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Abstract

Stability is a bare minimum requirement in the design of control systems. It is often desirable that a

control system operates in a prescribed optimal manner. Traditionally, optimal control has been a model-

based paradigm, which relies on the availability of an accurate system model to design a controller that

achieves closed-loop stability while minimizing a certain cost function. An accurate system model is often

difficult and sometimes impossible to obtain owing to the increasing complexity of systems and the ever

presence of modeling uncertainties. Modeling inaccuracies not only compromise the optimality of the

controller, but may also destabilize the system. The frameworks of adaptive and robust control address

the modeling uncertainty problem but optimality is generally not the prime goal in these approaches.

Reinforcement learning (RL) is a form of machine learning, which is inspired by living organisms

that learn and optimize their behavior based on their past experiences. Recently, RL has been used to

design model-free controllers that are both adaptive and optimal. However, the applications of RL based

controllers are still limited owing to some challenges. Being a data-driven approach, RL requires a number

of sensors to capture the complete internal state of the system. In many applications, the measurement

of the complete internal state is not feasible owing to the availability and cost associated with installing

a large number of sensors. Another difficulty is that many of these methods need an initially stabilizing

control. Furthermore, practical control systems are subject to challenges such as external disturbances,

actuator limitations, and time delays. The development of RL algorithms that address these difficulties

is essential for their practical applicability, which serves as a motivation of this research.

In the first part of this research, we present model-free output feedback RL algorithms to solve the

optimal control problem for linear dynamical systems. The proposed output feedback methods relax the

requirement of the number of sensors, and thereby, improve upon the cost, reliability and complexity

of the control system. These new algorithms have the advantage that they do not incur any estimation

bias because of the use of exploration signals. Furthermore, the need of employing a discounted cost

function is eliminated in our approach, which has been a bottleneck in the earlier works in ensuring

closed-loop stability. In the second part of this research, we address some practical control challenges in

the design of RL controllers. We employ the framework of game theory to develop an output feedback

model-free H-infinity controller, which is capable of rejecting external disturbances. Another practical

issue we address is the saturation of the actuators. A model-free low gain feedback design method

is developed that achieves global stabilization of the system without causing the actuators to saturate.

Finally, this research also presents model-free techniques to handle time delays in the control loop. All

these developments are aimed towards strengthening the framework of reinforcement learning control by

enabling it to deal with practical control challenges.
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1. INTRODUCTION

1.1. Optimal Control and Reinforcement Learning

We live in a technology driven world which is strongly dependent on the operation of complex

systems found in automobiles, aerospace, industrial automation, manufacturing systems, communication,

computers systems, defense, medicine, and finance. Control theory provides mathematical tools for

designing control systems to obtain desired system behavior and ensure stable operation of these system.

While stability is essential in controls, it is only a minimum requirement for the operation of a control

system. It is desirable that a control system operates in a prescribed optimal manner to meet certain cost

and performance objectives.

Optimal control theory is one of the founding pillars of modern control that enables the synthesis of

optimal controllers. The optimal control problem is to design a control law which satisfies the control

objectives while minimizing a prescribed cost function that reflects the balance between the desired

performance and the available resources. The foundations of optimal control theory were laid in the

1950’s based on the Pontryagin’s minimum principle [15] and Bellman’s theory of dynamic programming

[12]. Formally, the solution of the optimal control problem is obtained by solving the famous Hamilton-

Jacobi-Bellman (HJB) equation. Although mathematically elegant, the solution of the HJB equation is

intractable to obtain because it is a partial differential equation. Owing to this difficulty, a significant

effort has been devoted to approximate the solution of the HJB equation [8]–[11]. For the special case of

linear systems with quadratic cost functions, solving the HJB equation amounts to finding the solution of

the nonlinear algebraic Riccati equation (ARE). Computational iterative schemes are used to overcome

the difficulty in solving these equations [24], [33]. All these optimal control design algorithms are offline

in nature and require a complete knowledge of the system dynamics.

Optimal control theory is fundamentally a model-based control paradigm which employs system models

of the underlying process to obtain the optimal control law. The HJB and the ARE equations incorporate

the complete knowledge of the dynamical system, and therefore, the optimality of the solution is subject

to the accuracy of the system model. The requirement of accurate system models is hard to satisfy in

practice because of the presence of unavoidable modeling uncertainties. Furthermore, these uncertainties

proportionally add up as the complexity of system increases. More often, the modeling and system

identification process is undesirable owing to the cost and effort associated with these processes. As a

result, the dynamics of the underlying system are often completely unknown to the controller. Even when
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the system dynamics are available in the early design phase, the system parameters are subject to change

over the operating life span of the system due to variations in the process itself. These model variations

may arise as a result of aging, faults or subsequent upgradation of the system components. Thus, it is

desirable to develop optimal control methods that do not rely on the knowledge of the system dynamics.

Machine learning is an area of artificial intelligence which involves the development of computational

intelligence algorithms that learn by analyzing the system behavior instead of being explicitly programmed

to perform certain tasks. Recent advances in machine learning have opened a new avenue for the design of

intelligent controllers. Machine learning techniques come into the picture when accurate system models

are not known in advance but examples of system behavior are available or a measure of the goodness of

the behavior can be assigned [6], [46]. Machine learning algorithms are formally categorized into three

types based on the kind of supervision available, namely supervised learning, unsupervised learning and

reinforcement learning. Supervised learning is undoubtedly the most common type of machine learning

which finds use in applications where the examples of the desired behavior are available in the form

of input-output training data. However, the nature of control problems requires selecting control actions

whose consequences emerge over time for which the optimal control inputs that achieve the desired

output are not known in advance. In these scenarios, reinforcement learning can be used to learn the

unknown desired control inputs by providing the controller with a suitable evaluation of its performance

during the course of learning.

Reinforcement learning (RL) is inspired from animal learning in which the living organisms exhibit

the ability to learn, adapt and optimize their behavior over time by interacting with their environment.

RL techniques are computational intelligence algorithms which are based on the principle of action

and reward that can be used to solve dynamic optimization problems in which an agent (controller)

interacts with its environment (system) and modifies its actions (control policies), based on some stimuli

(reward) received in response to its actions. This is based on evaluative information from the environment

and is referred to as action-based learning. RL implies a cause and effect relationship between actions

and reward or punishment. RL naturally incorporates a feedback mechanism, a fundamental concept

in control theory, to capture optimal behavior, and therefore, it fits well in the framework of feedback

control of dynamical systems. Fig. 1.1 shows a block diagram of reinforcement learning system, which

shows that an RL algorithm incorporates a reward feedback signal in addition to the system state

feedback. This reward mechanism is what enables the controller to improve its policies, thereby making
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Fig. 1.1: Reinforcement learning is action-based learning that employs a feedback mechanism.

it different from the standard feedback control systems. Reinforcement learning methods were first

developed for sequential decision making problems with finite state-spaces such as those found in the

Markov decision processes (MDP). Although dynamic programming (DP) principles have been developed

to solve sequential decision problems, they require a complete specification of the MDP in terms of its

probabilistic model. Furthermore, their computational complexity makes DP impractical for large-scale

problems as the size of the state-space increases. Reinforcement learning solves these decision making

problems by searching for an optimal policy that maximizes the expected value of the performance

measure by examining the reward at each step. Examples of such sequential decision processes where

reinforcement learning has been successfully applied include robots navigation problems, board games

such as chess, and more recently the Google Alpha Go.

Recently, reinforcement learning has received significant attention in the automatic control community

for the control of dynamical systems. These dynamical systems are represented by differential or difference

equations and are the most studied systems in engineering. System dynamics plays an essential part in the

design of human engineered systems. RL based control of dynamical system requires to incorporate the

system dynamics with infinite state-spaces, which makes it different from the traditional RL algorithms.

With the recent advances in function approximation such as neural networks, RL techniques have been

extended to approximate the solution of HJB equation based on dynamic programming principles. These

methods are often referred in the control literature as approximate or adaptive dynamic programming

(ADP) [36]. The development of reinforcement learning controllers is motivated by their optimal and

model-free nature. Reinforcement learning controllers are inherently optimal because the problem for-
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mulation is carried over some performance criterion or cost function. Thus, several optimization criteria,

such as minimum energy, and minimum time, can be taken into account. In addition to being optimal,

reinforcement learning also inherits adaptation capability in which the controller is able to adapt to

the changes in system dynamics during its operation by observing the real-time data. In other words,

the controller does not need to be reprogrammed if some parameters of the systems are changed.

Reinforcement learning control is different from the adaptive control theory in the sense that adaptive

control techniques adapt the controller parameters based on the error between the desired output and the

measured output. As a result, the learned controllers do not take into account the optimality aspect of

the problem. On the other hand, RL techniques are based on the Bellman equation which incorporates a

reward signal to adapt the controller parameters, and therefore, optimality is considered while ensuring

the control objectives are satisfied. The controllers based on RL methods are essentially direct adaptive

controllers [59] in which the controller is designed without the model identification process, and the

optimal control is learned online through the learning episodes by reinforcing the past control actions

that give the maximum reward or minimum control utility.

1.2. Recent Challenges

While there have been significant developments in reinforcement learning based control algorithms

over the past ten years, the design of reinforcement learning controllers have some challenges which

need to be overcome to harness the full potential of these methods. The key difference between the

classical reinforcement learning and reinforcement learning for dynamical systems is that in the latter, the

system dynamics has to be taken into account. Unlike the traditional reinforcement learning applications

such as AI games, the control of dynamical systems gives prime importance to the closed-loop system

stability. Control algorithms are required to have guaranteed stability properties, which is a bare minimum

requirement for feedback control. Control systems without performance, robustness and safety margins

are not acceptable by the industry. As a result of these challenges, more rigorous results are needed that

could provide sufficient stability and performance guarantees in order for these learning techniques to

become mainstream in control applications. We highlight here some existing challenges being faced in

applying reinforcement learning to control applications.

Reinforcement learning is a data-driven approach, and like other machine learning methods, it relies

on the availability of sufficient data to make decisions. This data is obtained in real-time based on the
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feedback of the system internal state, which is used to compute the reward signal and to apply the feedback

control input to the system. This is referred to as state feedback, which requires as many sensors as is

the order of the system. The difficulty with state feedback is that access to the complete internal state is

generally not available in practice. The internal state of the system may not be a physically measurable

phenomenon and a sensor may not be available to measure that state. Even when a sensor is available, it

may not be feasible to install sensor to measure every component of the internal state owing to the cost

and complexity of the resulting system. Furthermore, as the order of the system increases, this requirement

becomes increasingly difficult to satisfy. In contrast to state feedback, control methods which employ

system output feedback are more desirable. It is known that under certain observability assumptions the

system input and output signals can be utilized to reconstruct the internal state of the system. However,

output feedback control becomes quite challenging in the reinforcement learning paradigm because of

the unavailability of the system model, which is needed to reconstruct the internal state. Thus, model-free

output feedback methods should be sought to overcome the limitation of full state feedback.

An important requirement in reinforcement learning based methods is the exploration condition. In order

to learn new policies, the state-space needs to be explored. However, there exists a trade-off between

exploration of the new policies and exploitation of the current policies. During the exploration phase,

the performance of the system may become undesirable. That is, the learning and the exploration itself

incur a cost. On the other hand, if the state-space is not explored and only the exploitation of the already

learned policies is carried out, then the improvement of the control policies is not possible. In practice,

this exploration condition is met by injecting an exploration signal in the control which excites the system

to learn the system behavior. This exploration requirement is similar to the excitation condition found in

adaptive control [60]. However, in reinforcement learning based optimal adaptive control this condition is

more important because the prime objective in RL controllers is to learn the optimal control parameters,

and the convergence to these optimal parameters is only ensured when the state-space is well explored.

Recent studies have shown that, under certain conditions, the excitation signal which is used to satisfy

the exploration requirement may result in bias in the parameter estimates. Thus, excitation noise issue

needs to be resolved to guarantee convergence to the optimal parameters.

In the original formulation of reinforcement learning for sequential decision problems, a discounting

factor is employed in the cost function to ensure that the cost function is well defined. Discounted cost

functions have also been used in the design of reinforcement learning controllers to address the issue
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of excitation noise bias. However, it has been pointed out in the recent control literature [54] that the

closed-loop system stability may be compromised due to the use of discounted cost functions. The issue

stems from the need to make the long term cost of the control finite by assigning less weight to the future

costs. However, this discounting factor masks the long term effect of the state energy in the cost function,

and therefore, the convergence of the state is not guaranteed even when the cost becomes finite. Although

the use of discounting factor is common in many sequential decision making problems, its application

may not be feasible in control applications. Recent works tend to find a bound on this discounting factor

which could still ensure the closed-loop stability. However, the computation of this bound requires the

knowledge of the system model, which is unavailable in the case of model-free reinforcement learning

control. Thus, undiscounted reinforcement learning controllers are sought upon.

Many reinforcement learning control algorithms require an initially stabilizing policy for their initializa-

tion and to guarantee convergence to the optimal stabilizing policy. This can be a restrictive assumption

in some control applications because computing an initially stabilizing policy requires knowledge of

system dynamics which is assumed to be unavailable in the case of reinforcement learning systems. For

open-loop stable systems, the problem can be overcome by initializing the algorithm with an open-loop

controller, however, for open-loop unstable systems, the selection of initially stabilizing policy is not

straight forward.

In addition to the above challenges, practical control problems require disturbance rejection capability

to counter the effect of external disturbances acting on the systems. The issue of actuator constraints is

also of prime importance because actuator saturation can result in instabilities in the system. Time delays

are also frequently encountered in control system, which need to be taken into account to ensure stable

operation of the system. Thus, the overcoming of these challenges is essential for the applicability of RL

control algorithms in practical applications.

1.3. Literature Survey

Optimal control problems rely on solving the HJB equation (for general nonlinear systems) or the ARE

equation (for linear systems). Even when accurate system models are available, these equations are still

difficult to solve analytically, and therefore, computational methods have been developed in the literature

to solve these equations. Many of these methods are based on two computational techniques called policy

iteration and value iteration, which were originally introduced in solving dynamic programming problems
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for sequential decision processes such as MDP [25]. Instead of directly solving the HJB equation, these

iterative algorithms recursively solve the Bellman equation that provides a recursive relationship between

the current cost and the next step cost. In each iteration of the policy iteration algorithm, the Bellman

equation is first solved by evaluating the cost or value of the current control policy and then the policy

is improved based on its policy evaluation [39]. These two steps of policy evaluation and policy update

are repeated until the algorithm sees no further updates in policy, and the final policy to said to be

the optimal policy. The value iteration algorithm differs from the policy iteration algorithm only in the

policy evaluation step, in which the value iteration evaluates a policy value based on the previous policy

value. It should be noted that policy iteration generally requires solving a system of equations in each

iteration, whereas, the value iteration simply performs a one-step recursion which is computationally

economical. In contrast to policy iteration, the value iteration algorithm does not actually find the policy

value corresponding to the current policy at each step but it takes only a step closer to that value. Also, the

policy iteration algorithm must be suitably initialized to converge, i.e., the initial policy must be stabilizing.

This is a limitation because such a policy may be difficult to obtain for complex systems. In contrast, the

value iteration algorithm does not have this requirement. Although each step of value iteration is simpler

than that of policy iteration, the policy iteration algorithm generally converges to the optimal solution in

fewer iterations, as it does more work at each step. Another limitation of the value iteration is that only the

final solution is guaranteed to be stabilizing while the iterative control sequences may not be stabilizing.

The standard optimal control problem employs linear quadratic cost functions, which is referred to the

linear quadratic regulation problem. Solving this problem requires the solution of a nonlinear Riccati

equation [37]. To address the difficulty in solving these equations, a Newton iteration method based

on the policy iteration algorithm was proposed in [33] to solve the ARE arising in the linear quadratic

regulation problem of continuous-time linear systems. Later on, this method was extended to solve the

discrete-time counterpart of the same problem in [24]. To overcome the requirement of an initially

stabilizing policy and to reduce the computational complexity, a value iteration algorithm was presented

in [34] to solve the ARE associated with the discrete-time linear quadratic regulation problem. Value

iteration for continuous-time problems is, however, not straight forward owing to presence of differential

matrix Riccati equations. Recently, an approximation based value iteration method was proposed towards

solving the continuous-time ARE equation, where the requirement of initially stabilizing policy was

removed. It should be noted that all of these design algorithms are model-based, and therefore, require
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the complete knowledge of the system dynamics.

Reinforcement learning is an approach to solving optimal control problems without requiring full model

information. The idea is to approximate the solution of HJB equation by performing some functional

approximations using tools such as neural networks. Studies of RL based control methods generally

consider one of the two main types of algorithms: actor-critic learning and Q-learning [59]. The actor-

critic structure for RL control was introduced by Werbos [68]–[71], which he called approximate dynamic

programming. The structure consists of a critic sub-system and an actor sub-system. The critic component

assesses the cost of current action based on some optimality criteria similar to the policy evaluation step

in PI and VI algorithms, while the actor component estimates an improved policy. However, in RL ADP,

the critic and actor employ approximators such as neural networks to approximate the cost and control

functions, respectively. Actor-critic algorithms employ value function approximation (VFA) to evaluate

the value of the current policy. The use of function approximators instead of look-up tables overcomes

the curse of dimensionality problem in traditional DP, which occurs when the state-space grows large.

Actor-critic algorithms for the discrete-time and continuous-time LQR problems have been described in

[40]. A partial knowledge of system dynamics (the input coupling term) is needed in these methods.

Q-learning is a simple yet powerful reinforcement learning algorithm which does not require any

knowledge of system dynamics to design optimal controllers. This technique was introduced by Watkins

[66] and is based on the idea of Q-function (Quality function), which is a function of state and control.

The Q-function gives the cost of executing an arbitrary action in the current state and then following

some specific policy. Since a Q-function contains information about control actions in every state, the

best control action in each state can be selected by knowing only the Q-function. Thus, the main aim of

the Q-learning algorithm is to estimate the optimal Q-function. Once the optimal Q-function is found, the

optimal control can be readily obtained by finding the control action which minimizes or maximizes the

optimal Q-function. The Q-function description is more comprehensive than the value function description

as it spans the state-action space instead of the state-space. This enables Q-learning to employ only one

function approximation structure instead of two separate approximators for critic (value function) and

actor (control function). If the state-space is sufficiently explored than the Q-learning algorithm eventually

converges to the optimal Q-function [67]. The success of Q-learning in controls is evident from the fact

that it has provided model-free solution to the popular control problems. A Q-learning algorithm for

the discrete-time linear quadratic regulation problem was proposed in [16]. In that work, the Q-learning
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iterations were based on the policy iteration method, and therefore, the knowledge of an initially stabilizing

policy was a requirement. It was shown that under certain excitation condition, the Q-learning algorithm

converges to the optimal LQR controller. Later in [35], a value iteration based Q-learning LQR algorithm

was presented and convergence to the optimal controller was shown. The requirement of an initially

stabilizing policy was obviated in this work. Reinforcement learning has also been used to solve the robust

control problem. A model-free Q-learning algorithm based on value iteration method was proposed for

the robust H-infinity control problem [4] for discrete-time systems. In this work, the authors employed the

framework of game theory and formulated the H-infinity problem as a zero-sum game. Q-learning has also

been successfully used to design model-free tracking controllers. The objective in the model-free optimal

tracking problem is to track a reference trajectory while minimizing certain cost without requiring access

to the system model information. Recently, the authors in [31] employed Q-learning to solve the linear

quadratic tracking (LQT) problem of discrete-time systems. A state augmentation approach was presented

in this work, which combined the dynamics of reference trajectory generator with that of the original

system to simultaneously learn the optimal feedback and feedforward terms. However, augmented system

is not stabilizable because the reference generator is autonomous and neutrally stable. To overcome this

difficulty, the authors in [31] had to resort to a discounting factor which makes the cost function well-

defined even when the states of the reference system do not converge to zero. An appropriate value of

this discounting factor is necessary for asymptotic tracking and closed-loop stability.

Most existing literature on RL control focuses on discrete-time systems as the continuous-time problem

is more involved. This is due to the additional difficulty in the continuous-time Bellman equation, which

requires the knowledge of the system dynamics [39] for the expression of the time derivative of the value

function. This is in contrast to the discrete-time Bellman equation, where only the difference of the value

function is involved in the Bellman equation. To address this problem, Vrabie [62] introduced integral

reinforcement learning (IRL), in which the IRL Bellman equation does not involve system dynamics.

In IRL, the reward signal is evaluated over some learning interval instead of discrete-time steps. As

a result, the need of employing derivatives of the cost function and consequently invoking the system

dynamics is circumvented. However, the knowledge of the input coupling matrix is needed in their work.

A partially model-free policy iteration IRL algorithm was proposed in [64] to solve the continuous-time

LQR problem, where the knowledge of an initially stabilizing policy and the input coupling matrix was

needed. Later on, the authors of [27] proposed a completely model-free policy iteration IRL algorithm
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to solve the same problem but the requirement of initially stabilizing policy was still present. This

difficulty was recently overcome by the authors in [14], where the authors developed a model-free value

iteration algorithm to solve the LQR problem, which did not require an initially stabilizing policy. IRL

methods have also been proposed for optimal tracking problems. The authors in [47] presented a partially

model-free IRL method to solve the LQT problem of continuous-time linear systems. However, similar

to the discrete-time counterpart of this problem, the authors had to resort to discounted cost functions.

Asymptotic tracking could not be ensured if the discounting factor is not carefully chosen. Furthermore,

the discounted solution is sub-optimal as it does not correspond to the optimal solution obtained by

solving the ARE. IRL methods have also been developed to solve the disturbance rejection problem

using game theoretic methods. The continuous-time zero-sum game H-infinity problem has been solved

using partially model-free [63] and completely model-free [41] IRL methods.

Interestingly, the RL notion of the agent and environment is also central to the multi-agent systems,

and this makes RL a good candidate to solve control problems for multi-agent systems. RL has so

far been quite successful in solving a wide range of multi-agent control problems without requiring

the knowledge of system dynamics [17], [55]. Recently, a model-free reinforcement learning scheme

was proposed in [61] to solve the optimal consensus problem of continuous-time multi-agent systems

in which the leader and the follower agents were assumed to have identical dynamics. This work was

later extended to the discrete-time setting [2]. The treatment of the heterogeneous multi-agent consensus

problem, in the framework of output regulation, is quite challenging since it involves solving the output

regulator equations for computing the feedforward term, which in turn requires the knowledge of the

dynamics of both the leader and follower agents. This difficulty was recently overcome in [51], where

the authors solved the continuous-time multi-agent consensus problem for heterogeneous agents using

model-free reinforcement learning. Later on, a Q-learning based solution to the discrete-time version of

this problem was proposed in [29]. Similar to the optimal tracking problem discussed earlier, [29], [51]

employed a state augmentation approach to compute the feedback and feedforward terms simultaneously,

and therefore, the authors had to resort to discounted cost functions. The resulting distributed control

law is, however, not optimal as it differs from the one resulting from the original undiscounted Riccati

equation. More importantly, the discounted controller has the potential to compromise closed-loop stability

if the discounting factor is not carefully chosen. It has been shown in [29], [51] that the asymptotic output

synchronization is achievable if the discounting factor satisfies a certain bound. However, determination
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of this bound requires knowledge of the system dynamics, which is assumed to be unknown. Owing to

these reasons, there exists a motivation to formulate a solution that eliminates the need of the discounting

factor.

A common feature in the RL based control algorithms discussed so far is that they require the

measurement of the complete internal state of the system. This is quite a restrictive assumption due to

practical reasons such as cost and availability of sensors. Furthermore, the number of sensors increases

with the dimensions of the system, which in turn increases the complexity of the control system. A

technique called output feedback based control is often used in control systems to address this problem.

Instead of requiring the measurement feedback of the internal state, the output feedback control makes

use of only the system output measurements. If the system is observable, then the measurement feedback

of the output together with the input can be used to reconstruct the system state. Thus, output feedback

control eliminates the need of full state feedback and makes the design more practical, requiring fewer

sensors and thereby making it cost-effective and reliable. Classical output feedback methods employ so

called state observers to reconstruct the system state. However, these observers require the knowledge

of the system model. As a result, output feedback in reinforcement learning is more challenging as the

system dynamics is unknown.

Model-free output feedback approaches that have been reported in the RL control literature can be

classified as neural network observers based and input-output data based methods. In [77], a suboptimal

output feedback controller was presented for the LQR problem using a neural network observer with

bounded estimation errors. In [19], [23], [43], [52], [72], [75], [76], neural networks were employed for

state estimation, critic and actor networks to achieve near optimal solution for a class of nonlinear systems

and ultimate boundedness of estimation errors was shown. In contrast to neural network based designs,

the data based output feedback approach has attracted more attention recently [1], [21], [32], [38], [49].

This approach has the advantage that a separate state observer is not needed. As such, the results do not

suffer from state estimation errors, resulting in an optimal control solution. In [1], an output feedback data

based optimal controller was designed by the identification of Markov parameters using the input-output

data. This idea was first used in the context of reinforcement learning LQR control in [38], where the

VFA approach was taken to develop both PI and VI output feedback RL LQR algorithms. Following

the VFA approach of [38], the authors of [32] solved the RL optimal linear quadratic tracking problem.

Similarly, in [49], the VFA approach was used to solve the linear quadratic output feedback problem for
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the continuous-time case. In all these works [32], [38], [49], a discounting factor is introduced in the

cost function which helps to diminish the effect of excitation noise bias as studied in [38]. The end result

is that the discounted controller is suboptimal and does not correspond to the solution of the Riccati

equation. More importantly, this discounting factor has the potential to compromise system stability as

reported recently in [49], [54]. The stability analysis carried out in [54] has shown that the discounted

cost function cannot guarantee stability, in general. At best, stability can be achieved provided that the

discounting factor is chosen above a lower bound. However, knowing this bound requires knowledge

of the system dynamics, which is assumed to be unknown in RL ADP. Furthermore, the discounted

controller loses optimality aspect of the control problem as it does not correspond to the optimal solution

of the original ARE. In fact, the choice of this discounting factor can be too limited to achieve learning

because of noise bias. Owing to these trade-offs, there is motivation to formulate a solution that does

not require a discounting factor, in order to ensure stability and optimality.

Recently, some works have also employed RL to solve optimal control problems addressing more

difficult challenges such as actuator saturation and time delays. The original work [3] employed the idea

of nonquadratic cost functionals [45] to incorporate the actuator constraints and provided a model-based

near optimal solution to the constraint HJB equation using neural networks. Later on, [28], [48], [50]

extended this idea to solve the partially model-free constrained control problem online using reinforcement

learning. A common feature in these works is that local stability could be guaranteed only in the form of

uniform ultimate boundedness. Furthermore, the use of nonquadratic cost functional leads to nonlinear

control laws even when the system dynamics are linear [44]. Time-delay is another frequently encountered

difficulty in the control of dynamical systems. However, there are not much significant developments in

the RL control framework on the topic of time-delays. Some recent methods that address the time-delay

problem in the context of RL, require a special class of systems for which there exists a bicausal change

of coordinates transformation, which is quite a restrictive assumption and is difficult to verify when the

system model is unknown [74]. Therefore, more work is needed to address these practical challenges.

Based on the above literature survey, we present a list of the research objectives of this dissertation.

1) The development of model-free output feedback RL algorithms to relax the requirement of the

measurement of the internal state.

2) Addressing the issue of estimation bias resulting from the use of exploration signals.

3) Uplifting the requirement of the discounting factor to ensure closed-loop stability and optimality
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of the solution.

4) The design of model-free RL algorithms that can handle practical challenges such as disturbance

rejection, actuator saturation and time delays.

