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Abstract

The application of autonomous robots is drawing increasing attention in many

fields. An autonomous robot can accomplish dangerous or tedious tasks that are

difficult for humans, including aerial and underwater tasks. To achieve the task goals

precisely and steadily, using a suitable control scheme is vital to an autonomous

robot. Adaptive control, with its advantage in overcoming parametric uncertainties,

is widely accepted as an advanced control method for robots.

Most research in this field has been focused on the adaptive control of underwater

robots, but robot control in a varying environment remains an open problem. This

thesis proposes a multiple-model-based adaptive control scheme to deal with the ef-

fect of the varying environment. The equations of motion of a robot manipulator are

specifically derived. The complete model is based on the original model of a robot

manipulator, with the effects of added mass, buoyancy, damping, drag, and lift con-

sidered as the varying environmental factors. Then a multiple-model-based control

scheme is adopted to deal with the varying environment. Multiple controllers are

being compared while controlling the robot. The controller with the slightest error

is adopted to compensate for the varying environment effect, and the control perfor-

mance can be better than a single-model controller. The control scheme is applicable

for the robot moving in the air or any other fluid environments. Simulation results

of the developed multiple-model adaptive controller on a planar elbow robot moving

in the air and underwater are given to illustrate the improved control performance.
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Chapter 1

Introduction

Robots are a kind of mechanical device that can achieve various tasks. A robot

is generally integrated with knowledge from different fields such as mechanics, elec-

tronics, and information processing. Robots can have many forms, including robot

manipulators, wheeled robots, aerial robots, etc. Among these forms, the robot ma-

nipulator is widely applied in welding, grabbing, surgery, and assembly line. To meet

the requirements of the tasks, using a good control scheme is an essential part of

designing a robot manipulator. As people’s demand for autonomous robots is in-

creasing, better control methods need to be carried out to guarantee the performance

of the robot.

The control of underwater robots is a challenging task. The dynamics of such a

system are nonlinear, coupled, and can be time-varying. In application, some system

parameters may not be precisely known. In this case, a parameter estimator that can

identify the parameters’ uncertainty is necessary to optimize the control performance.

Adaptive controllers are suitable for this problem. An adaptive controller consists of

a controller and a parameter update law, which can guarantee the system output is

as good as if the parameters were known.

1
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This thesis will consider the case where the robot is moving in the wind or in/out

of the water or some liquid. The effect of changing environment can be compensated

by switching the robot estimation model for adequate control.

1.1 Literature Review

In this section, we introduce some contributions in robot manipulator control in a

fluid environment, including the modeling of the robot, the adaptive control schemes,

the control of underwater robots, and multiple-model based control schemes. By

going through the literature, we can glance at the current research stage.

Modeling of robot manipulators under varying environments. To design

a robot and analyze its stability, we need the mathematical model of the robot at

first. For the robot manipulator, a detailed description of the dynamic models can

be found in [25]. Here we mainly discuss the literature on aerial and underwater

manipulators.

The dynamic model is different from the original model for the robot acting in

the air or underwater. The aerial manipulator has prospered in the past decade. The

work of carrying a manipulator on an unmanned aerial vehicle (UAV) was first pro-

posed in 2012. In [27], Korpela et al. first brought the idea of combining a UAV and a

4-DOF manipulator. Following this, the modeling and control [31], the dynamic sta-

bility analysis [30] and model reference adaptive control [32] of the UAV-manipulator

system were carried out. Disturbances are also an essential fact that needs to be con-

sidered. In [28], Lippielo and Ruggiero considered the external disturbances in the

modeling and control of their research. However, the disturbances were not explicitly

expressed. They were only regarded as an additional term. Besides the theoretical

study, implementation was also done by researchers. In [36], Ore et al. showed an
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experimental result of an aerial manipulator which is capable of doing water sam-

pling tasks. The performance stability can be guaranteed in a wind environment up

to 10m/s.

As for the underwater case, the modeling of a robot manipulator is much different

from that in the atmosphere. In 1991, Janocha and Papadimitriou simulated and

analyzed the difference between an underwater manipulator and an original one [6].

