

3.3 MEDAL model of an explosion detection application, which uses readings from temperature,
light, and acoustic sensors to determine if there is an explosion in the monitored area. 21

3.4 By introducing a dedicated radio transition (transition R1) to MEDAL, we can explicitly
model the network communication. 24

3.5 The MEDAL model of this explosion application cannot clearly specify the requirement that
the temperature, light, and acoustic nodes should remain awake for 3 minutes after the motion
activity has terminated. 25

3.6 We introduce inhibitor arcs to help model actuation in MEDAL. In this explosion detection
model, the temperature, light, and acoustic nodes sleep unless the token in place I is consumed,
which occurs only if there is activity in the monitored area. Specifying β = 3 min for transition
T2 allows the model to address the requirement that the network should remain awake 3 min
after the last motion activity has been detected. 26

3.7 MEDAL model of an explosion application where the sensing frequency of the nodes is required
to change based on the value of the temperature in the monitored area. Introducing a feedback
loop to MEDAL (shown with double lines) allows us to model such a requirement. 28

3.8 MEDAL can be used to explicitly model mobility application requirements. This explosion
application model specifies that when an explosion is detected, the mobile sink should move
towards the area of the explosion. The figure also shows a more detailed view of the movement
logic. 30

3.9 The MEDAL model of an application, together with time notations associated with the
transitions in the model, can be used to perform real-time analysis. 32

3.10 MEDAL model of an application used to detect dangerous gases. The network can detect
three types gases, A, B, and C. Exposure to the mixture of gas A and gas B for longer than an
hour is considered dangerous and so is the exposure to gas C for more than 40 min. 33

3.11 MEDAL diagram for a beef monitoring sensor network application. There are four types of
sensor nodes in the network: light, temperature, humidity, and air circulation. When any of
the food safety conditions are violated, the respective sensor sends a message over the radio to
notify the base station. 38

3.12 MEDAL model of a volcano monitoring applications. There are two types of nodes in the
network: sensing nodes, containing seismic and acoustic sensors, and a base station node. For
clarity, the application activities when a nearby volcanic activity has been determined are in
bold. 40

3.13 MEDAL model of a rural and forest fire detection applications. There are four types of nodes
in the network: sensing nodes, containing fire infrared radiation and smoke, cameras, a central
server, and a computer, which is used to visualize the data from the camera. 41

ix

List of Figures x

3.14 MEDAL model of a flood detection application. There are three types of nodes in the network:
sensing nodes, which include pressure, temperature, and rainfall sensor nodes; computation
nodes, which evaluate the probability of a flood; and interface nodes, which can be used to
visualize the data and send requests to the computation nodes. 43

4.1 An example query plan. 49

4.2 Data admission controller. 50

4.3 Using MEDAL to model the query plan from Figure 4.1. The query operators are modeled
using transitions, while application state and data are represented with the help of places. . . 51

4.4 MEDAL model of the data admission control implementation. This design enables different
queries to have different data admission ratios even when they share the same data stream
source. 53

4.5 MEDAL model of a DSMS configuration, in which there is a single controller and all queries
belong to the same query service class. 55

4.6 MEDAL model of a system with three different service classes, class 0, class 1, and class 2,
and no admission controller . 55

4.7 MEDAL model of a scenario with three query service classes, class 0, class 1, and class 2,
which share a single data admission controller. 56

4.8 MEDAL model of a scenario with three service classes, class 0, class 1, and class 2, where each
service class has its own designated controller. 57

5.1 A fuzzy logic system contains three main components: a fuzzifier, decision making, which
consists of an inference scheme and a rule-base, and a defuzzifier. 62

5.2 Temperature membership function. Using this membership function, a temperature value can
be classified as: Freezing, Freezing and Cold, Cold, Cold and Warm, Warm, Warm and Hot,
and Hot. 63

5.3 Membership functions for the four input linguistic variables: temperature, temperature differ-
ence, smoke obscuration, and smoke obscuration difference. 70

5.4 Fire confidence membership function. 70

5.5 Burning mattress simulation: a) crisp value detection b) fuzzy value detection. 71

5.6 Burning chair simulation: a) crisp value detection b) fuzzy value detection. 71

5.7 Burning oil simulation: a) crisp value detection b) fuzzy value detection. 71

5.8 Simulating a burning mattress: including neighbor readings in the decision. The results when
only own values are used are plotted on the first y-axis. Including the neighbor values is plotted
on the second y-axis. 74

5.9 Simulating a burning chair: including neighbor readings in the decision. The results when only
own values are used are plotted on the first y-axis. Including the neighbor values is plotted on
the second y-axis. 74

5.10 Simulating burning oil: including neighbor readings in the decision. The results when only
own values are used are plotted on the first y-axis. Including the neighbor values is plotted on
the second y-axis. 75

5.11 Membership functions for the Mass Concentration input linguistic variables. 76

5.12 Crisp value simulation: a) Frying margarine b) Broiling hamburgers. 76

5.13 Fuzzy value simulation: a) Frying margarine b) Broiling hamburgers. 77

5.14 Simulating a burning chair with a reduced rule-base. The results when the full rule-base is
used are plotted on the first y-axis. Using the reduced rule-base is plotted on the second y-axis. 78

6.1 The main components of the RTA framework are the automatic code generator, the automatic
test generator, and the test execution support. 85

6.2 The radio transition in a MEDAL model can be used by an automated code generator to
determine the boundaries between the different node executables that should be generated. . 90

6.3 The steps of the code generation process for MEDAL. The MEDAL model is translated into a
script, which is then used by the code generator to produce the code for the nodes in the system. 90

List of Figures xi

6.4 A script specifying the MEDAL model of an application describes all arcs, places, and transitions
with their types and attributes. 91

6.5 A fire detection application uses smoke and temperature readings to determine the presence of
fire. The MEDAL model of this application logic concisely and unambiguously depicts the
application logic. 93

6.6 RTA and HM achieve similar false negative rates. 97

6.7 RTA requires 50%-70% fewer repairs than HM. 98

6.8 On average, RTA uses 33% less messages than HM. 98

6.9 When the failures introduced in the system are location errors, the RTA system missed 75%
fewer fires than the HM system on average. 99

6.10 RTA reduces the number of maintenance dispatches to only 0.3%-33.9% of HM. 100

7.1 Failure detection accuracy for a “movement” non-fail-stop node failure introduced in a smart-
home deployment. Correlation-based approaches cannot achieve more than 80% failure
detection accuracy even 4 days after the failure has occurred. 104

7.2 SMART has two components: offline and run time. Preliminary offline analysis of node failure
severity is performed and multiple classifiers are trained. The results of this analysis together
with the classifiers are used at run time to detect node failures and determine if maintenance
is needed. 105

7.3 Preemptively training classifiers for the occurrence of failures by holding one sensor out from
the training set allows us to build failure-aware systems. Classifier A is trained on all nodes.
Classifiers B and C are trained by holding node 1 and node 7, respectively. 107

7.4 Multiple F-score vectors are used to detect when an application-level failure occurs in the
system and to identify which node has caused the failure. 108

7.5 The severity of a sensor node failure is very strongly correlated with the level of redundancy in
the system. Therefore, because of the low node redundancy in the kitchen, if the star-shaped
node fails, the accuracy of detecting cooking activities would be severely impacted. 110

7.6 Detecting non-fail-stop node failures of the kitchen nodes in the WSU house for both NB and
HMM. SMART achieves more than 85% accuracy in detecting a severe “stuck at” non-fail-stop
failure and about 80% accuracy in identifying which one of the 8 kitchen sensor nodes has
caused the failure. It also achieves more than 95% accuracy in detecting a failure caused by
rotating the kitchen motion sensor towards the adjacent living room in the house from the
WSU dataset. 113

7.7 Distribution for number of maintenance dispatches for the all kitchen activities the WSU house,
House A, and House B. Compared to a baseline where maintenance has to be dispatched every
time a node failure occurs, our approach repairs only the severe failures and thus decreases the
number of maintenance dispatches by 55%. 114

7.8 Mean time to failure distribution for the WSU house preparing breakfast. We assume that a
new sensor failure occurs after each time unit. The average MTTF for NB and HMM are 4.5
and 5.5 time units respectively. 116

7.9 Average activity recognition accuracy improvement for the activity preparing breakfast in the
WSU house. Compared to the baseline NB and HMM classifiers trained with all nodes, the
NB and HMM preemptively trained for node failures improves the activity detection accuracy
in the presence of failures. 117

7.10 Average activity recognition accuracy improvement for all kitchen activities in the WSU house.
Using ensembles of classifier instances trained for failures instead of a single instance trained
on all nodes significantly improves the activity recognition accuracy under failures. 118

7.11 Relationship between the failure detection accuracy of a node and how frequently this node is
being used for activities prepare breakfast and prepare dinner for House A. The majority of
nodes in this dataset have low usage ratios, which results in low failure detection accuracy
even for the nodes with high usage ratio when all nodes are considered by the failure detection
mechanism. 119

List of Figures xii

7.12 Detecting “stuck at” failures for the important nodes participating in activities prepare breakfast
and prepare dinner in House A. The failure detection accuracy for the important nodes for an
activity increases when only the failures of these nodes are being considered. SMART achieves
about 80% accuracy in identifying which of the important nodes has failed. 120

Part I

Introduction

1

Chapter 1

Introduction

W
ireless sensor networks (WSNs) are being introduced to a growing number of applications.

Smart home sensor network applications could monitor a resident’s patterns and habits to help

manage home automation, energy efficiency, and home security. Health monitoring applications

could assist with monitoring the daily activities of patients and reporting the occurrence of abnormal patient

behavior. Military sensor network applications could be used for surveillance and detection of invading enemy

forces. Regardless of the specific application, the sensor network should be able to detect or predict particular

events of interest. However, the extremely large spectrum of applications results in a very diverse pool of

events to be detected. These events can range from activities of daily living to emergency situations, such

as fires and explosions; from a resident coming home from work to a burglar entering the house at night;

from poor air quality and insufficient level of light, to sensor node and application failures. The detection of

these events is based on sensor fusion from many sensor nodes deployed in constantly changing complicated

environments. Sensor data may be missing, wrong, or out of date. Consequently, an event detection service

must:

� be accurate and minimize false alarms;

� run in real-time;

� provide a sufficient level of robustness;

� fundamentally recognize location.

All these features make building event services for WSNs notoriously challenging.

The research presented in this dissertation focuses on developing techniques and approaches that enable

robust real-time event services for sensor network applications. There are three main areas that we have

2

1.1 Problem statement 3

focused on: event specification, event detection, and providing robustness and fault-tolerance for event-driven

sensor network applications.

1.1 Problem statement

Event specification

Providing effective approaches for event description in a sensor network remain a challenge. Currently,

the majority of techniques rely on using SQL-like syntax. SQL-based approaches, however, are not very

suitable for describing sensor network events since they fail to express a number of essential properties specific

to sensor network events, including data dependency, collaborative decision making, spatial and temporal

correlation among different types of sensors, and probabilistic events.

Event detection

The majority of current event detection approaches rely on using precise, also called crisp, values to specify

WSN events. However, crisp values cannot adequately handle the often imprecise sensor readings. Therefore,

improving the accuracy of event detection in sensor networks continues to be a challenging problem.

Providing robustness and fault-tolerance

Continuous and reliable operation of WSNs is extremely difficult to guarantee due to hardware degradation

and environmental changes, which can cause operating conditions that were impossible for the original system

designers to foresee. This is particularly true for applications that operate over long time durations, such as

commercial building monitoring, smart home deployments, and health-monitoring applications. Wireless

noise and interference may change dramatically as new wireless technologies are developed and deployed in

or near a building, and sensor readings and network topology may change as the occupancy, activities, and

equipment in a building evolve over time. Node failures that severely affect the behavior of sensor network

applications, if not detected on time, might lead to serious consequences. Therefore, being able to 1) verify at

run time that an application is able to function correctly according to its high-level specification, 2) detect the

occurrence of sensor node failures, and 3) maintain sufficient event detection accuracy even in the presence of

failures, are topics that need to be addressed.

Chapter 1 Introduction 4

1.2 Contributions

1.2.1 Event specification

We have developed a formal event description language, which is an enhanced Petri net. This language,

coMpact Event Detection and Analysis Language (MEDAL), addresses key aspects of sensor networks, such

as temporal control, spatial constraints, heterogeneity, and probability issues. MEDAL combines features

from Stochastic, Timed, and Colored Petri nets. This allows it to model sensor network properties, such as

collaborative decision making, temporal and spatial dependencies, and geographic control. The graphical

support inherited from Petri nets makes the application models created with MEDAL easy to understand

and accessible to a wide range of users. Therefore, MEDAL can be used as an interface between people

who register events (e.g. domain experts and scientists who recognize the characteristics of events) and the

sensor network designers (mostly computer engineers responsible for designing protocols to control sensors

according to certain temporal and spatial specifications). In this sense, MEDAL provides network designers

with well-defined formal requirements for building the sensor network. We have used MEDAL to model

the logic of a variety of sensor network applications, including a number of existing deployments, such as a

volcano monitoring application [1], rural fire detection application [2], and flood detection application [3].

Our experience has shown that MEDAL has the expressive power to model a broad array of applications

running on both homogeneous and heterogeneous networks.

We have also used MEDAL to model real-time data stream applications. We show how formal data stream

modeling and analysis can be used to better understand stream behavior, evaluate query costs, and improve

application performance. We use MEDAL to model the data stream queries and the Quality-of-Service (QoS)

management mechanisms of a data stream management system. MEDAL’s ability to combine query logic and

data admission control in one model allows us to design a single comprehensive model of the system. This

model can be used to perform a large set of analyses to help improve the application’s performance and QoS.

1.2.2 Event detection

Since crisp values are not very suitable for event description and detection, we have investigated whether

using fuzzy logic might help increase the accuracy of event detection applications. In contrast to crisp logic,

fuzzy logic has a number of properties that make it appropriate for describing events in WSNs:

� It can tolerate unreliable and imprecise sensor readings.

1.2 Contributions 5

� It is much closer to our way of thinking than crisp logic - for example, we think of fire as an event

described by high temperature and smoke, rather than an event characterized by temperature above

55� and a smoke obscuration level above 15%.

� Compared to other classification algorithms based on probability theory, fuzzy logic is much more

intuitive and easier to use.

Our experiments with real-world fire data have shown that using fuzzy values results in more accurate

event detection since fuzzy logic is more resilient to sensors getting temporarily “confused”.

To maintain sufficient event detection accuracy even in the presence of unreliable and imprecise sensor

readings, the fuzzy logic event detection system is instrumented with spatial and temporal semantics. This

allows the event detection process to employ readings from multiple sensors and/or readings over some

period of time. The spatial and temporal semantics are included by augmenting the fuzzy logic system with

additional spatial and temporal linguistic variables. This significantly improves the event detection accuracy

of the application. However, it comes at a price - the number of rules that describe the behavior of the fuzzy

logic system increases exponentially to the number of linguistic variables. A large rule-base is not desirable

since sensor nodes have limited memory and constantly traversing a large rule-base might significantly slow

down the event detection process. To alleviate this problem, we have designed a set of techniques that can

decrease the size of a rule-base by more than 70% without reducing the event detection accuracy of the

application.

1.2.3 Robustness to node failures

Our work in this area has branched into two projects: Run time assurance and SMART.

Run time assurance

The run time assurance (RTA) methodology validates at run time that a WSN application functions correctly,

irrespective of any changes in the operating conditions that might have occurred since it was originally

designed and deployed. The basic approach is to use program analysis and compiler techniques to facilitate

automated testing of the system at run time. As part of this project we have developed techniques to

automatically generate a set of input/output tests based on the MEDAL model of the WSN application.

The test inputs are supplied to the WSN at run time, either periodically or by request. The WSN performs

all computations, message passing, and other distributed operations required to produce output values

and actions. These are compared to the expected outputs. This testing process produces an end-to-end

Chapter 1 Introduction 6

application-level validation of the critical application logic. We have also designed test reduction techniques

which allow us to drastically decrease the size of the test suites.

The end-to-end application-level tests used for RTA have two key advantages over the tests of individual

hardware components used for health monitoring. First, RTA has fewer false positives, since it does not test

nodes, logic, or wireless links that are not necessary for correct system operation. Therefore, RTA produces

fewer maintenance dispatches than health monitoring systems. Second, RTA has fewer false negatives. A

network health monitoring system will only validate that all nodes are alive and have a route to a base

station, but will not test more subtle causes of failure, such as topological changes or clock drift. In contrast,

the RTA approach tests the ways that an application may fail to meet its application-level requirements

because it uses end-to-end tests. Network health monitoring improves system reliability by detecting certain

types of failures. However, it stops short of actually validating correct system operation. In contrast, the goal

of RTA is to provide positive affirmation of correct application operation. Our results indicate that RTA

performs much better than health monitoring in identifying application-level failures and almost just as well

in identifying low-level failures.

SMART

The motivation behind this work is that a number of studies have found that many of the inexpensive

sensor network home installations suffer from numerous failures. A significant number of these failures are

non-fail-stop failures, where the sensor does not completely fail. Instead, it continues to report values, but

the meaning of the values changes or becomes invalid. Several techniques have previously been used to detect

non-fail-stop failures, but they are designed for homogeneous, periodic, and continuous-valued sensors. This

makes them hard to generalize to the heterogeneous, binary, and event-triggered sensor suites often used in

smart home applications.

Similarly to RTA, the Simultaneous Multi-classifier Activity Recognition Technique (SMART) uses

application-level semantics to detect, assess, and adapt to sensor failures at run time. The basic insight

underlying SMART’s failure detection is that sensors monitoring the same activities in the physical world

typically have correlated values. SMART uses a classifier ensemble to identify the degree to which different

sensors indicate the same ongoing activity. Our evaluation shows that SMART can accurately identify

non-fail-stop application-level failures. In addition, since it only repairs the nodes whose failure affects the

application behavior, SMART reduces the number of maintenance dispatches. Due to its ability to adapt

to application-level failures at run time, SMART increases the mean time to failure of the application and

improves the activity recognition accuracy under node failures.

1.3 Dissertation organization 7

1.3 Dissertation organization

The rest of the dissertation is organized as follows:

� Chapter 2 discusses the state of the art research related to our work.

� Chapter 3 describes the coMpact Event Description and Analysis Language (MEDAL), we designed for

specifying sensor network events.

� Chapter 4 discusses how MEDAL can also be used to model and analyze real-time data stream queries

and stream management mechanisms.

� Chapter 5 introduces how fuzzy logic can be used to help improve the detection accuracy of sensor

network events.

� Chapter 6 describes the run time assurance methodology and its components. We discuss in detail the

automated test generation, the test reduction techniques we have designed, and our results of comparing

RTA to an existing health-monitoring technique.

� Chapter 7 introduces the Simultaneous Multi-classifier Activity Recognition Technique (SMART),

which focuses on detecting sensor node failures, maintaining sufficient event detection accuracy even in

the presence of node failures, and minimizing the number of necessary maintenance dispatches.

� Chapter 8 concludes the dissertation, brings up some of the limitations of this work, and discusses a

number of possible directions for future work.

Chapter 2

State of the art

I
n this chapter we discuss the state of the art research in a number of areas related to the work in this

dissertation, including, modeling sensor network events and data streams, stochastic methods, fuzzy

logic, sensor network testing and debugging, fault tolerance and fault identification techniques, hardware

verification, classifiers, and classifier ensembles.

2.1 Event specification

2.1.1 Modeling sensor network events

The work that uses SQL-like primitives to describe sensor network events varies a little in semantics [4, 5, 6, 7].

General SQL primitives are employed in [5] and [6] to define events in sensor networks. However, with this

approach, events can only be defined by predicates on sensor readings connected with “AND” and “OR” with

very simple temporal and spatial constraints. Madden et al. extend the SQL primitives by incorporating

streaming support, where the desired sample rate can be specified [7]. Li et al. propose defining events using

a sub-event list and confidence functions in SQL [4]. Nevertheless, because of its inherent limitations, SQL is

not very suitable for formally describing events in sensor networks. Some of those limitations include:

� Data dependency and correlation among different types of sensors in heterogeneous sensor networks.

� Collaborative decision making : Sensor networks are distributed, concurrent, and asynchronous, and

detecting events usually requires spatial and temporal composition of ad-hoc sensor readings.

8

2.1 Event specification 9

� Modeling probabilities: Individual sensor nodes are unreliable, which results in non-deterministic event

detection. In order to tolerate such non-determinism, sensor network events need to be defined using

probabilistic models. SQL has no explicit support in this regard.

� Hierarchical model : Most WSN applications need to form groups for data aggregation and event

detection. Some events are detected at the node-level, others are global events detected by cluster-head

nodes or even base stations. Events could also form hierarchies. However, SQL-like languages do not

naturally present a hierarchical model for event structure.

Worboys also attempts to define events in sensor networks [8]. He proposes an object-oriented model

with integrated timing and location properties to represent events. The approach was initially designed

for modeling generic events, including social and economic ones. Therefore, it does not support unique

characteristics of sensor networks, e.g. there is no consideration of different sensor types or interactions.

Few formal methods have been used for event specification in sensor networks. However, formalized

approaches for event descriptions and compositions are widely studied in other areas. A survey on formal

methods for specification and analysis shows that most of the popular approaches are based on theoretical

models, such as finite state machine, timed automata, process algebra, and Petri nets [9]. Some widely

used methods such as SDL [10], SPIN (Simple Promela INterpreter) [11], and Estelle [12] are based on

finite state machines (FSM). Unfortunately, FSM approaches have difficulty describing hierarchical modeling.

FSMs, however, can be augmented to Timed Automata which are the mathematical foundations for many

specification methods, including UPPAAL [13], Kronos [14], and HyTech [15]. However, both FSM and

Timed Automata inherit the limitations of finite state machines, such as state explosion.

There are a number of approaches based on process algebra and composition logic. Composition of events

together using the concept of Event-Condition-Action rules is presented in [16]. In the paper, the authors

propose HiPAC event algebra for database systems. A few other event specification approaches for database

systems are introduced in other papers [17, 18, 19]. All of these methods are designed for the definition and

composition of events in active database systems. In addition, various composition algebra approaches have

been proposed to handle events in a distributed system [20, 21, 22]. However, since these approaches were

mainly developed for database systems, some important characteristics of sensor networks, such as sensing

activities or spatial and temporal properties, have not been addressed.

A large number of papers and books has been published on Petri nets since their introduction in 1962 [23].

Places and transition nets were first formally defined by Jantzen et al. [24], high-level Petri nets were

introduced by Genrich et al. [25], and Colored Petri nets were proposed by Jensen [26] and Kristensen et

Chapter 2 State of the art 10

al. [27]. Later on, Timed Petri nets and Stochastic Petri nets were proposed by DiCesare et al. [28] and

Tremblay et al. [29].

For the first time Petri nets were used to describe events in WSNs by Jiao et al. [30]. In this work the

authors introduce a Sensor Network Event Description Language (SNEDL). As a formal method, SNEDL is

based on Petri nets, which allows it to rigorously specify events in sensor networks. An important advantage of

this specification rigor is that it prevents ambiguity. The event specification language that we have developed,

MEDAL, combines SNEDL’s event description abilities with a more compact syntax without compromising

the level or rigor of the specification. In addition, MEDAL expands the feature set and modeling capabilities

of SNEDL in a number of important directions.

2.1.2 Modeling data streams

The majority of work on data streams uses SQL or SQL-like semantics to define stream queries [31, 32].

Babcock et al. use standard SQL to model stream queries and extend the expressiveness of the language to

allow the specification of sliding windows [32]. However, similarly to how SQL is not suitable to model WSN

applications, it fails to express a number of essential characteristics that are also typical for data stream

processing applications, including collaborative decision making, data dependency and correlation among

different data streams, and non-deterministic behavior.

Another method for modeling stream queries was proposed for the Aurora system [33]. Aurora uses a

graphical “boxes and arrows” interface for specifying data flow through the system. Compared to a declarative

query language, this interface is more intuitive and gives the user more control over the exact series of steps

by which the query answer is obtained. However, similarly to SQL-based solutions, this approach lacks the

ability to model probabilities, data dependencies and correlation, and collaborative decisions.

2.2 Event detection

2.2.1 Stochastic methods

There is a long history of using stochastic formalisms in different WSN applications. Bayesian classifiers and

hidden Markov models have been extensively used in activity recognition [34, 35] and decision fusion [36, 37].

Dempster-Shafer evidence theory has been applied to intrusion detection [38], sensor fusion [39, 40], and

assisted living applications [41]. Probabilistic context free grammars have been used to solve problems such

as inferring behaviors [42] as well as movement and activity monitoring [43, 44].

2.3 Robustness to sensor node failures 11

2.2.2 Fuzzy logic

Fuzzy sets and logic were introduced by L. Zadeh in 1965. Numerous fields have taken advantage of

their properties since then. In WSNs, fuzzy logic has been used to improve decision-making, reduce

resource consumption, and increase performance. Some of the areas it has been applied to are cluster-head

election [45, 46], security [47, 48], data aggregation [49], routing [50, 51], MAC protocols [52], and quality of

service(QoS) [53, 54]. However, not much work has been done on using fuzzy logic for event description and

detection. Liang et al. [55] propose to use fuzzy logic in combination with double sliding window detection,

to improve the accuracy of event detection. However, they do not study the effect of fuzzy logic alone or how

using the spatial or temporal properties of the data could influence the classification accuracy.

In D-FLER [56] fuzzy logic is used to combine personal and neighbors’ observations and determine if

an event has occurred. The results show that fuzzy logic improves the accuracy of event detection. The

use of fuzzy values allows D-FLER to distinguish between real fire data and nuisance tests. However, the

approach used in D-FLER does not incorporate any temporal semantics. In addition, all of the experiments

last only 60 seconds after the fire ignition. Therefore, the authors only analyze the accuracy of D-FLER in

the presence of fire, but fail to evaluate the precision of the approach, when there is no fire.

2.3 Robustness to sensor node failures

2.3.1 Sensor network testing

Although testing has always been a major part of software development, a very limited amount of work has

been done in the area of testing WSN applications. This is partially due to a few characteristics of WSN

applications, such as operating in concurrent, event-based, and interrupt-driven manner, which considerably

complicates the development of code representation. Nguyen et al. [57] proposed application posting graphs

to represent behaviors of WSN applications. Regehr [58] designed a restricted interrupt discipline to enable

random testing of nesC programs. Lai et al. [59] studied inter-context control-flow and data-flow adequacy

criteria in nesC programs. However, all previous work is intended for testing applications prior to deployment

when the size of the test suite is not as critical. Therefore, WSN-specific approaches for decreasing the size of

the number of necessary tests have not been considered until now.

2.3.2 General fault tolerance techniques

There is a great array of fault tolerance and reliability techniques developed over the last 50 years many

of which have been applied to WSNs [60, 61, 62, 63]. We expect that any WSN that must operate with

Chapter 2 State of the art 12

high confidence will utilize many of these schemes. However, most existing approaches, such as eScan [64]

and CODA [65], aim to improve the robustness of individual system components. Therefore, it is difficult

to use such methodologies to validate the high-level functionality of the application. Similarly, self-healing

applications [66, 67, 68], although attempting to provide continuous system operation, are not capable of

demonstrating adherence of the system to key high-level functional requirements.

2.3.3 Sensor network debugging

Debugging WSN applications is a complicated process and many different approaches exist. Marionette [69]

and Clairvoyant [70] are source-level debuggers allowing access to source-level symbols. MDB [71] supports

the debugging of macroprograms. SNTS [72], Dustminer [73], and LiveNet [74] use overhearing to gain

visibility into the network operations. Some debugging approaches are based on invariants [75], others attempt

to use data mining to discover hard to find bugs [76]. EnviroLog [77] uses a record and replay service where

it stores and replays the I/O on the sensor nodes. However, all of these debugging mechanisms are either

used prior deployment or in a post mortem manner, where data about the application is collected and then

analyzed offline. Therefore, these techniques do not provide a way to monitor and analyze the application

behavior at run time.

2.3.4 Sensor network hardware verification

Several techniques have been developed for fault detection and hardware verification in sensor networks.

Health - monitoring systems, such as LiveNet [74], Memento [78], and MANNA [79], employ sniffers or

specific embedded code to monitor the status of a system. Sympathy [80] detects node failures based on

periodic data collection and neighbor sniffing on a routing tree. These applications are effective for low-level

system failures and fail-stop sensor faults, the techniques we have developed, RTA and SMART, can use

these systems to detect failed nodes. However, these systems are not designed to detect failures that affect

the high-level application behavior or non-fail-stop sensor faults.

2.3.5 Sensor network fault identification

Recently, new techniques have been developed to identify non-fail-stop sensor faults. Ni et al. provide a

taxonomy of frequently observed sensor faults, including “stuck at” faults and noise faults, and provide a set

of features that can be used to detect these faults [81]. Suelo [82] detects faults by identifying outliers in a

feature space of the data streams, and can learn to improve fault detection with the help of human expert

assistance. Suelo uses a general feature space that can be applied to a wide range of sensors, in contrast

2.3 Robustness to sensor node failures 13

to RTA and SMART which use application-level features. The reputation-based framework proposed by

Ganeriwal et al. [83] also uses outliers and correlation between neighboring nodes to detect non-fail-stop

sensor faults. This approach is suitable for applications where there is a constant flow of information from

nodes of the same type that are located close to each other. However, building and maintaining a community

of trust is harder for smart home applications, where sensors are heterogeneous, discrete, and event-driven.

2.3.6 Classifier ensembles

The idea of using multiple classifiers and dynamically selecting the most accurate one has been explored

in pattern recognition and neural networks. Partridge and Yates proposed a number of techniques that

exploit heuristic rules for choosing classifier groups [84]. Additional techniques were proposed by Roli and

Giacinto [85, 86]. These techniques could be incorporated into SMART to further increase the accuracy of

activity recognition under failures.

An ensemble of classifiers has been used to detect anomalous nodes in a body sensor network [87]. The

results show that detecting anomalous behavior and replacing the anomalous values with probabilistically

generated meaningful ones improves the activity recognition accuracy. However, the authors do not analyze

the cause or the severity of the anomalies. They also use a classifier fusion approach, which assumes that the

majority of the classifiers will not be affected by the anomaly. However, in a smart home application, the

failure of a single important node can affect all classifiers trained to recognize a particular set of activities.

SMART addresses this by analyzing the relative change in the behavior of all classifiers, which provides better

understanding about the root of the failure, as well as the impact of this failure on the application.

Part II

Event specification

14

Chapter 3

coMpact Event Description and

Analysis Language (MEDAL)

W
ireless sensor networks have received a lot of attention due to a number of applications they

have been used for, including environmental monitoring, healthcare, military surveillance, and

smart home deployments. However, the types of events these applications can currently detect

are restricted. There is a need for a description language that can incorporate the knowledge of sensing with

event definitions. A formalized description language can serve as an effective interface between people who

register events, e.g. application semantics experts, and sensor network designers. Such a language could also

make application requirements more clear and remove the ambiguity seen in application specifications.

