
Evaluation of University Curriculum in Internship Preparation

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Binh An Dang Nguyen

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Daniel Graham, Department of Computer Science

 1

Evaluation of University Curriculum in Internship Preparation

CS4991 Capstone Report, 2022

Binh An Nguyen
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
bdn4ef@virginia.edu

Abstract
Entry-level jobs are no longer geared toward new
graduates looking for their first-real world experience.
Standards for software engineering positions have
risen and a degree is no longer enough to secure an
offer. Summer internships provide computer science
students an opportunity to expand their skills and
garner needed experience. However, internships
require countless interviews, a great deal of
preparation, and a deep understanding of algorithms.

Classes at the University of Virginia helped me build
the foundational basis for learning new skills and
languages. In addition, the experience further
developed my soft skills and improved
communication. Although UVA offers material
enriched courses, these courses have flaws in material
and structure that restrict student growth. Courses can
further be improved to help students gain more
knowledge and better provide experiences for their
future careers.

1. Introduction
Recent computer science graduates are facing a rising
unemployment rate “of seven percent” [5]. Even
though “many companies claim to have a severe
shortage of tech skills,” newly graduated computer
science students still struggle to find a job [5]. A degree
is not sufficient to land a job, but a bare minimum. In
fact, the job market has become increasingly
competitive with “more young people fleshing out their
resumes before they even leave university” [1]. Entry-
level jobs are not geared towards newly-graduated
students who are looking for their first real-world
experience, but for more “qualified developers with
exceptional coding skills” [5]. Companies want
someone with “real-time practice experience.”

Internships provide students a way to “develop practice
experience” [3]. Not only do internships showcase
students’ skills to employers, but also their ambition

and potential growth. While “theory and academia”
concepts learned from school “serve as a strong
backbone for “topics such as Front-end, Back-end, and
Mobile development,” experience is just as important.
UVA provided computer science students with a strong
foundation with a heavy focus on theory and
academics. However, with such a strong focus on
conceptual computer science topics, students are not
presented with enough opportunities to apply their
newly learned skills in class.

Companies that look for interns or new grads want
students who already have practical projects and
coding skills. UVA’s computer science program
stresses general education on theories and concepts but
fails to offer students opportunities to grow their
technical and soft skills.

2. Related Works
The gap between academia and industry computer
science has been a well-documented. Despite, the fact
that “computer science, information systems, and
information technology educators often do an
exemplary job of preparing their students for jobs in
industry or for further education, there are still many
areas where these students do not possess the necessary
skills or knowledge based on the expectations of
employers or academia” [7]. Many computer science
curricula struggle to prepare their students to meet
industry expectations. There have been several studies
and proposals on how to reduce this disparity between
“graduates’ skill and industry expectations” [2].

Most “recent graduates often fail to meet industry
expectations when they first enter the workforce” [2].
Software engineering and other entry level roles
demand a “large number of skills” for recent graduates
[2]. University curricula have trouble “reproducing
industry-like scenarios in academic settings” with
many courses pushing students to work on projects that
do not have industry value.

 2

The research conducted by Conde proposed FIWARE
Open-Source Initiative. FIWARE is “a framework of
opensource components, called Generic Enablers
(GEs), that ease the implementation of smart solutions”
[2]. It focuses on “(1) the integration with third-party
systems, including interfaces with IoT devices and
robotics; (2) management of context data; and (3)
visualization, analysis and processing of context
information enabling the smart behavior of
applications” [2]. This allows students to be able to
“develop the necessary skills to contribute to an open-
source project” [2]. This highlights a proposed class
structure that helps students gain a better understanding
of industry goals.

Radermacher (2012) identified and analyzed the
factors for knowledge differences in newly graduated
students. He discovered that “students lack proficiency
with software development tools, knowledge of
software testing, and teamwork and communication
skills” [4]. This research gives insight into where
students feel they are lacking so universities can better
prepare their students for these skill gaps. Rademacher
identified knowledge deficiencies in students. By
knowing these deficiencies, we can change the
curricula to narrow these gaps.

3. UVA Course Evaluation
The technical paper will detail suggestions for
improving the current computer science curriculum,
discuss a transition in the core focus of the program as
well as review the strengths of the courses. An
evaluation and suggested improvements of computer
science classes at UVA will be presented on discussed
are Discreet Math, Software Development Methods,
Algorithms, and Advanced Software Development
Methods.

3.1 UVA Course Load

Table 1. Required BSCS Degree Requirements

Table 1 depicts the UVA BSCS undergraduate
requirements. To complete an undergraduate degree in
computer science, students take at least 126 credits.
The bulk of these required credits come from science,
humanities, and math courses. There are 11 required
computing classes, leaving students only 10
unrestricted electives. Students are unable to explore
different branches of computer science fields and
programs.