The simulation result showed that a more substantial torque is needed underwater,

and the coupling is also higher among axes. Later in 1994, Levesque and Richard

gave a detailed modeling method of robot manipulator link in the water, including

the geometric description and forces exerted on the manipulator [10]. In [13], detailed

modeling of underwater manipulator considering the added mass, buoyancy, current

load, drag, and lift force was introduced by Schjolberg. The drag and lift force has

attracted the most attention among the forces exerted on the robot manipulator. In

1998, Leabourne and Rock used strip theory to model the drag force exerted on a robot

manipulator link [16]. They separated a robot link into small segments, computed the

drag force on each segment, and added them together to get the total drag force. In

the same year, McLain and Rock validated this modeling method through experiment

[17]. Some researchers also obtain the drag force through an integral computation on

the manipulator link [5] and [38].

Adaptive control of robot manipulators. Since the robot manipulator may

have many unknown parameters in the application, the adaptive control scheme is

commonly adopted. There are two different kinds of adaptive control schemes applied

in the robot manipulator control field, namely direct adaptive control and indirect

adaptive control. The difference lies in the error signal used to generate the parameter

adaptation law. As its name suggests, direct adaptive control takes the joint position

and velocity error to update parameters. In 1987, Craig et al. proposed an adaptive
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control scheme for robot manipulators [1]. Their work combined adaptive control

law with a computed-torque controller, and global convergence was achieved. Still,

it required the knowledge of the measurement of the system acceleration. To avoid

this, Slotine and Li added the first-order filter into the controller, and the global

convergence can also be reached [2]. A case study was then carried out with the

theoretical research [4]. Indirect adaptive control uses the error between the true

and estimated parameters to generate the parameter update law. In 1988, Li and

Slotine introduced an indirect robot manipulator control scheme, and exponential

convergence of tracking errors and estimated parameters are proved [3].

With the support of theoretical results, many researchers have applied adaptive

control schemes for aerial manipulators and underwater manipulators. In 2014, An-

tonelli and Cataldi did research on the adaptive control of arm-equipped quadrotors,

where the wind disturbance was not considered [33]. In the same year, Caccavale et

al. implemented an adaptive controller on a manipulator-UAV system [34]. However,

their method requires measurement of the external disturbances. Research with a

more detailed model was carried out in the underwater robot adaptive control field.

In 1991, Fossen and Sagatun implemented an adaptive controller and a hybrid con-

troller with an adaptive and sliding mode controller to the underwater robot system.

The uncertainties of the vehicle thruster were considered, and a simulation study was

done on an underwater vehicle. In the same year, Broome and Wang applied an

adaptive parameter update law with a PID controller on an underwater manipulator.

The PID gains are also updated during the control process. In 1998, Antonelli and

Chiaverini researched the adaptive control of a vehicle-manipulator system where the

hydrodynamic forces were considered [15]. The tracking error’s asymptotic conver-

gence and the parameter estimations’ boundedness were proven. In 1999, Lee and

Yuh applied a non-regressor based adaptive control to an underwater manipulator
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[19], and later in 2000, the experimental validation was carried out [20]. Indirect

adaptive control was also applied in the field of underwater robot control. In 2012,

Mohan and Kim proposed an indirect adaptive control scheme on an underwater

vehicle-manipulator system [29]. In their simulation, the pick and place operation

and the drilling operation can be successfully achieved.

In addition, there is also research on the control of time-varying parameters. In

[23], the adaptive control of a linear system with time-varying parameters is discussed.

In 2014, impedance control of robots interacting with the environment was introduced

[35]. Later in 2015, Wang et al. proposed critic learning for robot control in varying

environments.

Multiple-model control of robot manipulators. In adaptive control, when

the structure of the system remains identical, but the parameters of the dynamic

model of the system change, it takes a period for the adaptation. Moreover, a huge

error could be caused at the beginning of the adaptation. To solve this problem,

a multiple-model and switching method was proposed. In 1994, Narendra and Bal-

akrishnan developed an adaptive control scheme using multiple-model and switching,

where the controller output was determined online to minimize the transient error

[11]. The proof of global stability was given despite the chosen switching scheme.

Later in 1997, a specific switching rule was proposed [14], suggesting that a cost func-

tion corresponding to the error of each model should be computed at every moment,

and the controller is derived using the model with the least cost function. The simu-

lation showed that the multiple-model based controller performs significantly better

than the single-model based one.

The multiple-model and switching is suitable for the robot manipulator control,

especially when the robot’s operating environment varies. The multiple-model based

adaptive control was first brought into the field of robot control in 1994 by Ciliz and
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Narendra [9]. In their work, the robot manipulator’s modeling and the algorithm’s

formulation were introduced. In 2006, Ciliz proposed a combined direct and indi-

rect multiple-model adaptive control [24]. The simulation results showed that the

combination improved the controller performance.