The majority of work that uses event description for sensor network applications employs SQL or SQL-like

semantics to describe events [4, 5, 6, 7, 88]. However, Franklin [89] points out that SQL-like semantics

are not always suitable for sensor networks because of their lack of collaborative decision making and

other fundamental features. As mentioned earlier in Chapter 2, SQL fails to express a number of essential

characteristics specific to sensor network events, including:

� data dependency and correlation among different types of sensors in heterogeneous sensor networks;

� collaborative decision making;

� modeling probabilities;

� hierarchical model.

The following two examples demonstrate some of the drawbacks of using SQL for event description in

sensor networks. In the first scenario a sensor network is deployed to detect explosions. The nodes in the

15

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 16

network are equipped with three types of sensors: sound, light, and temperature. If an explosion event

is simply a combination of positive readings from the three types of sensors, using the notation of [4], an

explosion event can be represented as follows:

INSERT INTO EventList Explosion (Event-ID, SubEventSet, Spatial Resolution ...)

VALUES (0001, SubEventSet ...)

WHERE SubEventSet is SubEventSet = (Sound, Light, Temperature,

Confidence Function: 0.3 x Sound + 0.3 x Light + 0.4 x Temperature >= 100 ...)

All three, high temperature, loud sound, and strong light, should be present at the time of explosion.

Therefore, if a light sensor detects strong light but there are no accompanying abnormal readings from the

temperature and sound sensors within some time interval from the light reading, the system should not

classify this as an explosion. To achieve more accurate explosion detection we could define sensor reading

validity intervals. For example, we might specify that sound readings are valid for 15 seconds, light readings -

for 10 seconds, and temperature readings - for 30 seconds. However, the above SQL-like notation cannot be

used to specify events that require similar or more complicated temporal constraints.

Figure 3.1 illustrates the second scenario - probabilistically occurring events. A set of readings from

sensors S1 and S2 could indicate both event A with a 30% probability and event B with a 70% probability.

Events A and B themselves could be sub-events of higher level events. In Figure 3.1, event A is such a

sub-event. Since the nature of a sensor network is distributed and noisy, random processes and probabilistic

models are especially meaningful. Therefore, this example is much more realistic than a simple deterministic

model. Since SQL-like languages lack the ability to capture random processes of event systems, they are not

very suitable to describe probabilistic events for WSN applications.

In contrast to SQL-like semantics, Petri nets are well accepted as a model to describe systems with

distributed, concurrent, asynchronous, and non-deterministic nature. Petri nets exhibit a number of properties

that make them particularly useful for event description in WSN applications:

1. Extended Petri nets (including Colored Petri nets, Timed Petri nets, and MEDAL) are equivalent to

Turing Machines in computation power, and thus can handle non-determinism [90].

2. Geographic information is crucial to events in sensor networks, since many events are related to a specific

location and, in addition, may have other spatial properties. Features inherited from Colored Petri nets

allow us to incorporate spatial properties into the tokens, thus handling geographical constraints for

events in sensor networks.

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 17

Figure 3.1: Probabilistic events scenario.

3. Features inherited from Stochastic Petri nets provide an advantage over other specification methods in

terms of performance evaluation ability.

4. Petri nets naturally have graphical support which is convenient for users who are not thoroughly

knowledgeable about probability theory.

We have used Petri nets as the foundation for an event description language that is specifically designed

for modeling sensor network applications. This language, coMpact Event Description and Analysis Language

(MEDAL) [91], addresses key aspects of sensor networks, such as temporal control, spatial constraints,

heterogeneity, and probability issues. MEDAL combines features from Stochastic, Timed, and Colored Petri

nets, which allows it to model sensor network properties, such as collaborative decision making, temporal

and spatial dependencies, and geographic control. We have also extended MEDAL to specify additional key

sensor network properties, such as communication, actuation, and feedback control.

The main contributions of the work presented in this chapter are:

1. Introducing a new event description language MEDAL, based on Petri net theoty.

2. Extending MEDAL to model sensor network properties, such as communication, actuation, and feedback

control.

3. Introducing the use of MEDAL for real-time and safety analysis of WSN applications.

4. A comparison between MEDAL and other approaches that have been used to describe sensor network

events.

5. A proof of concept - we describe our experience using MEDAL to model a beef monitoring sensor

network application.

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 18

6. Using MEDAL to model three existing event-based WSN applications: volcano monitoring [1], rural

fire detection [2], and flood detection [3].

3.1 Introduction to Petri nets

A Petri net is a bipartite directed graph with two types of nodes: places and transitions. Places represent

conditions or system state and are usually depicted using circles. Transitions are used to represent events that

may occur and are modeled using bars or rectangles. The places and transitions in a Petri net are connected

using directed lines, called arcs. An arc is either from a place to a transition or from a transition to a place.

It never connects nodes of the same type, i.e. a place to a place or a transition to a transition.

A marking assigns to each place in the Petri net a non-negative number k. For a place marked with a

value k, we say that there are k tokens in that place. Graphically a place that contains k tokens is displayed

with k black dots in it.

A Petri net can be formally defined as a 5-tuple [92], PN = {P, T,A,W,M0}, where:

1. P = {p1, p2, ..., pn} is the finite set of places.

2. T = {t1, t2, ..., tm} is the finite set of transitions.

3. A ⊆ (P × T) ∪ (T × P) is the set of arcs connecting places to transitions and transitions to places.

4. W: F → {1, 2, 3...} is the weight function. In some types of Petri nets all weights are assigned to 1.

5. M0: P → {0, 1, 2, ...} is the initial marking of the Petri net.

A node in a Petri net can either be a place or a transition. Formally, P ∩ T = ∅ and P ∪ T 6= ∅.

Each place has a number of input and output transitions. The input set of transitions for a place pi can

be denoted as •pi = {tj |a (tj , pi) ∈ A}. Similarly, the set of output transitions for a place pi is represented by

pi• = {tj |a (pi, tj) ∈ A}. A place with no input transitions, i.e. •pi = ∅, is called a source place. A place

with no output transitions, i.e. pi• = ∅ is called a sink place.

A transition has a certain number of input and output places, which represent the pre-conditions and

the post-condition of the event modeled by this transition. Given a Petri net, the input set of places for a

transition ti can be denotes as •ti = {pj |a (pj , ti) ∈ A}. Similarly, the set of output places for a transition ti

is denoted as ti• = {pj |a (ti, pj) ∈ A}. At any time, a transition is either enabled or disabled. A transition ti

is considered enabled if each place in its input set •ti has at least one token. An enabled transition can fire.

When a transition ti fires, it consumes a token from each place in •ti and deposits a token into each place in

3.1 Introduction to Petri nets 19

(a) Initial marking (b) Transition t1 fires first (c) Transition t2 fires first

Figure 3.2: An example Petri net consisting of four places and two transitions. In the initial marking of
the Petri net place p1 and place p2 each have a token, which enables both transitions. Depending on which
transition fires first, the Petri net could end up in 2 different states.

ti•. This movement of tokens, which changes the marking of the Petri net, is used to simulate the dynamic

behavior of a system.

Figure 3.2a shows an example Petri net that contains four places, p1, p2, p3, and p4, and two transitions,

t1 and t2. The marking of this Petri net is such that both transitions are enabled and can be fired. However,

the firing of one of the transitions will disable the other, resulting in two different firing sequences. Transitions

t1 and t2 are called conflicting transitions since they are enabled by common input places and firing one

transition will result in disabling the other. The choice of which transition will fire among a set of conflicting

transitions is non-deterministic.

Figure 3.2b shows the state of the Petri net after transition t1 has fired. In this scenario, the firing of

transition t1 consumes the token in place p1 and places a token in place p3. At this point, since there are no

more tokens in place p1, transition t2 cannot fire. Figure 3.2c shows the state of the Petri net after transition

t2 has fired. In this scenario, the tokens in places p1 and p2 are consumed by transition t2 and a new token is

deposited in place p4. In both Figure 3.2b and Figure 3.2c, there are no more transitions that can fire. A

Petri net, where no transition can fire, is said to be not alive.

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 20

3.2 MEDAL

3.2.1 Semantics

The MEDAL description of an event detection sensor application is a 7-tuple structure: F = (P, T,A, λ, β,H,L)

where:

1. P is the set of all places. P = S ∪ E, where S represents the places for sensing, and E represents the

places for higher level events. We explain S and E in detail later in the section when we discuss sensor

event abstraction. In a MEDAL diagram, similarly to Petri nets, places are depicted as circles (place E

in Figure 3.3). To distinguish between sensor events and higher level events, the places for sensing are

represented by interrupted circles (places T, L, and A in Figure 3.3).

2. T is the set of all transitions. Transitions model various types of actions and are represented by vertical

bars (transitions T1, T2, T3, and T4 in Figure 3.3).

3. A is the set of arcs. A = I ∪O , where I is the set of input arcs entering a transition (pre-arcs), and O

is the set of output arcs leaving a transition (post-arcs).

4. λ is the probability/weight function for the arcs and λ : A→ [0, 1]. If f is a post-arc from transition T

to place B, then λ(f) = p means that after T is fired, the probability that the resulting token enters

place B is p. For a pre-arc, if λ(f) = p and a token has a capacity c then its capacity after passing

through arc f will be c× p. With λ, MEDAL adopts features from Timed and Stochastic Petri nets

and can model probabilistic problems.

5. β is the time guard function, β : T → ∪∗(r1, r2), where r1 ≤ r2 ∈ R. For a transition it means that

the transition can only fire during the union closure of the given ranges. β(T) = (a1, a2) ∪ (a3, a4)

indicates that transition T can only fire during interval (a1, a2) or (a3, a4), where a1 ≤ a2, a3 ≤ a4. β

can also be specified using event incidents. β : T →∗ (E1, E2) means that transition T can only fire

between event E1 and event E2. For a post-arc of a transition, β shows how long it takes for this event

to happen.

β also acts as a persistency guard, i.e. we can use it to specify the amount of time a place can hold a

token to participate in a transition before this token disappears. To achieve this we simply need to

define β as β(p) = (t1, t2) where t1 ≤ t2 and t2− t1 is the validity period of the token.

6. H is the threshold function for places and is defined as H : P → R. For example H(p) = c means that

a token can enter a specific place p only if its capacity is equal or higher than c. In a sensor network

3.2 MEDAL 21

Figure 3.3: MEDAL model of an explosion detection application, which uses readings from temperature,
light, and acoustic sensors to determine if there is an explosion in the monitored area.

with continuous values for sensor readings, we can simply set H(p) = 0 for all p ∈ P , and the token

capacity can be used to store the actual value of the corresponding sensor readings. The threshold

function is of particular use for cases that need a binary state (yes or no).

7. L is the spatial guard function for transitions, L : T → R+. For example, assume there are three arcs

a, b, and c entering transition T. L(T) = r means that T can only fire if the locations of the tokens

carried by a, b, and c are within radius r of each other. After T fires, the location associated with the

new token will be determined based on the locations of the tokens from a, b, and c. This function is

only one particular spatial guard function to guarantee that the sensed data is within the event radius.

We can also specify spatial guard functions to support more complex spatial constructs. We discuss the

spatial guard function L in more detail later when we talk about spatial logic.

Figure 3.3 shows the MEDAL model of an application designed to detect explosions. An explosion event

E is characterized by specific temperature, light, and sound values. When all three values, temperature, light,

and sound, exceed some predefined thresholds, transition T4 fires and the application reports the detection

of an explosion. Earlier we mentioned that SQL cannot be used to specify validity periods for the sensor

readings in an application. With MEDAL we can easily define validity periods for the readings from the

temperature, light, and acoustic sensors in Figure 3.3 by specifying β(T) = 15s, β(L) = 10s, and β(A) = 30s.

Tokens

The flow of sensor data and the occurrence of events in a MEDAL model are represented using tokens. Tokens

in MEDAL are abstract elements defined as:

Token = {Type tp; Capacity c; Time t; Location l}

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 22

Type is used to indicate what data or event a token represents. Capacity corresponds to the value of the

token, which indicates the confidence that an event has occurred. The capacity of a token could also hold the

actual values of the sensor readings. Time indicates when the token was created. Location represents where

the event occurred in the sensor network. This token definition allows us to encapsulate key aspects of the

sensor readings into tokens. The information stored in the tokens can be accessed and used while the tokens

proceed through a MEDAL model. For example, if a token with a time stamp t, capacity c, and location

attribute (x, y, r) reaches the temperature sensor place, we can say that a temperature sensor at location

(x,y) with sensing range r has registered a temperature reading with value c at time t, as shown in Figure 3.3.

Sensor events

Sensors in MEDAL are abstracted by sensor events. Sensor events are denoted as places that only take tokens

from the environment. In Figure 3.3, places T, A, and L are sensor events. The number of sensor events is

directly related to the types of sensors in the network. For example, if there are three types of sensors in the

network, temperature, light, and acoustic sensors, then there are three types of sensor events in the MEDAL

model of the application: Temperature, Light, and Acoustic. Higher level events are constructed using sensor

events.

3.2.2 Temporal and spatial logic

Sensor network events are a function of when and where they occur. MEDAL addresses the need of sensor

network applications for spatial and temporal semantics by incorporating both spatial and temporal logic.

Temporal logic

Temporal logic refers to the temporal guard function β. It helps specify the temporal concepts when and how

long in MEDAL Petri nets. β guards all the transitions to ensure they fire only during the correct temporal

intervals. Introducing β in MEDAL has practical importance because, in physical environments, some events

can occur only during a particular temporal interval. For example, events that depend on sunshine can only

take place during the day. In addition, β can help specify conditions such as a transition will fire only if

the input tokens have been generated within some predefined time interval. In Figure 3.3, for example, if the

generation times of the tokens entering transition T4 are more than 30 minutes away from each other, it

is more likely that the sensor values were unrelated or due to inaccurate sensor readings rather than that

they were actually caused by an explosion. In cases like this, where the sensor readings fail to meet the

temporal requirements of the application, the network should not report the occurrence of an event even if

3.3 Extending MEDAL’s expressiveness 23

the necessary number and types of tokens are present. This increases the accuracy level of the event detection

application, since it prevents the system from reporting a number of false positive event detections.

Spatial logic

The geographic semantics of an application are enforced by the spatial function L. As a guard function for a

transition T, L ensures that the tokens carried by T ’s incoming arcs satisfy the spatial locality conditions. If

L(T) = R, the effective radius of the higher-level event recognized by T should be equal to or smaller than R.

In other words, the locations of the tokens entering T should all be within a circle of radius R in order to

consider them indicative of a particular event. For example, for the application model in Figure 3.3, if the

tokens entering transition T4 are generated at a distance, such that we cannot draw a circle with radius R

around the sensors that generated the readings, it is likely that the reading are not related to event E. In this

way, similarly to β, L could help decrease the number of false positive event detections.

3.3 Extending MEDAL’s expressiveness

MEDAL provides basic support for expressing spatial, temporal, and probabilistic semantics of sensor network

applications. However, based on our experience designing MEDAL models for a number of sensor network

applications, we have observed that this expressiveness is not sufficient. For example, MEDAL could not

explicitly model communication, which is a central component in sensor network applications. MEDAL

also lacked the support to model actuation. In addition, with the constantly increasing complexity of

sensor network applications, the use of feedback control logic in WSN design is becoming more and more

widespread [93, 94]. MEDAL, however, did not have the capability to model feedback control. To address

these shortcomings, we have extended MEDAL’s syntax to include dedicated radio transitions, inhibitor arcs,

and loops. These extensions allow MEDAL to model vital WSN characteristics, such as communication,

actuation, feedback control, and prioritization. These extensions are described in more detail in the rest of

the section.

3.3.1 Communication

Consider a scenario where a wireless sensor network is deployed in an area to monitor and detect the

occurrence of explosions. The network is heterogeneous and there are four types of nodes: temperature

nodes, light nodes, acoustic nodes, and a base station. A sensor node notifies the cluster-head if it detects

values that are above the predefined safety thresholds. The base station is responsible for determining if an

explosion has occurred based on the data it receives from the sensor nodes. This application is very similar

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 24

Figure 3.4: By introducing a dedicated radio transition (transition R1) to MEDAL, we can explicitly model
the network communication.

to the explosion application described in Section 3. We are interested in detecting the same event, explosion,

and the application uses the same types of sensors. The only difference is that the sensing and the decision

processes occur on different nodes. However, since the MEDAL model in Figure 3.3 does not contain this

important detail, it does not fully represent the application logic for the new scenario. Further, if we are to

automatically generate the code for this application, we need to generate four different executables - one for

each type of node. The MEDAL model in Figure 3.3, however, does not give any information about how the

application execution is split among the different nodes.

We address this limitation by introducing a special radio transition that explicitly models the commu-

nication in a sensor network. The radio transition is represented by a solid rectangle - transition R1 in

Figure 3.4. Incoming and outgoing arcs for this transition correspond to messages that are being sent and

received, respectively. The radio transition is an abstract element used to represent communication and is

not associated with any particular node in the network. Therefore, it is often enough to have a single radio

transition in a model. However, multiple radio transitions could be used to improve the readability of the

model in the case of more complex scenarios than the one show in Figure 3.4.

3.3.2 Actuation

Actuation is an important component in many physical systems and sensor networks are not an exception.

We can envision applications with requirements, such as:

• the system should remain in a particular state S unless a predefined condition C is satisfied;

• a set of steps A - Z is executed only upon the occurrence of a specific event E.

3.3 Extending MEDAL’s expressiveness 25

Figure 3.5: The MEDAL model of this explosion application cannot clearly specify the requirement that
the temperature, light, and acoustic nodes should remain awake for 3 minutes after the motion activity has
terminated.

MEDAL, however, does not provide a convenient straightforward way to model actuation. Consider the

following updated explosion detection scenario. A security sensor network is deployed in a field used for

explosion experiments. The area is dangerous and people are allowed to enter the explosion field only if some

maintenance is needed. The sensor network is deployed to help minimize the risk for the people performing

the maintenance. It is used to notify the maintenance team if an explosion occurs close to them so they can

evacuate the area. Based on this scenario, the design team develops the following three requirements:

• The system should be operational when there are people in the field.

• In order to extend the lifetime of the system, the sensor nodes should be in sleep mode if there is nobody

inside the dangerous perimeter.

• To improve safety, the network has to remain awake for 3 minutes after the motion activity has

terminated.

This can be achieved by deploying motion sensors along the periphery of the explosion area. If the motion

sensors detect activity, they wake up the rest of the network which then resumes monitoring the area for

explosions.

Figure 3.5 shows a MEDAL model for this application. The actuation is represented using places M1,

M2, and M3. If the motion sensors are not activated, no tokens can reach places M1, M2, and M3, which

means that transitions T5, T6, and T7 cannot be activated. Therefore, the temperature, light, and acoustic

nodes will remain in dormant state. One significant shortcoming of this model is that it cannot reflect the

requirement that the network should stay awake for additional 3 minutes after the motion sensors have

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 26

Figure 3.6: We introduce inhibitor arcs to help model actuation in MEDAL. In this explosion detection
model, the temperature, light, and acoustic nodes sleep unless the token in place I is consumed, which occurs
only if there is activity in the monitored area. Specifying β = 3 min for transition T2 allows the model to
address the requirement that the network should remain awake 3 min after the last motion activity has been
detected.

stopped reporting activity. According to the model in Figure 3.5, as soon as the last motion token is consumed

by transition T1, the network nodes stop sensing and can go back to sleep. The requirement that the system

should remain awake for 3 minutes cannot be modeled even with the help of the time guard function β

because there is not a suitable transition(s) that we can associate β with to specify that the network should

remain active.

We overcome this insufficiency of MEDAL’s expressiveness by introducing the use of inhibitor arcs. An

inhibitor arc is represented by an arc which terminates with a small circle. It always connects a place and

a transition so that the arc is output-arc for the place and input-arc for the transition. The presence of

an inhibitor arc connecting an input place to a transition changes the transition’s enabling conditions. A

transition is regarded as enabled if each input place, connected to the transition by a normal arc (an arc

terminated with an arrow), contains the necessary number of tokens, and no tokens are present on each input

place connected to the transition by an inhibitor arc [95].

Figure 3.6 presents the MEDAL model for this application. The actuation subnet is shown in the shaded

area. Place I is used as the “inhibitor” place and the token in it prevents transitions T3, T4, and T5 from

firing due to the inhibitor arcs connecting place I and transitions T3, T4, and T5. When the motion sensors

detects activity, which produces tokens in place M, transition T2 consumes the token in place I. At that

point, transitions T3, T4, and T5 are enabled to fire. The arc connecting transition T2 back to place I

creates a loop in the model. This loop guarantees that inhibition can be resumed once the motion sensors

3.3 Extending MEDAL’s expressiveness 27

stop firing. We discuss loops in more detail in Section 5.3.

The model in Figure 3.6 has an important advantage over the model in Figure 3.5. With the help of

the time guard function β we can specify that transition T2 can fire 3 minutes after it has consumed its

necessary input tokens. In this way we can satisfy the last requirement of the application, i.e. that the

network stays awake 3 minutes after the last motion sensor report has been received.

3.3.3 Feedback control

Sensor networks are physical systems which run in constantly changing challenging environments. At the

time of design of a WSN, the sensor network designer does not have a complete a priori knowledge of

all environmental properties and future changes. A common way to address this issue is to make a set of

assumptions about the environment where the network will be deployed. However, since we cannot fully

predict all environment changes, the assumptions made during the design process often turn out to be

incorrect. When this occurs, the most desirable response from the system would be to adapt itself to the

changes that have taken place. The ability to adapt is especially valuable for sensor networks since they are

often deployed in areas that are hard to access and sending maintenance is not always a feasible or a safe

option.

Many WSN applications employ feedback control to adjust to the continually changing environment

and thus improve the performance of the system [93, 94]. Modeling applications that can learn and adapt

to the environment requires that MEDAL is able to express such learning behavior. The application logic

modeled by MEDAL is a one-directional flow of tokens from sensors to events of interest. This logic flow is

not sufficient to represent iterative processes such as learning. To address this limitation, we introduce the

use of feedback loops. Feedback loops allow the language to express iterative behavior, such as learning and

system-tuning.

Consider once again the explosion monitoring scenario. In all previous variations of this example, we have

assumed that the nodes are sensing the environment at a constant rate. However, this might not be the most

energy-efficient approach. What we could do instead is tie the sampling period to one of the parameters the

application is monitoring. For example, we could establish a positive correlation between the temperature

increase rate and the sampling rate. This approach would keep the sensing rate low and thus conserve

energy when the temperature is low. It will also allow the system to promptly adjust the sensing rate if the

temperature starts increasing significantly.

Introducing feedback loops to MEDAL allows us to specify the explosion scenario described above.

Figure 3.7 shows the MEDAL model of the application. For clarity, the feedback control loop is displayed using

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 28

Figure 3.7: MEDAL model of an explosion application where the sensing frequency of the nodes is required to
change based on the value of the temperature in the monitored area. Introducing a feedback loop to MEDAL
(shown with double lines) allows us to model such a requirement.

double-line arcs. The temperature sensor is connected to the controller C through place TC (temperature

control). This controller determines what the sampling frequencies should be based on the measured

temperature values. When the new sampling rate is determined, it is looped back to the sensor nodes.

Place C is a very high-level representation of a controller. If a more detailed model of the controller’s

logic is required by the application, this model can be used to replace place C in the application model.

Figure 3.7 shows an example of a more detailed controller logic. On the right we can see the expansion of

place C into a set of places and transitions. Place V contains information about how quickly the values

reported by the temperature sensor are changing. The controller follows the following algorithm:

• If the temperature is increasing rapidly, transition THH is fired. Transition THH generates a token

which indicates that the sampling rate of the sensor nodes should be significantly increased.

• If the temperature is increasing at a medium rate, transition THM is fired. This transition generates a

token which indicates that the sampling rate of the sensor nodes should be slightly increased.

• If the temperature is not changing or is slightly increasing or decreasing, transition THS is fired. This

transition generates a token which indicates that the sampling rate of the sensor nodes should remain the

same.

3.4 Additional modeling concerns 29

• If the temperature is decreasing, transition THL is fired. This transition generates a token which

indicates that the sampling rate of the sensor nodes should be decreased.

In this way, the controller determines its decision based on the rate at which the temperature values are

changing. More complex controllers can be modeled in a similar way.

3.4 Additional modeling concerns

3.4.1 Node mobility

The physical properties of the underlying network are often orthogonal to the application logic. An advantage

of MEDAL is that it allows the application designers to abstract away the application logic from the dynamics

of the network topology. For example, if the application will be executed on a network where some of the

nodes are mobile, the MEDAL model of the application might not need to reflect the node mobility. Consider

again the explosion detection application on Figure 3.3. The network topology might be such that the sink

collecting all information from the sensors is mobile. This, however, does not change the high-level application

logic - if the base station receives messages indicating high values of temperature, light, and sound, and those

values satisfy the application’s temporal and spatial constraints, the base station should conclude that an

explosion must have occurred. The location of the explosion can be determined based on the location where

the messages were generated rather than the current location of the sink.

MEDAL can also be used to model applications for which the node mobility is a vital part of the application

logic. Consider, for example, an application where the designers need to specify the following logic: When the

mobile sink receives information from sensors indicating that there is an explosion, it should move in the

direction of these sensors, so it can collect data about the explosion quicker. Figure 3.8 shows the MEDAL

model for this application scenario. In this model there are four types of nodes: temperature nodes, light

nodes, acoustic nodes, and sink nodes. When the temperature, light, or acoustic nodes detect values above

their predefined thresholds, they send a message to one of the mobile sinks. If a mobile sink receives messages

from all three types of sensing nodes and these messages satisfy the spatial requirements of the application,

transition T7 is fired. This firing indicates that 1) an explosion has occurred and 2) the sink should move

towards the area of the explosion. The feedback loop that goes through place M (movement), which is a

high-level representation of the logic performing the move, models the sink movement.

Figure 3.8 also shows a more detailed model of the movement logic. Transition TDist evaluates the

distance between the sink and the detected explosion. If the distance is within the requirements of the

application, i.e. the sink is sufficiently close to the explosion, transition TC fires and the system reaches place

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 30

Figure 3.8: MEDAL can be used to explicitly model mobility application requirements. This explosion
application model specifies that when an explosion is detected, the mobile sink should move towards the area
of the explosion. The figure also shows a more detailed view of the movement logic.

S, which indicates that the sink should stop moving. If, however, the sink is too far from the area where the

explosion was detected, transition TF fires and the sink reaches place MN (movement necessary). Transition

TDirection evaluates the direction in which the sink should move to get closer to the explosion, and transition

TMove sends the instruction for the move. The loop in the movement logic, which goes back to place LE,

allows the system to reevaluate the new distance between the sink and the explosion location after some

specified time during which the sink has been moving towards the desired area.

3.4.2 Prioritization

Currently most sensor networks run one application, where the application focuses on the detection of one

particular type of event, such as a fire, a volcano eruption, or an elderly person falling in their home. However,

we expect to see two trends in the near future: 1) the complexity of sensor network applications will increase

and 2) multiple applications will be collocated on the same sensor network. These developments, although

beneficial, will bring along the question of inter- and intra-application prioritization. Consider the following

scenario where two applications are collocated on a sensor network deployed in an office building. The first

application is for fire detection. The second application monitors the everyday patterns of the people in

the building and uses this information to save heating energy. The network is resource constrained and

3.5 MEDAL aided analysis for sensor network applications 31

although the two applications can coexist in general, there might be situation where one application needs

to monopolize the resources. For example, if the fire detection application signals the presence of fire, all

network resources should be directed towards that application in an effort to find safe egress routes, rather

than towards saving energy.

Petri nets with inhibitor arcs are shown to be equivalent to Petri nets with priorities [96]. Therefore, the

inhibitor arcs, which we added to MEDAL to model actuation, can be used to specify prioritization. An

inhibitor arc can be used to represent the prioritization condition between two transitions. For example, in

Figure 3.6, transitions T3, T4, and T5 cannot fire if transition T2 is enabled. Therefore, transition T2 has a

higher priority than transitions T3, T4, and T5, which belong to the same priority group. In addition to

intra-application priorities, inhibitor arcs can be used in a similar way to model the priority relationships

between applications.

3.5 MEDAL aided analysis for sensor network applications

3.5.1 Real-time analysis

An advantage of MEDAL is that it can also be used for real-time analysis of sensor network applications. For

example, a safety requirement for the explosion detection application could be that explosions are detected

within 5 seconds of their occurrence. If the application takes longer to detect an explosion and send an alert,

there might not be enough time to evacuate the people in the dangerous area. The MEDAL model of the

explosion application could be used to help determine if the application is able to meet this requirement.

Figure 3.9 shows the application model from Section 5.1. During the design of the application, the sampling

periods for the temperature, light, and acoustic sensors have been set to 3, 2, and 4 seconds, respectively. In

addition, based on knowledge about the nodes that are going to be used and the environment, the designers

have determined that, due to interference, transmitting a message over the radio could take up to 2 seconds

in the worst case. Since the rest of the transitions in the model represent simple computations, the execution

times associated with them could be neglected for this particular real-time application analysis.

Figure 3.9 shows the time information associated with each transition. The time notations, which are part

of the MEDAL specification, allow us to perform the required real-time analysis of the system. Analyzing

this model reveals that, in the worst case, an explosion might be detected 6 seconds after it has occurred - 4

seconds for the sound to be detected plus 2 more seconds for delivering the message over the radio. This,

however, means that the application may not be able to meet its real-time requirements. Therefore, either

the sampling period of the acoustic sensor has to be decreased to at most 3 seconds, or the network topology

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 32

Figure 3.9: The MEDAL model of an application, together with time notations associated with the transitions
in the model, can be used to perform real-time analysis.

should be altered so that successfully sending a message over the radio takes at most 1 second in the worst

case. Although this is a simplistic example, similar analysis could be applied in much more complex systems.

3.5.2 Safety analysis

In scenarios where a sensor network is used to monitor for the occurrence of harmful events, MEDAL can

help in both securing the people and decreasing the damage. Figure 3.10 shows the MEDAL model of a

sensor network application used to monitor the emission of dangerous gasses in a factory. Gases A, B, and C

could be by-products of the manufacturing process. Gases A and B alone are not harmful, but if they are

mixed for more than an hour the resulting gas is dangerous. On the other hand, the presence of gas C alone

for more than 40 minutes is also dangerous. Places A, B, and C are reached when gases A, B, and C are

present respectively. Transition T10 is fired when both gas A and gas B are present. Similarly, transition T11

fires when gas C has been detected.

The marking of the model on Figure 3.10 indicates that the sensor network has detected the presence of

only gas A. In this case, by analyzing the different paths of the model we can conclude that the safe time

period to be in the factory is:

min [(β(AT8,B) + β(communication) + β(AT10,E)),

(β(AT9,C) + β(communication) + β(AT11,E))].

If gas B is consequently detected, the safe period to be in the building will be at most β(AT10,E), which is

an hour. If gas C is detected, the safe period to remain in the building will be β(AT11,E), which is at most

3.6 Evaluating MEDAL’s modeling properties 33

Figure 3.10: MEDAL model of an application used to detect dangerous gases. The network can detect three
types gases, A, B, and C. Exposure to the mixture of gas A and gas B for longer than an hour is considered
dangerous and so is the exposure to gas C for more than 40 min.