Most students graduate in four years making it difficult
for students to expose themselves to a variety of
classes. The UVA curriculum prioritizes a strong
foundation in theoretical and general education, which
allows students to gain strong footing in basic
programming regardless of prior background.
However, it also inhibits students from exploring
interested CS topics, which communicates their
curiosity and readiness to future employers. The new
UVA curriculum should allow for more flexibility for
BSCS majors.

 3

3.2 Discrete Math (CS 2102)
The objective of this course was to “introduce students
to discrete mathematical structures, including
constructive logic, formal and informal proof
construction and aspects of computational complexity,
and some of their applications.” Discreet helps students
form problem-solving techniques and better
understand algorithms.

This class struggled to develop student understanding
of proof construction. The main problem was the use
of Lean, “an interactive theorem prover” and
programming language. With Lean, CS2102 became a
functional programming class rather than a proofs
class. Using this software over-complicated learning.
Not only do students have to learn logic, construct
proofs, and understand them, but also understand how
to work with this new language and its toolsets.

Figure 1. Screenshot From Math3000 Textbook
Learning proofs taught in Figure 1 was more effective
because it uses both the symbolic form and the English
form. The traditional method promotes understanding
of logic. Lean resulted in program bugs, increasing
time spent learning syntax and code rather than logic
behind these theorems. This course can be improved by
relying on a textbook and the traditional method of
teaching mathematical proofs. Learning logic with
Lean caused unnecessary time debugging code rather
than learning what proofs we are trying to solve. To
maintain an active learning style, professors can utilize
the flipped classroom method where students learn
topics outside of class through lecture videos and do
practice problems in class.

The class helps simplify logic functions when coding.
For internship projects, discreet math techniques create
cleaner code by simplifying logic

3.3 Software Development Methods (CS2110)
CS2110 was one of the most impactful. This class
focused on teaching students JAVA and basic
programming principles. Since I had limited coding
experience I took this class, CS2110 was an excellent
introductory course that gives students a chance to
build a strong foundation in JAVA. During my
internship, I learned JAVASCRIPT and Ruby, but
because of my strong foundation in coding,
transitioning to these new languages was easier.

Although CS2110 succeeds in teaching basics in
programming, it can be improved with better
homework and project application. The homework
reinforces in-class topics, but it struggles to combine
topics together. For example, with threading, the
homework on concurrency and locks felt more separate
from other topics we learned in class. I understand how
threads and concurrency work, but not how to use it in
my personal projects.

An end-of-the-year group project will allow students to
learn how to “adapt their knowledge across” [2]
different areas. Students gain a better understanding of
implementation methods for problems they want to
solve. An end-of-the-semester project inspired by
company internship projects help students reach a
better understanding of “issues facing practitioners”
[2] and expectations for their future careers.
Additionally, teachers will be able to see what topics
students struggle with and which aspects of class can
be enhanced. Students can add projects that are in line
with industry standards on their resume, revealing their
development skills to future employers.

3.4 Algorithms (CS4102)
Algorithms prepared me for job interviews. This class
taught problem solving techniques and ways to
optimize these solutions. Technical interviews cover
many different programming concepts with a strong
focus on algorithms and data structures. In these
interviews, given a problem description and input
examples, I was asked to implement an optimal
solution

CS4102 teaches various problem-solving methods and
time and space complexity for each solution. Topics
covered in class showed up constantly in job
interviews. Algorithms can be improved through more
implementation-based homework. The homework
relies on pseudo-code, but since coding interviews
require candidates to implement the solution as well as

 4

discuss it, there should be lab time or more
implementation-based assignments.

3.5 Advanced Software Development Methods
(CS3240)
This class best stimulated my experience during my
internship. Over the Summer, I had to create a website
based on client needs. My team tasked me with
interviewing engineers about requirements for a server
search feature. Through these interviews, requirements
were developed, and a server design was created before
implementation. We went through several sprint
product development phases and several review
sessions before I finished developing the product. The
steps taken during my internship were replicated in this
class. This class tries to narrow the “several common
knowledge deficiencies” in students such as “software
testing, programming ability, teamwork, oral
communication, written communication, requirements
gathering, analysis, problem-solving ability, software
design, project management, user interface design and
configuration management” [6].

A common problem in project-based classes is poor
group creation. Differing motivation and effort levels
among team members cause tensions and unbalanced
workloads. Group composition affected my group
projects and learning experience. Utilizing more
descriptive surveys helps teachers compose a better
group. Question about prior knowledge experience and
skills, motivation, and personality are needed to build
an effective team. Additionally, considering students’
familiarity with each other will allow for more
effective group work and communication. Ensuring
accountability through peer and self evaluations during
each phase of the project will act as an incentive for
unmotivated students.