1.4. Contributions

The aim of this research is to improve the applicability of the reinforcement learning algorithms by

addressing some important practical challenges encountered in the design of feedback controllers for

dynamical systems. The three main contributions of this research are,

1) This work will propose novel model-free output feedback optimal control algorithms to solve the

optimal control problems for both discrete-time and continuous-time linear systems with completely

unknown system dynamics.

2) The proposed algorithms will address the issues related to exploration bias and discounting factor,

which have been the bottleneck in the earlier works in ensuring optimality and closed-loop stability.

3) This research will seek new algorithms which address some advanced control challenges such

as disturbance rejection, actuator saturation and time delays in the setting of model-free optimal

control.

Following is the list of publications upon which this dissertation has been drawn.

Book:

• S. A. A. Rizvi and Z. Lin, Output Feedback Reinforcement Learning Control for Linear Systems.

Springer, to be published in 2020.

Book Chapter:

• S. A. A. Rizvi, Y. Wei and Z. Lin, “Reinforcement learning for optimal adaptive control of time

delay systems,” in Handbook on Reinforcement Learning and Control. D. H. Cansever, F. L. Lewis

and Y. Wan, Eds. Springer, to be published in 2020.

Journal Papers:

• S. A. A. Rizvi and Z. Lin, “Output feedback adaptive dynamic programming for linear differential

zero-sum games,” Automatica, 2019, under review.

• S. A. A. Rizvi and Z. Lin, “Adaptive dynamic programming for model-free global stabilization

of control constrained continuous-time systems,” IEEE Transactions on Cybernetics, 2019, under

review.
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• S. A. A. Rizvi and Z. Lin, “An iterative Q-learning scheme for the global stabilization of discrete-

time linear systems subject to actuator saturation,” International Journal of Robust and Nonlinear

Control, vol. 29, no. 9, pp. 2660–2672, 2019.

• S. A. A. Rizvi and Z. Lin, “Experience replay–based output feedback Q-learning scheme for optimal

output tracking control of discrete-time linear systems,” International Journal of Adaptive Control

and Signal Processing (Special Issue on Learning from Adaptive Control under Relaxed Excitation

Conditions), vol. 33, no. 12, pp. 1825–1842, 2019.

• S. A. A. Rizvi and Z. Lin, “Output feedback reinforcement learning based optimal output synchro-

nization of heterogeneous discrete-time multi-agent systems,” IET Control Theory & Applications

(Special Issue on Distributed Optimisation and Learning for Networked Systems), vol. 13, no. 17,

pp. 2866–2876, 2019.

• S. A. A. Rizvi and Z. Lin, “Reinforcement learning based linear quadratic regulation of continuous-

time systems using dynamic output feedback,” IEEE Transactions on Cybernetics, 2018, DOI:

10.1109/TCYB.2018.2886735.

• S. A. A. Rizvi and Z. Lin, “Output feedback reinforcement Q-learning control for the discrete-time

linear quadratic regulator problem,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 30, no. 5, pp. 1523–1536, 2018.

• S. A. A. Rizvi and Z. Lin, “Output feedback Q-learning for discrete-time linear zero-sum games

with application to the H-infinity control,” Automatica, vol. 95, pp. 213–221, 2018.

Conference Papers:

• S. A. A. Rizvi and Z. Lin, “Model-free global stabilization of continuous-time linear systems with

saturating actuators using adaptive dynamic programming,” Proceedings of the 58th IEEE Conference

on Decision and Control (CDC), pp. 145–150, 2019.

• S. A. A. Rizvi, Y. Wei and Z. Lin, “Model-free optimal stabilization of unknown time delay systems

using adaptive dynamic programming,” Proceedings of the 58th IEEE Conference on Decision and

Control (CDC), pp. 6536–6541, 2019.

• S. A. A. Rizvi and Z. Lin, “Model-free global stabilization of discrete-time linear systems with

saturating actuators using reinforcement learning,” Proceedings of the 57th IEEE Conference on

Decision and Control (CDC), pp. 5276–5281, 2018.

• S. A. A. Rizvi and Z. Lin, “Output feedback reinforcement learning control for the continuous-time
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linear quadratic regulator problem,” Proceedings of the 2018 Annual American Control Conference

(ACC), pp. 3417–3422, 2018.

• S. A. A. Rizvi and Z. Lin, “Output feedback optimal tracking control using reinforcement Q-

Learning,” Proceedings of the 2018 Annual American Control Conference (ACC), pp. 3423–3428,

2018.

• S. A. A. Rizvi and Z. Lin, “Output feedback reinforcement Q-learning control for the discrete-time

linear quadratic regulator problem,” Proceedings of the 56th IEEE Conference on Decision and

Control (CDC), pp. 1311–1316, 2017.

1.5. Dissertation Outline

This dissertation is divided into two parts. The first part presents the development of output feedback

methods to solve the standard optimal control problems. We develop the dynamic output feedback learning

equations for discrete-time and continuous-time linear dynamical systems. The focus of this part is to

address the exploration bias issue and to develop output feedback methods that do not require discounted

cost functions. These developments are essential in ensuring the closed-loop stability and optimality of

the designed controller, and therefore, serve as the foundation of the more advanced output feedback

control algorithms presented later in the dissertation. In the second part, we work towards developing

output feedback algorithms that can handle various control challenges beyond the standard optimal control

settings. These include the design of model-free controllers to tackle disturbances, actuator constraints

and time delays in the feedback loop.

Chapter 2 presents the design of model-free output feedback RL algorithms to solve the LQR op-

timal stabilization problem. A Q-learning scheme is developed for discrete-time systems based on the

parametrization of the system state in terms of the past input and output data. For the continuous-time

systems, an integral reinforcement learning scheme is presented based on the filtered input and output

data. The issues of discounting factor and exploration bias are addressed to overcome the difficulties with

the existing works. It is shown that the proposed output feedback algorithms guarantee convergence to

the optimal solution of the LQR Riccati equation.

Chapter 3 provides the design of model-free output feedback RL algorithms to solve the zero-sum

game problem with application to the H-infinity control. The framework of game theory is employed to

formulate the disturbance rejection problem as a two player zero-sum game. Output feedback Q-learning
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and IRL algorithms are presented and convergence to the optimal solution is shown.

Chapter 4 deals with the design of model-free algorithms for the global stabilization of a class of

systems subject to actuator saturation. The idea of gain-scheduled low gain feedback is applied to develop

control laws that avoid saturation and achieve global stabilization. To design these control laws, we

employ the framework of parameterized algebraic Riccati equations (AREs). Reinforcement learning

techniques are developed for both continuous-time and discrete-time problems that find the solution of

the parameterized ARE without requiring any knowledge of the system dynamics.

Chapter 5 focuses on the control problems involving time delays. The design of model-free RL

controllers is presented based on an extended state augmentation approach. It is shown that discrete-

time delay systems with input and/or state delays can be brought into a delay-free form. Extended state

augmentation approach is presented to bring the system into a delay-free form. The controllability and

observability conditions of the delay-free system are derived. Q-learning is then employed to learn the

optimal control parameters for the extended dynamic system. Systems with arbitrary large unknown

delays can be dealt with using the presented approach.

Chapter 6 concludes the dissertation and discusses some directions for future research.
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2. MODEL-FREE OPTIMAL STABILIZATION

2.1. Introduction

Optimal stabilization refers to the problem of stabilizing a dynamical system based on some perfor-

mance metric. For the case of linear systems, the cost function is traditionally described as a quadratic

energy function reflecting the long term cost of the control and the states. For this reason, this problem

is referred to as the linear quadratic regulation (LQR) problem.

In the following sections, we will present model-free reinforcement learning algorithms to solve the

LQR optimal stabilization problem for linear systems using output feedback.

2.2. Q-learning Based Output Feedback LQR Control

Consider a discrete-time linear system given by the following state-space representation,

xk+1 = Axk +Buk,

yk = Cxk,
(2.1)

where xk ∈ Rn refers to the state, uk ∈ Rm is the input, and yk ∈ Rp is the output. Under the usual

controllability and observability assumptions on (A,B) and (A,C), respectively, we would like to find

the feedback control sequence uk = Kxk that minimizes the long term cost,

J =

∞∑
i=0

r(xi, ui), (2.2)

where r(xk, uk) is a quadratic function,

r(xk, uk) = xT
kC

TQyCxk + uT
kRuk = yT

kQyyk + uT
kRuk, (2.3)

where Qy ≥ 0 and R > 0 are the user-defined performance matrices. The optimal state feedback control

that minimizes (2.2) is,

u∗k = K∗xk = −(R+BTP ∗B)−1BTP ∗Axk, (2.4)

and its associated value function is V ∗(xk) = xT
kP
∗xk, under the conditions of controllability of (A,B)

and observability of
(
A,
√
Q
)
, where

√
Q

T√
Q = Q, Q = CTQyC. Here, P ∗ = (P ∗)T is the unique

positive definite solution to the ARE,

ATPA− P +Q−ATPB(R+BTPB)−1BTPA = 0. (2.5)
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In [38], a model-free output feedback solution to this problem has been proposed using the value function

approximation (VFA) method based on the following Bellman learning equation corresponding to the

value VK of executing policy K,

VK(xk) = r(xk,Kxk) + VK(xk+1),

which holds when uk = Kxk. However, in order to keep the system excited, the control actually applied

is uk = Kxk + nk, where nk is an exploration signal. The addition of this exploration signal violates

this learning equation, and therefore, results in what is referred to as the exploration bias. This issue

also exists in the output feedback counterpart of the above equation, in which the state xk is replaced by

input-output signals through a parametrization of the state [38]. To overcome this bias issue, generally a

discounting factor 0 < γ < 1 is introduced in the cost function as follows,

VK(xk) =

∞∑
i=k

γi−kr(xi,Kxi). (2.6)

This discounting factor helps diminish the long term effect of the exploration signal as shown in [38].

However, the use of the discounted cost function does not ensure closed-loop stability. Notice that for

γ < 1, the discounted cost (2.6) is bounded,

∞∑
i=k

γi−kxT
i(Q+KTRK)xi <∞.

However, the boundedness of the cost does not ensure the convergence of xk → 0 as k →∞.

We now proceed to developing a Q-learning scheme without employing a discounted cost function.

It will be shown that the controller parameters converge to the solution of the undiscounted ARE and

the closed-loop stability is guaranteed. We will first present the concept of Q-functions which play a

fundamental role in the design of the Q-learning algorithms that we will subsequently present. Consider

the cost function given in (2.2). Under a feedback stabilizing control policy uk = Kxk (not necessarily

optimal), the total cost incurred when starting with any state xk is quadratic in the state as given by,

VK(xk) = xT
kPxk, P = P T > 0. (2.7)

Motivated by the Bellman optimality principle, the undiscounted equation corresponding to (2.6) can be

18



written recursively as,

VK(xk) = r(xk,Kxk) + VK(xk+1), (2.8)

where VK(xk+1) is the cost of following policy K in all future states.

Next, we use (2.8) to define a Q-function which is similar to the cost function but is explicit in both

uk and xk as,

QK(xk, uk) = r(xk, uk) + VK(xk+1), (2.9)

which is defined as the sum of the one-step cost of taking an arbitrary action uk from state xk plus the

total cost that would incur if the policy K was followed from xk+1 and all subsequent states.

For the case of LQR, the Q-function can be represented as [16],

QK(xk, uk) = xT
kQxk + uT

kRuk + xT
k+1Pxk+1

= xT
kQxk + uT

kRuk + (Axk +Buk)
T P (Axk +Buk) , (2.10)

QK(xk, uk) =

xk
uk

TQ+ATPA ATPB

BTPA R+BTPB

xk
uk

, (2.11)

which is quadratic in both uk and xk.

Given the optimal cost V ∗, we can compute K∗. To do so, we define the optimal Q-function as the

cost of executing an arbitrary control u and then following the optimal policy K∗ [38], [58], as given

by,

Q∗(xk, uk) = r(xk, uk) + V ∗(xk+1), (2.12)

and the optimal policy is given by,

K∗xk = arg min
u

(Q∗(xk, uk)).

The optimal LQR controller u∗k, which minimizes the long term cost, can be obtained by solving ∂
∂uk

Q∗ =

0. The result is the same as given in (2.4), which was obtained by solving the ARE.

It can be seen that the Q-function that we obtained in (2.11) involves measurement of the internal

state xk which is not available in our problem setting. To tackle this difficulty, we now present some

state reconstruction techniques that employ input and output data of the system to observe its internal state.
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2.2.1. State Parametrization of Discrete-time MIMO Linear Systems:

Classical state estimation techniques make use of the model of the system to reconstruct the internal

state by means of a state observer. A state observer is essentially a user-defined dynamical system which

employs some error correction mechanism together with the knowledge of the system model and its input

and output data to reconstruct the state. However, the problem of state estimation is not straight forward

when the system model is not available.

A fundamental concept in adaptive control of unknown systems is to parameterize an equation in

terms of the unknown parameters and the measurable variables, and using those measurable variables to

estimate the unknown parameters [60]. The following result provides a parameterized expression of the

state observer in terms of the measurable input and output data that will be used to derive the output

feedback learning equations in the subsequent sections.

Theorem 2.1. There exists a state parametrization,

x̄k = Wuσk +Wyωk, (2.13)

that converges exponentially to the state x if the system is observable, where Wu and Wy are the system

dependent matrices containing some transfer function coefficients, and σk and ωk are the user-defined

dynamics given by

σik+1 = Aσik + Buik, σi0 = 0, i = 0, 1, · · · ,m

ωik+1 = Aωik + Byik, ωi0 = 0, i = 0, 1, · · · , p,

for some Schur matrix A and input vector B of the form,

A =



−αn−1 −αn−2 · · · · · · −α0

1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 · · · 1 0


, B =



1

0

0
...

0


.

Proof: From the linear systems theory, it is known that if the pair (A,C) is observable then a full-state
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observer can be constructed as,

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k)

= (A− LC)x̂k +Buk + Lyk, (2.14)

where x̂k is the estimate of the state xk and L is the observer gain chosen such that the matrix A−LC

has all its eigenvalues strictly inside the unit circle. This observer can be considered a dynamic system

driven by uk and yk with the dynamics matrix A−LC. This dynamic system can be written in the filter

form by treating both uk and yk as inputs to the observer as given below,

x̂k = (zI −A+ LC)−1B[uk] + (zI −A+ LC)−1L[yk] + (A− LC)kx̂0

=

m∑
i=1

Ui(z)

Λ(z)
[uik] +

p∑
i=1

Yi(z)

Λ(z)
[yik] + (A− LC)kx̂0,

=
U(z)

Λ(z)
[uk] +

Y (z)

Λ(z)
[yk] + (A− LC)kx̂0, (2.15)

where ui and yi are the ith input and output, respectively. Here, U =
[
U1 U2 · · · Um

]
, Y =[

Y1 Y2 · · · Yp

]
, and Ui(z) and Yi(z) are some n-dimensional polynomial vectors in the operator

z, for example, z−n[uk] = uk−n. Here the bracket notation [uk] is used to denote a time signal being

operated by an operator represented by a transfer function to result in a new time signal. The resulting

polynomial matrices U(z) and Y (z) depend on the quadruple (A,B,C, L). The characteristic polynomial

Λ(z) is given by

Λ(z) = det(zI −A+ LC)

= zn + αn−1z
n−1 + αn−2z

n−2 + · · ·+ α0.

We now show that the filter form (2.15) can be linearly parameterized. Consider each input filter term
Ui(z)
Λ(z) [uik] in (2.15),

Ui(z)

Λ(z)
[uik] = (zI −A+ LC)−1Bi[u

i
k],

where Bi is the ith column of B and Ui(z)
Λ(z) represents an n-dimensional polynomial vector, i.e., it contains
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n filters each of degree n, which are applied to the input ui. Therefore, we can express this term as,

Ui(z)

Λ(z)
[uik] =



ai1n−1z
n−1+ai1n−2z

n−2+···+ai10
zn+αn−1zn−1+αn−2zn−2+···+α0

ai2n−1z
n−1+ai2n−2z

n−2+···+ai20
zn+αn−1zn−1+αn−2zn−2+···+α0

...
ainn−1z

n−1+ainn−2z
n−2+···+ain0

zn+αn−1zn−1+αn−2zn−2+···+α0


[uik]

=



ai1n−1 ai1n−2 · · · ai10

ai2n−1 ai2n−2 · · · ai20
...

...
...

...

ainn−1 ainn−2 · · · ain0





zn−1

Λ(z) [uik]

zn−2

Λ(z) [uik]
...

1
Λ(z) [uik]


∆
= W i

uσ
i
k,

where W i
u ∈ Rn×n is the parametric matrix corresponding to the coefficients of U i(z) for the input ui.

Notice that σik ∈ Rn contains the outputs of n filters when applied to the input ui. Instead of applying

n filters to ui, we can also obtain σi using the n-dimensional state-space system driven by ui as,

σik+1 = Aσik + Buik,

where,

A =



−αn−1 −αn−2 · · · · · · −α0

1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 · · · 1 0


, B =



1

0

0
...

0


.

This holds for every input ui, i = 0, 1, · · · ,m, and thus, we can generate σk =
[
σ1
k σ2

k · · · σmk

]T
∈

Rmn with Wu =
[
W 1
u W 2

u · · · Wm
u

]
∈ Rn×mn. Similarly, we can repeat the same process for the

output terms in (2.15). That is,

ωik+1 = Aωik + Byik,

which holds for every output yi, i = 0, 1, · · · , p, and thus, we can generate ωk =
[
ω1
k ω2

k · · · ωpk

]T
∈
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Rpn with Wy =
[
W 1
y W 2

y · · · W p
y

]
∈ Rn×pn. We now show that the internal dynamics of σk and

ωk are asymptotically stable. The eigenvalues of Ai are the roots of its characteristic polynomial,

det(zI −A) = zn + αn−1z
n−1 + αn−2z

n−2 + · · ·+ α0.

Notice that the right-hand side equals Λ(z), which is defined to be a stable polynomial. This implies that

all the eigenvalues of A are strictly inside the unit circle, therefore, the internal dynamics of the σk and

ωk are asymptotically stable. Finally, by combining the input and output terms, we can write (2.15) as,

x̂k = Wuσk +Wyωk + (A− LC)kx̂0. (2.16)

Note that A−LC represents the observer error dynamics as known from the linear observer theory. That

is,

ek = xk − x̂k = (A− LC)ke0,

which means that the original state xk with the initial state x0 can be parameterized as,

xk = Wuσk +Wyωk + (A− LC)kx0, (2.17)

Since A − LC is Schur stable, the term (A − LC)k in (2.16) and (2.17) vanishes. Thus, x̄k − xk → 0

as k →∞. This completes the proof. �

The state parametrization discussed in Theorem 2.1 is derived based on the Luenberger observer

equation (2.14). Under this parametrization, the parameterized state (2.17) involves the observer error

dynamics term (A − LC)kx0 which depends on the initial conditions. This observer error dynamics in

turn depends on the choice of the design matrix L which is used to assign the eigenvalues of A− LC.

The user-defined matrix A plays the role of the matrix A−LC in the parametrization. Ideally, we would

like the observer dynamics to be as fast as possible so that x̄k converges to xk quickly. For discrete-time

systems, this can be achieved by placing all the eigenvalues of A − LC, or equivalently, the matrix A

at 0. That is, the coefficients αi of the matrix A are all chosen as zero. In this case, it can be verified

that (A − LC)kx0 vanishes exactly in n time steps independent of the unknown initial condition x0.

Motivated by this property of discrete-time system, recently a special case of the above parametrization

was presented in [38]. The special state parametrization result is recalled below.

Theorem 2.2. Under the assumptions of the observability of the pair (A,C), the system state can be
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represented in terms of the measured input and output sequence as,

xk = Myȳk−1,k−N +Muūk−1,k−N , (2.18)

where N ≤ n is an upper bound on the system’s observability index, ūk−1,k−N ∈ RmN and ȳk−1,k−N ∈

RpN are the past input and output data vectors defined as,

ūk−1,k−N =
[
uT
k−1 uT

k−2 · · · uT
k−N

]T

, ȳk−1,k−N =
[
yT
k−1 yT

k−2 · · · yT
k−N

]T

,

My = AN (V T
NVN )−1V T

N ,Mu = UN −AN (V T
NVN )−1V T

NTN ,

with

VN =
[
(CAN−1)T · · · (CA)T CT

]T

, UN =
[
B AB · · · AN−1B

]
,

TN =



0 CB CAB · · · CAN−2B

0 0 CB · · · CAN−3B
...

...
...

. . .
...

0 · · · · · · 0 CB

0 0 0 0 0


.

We now proceed to apply the state parametrization (2.18) to describe the Q-function in (2.11) in terms

of the system’s inputs and outputs. It can be easily verified that the substitution of (2.18) in (2.11) results

in,

QK =


ūk−1,k−N

ȳk−1,k−N

uk


T
Hūū Hūȳ Hūu

Hȳū Hȳȳ Hȳu

Huū Huȳ Huu



ūk−1,k−N

ȳk−1,k−N

uk

 ∆
= zT

kHzk, (2.19)

where zk =
[
ūT
k−1,k−N ȳT

k−1,k−N uT
k

]T

, H = HT ∈ R(mN+pN+m)×(mN+pN+m) and the partitioned
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matrices are defined as,

Hūū = M T
u(Q+ATPA)Mu ∈ RmN×mN ,

Hūȳ = M T
u(Q+ATPA)My ∈ RmN×pN ,

Hūu = M T
uA

TPB ∈ RmN×m,

Hȳȳ = M T
y(Q+ATPA)My ∈ RpN×pN

Hȳu = M T
yA

TPB ∈ RpN×m,

Huu = R+BTPB ∈ Rm×m.

(2.20)

Given the optimal cost function V ∗ with the cost matrix P ∗, we obtain the corresponding optimal output

feedback matrix H∗ by substituting P = P ∗ in (2.20). Then the optimal output feedback Q-function is

given by,

Q∗ = zTkH
∗zk, (2.21)

which provides a state-free representation of the LQR Q-function. Minimizing Q∗ with respect to uk

results in the desired control law,

u∗k = −(H∗uu)−1 (H∗uūūk−1,k−N +H∗uȳȳk−1,k−N
)
. (2.22)

Lemma 2.1. The output feedback controller given by (2.22) is the optimal controller that solves the LQR

problem (2.1–2.3).

Proof: By Theorem 2.2, we know that the state vector can be represented by input-output sequence as

in (2.18). It can be easily seen that substituting (2.18) and (2.20) in the control law (2.22) results in the

state feedback controller (2.4) which is the optimal LQR controller. So, the output feedback controller

is the equivalent optimal controller that solves the LQR problem. This completes the proof. �

We seek an output feedback form of Q-learning to learn the optimal Q-function. The LQR Q-learning

equation [16] is,

QK(xk, uk) = xT
kQxk + uT

kRuk +QK(xk+1,Kxk+1), (2.23)

The parameterized output feedback Q-learning equation as follows,

H̄Tz̄k = yT
kQyyk + uT

kRuk + H̄Tz̄k+1. (2.24)

where H̄ = vec(H) ∈ Rl(l+1)/2 , [h11, 2h12, · · · , 2h1l, h22, 2h23, · · · , 2h2l, · · ·hll]T,
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z̄ =
[
z2

1 , z1z2, · · · , z1zl, z
2
2 , z2z3, · · · , z2zl, · · · z2

l

]T and l = mN + pN +m.

Remark 2.1. The parametrization matrices Mu and My in (2.18) are the same as Wu and Wy in (2.13)

with ūk−1,k−N = σk and ȳk−1,k−N = ωk when α′is are zero and N = n. In this case, the subscripts ū

and ȳ in the matrix H are replaced by σ and ω, respectively.

We can now utilize reinforcement learning to learn our output feedback Q-function matrix.

Algorithm 1: Output Feedback Q-learning Value Iteration for LQR Control

Initialization. Select an arbitrary policy u0
k with H̄0 = 0. Then, for j = 1, 2, · · · , perform until,

∥∥H̄j − H̄j−1
∥∥ < ε :

Value Update. Evaluate the cost of the current policy,

(
H̄j
)T
z̄k = yT

kQyyk + uT
kRuk +

(
H̄j−1

)T
z̄k+1.

Policy Improvement. Determine an updated policy uj+1
k ,

uj+1
k = −(Hj

uu)
−1
(
Hj
uūūk−1,k−N +Hj

uȳȳk−1,k−N

)
.

The above algorithm presents the VI algorithm for the output feedback Q-learning LQR, which is

essentially a two-step procedure. In the value update step, we use the key equation (2.24) to solve

for the unknown vector H̄ in the least-squares sense by collecting L ≥ l(l + 1)/2 data samples of

uk, yk, ūk−1,k−N , ȳk−1,k−N , ūk,k−N+1 and ȳk,k−N+1. Note that these L data samples refer to different

points in time, k, which are used to form the data matrices Φ ∈ Rl(l+1)/2×L and Υj−1 ∈ RL×1

defined by, the data matrices Φ ∈ Rl(l+1)/2×L and Υj−1 ∈ RL×1 are defined by Φ =
[
z̄1
k, z̄

2
k, · · · , z̄Lk

]
,

Υj−1 =
[
r1(yk, uk) +

(
H̄j−1

)T
z̄1
k+1, · · · , rL(yk, uk) +

(
H̄j−1

)T
z̄Lk+1

]T

.

Then, the least-squares solution of (2.24) is given by,

H̄j = (ΦΦT)−1ΦΥj−1, (2.25)

where H̄j is the jth estimate of H̄ corresponding to the cost of the current policy ujk. In the policy

improvement step, we compute the new policy uj+1
k that is used in the next j + 1 iteration. Notice in
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(2.22) that the control uk is linearly dependent on ūk−1,k−N and ȳk−1,k−N which means that ΦΦT will

not be invertible. To overcome this issue, one adds excitation noise in uk which guarantees a unique

solution to (2.25). In other words, the following condition needs to be satisfied,

rank(Φ) = l(l + 1)/2. (2.26)

This excitation condition can be met in several ways such as adding sinusoidal noise of various frequen-

cies, exponentially decaying noise and Gaussian noise.

The convergence criterion for the algorithm is to check on the updates in the estimated vector H̄j .

This can be done by the following condition,

∥∥H̄j − H̄j−1
∥∥ < ε, (2.27)

where ε > 0 is some small positive constant.

Theorem 2.3. Suppose that (A,B) is controllable,
(
A,
√
QyC

)
is observable. Then, the output feedback

VI algorithm generates a sequence of controls {ujk, j = 1, 2, 3, ...} that converges to the optimal output

feedback controller given in (2.22) as j →∞ if the rank condition (2.26) holds.

Proof: The convergence proof for VI based Q-learning LQR has been given in [35] for the state

feedback case. Therefore, having shown the equivalence of the state and output feedback controller as

discussed in Theorem 2.2, we can conclude that, under the unique solvability of the value update equation

(ensured by the rank condition (2.26)), the output feedback Q-learning controller based on VI algorithm

converges to the optimal controller as j →∞. This completes the proof. �

Exploration Bias Immunity of Algorithm 1:

We next show that the proposed Q-learning scheme does not lead to bias in the Q-function estimates.

Theorem 2.4. The excitation noise required to satisfy the excitation condition does not result in any bias

in Q-function estimates. This applies to both state feedback and output feedback Q-functions.