40 min. Therefore, if the system is in the state shown in Figure 3.10, the safe period to be in the factory is

between 40 min, in the worst case, and infinity, if gas B and gas C are never produced.

Had the marking of the model been such that there was also a token in place B , the safe period to remain

in the factory would have been:

min [(β(communication) + β(AT10,E)), (β(AT9,C) + β(communication) + β(AT11,E))]

= min[(1 hour), (β(AT9,C) + β(communication) + β(AT11,E))]

Since both gas A and gas B are present, people can remain in the building for at most an hour. If gas C is to

be detected, the safe period to stay in the factory would be less than 40 min. Therefore, with a marking of

the model indicating the detection of both gases A and B, the safe period to remain in the factory is between

40 min, in the worst case, and an hour otherwise.

Generally speaking, this kind of analysis relies on the analysis ability of Petri nets to compute the delays

on different paths to a particular target event given a specific marking. Before the system is even deployed,

various potential markings can be tested to see what the response of the application model will be under

different configurations.

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 34

SQL Snlog Macroprogramming TLA+ Abstract SNEDL MEDAL
regions

Expressiveness

Probabilistic events X X
Hierarchical model � X X X
Spatial semantics � X X X X
Temporal semantics X X X X
Communication X X � X X
Actuation X X X X
Feedback control X X

Analysis properties

Real-time analysis � � X
Safety analysis � X X
Failure analysis � X X X

Graphical support

X X

Table 3.1: Modeling properties of sensor network event description languages
Legend:�- a language partially has the property; X- a language has the property.

3.6 Evaluating MEDAL’s modeling properties

To evaluate MEDAL, we have compared its expressiveness to that of a number of other specification languages

used in WSN applications. We evaluate the languages in three main categories: expressiveness, analysis

properties, and graphical support. The results of the comparison are shown in Table 3.1.

3.6.1 SQL

SQL and SQL-like semantics have been used by the majority of work on event description in sensor networks.

Not having the ability to specify essential sensor network properties, such as collaborative decision making,

communication, and non-deterministic events, renders SQL not very suitable for describing sensor network

events. In Table 3.1 we mark SQL’s ability to model hierarchical systems as partial since using complex

queries does allow the specification of a hierarchical system. However, hierarchical data could be hard to

both model and traverse when using SQL. Further, SQL does not support any of the analysis properties in

Table 3.1.

3.6.2 Snlog

Snlog [97], a dialect of Datalog [98], is a declarative data-centric language for describing data management

and communication in a WSN. Snlog has been used to specify a variety of WSN protocols, services, and

applications, such as routing, data collection, link estimation, and localization. Snlog provides sensor network

3.6 Evaluating MEDAL’s modeling properties 35

designers with the opportunity to develop short sensor network programs using a high-level language. In

addition to data collection and processing, the language provides mechanisms to specify communication, both

node to node and broadcasting, and actuation. However, despite its advantages, Snlog exhibits drawbacks

similar to those of SQL: it does not support the specification of probabilistic events, hierarchical models,

temporal or spatial semantics, or feedback control. Also, it does not provide any graphical support or analysis

capabilities.

3.6.3 Macroprogramming

Macroprogramming is another abstraction mechanism used for programming sensor networks. Macropro-

gramming allows network designers to program the global behavior of the application using a high-level

specification, rather than writing low-level code for the individual nodes. This approach treats the sensor

network as one whole unit, rather than producing specific software for each individual node.

There is a significant body of work done on macroprogramming WSNs, including ATaG [99], Kairos [100],

MacroLab [101], and Regiment [102], and the developed macroprogramming languages and frameworks

differ in many ways. However, macroprogramming approaches, in general, do not have the ability to

model probabilistic events or represent hierarchical models. In addition, when compared to MEDAL, they

have restricted analysis capabilities. A few solutions, such as MicroLab, can be used to perform real-time

analysis. ATaG’s network and application graphs could help with failure analysis. However, none of the

existing macroprogramming solutions provides substantial application analysis capabilities. Further, the

macroprogramming approaches lack graphical support.

3.6.4 TLA+

TLA+ is a specification language introduced by Leslie Lamport in 1998 [103, 104]. It is used for the

specification of distributed, asynchronous systems and real-time concurrent processes. The language joins

linear temporal logic and classical set theory providing specification and verification of software and hardware

systems. TLA+ has been used for specification of WSN systems in a number of papers [105, 106]. As shown

in Table 3.1, TLA+ has no support for expressing probabilities. In addition, it cannot be used to model

feedback control and is cumbersome when modeling communication. Further, it does not provide convenient

abstractions to perform safety analysis or real-time analysis and it has no graphical support.

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 36

3.6.5 Abstract regions

Abstract regions is a suite of general-purpose communication primitives introduced by Welsh et al. [107].

The primitives provide high-level interfaces for communication, data sharing, and performing aggregation on

shared variables. The regions may be defined in terms of radio connectivity, geographic location, or other

node properties. Abstract regions can support a wide range of sensor network applications, such as tracking,

routing, and event detection using directed diffusion. They can also form the basis for other, higher-level

communication models. Among the implemented abstract region primitives are:

• N-radio hop: nodes within N radio hops;

• N-radio hop with geographic filter: nodes within N radio hops and distance d ;

• k-nearest neighbor: k nearest nodes within N radio hops;

• k-best neighbor: k nodes within N radio hops with the highest link quality;

• approximate planar mesh: a mesh with a small number crossing edges;

• spanning tree: a spanning tree rooted at a single node, used for aggregating values over the entire

network.

Although the abstract regions provide modeling support for spatial semantics and communication, they

cannot be used to model probabilistic events, hierarchical structures, temporal semantics, actuation, or

feedback control. Further, abstract regions do not provide any analysis capabilities or graphical support.

3.6.6 SNEDL

SNEDL [30] is the language closest to MEDAL in terms of syntax. However, SNEDL lacks the ability to

model fundamental sensor network properties, including communication, actuation, and feedback control.

Being an enhanced Petri net itself, SNEDL has almost identical analysis capabilities to MEDAL. However,

it can perform only partial real-time analysis, since it cannot model communication, and communication

greatly affects the time-related properties of WSN applications.

3.6.7 MEDAL

The extensive analysis capabilities of Petri nets are a great asset to MEDAL. There are multiple analyses

that can be performed on the model of an application and Table 3.1 lists some of them. For example, the

MEDAL model of an application can be used to aid safety analysis by answering questions such as: 1) Is it

possible and under what conditions will event A occur? 2) How much time do we have to safely evacuate

people out of a hazardous area? 3) What is the worst that can happen if events A, B, and C occur together?

Similarly, the MEDAL model of an application can be used for high-level failure analysis. If the system fails

3.7 Experience with MEDAL: Beef monitoring 37

to detect an event, we can use the MEDAL model to generate tests to help determine what the possible

causes for this failure could be. For example, if an explosion detection application fails to detect an explosion,

analyzing the MEDAL model can help us identify some of the possible high-level failures, such as: 1) the

temperature, light, or acoustic sensor nodes might have run out of power; 2) a message might have been lost;

3) the radio of the cluster-head node could be broken; 4) the thresholds might have been set too high. We

can employ this information to generate the appropriate tests and use them to verify which of the failures

could have occurred.

3.7 Experience with MEDAL: Beef monitoring

In order to illustrate the power of MEDAL, we present a specific sensor network application with a detailed

MEDAL description. Suppose that a sensor network has been installed in a beef storing facility to monitor

the environmental conditions. Since beef and meat in general are considered potentially hazardous food by

the FDA, there are very strict regulations about the conditions in which they should be stored. The wireless

network has to monitor the temperature, relative humidity, and air circulation rates. It is also preferable

that beef is stored in the dark, for light accelerates the oxidation of fat with the liberation of free fatty acids

and the production of rancidity [108]. According to regulations for storing beef the temperature must be

maintained within the range -1�; to 5�, the mean air speed over the product should be above 0.5 m/s, and

the relative humidity must be maintained below 95% or, if the product is stored for longer than 72 hours,

below 90% [108]. As these conditions (low temperature and darkness) are not comfortable for humans, it is

desirable that the monitoring and control of beef be automated.

There are five types of nodes in the network:

1. light sensors to detect sunlight;

2. temperature sensors;

3. humidity sensors;

4. air circulation sensors;

5. a base station node.

The MEDAL model of the beef monitoring application is shown in Figure 3.11. There are four sensor

places: SL, ST , SH , and SAC model the light, temperature, humidity, and air circulation sensors, respectively.

There are also places that specify different local events and system state: L (light), HL (high light), T

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 38

Figure 3.11: MEDAL diagram for a beef monitoring sensor network application. There are four types of
sensor nodes in the network: light, temperature, humidity, and air circulation. When any of the food safety
conditions are violated, the respective sensor sends a message over the radio to notify the base station.

(temperature), HH1 and HH2 (high humidity), HM (medium humidity), LAC (low air circulation), and HB

(hazardous beef).

The MEDAL model specifies the application behavior if the environmental conditions do not meet the

sefety requirements:

� To model the condition that the meat should be exposed to light for only a limited period of time,

transition TL is fired when light is detected. If light is present for more than a specified length of

time, transition THL (high light) is fired, which will cause the node to send a message over the radio,

transition R1, to the base station. In this model, to make the application logic easier to follow, we have

used separate radio transitions for all sensor nodes.

� The MEDAL model also specifies the condition that the temperature should be maintained between

-1�to 5�. If the temperature is not within the specified range, transition TT is fired and the temperature

node sends a radio message to inform the base station.

� If the humidity rises above 90%, transition TMH1 is fired, and if the humidity remains above 90% for

more than 72 hours, transition TMH2 fires and the humidity sensor sends a message to the base station.

However, if the humidity rises above 95%, transition THH is fired, the system is in a state of high

humidity (place HH1), and the base station is informed.

3.8 MEDAL models of existing applications 39

� If the air circulation falls below 0.5 m/s, transition TAC is fired. The system is then in a state of low

air circulation, place LAC, so the air circulation node sends a message to the base station.

3.8 MEDAL models of existing applications

We empirically evaluate the expressiveness of MEDAL by specifying the models of sensor network applications

that other researchers have built. In the rest of this section we present the MEDAL models for a volcano

monitoring application [1], a rural fire detection application [2], and an early warning flood detection

application [3].

3.8.1 Volcano monitoring application

A volcano monitoring sensor network was deployed on Volcan Reventador in 2005 [1]. The network consisted

of 16 nodes, where each node was equipped with a seismic and an acoustic sensor. The application sensed

data at a high rate, but the radio bandwidth of the network did not allow the application to forward all of

the sensed data to the base station. Instead, the sensor nodes stored the sampled data in their local flash

memory. Each node ran an event detector on the locally sampled data.

The event detector has to compute two exponentially weighted moving averages: a short-term average and

a long-term average. When the ratio between the short-term average and the long-term average exceeds a

predefined threshold, the detector is fired. The threshold allows nodes to distinguish between weaker signals,

likely caused by distant quakes, and signals from nearby volcanic activity.

When the local event detector fires, i.e. when the node determines that it detects a nearby volcanic

activity, the node sends a message to the base station. If the base station receives a sufficient number of

reports within a certain time window, the base station initiates data collection from the whole network.

Nodes can only store 20 minutes of eruption data locally. However, downloading 60 seconds of data from all

16 nodes in the network to the base station takes about one hour. Therefore, sampling and reporting events

is paused while the nodes are uploading their locally stored data to the base station.

Figure 3.12 shows the MEDAL model for this volcano monitoring application. There are two types of

nodes in the network: sensor nodes and a base station. Each sensor node is equipped with a seismic and an

acoustic sensor, modeled by place S and place A, respectively. At each time step, the application calculates

the two moving averages, short-term average (STA) and long-term average (LTA), for the seismic and the

acoustic readings using the locally stored sensor data. Transition TCMP1 and transition TCMP2 are used

to compare the difference in the averages from the seismic and the acoustic readings, respectively. If the

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 40

Figure 3.12: MEDAL model of a volcano monitoring applications. There are two types of nodes in the
network: sensing nodes, containing seismic and acoustic sensors, and a base station node. For clarity, the
application activities when a nearby volcanic activity has been determined are in bold.

difference is above the predefined detector threshold, the system reaches place HD (high difference) and the

base station is notified.

Upon the reception of a sufficient number of radio messages, indicating a nearby volcano activity, the

base station initiates data collection (place DC). To achieve this, the base station sends a radio message

to the rest of the nodes in the system. Sending such a message, deposits a token in place I. This token

achieves two things. First, since place I is connected through inhibitor arcs to transitions T1 and T2, having

a token in place I indicates that the sensing for the seismic and acoustic sensors is paused. Second, a token in

place I enables transition TLM , which is responsible for sending all readings stored in local memory to the

base station over the radio. The cycle between transition TLM and place I, guarantees that while there are

readings that have not been sent yet, the sensing will be suspended and the transmission of information over

the radio will continue.

3.8 MEDAL models of existing applications 41

Figure 3.13: MEDAL model of a rural and forest fire detection applications. There are four types of nodes in
the network: sensing nodes, containing fire infrared radiation and smoke, cameras, a central server, and a
computer, which is used to visualize the data from the camera.

3.8.2 Rural fire detection application

The next WSN application we have modeled with MEDAL is a rural and forest fire detection application [2].

The network was deployed in Madrid, Spain and spanned a 2km diameter circle. The network contains

sensor nodes, responsible for sensing the environment, wireless cameras, a central server, and computer used

for visualizing the camera data. The sensor nodes are equipped with a sensor to monitor the fire infrared

radiation and a smoke sensor. When a node detects fire radiation and smoke above the predefined application

thresholds, it would send a fire alarm message to the central server.

The central server has a database that associates each sensor node with a particular location and with a

set of the closest cameras deployed in that area. Upon identifying the cameras that are closest to the node

which has sent the alarm, the central server sends a message to these cameras instructing them to move

their objective towards that sensor. The images from all cameras located near the affected zone are sent to a

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 42

computer placed in the firefighter control room. In this way the system offers information about the location

and behavior of the fire to the firefighter squad.

Figure 3.13 shows the MEDAL model of this fire detection application. Each of the four nodes in the

network, sensor nodes, cameras, the central server, and the visualization computer, is shown in a separate

box. Each fire-sensing node has a fire radiation sensor, place FR, and a smoke sensor, place S. If the node

detects high levels of fire infrared radiation or high levels of smoke, transition TFR or transition TS is fired,

respectively. When the application senses abnormal levels for both physical parameters, the node reaches an

alarm state, place A. If a node detects the presence of fire, it has to send a message to the central server. The

radio communication between the sensor nodes and the central server is modeled with radio transition R1.

When the central server is informed of a fire alarm, it determines the location of the fire using the

coordinates of the node that has sent the alarm. The central server then locates the cameras closest to that

location, transition TLC , and prepares frames to be sent to these cameras. A frame contains instructions

on how each camera should readjust itself so it can provide the best view of the affected area. The central

server sends those frames to the cameras over the radio (radio transition R2). Once the cameras have been

adjusted, they send their information to a computer station, which is used to visualize the camera data.

3.8.3 Early warning flood detection application

Basha et al. have developed an application for river flood prediction [3]. The system contains three types of

nodes:

• Sensing nodes The sensing nodes measure the variables needed to detect and predict floods. There are

three different sensor nodes used in the network: temperature, pressure, and rainfall. The nodes analyze the

data and compute statistics over each hour. They also send the sensed information over the radio to the

closest computation node.

• Computation nodes Computation nodes have more processing capacity than the sensing nodes. When

it receives readings from the sensor nodes in its area, a computation node runs the data through the flood

detection model, computes the uncertainty of the model prediction, and requests additional data from the

sensing nodes if it needs to reduce the uncertainty. If a computation node detects a flood, it sends a message

to an interface node.

• Interface nodes The interface nodes provide user interface to the network. They are used to access

data and predictions regarding the event of interest. The interface nodes communicate with the computation

nodes to provide any external requests for data and receive all of the existing network data.

3.8 MEDAL models of existing applications 43

Figure 3.14: MEDAL model of a flood detection application. There are three types of nodes in the network:
sensing nodes, which include pressure, temperature, and rainfall sensor nodes; computation nodes, which
evaluate the probability of a flood; and interface nodes, which can be used to visualize the data and send
requests to the computation nodes.

Figure 3.14 shows the MEDAL model of the flood detection application. The pressure, temperature, and

rainfall nodes send their readings to a computation node when these readings are higher than the predefined

respective application thresholds. When a computation node receives a reading from a sensing node, the

system is in place DR. If the computation node is not sufficiently certain in the presence of a flood, transition

TUF fires and the node requests additional data from the sensor nodes. If, however, the computation node

has sufficient information to determine if there is a fire in the system, transition TF fires and the system

reaches place F. If a flood is detected, the communication node notifies an interface node. The interface

node is responsible for processing the data and visualizing it (place V). An interface node could also send a

message to the computation nodes if it needs any additional data.

Chapter 3 coMpact Event Description and Analysis Language (MEDAL) 44

3.9 Summary

In this chapter we have described MEDAL, a formal event description language which is an enhanced Petri net.

This language can capture the structural, spatial, and temporal characteristics of a complex sensor network

event detection application. We have also introduced a number of syntax extensions to MEDAL, which allow

the language to model additional fundamental sensor network properties, including communication, actuation,

and feedback control. The MEDAL model of an application can also be used to analyze real-time and safety

properties of the application.

As a proof of concept, we describe our experience using MEDAL to specify a beef monitoring application.

Further, we have used MEDAL to model a number of existing sensor network applications, including a volcano

monitoring application, a rural fire detection application, and an early warning flood detection application.

Our experience shows that MEDAL can model a wide variety of event-driven applications.

Chapter 4

Applying Formal Methods to

Modeling and Analysis of Real-Time

Data Streams

S
ituation awareness (SA) has been recognized as a critical foundation for successful decision-making

across a broad range of complex real-time applications, including aviation and air traffic control [109],

emergency response [110], and military command and control operations [111]. SA is especially

important for applications where the information flow can be high and poor decisions may lead to serious

consequences (e.g., piloting a plane, or treating critically injured patients). These applications need to operate

on continuous unbounded streams of data to understand how incoming information and events could impact

the system, both now and in the near future. The streaming data may come from various sources, such as

sensor readings, router traffic traces, or telephone records. Therefore, the capability to manage data streams

becomes an essential application requirement.

These applications also have inherent real-time requirements, and queries on the streaming data should

be finished within their respective deadlines. Consider a surveillance system as an example. The system

is expected to detect if a target enters the monitored area and alert the controlling party (e.g., human

operators). If the detection does not occur within a certain deadline, the target may be missed. However,

due to the dynamic nature of the input data streams, the stream queries may have unpredictable execution

cost. First, the arrival rate of the data streams can be volatile, which leads to variable input volumes to

the queries. Second, the content of the data streams may vary with time, which causes the selectivity of the

45

Chapter 4 Applying Formal Methods to Modeling and Analysis of Real-Time Data Streams 46

query operators to change over time. The variable stream behavior and the irregular workload pattern make

maintaining the desired level of QoS a challenging task.

Formal data stream analysis can help tremendously in achieving the desired levels of QoS for real-time

data stream applications. Such analysis can provide query designers with better understanding of the behavior

of the real-time data streams they are working with. It could also be used to more accurately predict changes

in the data arrival patterns and the query workloads. In addition, analysis of the data admission controller,

responsible for determining the amount of input stream data to the queries, could aid the design of better

controllers that can adapt faster to workload fluctuations. To perform such analysis, we need a specification

language that will allow us to formally model real-time data streams, stream queries, as well as data admission

control mechanisms.

In this chapter we describe how MEDAL is used to model and analyze real-time data stream applications.

First, each query plan can be specified with a MEDAL model. Second, MEDAL is also capable of modeling

the data admission controller. MEDAL’s ability to model both the queries and the data admission control

enables us to combine the two main components of data stream applications, query logic and control,

into a single comprehensive system model. Third, using the MEDAL query models to analyze different

system properties, such as the behavior of the data streams, the cost and selectivity of different query

operators, and the real-time properties of the queries, can significantly improve the QoS of the applications.

Further, MEDAL-aided analysis could also help admission control designers build better and more accurate

prediction-based controllers.

The main contributions of the work presented in this chapter are:

1. Applying MEDAL to model real-time data stream queries and stream management mechanisms.

2. Integrating query logic and data control models into a comprehensive data stream application model.

3. Introducing how MEDAL can be used for analysis of real-time data streams, such as query plan

optimization.

4. Demonstrating MEDAL’s ability to model a diverse set of data stream management configurations.

4.1 System model

A data stream is defined as a real-time, continuous, ordered (implicitly by arrival time or explicitly by

timestamps) sequence of data items [112]. A data stream management system (DSMS) is a system especially

constructed to process persistent queries on dynamic data streams. DSMSs are different from traditional

4.1 System model 47

database management systems (DBMS) in that DBMSs expect the data to be persistent in the system

and the queries to be dynamic, whereas DSMSs expect dynamic unbounded data streams and persistent

queries. Emerging applications, such as sensor networks, emergency response systems, and intelligent traffic

management, have brought research related to data streams in focus. These applications inherently generate

data streams and DSMSs are well suited for managing the produced data.

4.1.1 Periodic query model

So far, DSMS research has mainly been focused on using a continuous query model [113, 33, 114, 115]. In

a continuous query model, long-running continuous queries are present in the system and new data tuples

trigger the query instances. These incoming data tuples are then processed and the corresponding query

results are updated. The continuous model performs well when the system workload is stable and the system

has sufficient resources to finish all triggered query instances. However, since the number of query instances

and the system workload depend directly on the input, which could be extremely volatile, this continuous

query model is not appropriate for real-time applications that need predictable responses. Another drawback

of this model is that, since the query execution is driven by the data rate of the system, the application does

not have control over the frequency and the deadlines of the queries. For applications where some queries

have higher priority and are more important than others, it might be desirable to have the ability to execute

the important queries more often. This, however, is hard to accomplish in a continuous query model.

To address this, we employ a periodic query model (PQuery) for data stream queries with timing

constraints [31]. In this periodic query model, every query has an associated period. Upon initialization,

a query instance takes a snapshot of the data streams at its inputs. The query input does not change

throughout the course of the query instance execution even when there are new data tuples arriving over the

data streams. Instead, the newly arrived data tuples are processed by the next query instance. In this way,

the query execution is not interrupted or aborted by new incoming data. When an application receives the

results of a periodic query instance, it is with the understanding that these results reflect the state of the

system when the query instance was initiated. In the periodic query model, the application can specify the

query periods and deadlines. These parameters can be used to calculate the number of queries in the system

at any given time, which allows us to estimate the query workloads much easier than with the continuous

query model.

Chapter 4 Applying Formal Methods to Modeling and Analysis of Real-Time Data Streams 48

4.1.2 Query plan and query execution

A DSMS contains long-running and persistent queries. When a query arrives in the system, it is registered

and is triggered periodically based on its specified period. All queries are converted to query plans (containing

operators, queues, and synopses) statically before execution. Queues in a query plan store the incoming data

streams and the intermediate results between the operators. A synopsis is associated with a specific operator

in a query plan, and stores the accessary data structures needed for the evaluation of the operator. For

example, a join operator may have a synopsis that contains a hash join index for each of its inputs. When

the join operator is executed, these hash indices are probed to generate the join results.

Consider the following example scenario where a traffic monitoring system has been deployed to constantly

analyze the traffic in a particular city and determine the most suitable times for delivering supplies to the

grocery stores. To achieve the desired situation awareness, the system analyzes data streams from speed and

traffic sensors. We perceive events as the fundamental building blocks of a situation. Therefore, achieving

situation awareness requires that we identify a particular set of events and perform our situation assessment

and analysis based on their occurrence. One type of event that our traffic monitoring application is interested

in is trucks that travel during light traffic in specific lanes, such as non-HOV lanes. For its consequent traffic

analysis, the application calculates the average speed of these trucks. The SQL data stream and query

specifications are given as follows:

Stream : Speed (int lane, float value, char[8] type);

Stream : Traffic (int lane, char[10] type);

Relation : Lanes (int ID, char[10] type, char[20] road);

Query : SELECT avg (Speed.value)

FROM Speed [range 10 minutes], Lanes,

Traffic [range 10 minutes]

WHERE Speed.lane = Lanes.ID AND

Lanes.ID = Traffic.lane AND

Speed.type = Truck AND

Traffic.type = Light

Period 10 seconds

Deadline 5 seconds

4.1 System model 49

Figure 4.1: An example query plan.

The query above operates on data streams generated by speed and traffic sensors and calculates the

average speed of trucks in particular lanes during light traffic over a 10-minute window. The query needs to

be executed every 10 seconds and the deadline is 5 seconds after the release time of every periodic query

instance. The query plan generated based on this query is shown in Figure 4.1. It contains three types of

query operators (range window operator, join operator, and aggregate operator) and two types of

queues - one for storing the output of the range window operators and one for storing the output of the

join operators.

After the query plan is generated, the operators are sent to the scheduler to be executed. Depending

on the query model (e.g., continuous or periodic), a suitable scheduling algorithm, such as round-robin or

earliest deadline first, could be chosen so that the system requirements are met.

4.1.3 Data admission controller

In many real-time applications, partial results are more desirable than queries missing their deadlines.

Therefore, the system might trade off data completeness for better query miss ratios at run time. We employ

an overload protection mechanism called data admission controller, which trades data completeness for better

query miss ratios. The basic approach is to reduce the incoming data volume when the system becomes

overloaded. The load shedding process is performed before the data stream tuples are processed by the queries.

Operators perform data admission using random dropping. Though not covered in this chapter, semantic

Chapter 4 Applying Formal Methods to Modeling and Analysis of Real-Time Data Streams 50

Figure 4.2: Data admission controller.

dropping can be used to improve system performance if query semantics are considered. The system also

allows the data sources to mark the important data tuples to make sure they get processed. The importance

flag is marked by setting the highest bit of the data tuple timestamp. The data tuples with flags are admitted

to the system regardless of the current data admission ratios. However, operators maintain the target data

admission percentage by dropping more unmarked data tuples.

The data admission process is controlled with a proportional-integral (PI) controller as it is simple to use

and provides acceptable response time to workload fluctuations. A proportional-integral-derivative (PID)

controller is not suitable in this situation because of the dramatic changes that might occur in the workloads

of query systems from one sampling period to another. Adding a derivative control signal amplifies the

random fluctuations in the system workloads [116].

The data admission control architecture is shown in Figure 4.2. The query miss ratio (MR) is sampled

periodically and compared against the miss ratio threshold specified by the application. The result is used by

the PI controller to calculate the data admission control signal ∆PAC . The control signal is derived with the

equation:

∆PAC = PMR × (MRST −MRt) + IMR × (MRLT −MRt),

where MRST and MRLT are the short-term and long-term query miss ratios sampled in the last sampling

period. MRt is the maximum miss ratio allowed by the application. PMR and IMR are controller parameters

that specify the significance of the short-term and the long-term query miss ratios when calculating the data

admission control signal. The controller parameters determine the behavior of the controller. The process of

tuning these parameters, i.e. controller tuning, is not the focus of our work. Readers are referred to [117]

and [118] for details on the analysis and tuning of controllers.

In order to provide service differentiation, the system uses multiple data admission controllers. Each

service class is associated with a designated data admission controller whose parameters have been specifically

tuned for that particular service class. The use of multiple controllers is further discussed later when we

model a number of different DSMS configurations.

4.2 Modeling queries and control 51

Figure 4.3: Using MEDAL to model the query plan from Figure 4.1. The query operators are modeled using
transitions, while application state and data are represented with the help of places.

4.2 Modeling queries and control

An advantage of MEDAL is that it can be used to specify a comprehensive application model by combining

the admission controller and the query plan models into a single MEDAL model. This is very beneficial for

two main reasons. First, it allows us to model the direct relationship between the data admission controller

and the query inputs. Second, integrating the query plan models and the data admission control logic gives

us a better understanding of the correlation between the query results and the stream input volume.

4.2.1 MEDAL query plans

MEDAL can seamlessly be applied to modeling real-time query plans. The same query plan from Figure 4.1

is specified in Figure 4.3 using MEDAL. The different types of query operators are modeled with the help

of transitions (transitions T1 - T7). Application state and data are represented using places. Places with

interrupted border are used to model data input (places S, T, and L). We introduce the use of shaded places

(place L) in order to distinguish between input relations, which tend to be static for the most part, and input

data streams. Therefore, the set of places P in MEDAL can now be expressed as P = S
⋃
R
⋃
E, where S

represents the input streams, R represents the input relations, and E represents the higher level events and

intermediate results.

Chapter 4 Applying Formal Methods to Modeling and Analysis of Real-Time Data Streams 52

4.2.2 Data admission control

There is an array of real-time data stream applications that use feedback control to adjust to the constantly

changing environment and improve system performance [94, 93]. To model feedback control, MEDAL employs

a control theoretic approach which adopts the controller synthesis paradigm from control theory. Given a

model of the system’s dynamics and a specification of the desired closed-loop behavior, the objective is to

synthesize a controller to achieve the specified behavior. This approach relies on the clear distinction between

the system and the controller and requires that the information flow between them is explicitly modeled. We

meet this requirement by designing two separate MEDAL models - one for the query plan and one for the

data admission controller. The two models are then composed into a single application MEDAL model which

allows us to analyze the interactions between the system and the data admission controller.

The feedback control loop in Figure 4.3 is shown in bold. Transition T8 compares the query deadline

miss ratio to a predefined miss ratio threshold. If the observed miss ratio is higher, controller C calculates

the new data admission ratio and propagates it to the system. Place C is a very high-level representation

of a controller. A more detailed model of the controller’s logic can be designed with MEDAL and used to

replace place C, similarly to the MEDAL model in Figure 3.7.

MEDAL can be used to model different levels of abstraction. For example, analogously to using place

C to model the entire controller logic, we can abstract away the query plan from Figure 4.3. The query

plan could be modeled with a single place, similarly to how Figure 4.2 models a DSMS. This is especially

helpful during the controller design phase, since it allows us to treat the query as a simple linear system

without considering how the internal parts of this system interact. Using this simplified model of the query

plan, the appropriate values for the PMR and IMR controller parameters are determined through system

identification [119]. Once the controller is designed, we can expand the query plan model and use it to

additionally adjust the controller to better reflect the query properties. The same abstraction approach can

also be applied when there are multiple registered queries. The whole query set is abstracted away using a

single place, which can consequently be expanded once the controller is designed.

Another requirement introduced by the control theoretic approach is that changes in the system are

observable [120]. MEDAL achieves observability by explicitly identifying and modeling the parameters that

need to be monitored. In Figure 4.3, the query results are delivered to controller C through transition T8.

As mentioned above, this transition determines the difference between the query deadline miss ratio and the

threshold specified by the application. Therefore, transition T8 allows us to explicitly model the query miss

ratio and thus achieve the required observability.