Another problem with the class was the assignments of
specific roles: Scrum Master, Requirements Manager,
Testing Manager, DevOps, UX designer. Although
roles divide work, it does not encourage students to
learn about tasks other roles perform. Students end up
only completing their assigned instead of learning
other role requirements. Switching roles from week to
week encourage students to learn the roles equally and
participate throughout all aspects of software
development.

My manager often tasked me with additional work
such as software testing outside of my project, and I
found this change beneficial Learning about

wireframes and understanding user interaction was
emphasized at the workplace. A stronger focus on good
design composition should be an added topic to the
class.

4. Results
With these class proposals and recommended changes,
I hope that students will feel more prepared for real-
world opportunities. The increased flexibility in
curricula allows students to explore interests more,
leading to meaningful project development. Students
will have an easier time talking about their coding
skills during interviews and have a more full-bodied
resume.

From the added implementation and coding portion in
algorithms, there is an expected significant increase in
students’ ability to solve coding interview questions.
The students should be able to better explain their code
and reach the optimal solution faster than students in
previous algorithms classes. Through these circular
changes, students will be able to learn more, design
more satisfying programming projects, and better
prepare for real-world opportunities.

5. Conclusions
A more competitive job market stresses the importance
of a full-bodied resume and interview skills. Many
newly graduated students fail to meet the company’s
expectations due to a lack of experience. To narrow
these gaps in knowledge, the UVA curriculum should
become more flexible to allow students to explore
specialized skills and topics. Courses in the UVA
system can be improved through added group work,
improving assignments, and course structure.

6. Future Work
Future work should focus on further methods to reduce
this academia-to-industry gap. There are still many
approaches to prepare students for their real-world
careers. A way to reduce this is for teachers, students,
and businesses to work together to make students and
teachers more aware of the skills that are most vital in
the workplace and the quality of projects expected by
employers. After the implementation of these changes,
data analysis can be conducted to see if these changes
produced a significant impact on student employment
rate and career readiness.

REFERENCES
[1] BBC. (n.d.). Why inexperienced workers can't get

entry-level jobs. BBC Worklife. Retrieved

 5

November 21, 2021, from
https://www.bbc.com/worklife/article/20210916-
whyinexperienced-workers-cant-get-entry-level-
jobs.

[2] Conde, J.; López-Pernas, S.; Pozo, A.; Munoz-
Arcentales, A.; Huecas, G.; Alonso, Á. Bridging the
Gap between Academia and Industry through
Students’ Contributions to the FIWARE European
Open-Source Initiative: A Pilot Study. Electronics
2021, 10, 1523. https://doi.org/
10.3390/electronics10131523

[3] Palacios, A., 2022. Computer Science Internships
Are Important.. Here's Why.. [online]
Linkedin.com. Available at:
<https://www.linkedin.com/pulse/computer-
science-internships-important-heres-why-
alejandro-palacios> [Accessed 23 February 2022].

[4] Radermacher, A., 2022. EVALUATING THE GAP
BETWEEN THE SKILLS AND ABILITIES OF
SENIOR UNDERGRADUATE COMPUTER
SCIENCE STUDENTS AND THE
EXPECTATION OF INDUSTRY. [online]
Library.ndsu.edu. Available at:
<https://library.ndsu.edu/ir/bitstream/handle/10365
/26744/Evaluating%20the%20Gap%20between%2
0the%20Skills%20and%20Abilities%20of%20Sen
ior%20Undergraduate%20Computer%20Science
%20Students%20and%20the%20Expectations%20
of%20Industry.pdf?sequence=1&isAllowed=y>
[Accessed 23 February 2022].or (Ed.). 2007. The
title of book one (1st. ed.). The name of the series
one, Vol. 9. University of Chicago Press, Chicago.
DOI:https://doi.org/10.1007/3-540-09237-4.

[5] The Sass Way. 2022. What Is The Unemployment
Rate For Computer Science Majors?. [online]
Available at: <https://thesassway.com/what-is-the-
unemployment-rate-for-computer-science-
majors/> [Accessed 23 February 2022].

[6] Radermacher, A. and Walia, G., 2013. Gaps
between industry expectations and the abilities of
graduates. Proceeding of the 44th ACM technical
symposium on Computer science education -
SIGCSE '13,.

[7] Teimzit Amira, Mahnane Lamia, and Hafidi
Mohamed. 2019. Flipped classroom for algorithmic
teaching. In Proceedings of the 2nd International
Conference on Networking, Information Systems &
Security (NISS19). Association for Computing
Machinery, New York, NY, USA, Article 59, 1–4.
DOI:https://doi.org/10.1145/3320326.3320393