Proof: Consider first the case of state feedback Q-learning. Under the excitation noise, we can write

the Q-function as

QK(xk, ûk) = r(xk, ûk) + VK(xk+1),
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where ûk = uk + nk with nk being the excitation noise. Let Ĥ ′ be the estimate of H ′ obtained using

the input û. It then follows from (2.11) thatxk
ûk

T

Ĥ ′

xk
ûk

 = r(xk, ûk) + (Axk +Bûk)
TP (Axk +Bûk) .

Upon further expansion, we have,xk
uk

T

Ĥ ′

xk
uk

+xT
kA

TPBnk+nT
kB

TPAxk + nT
k(R+BTPB)uk+uT

k(R+BTPB)nk+nT
k(R+BTPB)nk

= xT
kQxk + uT

kRuk + nT
kRnk + nT

kRuk + uT
kRnk+ (Axk+Buk)

TP (Axk+Buk)+(Axk+Buk)
TPBnk

+(Bnk)
TP (Axk +Buk) + nkB

TPBnk.

It can be easily verified that all the terms involving nk get canceled on both sides of the equation, and

we are left with xk
uk

T

Ĥ ′

xk
uk

 = r(xk, uk)+(Axk+Buk)
TP (Axk+Buk) .

Comparing the above equation with (2.10), we have Ĥ ′ = H ′, that is,

QK(xk, uk) = r(xk, uk) + VK(xk+1).

In view of (2.23) and (2.19), we have,

zT
kHzk = yT

kQyyk + uT
kRuk + zT

k+1Hzk+1.

Hence, we get the bias free output feedback Bellman equation. This completes the proof. �

2.3. Integral Reinforcement Learning Based Output Feedback LQR Control

The discussion so far focused on the discrete-time dynamical systems as reinforcement learning

algorithms were originally developed for such systems. The treatment of continuous-time problems in

reinforcement learning is quite different from the discrete-time problems discussed in the previous section.

One of the notable difficulties in the continuous-time case arise due to the involvement of the derivatives

of the value function in the Bellman equation, which requires knowledge of the system dynamics, as
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given by the following equation,

0 = r(x(t),Kx(t)) + (∆V )T(Ax(t) +Bu(t)).

In contrast, the Bellman equation for the discrete-time problems (2.8) is a recursion between two

consecutive values of the value function and does not involve the system dynamics. Recently, the idea of

integral reinforcement learning (IRL) [64] has been used to overcome this difficulty. The IRL Bellman

equation is,

V (x(t)) =

∫ t+T

t
r(x(τ),Kx(τ))dτ + V (x(t+ T )).

The idea of using interval integrals in the learning equation has been successfully used to design RL

and ADP based model-free control algorithms [14], [27] and will be adopted in our work to solve

continuous-time control problems.1

To this end, we now work towards designing output feedback RL based LQR controller for continuous-

time systems. Consider a continuous-time linear time-invariant system in the state-space form,

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(2.28)

where x ∈ Rn is the state, u ∈ Rm is the control input, and y ∈ Rp is the output. Under the usual

controllability and observability assumptions on (A,B) and (A,C), respectively, we are to solve the

LQR problem by dynamic output feedback. We will adopt an observer based controller structure. When

the full state is available for feedback, the control law takes the form,

u∗(t) = K∗x(t) (2.29)

that minimizes the cost function of the form

J =

∫ ∞
0

r(x(τ), u(τ))dτ (2.30)

where r(x, u) is the utility function. In our LQR problem, the utility function r(x, u) takes a quadratic

form

r = xT(t)CTQyCx(t) + uT(t)Ru(t) = yT(t)Qyy(t) + uT(t)Ru(t), (2.31)

1Although the terminology integral (interval) reinforcement learning is often used to refer to the partially model-free algorithms
based on the work [64], we will use the same terminology for the completely model-free algorithms presented in this work.
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where Qy ≥ 0 and R > 0 are the user-defined weighting matrices. Under a stabilizing policy u = Kx

(not necessarily optimal), the value function is quadratic in the state,

V (x) = xT(t)Px(t), (2.32)

where P = P T > 0. Under the conditions of controllability of (A,B) and observability of
(
A,
√
Q
)
,

where
√
Q

T√
Q = Q, Q = CTQyC, there exists a unique optimal feedback gain given by,

K∗ = −R−1BTP ∗, (2.33)

where P ∗ = P ∗T > 0 is the unique positive definite solution to the ARE [37],

ATP + PA+Q− PBR−1BTP = 0. (2.34)

A model-free output feedback solution for the continuous-time LQR problem was recently proposed

in [49], where the authors used the N -sample observability theorem [65] to reconstruct the state of

a continuous-time system by sampling delayed output measurements. It has been shown in [49] that

if the control is of the full state feedback form, u = Kx, then the state of the closed-loop system

ẋ = (A+BK)x is related to the delayed output as,

y(t− iT ) = Ce−iT (A+BK)x(t),

where i = 0, 1, · · · , N − 1 and T is the sample interval. Here, N is the minimum number of samples

needed to observe the system in some interval (ti, tf ), which depends on the system dynamics. Thus, N

delayed output measurements can be used to reconstruct the state as,

x(t) = (GTG)−1GTȳ(t),

where,

ȳ(t) =
[
yT(t) yT(t− T ) · · · yT(t− (N − 1)T )

]T

,

G =
[
CT (e−T (A+BK))TCT · · · (e−(N−1)T (A+BK))TCT

]T

.

The method is elegant, however, it assumes that u = Kx, and therefore, it does not consider the excitation

noise in the input. Thus, introducing excitation noise violates the above relations, which ultimately leads
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to bias in the parameter estimates. As a result, the estimated control parameters converge to sub-optimal

parameters [49]. To address this problem, a discounting factor γ is typically introduced in the cost

function [38], [49], which helps to suppress the noise bias. In the continuous-time case, the discounted

value function is given by,

V (x) =

∫ ∞
t

e−γ(τ−t)r(x(τ), u(τ))dτ. (2.35)

The addition of the discounting factor γ, however, changes the solution of the Riccati equation, and the

resulting discounted control is no longer optimal. More importantly, the introduction of the discounting

factor does not guarantee closed-loop stability as the original optimal control (2.29) would. To see this,

we note that for γ > 0,
∫∞
t e−γ(τ−t)xT(τ)(Q + KTRK)x(τ)dτ < ∞ does not guarantee x(t) → 0 as

t→∞.

In the following, we will develop output feedback algorithms that do not suffer from the exploration

bias problem and as a result do not require discounted cost functions. The development of such output

feedback algorithms will enable to guarantee optimality and close-loop stability of the controller. To this

end, we will present a different parametrization of the state of a continuous-time system that can take

into account the exploration component of the input signal.

2.3.1. State Parametrization of Continuous-time MIMO Linear Systems:

In the discrete-time case, we were fortunate to obtain an exact parametrization of the state in terms of the

past input-output data, as given in Theorem 2.2. This was made possible by placing the eigenvalues of the

observer at the origin. However, the direct translation of this discrete-time result into the continuous-time

case would invoke the derivatives of the input and output measurements, which is generally prohibitive

in practice. To overcome this difficulty, [49] proposed the parametrization based on delayed output

measurements, which does not include the effect of exploration noise component present in the input,

as shown in the previous section. Interestingly, the general MIMO parametrization result derived based

on the Luenberger observer theory in Theorem 2.1 the for the discrete-time case can be extended to

continuous-time case. This was the motivation of introducing the general parametrization (2.13) before

its special case (2.17). In the following, we present a state parametrization procedure to represent the

state in terms of the filtered inputs and outputs for general continuous-time MIMO linear systems.
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Theorem 2.5. There exists a state parametrization

x̄(t) = Muζu(t) +Myζy(t), (2.36)

that converges exponentially to the state x if the system is observable, where Mu and My are the system

dependent matrices containing some transfer function coefficients, and ζu and ζy are the user-defined

dynamics given by

ζ̇iu(t) = Aζiu(t) + Bui(t), ζiu(0) = 0, ∀i = 1, 2, · · · ,m

ζ̇iy(t) = Aζiy(t) + Byi(t), ζiy(0) = 0,∀i = 1, 2, · · · , p,

for some Hurwitz matrix A and input vector B of the form,

A =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . . . . .

...

0 0 0 · · · 1

−α0 −α1 · · · · · · −αn−1


, B =



0

0
...

0

1


.

Proof: Under the observability of (A,C), the estimate of the state given by x̂ can be obtained based

on the following observer,

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t))

= (A− LC)x̂(t) +Bu(t) + Ly(t), (2.37)

where L is the user-defined observer gain selected such that the matrix A−LC is Hurwitz. The system

inputs and outputs serve as the inputs to the dynamical system A − LC of the observer, which can be

written in a filter notation as follows,

x̂(t) = (sI −A+ LC)−1B[u] + (sI −A+ LC)−1L[y]

+e(A−LC)tx̂(0)

=

m∑
i=1

Ui(s)

Λ(s)
[ui] +

p∑
i=1

Yi(s)

Λ(s)
[yi] + e(A−LC)tx̂(0),

=
U(s)

Λ(s)
[u] +

Y (s)

Λ(s)
[y] + e(A−LC)tx̂(0), (2.38)

32



where ui and yi are the components of the input and output vectors, respectively. Moreover, U =[
U1 U2 · · · Um

]
, Y =

[
Y1 Y2 · · · Yp

]
, and Ui(s) and Yi(s) are some n-dimensional polynomial

vectors in the differential operator s, for example, s[u] = d
dtu. We represent [u] as a time signal acted

upon by some transfer function, which results in another time signal. Note that U(s) and Y (s) are

dependent on (A,B,C, L). We define Λ(s) as the characteristic polynomial corresponding to A − LC

as,

Λ(s) = det(sI −A+ LC)

= sn + αn−1s
n−1 + αn−2s

n−2 + · · ·+ α1s+ α0.

Note that Ui(s)
Λ(s) [ui] in (2.38) is given by,

Ui(s)

Λ(s)
[ui] = (sI −A+ LC)−1Bi[ui],

where Bi is the ith column of B. The above equation can be further expanded as follows,

Ui(s)

Λ(s)
[ui] =



ai1n−1s
n−1+ai1n−2s

n−2+···+ai10
sn+αn−1sn−1+αn−2sn−2+···+α0

ai2n−1s
n−1+ai2n−2s

n−2+···+ai20
sn+αn−1sn−1+αn−2sn−2+···+α0

...
ainn−1s

n−1+ainn−2s
n−2+···+ain0

sn+αn−1sn−1+αn−2sn−2+···+α0


[ui]

=



ai10 ai11 · · · ai1n−1

ai20 ai21 · · · ai2n−1

...
...

. . .
...

ain0 ain1 · · · ainn−1





1
Λ(s) [ui]

s
Λ(s) [ui]

...

sn−1

Λ(s) [ui]


∆
= M i

uζ
i
u(t),

where the parametrization matrix M i
u ∈ Rn×n contains the coefficients of the polynomial vector U i(s).

ζiu ∈ Rn is the result of n filtering operations on the signal ui, which can also be obtained using the

following the dynamical system,

ζ̇iu(t) = Aζiu(t) + Bui(t),
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where,

A =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−α0 −α1 · · · · · · −αn−1


, B =



0

0
...

0

1


.

Thus, for the complete input vector u, we can obtain ζu =
[
(ζ1
u)T (ζ2

u)T · · · (ζmu )T

]T

∈ Rmn with

Mu =
[
M1
u M2

u · · · Mm
u

]
∈ Rn×mn. The same procedure can also be applied for the output vector,

as follows,

ζ̇iy(t) = Aζiy(t) + Byi(t),

Note that the characteristic polynomial of A,

det(sI −A) = sn + αn−1s
n−1 + αn−2s

n−2 + · · ·+ α0.

is the same as Λ(s), which is defined to be a stable polynomial, and thus, the above dynamical systems

driven by u and y are also asymptotically stable. Based on the above relations, (2.38) can be written as,

x̂(t) = Muζu(t) +Myζy(t) + e(A−LC)tx̂(0). (2.39)

It should be noted that A− LC represents the error dynamics of the observer,

e(t) = x(t)− x̂(t) = e(A−LC)te(0),

and therefore x can be written as,

x(t) = Muζu(t) +Myζy(t) + e(A−LC)tx(0). (2.40)

It can be seen that e(A−LC)t in (2.39) and (2.40) converges to zero because A− LC is Hurwitz stable.

Hence, x̄− x→ 0 as t→∞. This completes the proof. �

Remark 2.2. The parametrization matrices Mu and My depend on the quadruple (A,B,C, L), and

therefore, require the knowledge of system dynamics. It will be shown that by embedding these matrices

in the learning equation, we will be able to directly learn the optimal output feedback policy without
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actually computing these matrices, which makes the design model-free.

Next, we aim to use this state parametrization to describe the value function in (2.32). Substitution of

(2.36) in (2.32) results in

V =

ζu
ζy

T[
Mu My

]T

P
[
Mu My

]ζu
ζy

 ∆
= zTP̄ z, (2.41)

where

z =
[
ζT
u ζT

y

]T

∈ R(mn+pn),

P̄ = P̄ T =

M T
uPMu M T

uPMy

M T
yPMu M T

yPMy

 ∈ R(mn+pn)×(mn+pn).

By (2.41) we have obtained an approximation of the value function in terms of the filtered inputs and

outputs of the system. The corresponding output feedback controller is given by,

u = Kx = K
[
Mu My

][
ζT
u ζT

y

]T
∆
= K̄z, (2.42)

where K̄ = K
[
Mu My

]
∈ Rm×(mn+pn). Therefore, the optimal cost matrix is given by P̄ ∗ = (P̄ ∗)T

and the corresponding optimal output feedback controller is

u∗ = K̄∗z. (2.43)

Lemma 2.2. The output feedback controller given by (2.43) converges to the optimal LQR controller.

Proof: Consider the optimal output feedback LQR controller (2.43). Substituting K̄∗ = K∗
[
Mu My

]
in (2.43) results in

u∗(z) = K∗(Muζu(t) +Myζy(t)).

By Theorem 2.5, we have the convergence of x̄(t) = Muζu(t) + Myζy(t) to x(t), and hence, (2.43)

converges to

u∗(x) = K∗x(t).

This completes the proof. �

The discussion so far focused on finding the nominal solution of the continuous-time LQR problem
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when the system model is known. In the following, we will derive an output feedback learning equation

that will allow us to learn the optimal output feedback LQR controller based on the filtered input and

output data instead of using full state feedback. To this end, consider the following Lyapunov function

candidate,

V = xTPx. (2.44)

Evaluating the derivative of (2.44) along the system trajectories,

d

dt
(xT(t)Px(t)) = (Ax(t) +Bu(t))TPx(t) + xT(t)P (Ax(t) +Bu(t))

= xT(t)Hx(t)− 2(Ru(t))TKx(t),

where H = ATP + P TA and K = −R−1BTP . Performing finite window integrals of length T > 0 on

both sides results in the following equation,

xT(t)Px(t)− xT(t− T )Px(t− T ) =

∫ t

t−T
xT(τ)Hx(τ)dτ−2

∫ t

t−T
(Ru(τ))TKx(τ)dτ, (2.45)

Adding
∫ t
t−T y

T(τ)Qyy(τ)dτ on both sides of this equation and substituting y(t) = Cx(t) and H =

ATP + PA on the right-hand side, we have,

xT(t)Px(t)− xT(t− T )Px(t− T ) +

∫ t

t−T
yT(τ)Qyy(τ)dτ

=

∫ t

t−T
xT(τ)(ATP + PA+ CTQyC)x(τ)dτ − 2

∫ t

t−T
(Ru(τ))TKx(τ)dτ.

Next, we use our state parametrization (2.36) and substitute (2.41) and (2.42) in the above equation,

which results in,

zT(t)P̄ z(t)− zT(t− T )P̄ z(t− T ) +

∫ t

t−T
yT(τ)Qyy(τ)dτ

=

∫ t

t−T
zT(τ)M T(ATP + PA+ CTQyC)Mz(τ)dτ − 2

∫ t

t−T
(Ru(τ))TK̄z(τ)dτ,

or more compactly as,

zT(t)P̄ z(t)− zT(t− T )P̄ z(t− T ) +

∫ t

t−T
yT(τ)Qyy(τ)dτ

=

∫ t

t−T
zT(τ)H̄z(τ)dτ − 2

∫ t

t−T
(Ru(τ))TK̄z(τ)dτ, (2.46)
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where M ∆
=
[
Mu My

]
and H̄ ∆

= M T(ATP +PA+CTQyC)M . This new equation (2.46) serves as the

key equation for our proposed output feedback based value iteration algorithm. Note that (2.46) is a scalar

equation, which is linear in terms of the unknowns H̄ and K̄. These matrices are the output feedback

counterparts of the matrices H and K. As there are more unknowns than the number of equations, we

develop a system of l number of such equations by performing l finite window integrals each of length

T . To solve this linear system of equations, we define the following data matrices,

δzz =
[
z(τ)⊗ (τ)z|t1t0 , z(τ)⊗ z(τ)|t2t1 , · · · , z(τ)⊗ z(τ)|tltl−1

]T

,

Izu =
[∫ t1
t0
z(τ)⊗Ru(τ)dτ,

∫ t2
t1
z(τ)⊗Ru(τ)dτ, · · · ,

∫ tl
tl−1
z(τ)⊗Ru(τ)dτ

]T

,

Izz =
[∫ t1
t0
z̄T(τ)dτ,

∫ t2
t1
z̄T(τ)dτ, · · · ,

∫ tl
tl−1̄
zT(τ)dτ

]T

,

Iyy =
[∫ t1
t0
y(τ)⊗ y(τ)dτ,

∫ t2
t1
y(τ)⊗ y(τ)dτ, · · · ,

∫ tl
tl−1
y(τ)⊗ y(τ)dτ

]T

.

We rewrite (2.46) as the following matrix equation,

[
Izz, 2Izu

]vecs(H̄)

vec(K̄)

 = δzzvec(P̄ ) + Iyyvec(Qy),

whose least-squares solution is given by,vecs(H̄)

vec(K̄)

 =

([
Izz, 2Izu

]T[
Izz, 2Izu

])−1[
Izz, 2Izu

]T (
δxxvec(P̄ ) + Iyyvec(Qy)

)
(2.47)

We recall the following definitions before introducing the next algorithm. Let {Bq}∞q=0 be some bounded

nonempty sets that satisfy Bq ⊆ Bq+1, q ∈ Z+ and limq→∞Bq = P+, where P+ is a set of positive

semidefinite matrices. Also, let εk be the step size sequence satisfying εk > 0,
∑∞

k=0 εk = ∞ and

limk→∞ εk = 0. With these definitions, Algorithm 2 presents the continuous-time model-free output

feedback LQR algorithm.
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Algorithm 2: Output Feedback IRL Value Iteration for LQR Control

Initialize. Select any initial control policy u0 = K̄0z + ν with ν being the exploration signal and

P̄0 ≥ 0, and set k ← 0, q ← 0.

Data Collection. Apply u0 to the system to collect online data for t ∈ [t0, tl], where tl = t0 + lT

and T is the interval length. Based on this data, perform the following iterations for k = 0, 1, · · · ,

loop:

Find the solution, H̄k and K̄k, of the following learning equation

zT(t)P̄kz(t)− zT(t− T )P̄kz(t− T ) +

∫ t

t−T
yT(τ)Qyy(τ)dτ

=

∫ t

t−T
zT(τ)H̄kz(τ)dτ − 2

∫ t

t−T
(Ru(τ))TK̄kz(τ)dτ.

Update ˜̄P as,

˜̄Pk+1 ← P̄k + εk(H̄k − K̄T
kRK̄k).

if ˜̄Pk+1 /∈ Bq then

P̄k+1 ← P̄0 and q ← q + 1.

else if
∥∥∥ ˜̄P k+1 − P̄k

∥∥∥ /εk < ε then

return P̄k as an estimate of P̄ ∗

else

P̄k+1 ← ˜̄Pk+1

end if

k ← k + 1

end loop.

Remark 2.3. It can be seen in (2.42) that the control linearly depends on z, which means that the least-

squares problem (2.47) will not have a unique solution as the data matrices will have linearly dependent

columns. To overcome this difficulty, we need to apply an exploration input ν in the data collection phase
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and collect l ≥ (mn + pn)(mn + pn + 1)/2 + m(mn + pn) data samples to solve the least-squares

problem (2.47). That is, the following rank condition needs to be satisfied,

rank
([
Izz, 2Izu

])
=

(mn+ pn)(mn+ pn+ 1)

2
+m(mn+ pn). (2.48)

Theorem 2.6. Under the conditions of the controllability of (A,B), the observability of
(
A,
√
QyC

)
,

and the rank condition (2.48), Algorithm 2 generates a control sequence which asymptotically converges

to the optimal dynamic output feedback control law (2.43) as t→∞.

Proof: The proof of convergence of the proposed output feedback algorithm follows along the same

lines of the convergence proof of the state feedback model-free VI [14] algorithm. From Theorem 2.5,

we have the convergence of the proposed state parametrization based on the filtered input and output

signals. It follows that the proposed dynamic output feedback learning equation (2.46) converges to its

state feedback counterpart (2.45), which in turn converges to the optimal solution if the rank condition

(2.48) holds. This implies that the proposed output feedback algorithm also converges to the optimal

solution as t→∞. This completes the proof. �

Remark 2.4. In comparison with the previous output feedback LQR works based on RL [49], [77], the

proposed output feedback value iteration (VI) algorithm does not require an initially stabilizing policy.

Exploration Bias Immunity of Algorithm 2:

We now discuss the parameter estimation bias problem resulting from the use of exploration signals.

For this purpose, the following result is presented.

Theorem 2.7. The proposed output feedback algorithm Algorithm 2 is immune to the exploration bias

problem.

Proof: Consider the learning equation (2.46) with the excited input û. Let ˆ̄P , ˆ̄H and ˆ̄K be the parameter

estimates obtained as a result of these excited inputs. We have,

zT(t) ˆ̄Pz(t)−zT(t−T ) ˆ̄Pz(t−T )+

∫ t

t−T
yT(τ)Qyy(τ)dτ

=

∫ t

t−T
zT(τ) ˆ̄Hz(τ)dτ − 2

∫ t

t−T
(Rû(τ))T ˆ̄Kz(τ)dτ,
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Taking time derivative results in

2zT(t) ˆ̄P ż(t)− 2zT(t−T ) ˆ̄P ż(t−T ) + yT(t)Qyy(t)− yT(t−T )Qyy(t−T )

= zT(t) ˆ̄Hz(t)− zT(t−T ) ˆ̄Hz(t−T )− 2(Rû(t))T ˆ̄Kz(t) + 2(Rû(t−T ))T ˆ̄Kz(t−T ).

Further expansion yields,

2zT(t) ˆ̄P (Āz(t) + B̄1u(t) + B̄2y(t)) + 2zT(t)M̂ TP̂ M̂ B̄1ν(t)− 2zT(t− T ) ˆ̄P (Āz(t− T )

+B̄1u(t− T ) + B̄2y(t− T ))− 2zT(t− T )M̂ TP̂ M̂ B̄1ν(t− T ) + yT(t)Qyy(t)− yT(t−T )Qyy(t−T )

= zT(t) ˆ̄Hz(t)− zT(t−T ) ˆ̄Hz(t−T )− 2(Ru(t))T ˆ̄Kz(t) + 2(Ru(t−T ))T ˆ̄Kz(t−T )− 2(Rν(t))T ˆ̄Kz(t)

+2(Rν(t−T ))T ˆ̄Kz(t−T )

where we have combined the dynamics of z based on the input-output dynamics of the observer in which

Ā and B̄i represent the combined system dynamics and input matrices corresponding to the ζ ′s. Using

the fact that M B̄1 = B, we have 2zTM̂ TP̂ M̂ B̄1ν = −2(Rν)T ˆ̄Kz, thereby cancelling the delayed and

non-delayed ν terms. Thus, we have,

2zT(t) ˆ̄P (Āz(t) + B̄1u(t) + B̄2y(t))− 2zT(t− T ) ˆ̄P (Āz(t− T )

+B̄1u(t− T ) + B̄2y(t− T )) + yT(t)Qyy(t)− yT(t−T )Qyy(t−T )

= zT(t) ˆ̄Hz(t)− zT(t−T ) ˆ̄Hz(t−T )− 2(Ru(t))T ˆ̄Kz(t) + 2Ru(t−T )T ˆ̄Kz(t−T ).

Reversing the previous operations and performing integration result in

zT(t) ˆ̄Pz(t)−zT(t−T ) ˆ̄Pz(t−T )+

∫ t

t−T
yT(τ)Qyy(τ)dτ

=

∫ t

t−T
zT(τ) ˆ̄Hz(τ)dτ + 2

∫ t

t−T
(Ru(τ))T ˆ̄Kz(τ)dτ.

Comparing the above equation with (2.46), we have ˆ̄P = P̄ , ˆ̄H = H̄ and ˆ̄K = K̄. This establishes the

bias-free property of Algorithm 2. This completes the proof. �

2.4. Results

Example 1: A Discrete-time Unstable System:
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Fig. 2.1: Example 1: State trajectory of the closed-loop system under the state feedback Q-learning
algorithm [40].
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Fig. 2.2: Example 1: Convergence of the parameter estimates under state feedback Q-learning algorithm
[40].

Consider system (2.1) with

A =

1.8 −0.77

1 0

 , B =

1

0

 , C =
[
1 −0.5

]
.

Let Qy = 1 and R = 1 be the performance indices. The eigenvalues of the open-loop system are 0.7 and

1.1, and hence, the system is unstable. Let the characteristic polynomial of the observer be Λ(z) = z2.

We compare here the state feedback Q-learning algorithm and our proposed Q-learning based output

feedback algorithm. By solving the Riccati equation (2.5), we obtain the optimal control matrices for the

state feedback controller as

H∗ux =
[
2.5416 −1.5759

]
, H∗uu = 3.0467,
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Fig. 2.3: Example 1: State trajectory of the closed-loop system under the proposed output feedback
Q-learning Algorithm 1.
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Fig. 2.4: Example 1: Convergence of the parameter estimates under the proposed output feedback
Q-learning Algorithm 1.

and for our proposed Q-learning based output feedback algorithm as

H∗uσ =
[
2.5416 −1.9065

]
, H∗uω =

[
4.9055 −2.9360

]
, H∗uu = 3.0467.

We use the VI algorithm as the system is unstable. The excitation condition is ensured by adding

sinusoidal probing noises. The convergence criteria of ε = 0.01 was chosen for both the state feedback

and output feedback algorithms. Seven data samples were collected for the state feedback algorithm,

that is, L = 7, whereas L = 18 for the output feedback algorithm. The state trajectories under the state

feedback Q-learning algorithm and our proposed output feedback Q-learning method are shown in Figs.

2.1 and 2.3, respectively. The convergence of the parameter estimates under these two methods are shown

in Figs. 2.2 and 2.4, respectively. The final parameter estimates obtained for the state feedback algorithm

are

Ĥux =
[
2.5416 −1.5759

]
, Ĥuu = 3.0466,
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Fig. 2.5: Example 2: State trajectories of the closed-loop system under the state feedback [14].
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Fig. 2.6: Example 2: Convergence of the parameter estimates under the state feedback IRL algorithm
[14].

and for our proposed output feedback Q-learning algorithm are

Ĥuσ =
[
2.4641 −1.9371

]
, Ĥuω =

[
4.8020 −2.9832

]
, Ĥuu = 3.0396.

It can be seen that both the state feedback Q-learning algorithm and our proposed output feedback

Q-learning algorithm converge to the solution of the ARE given by Equation (2.5).

Example 2: A Continuous-time Unstable System:

We now test the proposed output feedback IRL algorithm on a continuous-time unstable system of the

form (2.28). For this purpose, we consider the double integrator system with

A =

0 1

0 0

 , B =

0

1

 , C =
[
1 0

]
.