The data admission control needs to be implemented at the query level so that different queries can have

4.3 MEDAL analysis 53

Figure 4.4: MEDAL model of the data admission control implementation. This design enables different
queries to have different data admission ratios even when they share the same data stream source.

different data admission ratios even if they share the same data stream source. The two queries in Figure 4.4

share the same data stream input S. The incoming data tuples of data stream S are first processed by the

stream source operator, represented by transition T1. After the stream source operator, the data stream

tuples are in the system. The data admission process for the queries is carried out at the range window

operators. In the example shown in Figure 4.4, range window operators Op 1 and Op 2, represented by

transitions T2 and T3, perform the data admission for query 1 and query 2 respectively. With this design,

different queries can use different data admission ratios.

4.3 MEDAL analysis

4.3.1 Query optimization analysis

The MEDAL model of a data stream system could be used to analyze the query plans, the controller logic,

as well as the interactions between them. This analysis could help designers identify possible query plan

optimizations and design more suitable data admission mechanisms. Consider, for example, the following

scenario: For the query model in Figure 4.3 we have estimated the cost of each of the query operators. In

addition, based on historical workload information, we have also estimated the average selectivity of the

Chapter 4 Applying Formal Methods to Modeling and Analysis of Real-Time Data Streams 54

operators. The data admission controller has been designed to decrease the data admission rate by x%, where

x is a function of the difference between the miss ratio threshold and the current deadline miss ratio. We can

employ the MEDAL model of this application to determine if the controller logic has the desired effect on the

deadline miss ratio. Using the available historical data as input to the MEDAL model, we can estimate the

new deadline miss ratio, and thus evaluate the controller’s efficiency. This is a very simple high-level example,

but it showcases one of the possible MEDAL system analyses.

4.3.2 Real-time stream analysis

MEDAL can also be used for real-time analysis of data stream network applications. The data stream

real-time analysis is similar to the real-time analysis of WSN applications introduced in the previous chapter.

A MEDAL query plan can be annotated with the duration time of each of the operators in the query. If

there is historical workload information that represents the typical behavior of the data streams, this data

can be used to accurately estimate how much time each of the query operators needs to process the input

data. This information can be used by system designers to evaluate the time requirements of queries and

thus determine if the queries are able to meet their deadlines given.

4.4 Modeling DSMS configurations with MEDAL

In this section we show how MEDAL is used to model different data stream management configurations. We

create MEDAL models for the following scenarios:

1. All queries belong to the same query service class.

2. There are three query service classes in the system and no data admission control is applied.

3. There are three query service classes in the system and they share a single data admission controller.

4. There are three query service classes in the system and each service class has its own designated data

admission controller.

4.4.1 Single query service class

Figure 4.5 shows the MEDAL model of a system where all queries belong to the same service class. In this

scenario there is one data admission controller, place C, which controls the volume of data that enters the

system. If the control loop is removed from the MEDAL model, the resulting model is that of the default

data stream management system configuration with one service class and no admission control.

4.4 Modeling DSMS configurations with MEDAL 55

Figure 4.5: MEDAL model of a DSMS configuration, in which there is a single controller and all queries
belong to the same query service class.

4.4.2 Multiple query service classes, no controller

Differentiated services are required by many applications. In case of overload, the system has to guarantee

that the most important set of queries get processed. Figure 4.6 shows a scenario where the queries in the

system are divided into three service classes, class 0, class 1, and class 2, where the class 0 queries are the

most important. The three query service classes share data stream S. Since there is no data admission control,

there is no control loop that uses the query miss ratios to estimate the suitable data admission ratios for each

query service class.

Figure 4.6: MEDAL model of a system with three different service classes, class 0, class 1, and class 2, and
no admission controller

Chapter 4 Applying Formal Methods to Modeling and Analysis of Real-Time Data Streams 56

4.4.3 Multiple query service classes, single controller

Figure 4.7 shows the MEDAL model of a scheme where there is only one data admission controller and all

queries in the system share the same data admission controller. Each service class has its own set of queries.

As the queries are executed, the controller receives information about the missed deadline ratios for the three

classes and determines whether more or less data tuples should be admitted into the system. The decision of

the controller is then propagated to the three service classes.

Figure 4.7: MEDAL model of a scenario with three query service classes, class 0, class 1, and class 2, which
share a single data admission controller.

4.5 Summary 57

4.4.4 Multiple query service classes, multiple controllers

Figure 4.8 shows a different data admission scheme, where each of the service classes in this scheme has its

own designated data admission controller. Although all three of the service classes receive data from the

same data stream S, the data admission for each service class is determined independently. Each of the three

classes, class 0, class 1, and class 2, has its own data admission controller, C0, C1, and C2, respectively. The

controllers receive information only about the deadline miss ratio for the queries from their corresponding

class.

Figure 4.8: MEDAL model of a scenario with three service classes, class 0, class 1, and class 2, where each
service class has its own designated controller.

4.5 Summary

In this chapter we show how MEDAL can be used to model and analyze real-time data stream queries,

QoS management mechanisms, and the relationships between them. Unlike previous work, where query

models and system control logic are designed and analyzed separately, MEDAL allows us to merge these two

Chapter 4 Applying Formal Methods to Modeling and Analysis of Real-Time Data Streams 58

components into a single comprehensive system model. The advantage of this combined model is that it can

be used not only to predict the workload and estimate the query cost, but also to model and analyze the

interactions between the input and output of the query plans and the data control mechanism, which gives

us a much better understanding of the system.

We have also designed the MEDAL models for a number of different data stream management configurations,

including scenarios where 1) all queries belong to the same query service class, 2) there are three query service

classes in the system and no data admission control is applied, 3) there are three query service classes in

the system and they share a single data admission controller, and 4) there are three query service classes in

the system and each service class has its own designated data admission controller. These models show that

MEDAL can specify a variety of stream, QoS management, and data admission configurations.

Part III

Event detection

59

Chapter 5

Event Detection in Wireless Sensor

Networks - Can Fuzzy Values Be

Accurate?

E
vent detection is one of the main components in numerous WSN applications. WSNs for military

application are deployed to detect the invasion of enemy forces, health monitoring sensor networks

are deployed to detect abnormal patient behavior, fire detection sensor networks are deployed to

set an alarm if a fire starts somewhere in the monitored area. Regardless of the specific application, the

network should be able to detect if particular events of interest, such as fire, have occurred or are about to.

However, similar to many other human-recognizable events, the phenomenon fire has no real meaning to

a sensor node. Therefore, we need suitable techniques that would allow us to describe events in ways that

sensor nodes would be able to “understand”. The area of event description and detection in WSNs, however,

has not been explored much.

Most previous work on event description in WSNs uses precise, also called crisp, values to specify the

parameters that characterize an event. For example, we might want to know if the temperature drops below

5� or the humidity goes above 46%. However, sensor readings are not always precise. In addition, different

sensors, even if located close to each other, often vary in the values they register. Consider an example

scenario where we want the air conditioning in a room to be turned on if the temperature goes above 5�.

Two sensors, A and B, measure the temperature in the room. The average of their values is used to determine

if an action should be taken. At some point, sensor A reports 5.1� and sensor B reports 4.8�. The average,

60

Chapter 5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 61

4.95�, is below our predefined threshold and the cooling remains off. However, if sensor B ’s measurement

is inaccurate and, therefore, lower than the actual temperature, we have made the wrong decision. The

situation becomes even more complex when more than two sensor measurements are involved. This makes

determining the precise event thresholds an extremely hard task which has led us to believe that using crisp

values to describe WSN events is not the most suitable approach. Fuzzy logic, on the other hand, might be

able to address these challenges better than crisp logic.

Fuzzy logic has a number of properties that make it suitable for describing WSN events:

� It can tolerate unreliable and imprecise sensor readings;

� It is much closer to our way of thinking than crisp logic. For example, we think of fire as an event

described by high temperature and smoke rather than an event characterized by temperature above

55� and smoke obscuration level above 15%;

� Compared to other classification algorithms based on probability theory, fuzzy logic is much more

intuitive and easier to use.

A disadvantage of using fuzzy logic is that storing the rule-base might require a significant amount of

memory. The number of rules grows exponentially to the number of variables. With n variables each of which

can take m values, the number of rules in the rule-base is mn. Adding spatial and temporal semantics to the

decision process further increases the number of rules. Since sensor nodes have limited memory, storing a

complete rule-base on every node might not be reasonable. In addition, constantly traversing a large rule-base

might considerably slow down the event detection. To address this problem, we have designed a number

of techniques that reduce the size of the rule-base. A key property of these techniques is that they do not

decrease the event detection accuracy of the system.

The work presented in this chapter has three main contributions:

1. We show that using fuzzy logic results in more accurate event detection than when crisp values are used.

We also show that the activity detection accuracy achieved when fuzzy logic is used is comparable to

that achieved when using well established classification algorithms, such as Naive Bayes classifiers or

decision trees.

2. We incorporate event semantics into the fuzzy logic rule-base to further improve the accuracy of event

detection.

3. We have designed techniques that can be used to prevent the exponential growth of the rule-base

without compromising the event detection accuracy.

Chapter 5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 62

Figure 5.1: A fuzzy logic system contains three main components: a fuzzifier, decision making, which consists
of an inference scheme and a rule-base, and a defuzzifier.

5.1 Overview of fuzzy logic

Figure 5.1 shows the structure of a general fuzzy logic system (FLS). The fuzzifier converts the crisp input

variables x ∈ X, where X is the set of possible input variables, to fuzzy linguistic variables by applying the

corresponding membership functions. Zadeh defines linguistic variables as “variables whose values are not

numbers but words or sentences in a natural or artificial language” [121]. An input variable can be associated

with one or more fuzzy sets depending on the calculated membership degrees. For example, a temperature

value can be classified as both Low and Medium.

The fuzzified values are processed by if-then statements according to a set of predefined rules derived

from domain knowledge provided by experts. In this stage the inference scheme maps input fuzzy sets to

output fuzzy sets. Finally, the defuzzifier computes a crisp result from the fuzzy sets output by the rules.

The crisp output value represents the control actions that should be taken. The above three steps are called

fuzzification, decision making, and defuzzification, respectively. We describe each of them in more detail in

the following subsections.

5.1.1 Fuzzification

The fuzzifier converts a crisp value into degrees of membership by applying the corresponding membership

functions. A membership function determines the certainty with which a crisp value is associated with a

specific linguistic value. Figure 5.2 shows an example of a temperature membership function. According

to this membership function, a temperature value of -2� is classified as 20% Freezing and 80% Cold. The

membership functions can have different shapes. Some of the most frequently used shapes include triangular,

trapezoidal, and Gaussian-shaped. Membership functions are defined by either relying on domain knowledge

or through the application of different learning techniques, such as neural networks [122, 123] and genetic

algorithms [124].

5.1 Overview of fuzzy logic 63

Figure 5.2: Temperature membership function. Using this membership function, a temperature value can be
classified as: Freezing, Freezing and Cold, Cold, Cold and Warm, Warm, Warm and Hot, and Hot.

5.1.2 Decision making

A rule-base consists of a set of linguistic statements, called rules. These rules are of the form

IF premise, THEN consequent

where the premise is composed of fuzzy input variables connected by logical functions (e.g. and, or, not)

and the consequent is a fuzzy output variable. The rule-base is usually generated as an exhaustive set of all

possible value-combinations for the input linguistic variables that constitute the premise. Similarly to how

membership functions are defined, the rule-base is derived either based on domain knowledge, or through

using machine learning techniques. Consider a t-input 1-output FLS with rules of the form:

Ri : IF x1 is Si
1 and x2 is Si

2 and ... and xt is Si
t THEN y is Ai

When input x
′

= {x′

1, x
′

2, ..., x
′

t} is applied, the degree of firing of some rule Ri can be computed as:

µSi
1

(
x

′
1

)
∗ µSi

2

(
x

′
2

)
∗ ... ∗ µSi

t

(
x

′
t

)
= T t

l=1µSi
l

(
x

′
l

)
Here µ represents the membership function and both ∗ and T indicate the chosen triangular norm.

A triangular norm is a binary operation, such as and or or, applied to the fuzzy sets provided by the

membership functions [125].

5.1.3 Defuzzification

Executing the rules in the rule-base generates multiple shapes representing the modified membership functions.

For example, a set of rules designed to decide the probability that there is a fire may produce the following

Chapter 5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 64

result: Low (56%), Medium (31%), and High (13%). Defuzzification is the transformation of this set of

percentages into a single crisp value. Based on how they perform this transformation, defuzzifiers are divided

into a number of categories. The most commonly used defuzzifiers are center of gravity, center of singleton,

and maximum methods [125]:

� The center of gravity approach finds the centroid of the shape obtained by superimposing the shapes

resulting from applying the rules. The output of the defuzzifier is the x-coordinate of this centroid.

� The defuzzification process can be significantly simplified if the center of singleton method is used.

With this method, the membership functions for each rule are defuzzified separately. Each membership

function is reduced to a singleton which represents the function’s center of gravity. The simplification

consists in that the singletons can be determined during the design of the system. The center of

singleton method is an approximation of the center of gravity method. Although experiments have

shown that there are slight differences between these two approaches, in most cases the differences can

be neglected [126].

� The class of maximum methods determines the output by selecting the membership function with the

maximum value. If the maximum is a range, either the lower, upper, or the middle value is taken for

the output value depending on the method. Using these methods, the rule with the maximum activity

always determines the output value. Applying this approach to the aforementioned fire detection

example will produce a decision that there is a Low probability of fire and the other fuzzy values will be

automatically ignored. Since the class of maximum methods shows discontinuous output on continuous

input, these methods are not considered to be very suitable for use in controllers.

5.2 Event semantics

Sensors are generally believed to be unreliable and imprecise. Therefore, to increase our confidence in the

presence of an event somewhere in the monitored area, we often need readings from multiple sensors and/or

readings over some period of time. This could be achieved by instrumenting the event description logic with

temporal and spatial semantics. We believe that this can significantly decrease the number of false positives.

It will also allow us to describe and detect more complex events. To the best of our knowledge, no previous

work on applying fuzzy logic to event detection has considered the effects of temporal and spatial semantics

on the accuracy of event detection.

Consider, for example, a fire detecting scenario. A sensor network is deployed to monitor a building and

trigger an alarm if a fire is detected. There are a number of temperature and smoke sensors in each room, as

5.2 Event semantics 65

Rule # T1 ∆T1 T2 ∆T2 S ∆S Confidence

1 L L L L L L L
2 L L L L L M L
3 L L L L L H L
4 L L L L M L L
5 L L L L M M L
...

...
...

...
...

...
...

...
728 H H H H H M H
729 H H H H H H H

Table 5.1: An example fire detection rule-base. The size of the rule-base is determined by the number of
linguistic variables and what values they can hold. In this rule-base, there are six linguistic variables, T1,
∆T1, T2, ∆T2, S, ∆S, each of which can hold a value of Low (L), Medium (M), or High (H).

well as in the hallways. The floors in the building are monitored separately, and there is a master node on

each floor. The rest of the sensor nodes send their readings to the master node on their floor. Based on these

readings, the master node determines if there is a fire or not. The fire detection is based not only on the

temperature and smoke obscuration readings for a particular moment in time, but also on the rate of change

of both the temperature and smoke levels. Therefore, our fire detection logic takes four linguistic variables as

input - temperature (T), temperature change (∆T), smoke obscuration(S), and smoke obscuration change

(∆S). The linguistic values for all four variables can be classified as Low (L), Medium (M), and High (H).

The system might be able to achieve higher event detection accuracy if the linguistic variables have higher

granularity, i.e. instead of only holding Low, Medium, or High values, they can also hold values such as Very

Low, Low-Medium, Medium-High, and Very High. However, the designer of a WSN-based event detection

system should use the smallest number of membership sets that can provide high event detection accuracy,

while minimizing the size of the rule-base and the corresponding memory consumption.

In order to increase the accuracy of the fire detection scheme, we require that at least two temperature

readings and one smoke reading are used to make a decision. Table 5.1 shows an example rule-base for this

fire detection scenario. This rule-base, however, introduces a number of concerns which we address in the rest

of this section.

5.2.1 Spatial semantics

One of the main goals when designing an event detection system is that the system is accurate and the

number of false alarms is small. A way to achieve this is to include readings from multiple sensors in the

decision process. For instance, we would be more confident that there is an actual fire if more than one

node reports high temperature and smoke readings. If, for example, three sensors from the same room send

reports indicating fire, the probability that there is an actual fire in that room is very high. In general, there

Chapter 5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 66

is a negative correlation between the distance among the sensors reporting fire and the probability of this

report being true. Therefore, we include the concept of location in the event detection logic. We achieve

this by augmenting the rules in the rule-base with a linguistic variable that serves as a spatial guard. This

variable expresses the application requirements about the distance between the reporting sensors. In our fire

detection scenario, we can name this variable distance and classify it as Close (C), Distant (D), and Far (F),

for example. Incorporating this distance variable into the rule-base, however, changes the format of the rules

and adds an extra column to the rule-base. Now the format of the rules in Table 5.1 changes to:

IF T1 is H and ∆T1 is H and T2 is H and ∆T2 is H and S is H and ∆S is H and distance is F, THEN Fire is M.

5.2.2 Temporal semantics

To further decrease the number of false alarms, we also need to take into account the temporal properties

of the monitored events. The event detection confidence is higher if the sensor readings indicating that a

particular event has occurred have been generated within a short period of time of each other. We call the

length of this time period temporal distance of the readings. The event detection confidence decreases as the

temporal distance between the sensor readings increases.

Temporal semantics are especially important for WSNs because of the inherent nature of sensor commu-

nication. It is very likely for messages in a WSN to be delayed because of network congestions or routing

problems. Consequently, a reliable event detection rule-base should take into consideration the generation

times of the sensor readings. To accommodate this, we include another linguistic variable that serves as a

temporal guard. This variable, time, represents the difference in the generation times of the sensor readings.

For example, in our fire detection scenario, time could have three semantic values: Short (S), Medium (M),

and Long (L). In this way, the information about the time interval within which the sensor readings have

been generated is included in the decision process. This will further change the format of the rule-base in

Table 5.1 to:

IF T1 is H and ∆T1 is H and T2 is H and ∆T2 is H and S is H and ∆S is H and distance is F and time is M,

THEN Fire is M.

5.3 Decreasing the size of the rule-base

Augmenting the rule-base with temporal and spatial variables increases the number of rules. As mentioned

earlier, the size of the rule-base grows exponentially to the number of linguistic variables. In our fire monitoring

example, where the only sensor readings we consider are temperature and smoke, the full rule-base has

5.3 Decreasing the size of the rule-base 67

Rule # T ∆T Confidence

1 L L L
2 L M L
3 L H M
4 M L L
5 M M M
6 M H H
7 H L M
8 H M H
9 H H H

Table 5.2: Rule-base for a temperature sensor. The two linguistic input variables and the fire confidence
consequent can be classified as Low (L), Medium (M), or High (H).

38 = 6561 rules, since we use 8 linguistic variables and each variable can hold 3 different values. In more

complicated scenarios that require more than two types of sensors, the number of rules in the fuzzy rule-base

could be much higher. Storing such rule-bases might be a challenge for memory constrained sensor nodes.

In addition, traversing the full rule-base every time there are new sensor readings will slow down the event

detection. To address these concerns, we have designed three techniques to help reduce the number of rules.

We demonstrate how these techniques are applied on a relatively small rule-base with a few linguistic variables

that can take three values - Low, Medium, and High. However, these techniques can be applied in the same

fashion to larger rule-bases that contain more linguistic variables characterized by more complex membership

functions.

Although the rule-base reduction techniques alleviate both the storage problem and the rule traversal

process, they might have a negative effect on the event detection accuracy. Therefore, maintaining high event

detection accuracy was a primary goal when designing the reduction techniques described in this section. We

achieve this by carefully modifying the rule-base through merging important rules and removing the rules

that do not affect the detection accuracy of the events of interest.

5.3.1 Separating the rule-base

The first technique we use to reduce the size of the rule-base is to separate the rules on a “need to know”

basis. Each node stores only the rules corresponding to the types of sensors it has. If, for example, some

of the nodes in our fire detection scenario are only equipped with temperature sensors, they do not need

to store the whole rule-base. Instead, they store a smaller modified rule-base similar to the one shown in

Table 5.2. This rule-base contains only rules with premise linguistic variables based on the values from the

temperature sensors. In this way, the event detection logic on each node considers only the rules that are

Chapter 5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 68

Rule # T ∆T Confidence

1 L ≤ M L
2 L H M
3 M L L
4 M M M
5 M H H
6 H L M
7 H ≥ M H

Table 5.3: Reduced rule-base for a temperature sensor. In this rule-base, rules with similar consequents have
been combined with the help of the ≤ and ≥ operators.

relevant to the node’s sensor readings. This separation simplifies the decision process and makes the rule-base

traversal faster. The rule-base for the smoke sensors can be constructed in a similar way.

5.3.2 Combining rules with similar outcomes

Rules 1 and 2 in Table 5.2 have the same outcome and only differ in the values of ∆T . This observation

is also valid for rules 8 and 9. Combining these rule couples could help us further decrease the size of the

rule-base. For the rule-base in Table 5.2 applying such an optimization leaves us with 7 rules. The rules,

however, have a slightly different syntax. Instead of:

Ri : IF x1 is Si
1 and x2 is Si

2 and ... and xt is Si
t THEN y is Ai

some of the rules have the following different form:

Ri :IF x1 is ≤ Si
1 and x2 is Si

2 and ... and xt is ≥ Si
t THEN y is Ai

In the modified rules ≤ stands for “in this fuzzy set or in fuzzy sets smaller than it” and ≥ stands for “in

this fuzzy set or in fuzzy sets greater than it”. Table 5.3 shows the result of applying this reduction technique

on the rule-base in Table 5.2.

5.3.3 Incomplete rule-base

A rule-base is considered complete if there are rules for every possible combination of the input variables.

However, only some of these combinations have outcomes that are important to the event detection system.

For example, rules containing variables which do not satisfy the temporal and spatial constraints cannot

trigger an alarm. Therefore, the rules with distance variable Distant or Far can be removed from the rule-base.

This step leaves us with just a third of the original number of rules in the rule-base. Similarly, applying the

same approach to the time variable and removing the rules with values Medium and Long decreases the

rule-base by yet another two thirds.

5.4 Evaluation 69

In addition, if we exclude the rules with consequents that are of no interest to the event detection system,

such as rules indicating that the possibility that a fire has occurred is Low, we reduce the size of the rule-base

even more. As a result, by lowering the level of completeness of the rule-base, we significantly decrease the

number of rules that need to be stored on the sensor nodes. This “trimming” process, however, should be

performed very carefully in order to prevent the removal of important consequents. To make sure that the

system knows how to proceed if none of the rules in the rule-base has been satisfied, we introduce a default

rule that is triggered if no other rule has been satisfied.

5.4 Evaluation

We use the FuzzyJ Toolkit for Java [127] to implement the necessary fuzzy logic functionality. To avoid the

danger, cost, and non-repeatability of creating fires, we perform trace-based simulations using real fire data

publicly available on the National Institute of Standards and Technology (NIST) website [128]. The study

they conduct provides sensor measurements from a number of different real fires as well as nuisance scenarios.

We have used three of the available real fire scenarios: fire caused by a burning mattress, fire caused by

a burning chair, and cooking oil fire. The purpose of the nuisance tests is to study common household

nuisance alarm scenarios. We have used two of these tests in our experiments: frying margarine and broiling

hamburgers.

5.4.1 Experiments using real fire data

The membership functions for the smoke and temperature input linguistic variables used in the experiments

are shown in Figure 5.3. In addition to the temperature and smoke obscuration variables, we also take into

consideration the temperature and smoke obscuration difference between two consecutive readings. These

two additional variables give us a notion of how fast the temperature and smoke obscuration are changing.

Figure 5.4 shows the membership function for the output fire confidence. This linguistic variable represents

the system’s confidence in the presence of fire. For example, if the fire confidence value is higher than 80, we

are more than 80% certain that there is a fire. If the fire confidence is smaller than 50, it is more likely that

there is no fire.

In the system model we use for our simulations every node decides locally if a fire event has occurred. If

it decides that a fire is present, a node forwards its decision to the master node for the house. An alternative

system model, where the nodes send a subset of their readings to the master node, and the master node

makes a decision, is also possible. In this model, the base node has the aggregated information from all

sensors, and might be able to make more accurate decisions. However, because of the increased amount of

Chapter 5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 70

Figure 5.3: Membership functions for the four input linguistic variables: temperature, temperature difference,
smoke obscuration, and smoke obscuration difference.

Figure 5.4: Fire confidence membership function.

communication, the lifetime of the network might decrease. Therefore, which model is appropriate depends

on the nature of the application and the lifetime requirements of the network.

To provide a baseline for our results, we performed crisp-value experiments with the burning mattress,

burning chair, and cooking oil data. The temperature and smoke obscuration thresholds used in the crisp

logic experiments are threshold values used in commercial smoke and heat detectors, 55� and 0.15 m−1,

respectively [129, 130]. The membership functions in Figure 5.3 were also built according to these threshold

values. We used the commercial crisp thresholds as the border between Low and High, which in our scenario

5.4 Evaluation 71

Figure 5.5: Burning mattress simulation: a) crisp value detection b) fuzzy value detection.

Figure 5.6: Burning chair simulation: a) crisp value detection b) fuzzy value detection.

is classified as 0% Low, 100% Medium, and 0% High for all four linguistic variables. We relied on domain

knowledge to determine the remaining details of the membership functions.

Figure 5.7: Burning oil simulation: a) crisp value detection b) fuzzy value detection.

The results from the crisp-value experiment are shown in Figure 5.5a), Figure 5.6a), and Figure 5.7a). In

these and all following figures, the origin of the graph represents the time of fire ignition. As we can see from

the three figures, using crisp values resulted in a very large number of false fire detections. In the burning

mattress scenario in particular, there were 40 false fire detections in the period prior to the fire ignition,

which constitutes about 1.3% of the measurements. This considerable number or false positives significantly

affects the efficiency and fidelity of an event detection system. Admittedly, part of these false positives can

Chapter 5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 72

be attributed to the aggressive crisp value thresholds. However, if the thresholds are set higher, this could

lead to failures in detecting actual fires. In a real fire detection system it is more important to decrease

the number of false negatives than that of false positives. Therefore, we have kept the threshold values in

compliance with the commercial standards.

What we wanted to investigate with our next set of experiments was whether fuzzy logic can do better in

terms of false positives, while still reporting promptly the presence of a fire when one actually occurs. In

the first set of fuzzy logic experiments, a node decides if there is a fire based only on its own readings. The

readings of neighboring sensor nodes are not considered as inputs to the decision process. The values of the

linguistic variables used in the decision process can be classified as Low (L), Medium (M), and High (H), as

shown by Figure 5.3 and Figure 5.4. We have used heuristics to build the rule-base for our fire detection

experiments. In cases where this is not possible, for example, when more complex events are to be detected,

domain experts could be consulted for the definition of the rule-bases. The rule-base for these experiments is

shown in Table 5.4. The complete rule-base has 81 rules. Therefore, we show the rule-base after our second

reduction technique has been applied.

The results from our first set of fuzzy logic experiments, a burning mattress, a burning chair, and cooking

oil fire, are presented in Figure 5.5b), Figure 5.6b), and Figure 5.7b), respectively. As we can see, the fuzzy

logic event detection mechanism performs very well. It detects the presence of a fire shortly after the ignition.

In addition, unlike the crisp-value fire detection, there are no false positives. All three graphs show fire

confidence around 0 before the ignition, except for a number of small peaks when the confidence increases

to 54, which is close to 100% Medium. At the same times when the fuzzy-value peaks occur, we can also

notice crisp-value peaks but with much higher confidence. The raw sensor data revealed that the peaks were

caused by a number of one-second-long reports of increased smoke values. This proves our hypothesis that

fuzzy logic is able to accommodate the often imprecise sensor readings. Even in the cases when the nodes

erroneously report the presence of smoke, the fuzzy logic mechanism keeps the fire confidence low enough so

that a false alarm is not triggered.

5.4 Evaluation 73

Rule Temperature ∆ Temperature Smoke ∆ Smoke Confidence

1 L L ≤ M ≥ L L
2 L L H ≤ M L
3 L L H H M
4 L ≥ M L L L
5 L H L M L
6 M L L ≥ L L
7 M L M L L
8 H L L L L
9 L M L ≥ M M
10 L M M ≥ L M
11 L M H ≤ M M
12 L H L H M
13 L H ≥ M L M
14 L H M M M
15 M L M ≥ M M
16 M L H ≤ M M
17 M M ≤ M ≤ M M
18 M M H L M
19 M H ≤ M L M
20 H ≤ M L M M
21 H ≥ M L L M
22 L M H H H
23 L H M H H
24 L H H ≥ M H
25 M L H H H
26 M M ≥ L H H
27 M M H M H
28 M H ≥ L ≥ M H
29 M H H L H
30 H ≥ L L H H
31 H ≥ L ≥ M ≥ L H
32 H H L M H

Table 5.4: Fire detection rule-base for the scenario where a node decides if there is a fire based only on its
own sensor readings. The Temperature, Temperature difference, Smoke, and Smoke difference variables take
Low (L), Medium (M), and High (H) values.

We also evaluate how including neighbor node values in the decision process affects the detection accuracy.

The average of the neighbor values is represented with an additional linguistic variable that we include in the

decision rules. In addition, in order to meet the spatial and temporal requirements of the application, we

only consider readings 1) received from neighbor nodes that are located close to the current node, and 2)

that have been generated within 1 second from the current reading of the node. The results in Figure 5.8,

Figure 5.9, and Figure 5.10 show that fire is detected almost as quickly as when the decision process is only

based on own sensor readings. Although the peak areas are still present, the corresponding fire confidence

values are lower when the neighbor readings are included in the decision process. This shows that including

the readings of neighbor nodes in the decision process positively affects the detection accuracy.

Chapter 5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 74

Figure 5.8: Simulating a burning mattress: including neighbor readings in the decision. The results when
only own values are used are plotted on the first y-axis. Including the neighbor values is plotted on the
second y-axis.

Figure 5.9: Simulating a burning chair: including neighbor readings in the decision. The results when only
own values are used are plotted on the first y-axis. Including the neighbor values is plotted on the second
y-axis.

Figure 5.10 allows us to make an important observation. In the burning oil scenario, when the fire

detection is based on the readings of a single sensor, the system reaches fire confidence of 100 around 23

minutes after the stove has been turned on. However, when the readings of neighbor sensors are considered

in the detection process, the maximum fire confidence never exceeds 71, which is approximately 60% Medium

and 40% High. This is due to the fact that the neighbor sensors are located further away from the fire and,

therefore, their temperature readings have lower values. These results come to show that sensor network

designers should be careful when determining the size and radius of a sensor’s neighborhood. Although

including readings from neighbor sensors improves the event detection accuracy of the system, when these

neighbor sensors are located too far from where the event has occurred, this might have a negative effect on

5.4 Evaluation 75

Figure 5.10: Simulating burning oil: including neighbor readings in the decision. The results when only own
values are used are plotted on the first y-axis. Including the neighbor values is plotted on the second y-axis.

the detection accuracy.

5.4.2 Experiments using nuisance fire data

The goal of these experiments is to study the behavior of our fuzzy-value fire detection mechanism when it

is presented with a nuisance scenario. The Smoke Detector Operability Survey: Report on Finding [131]

conducted by the U.S. Consumer Products Safety Commission reported that about 50% of the 1012 participants

indicated that they had experienced nuisance alarms, with 80% of those attributed to cooking activities, and

an additional 6% citing steam from bathrooms. Dust and tobacco smoke are also mentioned sources. The

survey also reported that for the alarms with missing or disconnected batteries, or disconnected AC power,

more than one third of respondents indicated that power was removed due to nuisance alarms.

The NIST data provided for the nuisance scenarios differs from that for the actual fires in that the smoke

obscuration measurements are not provided. Therefore, we have substituted the two input linguistic variables

based on smoke obscuration with two new variables based on aerosol mass concentration. Similarly to the

smoke obscuration, the aerosol mass concentration allows us to determine the amount of aerosol particles

in the air. The thresholds for the mass concentration and mass concentration difference linguistic variables

were chosen based on previous mass concentration alarm research [132]. Figure 5.11 shows the membership

functions for the two new linguistic variables.

As with the real fire scenarios, we use crisp-value detection as a baseline. Figure 5.12 shows the results

from the crisp-value experiments of frying margarine and grilling hamburgers, respectively. In both scenarios

no actual fire occurred. However, as we can see from the figure, the number of false fire detections is high:

Chapter 5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 76

Figure 5.11: Membership functions for the Mass Concentration input linguistic variables.

Figure 5.12: Crisp value simulation: a) Frying margarine b) Broiling hamburgers.

172 (34% of all readings) for the frying margarine scenario and 248 (16% of all readings) in the broiling

hamburgers scenario.

The results from the fuzzy-value experiments are shown in Figure 5.13. For both scenarios the fire

detection confidence follows the same pattern as in the crisp-value experiments. The peaks that are present

in Figure 5.13 a) and b) are also present in Figure 5.12 a) and b), respectively. Similarly to the real fire

experiments, the difference between the peaks is that in the fuzzy-value scenarios the peaks never reach high

confidence. This means that, unlike the cases when crisp values are used, an alarm will not be triggered.

An interesting observation is that in Figure 5.13a) some of the fire confidence peaks reach levels as high

as 50%. All of these peaks are grouped around the fifth minute of the experiment. At that time, the aerosol

mass concentration increases above 100mg/m3 with maximum 214mg/m3. This is the time when the frying

caused the highest level of smoke. However, despite these high mass concentration values, the fuzzy logic

system manages to determine that no fire is currently present.

5.4 Evaluation 77

Figure 5.13: Fuzzy value simulation: a) Frying margarine b) Broiling hamburgers.

5.4.3 Analysis

Why does fuzzy logic perform better?

An interesting question is why fuzzy logic is more precise than crisp-value logic. From the considerable

decrease in the number of false positives, it appears that fuzzy logic handles the fluctuating sensor readings

much better. To understand why this happens we take a closer look at the first false fire detection reported

by the crisp-value logic. In the burning mattress scenario this occurs approximately 12 minutes into the

experiment. The values that cause the false alarm are: T = 25.21�, ∆T = 0�, S = 0.203 %, and ∆S=

0.109%. Since the smoke level (S) and the smoke change level (∆S) are both classified as High, the crisp logic

concludes that there must be a fire.

What does the fuzzy logic event detection do differently? According to the membership functions in

Figure 5.3, temperature value of 25.21� is classified as 100% Low; temperature change of 0� is classified

as 100% Low; smoke obscuration level of 0.203% is classified as 33% Medium and 66% High; and smoke

obscuration change of 0.119% is classified as 100% High. The decision making process checks which rules

from the rule-base are satisfied. These are rules 1 and 3 from the rule-base in Table 5.4. Based on those

rules, the defuzzifier reports a fire confidence value of 39.4. This value maps to fire confidence which is 20%

Low and 80% Medium. Such level of confidence, however, is not enough to cause the system to report a fire.

This example illustrates why a fuzzy logic event detection system tends to perform better than a crisp

one in the presence of short-lasting inaccurate sensor readings, which often occur in WSNs. Fuzzy logic takes

into account the certainty with which an event occurs, instead of making binary decisions based on crisp

values and fixed thresholds, which improves the accuracy of event detection.

Chapter 5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 78

Figure 5.14: Simulating a burning chair with a reduced rule-base. The results when the full rule-base is used
are plotted on the first y-axis. Using the reduced rule-base is plotted on the second y-axis.

Decreasing the rule-base

We applied our reduction techniques to the full version of the rule-base shown in Table 5.4. All nodes in the

simulation are equipped with both a smoke and a temperature sensor which makes the first technique not

applicable. Therefore, we only used the second and third reduction techniques. The rule-base initially has 81

rules. Combining the rules with similar outcomes reduces the number of rules to 32, as shown in Table 5.4.

This evaluates to a decrease of 60%. In general, when there are more than two input linguistic variables,

applying the second method decreases the rule-base by approximately two thirds. Excluding the rules that

result in Low fire confidence additionally reduces the size of the rule-base to 25, which is 31% of the original

rule-base.

We have compared the behavior of the fire detection system when the full and the reduced rule-bases are

used. Figure 5.14 shows the results for the burning chair scenario. The fire confidence is consistently higher

when the reduced rule-base is used. However, since this confidence remains Low, this does not cause false fire

detections.

Detection accuracy

To further understand the behavior of our fuzzy logic approach, we have compared it to two well established

classification algorithms: a naive Bayes classifier [133] and a J48 decision tree which is an open source

implementation of the C4.5 algorithm [134]. Fuzzy logic is more suitable than these two algorithms for WSN

event description since, unlike Bayes classifiers and decision trees where values are considered to be discrete,

5.4 Evaluation 79

Naive Bayes J48 Decision Tree Fuzzy logic
number percent number percent number percent

Burning chair 105 1.56% 7 0.13% 0 0
Burning mattress 89 2.35% 5 0.13% 0 0

Table 5.5: Number of incorrect classifications by a Naive Bayes classifier and a J48 Tree.

Scenario Crisp values Fuzzy values Plus neighbor readings Reduced rule-base

Burning chair 236 236 248 236
Burning mattress 103 97 117 97
Cooking oil fire 1431 1431 1443 1431

Table 5.6: Fire detection delay in seconds.

it works with continuous values, which is exactly what the sensor readings are. In addition, specifying the

membership functions is simpler and computationally more efficient than building a probability model.

We ran this set of experiments using the Weka data mining tool [135]. The input values to the classification

algorithms were the same as the ones used in the fuzzy logic experiments - temperature, temperature difference,

smoke obscuration, and smoke obscuration difference. We performed a 10-fold cross validation for both

classification algorithms. Table 5.5 shows the number of incorrectly classified instances for the first two

fire scenarios, burning mattress and burning chair, as well as what percentage of the total instances was

incorrectly classified. Both algorithms produce a number of inaccurate classifications.

Although the percentage of the erroneously classified instances is low, it is higher than the number of

misclassifications introduced by fuzzy logic. This could be attributed to the specifics of the datasets we have

analyzed; it is possible that fuzzy logic is better suited to process data containing sporadic outliers caused by

erroneously high sensor values. However, we expect that in different application scenarios, fuzzy logic will

still be able to provide comparable activity detection accuracy to that achieved by Naive Bayes and tree

classifiers.

Fire detection delay

Table 5.6 shows the delay incurred by the different fire detection mechanisms. Fire is detected just as fast, and

in the burning mattress scenario even faster, when fuzzy values are used. In addition, decreasing the size of

the rule-base does not delay the fire detection. We also notice that including the readings of neighbor sensors

in the decision process slightly slows down the detection. This is not surprising since not all sensors are

located at the same distance from the fire, and, therefore, they start registering abnormal values at different

times. Consequently, if a sensor is waiting for its neighbors to also detect the fire, and those neighbors are

located further away from the fire source, the detection might be slightly delayed.

Chapter 5 Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate? 80

5.5 Summary

A disadvantage of the current event detection approaches used in WSNs is that they cannot properly handle

the often imprecise sensor readings. We show that fuzzy logic is a powerful and accurate mechanism which

can successfully be applied to event detection in WSNs. Compared to using crisp values, fuzzy logic allows

the detection algorithm to maintain a high accuracy level despite fluctuations in the sensor values. This

helps decrease the number of false positives while still providing fast and accurate event detection. Our

experiments support the hypothesis that incorporating the readings of neighbor nodes in the decision process

further improves the event detection accuracy.

The evaluation also shows that the rule-base reduction techniques we have developed are efficient and

preserve both the correctness and the timeliness of event detection. Using two of these techniques, combining

rules with similar outcomes and incomplete rule-base, reduced the size of our experimental rule-base by

more than 70%. Further, compared to two well-established classification algorithms, fuzzy logic provides

comparable event detection accuracy.

Part IV

Robustness to node failures

81

Chapter 6

Run time assurance (RTA)

E
merging wireless sensor network technologies are applicable to a wide range of mission-critical

applications, including fire fighting and emergency response, infrastructure monitoring, military

surveillance, and medical applications. These applications must operate reliably and continuously

due to the high cost of system failure. However, continuous and reliable operation of WSNs is extremely

difficult to guarantee due to hardware degradation and environmental changes, which can cause operating

conditions that were impossible for the original system designers to foresee. This is particularly true for

applications that operate over long time durations, such as a building monitoring system that must operate

for the lifetime of the building. Wireless noise and interference may change dramatically as new wireless

technologies are developed and deployed in or near a building, and sensor readings and network topology

may change as the occupancy, activities, and equipment in a building evolve over time.

In this chapter, we describe and demonstrate a methodology for run-time assurance (RTA), in which

we validate at run time that a WSN will function correctly in terms of meeting its high-level application

requirements, irrespective of any changes to the operating conditions since it was originally designed and

deployed. The basic approach is to use program analysis and compiler techniques to facilitate automated

testing of a WSN at run time. The developer specifies the application using a high-level specification, which

is compiled into both the code that will execute the application on the WSN, and a set of input/output tests

that can be used to verify correct operation of the application. The test inputs are then supplied to the

WSN at run time, either periodically or by request. The WSN performs all computations, message passing,

and other distributed operations required to produce output values and actions, which are compared to the

expected outputs. This testing process produces an end-to-end validation of the essential application logic.

RTA differs from network health monitoring, which detects and reports low-level hardware faults, such as

82

Chapter 6 Run time assurance (RTA) 83

node or route failures [80, 78]. The end-to-end application-level tests used for RTA have two key advantages

over the tests of individual hardware components used for health monitoring: 1) fewer false positives - RTA

does not test nodes, logic, or wireless links that are not necessary for correct system operation, and therefore

produces fewer maintenance dispatches than health monitoring systems; 2) fewer false negatives - a network

health monitoring system will only validate that all nodes are alive and have a route to a base station, but

does not test more subtle causes of failure such as topological changes or clock drift. In contrast, the RTA

approach tests the ways that an application may fail to meet its high-level requirements because it uses

end-to-end tests. Network health monitoring improves system reliability by detecting some types of failures,

but stops short of actually validating correct system operation. The goal of RTA, instead, is to provide a

positive affirmation of correct application-level operation.

We have implemented a framework for designing and automatically testing WSN applications using the

RTA methodology. The developer specifies the application using MEDAL. Our system compiles the model

down to TinyOS [136] code that runs on the Telos nodes [137], and tests the defined mappings between sensor

input values and system outputs. We use program analysis techniques to identify the minimal set of tests that

will cover the essential application logic. This analysis uses new techniques that exploit information about

network topology and the redundancy of nodes based on sensing range, and builds on existing techniques to

cover all execution paths in the program [138]. Once the minimal set of tests has been identified, our system

deploys the TinyOS code onto the network and periodically executes the tests. This implementation serves as

a proof of concept of our RTA methodology, which can also be applied more generally to other programming

models.

We evaluate our implementation by designing a fire detection system and executing it on a network of 21

TelosB nodes. We artificially introduce failures into the system, including node failures and location errors,

and compare the performance of RTA to that of an existing health monitoring solution [78]. Our results

indicate that RTA misses 75% fewer system failures and also produces 70% fewer maintenance dispatches

than health monitoring. Furthermore, our program analysis techniques reduce the number of tests required

such that RTA incurs 33% less messaging overhead than health monitoring. The main contributions of the

work presented in this chapter are:

1. A novel RTA methodology that positively affirms correct system operation at run time.

2. A prototype implementation based on a formal sensor network description language.

3. New analysis techniques exploiting network topology and sensing redundancy to reduce the number of

necessary tests.

Chapter 6 Run time assurance (RTA) 84

4. A quantitative evaluation of our RTA methodology and implementation, and comparison with an

existing network health monitoring system.

6.1 RTA Methodology

The RTA methodology is built around the following three principles:

Run time verification: The RTA principle requires that a system demonstrates at run time that it is

able to perform its key services. Currently, testing and debugging techniques are used to fully test the

system at design time, and deployment-time validation [139] is used to verify the system during deployment.

However, due to the changing environment and the dynamic nature of failures, we argue that even when

these techniques have been employed, RTA is still necessary.

Application-level guarantees: Many sensor networks are complicated systems, consisting of numerous

components and protocols. Each component may use various fault tolerance, self-healing, or other reliability

mechanisms to operate robustly. However, even if one can guarantee that each separate component works

correctly, the system may still fail to perform some high-level operations. And a user (such as a fire inspector)

is only concerned with whether the system performs the way they want, rather than whether each component

works correctly. The goal of the RTA principle is to address this and focus on verifying the application-level

services.

Correctness demonstration: There are different ways to demonstrate correctness of services at run time.

One option is to monitor system health information and infer system correctness from this information.

Such health monitoring techniques are shown to be effective for certain applications with regular traffic

[140, 141, 74]. However, many critical events, such as fire or volcano eruptions, are rare. Also, in complex

WSN systems, it is hard to determine which states should be monitored and how to infer the correctness of

services. Monitoring too many states is inefficient and may cause many false positives, but monitoring too

few states could fail to reveal failures. Memento [78] uses a periodic heart beat method to determine if a

node is still alive. This approach is not suitable for RTA for two main reasons: 1) node responsiveness does

not imply proper functioning of the system and its application semantics; 2) node failure does not imply the

failure of the overall system or the application. If we have some level of node redundancy, a small number of

node failures may not affect the system application at all. Thus, in general, health monitoring techniques are

not sufficient to provide confidence in application-level requirements for WSNs at run time. To address this,

we employ testing to verify the proper operation of the application. Using tests allows us to check if the

application provides the results we expect regardless of what the state of its components might be.

6.2 Implementation Framework 85

Figure 6.1: The main components of the RTA framework are the automatic code generator, the automatic
test generator, and the test execution support.

6.2 Implementation Framework

Figure 6.1 shows how the components of the RTA framework interact with each other. The framework needs

three inputs: the MEDAL model of the application logic, the test specification, and the topology of the

network. Both the automated code generation and the automated test generation mechanisms need the

MEDAL application model. Note that the RTA framework is flexible enough to use other modeling languages,

as long as they are able to clearly and unambiguously define the application-level behavior of the system.

The test generation mechanism also needs information about what tests the user wants to run (the test

specification), and how many and what nodes there are in the regions of the network that will be tested (the

network topology). After the code for the nodes has been generated and deployed, and the proper sets of

tests have been created, the RTA execution mechanism can start monitoring the application’s functionality

by running RTA tests on the sensor network.

6.2.1 The MEDAL Programming Model

An advantage of MEDAL is that it provides a different perspective of a WSN system. By representing a

WSN application as a MEDAL model we can view it as a flow of tokens from places in the Petri net to other

places. There are several reasons why this is useful for the RTA specification. First, this is very suitable

for testing purposes and makes running RTA tests extremely straightforward. Second, a token-flow model

allows us to easily differentiate between a real event and a test event. Since the test events are specified by

test-tokens, all we have to do is mark the test-tokens as such. Then, whenever a transition is triggered or a

Chapter 6 Run time assurance (RTA) 86

place is reached, we can always check the type of the token that caused this to happen and react accordingly.

Third, such a model helps the collection of event-logs and makes it easy to define flow-traces in the system.

The MEDAL model of the WSN application is one of the inputs to our RTA framework. The user is

asked to write a script to specify the transitions and places of their model as well as the connections among

them. We provide a set of predefined transition types which, we believe, covers the majority of logical

operations used in a WSN application, such as, greater, less, equal, minimum, maximum, difference between

two consecutive values, average, and moving average. If, however, the user wants to specify transitions with

more complex functionality, they can do that by writing the necessary code themselves.

6.2.2 Automated Test Generation

For more than a decade automatic test generation has been widely used in software testing. It has improved

the quality of testing and reduced the effort and time spent on testing. Despite its many advantages, this

approach has not been applied to WSN application testing. One of the main benefits of the RTA framework

is that it also provides automatic test generation. The RTA test generator takes three inputs:

1. The MEDAL model of the application. Since the application code is automatically generated based on

the MEDAL model, we analyze the model itself.

2. The network topology.

3. The test specification - the user provides information about the events they want tests generated for,

the areas of the network they want to test, and the times the test should be run. Consider the following

scenario: a user wants to test the network for the occurrence of fire (event EFire). They want the tests

to be run on the nodes in two rooms (Room1 and Room2) at 7am on the 1st day of each month. The

nodes in each room are considered equivalent, i.e. they run the same application and are equipped with

the same set of sensors. The specification describing this example scenario is:

6.2 Implementation Framework 87

//equivalence - ’no equivalence’ or ’region equivalence’

region equivalence

//Declare the basic elements of the language

Time T1;

Region R1, R2;

Event EFire;

//Define the elements

T1=07:00:00, */1/2012;

R1={Room1};

R2={Room2};

EFire = Fire @ T1;

A challenge in testing is to maintain a high degree of coverage while reducing the size of the test suite

and thus shortening the testing stage. There are additional reasons, specific to WSN applications, for keeping

the test suites small. Extensively testing the network would not only increase the cost of the project but will

also significantly reduce the lifetime of the system. In addition, memory constraints prevent us from storing

too many test inputs on the nodes. Therefore, it is essential to develop methods that would help decrease the

number of tests run by the RTA mechanism.

The number of tests needed to fully test the MEDAL model of an application is mn, where n is the

number of inputs and m is the size of the sensing value range of the sensors. Since there are multiple sensor

nodes in the network, the total number of tests would be ms∗n where s is the number of sensors. In an

example network with 100 sensor nodes, each of which has a temperature sensor with value range 0-100 C

and a humidity sensor with value range 0-100 RH, the number of tests for all possible input combinations

would be 1002∗100, or 10400. Running that many tests on a sensor network is infeasible. To address this

problem we utilize three test reduction techniques. The first technique has been widely used for reducing the

number of tests for software applications. The second and third ones, however, are novel and also unique to

the nature of WSN applications.

Static model analysis

The first test reduction technique performs a static analysis of the MEDAL model. The transitions that fire

based on the value of the tokens shape the input-to-output behavior of the model. Therefore, we consider

Chapter 6 Run time assurance (RTA) 88

these transitions to be the important transitions in this analysis. To test such a transition, it is enough

to identify the “passing” and “non-passing” sets of inputs and then provide values to represent these two

sets. For example, to test a transition with a firing rule “the value should be greater than 27”, we need two

values - one less or equal to 27, and another one greater than 27. Our static analysis identifies the important

transitions and their passing and non-passing sets. Then it chooses a random value to represent each of

these sets. This reduction decreases the number of input values to 2t, where t is the number of important

transitions. Therefore, the number of tests for the whole network is decreased to 2s∗t, which is significantly

smaller than ms∗n since the value range of a sensor is typically much larger than 2 and t is comparable with

n.

A limitation of this step is that it is tightly coupled with MEDAL. The reduction step could work with

another modeling language only if this language is able to precisely identify the application logic and the

important parts of the application that define the input-to-output behavior of the application.

Network topology

A unique characteristic of WSNs application is that, unlike other software applications, they are strongly

dependent on the topology of the network. For example, two sensors are more likely to influence each other’s

decisions if they are neighbors. We take advantage of this feature to further decrease the size of the test suite.

We divide the network into regions. The size and shape of these regions is very flexible. The default size we

use is a room in a building, but a region could also be a group of nodes located close to each other. The

RTA test specification contains information about which regions should be tested. When creating the set of

tests for a region we only include the nodes within that region. An example application to justify this choice

would be detecting an event E in a building with many rooms. A node determines if E has occurred based

on its own readings and the readings of its neighbors, where a neighbor is a node in the same room. In this

case it is sufficient to test the rooms separately since nodes do not consider the readings of sensors outside of

their own room. This approach reduces the number of tests to R ∗ (2sR∗t), where R is the number of regions

in the network and sR is the number of sensors in a region. Since sR is much smaller than the number of

nodes in the network, this reduction substantially decreases the number of tests.

Redundancy

Another unique characteristic of WSNs is node redundancy. The assumption that all nodes in a region are

redundant helps us reduce the number of tests that are sufficient to test the network even further. If we

assume that all nodes in a region are equivalent to each other, we can use the same test inputs to check the

behavior of each one of them. Using this assumption we can decrease the number of tests from R ∗ (2sR∗t) to

6.2 Implementation Framework 89

R ∗ (2t). For example, if a network is deployed in a building with 8 rooms (R = 8) and there are 5 nodes in

each room (sR = 5) with 5 important transitions in their application logic (t = 5), applying this reduction

step decreases the number of tests from 228 to 28.

Often, if the application logic is more complex, the number of tests could remain large even after applying

all three reduction techniques. In these cases, designers could choose a test subset that has an acceptable

level of coverage. Alternatively, a test schedule could be devised such that tests are chosen on a rotation

principle and only a few tests are run each time.

6.2.3 Automated Code Generation

Software integrated development environments (IDE) based on various abstract modeling languages, such

as UML and state machines, are widely used for software development in diverse applications [142]. This

approach has the potential to reduce or even eliminate the code development phase by providing code

generation capabilities. Software development that relies on model-based development and automated code

generation from design models could improve both the quality of the resulting system and the efficiency of

the development process.

One of the benefits of MEDAL is that it is a formal unambiguous specification language, which renders it

suitable for automated code generation. The MEDAL model of an application can be used to automatically

generate the code to be executed by the nodes in the network.

Model clarity is one of the key requirements for correct code generations. This is another place where the

extensions introduced in Chapter 3 prove to be helpful. If we again consider the explosion application from

Chapter 3, there are four types of nodes in the explosion detection system: temperature node, light node,

acoustic node, and a cluster-head node. This means that the code generator has to produce four different

executables - one for each of the types of nodes. Therefore, the MEDAL model of the application should

provide clear indication of the boundaries between the logic for the different nodes.

Figure 6.2 shows how the radio transition in the explosion detection application can be used to determine

the boundaries between the different executables. When we perform the cut through the radio transition,

the result is four smaller models corresponding to the application logic executed by each of the four types

of nodes. Since the radio transition is an abstract element, the code generation mechanism can treat the

reoccurring transition R1 as either an instruction to send messages, when the transition has an input arc, or

an instruction to receive messages, when the transition has an output arc. Once the different sub-models

corresponding to each of the node types are identified, the code generation mechanism can produce the actual

Chapter 6 Run time assurance (RTA) 90

Figure 6.2: The radio transition in a MEDAL model can be used by an automated code generator to determine
the boundaries between the different node executables that should be generated.

Figure 6.3: The steps of the code generation process for MEDAL. The MEDAL model is translated into a
script, which is then used by the code generator to produce the code for the nodes in the system.

code to be run on the network. Similarly, inhibitor arcs help with priority specification and with identifying

preconditions for events.

Yafeng Wu developed an automated code generator, which produces TinyOS code based on an application’s

model [143]. Currently, the input to the code generator is not the MEDAL model itself, but a script that

describes the model. This script is used to produce the code for the nodes in the network. Figure 6.3 shows

the process of code transformation from a MEDAL model to TinyOS code. The rest of the section describes

in more detail the script and the structure of the automatically generated code.

6.2.4 Translating MEDAL into a script

The input to the automated code generator is a script file that designers write to describe the MEDAL model

of an application. An example script for the model of the explosion detection application in Figure 3.3 is

6.2 Implementation Framework 91

Figure 6.4: A script specifying the MEDAL model of an application describes all arcs, places, and transitions
with their types and attributes.

shown in Figure 6.4. The script specifies the arcs, places, and transitions in the model. Places have two

attributes: sensors and actions. At the sensor event places, which are places T, L, and A, nodes need to

access sensors to get data. The designers have to specify the sensor type and the sampling frequency for

these places. There could be multiple operations, called actions, that a node has to perform once a particular

place has been reached. Although a place can represent a multiple number of actions, it can be associated

with only one type of sensor.

6.2.5 Code structure

TinyOS programs are built out of software components. In order to translate the MEDAL model into TinyOS

code, we add a MEDAL structure above the TinyOS component model. This structure consists of components

that represent places and transitions.

The core of the code structure is the concept of a token. A token is defined as an encapsulation of a value

plus temporal and spatial information. The code executions is driven, processed, represented, and recorded

as tokens passing through places and transitions. Tokens pass through components to transfer information

and drive the execution. By recording the traversing history of tokens, we can continuously monitor and

collect traces of system execution.

Although the automated code generator currently generates only TinyOS code, it can be adapted to

generate code in other languages. For example, instead of components, we can build structures or classes

Chapter 6 Run time assurance (RTA) 92

for the different MEDAL objects, and update the code generator’s templates to generate code in the new

languages.

6.2.6 Test Execution Support

The test execution support was developed Jingyuan Li. It is responsible for automatically running the RTA

tests on the networked sensing devices. Supporting the execution of RTA tests involves the following steps:

1. After system initialization, every node goes through a synchronization process after which it is assigned

its current time and location.

2. RTA tests are scheduled or requested via test specifications at the user terminal. RTA test data is

generated by the automated test generation mechanism, delivered to the WSN gateway, and then shipped

to each node using the test deployment protocol. Each test is scheduled to automatically start and stop at

specified times using the test control protocol.

3. When the scheduled test start time is reached, each sensor node involved in testing enters testing mode

and starts reading the test inputs that have been provided to it. When test mode is entered, each sensor

node stops sampling from the corresponding real sensors to avoid communication conflicts. However, to avoid

the interruption of real event monitoring, users can specify that sensor nodes should continue sampling even

in test mode.

4. When virtual events are detected by the application, the results are reported to the gateway and then

used for test result resolution.

The test execution support completely automates the RTA test process. After the users provide the test

specification, the specification is processed by the test generation mechanism which generates the test data.

This test data is then delivered to the sensor nodes in the network via a WSN gateway. When it is time to

run the scheduled tests, the sensor nodes start reading from their virtual sensors to simulate virtual events.

These events are processed by the application logic, and the application layer outcomes are reported back via

the WSN gateway.

6.3 Case Study

We present a case study to demonstrate the usability of our RTA methodology. In this scenario, we are

required to design and build a fire detection system for a building. The building has seven floors and there

are ten rooms per floor. There is at least one node with a smoke sensor and one node with a temperature

sensor in each room. The fire detection application uses both smoke and temperature readings to determine

the presence of fire. The fire detection algorithm we use is composed of two separate algorithms. The first

6.3 Case Study 93

Figure 6.5: A fire detection application uses smoke and temperature readings to determine the presence of
fire. The MEDAL model of this application logic concisely and unambiguously depicts the application logic.

monitors the temperature and smoke increase rates and if they both exceed some predefined thresholds, the

algorithm reports the presence of fire. The second algorithm reports fire if the temperature value exceeds

a predefined threshold. Figure 6.5 shows the MEDAL model describing the logic of the application. The

elements of this model are:

- Places S1 and S2 represent the two types of sensor events, while SH , TH , Msg and Fire stand for, High

smoke increase, High temperature increase, Message reception, and Fire, respectively.

- Transitions: Transition TDS is fired if the smoke increase rate goes above a specific predefined value.

Firing transition TDS sends the firing value over the radio and raises a local smoke alarm. Transition TDT fires

if the temperature increase ratio goes above another predefined threshold. This also causes the application to

send a message over the radio and raise a local temperature alarm. Transition TFIRE is fired if fire has been

detected. It is enabled only if the local temperature node has detected high temperature increase and at least

two messages have been received from neighboring nodes in the same room indicating high temperature and

smoke values.

Next, we implement the system. First, we write a new script file according to the application model, and

input it into the automated code generator. The automated code generator partitions the whole logic and

generates the code for the smoke and temperature sensors.

To automatically generate the test suite, we need the user to provide us with an RTA test specification.

The testing specification in Section 6.2.2 could be used for this scenario. Knowing the test specification, the

application model, and the topology, we can generate the necessary set of tests to be run by the execution

support. These tests need to provide such inputs to places S1 and S2 that the presence of fire is simulated.

When these tests are run, the application is expected to report the presence of fire based on the virtual

Chapter 6 Run time assurance (RTA) 94

readings from the tests.

At first this case study might seem simplistic. However, several key points must be emphasized. It is

important to recognize that this simple model can represent a fire detection system that exists across many

floors and uses many sensors. Although we had initially specified that we have seven floors with ten rooms

each, these numbers do not confine the application model. The same model could successfully be used to

detect fires in a skyscraper with hundreds of rooms. In other words, even though the model is simple, it can

represent a large scale system. This case study also uses relatively simple logic for temperature and smoke

sensors. However, the power of the underlying Petri net allows us to describe arbitrarily complex logic and

control flow. An additional advantage is that the formal model of a complex application is not necessarily

too big or complicated since much of the complexity for such systems is encompassed in the logic associated

with the transitions.

6.4 Evaluation

To investigate the performance of our RTA methodology, we have implemented a prototype Fire Detection

(FD) system that is based on the application model presented in the case study. The system is built on an

indoor testbed. The testbed is composed of 21 TelosB nodes, placed in a 7× 3 grid on a board. One node is

chosen as the base station and the rest are divided into different rooms. The TelosB nodes are equipped only

with a light sensor. We have used the light sensors to simulate temperature sensors. We use the fire detection

algorithm described in Section 6.3 and the nodes only contain the logic for the temperature sensors. Once a

node detects a fire, it sends a report to the base station. For the communication topology we constrain the

nodes to only directly communicate with nodes in the same room. For multi-hop communication we use a

simple geographic forwarding routing protocol.

6.4.1 Test reduction

We have analytically estimated the number of tests necessary to fully test the MEDAL model for both the

prototype FD application and the FD application presented as a case study. Our calculations are shown

in Table 6.1 and Table 6.2, respectively. For both tables, the result of applying a particular reduction step

is calculated as the number of automatically generated tests when the current reduction and all previous

reductions steps have been applied together.