Both state feedback and output feedback IRL VI algorithms are evaluated. We choose the performance
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Fig. 2.7: Example 2: State trajectories of the closed-loop system under the output feedback IRL
Algorithm 2.
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Fig. 2.8: Example 2: Convergence of the parameter estimates under the output feedback IRL Algorithm
2.

index parameters as Qy = 1 and R = 1. The eigenvalues of the observer matrix A are placed at −2.

The optimal control parameters as found by solving the ARE (2.34) are,

P ∗ =

1.4142 1.0000

1.0000 1.4142

 ,K∗ =
[
1.0000 1.4142

]
,

Mu =

1 0

4 1

 ,My =

4 4

0 4

 .
The initial controller parameters are set to zero. We choose 20 learning intervals of period T = 0.05s.

Step size εk = (k0.2 + 5)−1, k = 0, 1, 2, . . . and the set Bq =
{
P̄ ∈ P4

+ : |P̄ | ≤ 800(q + 1)
}
, q =

0, 1, 2, . . .. The exploration condition is met by injecting sinusoidal signals of different frequencies in

the control. We compare here both the state feedback VI algorithm proposed in [14] and the proposed

output feedback VI algorithm (Algorithm 2). The state feedback results are shown in Figs. 2.5 and 2.6,

and the proposed output feedback results are shown in Figs. 2.7 and 2.8. It can be seen that similar to
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the state feedback results, the output feedback parameters also converge to their nominal values with

performance quite close to that of the state feedback case along with the advantage that the output

feedback algorithm does not require the measurement of the system state. However, it should be noted

that the proposed output feedback learning equation contains more unknown terms as compared to the

state feedback learning equation. As a result, the output feedback algorithm can take longer to converge.

Furthermore, the exploration noise can be safely removed after the initial data collection phase.

2.5. Summary

In this chapter, we have presented model-free output feedback RL algorithms to solve the LQR optimal

stabilization problem. For the discrete-time case, we have developed an output feedback Q-function

description for LQR using a parametrization of the state given by the past input and output data. A Q-

learning scheme based on value iteration has been developed, which learns the optimal output feedback

Q-function and optimal output feedback control parameters. For the continuous-time problem, we have

derived an output feedback integral reinforcement learning equation based on the parametrization of the

state given in terms of the filtered input and output data. Then, an integral reinforcement learning scheme

based on value iteration has been presented which learns the optimal value function matrix and the

optimal output feedback control parameters. It has been shown that the exploration noise does not result

in bias in the parameter estimates. As a result, the need of employing a discounting factor in the cost

function is eliminated and closed-loop stability is preserved. Hence, optimal stabilization of the system

is achieved without requiring the knowledge of the system dynamics or the internal state of the system.

Simulation results have been presented that confirm the effectiveness of the proposed schemes.
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3. MODEL-FREE ZERO-SUM GAME AND DISTURBANCE REJECTION CONTROL

3.1. Introduction

H-infinity control offers both robust performance and stabilization guarantees [18], which make it a

good candidate in problems involving external and cross-coupling disturbances. It finds many important

applications such as rotorcrafts [53], VSTOL aircrafts [26], guided projectiles [57], satellites [20] and

power systems [5]. It has been shown that the H-infinity problem is strongly related with the zero-sum

game problem in game theory [7]. The solution of the linear H-infinity control problem is obtained by

solving a game algebraic Riccati equation (GARE). Computational methods to solve this equation have

been developed but they require perfect knowledge of the system dynamics. Model-free reinforcement

learning has been used to solve the zero-sum game and the associated H-infinity control problem in [4],

[30], [41], [63]. However, these methods solve the full information H-infinity problem, which require

access to both the internal state and disturbance channel. In this work, we will solve the partial information

H-infinity control problem by using output feedback.

3.2. Q-learning Based Output Feedback Zero-Sum Game

Consider a discrete-time linear time-invariant system in the state-space form,

xk+1 = Axk +Buk + Ewk,

yk = Cxk,
(3.1)

where xk ∈ Rn is the system state vector, uk ∈ Rm1 is the control input vector, wk ∈ Rm2 is the

disturbance input vector, and yk ∈ Rp is the output vector. The zero-sum problem game can be formulated

as a minimax problem with the optimal value function of the form [7],

V ∗(xk) = min
ui

max
wi

∞∑
i=k

r(xi, ui, wi), (3.2)

where the control input u acts as the minimizing player and the disturbance input w acts as the maximizing

player. For our H-infinity problem, the utility function rk takes the quadratic form,

rk = yT
kQyyk + uT

kRuk − γ2wT
kwk, (3.3)

where Qy ≥ 0 and R > 0 are the user-defined weighting matrices and γ is an upper bound on the desired

L2 gain from the disturbance to the performance output [7]. The aim of the H-infinity control is to find
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the optimal control policy u∗k such that the closed-loop system is asymptotically stable with wk = 0 and

it satisfies the H∞ constraint with the following disturbance attenuation condition [30],

∞∑
i=0

(yT
iQyyi + uT

iRui) ≤ γ2
∞∑
i=0

wT
iwi, (3.4)

for some user-defined L2 disturbance attenuation level γ ≥ γ∗ > 0, for all wk ∈ L2[0,∞), under the

usual controllability and observability assumptions on (A,B) and (A,C), respectively.

When the system dynamics is completely known and full-state feedback xk is available, there exist a

unique optimal stabilizing controller u∗k = L∗xk and a unique worst-case disturbance w∗k = K∗xk, where

L∗=
(
R+BTPB −BTPE(ETPE − γ2I)

−1
ETPB

)−1(
BTPE(ETPE − γ2I)

−1
ETPA−BTPA

)
,

(3.5)

K∗=
(
ETPE − γ2I − ETPB(R+BTPB)−1BTPE

)−1(
ETB(R+BTPB)−1BTPA− ETPA

)
,

(3.6)

under the conditions of controllability of (A,B) and observability of
(
A,
√
Q
)
, where

√
Q

T√
Q = Q,

Q = CTQyC [37], [38]. Here, P = P T > 0 is the unique positive definite solution to the game algebraic

Riccati equation (GARE),

P = ATPA+Q−
[
ATPB ATPE

]R+BTPB BTPE

ETPB ETPE − γ2I

−1 BTPA

ETPA

. (3.7)

Moreover, the following inequality must be satisfied [7],

I − γ−2ETPE > 0. (3.8)

We seek to solve the given problem by using only the input-output data. No knowledge of system

dynamics (A,B,C,E) and no measurement of state xk are available. For the H-infinity problem, we

have a quadratic cost and so the associated Q-function can be expressed as

Q(xk, uk, wk) = xT
kQxk + uT

kRuk − γ2wT
kwk + (Axk +Buk + Ewk)

T P (Axk +Buk + Ewk) ,(3.9)

Now, we would like to express the Q-function in (3.9) in terms of inputs and outputs samples instead of

state xk. We refer to the resulting expression as output feedback Q-function. Based on Theorem 2.1, we
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have

xk = Myȳk−1,k−N +Muūk−1,k−N +Mww̄k−1,k−N , (3.10)

It can be easily verified that substitution of (3.10) in (3.9) results in,

Q =



ūk−1,k−N

w̄k−1,k−N

ȳk−1,k−N

uk

wk



T

Hūū Hūw̄ Hūȳ Hūu Hūw

Hw̄ū Hw̄w̄ Hw̄ȳ Hw̄u Hw̄w

Hȳū Hȳw̄ Hȳȳ Hȳu Hȳw

Huū Huw̄ Huȳ Huu Huw

Hwū Hww̄ Hwȳ Hwu Hww





ūk−1,k−N

w̄k−1,k−N

ȳk−1,k−N

uk

wk


∆
= zT

kHzk,

where zk =
[
ūT
k−1,k−N w̄T

k−1,k−N ȳT
k−1,k−N uT

k wT
k

]T

, H = HT ∈ Rl×l, and l = m1N + m2N +

pN +m1 +m2. The partitioned matrices are defined as

Hūū = M T
u(Q+ATPA)Mu ∈ Rm1N×m1N ,

Hūw̄ = M T
u(Q+ATPA)Mw ∈ Rm1N×m2N ,

Hūȳ = M T
u(Q+ATPA)My ∈ Rm1N×pN ,

Hūu = M T
uA

TPB ∈ Rm1N×m1 ,

Hūw = M T
uA

TPE ∈ Rm1N×m2 ,

Hw̄ū = M T
w(Q+ATPA)Mu ∈ Rm2N×m1N ,

Hw̄w̄ = M T
w(Q+ATPA)Mw ∈ Rm2N×m2N ,

Hw̄ȳ = M T
w(Q+ATPA)My ∈ Rm2N×pN ,

Hw̄u = M T
wA

TPB ∈ Rm2N×m1 ,

Hw̄w = M T
wA

TPE ∈ Rm2N×m2 ,

Hȳū = M T
y(Q+ATPA)Mu ∈ RpN×m1N , (3.11)

Hȳw̄ = M T
y(Q+ATPA)Mw ∈ RpN×m2N ,

Hȳȳ = M T
y(Q+ATPA)My ∈ RpN×pN ,

Hȳu = M T
yA

TPB ∈ RpN×m1 ,

Hȳw = M T
yA

TPE ∈ RpN×m2 ,
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Huū = BTPAMu ∈ Rm1×m1N ,

Huw̄ = BTPAMw ∈ Rm1×m2N ,

Huȳ = BTPAMy ∈ Rm1×pN ,

Hwū = ETPAMu ∈ Rm2×m1N ,

Hww̄ = ETPAMw ∈ Rm2×m2N ,

Hwȳ = ETPAMy ∈ Rm2×pN ,

Huu = BTPB +R ∈ Rm1×m1 ,

Huw = BTPE ∈ Rm1×m2 ,

Hwu = ETPB ∈ Rm2×m1 ,

Hww = ETPE − γ2I ∈ Rm2×m2 .

The output feedback optimal control u∗k and the worst-case disturbance w∗k are obtained by solving

simultaneously ∂
∂uk

Q∗ = 0 and ∂
∂wk

Q∗ = 0 for uk and wk. This results in,

u∗k = (H∗uu−H∗uwH∗ww
−1(H∗wu))

−1
(
H∗uwH

∗
ww
−1(Hwūūk−1,k−N+H∗ww̄w̄k−1,k−N+H∗wȳȳk−1,k−N )

−(H∗uūūk−1,k−N+H∗uw̄w̄k−1,k−N+H∗uȳȳk−1,k−N )
)
, (3.12)

w∗k=(H∗ww−H∗wuH∗uu
−1H∗uw)

−1
(
H∗wuH

∗
uu
−1(H∗uūūk−1,k−N+H∗uw̄w̄k−1,k−N+H∗uȳȳk−1,k−N )

−(H∗wūūk−1,k−N+H∗ww̄w̄k−1,k−N+H∗wȳȳk−1,k−N )
)
. (3.13)

Lemma 3.1. The output feedback policies given by (3.12) and (3.13) converge to the state feedback

policies (3.5) and (3.6), respectively, that solve the zero-sum game problem (3.1)–(3.3).

Proof: We know that the state vector can be represented by the input-output data sequence as in (3.10).

It can be easily verified that substituting (3.10) and (3.11) in (3.12) and (3.13) results in the state feedback

policies (3.5) and (3.6), which solve the zero-sum game problem. So, the output feedback policies

(3.12) and (3.13) are the equivalent policies that also solve the zero-sum game problem (3.1)–(3.3).

This completes the proof. �

Using the state parametrization (3.10), we have the following Q-learning equation,

H̄Tz̄k = yT
kQyyk + uT

kRuk − γ2wT
kwk + H̄Tz̄k+1. (3.14)
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where H̄ is the vector containing the column wise components of H and z̄ is the quadratic basis, as

defined in Section 2.2. We can now utilize the Q-learning technique to learn our output feedback Q-

function matrix.

Algorithm 1: Output Feedback Q-learning Value Iteration Algorithm for Zero-Sum Game

Initialization. Start with H̄0 = 0, u0
k = nk and w0

k = vk with nk and vk being the exploration signals.

Then, for j = 1, 2, · · · , perform until convergence,

∥∥H̄j − H̄j−1
∥∥ < ε :

Value Update. Determine the least-squares solution of

(
H̄j
)T
z̄k = yT

kQyyk + uT
kRuk − γ2wT

kwk +
(
H̄j−1

)T
z̄k+1.

Policy Improvement. Determine an improved policy for next iteration,

uj+1
k = (Hj

uu−Hj
uw(Hj

ww)
−1
Hj
wu)
−1(

Hj
uw(Hj

ww)
−1

(Hj
wūūk−1,k−N+Hj

ww̄w̄k−1,k−N+Hj
wȳȳk−1,k−N)

−(Hj
uūūk−1,k−N+Hj

uw̄w̄k−1,k−N+Hj
uȳȳk−1,k−N )

)
,

wj+1
k = (Hj

ww−Hj
wu(Hj

uu)
−1
Hj
uw)
−1(

Hj
wu(Hj

uu)
−1

(Hj
uūūk−1,k−N+Hj

uw̄w̄k−1,k−N+Hj
uȳȳk−1,k−N)

−(Hj
wūūk−1,k−N+Hj

ww̄w̄k−1,k−N+Hj
wȳȳk−1,k−N )

)
.

The above Q-learning iterative algorithm consists of two steps. In the policy evaluation step, we use the

key equation (3.14) recursively to solve for the unknown vector H̄ in the least-squares sense by collecting

L ≥ l(l + 1)/2 data samples of uk, wk, yk, ūk−1,k−N , w̄k−1,k−N , ȳk−1,k−N , ūk,k−N+1, w̄k,k−N+1 and

ȳk,k−N+1 to form the data matrices Φ ∈ Rl(l+1)/2×L and Υj−1 ∈ RL×1 defined by

Φ = [z̄1
k, z̄

2
k, · · · , z̄Lk ],

Υj−1 = [r1
k + (H̄j−1)Tz̄1

k+1, r
2
k + (H̄j−1)Tz̄2

k+1, · · · , rLk + (H̄j−1)Tz̄Lk+1]T.

Then, the least-squares solution of (3.14) is given by

H̄j = (ΦΦT)−1ΦΥj−1, (3.15)
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Notice in (3.12) and (3.13) that uk and wk are linearly dependent on ūk−1,k−N , w̄k−1,k−N and ȳk−1,k−N ,

which means that ΦΦT will not be invertible. To overcome this issue, one adds excitation noise in uk and

wk to guarantee a unique solution to (3.15). In other words, the following condition needs to be satisfied,

rank(Φ) = l(l + 1)/2. (3.16)

This excitation condition can be met in several ways such as adding sinusoidal noise of various frequen-

cies, exponentially decaying noise and Gaussian noise.

Theorem 3.1. Assume that the linear quadratic zero-sum game is solvable. Then, the output feedback

Q-learning algorithm generates a sequence of policies {ujk, j = 1, 2, 3, ...} and {wjk, j = 1, 2, 3, ...}

that converge to the optimal output feedback policies given in (3.12) and (3.13) as j → ∞ if the rank

condition (3.16) holds.

Proof: The proof follows from [4], where it is shown that under sufficient excitation, the state feedback

Q-learning iterative algorithm generates a sequence of policies {ujk, j = 1, 2, 3, ...} and {wjk, j =

1, 2, 3, ...} that converge to the optimal state feedback policies (3.25) and (3.26). By the state parametriza-

tion (3.10), we see that the state feedback and output feedback Q-functions are equivalent, and by Lemma

3.1, the output feedback policies (3.12) and (3.13) are equivalent to (3.5) and (3.6), respectively. Therefore,

following the result in [4], we can conclude that, under sufficient excitation such that the rank condition

(3.16) holds, the output feedback Q-learning algorithm generates a sequence of policies that converge to

the optimal output feedback policies as j →∞. This completes the proof. �

Exploration Bias Immunity of Algorithm 1:

We next show that the proposed Q-learning scheme does not lead to bias in the Q-function estimates.

Theorem 3.2. The excitation noise required to satisfy the excitation condition does not result in any bias

in the Q-function estimates.

Proof: Based on the state parametrization (3.10), we know that the output feedback Q-function in

(3.11) is equivalent to the original state feedback Q-function (3.9). Under the excitation noise, we can

write the Q-function as

Q(xk, ûk, ŵk) = rk(xk, ûk, ŵk) + V (xk+1),
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where ûk = uk + nk and ŵk = wk + vk with nk and vk being the excitation noise signals.

Let Ĥ be the estimate of H obtained using ûk and ŵ. It then follows from (3.9) that
xk

ûk

ŵk


T

Ĥ


xk

ûk

ŵk

 = rk(xk, ûk, ŵk) + (Axk +Bûk + Eŵk)
TP (Axk +Bûk + Eŵk) .

Upon further expansion, we have,
xk

uk

wk


T

Ĥ


xk

uk

wk

+ xT
kA

TPBnk + nT
kB

TPAxk

+nT
k(R+BTPB)uk + nT

kB
TPEwk + vT

kE
TPAxk

+uT
k(R+BTPB)nk + nT

k(R+BTPB)nk

+xT
kA

TPEvk + wT
k(E

TPE − γ2I)vk + nT
kB

TPEvk

+vT
k(E

TPE − γ2I)vk + uT
kB

TPEvk + vT
kE

TPBuk

+wT
kE

TPBnk + vT
kE

TPBnk + vT
k(E

TPE − γ2I)wk

= xT
kQxk + uT

kRuk − γ2wT
kwk + nT

kRnk + nT
kRuk

+uT
kRnk − γ2wT

kvk − γ2vT
kwk − γ2vT

kvk

+(Axk+Buk+Ewk)
TP (Axk+Buk+Ewk)

+(Axk+Buk+Ewk)
TPBnk + nT

kB
TPBnk

+(Bnk)
TP (Axk +Buk + Ewk) + nT

kB
TPEvk

+vT
kE

TPBnk + (Axk+Buk+Ewk)
TPEvk

+(Evk)
TP (Axk +Buk + Ewk) + vT

kE
TPEvk.

It can be easily verified that all the terms involving nk and vk get canceled on both sides of the equation,
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and we are left with
xk

uk

wk


T

Ĥ


xk

uk

wk

 = rk(xk, uk, wk) + (Axk +Buk + Ewk)
TP (Axk +Buk + Ewk) .

Comparing the above equation with (3.9), we have Ĥ = H , that is

Q(xk, uk, wk) = rk(xk, uk, wk) + V (xk+1).

In view of (3.11), we have

zT
kHzk = yT

kQyyk + uT
kRuk − γ2wk

Twk + zT
k+1Hzk+1.

That is, we have obtained the Bellman equation in the absence of excitation noise as given in (3.14).

This completes the proof. �

3.3. Integral Reinforcement Learning Based Output Feedback Zero-Sum Game

Consider a continuous-time linear time-invariant system given by the following state space represen-

tation,

ẋ(t) = Ax(t) +Bu(t) + Ew(t),

y(t) = Cx(t),
(3.17)

where x ∈ Rn refers to the state vector, u ∈ Rm1 corresponds to the input vector of Player 1, w ∈ Rm2

corresponds to input vector of the opposing Player 2, and y ∈ Rp is the output vector. Let us define the

infinite horizon cost function as,

J(x(0), u, w) =

∫ ∞
0

r(x(τ), u(τ), w(τ))dτ. (3.18)

We consider a linear quadratic differential game in which the utility function r(x, u, w) takes the following

quadratic form,

r = yT(t)Qyy(t) + uT(t)u(t)− γ2wT(t)w(t), (3.19)
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where Qy ≥ 0 is the user-defined weighting matrix and γ ≥ γ∗ > 0 is an upper bound on the desired

L2 gain from the player w to the performance output [7], that is,∫ ∞
0

(yT(τ)Qyy(τ) + uT(τ)u(τ))dτ ≤ γ2

∫ ∞
0

wT(τ)w(τ)dτ, (3.20)

∀w ∈ L2[0,∞). Since we are interested in feedback policies of the form u(x) = Kx and w(x) = Hx,

we introduce a value function that gives the cost of executing these policies, as given by,

V (x) =

∫ ∞
t

yT(τ)Qyy(τ) + uT(τ)u(τ)− γ2wT(τ)w(τ)dτ. (3.21)

Furthermore, if the feedback polices are such that the resulting closed-system is asymptotically stable,

then V (x) is quadratic in the state [7], as follows,

V (x) = xTPx, (3.22)

for P > 0. The optimal value function associated with the zero-sum game is of the form,

V ∗(x) = min
u

max
w

∫ ∞
t

yT(τ)Qyy(τ) + uT(τ)u(τ)− γ2wT(τ)w(τ)dτ, (3.23)

where the input u acts as the minimizing player and the input w acts as the maximizing player. The aim

of the zero-sum game problem is to find the saddle point solution (u∗, w∗) that satisfies the following

pair of Nash equilibrium inequalities,

J(x(0), u∗, w) ≤ J(x(0), u∗, w∗) ≤ J(x(0), u, w∗), (3.24)

for any feedback policies u(x) and w(x). For the special case of the H-infinity control problem, the

maximizing player w can be regarded as an L2[0,∞) disturbance, and achieving the Nash equilibrium

amounts to the stabilization of the system at the equilibrium point x = 0.

There exist the unique state feedback policies u∗ = K∗x and w∗ = H∗x that achieve the objective

(3.2) under the conditions of controllability of (A,B) and observability of
(
A,
√
Q
)
, with

√
Q

T√
Q = Q

and Q = CTQyC [37], [38], where

K∗ = −BTP ∗, (3.25)

H∗ = γ−2ETP ∗. (3.26)
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Here, P ∗ = (P ∗)T > 0 is the unique positive definite solution to the game algebraic Riccati equation

(GARE),

ATP + PA+Q− P (BBT − γ−2EET)P = 0. (3.27)

The above solution is, however, model-based and requires full state feedback. In this section we will

present a design using dynamic output feedback towards solving the model-free linear differential zero-

sum game and the asssociated H-infinity control problem. To this end, we first parameterize the state

based on Theorem 2.5 as follows,

x̄ = Muζu +Mwζw +Myζy (3.28)

Next, we use the state parametrization to describe the cost function in (3.22). It can be easily verified

that substitution of (3.28) in (3.22) results in,

V =


ζu

ζw

ζy


T[
Mu Mw My

]T

P
[
Mu Mw My

]

ζu

ζw

ζy


∆
= zTP̄ z, (3.29)

where,

z =
[
ζT
u ζT

w ζT
y

]T

∈ R(m1n+m2n+pn),

M =
[
Mu Mw My

]
∈ Rn×(m1n+m2n+pn),

P̄ = P̄ T ∈ R(m1n+m2n+pn)×(m1n+m2n+pn)

=


M T
uPMu M T

uPMw M T
uPMy

M T
wPMu M T

wPMw M T
wPMy

M T
yPMu M T

yPMw M T
yPMy

 .
By (3.29) we have obtained a new description of the cost function in terms of inputs and outputs of

the system. The corresponding output feedback policies are given by,

u = K
[
Mu Mw My

][
ζT
u ζT

w ζT
y

]T
∆
= K̄z, (3.30)

w = H
[
Mu Mw My

][
ζT
u ζT

w ζT
y

]T
∆
= H̄z, (3.31)
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where K̄ = K
[
Mu Mw My

]
∈ Rm1×(m1n+m2n+pn) and H̄ = H

[
Mu Mw My

]
∈ Rm2×(m1n+m2n+pn).

Therefore, the optimal cost matrix is given by P̄ ∗ = (P̄ ∗)T and the corresponding optimal output feedback

policies are,

u∗ = K̄∗z, (3.32)

w∗ = H̄∗z. (3.33)

Lemma 3.2. The output feedback policies given by (3.32) and (3.33) converge to the optimal policies

(3.25) and (3.26), respectively, which solve the zero-sum game problem.

Proof: We can write the output feedback strategies as,

ū∗ = K̄∗z = K∗Mz,

w̄∗ = L̄∗z = L∗Mz.

Applying the result in Theorem 2.5, we have,

x̄ = Mz,

which converges exponentially to x, and thus,

ū∗ = K∗x,

w̄∗ = L∗x,

which are the optimal strategies of the differential zero-sum game. �

The discussion so far focused on finding the nominal solution of the continuous-time H-infinity problem

when the system model is known. In the following, we will derive an output feedback learning equation

that will allow us to learn the optimal output feedback controller based on the input and output data

instead of using full state feedback. To this end, consider the following Lyapunov function candidate,

V = xTP ix. (3.34)

Evaluating the derivative of (3.34) along the system trajectories and taking finite window integrals on

56



both sides, results in,

xT(t)P ix(t)− xT(t− T )P ix(t− T )

=

∫ t

t−T
xT(τ)(ATP i + P iA)x(τ)dτ + 2

∫ t

t−T
uT(τ)BTP ix(τ)dτ+2

∫ t

t−T
wT(τ)ETP ix(τ)dτ. (3.35)

We add
∫ t
t−T y

T(τ)Qyy(τ)dτ on both sides of (3.35) so that Q can lumped up together with the unknown

H i. Then, we substitute y(t) = Cx(t) and H i = ATP i + P iA on the right-hand side of the resulting

equation, which gives us,

xT(t)P ix(t)−xT(t−T )P ix(t−T )+

∫ t

t−T
yT(τ)Qyy(τ)dτ

=

∫ t

t−T
xT(τ)(ATP i + P iA+ CTQC)x(τ)dτ + 2

∫ t

t−T
uT(τ)BTP ix(τ)dτ + 2

∫ t

t−T
wT(τ)ETP ix(τ)dτ.

Next, we use the state parametrization (3.28) and substitute (3.29) in the above equation, which results

in,

zT(t)P̄ iz(t)−zT(t−T )P̄ iz(t−T )+

∫ t

t−T
yT(τ)Qyy(τ)dτ

=

∫ t

t−T
zT(τ)M T(ATP i + P iA+ CTQyC)Mz(τ)dτ

+2

∫ t

t−T
uT(τ)BTP iMz(τ)dτ+2

∫ t

t−T
wT(τ)ETP iMz(τ)dτ

or more compactly,

zT(t)P̄ iz(t)−zT(t−T )P̄ iz(t−T )+

∫ t

t−T
yT(τ)Qyy(τ)dτ

=

∫ t

t−T
zT(τ)H̄ iz(τ)dτ + 2

∫ t

t−T
uT(τ)BTP iMz(τ)dτ + 2

∫ t

t−T
wT(τ)ETP iMz(τ)dτ, (3.36)

where,

H̄ i ∆
= M T(ATP i + P iA+ CTQyC)M.

To solve this linear system of equations, we define the following data matrices,

δzz =
[
z ⊗ z|t1t0 , z ⊗ z|

t2
t1 , · · · , z ⊗ z|

tl
tl−1

]T

,

Izu =
[∫ t1
t0
z ⊗ udτ,

∫ t2
t1
z ⊗ udτ, · · · ,

∫ tl
tl−1
z ⊗ udτ

]T

,

Izw =
[∫ t1
t0
z ⊗ wdτ,

∫ t2
t1
z ⊗ wdτ, · · · ,

∫ tl
tl−1
z ⊗ wdτ

]T

,
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Izz =
[∫ t1
t0
z̄Tdτ,

∫ t2
t1
z̄Tdτ, · · · ,

∫ tl
tl−1̄
zTdτ

]T

,

Iyy =
[∫ t1
t0
y ⊗ ydτ,

∫ t2
t1
y ⊗ ydτ, · · · ,

∫ tl
tl−1
y ⊗ ydτ

]T

.