The results in both tables show that the first reduction step, statically analyzing the MEDAL model,

provides the highest decrease in the number of tests. However, even after using this reduction, running a

hundred billion tests on a sensor network is still unreasonable, if not impossible, considering the limited

6.4 Evaluation 95

rooms 2 4 5 10
nodes in room 10 5 4 2

baseline (no reduction) 11 ∗ 1035 11 ∗ 1035 11 ∗ 1035 11 ∗ 1035

static analysis reduction 11 ∗ 1011 11 ∗ 1011 11 ∗ 1011 11 ∗ 1011

topology reduction 2 ∗ 107 4096 1280 160
redundancy reduction 8 16 20 40

Table 6.1: Combining static analysis techniques and knowledge about the network topology and node
redundancy reduces the size of the test suite for the FD application by 35 orders of magnitude.

rooms 2 4 5 10
nodes in room 10 5 4 2

baseline (no reduction) 11 ∗ 1091 11 ∗ 1091 11 ∗ 1091 11 ∗ 1091

static analysis reduction 11 ∗ 1017 11 ∗ 1017 11 ∗ 1017 11 ∗ 1017

topology reduction 2 ∗ 109 131072 20480 640
redundancy reduction 16 32 40 80

Table 6.2: When all three reduction steps are applied, adding an extra sensor only doubles the number of
necessary tests instead of causing an exponential increase.

resources of the sensor nodes. The situation is further exacerbated by the fact that the tests must be run

periodically.

Applying our second reduction step, which takes advantage of the topology, additionally decreases the

number of tests. The impact of this step is much more noticeable in cases where there are just a few nodes

per region. As shown in Table 6.1, in the case where we have 10 sensor nodes per region, the drop in the

number of tests is just 105 times, while the same step leads to a 1010 times reduction in the scenario with 2

nodes per region. Similar results can be seen in Table 6.2.

The decrease in the number of tests after applying the last reduction step is significant as well. Compared

to the previous reduction step, here we see the opposite effect: the more sensors there are per region, the

higher improvement we get. This is due to the fact that since the nodes in a region are considered to be

equivalent, all of them can use the same input test values.

A number of conclusions can be drawn based on the results in Table 6.1 and Table 6.2. First, if no

reduction is applied, the number of tests we have to run increases exponentially with the number of sensors

needed by the application. However, if all three reduction steps are applied, adding an extra sensor merely

doubles the number of necessary tests. Second, it is better to create fewer regions with more nodes than

more regions each containing a small number of nodes. Third, all three reduction steps need to be applied

in order to generate a small set of tests. We realize that there might be cases where the sensor nodes are

not equivalent and the last reduction step cannot be performed. In such situations, to avoid exhausting the

network’s resources, it might be necessary to either only run a carefully chosen subset of the generated tests

or schedule the tests in such a way that all generated tests are run but over a more extended period of time.

Chapter 6 Run time assurance (RTA) 96

The automated test generation mechanism is not designed to handle node mobility. Therefore, changes

in the topology might cause the RTA tests to fail even if the system is still able to function correctly. This

problem can be alleviated in networks with low node mobility levels where we can rely on the test execution

support to automatically detect topology changes and regenerate and redistribute tests when such changes

occur. However, this approach is not feasible when the level of node mobility is high.

6.4.2 Robustness to Failure

The goal of RTA is to maintain the accurate operation of a WSN application despite the unreliable and

failure-prone underlying infrastructure. To evaluate the robustness of our RTA approach, we have compared it

to a health monitoring (HM) system and a pure system with no RTA or health monitoring support. All three

fire detection systems have the same application logic. The RTA FD system is generated with the help of our

RTA framework. The rooms are tested on a rotation basis and a different room is picked each time a test

should be run. The FD system with HM monitoring is implemented following the HM mechanism introduced

by Memento [78]. Memento uses heartbeats from neighbor nodes to determine if a node is functional. We

assume that when an RTA test fails or the HM system detects a node failure the failed nodes are immediately

repaired.

Experimental Results

To demonstrate RTA’s efficiency in maintaining application robustness while significantly reducing maintenance

cost, we have run multiple experiments under different settings. We use a flashlight to generate the fire events

in our testbed. To measure the system’s performance under realistic scenarios, the fire event sequences are

generated using a Poisson process generator. The room in which a fire occurs is chosen randomly. A random

Poisson process is also used to compute the failure sequence and determine which nodes stop executing the

application and at what time. During the experiments, the WSN gateway injects node-failures by sending

messages to the selected nodes and stopping their execution strictly according to the failure sequence. For

each experiment, we run the three systems sequentially with the same fire and failure sequences. A node

is periodically chosen to fail until no operational nodes are left and the experiment stops. The robustness

of the system is represented by the false negative rate which we define as the ratio between the number of

unreported fires and the total number of generated fires. Maintenance cost is measured with the number of

repairs, the Mean Time to Repairs (MTTR), i.e. the average time between two consecutive repairs, and the

number of messages sent during testing.

6.4 Evaluation 97

Figure 6.6: RTA and HM achieve similar false negative rates.

In the first set of experiments we measure the robustness and maintenance costs of the three systems. To

study the impact of redundancy, we vary the number of nodes per room from 2 to 10. All experiments last 20

minutes and both the RTA and the HM system run a test every minute. The fire event rate is 0.5/s, and the

node failure rate is 1/s. Figure 6.6 shows the results of these experiments. Each data point is the average of

5 trials with a 90% confidence interval. The results reveal that, compared to a pure system, both RTA and

HM significantly reduce the false negative rates of the FD application. This is expected as both mechanisms

can detect node failures and repair nodes immediately. Comparing the RTA system to the HM system shows

that both systems demonstrate similar robustness levels. The only visible difference is when there are only 2

nodes per room. Since according to the application logic we need at least two nodes per room, any node

failure will lead to a false negative. In this case, the false negative rate of the RTA system is slightly greater

than that of the HM system because the RTA system only tests one room at a time while the HM system

tests all nodes every time. Increasing the level of redundancy eliminates this difference in the false negative

rates. With 5 nodes per room, both systems have a false negative rate close to zero.

We also compare the maintenance cost of the RTA and HM systems. Figure 6.7 shows the number of

repairs for both systems. We can see that the RTA system requires fewer repairs than the HM system. The

number of repairs required by the HM system is constant since it triggers a repair every time a node fails. On

the other hand, the RTA system repairs nodes only when the operational nodes in a room cannot detect the

fire. Our results show that with a certain level of redundancy, the RTA mechanism can significantly reduce

the number of repairs while still providing high confidence. For example, with 10 nodes per room, the RTA

system guarantees no false negatives and requires only a total of 2.5 repairs. On average, the RTA system

produces 70% fewer maintenance dispatches. We also measure the MTTR of both systems. Results show

Chapter 6 Run time assurance (RTA) 98

Figure 6.7: RTA requires 50%-70% fewer repairs than HM.

Figure 6.8: On average, RTA uses 33% less messages than HM.

that the RTA system has much longer MTTR than the HM system. For example, with 5 nodes per room, the

MTTR of the RTA system is 5.6 seconds, with 1.5 seconds for the HM system.

Another type of maintenance cost is the extra messages incurred by running tests. The base station in

the RTA system needs to send messages to trigger tests and nodes are required to report virtual fire events

during tests. For the HM system, nodes need to send heartbeats, and the base station should be notified if

no heartbeat is received from some node. These extra messages use bandwidth, consume additional energy,

and reduce the system lifetime. We have measured the number of the extra messages for both systems and

the results are shown in Figure 6.8. We see that the RTA system introduces much less message overhead.

The HM system always uses over 650 messages, because nodes keep sending heartbeats. On average, the

RTA system uses 33% less messages than the HM system.

6.4 Evaluation 99

Figure 6.9: When the failures introduced in the system are location errors, the RTA system missed 75% fewer
fires than the HM system on average.

Node level failures are lower level failures and the HM mechanism has been specifically designed to detect

them. In the next experiment we compare the performance of the two systems when application level failures

are introduced. To do this we insert a new type of error, which we call location error. A location error can

be defined as any unexpected changes in the location of a node from one region/room to another. Such a

location change should lead to a failure if it is against the application’s requirements. In our scenario, we

need to have at least two nodes per room. Therefore, a location change that decreases the number of nodes

in a room to less than two should cause an application-level failure.

In this experiment, we change the location of nodes to simulate location errors. We still use a Poisson

sequence to generate location errors with the rate of 1/s, and randomly chosen nodes change their locations

to adjacent rooms. The false negative rates of our three FD systems are shown in Figure 6.9. We see that

the HM system has a high false negative rate and cannot guarantee the system’s robustness. This occurs

because when a node is moved to an adjacent room, it can still send heartbeats to its neighbors, so the HM

system considers it operational. However, since the RTA system tests the fire detection ability of each room,

it can catch such errors without using extra mechanisms to explicitly detect location errors. On average, the

RTA system misses 75% fewer system failures. When the node redundancy reaches 5 nodes per room, RTA

does not incur any false negatives. Based on these results we can conclude that, compared to an HM system,

an RTA system can provide better visibility into the application behavior at run time.

Simulation Results

We have used simulation to demonstrate that RTA can significantly reduce the amount of network maintenance.

We simulate a scenario in which we have 25 rooms, and each room has N nodes, where N represents the

Chapter 6 Run time assurance (RTA) 100

Figure 6.10: RTA reduces the number of maintenance dispatches to only 0.3%-33.9% of HM.

level of node redundancy in that room. We assume that the lifetime of the sensor nodes follows a Poisson

distribution. R is the mean lifetime of the sensor nodes in months and it represents the reliability of the

nodes. We generate fire events following a Poisson distribution. The expected occurrence interval of these

events is three months, and the simulation period is set to two years. Each data point represents the average

of five runs.

We make the following two assumptions when comparing the amount of maintenance work required by

RTA and HM: 1) If the RTA tests determine that the nodes in a room are not able to detect the presence of

fire, a maintenance worker is dispatched to replace the failed nodes in that room; 2) If the HM determines

that a node has failed, a maintenance worker is dispatched to replace the failed node.

In order to achieve a fair comparison, we use the same testing overhead (in terms of the number of testing

messages sent) for RTA and HM. On average, an RTA test requires K times more messages than HM - in our

implementation K≈8. Therefore, in the simulations RTA runs in 1/8 the frequency of HM. In this simulation

the RTA test frequency is a test per day for each room.

Figure 6.10 shows the number of maintenance dispatches under different levels of node reliability R and

redundancy (nodes per room). We observe that when the redundancy is increased RTA makes a significant

reduction in the number of maintenance dispatches. With 6 or more nodes per room, the number of RTA

maintenance dispatches is less than 10% of the dispatches required by HM. Since HM maintains node-level

reliability, the number of maintenance dispatches is proportional to the number of node failures. In contrast,

RTA maintains application-level reliability and a maintenance dispatch is only necessary when the application

is not able to meet its high-level requirements. Thus, by taking advantage of the node redundancy level, RTA

can considerably reduce the total number of the required maintenance dispatches.

6.5 Summary 101

System ROM (bytes) RAM (bytes) lines of code

Pure Fire detection system 18142 898 1767
Fire detection system with HM 22976 1280 2590
Fire detection system with RTA 24888 3386 3193

Table 6.3: Compared to HM, RTA has a larger memory footprint.

6.4.3 Overhead

Table 6.3 compares the memory usage and footprint of the three FD systems. We can see that, because of its

token-flow programming structure and more powerful test execution facilities, the RTA system uses more

program memory and RAM. Also, the code for the RTA system is larger than that for the other two systems.

However, since most of this code is automatically generated by the RTA framework, users only need to write

the MEDAL model specification script, which was less than 50 lines for the experimental FD system.

6.5 Summary

A major disadvantage of the current reliability and health monitoring techniques used for WSN applications

is that they monitor the performance of the low-level components of the system instead of the reliability

of the application layer. To the best of our knowledge, this is the first work to address this issue in WSNs

and suggest a methodology to help designers and users verify an application’s integrity at run time. We

have implemented a framework that facilitates the use of our RTA methodology. This framework provides

automated code generation, automated test generation, and execution support for the RTA tests. To decrease

the vast number of generated test cases, we introduce three test suite reduction techniques, two of which are

unique to the nature of WSN applications and take advantage of the network’s topology and node redundancy.

We evaluate our implementation on a network of 21 TelosB nodes, and compare performance with an

existing network health monitoring solution. Our results indicate that RTA performs much better than health

monitoring in identifying application-level failures and almost just as good in identifying low-level failures. In

addition to providing application-level verification, RTA misses 75% fewer system failures, produces 70%

fewer maintenance dispatches, and incurs 33% less communication overhead than network health monitoring.

Chapter 7

Simultaneous Multi-classifier Activity

Recognition Technique (SMART)

O
ne of the main appeals of using WSN deployments for smart home applications is the low cost

of the devices and the possibility for easy do-it-yourself installation. However, recent studies have

found that low-cost sensors suffer from many types of faults [144]. Inexpensive nodes can break

and battery-powered nodes lose power. Furthermore, the do-it-yourself installation process leads to a large

number of non-fail-stop faults in which the sensor does not completely fail. Instead, it continues to report

values, but the meaning of these values changes or becomes invalid. For example, sensors were reported to

become dislodged over time, or to fall off surfaces only to be re-mounted by the homeowner in the wrong

location. Sensors were covered by objects or blocked by an open door or re-arranged furniture. Some sensors

mounted on furniture were moved into different rooms. As the number of sensors increases, the number of

failed nodes also increases. The authors reported that homes with hundreds of sensors had at least one sensor

failure per day on average. The maintenance cost of fixing all such failures is prohibitive, and may negate

any cost advantages of inexpensive hardware and installation.

Several techniques have been developed to detect and report fail-stop hardware failures by repeatedly

querying the nodes or checking for lost data [78, 80], but these techniques cannot detect non-fail-stop failures

because the hardware is still responding and reporting values. Recently, several approaches have been

developed to detect non-fail-stop sensor faults by exploiting correlations between neighboring sensors [83, 87]:

two data streams that contain shared information about the physical world are typically correlated; if that

correlation changes then one of them might be experiencing a non-fail-stop failure. We call this a bottom up

approach because it uses patterns in the raw sensor data, without knowledge of what the sensor data means.

102

Chapter 7 Simultaneous Multi-classifier Activity Recognition Technique (SMART) 103

However, these techniques are designed for homogeneous, periodic, and continuous-valued sensors; it is not

straightforward to generalize these approaches to the heterogeneous, binary, and event-triggered sensor suites

often used in smart home applications.

In this chapter, we describe a Simultaneous Multi - classifier Activity Recognition Technique (SMART)

which uses top down application-level semantics to detect, assess, and adapt to sensor failures. SMART

detects non-fail-stop node failures, which include failures caused by nodes getting stuck at a value, node

displacement, or node relocation. The failure detection is performed at run time by using multiple classifier

instances that are trained to recognize the same set of activities based on different subsets of sensors. If a

sensor fails, it will only affect a subset of the classifiers and the ratio of activity detection among the classifiers

will change, thereby indicating a possible sensor failure. Once a sensor failure is detected, SMART adapts

to the failure by excluding the failed node and creating a new classifier ensemble based on the remaining

subset of nodes. SMART uses data replay analysis to assess whether the failure would have affected activity

recognition in the past had the new classifier ensemble been used. If it would have, SMART dispatches a

maintenance person to repair the failure. Otherwise no maintenance is necessary. Although we currently

focus on activity detection applications, our technique can be generalized to other smart home applications

that use similar types of sensors.

We demonstrate the concepts behind SMART in the context of activity recognition, where a classifier

is used to identify an activity being performed based on the sensor data generated in the home. The basic

insight behind SMART’s failure detection is similar to that used by prior work: sensors that monitor the same

activities in the physical world typically have correlated values. Instead of relying on blind mathematical

correlations among the raw sensor values, however, SMART uses classifiers to identify the degree to which

different sensors indicate the same ongoing activity in the home. The power of this technique lies in the

ability to use labeled training data sets, application-level feature extraction, or other application-level tools

to identify meaningful correlations between sensors for the purpose of sensor failure detection.

We evaluate SMART using publicly available datasets from three homes [145, 146]. We artificially

introduce failures in the data, to analyze SMART’s ability to detect non-fail-stop node failures and adapt to

those failures. The main contributions of this work are:

1. A new approach to detect non-fail-stop failures. Our results indicate that we can identify application-level

failures with more than 85% accuracy;

2. A novel failure severity assessment technique which decreases maintenance costs. Our evaluation shows

that we reduce the number of maintenance dispatches by 55% on average and increase the mean time

to failure (MTTF) of the application 3.2 times;

Chapter 7 Simultaneous Multi-classifier Activity Recognition Technique (SMART) 104

Figure 7.1: Failure detection accuracy for a “movement” non-fail-stop node failure introduced in a smart-home
deployment. Correlation-based approaches cannot achieve more than 80% failure detection accuracy even 4
days after the failure has occurred.

3. A multi-classifier approach, which allows the application to use the most suitable classifier at any given

time and adapt to node failures by retraining additional classifiers that reflect the current state of the

system. Our experiments show that SMART improves the activity recognition accuracy under node

failures by more than 15%.

7.1 State of the art

Recently, correlation-based techniques have been developed to identify non-fail-stop node failures in environment-

monitoring applications [83]. To understand how accurately correlation-based techniques can detect non-fail-

stop failures in event-driven applications, we implemented a correlation-based prototype system. The system

is based on Generiwal’s correlation-based framework [83]. However, we had to make a number of adaptations

to address the event driven-nature of activity recognition applications:

� The majority of sensors in activity-recognition applications are binary and value-based correlation is

not suitable. Therefore, we use temporal correlation, where sensors have higher correlation if they fire

within some time of each other;

� Event-driven sensors are idle most of the time and using temporal correlation could result in insignificant

correlation values. In order to achieve meaningful correlation values, our correlation technique ignores

the periods where no nodes fire.

Figure 7.1 shows the results of our correlation based experiments for detecting a simulated non-fail-stop

movement failure, where one of the kitchen motion sensor is accidentally moved to point in a different

7.2 Approach 105

Figure 7.2: SMART has two components: offline and run time. Preliminary offline analysis of node failure
severity is performed and multiple classifiers are trained. The results of this analysis together with the
classifiers are used at run time to detect node failures and determine if maintenance is needed.

direction. We perform this experiment on a 43-day-long dataset from a two-resident home [145]. The x-axis

shows the failure detection latency, which is the number of consecutive days used to collect data after the

failure has occurred. To evaluate the failure detection accuracy with a latency of x days, we construct a set

of all possible combinations of x consecutive days from the dataset. For each entry in this set, we calculate

the correlation values among the sensors for both no-failure and movement-failure cases. The evaluation of

how accurately we can distinguish between the no-failure and movement-failure cases is performed using a

10-fold cross validation on the J48 decision tree algorithm from the WEKA software package [135].

Our evaluation shows that the correlation-based approach cannot achieve failure detection accuracy higher

than 80%. Also, the accuracy decreases as the number of consecutive testing days increases. This shows that

bottom-up temporal correlation is not a good approach to detect non-fail-stop sensor failures. The main

reason is that temporal correlation between nodes looks at when two nodes fire together irrespective of which

activity is being performed. However, sensors are often correlated in a different way based on the activity

that is performed. Therefore, a top-down approach, like the one described in this chapter, which evaluates

the relations between different sensors per activity, would be able to achieve higher failure detection accuracy.

7.2 Approach

SMART can be divided in two components: offline and run time (Figure 7.2). In the offline stage, our

approach trains classifier instances for all possible combinations of node failures by holding those nodes out

of the training set. Since classifier training is done offline, the time to train the classifiers does not affect

Chapter 7 Simultaneous Multi-classifier Activity Recognition Technique (SMART) 106

the system at run time. This stage also performs preliminary failure severity analysis of the effect of sensor

failures on the classifiers’ performance. This analysis can be rerun in the future if the system behavior evolves

over a longer period of time.

At run time SMART chooses an ensemble of preemptively trained classifiers based on the failures that have

already been detected. When a new node failure is detected, the system adapts to that failure by updating

the classifier ensemble to contain classifiers that are trained for the failure. Since all classifier instances are

trained beforehand, the overhead of updating the classifier ensemble at run time is negligible. If the results

from the failure severity analysis indicate that the new classifier ensemble can maintain the detection accuracy

of the application above the application specified severity threshold THS , the failure is considered non-severe.

We define THS as a fraction of the original accuracy of the system when no failures are present. If a failure

is not severe, no maintenance is necessary since the application can still meet its high-level requirements.

However, if the node failure is severe and the detection accuracy falls below THS , one or more sensors need

to be repaired. In the rest of this section we describe in more detail: 1) the training and use of the classifier

ensemble, 2) the detection of non-fail-stop failures, 3) the node failure severity analysis, which allows us

to decrease the number of maintenance dispatches, and 4) how SMART maintains high detection accuracy

under failures.

7.2.1 Using multiple simultaneous classifiers

We use the following notation throughout the chapter:

1. C (Training set, Testing set), where, for a classifier instance C, Training set and Testing set are the

sets of sensors used for training and testing, respectively.

2. CAccuracy: accuracy of classifier instance C.

3. CNDA: number of detected activities by classifier instance C.

4. S: the set of all nodes in the system.

Complete node failure analysis requires every possible combination of faulty sensors to be considered.

However, the analysis of all 2|S| − 1 failure sequence traces does not scale to large networks with hundreds of

sensors. Based on preliminary analysis, we found that it is enough to initially consider only the |S| single-node

failures. Therefore, in addition to the classifier instance C (S, S) trained on all nodes, we also analyze |S|

more classifier instances, where ∀s ∈ S a classifier instance is preemptively trained for the failure of node

s, i.e., its training set contains S − s sensors. Figure 7.3 shows how the training sets for the additional |S|

classifier instances are identified. The classifier ensemble, containing |S|+ 1 classifiers, is used to:

7.2 Approach 107

Figure 7.3: Preemptively training classifiers for the occurrence of failures by holding one sensor out from the
training set allows us to build failure-aware systems. Classifier A is trained on all nodes. Classifiers B and C
are trained by holding node 1 and node 7, respectively.

1. Detect the occurrence of failures and identify which nodes have failed by monitoring the relative behavior

of the original classifier instance and that of the other |S| instances.

2. Maintain high detection accuracy in the presence of failures.

We denote the classifiers as classifiers C0, C1, ..., C|S| where C0 is trained on all |S| sensors and Ci is

trained on all |S − i|.

7.2.2 Failure detection

SMART detects node failures by analyzing the relative performance of the classifiers that had that node in

their training set versus those classifiers that did not. For example, when sensor s fails, we expect a change in

the relative behavior of classifier C (S, S − s) and that of classifier C (S − s, S − s). Therefore, we calculate

the F-score of each of these classifiers with respect to the original classifier C0 to measure the similarity

between their outputs. For example, the F-score for a classifier Ci (S − si, S) is calculated as

F − scoreCi
=

2×NDAboth

2×NDAboth+NDAC0
+NDACi

where:

1. NDABOTH is the number of activity instances detected by both classifiers C0 and Ci, i.e. the number

of true positives with respect to classifier C0;

2. NDAC0 is the number of activities detected only by classifier C0, i.e. the number of false negatives for

classifier Ci with respect to classifier C0;

Chapter 7 Simultaneous Multi-classifier Activity Recognition Technique (SMART) 108

Figure 7.4: Multiple F-score vectors are used to detect when an application-level failure occurs in the system
and to identify which node has caused the failure.

3. NDACi is the number of activities detected only by classifier Ci, i.e. the number of false positives for

classifier Ci with respect to classifier C0.

Each of the |S| classifiers has an F-score associated with it, forming an F-score vector:∣∣∣∣∣∣∣∣∣∣∣∣∣

F − scoreC1(S−s1,S)

F − scoreC2(S−s2,S)

...

F − scoreC|S|(S−s|S|,S)

∣∣∣∣∣∣∣∣∣∣∣∣∣
This vector characterizes the behavior of the system when there are no failures. If a failure occurs, based

on the severity of the failure, it might affect some or even all of the values in the F-score vector. Since

different failures change the behavior of the classifiers in different ways, our approach tries to identify if a

failure has occurred and which node has failed by using another level of classification on the F-score vector.

Figure 7.4 illustrates this principle. There are three nodes in the system: A, B, and C. In addition to the

classifier instance C0 trained on all nodes, there are three more classifier instances trained by holding one

of the nodes out: CA, CB, and CC . The F-score vector characterizes the relative behavior of CA, CB, and

CC to that of C0. Since all four classifiers have been trained on a different subset of the nodes, they might

not be detecting the exact same number of activities. The first F-score vector represents the state of the

system when none of the nodes has failed. When sensor C fails, this affects the system and the relative

behavior of the classifiers changes, which is represented by the second F-score vector. CA, CB , and C0 have

all been trained with node C. Therefore, their relative ratios will remain similar, since they will be affected in

a similar way. On the other hand, classifier CC was trained by holding node C out and will therefore change

its behavior relative to classifier C0. By analyzing the changes in the F-score vectors, SMART attempts to

both infer that a failure has occurred in the system, and to identify the cause of that failure.

7.2 Approach 109

Failure recognition is performed in two steps:

Step 1: Is there a failure or not? We use a failure detection classifier (FDC) that is trained to distinguish

between non-failure F-score vectors and failure F-score vectors. We use historical data to generate both failure

and non-failure F-score vectors and train the FDC. The failure F-score vectors are generated by artificially

introducing failures in the historical data though modifying the readings of the “failed” nodes. At run time,

the system calculates the relative F-scores for the |S| classifiers and builds a F-score vector. The FDC is used

to determine if the F-score vector represents a system that has a failure or not.

Step 2: Which node has failed? Once a node failure has been detected, a second failure identification

classifier (FIC) is used to determine which of the nodes has failed. The FIC is trained to distinguish between

different node failures. Again, this is done with the help of historical data where failures are simulated by

modifying the readings of the “failed” nodes.

An important issue to consider is that small fluctuations between F-score vectors might occur even without

failures, particularly if residents of a home alter their typical activity patterns. In addition, non-severe failures

might cause very small changes to the behavior of the classifiers. Therefore, the FDC, which determines if a

failure has occurred or not, is likely to produce a number of false positive and false negative classifications.

To improve the accuracy of the failure detection classifier we can increase the size of the historical data used

for training. We can also increase the failure detection latency, which is the time used to collect data after the

failure has occurred. Section 7.5 discusses the effect of the failure detection latency on the failure detection

and identification accuracy of our approach.

7.2.3 Node failure severity analysis

The severity analysis is based on the key insight that node failures are going to impact the application

differently based on the available level of redundancy in the system. Consider the scenario in Figure 7.5. The

activity we are interested in is cooking. There are two sensors in the kitchen but only the star-shaped one is

located close to the appliances and the sink. If this sensor fails, the detection accuracy for cooking will be

impacted significantly. Therefore, this failure is severe and maintenance will be necessary if it occurs. On the

other hand, if the oval-shaped sensor fails, this might have a small effect on the accuracy of detecting cooking.

In that case, the node does not need to be repaired immediately. Also, if the node redundancy in the kitchen

had been higher, even the failure of the star-shaped node might have been considered non-severe since it

might have barely affected the detection accuracy.

When a failure is detected at run time, we use historical data and apply data replay analysis to evaluate

what effect this failure would have had on the application had it occurred in the past. Assume that node s

Chapter 7 Simultaneous Multi-classifier Activity Recognition Technique (SMART) 110

Figure 7.5: The severity of a sensor node failure is very strongly correlated with the level of redundancy in
the system. Therefore, because of the low node redundancy in the kitchen, if the star-shaped node fails, the
accuracy of detecting cooking activities would be severely impacted.

fails, where s ∈ S. We use historical data to estimate CAccuracy(S, S) that would have been reported by the

classifier before the failure. After that, we remove all of the readings produced by the failed node s from

both the training and the testing set and calculate CAccuracy(S − s, S − s). The difference

|CAccuracy(S, S)− CAccuracy(S − s, S − s)|

determines the effect of the failure on the application. As mentioned earlier, a failure is considered severe if it

decreases the detection accuracy below the severity threshold THS , and maintenance is dispatched every

time a severe failure is detected. Some applications might consider failures to be severe if they change the

number of detected activities by more than 30% of the original number of detected activities. However,

for safety-critical applications, a failure could be severe even if it changes the number of detections by 5%.

Instead of using a global severity threshold, an application can also specify per-activity severity thresholds.

In this way, if some activities are considered more critical than others, they can be assigned stricter severity

thresholds.

7.2.4 Maintaining detection accuracy under failures

SMART is able to adapt and maintain high activity recognition accuracy even in the presence of node failures

by simultaneously running more than one classifier instance, each of which is trained on a different subset

of nodes using the hold one sensor out approach. Additionally, SMART simultaneously uses a variety of

classifier types, including Naive Bayesian (NB), Hidden Markov Model (HMM), Hidden Semi-Markov Model

(HSMM), and decision trees. SMART takes advantage of the fact that classifiers perform differently due to

7.3 Experimental setup 111

the ability to extract different types of patterns. As failures are detected at run time, SMART automatically

switches to the classifier instance among all types and training sets that performed best on the training data,

given the set of nodes known to be functional and failed.

7.3 Experimental setup

We evaluate SMART on 3 houses in 2 publicly available activity recognition datasets. We study one of the

CASAS datasets provided by WSU [145]. This dataset contains over 40 days of labeled data from over 60

sensors and it was collected in a two-resident home. The activities are individually labeled per resident. Since

one of the residents performs only a small variety of activities, we only consider the activities performed by

the other resident. The second dataset [146] contains two single-resident homes: House A and House B. The

data from House A was collected in the course of 25 days from 14 sensors. House B contained 27 sensors and

the data was collected over 13 days.

Activity recognition for both datasets is performed by dividing each day into fixed-length times slots

and the activity performed in each time slot is classified based on the sensor firings within that particular

time slot and the time of day. The subjects living in the houses annotated a number of different activities

that include sleeping, toileting, prepare breakfast, prepare dinner, and showering. We use this annotation as

the ground truth. The second dataset also contains NB and HMM classifiers for activity recognition. In

our experiments we use these classifiers for the evaluation of activities from WSU, House A, and House B.

Although we run experiments with only four classifier classes, namely NB and HMM, we are confident that

other classifier classes can easily be incorporated into our approach.

In the above datasets, the detection of simple activities, such as leave house and toileting, relies on a

single sensor. When that sensor fails, the corresponding activity can no longer be detected. Such a failure is

considered to be severe and maintenance should always be dispatched. In our evaluation we focus on complex

activities whose detection relies on multiple sensors. This gives us the opportunity to encounter node failures

with different levels of severity. There are many complex activities that one might want to monitor, such

as cooking, cleaning, studying, exercising, getting dressed, and unpacking groceries. In our experiments we

evaluate the detection of the following seven activities:

WSU: prepare breakfast, prepare lunch, and prepare dinner

House A: prepare breakfast and prepare dinner

House B: prepare breakfast and prepare dinner

Table 7.1 shows the IDs and location of the nodes participating in the detection of the activities we

analyze.

Chapter 7 Simultaneous Multi-classifier Activity Recognition Technique (SMART) 112

WSU House A House B

motion sensor 1 microwave fridge
motion sensor 2 cups cupboard plates cupboard
motion sensor 3 fridge cutlery drawer
door sensor 1 plates cupboard stove lid
door sensor 2 freezer sink
door sensor 3 dishwasher toaster
burner sensor pans cupboard microwave
hot water sensor groceries cupboard motion sensor

Table 7.1: Sensors participating in the prepare breakfast, prepare lunch, and prepare dinner activities in the
WSU house, prepare breakfast and preparing dinner activities in House A and House B.