We can write (3.36) more compactly as,

Ψ


vecs(H̄ i)

vec(BTP iM)

vec(ETP iM)

 = Γi,

where the data matrices are given by,

Ψ = [Izz, 2Izu, 2Izw],∈ Rl×(N(N+1)

2
+(m1+m2)N), N = m1n+m2n+ pn,

Γi = δzzvec(P̄ i) + Iyyvec(Qy) ∈ Rl.

The least-squares solution is given by,
vecs(H̄ i)

vec(BTP iM)

vec(ETP iM)

 = ((Ψ)TΨ)−1(Ψ)TΓi. (3.37)

Before introducing the output feedback value iteration algorithm, we recall the following definitions. Let

{Bq}∞q=0 be a collection of sets of norm limited n × n positive semidefinite matrices with nonempty

interiors that satisfy Bq ⊆ Bq+1, q ∈ Z+ and limq→∞Bq = P+, where P+ is a set of positive

semidefinite matrices. We now propose the following output feedback based value iteration algorithm

for the differential zero-sum game.

Algorithm 2: Output Feedback IRL Value Iteration Algorithm for Zero-Sum Game

Initialize. Choose u0 = ν1 and w0 = ν2. Initialize P̄0 ≥ 0, and set i← 0, q ← 0.

Acquire Data. Apply u0 and w0 during t ∈ [t0, tl]. Collect the filtered input-output data for each

interval. Iterate for i = 0, 1, · · · ,
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loop:

Solve the following learning equation for H̄ i, BTP iM and ETP iM ,

zT(t)P̄ iz(t)−zT(t−T )P̄ iz(t−T )+

∫ t

t−T
yT(τ)Qyy(τ)dτ

=

∫ t

t−T
zT(τ)H̄ iz(τ)dτ + 2

∫ t

t−T
uT(τ)BTP iMz(τ)dτ + 2

∫ t

t−T
wT(τ)ETP iMz(τ)dτ,

Perform the following recursion,

˜̄P i+1 ← P̄ i + εi(H̄
i −M TP iBBTP iM + γ−2M TP iEETP iM).

if ˜̄P i+1 /∈ Bq then

P̄ i+1 ← P̄0 and q ← q + 1.

else if
∥∥∥ ˜̄P

i+1
− P̄ i

∥∥∥ /εi < ε then

return P̄ i as the estimate of P̄ ∗

else

P̄ i+1 ← ˜̄P i+1

end if

i← i+ 1

end loop.

It can be seen that Algorithm 2 does not require a stabilizing control policy for its initialization. The

updates in the difference Riccati equation are performed with varying step size εi that satisfies εi > 0,∑∞
i=0 εi = ∞ and limi→∞ εi = 0. We need to apply an exploration input in the data collection phase

and collect l ≥ N(N + 1)/2 + (m1 +m1)N data samples to solve the least-squares problem (3.37). That

is, the following rank condition needs to be satisfied,

rank (Ψ) =
N(N + 1)

2
+ (m1 +m2)N. (3.38)

Theorem 3.3. Let (A,B) be controllable and
(
A,
√
QyC

)
be observable. Then, the proposed output

feedback algorithm Algorithm 2 generates a sequence P̄ i that converges to the optimal output feedback

solution P̄ ∗ as i→∞, provided that the rank condition (3.38) holds.
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Proof: Consider the following recursion in Algorithm 2,

˜̄P i+1 = P̄ i + εi(H̄
i −M TP iBBTP iM + γ−2M TP iEETP iM).

Using the definitions of P̄ and H̄ , we have,

M TP̃ i+1M = M TP iM + εi(M
TH iM +M TCTQyCM

−M TP iBBTP iM+γ−2M TP iEETP iM).

Since (A,C) is observable, the state x can be uniquely determined from ωi using the parametrization

(3.28). Then, M must have full row rank. This reduces the above equation to

P̃ i+1 =P i + εi(H
i +Q− P iBBTP i + γ−2P iEETP i),

where Q = CTQyC. The recursions on above equation converge to the GARE solution P ∗ under the

controllability and observability conditions if H i, BTP i and ETP i are the unique solution to the state

feedback learning equation as shown in [13], which in turn requires the unique solution H̄ i, BTP iM and

ETP iM of the least-squares problem (3.37) associated with (3.36). The existence of the unique solution

of (3.37) is guaranteed under the rank condition (3.38). This completes the proof. �

Exploration Bias Immunity of Algorithm 2:

We next show that the proposed IRL scheme does not lead to bias in the parameter estimates.

Theorem 3.4. The excitation noise required to satisfy the excitation condition does not result in any bias

in the parameter estimates.

Proof: Consider the VI learning equation (3.36) with the excited inputs û and ŵ. Let ˆ̄P i, ˆ̄H i, B̂TP̂ iM̂

and ÊTP̂ iM̂ be the parameter estimates obtained as a result of these excited inputs. We have,

zT(t) ˆ̄P iz(t)−zT(t−T ) ˆ̄P iz(t−T )+

∫ t

t−T
yT(τ)Qyy(τ)dτ

=

∫ t

t−T
zT(τ) ˆ̄H iz(τ)dτ + 2

∫ t

t−T
ûT(τ)B̂TP̂ iM̂z(τ)dτ + 2

∫ t

t−T
ŵT(τ)ÊTP̂ iM̂z(τ)dτ,
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Taking time derivative results in

2zT(t) ˆ̄P iż(t)− 2zT(t−T ) ˆ̄P iż(t−T ) + yT(t)Qyy(t)− yT(t−T )Qyy(t−T )

= zT(t) ˆ̄Liz(t)− zT(t−T ) ˆ̄Lz(t−T ) + 2û(t)B̂TP̂ iM̂z(t) + ŵ(t)ÊTP̂ iM̂z(t)

+2û(t−T )B̂TP̂ iM̂z(t−T ) + ŵ(t−T )ÊTP̂ iM̂z(t−T )

Further expansion yields,

2zT(t) ˆ̄P i(Āz(t) + B̄1u(t) + B̄2w(t) + B̄3y(t)) + 2zT(t)M̂ TP̂ iM̂ B̄1ν1(t) + 2zT(t)M̂ TP̂ iM̂ B̄2ν2(t)

−2zT(t− T ) ˆ̄P i(Āz(t− T ) + B̄1u(t− T ) + B̄2w(t− T ) + B̄3y(t− T ))

−2zT(t−T )M̂ TP̂ iM̂ B̄1ν1(t−T )−2zT(t−T )M̂ TP̂ iM̂ B̄2ν2(t−T ) + yT(t)Qyy(t)− yT(t−T )Qyy(t−T )

= zT(t) ˆ̄H iz(t)− zT(t−T ) ˆ̄Hz(t−T ) + 2uT(t)B̂TP̂ iM̂z(t) + w(t)ÊTP̂ iM̂z(t)

−2uT(t−T )B̂TP̂ iM̂z(t−T )− w(t−T )ÊTP̂ iM̂z(t−T ) + 2νT
1(t)B̂TP̂ iM̂z(t) + 2ν2(t)TÊTP̂ iM̂z(t)

−2νT
1(t−T )B̂TP̂ iM̂z(t−T )− 2νT

2(t−T )ÊTP̂ iM̂z(t−T )

where we have combined the dynamics of z based on the input-output dynamics of the observer in which

Ā and B̄i represent the combined system dynamics and input matrices, respectively, corresponding to

the dynamics of the filtering variables ζ ′s. Using the fact that M B̄1 = B and M B̄2 = E, we have

2zTM̂ TP̂ iM̂ B̄1ν1 = 2νT
1B̂

TP̂ iM̂z and 2zTM̂ TP̂ iM̂ B̄2ν2 = 2νT
2Ê

TP̂ iM̂z, thereby canceling the delayed

and non-delayed νi terms. Thus, we have,

2zT(t) ˆ̄P i(Āz(t) + B̄1u(t) + B̄2w(t) + B̄3y(t))

−2zT(t− T ) ˆ̄P i(Āz(t− T ) + B̄1u(t− T ) + B̄2w(t− T ) + B̄3y(t− T ))

+yT(t)Qyy(t)− yT(t−T )Qyy(t−T )

= zT(t) ˆ̄H iz(t)− zT(t−T ) ˆ̄Hz(t−T ) + 2uT(t)B̂TP̂ iM̂z(t) + w(t)ÊTP̂ iM̂z(t)

−2uT(t−T )B̂TP̂ iM̂z(t−T )− w(t−T )ÊTP̂ iM̂z(t−T )

Reversing the previous operations and performing integration result in

zT(t) ˆ̄P iz(t)−zT(t−T ) ˆ̄P iz(t−T )+

∫ t

t−T
yT(τ)Qyy(τ)dτ
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=

∫ t

t−T
zT(τ) ˆ̄H iz(τ)dτ + 2

∫ t

t−T
uT(τ)B̂TP̂ iM̂z(τ)dτ + 2

∫ t

t−T
wT(τ)ÊTP̂ iM̂z(τ)dτ.

Comparing the above equation with (3.36), we have ˆ̄P i = P̄ i, ˆ̄H i = H̄ i, B̂TP̂ iM̂ = BTP iM and

ÊTP̂ iM̂ = ETP iM . This establishes the bias-free property of Algorithm 2. �

3.4. Results

3.4.1. Example 1: H-infinity Control of F-16 Autopilot System:

In this section, we test the proposed design by numerical simulations of a model-free H-infinity autopilot

controller for the F-16 aircraft.

Consider the discrete-time model of the F-16 aircraft autopilot from [4], which is in the form of (3.1)

with

A=


0.906488 0.0816012 −0.0005

0.0741349 0.90121 −0.0007083

0 0 0.132655

, B=


−0.00150808

−0.0096

0.867345

, C=
[
1 0 0

]
, E=


0.00951892

0.00038373

0

.
The three states are given by x = [x1, x2, x3], where x1 is the angle of attack, x2 is the rate of pitch, and

x3 is the elevator angle of deflection. The initial state of the system is x = [10, 5,−2]. The algorithm is

initialized with u0
k = nk and w0

k = vk. The PE condition is ensured by adding sinusoidal noise nk and

vk of different frequencies and amplitudes in the inputs uk and wk, respectively. The system order is 3,

so N = 3 is selected. We first compare the state feedback and output feedback model-free Q-learning

schemes. The state feedback case has a smaller H matrix, but it requires the complete state feedback.

On the other hand, the output feedback case has a larger H matrix, whose nominal values are

H∗uū =
[
0.0009 −0.0006 −0.0002

]
,

H∗uw̄ =
[
−0.0008 0.0087 −0.0011

]
,

H∗uȳ =
[
−0.9987 0.9443 −0.1077

]
,

H∗wū =
[
−0.0008 0.0005 0.0002

]
,

H∗ww̄ =
[
0.0009 −0.0084 0.0011

]
,

H∗wȳ =
[
0.9813 −0.9132 0.1039

]
,

H∗uu = 1.0009, H∗uw = −0.0008, H∗ww = −0.9990.
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Consequently, the total time for output feedback parameters convergence is larger. Fig. 3.1 and Fig. 3.2

show the closed-loop state response and parameters convergence, respectively, under the state feedback

Q-learning. The corresponding results for the proposed output feedback Q-learning scheme are shown

in Fig. 3.3 and Fig. 3.4. In the state feedback Q-learning, we used 20 data samples in each iteration,

while 70 data samples were used for the output feedback case, in order to satisfy the requirement of

minimum number of data samples needed to satisfy the rank condition (3.16). It can be seen that the

proposed output feedback Q-learning algorithm is able to maintain closed-loop stability and the controller

parameters also converge to the optimal parameters as given below,

Ĥuū =
[
0.0009 −0.0006 −0.0002

]
,

Ĥuw̄ =
[
−0.0008 0.0087 −0.0011

]
,

Ĥuȳ =
[
−0.9980 0.9436 −0.1076

]
,

Ĥwū =
[
−0.0008 0.0005 0.0002

]
,

Ĥww̄ =
[
0.0009 −0.0084 0.0011

]
,

Ĥwȳ =
[
0.9811 −0.9130 0.1039

]
,

Ĥuu = 1.0009, Ĥuw = −0.0008, Ĥww = −0.9990.

The convergence criterion was chosen as ε = 0.1. Notice that no discounting factor was employed and

the results correspond to those obtained by solving the game algebraic Riccati equation. Furthermore, the

excitation noise did not introduce any bias in the estimates, which is an advantage of the proposed scheme.

Moreover, the excitation noise is removed after the convergence of parameters estimates at k = 3000 for

the state feedback case and k = 14000 for the output feedback case as shown in Fig. 3.1 and Fig. 3.3,

respectively.

3.4.2. Example 2: Double Integrator with Disturbance:

We now test the IRL algorithm on a continuous-time system. For this, we consider the double integrator

system with

A =

0 1

0 0

 , B =

0

1

 , E =

1

1

 , C =
[
1 0

]
.

The double integrator model represents a large class of practical systems including satellite attitude control
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Fig. 3.1: Example 1: State trajectory of the closed-loop system under the state feedback Q-learning
algorithm [4].
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Fig. 3.2: Example 1: Convergence of the parameter estimates under the state feedback Q-learning
algorithm [4].

and rigid body motion. Here u is the stabilizing control and w is a perturbation in both states. Both the

state feedback and the proposed output feedback algorithms are evaluated. We choose the performance

index parameters as Qy = 1 and γ = 3. The eigenvalues of the observer matrix A are placed at −2. The

optimal control parameters as found by solving the ARE (3.27) are,

P ∗ =

1.7997 1.4821

1.4821 2.0941

 ,K∗ =
[
1.0000 1.4142

]
,

Mu =

1 0

4 1

 ,Mw =

1 1

0 1

 ,My =

4 4

0 4

 .
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Fig. 3.3: Example 1: State trajectory of the closed-loop system under the output feedback Q-learning
Algorithm 1.
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Fig. 3.4: Example 1: Convergence of the parameter estimates under the output feedback Q-learning
Algorithm 1.
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Fig. 3.5: Example 2: State trajectory of the closed-loop system under the state feedback IRL algorithm
[13].

The initial controller parameters are set to zero. The learning period is T = 0.05s with a total of l = 20
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Fig. 3.6: Example 2: State trajectory of the closed-loop system under the output feedback IRL
Algorithm 2.
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Fig. 3.7: Example 2: Convergence of the output feedback cost matrix P̄ under the output feedback IRL
Algorithm 2.
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Fig. 3.8: Example 2: Convergence of the Player 1 output feedback policy K̄ under the output feedback
IRL Algorithm 2.
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Fig. 3.9: Example 2: Convergence of the Player 2 output feedback policy L̄ under the output feedback
IRL Algorithm 2.
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intervals. The GARE recursions are performed with the step size εi = (i0.2 +5)−1, i = 0, 1, 2, . . . and the

set Bq =
{
P̄ ∈ P4

+ : |P̄ | ≤ 200(q + 1)
}
, q = 0, 1, 2, . . .. Sinusoids of different frequencies were used to

satisfy the rank condition (3.38). The state feedback results are shown in Fig. 3.5 and the proposed output

feedback results are shown in Fig. 3.6. For comparison, we used the same learning period and applied

the same excitation during the learning of both the state feedback and output feedback algorithms. It can

be seen that the proposed output feedback algorithm gives performance quite close to that of its state

feedback counterpart but without requiring the measurement of the system state. Furthermore, the VI

algorithm does not require an initially stabilizing policy.

3.5. Summary

In this chapter, we have presented model-free output feedback RL algorithms to solve the zero-sum

problem with application to the H-infinity control. We have developed an output feedback Q-function

description for the linear quadratic zero-sum game using a parametrization of the state in terms of the past

input, disturbance and output data. A Q-learning scheme based on value iteration is then developed, which

learns the optimal output feedback Q-function and optimal output feedback policies for both players. For

the continuous-time problem, we derive an output feedback learning equation corresponding to the linear

quadratic zero-sum game based on integral reinforcement learning using a parametrization of the state

given by the filtered input, disturbance and output data. Then, an integral reinforcement learning algorithm

based on policy iteration is presented, which learns the optimal value function matrix and the optimal

output feedback control parameters. It has been shown that the exploration noise does not result in bias

in the parameter estimates. As a result, the need of employing a discounting factor in the cost function is

eliminated and closed-loop stability is preserved. Hence, optimal stabilization under external disturbance

is achieved without requiring the knowledge of the system dynamics or the internal state of the system.

Simulation results have been presented that confirm the effectiveness of the proposed method.
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4. MODEL-FREE STABILIZATION UNDER ACTUATOR CONSTRAINTS

4.1. Introduction

A practical problem in designing control systems is to take into account the actuation capabilities of

the actuators which apply the control inputs to the physical system. Actuator limitations are generally

ignored in the design phase because many traditional control results do not remain applicable under such

constraints. While some good progress has been made in the control of systems with perfectly known

models and in the presence of actuator saturation, the problem becomes increasingly challenging in a

model-free scenario. As such, model-free stabilization under actuator constraints still remains a largely

unexplored area.

4.2. Q-learning Based State Feedback and Output Feedback Stabilization Under Actuator Constraints

Consider a discrete-time time-invariant system subject to actuator saturation, given by the following

state-space representation,

xk+1 = Axk +Bσ(uk),

yk = Cxk,
(4.1)

where xk =
[
x1
k, x

2
k, · · · , xnk

]T ∈ Rn refers to the state, uk =
[
u1
k, u

2
k, · · · , umk

]T ∈ Rm is the input, and

yk =
[
y1
k, y

2
k, · · · , y

p
k

]T ∈ Rp is the output. Without loss of generality, we assume that σ : Rm → Rm is

a standard saturation function, that is, for i = 1, 2, · · · ,m,

σ(uik) =


−b if uik < −b,

uik if − b ≤ uik ≤ b,

b if uik > b,

(4.2)

with b being the saturation limit.

Assumption 4.1. The pair (A,B) is asymptotically null controllable with bounded controls (ANCBC),

i.e.,

1) (A,B) is stabilizable.

2) All eigenvalues of A are on or inside the unit circle.
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The objective in this problem is to find a stabilizing feedback control law that avoids saturation, and

furthermore, the control law approaches a linear stabilizing one. Formally speaking, we would like to

achieve global stabilization of the system subject to actuator saturation.

A model based solution to this problem was proposed in our previous work [42] that employs a

parameterized algebraic Riccati equation (ARE) based approach to finding the low gain feedback matrix.

The design process involves solving the following parameterized ARE,

ATP (ε)A− P (ε) + εI −ATP (ε)B(BTP (ε)B + I)−1BTP (ε)A = 0. (4.3)

Based on the solution of the ARE (4.3), the following family of low gain feedback laws can be developed,

uk = K∗(ε)xk, (4.4)

where K∗(ε) = −(BTP ∗(ε)B + I)−1BTP ∗(ε)A and P ∗(ε) > 0 is the unique solution of the ARE,

parameterized in the parameter ε ∈ (0, 1] called the low gain parameter.

We recall the following lemma from [42],

Lemma 4.1. Let Assumption 4.1 hold. Then, for each ε ∈ (0, 1], there exists a unique positive definite

matrix P ∗(ε) that solves the ARE (4.3). Moreover, such a P ∗(ε) satisfies,

1) limε→0 P
∗(ε) = 0.

2) There exists an ε∗ ∈ (0, 1] such that,

‖P ∗(ε)
1

2AP ∗(ε)−
1

2 ‖2 ≤
√

2, ε ∈ (0, ε∗].

Here ‖ · ‖2 denotes the 2-norm of a matrix.

In [42], it has been shown that the family of low gain feedback control laws (4.4) achieve semi-global

exponential stabilization of the system (4.1) without saturating the actuators. To this end, we recall the

following result,

Theorem 4.1. Consider the system (4.1). Under Assumption 4.1, for any a priori given (arbitrarily large)

bounded setW , there exists an ε∗ ∈ (0, 1] such that for any ε ∈ (0, ε∗], the low gain feedback control law

(4.4) renders the closed-loop system exponentially stable with W contained in the domain of attraction.

The above low gain design technique is a model-based approach as it relies on solving the parameterized
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ARE (4.3) which requires complete knowledge of the system dynamics. We will employ the method of

reinforcement learning to learn the control law (4.4) without solving the ARE. Specifically, we will

develop an iterative Q-learning scheme towards finding the low gain feedback controller. Both state

feedback and output feedback algorithms will be presented.

In order to solve this problem under the framework of reinforcement learning, we will first formulate

this constrained control problem as an optimal control problem so that we can apply the Bellman

optimality principle that plays an instrumental role in reinforcement learning control. To this end, we

define a quadratic utility function r(xk, uk, ε) = εxT
kxk + uT

kuk. Next we define the following value

function that we would like to minimize,

V =

∞∑
i=k

ri. (4.5)

The parameterized Q-function can be expressed as

QK(zk, ε) = zT
kH(ε)zk, (4.6)

where zk = (xT
k, u

T
k)

T and the matrix H(ε) is defined as

H(ε)
∆
=

Hxx Hxu

Hux Huu

 =

εI +ATP (ε)A ATP (ε)B

BTP (ε)A BTP (ε)B + I

.
The Q-learning objective is to estimate the parameterized Q-function matrix H(ε). Once we have an

estimate of H(ε), we can compute the low gain control matrix K(ε). We now propose an iterative Q-

learning algorithm to find a control law that globally stabilizes the system and prevents saturation.

Algorithm 1: Iterative Q-learning Under Constrained Control Using State Feedback

1. Initialization. Start with any arbitrary policy uk = νk with νk being the exploration signal and

uk satisfying the control constraint ‖uk‖∞ ≤ b, where ‖ · ‖∞ denotes the ∞-norm of a vector. Set ε = 1

and H0(ε) = 0.

2. Collect Online Data. Apply the initial policy to collect L datasets of (xk, uk) for k ∈ [0, L−1] along

with their quadratic terms, where

L ≥ (n+m)(n+m+ 1)/2.
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Then for each iteration i = 1, 2, · · · , perform:

3. Value Update. Evaluate the cost of the policy Ki(ε) by solving for H i(ε) using the Bellman equation,

(H̄ i(ε))Tz̄k = εxT
kxk + uT

kuk + (H̄ i−1(ε))Tz̄k+1. (4.7)

4. Update Policy. Determine an updated policy Ki+1(ε) using,

Ki+1(ε) = −(H i
uu)
−1
H i
ux. (4.8)

5. Repeat. Iterate on Steps 3 and 4 until the following convergence criterion is met,

∥∥Ki+1(ε)−Ki(ε)
∥∥

2
< δ,

for some small constant δ > 0. Once the criterion is met, the resulting K̂(ε) is an approximation of

K∗(ε) for a given ε.

6. Control Saturation Check. For each k = L,L+ 1, · · · , check the following saturation condition,

‖K̂(ε)xk‖∞ ≤ b.

If for any k = L,L+ 1, · · · , the saturation condition is violated, reduce ε, reset i = 1, and repeat Steps

3 to 5 with a new ε.

7. Terminate. Stop when the control policy is no longer saturating.

The above algorithm presents a Q-learning value iteration algorithm for finding the low gain feedback

control law that prevents saturation and achieves global stabilization. We start with a choice of low gain

parameter ε ∈ (0, 1] and select any arbitrary initial policy (not necessarily stabilizing), which contains an

exploration signal and satisfies the saturation condition. This initial policy is referred to as the behavioral

policy which is used to collect system data to be used in Step 3. The data collection is performed only

once and we use the same dataset repeatedly to learn all future control policies. In the third step, we use

the collected data to solve the Bellman Q-learning equation. Note that we use the previous H i−1(ε) in

(4.7) and then update the policy in Step 4. These two steps are repeated for multiple iterations i until

we no longer see updates on the policy, which leads to an optimal policy K∗(ε) for a given ε. We then

check this optimal policy K∗(ε) for saturation. If the saturation condition holds good, that is, the control
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is not saturating at k = L then we apply uk = K∗(ε)xk to the system, otherwise we reduce ε and repeat

Steps 3 to 5 to continue search for a smaller control policy. Similar to Q-learning algorithms discussed

in previous chapters, the following rank condition needs to be satisfied,

rank(Φ) = (n+m)(n+m+ 1)/2. (4.9)

This excitation condition can be met in several ways such as adding sinusoidal noise of various fre-

quencies, exponentially decaying noise and gaussian noise. Theorem 4.2 states the convergence of the

proposed algorithm.

Theorem 4.2. Under the Assumption 4.1 and the rank condition (4.9), the proposed iterative Q-learning

scheme globally stabilizes the system.

The proof is carried out in two steps which correspond to the iteration on the low gain parameter ε

and the value iteration on the matrix H(ε). Let j be the iteration index corresponding to the iterations

on ε. Then, we have εj < εj−1 with εj ∈ (0, 1]. By Lemma 4.1, there exists a unique P ∗(εj) > 0 that

satisfies the parameterized ARE (4.3) and by definition (4.6) there exists a unique H∗(εj). By Theorem

4.1, for any given initial condition, there exists a ε∗ ∈ (0, 1] such that for all εj ∈ (0, ε∗], the closed-loop

system is exponentially stable. As j increases, we have εj ∈ (0, ε∗]. Under the stabilizability assumption

on (A,B) and rank condition (2.26), the value iteration Steps 3 and 4 converge to the optimal H∗ as

shown in [35]. Therefore, H i(εj) converges to H∗(εj), εj ∈ (0, ε∗], as i → ∞. Finally, by (4.8), we

have the convergence of Ki(εj) to K∗(εj), εj ∈ (0, ε∗]. This completes the proof. �

Remark 4.1. The proposed iterative scheme does not seek to find ε∗, rather it searches for an ε ∈ (0, ε∗],

which suffices to ensure closed-loop stability without saturating the actuators. However, better closed-

loop performance could be obtained if the final ε is close to ε∗, which can be achieved by applying small

decrements to ε in each iteration.

Algorithm 1 solves the model-free global stabilization problem under actuator constraints using state

feedback. In many applications, the complete state vector is not available for measurement, and therefore,

output feedback methods are more desirable as they decrease the number of sensors and make the design

more reliable and cost effective. We extend Algorithm 1 to the output feedback case by the method of

state parametrization (2.17).
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The parameterized output feedback Q-function is

QK(ζk, ε) =


ūk−1,k−N

ȳk−1,k−N

uk


T
Hūū Hūȳ Hūu

Hȳū Hȳȳ Hȳu

Huū Huȳ Huu



ūk−1,k−N

ȳk−1,k−N

uk


∆
= ζT

kHζk, (4.10)

where,

ζk =
[
ūT
k−1,k−N ȳT

k−1,k−N uT
k

]T

,

H =HT ∈ R(mN+pN+m)×(mN+pN+m),

and the submatrices are given as

Hūū = M T
u(Q+ATP (ε)A)Mu ∈ RmN×mN ,

Hūȳ = M T
u(Q+ATP (ε)A)My ∈ RmN×pN ,

Hūu = M T
uA

TP (ε)B ∈ RmN×m,

Hȳȳ = M T
y(Q+ATP (ε)A)My ∈ RpN×pN

Hȳu = M T
yA

TP (ε)B ∈ RpN×m,

Huu = R+BTP (ε)B ∈ Rm×m.

(4.11)

Let H∗ be the optimal matrix corresponding to P ∗(ε) for a given low gain parameter ε. Then the

optimal output feedback controller is given by

u∗k = −(H∗uu)−1 (H∗uūūk−1,k−N +H∗uȳȳk−1,k−N
)

∆
= K∗(ε)

[
ūT
k−1,k−N ȳT

k−1,k−N

]T

(4.12)

We now proceed to develop an output feedback Q-learning equation which enables us to learn the output

feedback controller online. Using the output feedback Q-function (4.10) in the Q-learning equation (4.13)

results in,

ζT
kH(ε)ζk = εyT

kyk + uT
kuk + ζT

k+1H(ε)ζk+1, (4.13)

which can be linearly parameterized as

QK = H̄T(ε)ζ̄k, (4.14)
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where H̄(ε) = vec(H(ε)) and ζ̄k = ζk⊗ζk. With the above parametrization, we have the following linear

equation unknown in H̄,

H̄T(ε)ζ̄k = εyT
kyk + uT

kuk + H̄T(ε)ζ̄k+1. (4.15)

Based on (4.15), we can utilize the Q-learning technique to learn the output feedback Q-function matrix

H. We now present an iterative Q-learning algorithm to find a output feedback control law that globally

stabilizes the system and prevents saturation.

Algorithm 2: Iterative Q-learning Under Constrained Control Using Output Feedback

1. Initialization. Start with any arbitrary policy u0
k = νk with νk being the exploration signal and

uk satisfying the control constraint ‖uk‖∞ ≤ b. Set ε = 1 and H0(ε) = 0.

2. Collect Online Data. Apply the initial policy to collect L datasets of (ūk−1,k−N , ȳk−1,k−N , uk)

for k ∈ [0, L− 1] along with their quadratic terms, where

L ≥ (mN + pN +m)(mN + pN +m+ 1)/2.

Then for each iteration i = 1, 2, · · · , perform:

3. Value Update. Evaluate the cost of the output feedback policy by solving for Hi(ε) using the Bellman

equation,

(H̄i(ε))Tζ̄k = εyT
kyk + uT

kuk + (H̄i−1(ε))Tζ̄k+1. (4.16)

4. Update Policy. Determine an updated policy Ki+1(ε) using,

Ki+1(ε) = −(Hiuu)
−1
[
Hiuū Hiuȳ

]
. (4.17)

5. Repeat. Iterate on Steps 3 and 4 until the following convergence criterion is met,

∥∥Ki+1(ε)−Ki(ε)
∥∥

2
< δ,

for some small constant δ > 0. Once the criterion is met, the resulting K̂(ε) is an approximation of
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K∗(ε) for a given ε.

6. Control Saturation Check. For each k = L,L+ 1, · · · , check the following saturation condition,

‖K̂(ε)
[
ūT
k−1,k−N ȳT

k−1,k−N

]T

‖∞ ≤ b.

If for any k = L,L+ 1, · · · , the saturation condition is violated, reduce ε, reset i = 1, and repeat Steps

3 to 5 with a new ε.

7. Terminate. Stop when the control policy is no longer saturating.

Compared to Algorithm 1, Algorithm 2 solves the output feedback Bellman equation (4.16). The output

feedback Q-function matrix H has (mN + pN + m)(mN + pN + m + 1)/2 unknowns. In the output

feedback case the data matrices Φ ∈ R(mN+pN+m)(mN+pN+m+1)/2×L and Υi−1 ∈ RL×1 are defined by

Φ =
[
ζ̄1
k , ζ̄

2
k , · · · , ζ̄Lk

]
,

Υi−1 =
[
r1
k + (H̄i−1(ε))Tζ̄1

k+1, · · · , rLk + (H̄i−1(ε))Tζ̄Lk+1

]T

.

Then the least-squares solution of (4.16) is given by

H̄i(ε) = (ΦΦT)−1ΦΥi−1. (4.18)

Similar to Algorithm 1, an excitation signal vk is added in the control during the learning phase to satisfy

the following rank condition,

rank(Φ) = (mN + pN +m)(mN + pN +m+ 1)/2. (4.19)

Theorem 4.3 shows the convergence of Algorithm 2.

Theorem 4.3. Under the Assumption 4.1, together with the observability of (A,C) and the rank condition

(4.19), the proposed output feedback based iterative Q-learning scheme globally stabilizes the system.

Proof: According to Theorem 2.2 in Chapter 2, the state xk can be reconstructed by the past input

and output sequence as given by (2.17) if the pair (A,C) is observable. Thus, the output feedback and
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state feedback Q-learning equations are equivalent. Under the rank condition (4.19), the output feedback

Q-learning equation has a unique solution. Then, following the arguments in Theorem 4.2, the output

feedback Algorithm 2 also achieves global stabilization of the system by finding a suitable low gain

parameter ε and the corresponding control matrix K(ε) without saturating the actuators. This completes

the proof. �

4.3. Integral Reinforcement Learning Based State Feedback and Output Feedback Stabilization Under

Actuator Constraints

In this section, we will extend the low gain feedback framework to solve the continuous-time counter-

part of the actuator constraint stabilization problem. We present integral reinforcement learning equations

together with a low gain scheduling mechanism to achieve global stabilization of a class of continuous-

time linear systems that satisfy the ANCBC assumption.

Consider a continuous-time system subject to actuator constraints,

ẋ(t) = Ax(t) +Bσ(u(t)),

y(t) = Cx(t),
(4.20)

where x = [x1, x2, · · · , xn]T ∈ Rn is the state vector, u = [u1, u2, · · · , um]T ∈ Rm is the control

vector and y = [y1, y2, · · · , yp]T ∈ Rp is the output vector. Without loss of generality, we assume that

σ : Rm → Rm is a standard saturation function, that is, for i = 1, 2, · · · ,m,

σ(ui) =


−b if ui < −b,

ui if − b ≤ ui ≤ b,

b if ui > b,

(4.21)

where b denotes the actuator limit.

Assumption 4.2. The pair (A,B) is asymptotically null controllable with bounded controls (ANCBC),

i.e.,

1) (A,B) is stabilizable.

2) All eigenvalues of the system matrix A are in the closed left-half s-plane.

Assumption 4.3. The pair (A,C) is observable.
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Condition 1) is a standard requirement for stabilization. Condition 2) is a necessary condition for global

stabilization in the presence of actuator saturation [56]. Note that this condition allows systems to be

polynomially unstable, that is, systems that have repeated poles on the imaginary axis. Furthermore, as

is known in the literature on control systems with actuator saturation, when there is an eigenvalue of A

in the open right-half plane, global or even semi-global stabilization is not achievable. Assumption 4.3

is needed for output feedback control.

To solve this problem, we proposed a parameterized ARE method to find the low gain control matrix

in our previous work [42] based on the solution of the following parameterized ARE,

ATP (γ) + P (γ)A+ γI − P (γ)BBTP (γ) = 0, γ ∈ (0, 1]. (4.22)

The resulting family of parameterized low gain feedback control laws is given by,

u = K∗(γ)x(t), (4.23)

where

K∗(γ) = −BTP ∗(γ)

and P ∗(γ) > 0 is the unique positive definite solution of the ARE (4.22), parameterized in the low gain

parameter γ ∈ (0, 1].

To this end, we recall some previous results from [42].

Lemma 4.2. Under Assumption 4.2, for each γ ∈ (0, 1], there exists a unique positive definite solution

P ∗(γ) to the ARE (4.22) that satisfies limγ→0 P
∗(γ) = 0.

Theorem 4.4. Let Assumption 4.2 hold. Then, for any a priori given (arbitrarily large) bounded set W ,

there exists a γ∗ such that for any γ ∈ (0, γ∗], the low gain feedback control law (4.23) renders the

closed-loop system exponentially stable with W contained in the domain of attraction.

The above discussion focused on the model based solution of the continuous-time actuator constraint

problem. In the next sections, we will present the low gain parameterized version of the IRL equations

that we presented in Chapter 2.
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Consider the Lyapunov function candidate parameterized in a low gain parameter γ ∈ (0, 1],

V = xTP (γ)x. (4.24)

Evaluating the derivative of (4.24) along the system trajectories,

d

dt
(xTP (γ)x) = (Ax+Bσ(u))TP (γ)x+ xTP (γ)(Ax+Bσ(u))

= xTH(γ)x− 2σT(u)K(γ)x,

where H(γ) = ATP (γ) + P T(γ)A and K(γ) = −BTP (γ). We are interested in finding the unknown

matrices H(γ) and K(γ) without requiring the knowledge of (A,B).

Performing finite window integrals of length T > 0 on both sides results in the following learning

equation,

xT(t)P (γ)x(t)− xT(t− T )P (γ)x(t− T )

=

∫ t

t−T
xT(τ)H(γ)x(τ)dτ−2

∫ t

t−T
σT(u(τ))K(γ)x(τ)dτ, (4.25)

or equivalently,

xT(t)⊗ xT(t)|tt−T vec(P (γ))

=

∫ t

t−T
x̄dτ vecs(H(γ))−2

∫ t

t−T
xT(τ)⊗ σT(u(τ))dτ vec(K(γ)),

where x̄ = {x2
1, 2x1x2, · · · , x2

2, 2x2x3, · · · , x2
n} and vecs(H(γ)) = {H11, H12, · · · , H1n, H22, H23, · · · , Hnn}.

Equation (4.25) is the low gain parameterized version of the IRL equation presented in Chapter 2. It

is a scalar equation which is linear in terms of the unknowns H(γ) and K(γ). Clearly, there are more

unknowns than the number of equations. Therefore, we develop a system of l number of such equations

by performing l finite window integrals each of length T . To solve this linear system of equations, we

define the following data matrices as done in [14],

δxx =
[
x⊗ x|t1t0 , x⊗ x|

t2
t1 , · · · , x⊗ x|

tl
tl−1

]T

,

Ixu =
[∫ t1
t0
x⊗ σ(u)dτ,

∫ t2
t1
x⊗ σ(u)dτ, · · · ,

∫ tl
tl−1
x⊗ σ(u)dτ

]T

,

Ixx =
[∫ t1
t0
x̄Tdτ,

∫ t2
t1
x̄Tdτ, · · · ,

∫ tl
tl−1̄
xTdτ

]T

.
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We rewrite Equation (4.25) as the following matrix equation,

[
Ixx, 2Ixu

]vecs(H(γ))

vec(K(γ))

 = δxxvec(P (γ)),

whose least-squares solution is given by,vecs(H(γ))

vec(K(γ))

=

([
Ixx, 2Ixu

]T[
Ixx, 2Ixu

])−1[
Ixx, 2Ixu

]T

δxxvec(P (γ)) (4.26)

Remark 4.2. Equation (4.26) is a standard least-squares problem in which the two unknown matrices

are H(γ) and K(γ), which have n(n + 1)/2 and mn unknown components, respectively. Therefore,

we need l ≥ n(n + 1)/2 + mn number of datasets (learning intervals) to solve (4.26). Notice that the

control u = Kx linearly depends on the state x, which means that
[
Ixx, 2Ixu

]T[
Ixx, 2Ixu

]
will not

be invertible. A common practice to address this difficulty is to add an exploration noise signal ν in the

control during the data collection step. These two conditions boil down to satisfying the following rank

condition in order to have a unique solution to (4.26),

rank
([
Ixx, 2Ixu

])
= n(n+ 1)/2 +mn. (4.27)

Some common exploration signals include sinusoidal and Gaussian signals. It should also be noted that

these exploration signals do not incur bias in the estimates, as has been shown in Chapter 2. Morever,

once the learning is accomplished, these signals can be safely removed.

We are now ready to propose our low gain scheduled IRL algorithm that achieves model-free global

stabilization of the system in the presence of actuator saturation. The stabilization is achieved by pre-

venting saturation under the low gain feedback.

Algorithm 3: Iterative State Feedback IRL Scheme Under Constrained Control

1. Initialization. Start with an arbitrary open-loop policy u0 = ν with ν being the exploration signal and

u0 satisfying the control constraint ‖u‖∞ ≤ b, where ‖ · ‖∞ denotes the ∞ norm of a vector. Set γ ← 1,

k ← 0, q ← 0, and P0(γ) > 0.
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2. Collect Online Data. Apply the policy u0 for the duration t ∈ [t0, tl], composed of l learning

intervals of length tj − tj−1 = T , where tl = t0 + lT and l ≥ n(n+ 1)/2 +mn. Collect the data for x

and its quadratic integrals for each learning interval. Then, for k = 0, 1, · · · , perform,

3. Loop:

Determine the least-squares solution, Hk(γ) and Kk(γ), of the following learning equation,

xT(t)Pk(γ)x(t)− xT(t− T )Pk(γ)x(t− T )

=

∫ t

t−T
xT(τ)Hk(γ)x(τ)dτ−2

∫ t

t−T
σT(u(τ))Kk(γ)x(τ)dτ.

Update P̃ (γ) as,

P̃k+1(γ)← Pk(γ) + εk(Hk(γ) + γI −KT
k(γ)Kk(γ)).

if P̃k+1(γ) /∈ Bq then

Pk+1(γ)← P0(γ) and q ← q + 1.

else if
∥∥∥P̃k+1(γ)−Pk(γ)

∥∥∥ /εk<ε then

return Pk(γ) as an estimate of P ∗(γ).

else

Pk+1(γ)← P̃k+1(γ).

end if

k ← k + 1.

end loop.

The resulting K̂(γ) is an approximation of K∗(γ) for a given γ.
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4. Control Saturation Check. For all t ≥ tf , check the control constraints,

‖K̂(γ)x‖∞ ≤ b.

If for any t ≥ tf the control constraint does not hold, reduce γ, reset i = 1, and repeat Step 3 with a

reduced γ.

5. Terminate.

The details of Algorithm 3 are as follows. The algorithm is initialized with some low gain parameter

γ ∈ (0, 1] and an arbitrary control policy comprising of exploration signals ν is used to generate system

data. Note that this initial policy is open-loop and not necessarily stable. Furthermore, it is selected so

that the control constraints are satisfied. The trajectory data is used to solve the learning equation in the

Step 3 where an stabilizing low gain control matrix is obtained corresponding to our choice of low gain

parameter. However, this control policy needs to be checked for control constraints to ensure that the

low gain parameter is the appropriate one γ ∈ (0, 1], which is done in Step 4. The low gain parameter

γ can be updated under a proportional rule γj+1 = aγj for 0 < a < 1 in the future iterations.

Theorem 4.5 states the convergence of the proposed Algorithm 3.

Theorem 4.5. Under Assumption 4.2, the proposed iterative Algorithm 3 globally stabilizes the system

if the rank condition (4.27) is satisfied.

Proof: The proof is carried out in two steps, which correspond to the iterations on the low gain

parameter γ and the value iterations on the matrix K(γ) for a given low gain parameter γ. We consider

the iterations on the low gain parameter γ to show that there exists γ ∈ (0, 1] such that the low gain

feedback law u = −BTP ∗(γ)x renders the closed-loop system exponentially stable. To this end, we

consider system (4.20) in the following closed-loop form,

ẋ(t) = Ax(t) +Bσ(u(t))

= (A−BBTP ∗(γ))x(t) +B (σ(u(t))− u(t)) . (4.28)
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We choose a candidate Lyapunov function

V (x) = xTP ∗(γ)x. (4.29)

For the given initial condition x(0), letW be a bounded set that contains x(0) and let c > 0 be a constant

such that

c ≥ sup
x∈W,γ∈(0,1]

xTP ∗(γ)x. (4.30)

Such a c exists because W is bounded and limγ→0 P
∗(γ) = 0 by Lemma 4.2. Let us define a level

set LV (c) = {x ∈ Rn | V (x) ≤ c} and let γ∗ be such that for all γ ∈ (0, γ∗], x ∈ LV (c) implies

‖BTP ∗(γ)x‖ ≤ b. To see that such a γ∗ exists, we note that

‖BTP ∗(γ)x‖ = ‖BT(P ∗(γ))1/2(P ∗(γ))1/2x‖

≤ ‖BT(P ∗(γ))1/2‖
√
c,

where we have used the inequality (4.30). Since limγ→0 P
∗(γ) = 0 by Lemma 4.2, the term involving

P ∗(γ) can be made arbitrary small, and therefore, there exists a γ∗ ∈ (0, 1] such that ‖(BTP ∗(γ)x‖ ≤ b

for all γ ∈ (0, γ∗]. In other words, we can always find a γ that makes the above norm small enough so

that the control operates in the linear region of the saturation curve. The evaluation of the derivative of

V along the trajectories of the closed-loop system (4.28) shows that, for all x ∈ LV (c),

V̇ = xTP ∗(γ)
(
(A−BBTP ∗(γ))x+B(σ(u)− u)

)
+
(
(A−BBTP ∗(γ))x+B(σ(u)− u)

)T
P ∗(γ)x

= xT
(
ATP ∗(γ) + P ∗(γ)A

)
x− 2xTP ∗(γ)BBTP ∗(γ)x

+2xTP ∗(γ)B
(
σ(u)− u

)
From the ARE (4.22), we have,

ATP ∗(γ) + P ∗(γ)A = −γI + P ∗(γ)BBTP ∗(γ).

It then follows that,

V̇ = xT
(
−γI+P ∗(γ)BBTP ∗(γ)

)
x−2xTP ∗(γ)BBTP ∗(γ)x
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+2xTP ∗(γ)B
(
σ(u)− u)

= −γxTx− xTP ∗(γ)BBTP ∗(γ)x

+2xTP ∗(γ)B(σ(u)− u)

Since ‖BTP ∗(γ)x‖ ≤ b, it follows from the definition of the saturation function (4.2) that σ(u) = u,

which results in,

V̇ = −γxTx− xTP ∗(γ)BBTP ∗(γ)x

≤ −γxTx,

which in turn shows that, for any γ ∈ (0, γ∗], the equilibrium x = 0 of the closed-loop system is

asymptotically stable with x(0)∈W⊂LV (c) in the domain of attraction. Since x(0) is arbitrary, we have

global stabilization. Furthermore, since γj < γj−1, the algorithm is able to find a suitable γ ∈ (0, γ∗]. For

such a γ, the convergence of Pk(γ) to P ∗(γ) follows from the convergence of value iteration algorithm

[14] and the unique solution of the learning equation (2.45) if the rank condition (4.27) holds. This

completes the proof. �

We now work towards developing the output feedback version of Algorithm 2. For this purpose, we

employ the continuous-time state parametrization result presented in Chapter 2.

Theorem 4.6. There exists a state parametrization

x̄(t) = Muζu(t) +Myζy(t) (4.31)

that converges exponentially to the state x if the system is observable, where Mu and My are the system

dependent matrices containing the transfer function coefficients, and ζu and ζy are the user-defined

dynamics given by

ζ̇iu(t) = Aζiu(t) + Bσ(ui(t)), ζ
i
u(0) = 0, i = 1, 2, · · · ,m (4.32)

ζ̇iy(t) = Aζiy(t) + Byi(t), ζiy(0) = 0, i = 1, 2, · · · , p, (4.33)
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for some Hurwitz matrix A and input vector B of the form,

A =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . . . . .

...

0 0 0 · · · 1

−α0 −α1 · · · · · · −αn−1


, B =



0

0
...

0

1


.

Proof: The proof remains the same as that of Theorem 2.5 in Chapter 2 by treating the constrained

input σ(u) as the input vector. This completes the proof. �

We will now employ the result in Theorem 4.6 to develop the output feedback counterpart of the

learning equation (4.25).

To this end, we introduce the following definitions. Let

z(t) =
[
ζT
u(t) ζT

y(t)

]T

∈ R(mn+pn), (4.34)

M =
[
Mu My

]
∈ Rn×(mn+pn), (4.35)

P̄ (γ) = M TP (γ)M ∈ R(mn+pn)×(mn+pn), (4.36)

K̄(γ) = K(γ)M ∈ Rm×(mn+pn). (4.37)

With these definitions, we revisit Equation (4.25). Adding γ
∫ t
t−T y

T(τ)y(τ)dτ on both sides of this

equation, and substituting y(t) = Cx(t) and Hk = ATP + PA on the right-hand side, we have,

xT(t)P (γ)x(t)−xT(t−T )P (γ)x(t−T )+γ

∫ t

t−T
yT(τ)y(τ)dτ

=

∫ t

t−T
xT(τ)(ATP (γ) + P (γ)A+ γCTC)x(τ)dτ

−2

∫ t

t−T
(σT(u(τ)))K(γ)x(τ)dτ.

Next, we use our state parametrization (4.31) and the definitions (4.34)-(4.37) in the above equation,

which results in,

zT(t)P̄ (γ)z(t)−zT(t−T )P̄ (γ)z(t−T )+γ

∫ t

t−T
yT(τ)y(τ)dτ

=

∫ t

t−T
zT(τ)H̄(γ)z(τ)dτ − 2

∫ t

t−T
σT(u(τ))K̄(γ)z(τ)dτ, (4.38)
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or equivalently,

zT(t)⊗ zT(t)|tt−T vec(P̄ (γ)) + γ

∫ t

t−T
yT ⊗ yTdτ vec(I)

=

∫ t

t−T
z̄dτ vecs(H̄(γ))−2

∫ t

t−T
zT(τ)⊗ σT(u(τ))dτ vec(K̄(γ)),

where H̄(γ) = M T(ATP (γ) + P (γ)A+ γCTC)M and

z̄ = {z2
1 , 2z1z2, 2z1z3, · · · , z2

2 , 2z2z3, · · · , z2
nm+np}. Equation (4.38) is the low gain parameterized learn-

ing equation that uses only output feedback. Similar to our state feedback equation (4.25), it is a scalar

equation which is linear in terms of the unknowns H̄(γ) and K̄(γ). These matrices are the output

feedback counterparts of the matrices H(γ) and K(γ). As there are more unknowns than the number of

equations, we develop a system of l number of such equations by performing l finite window integrals

each of length T . To solve this linear system of equations, we define the following data matrices,

δzz =
[
z ⊗ z|t1t0 , z ⊗ z|

t2
t1 , · · · , z ⊗ z|

tl
tl−1

]T

,

Izu =
[∫ t1
t0
z ⊗ σ(u)dτ,

∫ t2
t1
z ⊗ σ(u)dτ, · · · ,

∫ tl
tl−1
z ⊗ σ(u)dτ

]T

,

Izz =
[∫ t1
t0
z̄Tdτ,

∫ t2
t1
z̄Tdτ, · · · ,

∫ tl
tl−1̄
zTdτ

]T

,

Iyy =
[∫ t1
t0
y ⊗ ydτ,

∫ t2
t1
y ⊗ ydτ, · · · ,

∫ tl
tl−1
y ⊗ ydτ

]T

.

We rewrite (4.38) as the following matrix equation,

[
Izz, 2Izu

]vecs(H̄(γ))

vec(K̄(γ))

 = δzzvec(P̄ (γ)) + γIyyvec(I),

whose least-squares solution is given by,vecs(H̄(γ))

vec(K̄(γ))

=

([
Izz, 2Izu

]T[
Izz, 2Izu

])−1[
Izz, 2Izu

]T

× (δxxvec(P (γ)) + γIyyvec(I)) (4.39)

Remark 4.3. Compared to its state feedback counterpart, Equation (4.39) solves the least-squares prob-

lem using input-output data instead of input-state data. The number of unknown parameters corresponding

to H̄(γ) and K̄(γ) is (mn+pn)(mn+pn+1)/2 and m(mn+pn), respectively, which are larger than that

for the state feedback problem (4.26). As a result, we require l ≥ (mn+pn)(mn+pn+1)/2+m(mn+pn)
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learning intervals and datasets. These extra control parameters relax the requirement of full-state mea-

surement. Similar to the state feedback problem, we need to inject an exploration signal so that the

following rank condition is satisfied,

rank
([
Izz, 2Izu

])
= (mn+ pn)(mn+ pn+ 1)/2 +m(mn+ pn). (4.40)

We are now ready to propose an output feedback low gain scheduled learning algorithm that achieves

model-free global stabilization of the system in the presence of actuator saturation.

Algorithm 4: Iterative Output Feedback IRL Scheme Under Constrained Control

1. Initialization. Start with an arbitrary open-loop policy u0 = ν with ν being the exploration signal and

u0 satisfying the control constraint ‖u‖∞ ≤ b, where ‖ · ‖∞ denotes the ∞ norm of a vector. Set γ ← 1,

k ← 0, q ← 0, and P̄0(γ) ≥ 0.

2. Collect Online Data. Apply the policy u0 for the duration t ∈ [t0, tl], composed of l learning intervals

of length tj−tj−1 = T , where tl = t0+lT and l ≥ (mn+pn)(mn+pn+1)/2+m(mn+pn). Collect the

data for y, z, σ(u) and their quadratic integrals for each learning interval. Then, for k = 0, 1, · · · , perform,

3. loop:

Determine the least-squares solution, H̄k(γ) and K̄k(γ), of the learning equation,

zT(t)P̄k(γ)z(t)−zT(t−T )P̄k(γ)z(t−T )+γ

∫ t

t−T
yT(τ)y(τ)dτ

=

∫ t

t−T
zT(τ)H̄k(γ)z(τ)dτ − 2

∫ t

t−T
σT(u(τ))K̄k(γ)z(τ)dτ,

Update ˜̄P (γ) as,

˜̄Pk+1(γ)← P̄k(γ) + εk(H̄k(γ)− K̄T
k(γ)K̄k(γ)).

if ˜̄Pk+1(γ) /∈ Bq then

P̄k+1(γ)← P̄0(γ) and q ← q + 1.
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else if
∥∥∥ ˜̄P k+1(γ)−P̄k(γ)

∥∥∥ /εk<ε then

return P̄k(γ) as an estimate of P̄ ∗(γ).

else

P̄k+1(γ)← ˜̄Pk+1(γ).

end if

k ← k + 1.

end loop.

The resulting ˆ̄K(γ) is an approximation of K̄∗(γ) for a given γ.

4. Control Saturation Check. For all t ≥ tf , check the following saturation condition,

‖ ˆ̄K(γ)z‖∞ ≤ b.

If for any t ≥ tf the saturation condition is violated, reduce γ, reset i = 1, and repeat Step 3 with the

reduced γ.

5. Terminate.

The convergence of the Algorithm 3 is shown in Theorem 4.7.

Theorem 4.7. Under Assumption 4.2 and 4.3 and the rank condition (4.40), the proposed output feedback

based Algorithm 4 globally stabilizes the system without saturating the actuators.

Proof: According to Theorem 4.6, the state x(t) can be reconstructed in terms of the filtered inputs

and outputs as given by (4.31) if the pair (A,C) is observable. Thus, the output feedback equation

(4.38) becomes exponentially equivalent to the state feedback IRL equation (4.25). The output feedback

IRL equation (4.38) is uniquely solvable if the rank condition (4.40) is satisfied. Then, following the
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arguments in Theorem 4.5, the output feedback Algorithm 4 also achieves global stabilization of the

system by finding a suitable low gain parameter γ and the corresponding output feedback control matrix

K̄(γ) without saturating the actuators. This completes the proof. �

4.4. Results

In this section we test the proposed scheme using numerical simulation.

Example 1: A Discrete-time Polynomially Unstable System:

Consider the discrete-time system (4.20) with

A =



0 1 0 0

0 0 1 0

0 0 0 1

−1 2
√

2 −4 2
√

2


, B =



0

0

0

1


, C =

[
1 0 0 0

]
.

Matrix A has a pair of repeated eigenvalues at
√

2
2 ± j

√
2

2 , which lie on the unit circle, and therefore,

the system is open-loop unstable. The actuator saturation limit is b = 1. The initial state of the system

is x0 = [1 1 1 1]T. The algorithm is initialized with ε = 1 and K0(ε) = [0 0 0 0 0 0 0 0]. Fig. 4.1 shows

the state response and the control effort. The low gain parameter ε is reduced by a factor of one-half

and the convergence criterion of δ = 0.01 was selected. It can be seen that the algorithm is able to find

a suitable low gain parameter ε and the corresponding low gain state feedback control matrix K(ε) that

guarantees convergence of the state without saturating the actuators. The final value of ε = 2.4× 10−4.