The severity threshold for all experiments is set to THS = 0.3. Empirical analysis we performed with

smaller thresholds, such as 0.1 and 0.2, showed that, due to the low level of redundancy in House A and

House B, most of the node failures are classified as severe. Therefore, we chose a threshold that allowed us to

have a more diverse failure profile for all houses.

The datasets do not contain failure information. All node failures in the experiments were simulated by

modifying the values reported by the “failed” node. For the “stuck at” failure we set the value of the failed

node to 1. For the misplacement failures, we replaced the data of the failed sensor s with data from a sensor

located at s’ new position.

We use F-score as accuracy measurement for all classifiers:

F-score =
2 * Precision * Recall

Precision + Recall
(7.1)

where Precision and Recall are defined as:

Precision =
True positives

True positives + False positives
(7.2)

Recall =
True positives

True positives + False negatives
(7.3)

10-fold cross validation was performed for all experiments analyzing the accuracy of SMART in detecting

and identifying node failures. In addition, we keep the number of training days constant for each of the data

sets. For example, house A has data for 25 days total. Therefore, for experiments where the number of

testing days, i.e. the failure detection latency, was varied from 1 to 6 days, the number of training days was

always 19. This was done to avoid bias in the results due to varying size of the training data.

7.4 Results 113

(a) “Stuck at” failure (b) Movement failure

Figure 7.6: Detecting non-fail-stop node failures of the kitchen nodes in the WSU house for both NB and
HMM. SMART achieves more than 85% accuracy in detecting a severe “stuck at” non-fail-stop failure and
about 80% accuracy in identifying which one of the 8 kitchen sensor nodes has caused the failure. It also
achieves more than 95% accuracy in detecting a failure caused by rotating the kitchen motion sensor towards
the adjacent living room in the house from the WSU dataset.

7.4 Results

7.4.1 Detecting sensor node failures

We analyze the behavior of SMART when “stuck at” and node movement failures are introduced in the

system. A “stuck at” failure is defined as a series of values that exhibit variance close to zero for a period of

time greater than expected. In our experiment we simulated the “stuck at” scenario by changing the readings

of the failed sensor so they indicate that the sensor fires at all time slots after the failure.

Figure 7.6a shows SMART’s accuracy in detecting non-fail-stop “stuck-at” failures and identifying which

one of the nodes has caused the failure. The results are for the WSU dataset and include failures for all of the

8 kitchen sensors. The x-axis is the failure detection latency, which is the number of days elapsed after the

node failure has occurred. Figure 7.6a shows that SMART achieves more than 85% accuracy in detecting that

there is a failure in the system. Further, SMART can identify the failed node with more than 80% accuracy.

Another observation we make is that, although the accuracy of our approach increases with the number of

days elapsed after the failure has occurred, SMART can quickly achieve significant failure detection and

identification accuracy. Figure 7.6a shows that SMART’s failure detection accuracy is above 85% from the

first day it can identify which one of the 8 kitchen nodes has failed with more than 70% accuracy in only 2

days.

The next experiment evaluates SMART’s behavior in the presence of failures caused by node displacement.

Chapter 7 Simultaneous Multi-classifier Activity Recognition Technique (SMART) 114

(a) NB (b) HMM

Figure 7.7: Distribution for number of maintenance dispatches for the all kitchen activities the WSU house,
House A, and House B. Compared to a baseline where maintenance has to be dispatched every time a node
failure occurs, our approach repairs only the severe failures and thus decreases the number of maintenance
dispatches by 55%.

Figure 7.6b shows the results for a scenario where the motion sensor in the kitchen of the WSU dataset

moved in a way that it can no longer detect movement in the kitchen. Instead, it is pointed towards the

living room, which is adjacent to the kitchen. Similar to the “stuck at” failure, SMART is able to detect this

displacement failure very accurately. Its accuracy exceeds 90% just one day after the failure has occurred.

7.4.2 Node failure severity assessment

With the baseline repair technique, every time a sensor node fails a repair is necessary and maintenance has

to be dispatched. Figure 7.7 shows the effect of our approach on the number of maintenance dispatches. For

this experiment we only look at the behavior of the different classifier classes in isolation, i.e. SMART has

one classifier class to work with. This allows us to see the differences between the classifier classes. The

activities shown in the figure are prepare breakfast, prepare lunch, and prepare dinner from the WSU house

and prepare breakfast and prepare dinner from House A and House B. The figure contains the maintenance

distribution over all possible combinations of failures of the sensor nodes used to detect this activity.

From Figure 7.7a we see that when one of the nodes fails we need to perform a repair in less than 20% of

the cases on average. This happens because only 1 of the 8 nodes in the WSU home and 3 of the 7(8) nodes

in House A and House B, that participate in the detection of the kitchen activities have high influence on

the detection accuracy of the activity. Therefore, only a small number of the single-node failures are severe.

7.4 Results 115

Classifier WSU House A House B
Breakfast Lunch Dinner Breakfast Dinner Breakfast Dinner

baseline 1 1 1 1 1 1 1
NB SMART 4.5 2.4 6 2.2 5 4.1 2.9
HMM SMART 5.5 2.9 2.4 2.1 2.3 2.3 1.9

Table 7.2: Average MTTF for all five activities. Our approach increases the MTTF 3.2 times on average.
The MTTF improvement achieved with each classifier varies with the nature of the activity. SMART chooses
the most suitable classifier at any time and thus achieves the highest MTTF.

A maintenance dispatch can be avoided whenever a failure is not severe. When a NB classifier is used, the

number of dispatches is decreased by 84% with one sensor failure, 22% with two failed sensors, and so on.

There are other techniques that could fit between the baseline, where a repair is necessary every time a

sensor node fails, and SMART on the spectrum of number of necessary maintenance dispatches. Some of these

approaches could rely on component redundancy and require a repair only when the number of operational

nodes falls below a threshold; or they might consider additional low-level parameters to determine if a repair is

necessary or not. However, rather than using low-level semantics, SMART considers the high-level application

behavior of the system. Therefore, we believe that SMART will require fewer maintenance dispatches than

any approach that analyzes component-level properties.

To evaluate SMART’s impact on the MTTF of the application, where MMTF is defined as number of

time units after which the detection accuracy falls below THS , we compare our approach, where we use an

ensemble of classifier instances some of which are preemptively trained for failures, to a baseline, where there

is just one classifier instance trained on all nodes. We consider all possible sequence traces of sensor node

failures. For each of those traces, we evaluate at what point in time, i.e. after how many node failures, a

repair should be performed. Unlike the baseline, our approach determines that the application has failed not

when the first node fails, but when the first severe node failure occurs.

Table 7.2 shows the average MTTF values for all three houses. We introduce a new node failure after

each time unit. With the baseline approach, since every node failure is also considered to be an application

failure, the MTTF of the system is always 1 time unit. The MTTF achieved by different classifiers varies

based on the activity. For example, for activity preparing breakfast from the WSU house, using HMM results

in higher MTTF than when NB is used. However, NB considerably outperforms HMM for the preparing

dinner activity again from the same house. We attribute this difference to the fact that, based on which

activity is being analyzed, the classifiers might rely on a different subset of sensor nodes. In addition, our

SMART approach dynamically chooses the best classifier depending on the current state of the system, it

maintains the highest application MTTF.

Figure 7.8 shows a more detailed view of the MTTF for prepare breakfast from the WSU house. When

Chapter 7 Simultaneous Multi-classifier Activity Recognition Technique (SMART) 116

Figure 7.8: Mean time to failure distribution for the WSU house preparing breakfast. We assume that a new
sensor failure occurs after each time unit. The average MTTF for NB and HMM are 4.5 and 5.5 time units
respectively.

SMART uses a NB classifier, the system can sometimes survive 7 failures before it needs maintenance. This

happens when all 7 non-severe node failures occur first. In that case, the application’s accuracy will remain

above the severity threshold until the seventh failure, which has to be severe.

7.4 Results 117

Figure 7.9: Average activity recognition accuracy improvement for the activity preparing breakfast in the
WSU house. Compared to the baseline NB and HMM classifiers trained with all nodes, the NB and HMM
preemptively trained for node failures improves the activity detection accuracy in the presence of failures.

7.4.3 Maintaining high activity recognition accuracy under failures

Compared to a classifier trained on all nodes in the system, our approach achieves higher activity recognition

accuracy in the presence of node failures. Figure 7.9 shows the average improvement in the activity recognition

accuracy for all possible n-node failures, where n grows between 0 and 6. For this experiment, the baseline

NB and HMM classifiers were trained on all nodes in the system. The NB and HMM classifiers that were

preemptively trained for failures achieve higher activity recognition accuracy in the presence of failures than

their respective baselines. SMART chooses the most accurate classifier from an ensemble of NB and HMM

instances, trained for the presence of failures. For the experiment in Figure 7.9, SMART’s accuracy overlaps

with that of HMM.

The next experiment evaluates the maximum accuracy improvement achieved by the classifiers trained for

failures over the classifiers that were trained on all nodes. For example, we compare the accuracy of NB that

is preemptively trained by holding nodes out to that of NB trained on all nodes in the system. Figure 7.10

shows the average results for all kitchen activities in the WSU house for NB and HMM. Similarly to the

previous graph, we evaluate the average improvement of the activity recognition accuracy for all possible

n-node failures, where n grows to up to 6 failures.

Table 7.3 shows the average accuracy improvement for the activities in all three houses when failure-trained

classifiers are used. The level of improvement for a classifier class differs based on the activity. For example,

the improvement achieved for activity prepare breakfast for House A is very low. This is because this activity

mainly uses two kitchen sensors and when they fail, training without them does not improve the activity

Chapter 7 Simultaneous Multi-classifier Activity Recognition Technique (SMART) 118

Figure 7.10: Average activity recognition accuracy improvement for all kitchen activities in the WSU house.
Using ensembles of classifier instances trained for failures instead of a single instance trained on all nodes
significantly improves the activity recognition accuracy under failures.

detection accuracy. Similarly, for activity prepare dinner in House B we see very high accuracy improvement,

which is because the sensors that are most frequently used by this activity are functionally redundant.

Table 7.3 also shows us that the accuracy improvement for the same activity could vary based on the

classifier. This occurs because the different classifiers put different weights on the various sensors they use.

SMART takes full advantage of this by choosing the most accurate classifier at any given state of the system.

Classifier WSU House A House B
Breakfast Lunch Dinner Breakfast Dinner Breakfast Dinner

NB SMART 5% 16% 11% 0.1% 9% 5% 51%
HMM SMART 17% 6% 15% 1% 14% 19% 47%

Table 7.3: We evaluate how using SMART instead of classifiers trained on all nodes affects the activity
recognition accuracy. The average accuracy improvement under the presence for failures the classifiers we
analyze is 15%.

7.5 Discussion

We analyze the relationship between the failure detection accuracy of a node and how frequently this node

is used for a particular activity. For each node n we define a node usage ratio per activity, which is the

percentage of instances of that activity where node n was used. The kitchen nodes in the WSU dataset are

all frequently used during the execution of the kitchen activities. Therefore, we performed this experiment

using House A and considering both prepare breakfast and prepare dinner activities. Figure 7.11 shows that

there is a positive correlation between whether a node fires regularly during the execution of a particular

7.6 Summary 119

Figure 7.11: Relationship between the failure detection accuracy of a node and how frequently this node is
being used for activities prepare breakfast and prepare dinner for House A. The majority of nodes in this
dataset have low usage ratios, which results in low failure detection accuracy even for the nodes with high
usage ratio when all nodes are considered by the failure detection mechanism.

activity, i.e. the importance of that node for the activity, and how accurately we can detect the node’s failure.

We can see that there are a number of kitchen nodes which rarely fire during activities prepare breakfast and

prepare dinner and the failure detection accuracy for these nodes remains close to 0. On the other hand, the

nodes important to these activities, i.e. the nodes that fire frequently, have higher failure detection accuracy.

Including both the important and the non-important nodes in the failure detection process significantly

impacts the detection accuracy for the important nodes. Figure 7.12 shows the accuracy of detecting a “stuck

at” failure for the important nodes for the kitchen activities in House A. We see that when only the important

nodes are considered, the failure detection accuracy increases dramatically.

7.6 Summary

In this chapter we have presented a general failure detection, assessment, and adaptation approach for smart

home applications. Even though the datasets used in our evaluation do not directly address fault tolerance

or redundancy, our approach still achieves significant gains. SMART decreases the number of maintenance

dispatches by 55% and almost triples the MTTF of the application on average. It also maintains sufficient

activity recognition accuracy in the presence of failures by dynamically updating the classifiers at run time so

they can adapt to the failures that occur. SMART detects all application-level failures at run time with over

85% accuracy. Further, SMART improves the activity recognition accuracy under node failures by more than

15% on average.

Chapter 7 Simultaneous Multi-classifier Activity Recognition Technique (SMART) 120

Figure 7.12: Detecting “stuck at” failures for the important nodes participating in activities prepare breakfast
and prepare dinner in House A. The failure detection accuracy for the important nodes for an activity
increases when only the failures of these nodes are being considered. SMART achieves about 80% accuracy
in identifying which of the important nodes has failed.

Part V

Conclusions and future work

121

Chapter 8

Conclusions and future work

E
vent detection is a vital component in a wide variety of sensor network applications. The main

focus of the research presented in this dissertation was to facilitate the development of robust real

time event services for wireless sensor networks. These event services need to be accurate and

minimize false alarms, run in real-time, and provide a sufficient level of robustness. To address this we have:

� Developed a formal event specification language, MEDAL, designed specifically for sensor network

applications.

� Studied the effect of using fuzzy logic on the accuracy of event detection.

� Designed a number of techniques to maintain sensor network application robustness in the presence of

node failures.

In the rest of the chapter we summarize the techniques and results presented in this dissertation. We also

discuss possible future work in each of the three areas studied in this dissertation - event specification, event

detection, and robustness to node failures.

8.1 Results and contributions

8.1.1 Event specification

In Chapter 3 we have presented MEDAL, a formal event description language we have developed specifically

for sensor network applications. MEDAL is an extended Petri net, and it combines features from Timed,

Colored, and Stochastic Petri nets. MEDAL has a number of properties, which make it very suitable for

describing event-driven WSN applications:

122

8.1 Results and contributions 123

� It addresses fundamental properties of sensor networks such as probabilities, temporal and spatial

dependencies, and heterogeneity.

� We have extended MEDAL’s syntax to include dedicated radio transitions, inhibitor arcs, and feedback

loops. This has allowed MEDAL to model a number or additional key sensor network features, such as

communication, actuation, and feedback control.

� MEDAL could help tremendously in the effort to bridge the gap between sensing and event recognition

by shifting where event detection takes place. Typically the sensor nodes in the network send their

readings to a base station node, which performs the event detection by analyzing the sensor readings.

However, MEDAL can help in moving the event detection from the base station to the sensor nodes

themselves. This step has a number of advantages, including lower event detection latencies, smaller

communication needs, and higher energy efficiency.

� As a system analysis tool, MEDAL can capture the structural, spatial, temporal, and real-time properties

of a complex event detection system. Therefore, MEDAL can be used to assist system designers to

identify inconsistencies and potential problems with their applications. Further, MEDAL’s analysis

capabilities can be used to narrow down the origin of failures that occur after the network has been

deployed.

� Our experience has shown that MEDAL can model a wide variety of event-driven application. We have

also used MEDAL to model three existing WSN applications: volcano monitoring, rural fire detection,

and flood detection. As a proof of concept we have also described our experience using MEDAL to

model a beef monitoring application. Further, we have evaluated MEDAL’s expressiveness by comparing

it to other approaches that have been used to describe sensor network event-based applications.

In Chapter 4 we show how MEDAL can also be used to model and analyze to model and analyze real-time

data stream queries, QoS management mechanisms, and the relationships between them. Unlike previous

work, where query models and system control logic are designed and analyzed separately, MEDAL allows us

to merge these two components into a single comprehensive system model. The advantage of this combined

model is that it can be used not only to predict the workload and estimate the query cost, but also to model

and analyze the interactions between the input and output of the query plans and the data control mechanism,

which gives us a much better understanding of the system.

Chapter 8 Conclusions and future work 124

8.1.2 Event detection

A disadvantage of the current event detection approaches used in WSNs is that they cannot properly handle

the often imprecise sensor readings. In Chapter 5 we show that fuzzy logic is a powerful and accurate

mechanism which can successfully be applied not only to fire detection but to any event detection sensor

network application. We have empirically evaluated the effect of using fuzzy logic on the accuracy of event

detection. Our results show that:

� Compared to using crisp values, fuzzy logic maintains a high event detection accuracy levels despite

fluctuations in the sensor values. Fuzzy logic helps decrease the number of false positives, while still

providing fast and accurate event detection.

� Incorporating the readings of neighbor nodes in the decision process further improves the event detection

accuracy.

� The size of the rule-base might present a challenge for the resource-constrained nodes in a sensor

network. Therefore, we have developed three rule-base reduction techniques to help decrease the

memory requirements and the processing time of the rule-base. Our evaluation shows that the rule-base

reduction techniques are very effective and preserve both the correctness and the timeliness of event

detection. Using two of these techniques, namely, combining rules with similar outcomes and incomplete

rule-base, reduces the size of our experimental rule-base by more than 70%.

� Compared to two well-established classification algorithms, a Naive Bayes classifier and a decision tree,

fuzzy logic provides comparable event detection accuracy.

8.1.3 Robustness to node failures

A major disadvantage of the current reliability and health monitoring techniques used for WSN applications

is that they monitor the performance of the low-level components of the system instead of the reliability of

the application layer. Our work addresses this issue in WSNs in two ways:

Run time assurance

Chapter 6 discusses a run time assurance methodology to help designers and users verify at run time that an

application is able to meet its high-level requirements and maintain satisfactory performance even in the

presence of node failures. The work presented in this chapter has the following contributions:

� We have implemented an automated test generation framework as part of the run time assurance

methodology.

8.1 Results and contributions 125

� To decrease the vast number of generated test cases, we have developed three test suite reduction

techniques, two of which are unique to the nature of WSN applications and take advantage of the

network’s topology and node redundancy.

� The evaluation of RTA on a fire detection application shows that RTA performs much better than

health monitoring in identifying application-level failures and almost just as good in identifying low-level

failures. In addition, RTA incurs 33% less communication overhead and decreases by 70% the amount

of maintenance work that needs to be done in order to keep the system operational.

SMART

Chapter 7 presents a general failure detection, assessment, and adaptation approach for smart home appli-

cations. This approach, a Simultaneous Multi - classifier Activity Recognition Technique (SMART), uses

application-level semantics to detect, assess, and adapt to sensor failures. SMART provides three key features:

1. It detects non-fail-stop faults resulting from e.g., node displacement or node relocation;

2. It assesses the importance of a sensor failure in order to decrease the number of necessary maintenance

dispatches;

3. It adapts the system to the failures in order to maintain sufficient activity recognition accuracy.

Our evaluation of SMART on a number of publicly available datasets shows that:

� SMART decreases the number of maintenance dispatches by 55% and almost triples the MTTF of the

application on average. It also maintains sufficient activity recognition accuracy in the presence of

failures by dynamically updating the classifiers at run time so they can adapt to the failures that occur.

� SMART detects application-level failures at run time with over 85% accuracy.

� SMART improves the activity recognition accuracy under node failures by more than 15% on average.

As long-lived sensor network applications become more common in real homes, the need for fault tolerance

and ground truth validation will lead to increased node redundancy. We expect that applying SMART to

moderately and highly redundant systems will result in much higher gains.

Chapter 8 Conclusions and future work 126

8.2 Limitations and future work

8.2.1 Event specification

For future work, it would be desirable to develop a GUI-based tool that would be used to build and analyze

sensor network applications. This tool will allow application designers to take full advantage of MEDAL and

its modeling and analysis capabilities. An additional advantage of this tool is that it could help automate

the translation from a formal application model into code even further. Currently, for RTA, an application

designer has to manually translate the MEDAL model into a specification script. This operation is still

error-prone and might lead to mismatch between the MEDAL model and the script. The graphical MEDAL

model designed with the MEDAL tool can be automatically transformed into a specification script. This

would make the translation process faster and less error-prone since automating this step will help avoid any

errors the designer may introduce while writing the script.

This MEDAL tool could also be used for data-stream applications to perform operator cost analysis

and selectivity estimation. It could also help model dependencies between the data stream system and the

surrounding environment, which could be extremely useful for context-aware workload prediction.

8.2.2 Event detection

A limitation of our fuzzy logic study was that although we used real fire data, all experiments were done in

simulation. Perform experiments on a sensor test bed and real deployments will allow us to better evaluate

how using fuzzy logic influences the accuracy and speed of event detection when the decision logic is run on

sensor nodes. In addition, it will help study the effect of applying temporal constraints on the accuracy of

event detection.

Investigate how fuzzy logic can be integrated into MEDAL is another direction for future work. It will

provide sensor network designers with a single comprehensive event modeling system. It will also allow us to

evaluate whether using MEDAL and fuzzy logic simultaneously has a positive or a negative effect on the

accuracy and performance of the event detection service.

8.2.3 Robustness to node failures

Although the results presented in this area are very promising, this is just the foundation for the future work

on detecting, assessing, and adapting to node failures in sensor network home applications. Our approaches

and evaluation have a few limitations that can be addressed:

8.2 Limitations and future work 127

• Both RTA and SMART have been evaluated on small datasets or on a test bed. In the future, RTA

and SMART can be evaluated on a deployment designed with better fault tolerance features. SMART can

also be integrated with the design of an activity recognition system and evaluate how providing appropriate

node redundancy at design time can further aid fault tolerance, reduce dispatches, and improve accuracy. In

addition, SMART can be applied to smart home applications other than activity recognition, and analyze its

accuracy and applicability.

• Further, the effect of integrating out approaches with health-monitoring and trust-based techniques can

be investigated. We expect that this will expand the types of failures that are being detected and improve

the accuracy of failure detection. In addition, SMART cannot accurately detect the failures of sensors that

are not frequently used in any of the activities. Since the failure of these sensors will cause minimal changes

in the behavior of the classifiers, SMART is likely to attribute these changes to natural activity pattern

fluctuations rather than a failure. However, SMART can be combined with state of the art health-monitoring

systems, which can help accurately detect fail-stop failures experienced by the rarely used nodes.

Bibliography

[1] Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh, Omar Marcillo, Jeff Johnson, Mario Ruiz, and
Jonathan Lees. Deploying a wireless sensor network on an active volcano. IEEE Internet Computing,
10:18–25, March 2006.

[2] Jaime Lloret, Miguel Garcia, Diana Bri, and Sandra Sendra. A wireless sensor network deployment
for rural and forest fire detection and verification. Sensors, 9(11):8722–8747, 2009.

[3] Elizabeth A. Basha, Sai Ravela, and Daniela Rus. Model-based monitoring for early warning flood
detection. In Proceedings of the 6th ACM conference on Embedded network sensor systems, SenSys
’08, pages 295–308, New York, NY, USA, 2008. ACM.

[4] Shuoqi Li, Sang H. Son, and John A. Stankovic. Event detection services using data service middle-
ware in distributed sensor networks. In Proceedings of the 2nd international conference on Information
processing in sensor networks, IPSN’03, pages 502–517, Berlin, Heidelberg, 2003. Springer-Verlag.

[5] Wai Fu Fung, David Sun, and Johannes Gehrke. COUGAR: the network is the database. In Pro-
ceedings of the 2002 ACM SIGMOD international conference on Management of data, SIGMOD ’02,
pages 621–621, New York, NY, USA, 2002. ACM.

[6] Ramesh Govindan, Joseph Hellerstein, Wei Hong, Samuel Madden, Michael Franklin, and Scott
Shenker. The sensor network as a database. Technical Report 02-771, Computer Science Department,
University of Southern California, 2002.

[7] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. The design of an acquisi-
tional query processor for sensor networks. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, SIGMOD ’03, pages 491–502, New York, NY, USA, 2003. ACM.

[8] Michael Worboys. Event-oriented approaches to geographic phenomena. International Journal of
Geographical Information Science, 2008.

[9] Fulvio Babich and Lia Deotto. Formal methods for specification and analysis of communication
protocols. Communications Surveys Tutorials, IEEE, 4(1):2–20, quarter 2002.

[10] J. Ellsberger, D. Hogrefe, and A. Sarma. SDL: Formal Object-oriented Language for Communicating
Systems. Prentice-Hall, Inc., 1997.

[11] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1990.

[12] H. El-Gendy and H. Baraka. Transformation of Lotos specifications to Estelle specifications. In
Proceedings of the 2nd IEEE Symposium on Computers and Communications (ISCC ’97), ISCC ’97,
pages 215–221, Washington, DC, USA, 1997. IEEE Computer Society.

[13] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International Journal on
Software Tools for Technology Transfer (STTT), 1(1-2):134–152, 1997.

[14] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Proceedings of the DI-
MACS/SYCON workshop on Hybrid systems III : verification and control: verification and control,
pages 208–219, Secaucus, NJ, USA, 1996. Springer-Verlag New York, Inc.

128

Bibliography 129

[15] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model checker for hybrid
systems. In CAV 1997, pages 460–463, London, UK, 1997. Springer-Verlag.

[16] U. Dayal, A. P. Buchmann, and D. R. McCarthy. Rules are objects too: A knowledge model for an
active, object-oriented databasesystem. In Lecture notes in computer science on Advances in object-
oriented database systems, pages 129–143, New York, NY, USA, 1988. Springer-Verlag New York,
Inc.

[17] Alejandro P. Buchmann, Jürgen Zimmermann, José A. Blakeley, and David L. Wells. Building an
integrated active OODBMS: Requirements, architecture, and design decisions. In Proceedings of the
Eleventh International Conference on Data Engineering, ICDE ’95, pages 117–128, Washington, DC,
USA, 1995. IEEE Computer Society.

[18] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K. Kim. Composite events for active
databases: Semantics, contexts and detection. In Proceedings of the 20th International Conference
on Very Large Data Bases, VLDB ’94, pages 606–617, San Francisco, CA, USA, 1994. Morgan Kauf-
mann Publishers Inc.

[19] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event specification in an active object-oriented
database. In Proceedings of the 1992 ACM SIGMOD international conference on Management of data,
SIGMOD ’92, pages 81–90, New York, NY, USA, 1992. ACM.

[20] C. Liebig, M. Cilia, and A. Buchmann. Event composition in time-dependent distributed systems.
In Proceedings of the Fourth IECIS International Conference on Cooperative Information Systems,
COOPIS ’99, pages 70–, Washington, DC, USA, 1999. IEEE Computer Society.

[21] Scarlet Schwiderski. Monitoring the behaviour of distributed systems. PhD thesis, University of
Cambridge, 1996.

[22] S. Yang and S. Chakravarthy. Formal semantics of composite events for distributed environments. In
15th International Conference on Data Engineering, pages 400–407, 1999.

[23] C. A. Petri. Kommunication mit Automaten. PhD thesis, Universidad de Bonn, 1962.

[24] Matthias Jantzen and Rüdiger Valk. Formal properties of place/transition nets. In Proceedings of the
Advanced Course on General Net Theory of Processes and Systems: Net Theory and Applications,
pages 165–212, London, UK, 1980. Springer-Verlag.

[25] H.J. Genrich and K. Lautenbach. System modelling with high-level Petri nets. In Theoretical Com-
puter Science, volume 13, pages 109–136. Elsevier, 1981.

[26] K. Jensen. Colored Petri Nets and the Invariant-Method. Theoretical Computer Science, 1981.

[27] Lars M. Kristensen, Soren Christensen, and Kurt Jensen. The practitioners guide to coloured Petri
nets. International Journal on Software Tools for Technology Transfer (STTT), 2(2):98–132, 1998.

[28] F. DiCesare, G. Harhalakis, J.M. Proth, M. Silva, and F. B. Vernadat. Practice of Petri Nets in
Manufacturing. Chapman and Hall, London, 1993.

[29] M.R. Tremblay and M.R. Cutkosky. Using sensor fusion and contextual information to perform event
detection during a phase-based manipulation task. In Intelligent Robots and Systems 95. ’Human
Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference
on, volume 3, pages 262 –267 vol.3, aug 1995.

[30] Binjia Jiao, Sang H. Son, and John. Stankovic. GEM: Generic event service middleware for wireless
sensor networks. International Conference on Networked Sensing Systems (INSS), 2005.

[31] Yuan Wei, Sang H. Son, and John A. Stankovic. Rtstream: Real-time query processing for data
streams. In Proceedings of the Ninth IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, ISORC ’06, pages 141–150, Washington, DC, USA, 2006.
IEEE Computer Society.

Bibliography 130

[32] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models and
issues in data stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, PODS ’02, pages 1–16, New York, NY, USA, 2002.
ACM.

[33] Daniel Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new model and architecture for data
stream management. The VLDB Journal, 12:120–139, 2003.

[34] Emmanuel Tapia, Stephen Intille, and Kent Larson. Activity recognition in the home using simple and
ubiquitous sensors. In Alois Ferscha and Friedemann Mattern, editors, Pervasive Computing, volume
3001 of Lecture Notes in Computer Science, pages 158–175. Springer Berlin / Heidelberg, 2004.

[35] Christopher Wren and Emmanuel Tapia. Toward scalable activity recognition for sensor networks. In
Mike Hazas, John Krumm, and Thomas Strang, editors, Location- and Context-Awareness, volume
3987 of Lecture Notes in Computer Science, pages 168–185. Springer Berlin / Heidelberg, 2006.

[36] Paul Castro, Patrick Chiu, Ted Kremenek, and Richard R. Muntz. A probabilistic room location
service for wireless networked environments. pages 18–34, 2001.

[37] Marco Duarte and Yu-Hen Hu. Distance based decision fusion in a distributed wireless sensor network.
pages 392–404, 2003.

[38] Thomas M. Chen and Varadharajan Venkataramanan. Dempster-shafer theory for intrusion detection
in ad hoc networks. IEEE Internet Computing, 9:35–41, November 2005.

[39] Huadong Wu, Mel Siegel, Rainer Stiefelhagen, and Jie Yang. Sensor fusion using dempster-shafer
theory. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, 2002.
IMTC/2002, pages 7–12, 2002.

[40] R. Murphy. Dempster-shafer theory for sensor fusion in autonomous mobilerobots. Robotics and
Automation, IEEE Transactions on, pages 197–206, 1998.

[41] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L. Fang, Z. He, S. Lin, and J. Stankovic.
Alarm-net: Wireless sensor networks for assisted-living and residential monitoring. Technical Report
CS-2006-13, Computer Science Department, University of Virginia, 2006.

[42] Dimitrios Lymberopoulos, Abhijit S. Ogale, Andreas Savvides, and Yiannis Aloimonos. A sensory
grammar for inferring behaviors in sensor networks. In Proceedings of the 5th international conference
on Information processing in sensor networks, IPSN ’06, pages 251–259, New York, NY, USA, 2006.
ACM.