The corresponding nominal low gain feedback matrix is

K∗(ε) =
[
−0.3002 0.6717 −0.6801 0.2537

]
.

and its final estimate is found to be

K̂(ε) =
[
−0.3025 0.6771 −0.6856 0.2558

]
,

which shows convergence to the solution of the ARE. We simulate again Algorithm 1 with a different

initial condition, i.e., x0 = [5 5 5 5]T. All other simulation parameters are kept the same. Fig. 4.2 shows

the closed-loop response. The final value of ε is found to be 6.1× 10−5 and the corresponding nominal
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Fig. 4.1: Example 1: Closed-loop response using state feedback Algorithm 1 with x0 = [1 1 1 1]T

low gain matrix is

K∗(ε) =
[
−0.2222 0.4899 −0.4860 0.1781

]
and its corresponding estimate is found to be

K̂(ε) =
[
−0.2254 0.4970 −0.4930 0.1807

]
.

Following the state feedback case, we now validate Algorithm 2 which uses output feedback. We

choose N = 4 as the bound on the observability index. The initial state of the system is x0 = [1 1 1 1]T.

The algorithm is initialized with ε = 1, H0(ε) = I , K0(ε) = [0 0 0 0 0 0 0 0]. Fig. 4.3 shows

the state response and the control effort. The low gain parameter ε is reduced by a factor of one-half

and the convergence criterion of δ = 0.01 was selected. In this simulation, we collected L = 50 data

samples to satisfy the rank condition (4.9). It can be seen that the algorithm is able to find a suitable

low gain parameter ε and the corresponding low gain state feedback control matrix K(ε) that guarantees

convergence of the state without saturating the actuators. The final value of ε = 1.2×10−4. The nominal
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Fig. 4.2: Example 1: Closed-loop response using state feedback Algorithm 1 with x0 = [5 5 5 5]T

output feedback low gain feedback matrix is

K∗(ε) =
[
0.1495 0.0123 −0.1460 −0.2298 −0.1804 0.4937 −0.5038 0.2298

]
.

and its final estimate is found to be

K̂(ε) =
[
0.1515 0.0126 −0.1477 −0.2325 −0.1826 0.4996 −0.5099 0.2325

]
,

which shows convergence to the solution of the ARE.

We next simulate again Algorithm 2 with a different initial condition, i.e., x0 = [5 5 5 5]T. All other

simulation parameters are kept the same. Fig. 4.4 shows the closed-loop response. The final value of ε

is found to be 1.5× 10−5 and the corresponding nominal output matrix is

K∗(ε) =
[
0.0886 0.0042 −0.0878 −0.1323 −0.0996 0.2765 −0.2863 0.1323

]
.

and its final estimate is

K̂(ε) =
[
0.0904 0.0042 −0.0897 −0.1351 −0.1016 0.2822 −0.2923 0.1351

]
.

It can be seen that even with this larger initial condition, the algorithm was able to stabilize the system

90



0 50 100 150 200 250
time (k)

-100

-50

0

50

100

S
ta

te
s

x1
k

x2
k

x3
k

x4
k

0 50 100 150 200 250
time (k)

-1

-0.5

0

0.5

1

C
on

tr
ol

u
k

Fig. 4.3: Example 1: Closed-loop response using output feedback Algorithm 2 with x0 = [1 1 1 1]T
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Fig. 4.4: Example 1: Closed-loop response using output feedback Algorithm 2 with x0 = [5 5 5 5]T

with a lower value of the low gain parameter.

Example 2: A Continuous-time Polynomially Unstable System Under Actuator Constraints:
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Consider the following continuous-time system subject to actuator constraints,

A =



0 1 0 0

0 0 1 0

0 0 0 1

−1 0 −2 0


, B =



0

0

0

1


, C =

[
1 0 0 0

]

Matrix A has a pair of repeated eigenvalues at ±j, and therefore, the system is open-loop unstable. The

actuator saturation limit is b=1. The initial state of the system is x(0) =
[
0.25 −0.5 −0.5 0.25

]T

and

the algorithm is initialized with γ = 1 and P0(γ) = 0.01I4. Step size εk = (k0.5 + 5)−1, k = 0, 1, 2, . . .

and the set Bq =
{
P ∈ P4

+ : |P | ≤ 200(q + 1)
}
, q = 0, 1, 2, . . . Fig. 4.5 shows the state response and

the control effort. In every main iteration of the algorithm, the low gain parameter γ is reduced by a

factor of one half. Since n = 4 and m = 1, we need at least n(n+ 1)/2 +mn = 14 learning intervals

to collect data for solving Equation (4.25). In these simulations, we use sinusoids of varying frequencies

and magnitudes while ensuring that the control constraint is satisfied. This trajectory data can be used in

subsequent iterations of the low gain parameter γ. In this simulation, we chose l = 30 learning intervals

of period T = 0.2 sec to satisfy the above mentioned condition. It can be seen in Fig. 4.5 that the

algorithm finds a suitable low gain parameter γ and learns the corresponding low gain feedback matrix

K(γ) using the IRL equation to guarantee convergence of the state. The final value of γ as obtained by

the scheduling mechanism is 0.1250. The corresponding nominal value of the low gain control matrix is

K∗(γ) =
[
0.0607 1.4046 0.7567 1.2800

]
.

and the corresponding estimate of the low gain matrix is

K̂(γ) =
[
0.0600 1.4006 0.7550 1.2773

]
,

which shows convergence to the solution of the ARE. It should be noted that the exploration signal

is only needed in the first l = 30 intervals and can be removed afterwards. We next verify the global

stabilization property of Algorithm 3. To this end, we simulate the system with a different initial condition

x(0) =
[
0.5 −1 −1 0.5

]T

. All other simulation parameters are the same. In this case, the value of

the low gain parameter can be expected to be lower since our initial condition belongs to a larger basin of

attraction. Indeed, this is the case and the final value of low gain parameter as found from the scheduling
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Fig. 4.5: Example 2: Closed-loop response using state feedback Algorithm 3
with x(0) = [0.25 −0.5 −0.5 0.25]T.
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Fig. 4.6: Example 2: Closed-loop response using state feedback Algorithm 3
with x(0) = [0.5 −1 −1 0.5]T.

mechanism is 0.0156. The nominal low gain matrix is

K∗(γ) =
[
0.0078 0.7510 0.2567 0.7273

]
.

and the corresponding estimate of the low gain matrix is

K̂(γ) =
[
0.0095 0.7463 0.2570 0.7224

]
.
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Fig. 4.6 shows the closed-loop response. It can be seen that, with this larger initial condition, the algorithm

stabilizes the system with a lower value of the low gain parameter. This, in turn, verifies that the basin of

attraction can made arbitrary large by scheduling the low gain parameter. In both the cases, we find that

the control does not violate the saturation condition during both the learning and stabilization phases,

which is an advantage of the proposed scheme.

The results discussed so far achieve global stabilization under actuator constraints based on full-

state feedback. We now present the results of the proposed output feedback Algorithm 4 that uplifts the

requirement of the full-state feedback. For the state parametrization, we construct the user-defined system

matrix A with the our choice of desired eigenvalues at −1. This corresponds to α0 = 1, α1 = 4, α2 = 6,

α3 = 4, which are the entries of A. These constants are obtained from the characteristic polynomial

Λ(s) = (s+ 1)4 corresponding to our choice of eigenvalues −1 of the matrix A. The initial state of the

system is x(0) =
[
0.25 −0.5 −0.5 0.25

]T

and the algorithm is initialized with γ = 1 and P̄0(γ) =

0.01I8. Step size εk = (k0.5 + 5)−1, k = 0, 1, 2, . . . and the set Bq =
{
P̄ ∈ P8

+ : |P̄ | ≤ 800(q + 1)
}
, q =

0, 1, 2, . . . Fig. 4.7 shows the state response and the control effort. In every main iteration of the algorithm,

the low gain parameter γ is reduced by a factor of one half. Since n = 4, m = 1 and p = 1, we need

at least (mn + pn)(mn + pn + 1)/2 + m(mn + pn) = 44 learning intervals to solve (4.38). In these

simulations, we use sinusoids of varying frequencies and magnitudes while ensuring that the control

constraint is satisfied. This trajectory data can be used in subsequent iterations of the low gain parameter

γ. In this simulation, we chose l = 60 learning intervals of period T = 0.2 sec to satisfy the above

mentioned condition. It can be seen in Fig. 4.7. The nominal output feedback low gain control matrix

corresponding to γ = 0.1250 is computed using (4.37) as

K∗(γ) = [ 2.2071 6.0464 3.8707 0.8715 −2.1460 −4.7727 −3.4243 −4.1577 ],

and its estimate is

K̂(γ) = [ 2.2034 6.0429 3.8691 0.8711 −2.1439 −4.7732 −3.4223 −4.1588 ],

which shows convergence to the solution of the ARE. It should be noted that the exploration signal

is only needed in the first l = 60 intervals and can be removed afterwards. We next verify the global

stabilization property of Algorithm 4. To this end, we simulate the system with a different initial condition

x(0) =
[
0.5 −1 −1 0.5

]T

. All other simulation parameters are the same. In this case, the value of
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Fig. 4.7: Example 2: Closed-loop response using output feedback
Algorithm 4 with x(0) = [0.25 −0.5 −0.5 0.25]T.
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Fig. 4.8: Example 2: Closed-loop response using output feedback
Algorithm 4 with x(0) = [0.5 −1 −1 0.5]T.

the low gain parameter can be expected to be lower since our initial condition belongs to larger basin of

attraction. Indeed, this is the case and the final value of the low gain parameter is found to be γ = 0.0156.

The corresponding nominal output feedback low gain control matrix is

K∗(γ) = [ 0.6579 3.0932 2.1612 0.5074 −0.6500 −2.5196 −1.1348 −2.3912 ],
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and its estimate is

K̂(γ) = [ 0.6540 3.1001 2.1678 0.5091 −0.6468 −2.5277 −1.1326 −2.4016 ].

Fig. 4.8 shows the closed-loop response. It can be seen that, with this larger initial condition, the algorithm

stabilizes the system with a lower value of the low gain parameter. This, in turn, verifies that the basin

of attraction can made arbitrary large by scheduling the low gain parameter.

Upon comparing the results of Algorithms 3 and 4, we find that both algorithms are able to achieve

global stabilization without saturating the actuators and without requiring the knowledge of system

dynamics. Furthermore, Algorithm 4 relaxes the requirement of full-state feedback at the cost of estimating

more parameters, and as a result, its learning phase lasts longer than that of Algorithm 3.

4.5. Summary

In this chapter, we have presented model-free algorithms for global stabilization of linear systems

subject to actuator saturation. The idea of gain-scheduled low gain feedback is applied to develop control

laws that avoid saturation and achieve global stabilization. To design these control laws, we employ

the framework of parameterized algebraic Riccati equations (AREs). We present an iterative Q-learning

algorithm that searches for a low gain parameter and iteratively solves the parameterized ARE using the

Bellman equation. Both state feedback and output feedback algorithms are developed. It is shown that the

proposed algorithms achieves model-free global stabilization under bounded controls and converges to the

solution of the ARE. The low gain feedback design approach is also extended to solve the continuous-time

constrained control problems. Both state feedback and output feedback IRL algorithms are developed.

Compared to the previous works, the proposed scheme has the advantage that the resulting control laws

have a linear structure and global asymptotic stability is ensured without causing actuator saturation.

Simulation results have been presented that confirm the effectiveness of the proposed method.
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5. MODEL-FREE OPTIMAL STABILIZATION OF TIME DELAY SYSTEMS

5.1. Introduction

A time delay system is a dynamical system whose evolution depends on its past inputs and states. Many

real world problems in sciences and engineering can be described as time delay problems. Very often

delays arise in control implementation such as those associated with the sensors, actuators, communication

and computation. From the controls perspective, the presence of time delays makes the control problem

quite challenging because of the performance degradation and instabilities that may result from these

delays. As a result, optimal stabilization of time delay systems remains a practical control issue. To

this date, significant progress has been demonstrated in the control literature on the model-based control

approaches to addressing time delay control problems [22]. However, the requirement of perfectly known

models is not always realistic in many applications owing to the complexity of the systems themselves

and the ever presence of model uncertainties. As a result, model-free optimal control techniques are more

desirable in these scenarios.

In this chapter, we will present model-free control schemes for time delay systems based on reinforce-

ment learning. The discussion throughout this chapter is restricted to discrete-time delay systems as we

exploit the finite dimensional property of these systems to bring them into a delay-free form. We present

an extended state augmentation approach that treats the delayed state and input variables as additional

states in order to obtain a delay-free form. The method of Q-learning will be applied to design both state

feedback and output feedback controllers.

5.2. Extended State Augmentation

Consider a discrete-time linear system with both state and input delays given by the following state

space representation,

xk+1 =
∑S

i=0Aixk−i +
∑T

i=0Biuk−i,

yk = Cxk,
(5.1)

where xk ∈ Rn represents the internal state, uk ∈ Rm is the control input vector and yk ∈ Rp is the

output vector. The system is subject to multiple delays in both the state and inputs with S and T being

the maximum amount of state and input delays, respectively. The model of the system as well as the

length and the number of delays are assumed unknown in our problem.
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We are interested in solving the linear quadratic regulation (LQR) problem for the time delay system

(5.1) with the following cost function,

J =

∞∑
i=0

r(xi, ui), (5.2)

where r(xk, uk) takes the following quadratic form,

rk = xT
kQxk + uT

kRuk, (5.3)

and where Q = QT ≥ 0 and R = RT > 0 correspond to the desired parameters for penalizing the states

and control, respectively.

Due to the presence of time delays, the optimal control techniques that we developed in the earlier

chapters are not directly applicable. In the following, we will present a state augmentation procedure that

brings the system into a delay-free form. The augmentation is carried out by introducing the delayed

states and control inputs as additional states. To this end, let us define the augmented state vector as,

Xk=
[
xT
k xT

k−1 · · · xT
k−S uT

k−T uT
k−T+1 · · · uT

k−1

]T

. (5.4)

The dynamic equation of the augmented system can be obtained from the original dynamics (5.1) as

follows,

Xk+1 =



A0 A1 A2 · · · AS BT BT−1 BT−2 · · · B1

In 0 0 · · · 0 0 · · · 0 · · · 0

0 In 0 · · · 0 0 · · · 0 0 0
...

. . . . . .
...

...
...

... · · ·
...

...

0 0 · · · In 0 0 · · · 0 0 0

0 · · · 0 0 0 0 Im 0 · · · 0

0 · · · 0 0 0 0 0 Im
... 0

...
...

...
...

...
...

...
. . . . . .

...

0 · · · 0 0 0 0 0 · · · 0 Im

0 · · · 0 0 0 0 0 · · · 0 0



Xk +



B0

0

0
...
...
...
...
...
...

Im



uk

∆
= AXk +Buk. (5.5)

Since the maximum state delay S and input delay T are not known, we will extend the augmentation
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further up to their upper bounds S̄ and T̄ , respectively. For this purpose, we introduce the extended

augmented state vector as,

X̄k = [xT
k xT

k−1 · · · xT
k−S xT

k−S−1 · · · xT
k−S̄

uT
k−T̄ uT

k−T̄+1
· · · uT

k−T · · · uT
k−1]

T, (5.6)

and the corresponding extended augmented dynamics is given by,

X̄k+1 =



S̄ + 1 blocks︷ ︸︸ ︷
A0 · · · AS 0 · · ·

T̄ blocks︷ ︸︸ ︷
0 · · · BT · · · B1

In 0 0 · · · 0 0 · · · 0 · · · 0

0 In 0 · · · 0 0 · · · 0 0 0
...

. . . . . .
...

...
...

... · · ·
...

...

0 · · · 0 In 0 0 · · · 0 0 0

0 · · · 0 0 0 0 Im 0 · · · 0

0 · · · 0 0 0 0 0 Im
... 0

... · · ·
...

...
...

...
...

. . . . . .
...

0 · · · 0 0 0 0 0 · · · 0 Im

0 · · · 0 0 0 0 0 · · · 0 0



X̄k +



B0

0

0
...
...
...
...
...
...

Im



uk

∆
= ĀX̄k + B̄uk. (5.7)

We will now study the controllability property of the augmented systems (5.5) and (5.7).

Theorem 5.1. The delay-free augmented systems (5.5) and (5.7) are controllable if and only if

ρ
[∑S

i=0Aiλ
S−i−λS+1I

∑T
i=0Biλ

T−i
]

= n, (5.8)

for any λ ∈
{
λ ∈ C : det

(∑S
i=0Aiλ

S−i−λS+1I
)

= 0
}
.

Proof: Consider the augmented system (5.5). From linear systems theory, the system is controllable if

and only if
[
A− λI B

]
has a full row rank for all λ ∈ C. We evaluate ρ

[
A− λI B

]
as,
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ρ
[
A− λI B

]
= ρ



A0−λI A1 A2 · · · AS BT BT−1 BT−2 · · · B1 B0

In −λI 0 · · · 0 0 · · · 0 · · · 0 0

0 In −λI
...

... 0 · · · 0 · · · 0 0
...

. . . . . . . . .
...

... · · ·
...

...
...

...

0 · · · 0 In −λI 0 · · · 0 · · · 0 0

0 · · · 0 0 0 −λI Im 0 · · · 0 0

0 · · · 0 0 0 0 −λI Im
... 0 0

... · · ·
...

...
...

... · · · . . . . . .
...

...

0 · · · 0 0 0 0 0 · · · −λI Im 0

0 · · · 0 0 0 0 0 · · · 0 −λI Im



.

Performing some rows and column operations to cancel out the λI entries in the columns of B′s, we

have

ρ
[
A− λI B

]
= ρ



∗ BT +BT−1λ+· · ·+B0λ
T 0 0 · · · 0

∗ 0 0 0 · · · 0
...

...
...

...
...

...

∗ 0 0 0 · · · 0

0 0 Im 0 · · · 0

0 0 0 Im 0 0
...

...
...

. . . . . .
...

0 0 0 0 0 Im



.

Applying similar row and column operations to cancel out the λI entries corresponding to the columns
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of Ai’s results in,

ρ
[
A− λI B

]
= ρ



0 0 · · ·
∑S

i=0Aiλ
S−i−λS+1I

∑T
i=0Biλ

T−i 0 0 · · · 0

In 0 · · · 0 0 0 0 · · · 0

0
. . .

...
...

...
...

...
. . .

...

0 · · · In 0 0 0 0 · · · 0

0 0 0 0 0 Im 0 · · · 0

0 0 0 0 0 0 Im 0 0
...

...
...

...
...

...
. . . . . .

...

0 0 0 0 0 0 0 · · · Im


= ρ

[∑S
i=0Aiλ

S−i−λS+1I
∑T

i=0Biλ
T−i
]

+ nS +mT.

At full row rank, ρ
[
A− λI B

]
= n+ nS +mT , which requires

ρ
[∑S

i=0Aiλ
S−i−λS+1I

∑T
i=0Biλ

T−i
]

= n.

Let P (λ) = AS + AS−1λ + · · · + A0λ
S − λS+1I be a matrix polynomial of λ. Then, P (λ) loses its

rank for any λ ∈
{
λ ∈ C : det

(∑S
i=0Aiλ

S−i−λS+1I
)

= 0
}

. Thus, only for such λ’s does it need to

be ensured that

ρ
[∑S

i=0Aiλ
S−i−λS+1I

∑T
i=0Biλ

T−i
]

= n,

which is condition (5.8).

For the extended augmented system (5.7), we evaluate ρ
[
Ā− λI B̄

]
following similar row and
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column operations to result in,

ρ
[
Ā− λI B̄

]
= ρ



A0−λI · · · AS 0 · · · 0 · · · BT · · · B1 B0

In −λI 0 · · · 0 0 · · · 0 · · · 0 0

0 In −λI
...

... 0 · · · 0 · · · 0 0

0
. . . . . . . . .

...
... · · ·

... · · ·
...

...

0 · · · 0 In −λI 0 · · · 0 · · · 0 0

0 · · · 0 0 0 −λI Im 0 · · · 0 0

0 · · · 0 0 0 0 −λI Im
... 0 0

... · · ·
...

...
...

...
...

. . . . . . 0 0

0 · · · 0 0 0 0 0 · · · −λI Im 0

0 · · · 0 0 0 0 0 · · · 0 −λI Im


= ρ

[∑S
i=0Aiλ

S−i−λS+1I
∑T

i=0Biλ
T−i
]

+ nS̄ +mT̄ ,

where we have used the fact that the padded zero columns do not affect the row rank, whereas the S̄

number of In and T̄ number of Im matrices contribute nS̄+mT̄ to the row rank. For the controllability

of the extended augmented system (5.7), we need ρ
[
Ā− λI B̄

]
= n+ nS̄ +mT̄ , which requires

ρ
[∑S

i=0Aiλ
S−i−λS+1I

∑T
i=0Biλ

T−i
]

= n,

which is again condition (5.8). This shows that the augmented and extended augmented systems are

controllable if and only if (5.8) holds. This completes the proof. �

We next work towards deriving the conditions for the observability of the extended augmented system.

To this end, we introduce an augmented output vector as defined by

Yk =
[
yT
k uT

k−T

T − 1︷ ︸︸ ︷
0 · · · 0

]T

= CXk, C =


S + 1︷ ︸︸ ︷

C 0 0 · · · 0

T︷ ︸︸ ︷
0 0 0 · · · 0

0 0 0 · · · 0 Im 0 0 · · · 0

 .
In the same spirit, we can obtain an extended augmented output vector by incorporating the fictitious

states corresponding to the delayed states from xk−S−1 to xk−S̄ and to the delayed inputs from xk−T−1

to xk−T̄ as follows,

Ȳk =
[
yT
k uT

k−T̄

T̄ − 1︷ ︸︸ ︷
0 · · · 0

]T

= C̄X̄k, C̄ =


S̄ + 1︷ ︸︸ ︷

C 0 0 · · · 0

T̄︷ ︸︸ ︷
0 0 0 · · · 0

0 0 0 · · · 0 Im 0 0 · · · 0

 .
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We will now study the observability property of the augmented systems (5.5) and (5.7).

Theorem 5.2. The delay-free augmented systems (5.5) is observable if and only if

ρ
[∑S

i=0A
T
iλ
S−i−λS+1I CT

]
= n, (5.9)

for any λ ∈
{
λ ∈ C : det

(∑S
i=0Aiλ

S−i−λS+1I
)

= 0 and λ 6= 0
}

, and

ρ(AS) = n. (5.10)

The extended augmented system (5.7) is detectable if and only if (5.9) holds for any λ ∈ {λ ∈ C : |λ| ≥ 1}.

Proof: By duality, the observability of (A, C) implies the controllability of (AT, CT). Thus, (A, C)

is observable if and only if
[
AT − λI CT

]
has a full row rank of (S + 1)n + mT . We evaluate

ρ
[
AT − λI CT

]
. Moving the last column block to beginning of the right side partition and then adding

λ times this column to the next column on its right and then repeating this for the remaining columns,

results in,

ρ
[
AT − λI CT

]
= ρ



AT
0−λI In 0 · · · 0 0 0 0 · · · 0 0 CT

AT
1 −λI In · · · 0 0 · · · 0 · · · 0 0 0

AT
2 0 −λI . . .

... 0 · · · 0 · · · 0 0 0
...

...
. . . . . . In

...
...

... · · ·
...

...
...

AT
S · · · 0 0 −λI 0 0 0 · · · 0 0 0

BT
T 0 · · · 0 0 Im 0 0 · · · 0 0 0

BT
T−1 0 · · · 0 0 0 Im 0 0

... 0 0

BT
T−2 0 · · · 0 0 0 0 Im 0 0 0 0
... 0 · · · 0 0 0 0

. . . . . . 0 0 0

BT
1 0 · · · 0 0 0 0 0 · · · Im 0 0



.

Similarly, we can cancel all the Bi entries in the left partition using the identity columns from the right
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partition, which gives

ρ
[
AT − λI CT

]
= ρ



AT
0−λI In 0 · · · 0 0 0 0 · · · 0 0 CT

AT
1 −λI In · · · 0 0 · · · 0 · · · 0 0 0

AT
2 0 −λI . . .

... 0 · · · · · · · · · 0 0 0
...

...
. . . . . . In

... · · · · · ·
...

...
...

...

AT
S 0 0 · · · −λI 0 · · · 0 · · · 0 0 0

0 · · · 0 0 0 Im 0 0 · · · 0 0 0

0 · · · 0 0 0 0 Im 0 0
... 0 0

...
...

...
...

... 0 0 Im 0 0 · · · 0

0 · · · 0 0 0 0 0 0
. . . 0 0 0

0 · · · 0 0 0 0 0 0 · · · Im 0 0



.

The bottom half rows involve T number of Im matrices which contribute mT to the rank. We evaluate

the remaining non-zero partition in the top half as,

ρ



AT
0−λI In 0 · · · 0 CT

AT
1 −λI In · · · 0 0

AT
2 0 −λI . . .

... 0
...

... 0
. . . In

...

AT
S 0 0 · · · −λI 0


.

For the case when λ 6= 0, we can perform some elementary operations on the above matrix that gives

ρ



AT
0 − λI + 1

λA
T
1 + · · ·+ 1

λHAT
H 0 0 · · · 0 CT

0 In 0 · · · 0 0

0 0 In
. . .

... 0
...

...
. . . . . . 0

...

0 0 0 · · · In 0


.

The S number of In matrices contribute Sn to the rank. Thus, (A, C) is observable if and only if

ρ
[
AT

0 − λI + 1
λA

T
1 + · · ·+ 1

λHAT
H CT

]
= n,

or equivalently,

ρ
[ ∑S

i=0A
T
iλ
S−i−λS+1I CT

]
= n,
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for any λ ∈
{
λ ∈ C : det

(∑S
i=0Aiλ

S−i−λS+1I
)

= 0 and λ 6= 0
}
, which is condition (5.9).

If λ = 0 then

ρ



AT
0 In 0 · · · 0 CT

AT
1 0 In · · · 0 0

AT
2 0 0

. . .
... 0

...
...

. . . . . . In
...

AT
S · · · 0 0 0 0


= (S + 1)n

if and only if

ρ(AS) = n,

which is condition (5.10).

For the case of the extended augmented system, it can be readily verified that for λ 6= 0, the

first condition (5.9) remains the same due to the additional identity matrices, as in the proof of the

controllability results in Theorem 5.1. The second condition in this case becomes ρ(AS̄) = n. However,

this condition cannot be satisfied because AS̄ = 0. As a result, the observability condition (5.10) for

the extended augmented system loses rank for λ = 0. Since λ = 0 is a stable eigenvalue, we still have

the detectability condition satisfied. In the special case, when S̄ = S, the extended augmented system is

observable if and only if (5.9) and (5.10) hold. This completes the proof. �

Remark 5.1. The observability condition for the augmented system (5.5) can also be relaxed to de-

tectability, in which case we require only the first condition (5.9) to hold for |λ| ≥ 1.

5.3. Q-learning Based State Feedback Stabilization of Time Delay Systems

In this section, we will present a Q-learning scheme for learning the optimal control parameters that

uplifts the requirement of the knowledge of the system dynamics and the delays.

To this end, we rewrite the original utility function for (5.1) in terms of the extended augmented state

vector (5.6) as,

rk = X̄T
kQ̄X̄k + uT

kRuk, (5.11)

where

Q̄ =

Q 0

0 0

 .
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Since the system is now in a delay-free form, we can readily compute the optimal controller. From

optimal control theory [37], we know that there exists a unique optimal control sequence

u∗k = K̄∗X̄k = −(R+ B̄TP̄ ∗B̄)−1B̄TP̄ ∗ĀX̄k (5.12)

that minimizes (5.2) under the conditions of the stabilizability of
(
Ā, B̄

)
and detectability of

(
Ā,
√
Q̄
)

,

where P̄ ∗ = (P̄
∗
)

T is the unique positive semi-definite solution to the following ARE,

ĀTP̄ Ā− P̄ + Q̄− ĀTP̄ B̄(R+ B̄TP̄ B̄)−1B̄TP̄ Ā = 0. (5.13)

We will now obtain a Q-function for the extended augmented system. Consider a stabilizing control

policy uk = K̄X̄k, which is not necessarily optimal with respect to our utility function. Corresponding

to this controller, there is a cost given by the following value function that represents the infinite horizon

cost of executing the control starting from state X̄k from time k to time ∞ as follows,

VK̄(X̄k) = X̄T
kP̄ X̄k. (5.14)

The above infinite horizon value function can be recursively written as,

VK̄(X̄k) = X̄T
kQ̄X̄k + X̄T

kK̄
TRK̄X̄k + VK̄(X̄k+1).

Similar to the value function above, we can define a Quality function (Q-function) which gives the value

of executing an arbitrary control uk instead of uk = K̄X̄k at time k and then following policy K̄ from

time k + 1,

QK̄(X̄k, uk) = X̄T
kQ̄X̄k + uT

kRuk + VK̄(X̄k+1). (5.15)

Substituting the dynamics (5.7) in the above expression results in,

QK̄(X̄k, uk) = X̄T
kQ̄X̄k + uT

kRuk + X̄T
k+1P̄ X̄k+1

= X̄T
kQ̄X̄k + uT

kRuk +
(
ĀX̄k + B̄uk

)T
P̄
(
ĀX̄k + B̄uk

)
,

or equivalently,

QK̄(X̄k, uk) =

X̄k

uk

T

H

X̄k

uk

, (5.16)
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where

H
∆
=

HXX HXu

HuX Huu

 =

Q̄+ĀTP̄ Ā ĀTP̄ B̄

B̄TP̄ Ā R+B̄TP̄ B̄

 .
When K̄ = K̄∗, we have P̄ = P̄ ∗, QK̄ = Q∗, and the optimal LQR controller can be obtained by

solving ∂
∂uk

Q∗ = 0 for uk, which corresponds to (5.12).

It can be seen that the problem of finding an optimal controller boils down to finding the optimal

matrix H∗ or the optimal Q-function Q∗.

Q-learning is a model-free learning technique that estimates the optimal Q-function without requiring

the knowledge of system dynamics. It does so by means of the following Bellman Q-learning equation,

QK̄(X̄k, uk) = X̄T
kQ̄X̄k + uT

kRuk +QK(X̄k+1, K̄X̄k+1), (5.17)

which is obtained by substituting VK̄(X̄k) = QK̄(X̄k, K̄Xk) in (2.9). Let

zk =

X̄k

uk

 .
Then, by definition (2.11), we can write equation (2.23) as,

zT
kHzk = X̄T

kQ̄X̄k + uT
kRuk + zT

k+1Hzk+1, (5.18)

which is linear in the unknown matrix H . We can perform the following parametrization on this equation,

QK̄(zk) , QK̄(X̄k, uk)

= H̄Tz̄k,

where

H̄ = vec(H)

, [h11, 2h12, · · · , 2h1l, h22, 2h23, · · · , 2h2l, · · ·hll]T ∈ Rl(l+1)/2,

hii are the elements of matrix H and l = n+ nS̄ +mT̄ +m. The regressor z̄k ∈ Rl(l+1)/2 is defined as

the following quadratic basis set,

z̄ =
[
z2

1 , z1z2, · · · , z1zl, z
2
2 , z2z3, · · · , z2zl, · · · z2

l

]T
.
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With this parametrization, we have, from (5.18), the following equation,

H̄T(z̄k − z̄k+1) = X̄T
kQ̄X̄k + uT

kRuk. (5.19)

In what follows, we present an iterative Q-learning algorithm to learn the optimal control parameters.

Algorithm 1: State Feedback Iterative Q-learning Value Iteration Algorithm for Time Delay Systems

Initialization. Start with an arbitrary policy u0
k = vk with vk being the exploration signal. Set H0 ← 0.

Collect Data. Apply the initial policy u0 to collect L datasets of (X̄k, uk) along with their quadratic terms.

Value Update. Compute the least-squares solution of

(
H̄j
)T
z̄k = X̄T

kQ̄X̄k + uT
kRuk +

(
H̄j−1

)T
z̄k+1. (5.20)

Policy Update. Determine an improved policy using

uj+1
k = −(Hj

uu)
−1
Hj
uXX̄k. (5.21)

Repeat and Stop. Then, for j = 1, 2, · · · , repeat the steps in (5.20) and (5.21) until convergence,

∥∥H̄j − H̄j−1
∥∥ < ε, (5.22)

for some small positive constant ε.

Algorithm 1 presents an iterative algorithm based on Q-learning. We apply an arbitrary initial control

with an exploration signal vk such that the rank condition (5.24) is satisfied. Based on this data, we solve

the recursive Q-learning Bellman equation (5.20) in the value update step. In the next step, we perform

a minimization of the Q-function with respect to uk, which gives us a new policy. This policy will be

evaluated in the next iteration. These iterations are carried out until we see no further updates in the

estimate of the matrix H within a sufficiently small range specified by the positive constant ε. Once this

criterion is met, the algorithm is considered to have converged to the (near) optimal solution. The data
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matrices in the recursive iterations are given as,

Φ =
[
z̄k−L+1, z̄k−L+2, · · · z̄k

]
,

Υj−1 =
[
r(X̄k−L+1, uk−L+1) +

(
H̄j−1

)T
z̄k−L+2, r(X̄k−L+2, uk−L+2) +

(
H̄j−1

)T
z̄k−L+3, · · · ,

r(X̄k, uk) +
(
H̄j−1

)T
z̄k+1

]T

.

The least-squares solution of (5.20) is given by,

H̄j = (ΦΦT)−1ΦΥj−1, (5.23)

It is important to note that since uk = K̄X̄k is linearly dependent on X̄k, the least-squares problem

cannot be solved unless we inject an independent exploration signal vk in uk in order to guarantee the

invertibility of ΦΦT in (5.23). In other words, the following rank condition should hold,

rank(Φ) = l(l + 1)/2. (5.24)

We next show the convergence of Algorithm 1.

Theorem 5.3. Under the stabilizability and detectability conditions on (Ā, B̄) and (Ā,
√
Q̄), respectively,

the iterative Q-learning Algorithm 1 generates a sequence of controls {ujk, j = 1, 2, 3, ...} that converges

to the optimal feedback controller given in (5.12) as j →∞ if the rank condition (5.24) is satisfied.

Proof: The proposed iterative algorithm is based on the following Q-learning equation,X̄k

uk

T

H

X̄k

uk

 = X̄T
kQ̄X̄k + uT

kRuk +

X̄k+1

uk+1

T

H

X̄k+1

uk+1

 .
Using the feedback policy K̄ and the definition (5.16), we have

QK̄(X̄k, K̄X̄k) = X̄T
kQ̄X̄k + X̄T

kK̄
TRK̄X̄k +QK̄(X̄k+1, K̄X̄k+1).

Noticing that QK̄(X̄k, K̄X̄k) = VK̄(X̄k), we have the following Bellman equation,

VK̄(X̄k) = X̄T
kQ̄X̄k + X̄T

kK̄
TRK̄X̄k + VK̄(X̄k+1).
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As the cost of following policy K̄ is quadratic in the state as given by (5.14), we have

X̄T
kP̄ X̄k = X̄T

kQ̄X̄k + X̄T
kK̄

TRK̄X̄k + X̄T
k+1P̄ X̄k+1,

or

X̄T
kP̄ X̄k = X̄T

kQ̄X̄k + X̄T
kK̄

TRK̄X̄k + X̄T
k(Ā+ B̄K̄)TP̄ (Ā+ B̄K̄)X̄k,

which holds for all X̄k. We thus have the following Lyapunov equation,

(Ā+ B̄K̄)TP̄ (Ā+ B̄K̄)− P̄ + Q̄+ K̄TRK̄ = 0. (5.25)

On the other hand, by the definition of matrix H in (5.16), the policy update step computes the policy

K̄ as

K̄ = −(R+ B̄TP̄ B̄)−1B̄TP̄ Ā. (5.26)

Substituting (5.26) in (5.25) results in the ARE (5.13). If the rank condition (5.24) holds then the

value update equation (5.20) is uniquely solvable. Then, the iterations on the value update and policy

update steps corresponding to (5.20) and (5.21) are equivalent to the recursion on the following Riccati

Difference Equation (RDE),

P̄ j+1 = ĀTP̄ jĀ+ Q̄− ĀTP̄ jB̄(R+ B̄TP̄ jB̄)−1B̄TP̄ jĀ.

The recursions on the RDE converge to the solution of the ARE under the stabilizability and detectability

conditions of (Ā, B̄) and (Ā,
√
Q̄), respectively [34] . Thus, the iterative Q-learning algorithm converges

to the optimal stabilizing solution K̄∗. As a result, we have X̄k and xk converging to zero as k → ∞.

This completes the proof. �

Remark 5.2. Compared to the previous works [73], [74], the proposed scheme relaxes the assumption

of the existence of a bicausal change of coordinates. Furthermore, unlike in [73], [74], the information

of the state and input delays (both the number and lengths of the delays) is not needed in our proposed

scheme.
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5.4. Q-learning Based Output Feedback Stabilization of Time Delay Systems

This section will present a Q-learning based control algorithm to stabilize the time delay system

(5.1) using only the measurements of the system output instead of the full state. We recall from [38]

the following lemma, which allows the reconstruction of the system state by means of the delayed

measurements of the system inputs and outputs. Applying the parametrization (2.18) from Chapter 2 for

the augmented system (5.5), we have

Xk = MyYk−1,k−N +Muuk−1,k−N , (5.27)

where N ≤ n(S + 1) + mT is an upper bound on the system’s observability index, uk−1,k−N ∈ RmN

and Yk−1,k−N ∈ R(p+m)N are the input and augmented output data vectors and Mu and My are formed

using the augmented system matrices (A,B, C).

Remark 5.3. The state parametrization (5.27) involves the invertability of the observability matrix. To

ensure the observability of the extended augmented pair (Ā, C̄), we will assume in this section that S̄ = S.

For the extended augmented system (5.7), we have the following parametrization of the extended

augmented state,

X̄k = M̄yȲk−1,k−N + M̄uuk−1,k−N , (5.28)

where Ȳk−1,k−N , M̄u and M̄y are formed using the extended augmented system matrices (Ā, B̄, C̄) and

N now represents an upper bound on the extended augmented system’s observability index. It can be

easily verified that substitution of (5.28) in (5.16) results in,

QK̄ =


uk−1,k−N

Ȳk−1,k−N

uk


T
Hūū Hūȳ Hūu

Hȳū Hȳȳ Hȳu

Huū Huȳ Huu



uk−1,k−N

Ȳk−1,k−N

uk


∆
= ζT

kHζk, (5.29)

where

ζk =
[
uT
k−1,k−N Ȳ T

k−1,k−N uT
k

]T

,

H = HT ∈ R(mN+(p+m)N+m)×(mN+(p+m)N+m),
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and the partitioned matrices are defined as,

Hūū = M̄ T
u(Q̄+ ĀTP̄ Ā)M̄u ∈ RmN×mN ,

Hūȳ = M̄ T
u(Q̄+ ĀTP̄ Ā)M̄y ∈ RmN×(p+m)N ,

Hūu = M̄ T
uĀ

TP̄ B̄ ∈ RmN×m,

Hȳȳ = M̄ T
y(Q̄+ ĀTP̄ Ā)M̄y ∈ R(p+m)N×(p+m)N

Hȳu = M̄ T
yĀ

TP̄ B̄ ∈ R(p+m)N×m,

Huu = R+ B̄TP̄ B̄ ∈ Rm×m.

(5.30)

To obtain the optimal controller, we perform the minimization of the optimal Q-function Q∗
K̄

with H∗

being the optimal H. Setting ∂
∂uk

Q∗
K̄

= 0 and solving for uk result in our output feedback LQR control

law,

u∗k = −(H∗uu)−1 (H∗uūuk−1,k−N +H∗uȳȲk−1,k−N
)
. (5.31)

Now that we have an output feedback form of the Q-function for the extended augmented time delay

system, the next step is to learn the optimal Q-function Q∗
K̄

and the corresponding output feedback

optimal controller (5.31).

Consider the state feedback Q-learning equation (5.18). We employ the equivalent output feedback

Q-function to write this equation as,

ζT
kHζk = Ȳ T

k Q̄yȲk + uT
kRuk + ζT

k+1Hζk+1. (5.32)

It should be noted that in the output feedback learning, we apply the user-defined weighting matrix Q̄y

to the outputs. The term X̄T
kQX̄k can be replaced with Ȳ T

k Q̄yȲk without requiring the knowledge of C̄

when Q̄ = C̄TQ̄yC̄ and Ȳk = C̄Xk, where Ȳk is measurable. Here, uk+1 is computed as,

uk+1 = −(Huu)−1 (Huūūk,k−N+1 +HuȳȲk,k−N+1

)
.

So, (5.32) is the Bellman equation for the Q-function in the output feedback form for which we will

develop a reinforcement learning algorithm. Next, we will parameterize the Q-function in (5.29) so that

we can separate the unknown matrix H.

Consider the output feedback Q-function in (2.19) which can be linearly parametrized as,

QK̄ = H̄Tz̄k, (5.33)
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where H̄ = vec(H) ∈ Rl(l+1)/2 , [H11, 2H12, · · · , 2H1l,H22, 2H23, · · · , 2H2l, · · ·Hll]T is the vector

that contains the upper triangular portion of matrix H, where l = mN + (p + m)N + m. Since H is

symmetric, the off-diagonal entries are included as 2Hij . The regression vector ζ̄k ∈ Rl(l+1)/2 is defined

as the quadratic basis set,

ζ̄ =
[
ζ2

1 , ζ1ζ2, · · · , ζ1ζl, ζ
2
2 , ζ2ζ3, · · · , ζ2ζl, · · · ζ2

l

]T
.

With the parametrization (5.33), we have the following equation,

H̄Tζ̄k = Ȳ T
k Q̄yȲk + uT

kRuk + H̄Tζ̄k+1. (5.34)

We can now utilize iterative Q-learning to learn our output feedback Q-function matrix. In what follows,

we present an iterative Q-learning algorithm to learn the optimal control parameters.

Algorithm 2: Output Feedback Iterative Q-learning Value Iteration Algorithm for Time Delay

Systems

Initialization. Start with an arbitrary policy u0
k = vk with vk being the exploration signal. Set H0 ← I .

Collect Data. Apply the initial policy u0 to collect L datasets of (Ȳk, uk) along with their quadratic

terms.

Value Update. Compute the least-squares solution of

(
H̄j
)T
z̄k = Ȳ T

k Q̄yȲk + uT
kRuk +

(
H̄j−1

)T
ζ̄k+1. (5.35)

Policy Update. Determine an improved policy using

uj+1
k = −(Hjuu)

−1
(
Hjuūuk−1,k−N +HjuȳȲk−1,k−N

)
. (5.36)

Repeat and Stop. Then, for j = 1, 2, · · · , repeat the steps in (5.20) and (5.21) until convergence,

∥∥H̄j − H̄j−1
∥∥ < ε, (5.37)

for some small positive constant ε.
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Algorithm 2 presents an output feedback iterative algorithm based on Q-learning. We apply an arbitrary

initial control with an exploration signal vk. Based on this data, we solve the recursive Q-learning Bellman

equation (5.35) in the value update step. In the next step, we perform a minimization of the Q-function

with respect to uk, which gives us a new policy. This policy will be evaluated in the next iteration. These

iterations are carried out until we see no further updates in the estimates of the matrix H for a sufficiently

small positive constant ε. Once this criterion is met, the algorithm has converged to the (near) optimal

solution. The data matrices in recursive iterations are given as,

Φ =
[
ζ̄k−L+1, ζ̄k−L+2, · · · ζ̄k

]
,

Υj−1 =
[
r(Ȳk−L+1, uk−L+1) +

(
H̄j−1

)T
ζ̄k−L+2 , r(Ȳk−L+2, uk−L+2) +

(
H̄j−1

)T
ζ̄k−L+3, · · ·

r(Ȳk, uk) +
(
H̄j−1

)T
ζ̄k+1

]T

.

The least-squares solution of (5.35) is given by,

H̄j = (ΦΦT)−1ΦΥj−1, (5.38)

Similar to Algorithm 1, the following rank condition needs to be satisfied to solve the least-squares

problem (5.38),

rank(Φ) = l(l + 1)/2. (5.39)

Remark 5.4. When N < T̄ , Ȳk−1,k−N will contain entries from uk−1,k−N that will prevent the rank

condition (5.39) from being satisfied even in the presence of an exploration signal vk. However, in the

proof of Theorem 5.2, we see that increasing T to an arbitrary large T̄ does not affect the observability.

Furthermore, the rank condition (5.9) corresponding to the original output yk remains unchanged. This

implies that the sum of the observability indices from the original output yk also remains unchanged.

Therefore, the augmented output vector uk−T̄ must be contributing to the observability of the extended

states. This causes the sum of the observability indices corresponding to the augmented output vector

uk−T̄ to increase to mT̄ , with each component contributing T̄ equally. Thus, for an arbitrarily large T̄ ,

the observability index becomes N = T̄ and the rank condition (5.39) can be satisfied.

We next show the convergence of Algorithm 2.

Theorem 5.4. Under the stabilizability and detectability conditions on (Ā, B̄) and (Ā,
√
Q̄), respectively,
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the iterative Q-learning Algorithm 2 generates a sequence of controls {ujk, j = 1, 2, 3, ...} that converges

to the optimal feedback controller given in (5.12) as j →∞ if the rank condition (5.39) is satisfied.

Proof: Consider the output feedback Q-learning equation

ζT
kHζk = Ȳ T

k Q̄yȲk + uT
kRuk + ζT

k+1Hζk+1.

Based on the definitions of ζk and H in (5.30), we have
ūk−1,k−N

Ȳk−1,k−N

uk


T[
M I

]T

H
[
M I

]

ūk−1,k−N

Ȳk−1,k−N

uk

 = X̄T
kQ̄X̄k + uT

kRuk

+


ūk,k−N+1

Ȳk,k−N+1

uk+1


T[
M I

]T

H
[
M I

]

ūk,k−N+1

Ȳk,k−N+1

uk+1

 ,

where M =
[
M̄u M̄y

]
and Q̄ = C̄TQ̄yC̄.

Since (A, C) is observable, we have

X̄k = M
[
uT
k−1,k−N Ȳ T

k−1,k−N

]T

,

which results in the state feedback equation,X̄k

uk

T

H

X̄k

uk

 = X̄T
kQ̄X̄k + uT

kRuk +

X̄k+1

uk+1

T

H

X̄k+1

uk+1

 .
Let

K̄ = (Huu)−1
[
Huū Huȳ

]
.

Then, by the definition of H, we have K̄ = MK̄ and the policy

uk = K
[
uT
k−1,k−N Ȳ T

k−1,k−N

]T

is equivalent to the state feedback policy uk = K̄X̄k. Using the definition (5.16), we have

QK̄(X̄k, K̄X̄k) = X̄T
kQ̄X̄k + X̄T

kK̄
TRK̄X̄k +QK̄(X̄k+1, K̄X̄k+1).
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Then, the remainder of the proof follows the arguments of Theorem 5.3. This completes the proof. �

5.5. Results

In this section, we test the proposed scheme using numerical simulation. Consider the discrete-time

system (5.1) with

A0 =

0.6 0.3

0.2 0.5

 , A1 =

0.2 0.5

0.4 0.1

 , B1 =

0.6

0.4

 , B2 =

 0.1

−0.1

 , C = [1− 0.8].

There are two input delays and one state delay present in the system. Notice that, although the matrices

A0 and A1 are both Schur stable, the combined system is unstable due to delays, which can be checked

by finding the roots of the polynomial matrix P (λ) = A0λ+A1 − λ2I or by evaluating the eigenvalues

of the augmented matrix A as defined in (5.5). It can be verified that the controllability condition of

the combined delayed system ρ
[∑S

i=0Aiλ
S−i − λS+1I

∑T
0 Biλ

T−i
]

= n holds. Hence, the extended

augmented system (5.6) is controllable. The maximum input and state delays present in the system are

T = 2 and S = 1, respectively. We first validate the state feedback Algorithm 1. Let T̄ = 3 and S̄ = 1

be the upper bounds on the input and state delays, respectively. We specify the user-defined performance

index as Q = I and R = 1. The nominal optimal feedback control matrix as obtained by solving the

ARE with known delays is,

K̄∗=
[
0.7991 0.8376 0.3622 0.3643 0.0007 0.6191

]
.

The convergence criterion of ε = 0.001 was selected on the controller parameters. Since l = n(S̄ + 1) +

m(T̄ +1) = 8, we need at least l(l+1)/2 = 36 data samples to satisfy the rank condition (5.24) to solve

(5.20). These data samples are collected by applying some sinusoidal signals of different frequencies and

magnitudes in the control. The state response is shown in Fig. 5.1. It takes 9 iterations to converge to the

optimal controller as shown in Fig. 5.2. It can be seen in Fig. 5.1 that the controller is able to stabilize

the unstable system. The final estimate of the control matrix is,

ˆ̄K=
[
0.7996 0.8380 0.3625 0.3645 0 0.0007 0.6194

]
.

It can be seen that the estimated control parameters correspond only to the actual delays present in the

system while the one term corresponding to the extra state is 0. In other words, the final control is equal
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Fig. 5.1: Algorithm 1: State trajectory of the closed-loop system under state feedback.
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Fig. 5.2: Algorithm 1: Convergence of the parameter estimates under state feedback.

to the one obtained using the exact knowledge of the delays and system dynamics. Moreover, the rank

condition (5.24) is no longer needed once the convergence criterion is met.

We next validate the output feedback Algorithm 2. It can be verified that the two observability conditions

in Theorem 5.2 hold. We specify the user-defined performance index as Q̄y = I and R = 1. The bound

on the state delay is the same but the bound on the input delay has been increased to T̄ = 4 to make the

observability index N = T̄ in order to satisfy the output feedback rank condition (5.39). The nominal

output feedback optimal control parameters as obtained by solving the ARE with known delays are,

H∗uȳ =
[
12.1348 −1.0313 2.1086 0 1.9331 0 1.7188 0

]
,

H∗uū =
[
1.7316 2.1151 −0.7301 −2.0765

]
,H∗uu = 3.3954.

The convergence criterion of ε = 0.001 was selected on the controller parameters. Since l = mN +

(p + m)N + m = 13, we need at least l(l + 1)/2 = 91 data samples to satisfy the rank condition

(5.39) to solve (5.35). These data samples are collected by applying some sinusoidal signals of different

frequencies and magnitudes in the control. The state response is shown in Fig. 5.3. It takes around 18

iterations to converge to the optimal controller as shown in Fig. 5.4. It can be seen in Fig. 5.3 that
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Fig. 5.3: Algorithm 2: State trajectory of the closed-loop system under output feedback.
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Ĥ

−
H

∗

‖

Fig. 5.4: Algorithm 2: Convergence of the parameter estimates under output feedback.

controller is able to stabilize the unstable system. The final estimates of the control parameters are,

Ĥuȳ =
[
12.1077 −1.0289 2.1040 0 1.9287 0 1.7149 0

]
,

Ĥuū =
[
1.7277 2.1102 −0.7286 −2.0719

]
, Ĥuu = 3.3927.

As can be seen in the state feedback and output feedback results, while the transient performance of the

state feedback algorithm is superior due to fewer unknown parameters to be learnt, the output feedback

algorithm has the advantage that it does not require the measurement of the full state feedback.
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5.6. Summary

In this chapter, we presented an application of reinforcement learning to solve the model-free optimal

stabilization problem for linear time delay systems with multiple unknown state and input delays and

unknown system dynamics. To handle the unknown delays, an extended state augmentation approach

was presented that transforms the system into an extended delay-free system. The upper bounds on the

state and input delays were used in the augmentation process, in which the delayed state and control

inputs were treated as additional virtual states of the systems. The transformation of the system to the

extended delay-free form does not require any bicausal change of coordinates, as needed in the previous

works. Furthermore, it was shown that the controllability property of the system is also preserved in the

extended augmentation process. State feedback Q-learning scheme was employed to learn the optimal

control parameters. In the second part of this chapter, we focused on the design of the output feedback

Q-learning controller in order to circumvent the requirement of full state for feedback. Observability

conditions of the augmented and extended augmented systems were presented. Unlike the controllability

result, it was found that while the augmented delay-free system (with known maximum state delay and

input delay) can recover observability, the extended augmented systems (with unknown maximum state

delay and input delay) can achieve at most detectability. Under the special case when the maximum

state delay is known, the extended augmented system becomes observable even when the maximum

input delay is unknown. An output feedback Q-function was presented based on the parametrization

of the state vector using delayed input and output measurements. An iterative Q-learning scheme was

presented to learn the optimal output feedback Q-function using only the measured input and output data.

Simulation results were used to demonstrate the effectiveness of both the state feedback and the output

feedback algorithms.
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6. CONCLUSIONS AND FUTURE WORK

This dissertation presents new reinforcement learning algorithms for the model-free optimal control

of linear systems using dynamic output feedback. In contrast to their state feedback counterparts, these

output feedback algorithms require fewer sensors, and thereby, make the RL control framework more

feasible from a practical stand point. The primary challenges in developing output feedback RL algorithms

include the issue of exploration bias, the need of discounted cost functions and the unavailability of

models to design state estimators. Although exploration is essential in RL algorithms to ensure parameter

convergence, it is also linked to the estimation bias problem. Discounted cost functions provide a way to

suppress this problem but they also bring instabilities in the design. Furthermore, state estimation based

control techniques are difficult to design together with RL control algorithms. To tackle these difficulties,

this work develops new learning equations based on dynamic output feedback. These new learning

equations incorporate the exploration component of the control signal, and thereby, prevent the estimation

bias from occurring in the first place. As a result, the need of discounted cost functions is eliminated and

closed-stability and optimality of the solution are ensured. The output feedback control parameters are

learned directly without ever estimating the internal state, which would otherwise complicate the design.

These ideas are materialized first in the form of model-free algorithms for the classical linear quadratic

regulator optimal control problem for both discrete-time and continuous-time systems.

This work has also developed new algorithms to address more advanced control problems. H-infinity

based dynamic output feedback control algorithms are developed to reject external disturbances, where

the ideas of game theory are employed to solve these problems. The dissertation also focuses on

solving control constrained problems. Ideas of low gain feedback and parameterized Riccati equations

are presented in a model-free setting to solve these problems. Finally, attention is also given to handle

time delays present in the control loop, and for this purpose, an extended state augmentation approach

is presented to solve the optimal control problems in the presence of delays whose information is not

known.

This work, while addressing some RL control challenges, also gives rise to some new questions and

interesting problems for future work, such as,

1) Solving general optimal tracking problems in the presence of disturbances.

2) Extensions to multi-agent distributed reinforcement learning control.
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3) Developing disturbance rejection RL algorithms that do not require access to the disturbance

channel.

4) Relaxing the exploration requirements for safe learning practices.

5) Solving continuous-time delay problems using reinforcement learning.

6) Extensions of the work to solve nonlinear output feedback control problems.
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