[43] H. Ghasemzadeh, J. Barnes, E. Guenterberg, and R. Jafari. A phonological expression for physical
movement monitoring in body sensor networks. 5th IEEE International Conference on Mobile Ad Hoc
and Sensor Systems, pages 58–68, 2008.

[44] Oliver Amft, Martin Kusserow, and Gerhard Trster. Probabilistic parsing of dietary activity events.
13:242–247, 2007.

[45] Indranil Gupta, Denis Riordan, and Srinivas Sampalli. Cluster-head election using fuzzy logic for
wireless sensor networks. In Proceedings of the 3rd Annual Communication Networks and Services
Research Conference, pages 255–260, Washington, DC, USA, 2005. IEEE Computer Society.

[46] JM Kim, SH Park, YJ Han, and TM Chung. CHEF: Cluster head election mechanism using fuzzy
logic in wireless sensor networks. 10th International Conference on Advanced Communication Tech-
nology, pages 645–659, 2008.

[47] Hae Young Lee and Tae Ho Cho. Fuzzy logic based key disseminating in ubiquitous sensor networks.
In 10th International Conference on Advanced Communication Technology, page 958=962, 2008.

Bibliography 131

[48] Byung Hee Kim, Hae Young Lee, and Tae Ho Cho. Fuzzy key dissemination limiting method for the
dynamic filtering-based sensor networks. In Proceedings of the intelligent computing 3rd international
conference on Advanced intelligent computing theories and applications, ICIC’07, pages 263–272,
Berlin, Heidelberg, 2007. Springer-Verlag.

[49] B. Lazzerini, F. Marcelloni, M. Vecchio, S. Croce, and E. Monaldi. A fuzzy approach to data aggrega-
tion to reduce power consumption in wireless sensor networks. Annual meeting of the North American
Fuzzy Information Processing Society NAFIPS, pages 436–441, 2006.

[50] Jin Myoung Kim and Tae Ho Cho. Routing path generation for reliable transmission in sensor
networks using ga with fuzzy logic based fitness function. pages 637–648, 2007.

[51] Shu-Yin Chiang and Jing-Long Wang. Routing analysis using fuzzy logic systems in wireless sensor
networks. pages 966–973, 2008.

[52] Qingchun Ren and Qilian Liang. Fuzzy logic-optimized secure media access control (fsmac) protocol
wireless sensor networks. Proceedings of the 2005 IEEE International Conference on Computational
Intelligence for Homeland Security and Personal Safety, pages 37–43, 2005.

[53] Saad A. Munir, Yu Wen Bin, Ren Biao, and Ma Jian. Fuzzy logic based congestion estimation for qos
in wireless sensor network. Wireless Communications and Networking Conference, pages 4336–4341,
2007.

[54] F. Xia, W. Zhao, Y. Sun, and Y.-C. Tian. Fuzzy logic control based qos management in wireless
sensor/actuator networks. Sensors, 7:3179–3191, 2007.

[55] Q. Liang and L. Wang. Event detection in wireless sensor networks using fuzzy logic system. In
Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Homeland
Security and Personal Safety, pages 52–55, 2005.

[56] Mihai Marin-Perianu and Paul Havinga. D-FLER: a distributed fuzzy logic engine for rule-based
wireless sensor networks. In Proceedings of the 4th international conference on Ubiquitous computing
systems, UCS’07, pages 86–101, Berlin, Heidelberg, 2007. Springer-Verlag.

[57] Nguyet T. M. Nguyen and Mary Lou Soffa. Program representations for testing wireless sensor
network applications. In Workshop on Domain specific approaches to software test automation: in
conjunction with the 6th ESEC/FSE joint meeting, DOSTA ’07, pages 20–26, New York, NY, USA,
2007. ACM.

[58] John Regehr. Random testing of interrupt-driven software. In Proceedings of the 5th ACM interna-
tional conference on Embedded software, EMSOFT ’05, pages 290–298, New York, NY, USA, 2005.
ACM.

[59] Zhifeng Lai, S. C. Cheung, and W. K. Chan. Inter-context control-flow and data-flow test adequacy
criteria for nesC applications. In Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering, SIGSOFT ’08/FSE-16, pages 94–104, New York, NY, USA,
2008. ACM.

[60] Thomas Clouqueur, Kewal K. Saluja, and Parameswaran Ramanathan. Fault tolerance in collabora-
tive sensor networks for target detection. volume 53, pages 320–333, Washington, DC, USA, March
2004. IEEE Computer Society.

[61] Lilia Paradis and Qi Han. A survey of fault management in wireless sensor networks. volume 15, pages
171–190, New York, NY, USA, June 2007. Plenum Press.

[62] Linnyer Beatrys Ruiz, Isabela G. Siqueira, Leonardo B. e Oliveira, Hao Chi Wong, José Marcos S.
Nogueira, and Antonio A. F. Loureiro. Fault management in event-driven wireless sensor networks.
In Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of
wireless and mobile systems, MSWiM ’04, pages 149–156, New York, NY, USA, 2004. ACM.

Bibliography 132

[63] Mengjie Yu, H. Mokhtar, and M. Merabti. Fault management in wireless sensor networks. IEEE
Wireless Communications, 14(6):13–19, december 2007.

[64] Y. Zhao, R. Govindan, and D. Estrin. Residual energy scan for monitoring sensor networks. In IEEE
Wireless Communications and Networking Conference, pages 356–362, March 2002.

[65] Chieh-Yih Wan, Shane B. Eisenman, and Andrew T. Campbell. CODA: congestion detection and
avoidance in sensor networks. In Proceedings of the 1st international conference on Embedded net-
worked sensor systems, SenSys ’03, pages 266–279, New York, NY, USA, 2003. ACM.

[66] IBM Autonomic Computing, 2008. http://www.research.ibm.com/ autonomic/.

[67] Tian He, Sudha Krishnamurthy, John A. Stankovic, Tarek Abdelzaher, Liqian Luo, Radu Stoleru,
Ting Yan, Lin Gu, Jonathan Hui, and Bruce Krogh. Energy-efficient surveillance system using wireless
sensor networks. In Proceedings of the 2nd international conference on Mobile systems, applications,
and services, MobiSys ’04, pages 270–283, New York, NY, USA, 2004. ACM.

[68] Hongwei Zhang and Anish Arora. GS3: scalable self-configuration and self-healing in wireless networks.
In Proceedings of the twenty-first annual symposium on Principles of distributed computing, PODC
’02, pages 58–67, New York, NY, USA, 2002. ACM.

[69] Kamin Whitehouse, Gilman Tolle, Jay Taneja, Cory Sharp, Sukun Kim, Jaein Jeong, Jonathan Hui,
Prabal Dutta, and David Culler. Marionette: using RPC for interactive development and debugging
of wireless embedded networks. In Proceedings of the 5th international conference on Information
processing in sensor networks, IPSN ’06, pages 416–423, New York, NY, USA, 2006. ACM.

[70] Jing Yang, Mary Lou Soffa, Leo Selavo, and Kamin Whitehouse. Clairvoyant: a comprehensive source-
level debugger for wireless sensor networks. In Proceedings of the 5th international conference on
Embedded networked sensor systems, SenSys ’07, pages 189–203, New York, NY, USA, 2007. ACM.

[71] Tamim Sookoor, Timothy Hnat, Pieter Hooimeijer, Westley Weimer, and Kamin Whitehouse.
Macrodebugging: global views of distributed program execution. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’09, pages 141–154, New York, NY,
USA, 2009. ACM.

[72] Mohammad Maifi Hasan Khan, Liqian Luo, Chengdu Huang, and Tarek Abdelzaher. SNTS: sensor
network troubleshooting suite. In Proceedings of the 3rd IEEE international conference on Distributed
computing in sensor systems, DCOSS’07, pages 142–157, Berlin, Heidelberg, 2007. Springer-Verlag.

[73] Mohammad Maifi Hasan Khan, Hieu Khac Le, Hossein Ahmadi, Tarek F. Abdelzaher, and Jiawei
Han. Dustminer: troubleshooting interactive complexity bugs in sensor networks. In Proceedings of the
6th ACM conference on Embedded network sensor systems, SenSys ’08, pages 99–112, New York, NY,
USA, 2008. ACM.

[74] Bor-Rong Chen, Geoffrey Peterson, Geoff Mainland, and Matt Welsh. Livenet: Using passive monitor-
ing to reconstruct sensor network dynamics. In Proceedings of the 4th IEEE international conference
on Distributed Computing in Sensor Systems, DCOSS ’08, pages 79–98, Berlin, Heidelberg, 2008.
Springer-Verlag.

[75] Douglas Herbert, Vinaitheerthan Sundaram, Yung-Hsiang Lu, Saurabh Bagchi, and Zhiyuan Li.
Adaptive correctness monitoring for wireless sensor networks using hierarchical distributed run-time
invariant checking. volume 2, New York, NY, USA, September 2007. ACM.

[76] Mohammad Maifi Khan, Tarek Abdelzaher, and Kamal Kant Gupta. Towards diagnostic simulation in
sensor networks. In Proceedings of the 4th IEEE international conference on Distributed Computing
in Sensor Systems, DCOSS ’08, pages 252–265, Berlin, Heidelberg, 2008. Springer-Verlag.

[77] L. Luo, T. He, G. Zhou, L. Gu, T. Abdelzaher, and J. A. Stankovic. Achieving repeatability of
asynchronous events in wireless sensor networks with envirolog. In Infocom 2006, pages 1–14, April
2006.

Bibliography 133

[78] S. Rost and H. Balakrishnan. Memento: A health monitoring system for wireless sensor networks. In
3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks,
pages 575–584, 2006.

[79] L. Ruiz, J. Nogueira, and A. Loureiro. MANNA: A management architecture for wireless sensor
networks. IEEE Communications Magazine, 41:116–125, February 2003.

[80] Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girod, Eddie Kohler, and Deborah Estrin.
Sympathy for the sensor network debugger. In Proceedings of the 3rd international conference on
Embedded networked sensor systems, SenSys ’05, pages 255–267, New York, NY, USA, 2005. ACM.

[81] Kevin Ni, Nithya Ramanathan, Mohamed Nabil Hajj Chehade, Laura Balzano, Sheela Nair, Sadaf
Zahedi, Eddie Kohler, Greg Pottie, Mark Hansen, and Mani Srivastava. Sensor network data fault
types. ACM Trans. Sen. Netw., 5:25:1–25:29, June 2009.

[82] Nithya Ramanathan, Thomas Schoellhammer, Eddie Kohler, Kamin Whitehouse, Thomas Harmon,
and Deborah Estrin. Suelo: human-assisted sensing for exploratory soil monitoring studies. In
Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, SenSys ’09, pages
197–210, New York, NY, USA, 2009. ACM.

[83] Saurabh Ganeriwal, Laura K. Balzano, and Mani B. Srivastava. Reputation-based framework for high
integrity sensor networks. ACM Trans. Sen. Netw., 4:15:1–15:37, June 2008.

[84] D. Partridge and W. B. Yates. Engineering multiversion neural-net systems. Neural Comput., 8:869–
893, May 1996.

[85] Giorgio Giacinto and Fabio Roli. Dynamic classifier selection. In Proceedings of the First International
Workshop on Multiple Classifier Systems, MCS ’00, pages 177–189, London, UK, 2000. Springer-
Verlag.

[86] Fabio Roli, Giorgio Giacinto, and Gianni Vernazza. Methods for designing multiple classifier systems.
In Proceedings of the Second International Workshop on Multiple Classifier Systems, MCS ’01, pages
78–87, London, UK, 2001. Springer-Verlag.

[87] H. Sagha, J. del R Millan, and R. Chavarriaga. Detecting and rectifying anomalies in body sensor
networks. In International Conference on Body Sensor Networks (BSN), pages 162 –167, may 2011.

[88] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tinydb: an ac-
quisitional query processing system for sensor networks. ACM Transactions on Database Systems,
30:122–173, March 2005.

[89] Michael Franklin. Declarative interfaces to sensor networks. Presentation at NSF Sensor Workshop,
2004.

[90] A. Ohta and K. Tsuji. Concurrent systems technology. Turing machine equivalence of time asymmetric
choice nets. IEICE Transctions on Fundamentals in Electronics, Communucations and Computer
Science, E83-A(11):2278–2281, 2000.

[91] Krasimira Kapitanova and Sang H. Son. Medal: a compact event description and analysis language
for wireless sensor networks. pages 117–120, 2009.

[92] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541
–580, apr 1989.

[93] Shan Lin, Jingbin Zhang, Gang Zhou, Lin Gu, John A. Stankovic, and Tian He. ATPC: adaptive
transmission power control for wireless sensor networks. In Proceedings of the 4th international
conference on Embedded networked sensor systems, SenSys ’06, pages 223–236, New York, NY, USA,
2006. ACM.

Bibliography 134

[94] Tian He, John A. Stankovic, Chenyang Lu, and Tarek Abdelzaher. Speed: A stateless protocol for
real-time communication in sensor networks. In Proceedings of the 23rd International Conference
on Distributed Computing Systems, ICDCS ’03, pages 46–, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[95] Jiacun Wang. Timed Petri nets: Theory and application. Kluwer Academic Publishers, Boston, 1998.

[96] Michel Hack. Decidability questions for Petri Nets. PhD thesis, Massachusetts Institute of Technology.

[97] David Chu, Lucian Popa, Arsalan Tavakoli, Joseph M. Hellerstein, Philip Levis, Scott Shenker, and
Ion Stoica. The design and implementation of a declarative sensor network system. In Proceedings of
the 5th international conference on Embedded networked sensor systems, SenSys ’07, pages 175–188,
New York, NY, USA, 2007. ACM.

[98] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of deductive database systems. The journal of
logic programming, 23:125–149, May 1995.

[99] Amol Bakshi, Viktor K. Prasanna, Jim Reich, and Daniel Larner. The abstract task graph: a method-
ology for architecture-independent programming of networked sensor systems. In Proceedings of
the 2005 workshop on End-to-end, sense-and-respond systems, applications and services, EESR ’05,
pages 19–24, Berkeley, CA, USA, 2005. USENIX Association.

[100] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. Macro-programming wire-
less sensor networks using Kairos. In Distributed Computing in Sensor Systems, Lecture Notes in
Computer Science. 2005.

[101] Timothy W. Hnat, Tamim I. Sookoor, Pieter Hooimeijer, Westley Weimer, and Kamin Whitehouse.
Macrolab: a vector-based macroprogramming framework for cyber-physical systems. In Proceedings of
the 6th ACM conference on Embedded network sensor systems, SenSys ’08, pages 225–238, New York,
NY, USA, 2008. ACM.

[102] Ryan Newton and Matt Welsh. Region streams: functional macroprogramming for sensor networks.
In Proceeedings of the 1st international workshop on Data management for sensor networks: in
conjunction with VLDB 2004, DMSN ’04, pages 78–87, New York, NY, USA, 2004. ACM.

[103] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

[104] Leslie Lamport and Lawrence C. Paulson. Should your specification language be typed. ACM Trans.
Program. Lang. Syst., 21:502–526, May 1999.

[105] Jerzy Martyna. Linking simulation with formal verification and modeling of wireless sensor network in
tla+. In Computer Networks, volume 79 of Communications in Computer and Information Science,
pages 131–140. Springer-Verlag Berlin Heidelberg, 2010.

[106] Asad Awan, Ahmed Sameh, Suresh Jagannathan, and Ananth Grama. Building verifiable sensing
applications through temporal logic specification. In Proceedings of the 7th international conference
on Computational Science, Part I: ICCS 2007, ICCS ’07, pages 1205–1212, Berlin, Heidelberg, 2007.
Springer-Verlag.

[107] Matt Welsh and Geoff Mainland. Programming sensor networks using abstract regions. In Proceedings
of the 1st conference on Symposium on Networked Systems Design and Implementation - Volume 1,
pages 3–3, Berkeley, CA, USA, 2004. USENIX Association.

[108] J. F. Gracey, David S. Collins, and Robert J. Huey. Meat Hygiene. Saunders Ltd., 1999.

[109] R. Nullmeyer, D. Stella, G. Montijo, and St. Harden. Human factors in air force flight mishaps:
Implications for change. 2005.

Bibliography 135

[110] Ann Blandford and B. L. William Wong. Situation awareness in emergency medical dispatch. Interna-
tional Journal of Human-Computer Studies, 61:421–452, October 2004.

[111] J. C. Gorman, N. J. Cooke, and J. L. Winner. Measuring team situation awareness in decentralized
command and control environments. Ergonomics, 49:1312–1325, 2006.

[112] Lukasz Golab and M. Tamer Özsu. Issues in data stream management. SIGMOD Rec., 32:5–14, June
2003.

[113] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg Seidman,
Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring streams: a new class of data
management applications. In Proceedings of the 28th international conference on Very Large Data
Bases, VLDB ’02, pages 215–226. VLDB Endowment, 2002.

[114] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J. Hwang, W. Lindner,
A. Maskey, A. Rasin, E Ryvkina, N Tatbul, Y. Xing, and S Zdonik. The design of the Borealis
stream processing engine. In Conference on Innovative Data Systems Research (CIDR), 2005.

[115] Lewis Girod, Kyle Jamieson, Yuan Mei, Ryan Newton, Stanislav Rost, Arvind Thiagarajan, Hari
Balakrishnan, and Samuel Madden. Wavescope: a signal-oriented data stream management system. In
Proceedings of the 4th international conference on Embedded networked sensor systems, SenSys ’06,
pages 421–422, New York, NY, USA, 2006. ACM.

[116] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury. Feedback Control of Computing Systems. John
Wiley & Sons, 2004.

[117] Chenyang Lu, John A. Stankovic, Sang H. Son, and Gang Tao. Feedback control real-time scheduling:
Framework, modeling, and algorithms*. Real-Time Systems, 23:85–126, July 2002.

[118] Chenyang Lu, Ying Lu, Tarek F. Abdelzaher, John A. Stankovic, and Sang Hyuk Son. Feedback
control architecture and design methodology for service delay guarantees in web servers. IEEE Trans.
Parallel Distrib. Syst., 17:1014–1027, September 2006.

[119] Lennart Ljung. System identification (2nd ed.): theory for the user. Prentice Hall PTR, 1999.

[120] E. Lee and L. Markus. Foundations of optimal control theory. New York: Wiley, 1967.

[121] L. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes. 28th
IEEE Transactions on Systems, Man, and Cybernetics, 1:28 – 44, 1973.

[122] Shin-ichi Horikawa, Takeshi Furuhashi, and Yoshiki Uchikawa. On fuzzy modeling using fuzzy neural
networks with the back-propagation algorithm. Neural Networks, IEEE Transactions on, 3(5):801
–806, 1992.

[123] Jyh-Shing R. Jang. Self-learning fuzzy controllers based on temporal backpropagation. Neural
Networks, IEEE Transactions on, 3(5):714 –723, 1992.

[124] Ahmet Arslan and Mehmet Kaya. Determination of fuzzy logic membership functions using genetic
algorithms. Fuzzy Sets and Systems, 118(2):297 – 306, 2001.

[125] George J. Klir and Bo Yuan. Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1995.

[126] Ch. Schmid. Course on dynamics of multidisplicinary and controlled systems. http://www.atp.

ruhr-uni-bochum.de/rt1/syscontrol/main.html, 2005.

[127] NRC FuzzyJ Toolkit. http://www.csie.ntu.edu.tw/sylee/courses/FuzzyJ/Docs/.

[128] Building and fire research laboratory. http://smokealarm.nist.gov/.

http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/main.html
http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/main.html
http://www.csie.ntu.edu.tw/sylee/courses/FuzzyJ/ Docs/
http://smokealarm.nist.gov/

Bibliography 136

[129] WS4916 Series Wireless Smoke Detector. http://www.alarmsuperstore.com/dsc/

WS4916Installation.pdf.

[130] Justin Geiman. Evaluation of smoke detector response estimation methods. Master’s thesis, University
of Maryland, College Park, 2003.

[131] Charles Smith. Smoke detector operability survey: Report on findings. U.S. Consumer Product Safety
Commission, 1994.

[132] Charles D. Litton. Laboratory evaluation of smoke detectors for use in underground mines. Fire Safety
Journal, 44(3):387 – 393, 2009.

[133] David D. Lewis. Naive (bayes) at forty: The independence assumption in information retrieval. In
ECML, 1998.

[134] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., 1993.

[135] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Wit-
ten. The WEKA data mining software: An update. In SIGKDD Explorations, volume 11, 2009.

[136] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse1, Alec Woo,
David Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler. TinyOS: An operating system
for sensor networks. In Ambient Intelligence, 2005.

[137] CrossBow. http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_

Datasheet.pdf.

[138] A. Kolawa and D. Huizinga. Automated Defect Prevention: Best Practices in Software Management.
Wiley-IEEE Computer Society Press, 2007.

[139] H. Liu, L. Selavo, and J. Stankovic. Seedtv: deployment-time validation for wireless sensor networks.
In Proceedings of the 4th workshop on Embedded networked sensors, EmNets ’07, pages 23–27, New
York, NY, USA, 2007. ACM.

[140] Matthias Dyer, Jan Beutel, Thomas Kalt, Patrice Oehen, Lothar Thiele, Kevin Martin, and Philipp
Blum. Deployment support network a toolkit for the development of wsns. In Proceedings of the
4th European conference on Wireless sensor networks, EWSN’07, pages 195–211, Berlin, Heidelberg,
2007. Springer-Verlag.

[141] Matthias Ringwald, Kay Römer, and Andrea Vitaletti. Passive inspection of sensor networks. In
Proceedings of the 3rd IEEE international conference on Distributed computing in sensor systems,
DCOSS’07, pages 205–222, Berlin, Heidelberg, 2007. Springer-Verlag.

[142] David Gluch and Andrew Kornecki. Automated code generation for safety-related applications: A case
study. Computer Science, 8:37–48, 2007.

[143] Yafeng Wu, Krasimira Kapitanova, Jingyuan Li, John A. Stankovic, Sang H. Son, and Kamin White-
house. Run time assurance of application-level requirements in wireless sensor networks. In Proceed-
ings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks,
IPSN ’10, pages 197–208, New York, NY, USA, 2010. ACM.

[144] Timothy W. Hnat, Vijay Srinivasan, Jiakang Lu, Tamim I. Sookoor, Raymond Dawson, John
Stankovic, and Kamin Whitehouse. The hitchhiker’s guide to successful residential sensing deploy-
ments. In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, SenSys
’11, pages 232–245, New York, NY, USA, 2011. ACM.

[145] D. Cook and M. Schmitter-Edgecombe. Assessing the quality of activities in a smart environment.
Methods of Information in Medicine, 48:480–485, 2009.

http://www.alarmsuperstore.com/dsc/WS4916Installation.pdf
http://www.alarmsuperstore.com/dsc/WS4916Installation.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.pdf

Bibliography 137

[146] Tim van Kasteren, Athanasios Noulas, Gwenn Englebienne, and Ben Kröse. Accurate activity recog-
nition in a home setting. In Proceedings of the 10th international conference on Ubiquitous computing,
UbiComp ’08, pages 1–9, New York, NY, USA, 2008. ACM.

[147] Cougar. Cornell Database Group-Cougar. http://www.cs.cornell.edu/bigreddata/cougar/, 2010.

[148] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous queries over distributed
data streams. In Proceedings of the 2003 ACM SIGMOD international conference on Management of
data, SIGMOD ’03, pages 563–574, New York, NY, USA, 2003. ACM.

[149] Bin Liu, Yali Zhu, Mariana Jbantova, Bradley Momberger, and Elke A. Rundensteiner. A dynamically
adaptive distributed system for processing complex continuous queries. In Proceedings of the 31st
international conference on Very large data bases, VLDB ’05, pages 1338–1341. VLDB Endowment,
2005.

[150] Yi-Cheng Tu, Song Liu, Sunil Prabhakar, and Bin Yao. Load shedding in stream databases: a control-
based approach. In Proceedings of the 32nd international conference on Very large data bases, VLDB
’06, pages 787–798. VLDB Endowment, 2006.

[151] Yuan Wei, Vibha Prasad, and Sang H. Son. Qos management of real-time data stream queries in
distributed environments. In Proceedings of the 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing, ISORC ’07, pages 241–248, Washington, DC,
USA, 2007. IEEE Computer Society.

[152] Peter J. Haas, Jeffrey F. Naughton, and Arun N. Swami. On the relative cost of sampling for join
selectivity estimation. In Proceedings of the thirteenth ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems, PODS ’94, pages 14–24, New York, NY, USA, 1994. ACM.

[153] Viswanath Poosala and Yannis E. Ioannidis. Selectivity estimation without the attribute value
independence assumption. In Proceedings of the 23rd International Conference on Very Large Data
Bases, VLDB ’97, pages 486–495, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[154] Douglas Comer. The ubiquitous B-Tree. ACM Computing Surveys, 11:121–137, June 1979.

[155] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C: The Art of Scientific
Computing. Cambridge University Press, 1992.

[156] D. Barbara, W. DuMouchel, C. Faloutsos, P. Hass, J. Hellerstein, Y. Ioannidis, H. Jagadish, T. John-
son, R. Ng, V. Poosala, K. Ross, and K. Sevcik. The New Jersey data reduction report. Technical
report, Bulletin of the Technical Committee on Data Engineering, 1997.

[157] Surajit Chaudhuri, Gautam Das, Mayur Datar, Rajeev Motwani, and Vivek R. Narasayya. Overcom-
ing limitations of sampling for aggregation queries. In Proceedings of the 17th International Conference
on Data Engineering, pages 534–542, Washington, DC, USA, 2001. IEEE Computer Society.

[158] Annita N. Wilschut and Peter M. G. Apers. Dataflow query execution in a parallel main-memory envi-
ronment. In Proceedings of the first international conference on Parallel and distributed information
systems, PDIS ’91, pages 68–77, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

[159] Wei Hong and Michael Stonebraker. Optimization of parallel query execution plans in xprs. volume 1,
pages 9–32. Springer Netherlands, 1993. 10.1007/BF01277518.

[160] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston, J. Rosen-
stein, and R. Varma. Query processing, resource management, and approximation in a data stream
management system. In Conference on Innovative Data Systems Research (CIDR), pages 245–256,
2003.

[161] Usa Sammapun, Insup Lee, and Oleg Sokolsky. Rt-mac: Runtime monitoring and checking of quan-
titative and probabilistic properties. In Proceedings of the 11th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, RTCSA ’05, pages 147–153, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

http://www.cs.cornell.edu/bigreddata/cougar/

Bibliography 138

[162] Usa Sammapun, Insup Lee, Oleg Sokolsky, and John Regehr. Statistical runtime checking of proba-
bilistic properties. In Proceedings of the 7th international conference on Runtime verification, RV’07,
pages 164–175. Springer-Verlag, Berlin, Heidelberg, 2007.

[163] T. L. M. van Kasteren, G. Englebienne, and B. J. A. Kröse. Activity recognition using semi-Markov
models on real world smart home datasets. Journal of Ambient Intelligence and Smart Environments,
2:311–325, August 2010.

[164] Beth Logan, Jennifer Healey, Matthai Philipose, Emmanuel Munguia Tapia, and Stephen Intille. A
long-term evaluation of sensing modalities for activity recognition. In Proceedings of the 9th inter-
national conference on Ubiquitous computing, UbiComp ’07, pages 483–500, Berlin, Heidelberg, 2007.
Springer-Verlag.

[165] Matthai Philipose, Kenneth Fishkin, Mike Perkowitz, Donald Patterson, Dieter Fox, Henry Kautz,
and Dirk Hahnel. Inferring activities from interactions with objects. IEEE Pervasive Computing, 3,
2004.

[166] Emmanuel Munguia Tapia, Stephen Intille, and Kent Larson. Activity recognition in the home using
simple and ubiquitous sensors. In Pervasive Computing, Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2004.

[167] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. In EuroCOLT, pages 23–37, London, UK, UK, 1995. Springer-Verlag.

	Acknowledgments
	Contents
	List of Tables
	List of Figures

	I Introduction
	Introduction
	Problem statement
	Contributions
	Event specification
	Event detection
	Robustness to node failures

	Dissertation organization

	State of the art
	Event specification
	Modeling sensor network events
	Modeling data streams

	Event detection
	Stochastic methods
	Fuzzy logic

	Robustness to sensor node failures
	Sensor network testing
	General fault tolerance techniques
	Sensor network debugging
	Sensor network hardware verification
	Sensor network fault identification
	Classifier ensembles

	II Event specification
	coMpact Event Description and Analysis Language (MEDAL)
	Introduction to Petri nets
	MEDAL
	Semantics
	Temporal and spatial logic

	Extending MEDAL's expressiveness
	Communication
	Actuation
	Feedback control

	Additional modeling concerns
	Node mobility
	Prioritization

	MEDAL aided analysis for sensor network applications
	Real-time analysis
	Safety analysis

	Evaluating MEDAL's modeling properties
	SQL
	Snlog
	Macroprogramming
	TLA+
	Abstract regions
	SNEDL
	MEDAL

	Experience with MEDAL: Beef monitoring
	MEDAL models of existing applications
	Volcano monitoring application
	Rural fire detection application
	Early warning flood detection application

	Summary

	Applying Formal Methods to Modeling and Analysis of Real-Time Data Streams
	System model
	Periodic query model
	Query plan and query execution
	Data admission controller

	Modeling queries and control
	MEDAL query plans
	Data admission control

	MEDAL analysis
	Query optimization analysis
	Real-time stream analysis

	Modeling DSMS configurations with MEDAL
	Single query service class
	Multiple query service classes, no controller
	Multiple query service classes, single controller
	Multiple query service classes, multiple controllers

	Summary

	III Event detection
	Event Detection in Wireless Sensor Networks - Can Fuzzy Values Be Accurate?
	Overview of fuzzy logic
	Fuzzification
	Decision making
	Defuzzification

	Event semantics
	Spatial semantics
	Temporal semantics

	Decreasing the size of the rule-base
	Separating the rule-base
	Combining rules with similar outcomes
	Incomplete rule-base

	Evaluation
	Experiments using real fire data
	Experiments using nuisance fire data
	Analysis

	Summary

	IV Robustness to node failures
	Run time assurance (RTA)
	RTA Methodology
	Implementation Framework
	The MEDAL Programming Model
	Automated Test Generation
	Automated Code Generation
	Translating MEDAL into a script
	Code structure
	Test Execution Support

	Case Study
	Evaluation
	Test reduction
	Robustness to Failure
	Overhead

	Summary

	Simultaneous Multi-classifier Activity Recognition Technique (SMART)
	State of the art
	Approach
	Using multiple simultaneous classifiers
	Failure detection
	Node failure severity analysis
	Maintaining detection accuracy under failures

	Experimental setup
	Results
	Detecting sensor node failures
	Node failure severity assessment
	Maintaining high activity recognition accuracy under failures

	Discussion
	Summary

	V Conclusions and future work
	Conclusions and future work
	Results and contributions
	Event specification
	Event detection
	Robustness to node failures

	Limitations and future work
	Event specification
	Event detection
	Robustness to node failures

	Bibliography