1.2 Research Problems

In the robot manipulator control literature, the aerial and underwater manipulator

controls are mature. However, previous work has not addressed the situation when the

robot manipulator is in a varying environment, for example, when the manipulator is

moving in and out of the water. To achieve some sampling and manipulating tasks,

the knowledge of canceling the effect is necessary. To achieve this, several problems

need to be solved.

The modeling of the robot moving in varying environments. To achieve

an optimal control objective, knowledge of the system dynamic model is necessary.

However, for an object moving in a varying environment, various effects would influ-

ence the equations of motion, e.g., the added mass added inertia, drag, and buoyancy.

These are unknown environmental factors. When we derive the equations of motion

of a robot, these effects will be exerted on each link and will also impact other links.

Thus, the modeling of the robot is complicated. In addition, to estimate the sys-

tem and environment parameters, we need to write the equations of motion in a

parameterized form.

The asymptotic tracking of the desired trajectory. In the past several

decades, many researchers have focused on the control of robots, and the controller

stability has been proven for different control methods. However, little attention has
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been drawn to the situation where the environment varies. The asymptotic tracking

of the robot under this situation remains a problem.

1.3 Research Motivation

Robotics has gained increasing attention in the past few decades. Robots are

designed to help a human do different tasks automatically. For some tasks, we only

want the robot to detect the environment. In such cases, an automatic mobile vehicle

can reach the requirement. These vehicles include land vehicles, aerial platforms,

underwater vehicles, etc. When the manipulator is working in strong wind, it has to

reject the effect of the air. However, automatic mobile vehicles are only able to sense

the environment but are not capable of interacting with it.

One way to interact with the environment is to carry a manipulator. In order to

achieve different tasks, the manipulator may need to work in various environments.

When it is mounted on an underwater vehicle, the hydrostatic and hydrodynamic

forces should be well considered. There are also situations that the manipulator needs

to work both in the air and underwater. When the task requires the manipulator to

pick an object underwater and place it on the land or sample the water and analyze

it on the land station, both the effect of the wind and the water should be taken into

account. Robot manipulators operating in varying environments such as in and out of

water and gust winds have additional dynamic uncertainties, which are characterized

by additional dynamic functions and parameters.

Although existing literature has concerned about the adaptive control scheme of

robot manipulators, there has still been little discussion on the multiple-model control

schemes applied in this field. Our research goals are to study the characteristics of

the additional dynamic uncertainties to establish the complete dynamic models of
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robot manipulators operating in uncertain environments and to discuss the multiple-

model adaptive control schemes for control of robot manipulators under the presence

of additional uncertainties.

1.4 Thesis Outline

After analyzing the research problems, we show that the thesis research objectives

are modeling the robot moving in a varying environment, controlling the robot, and

dealing with the situation when the environment changes.

In Chapter 2, we introduce some related backgrounds in the robot modeling and

adaptive control field, including the dynamic modeling of a robot manipulator, the

adaptive control of robot manipulators, and the multiple-model control method. With

this knowledge, we can better understand the control of the robot manipulator.

In Chapter 3, we discuss the effects on the robot manipulator in varying environ-

ments. These effects include the added mass, the added moment of inertia, friction

and drag forces, and buoyancy. We first analyze these effects on an object. We use

the Newton-Euler method to derive the dynamic equations of the whole robot by

going through each link, and we give an example of the modeling of a planar elbow

robot.

In Chapter 4, we apply single-model based adaptive control methods on the motion

of a robot considering the environmental factors, including the direct adaptive control

method and the indirect adaptive control method, as well as the stability analysis.

The simulation results show that these adaptive control methods can achieve the

asymptotic tracking of the robot trajectory.

In Chapter 5, with the knowledge from Chapter 4, we develop a multiple-model

adaptive control method on the varying environment situation and compare the



9

multiple-model control method and the single-model control method.

In Chapter 6, we give the conclusions of the thesis and discuss the future research

topics.



Chapter 2

Research Background

Before discussing the adaptive control, some background about robot manipulator

control will be presented. In this chapter, the dynamic model, the adaptive control

scheme, and the multiple-model based control scheme will be introduced first. Then,

the research motivation will be addressed. The research problems will be presented

in the last section of this chapter.

2.1 Dynamic Models of Robot Manipulators

In this section, we introduce the Denavit-Hartenberg convention for robot kine-

matics and the Newton-Euler formulation to derive the dynamic equations of the

robot manipulator.

2.1.1 Kinematics

The kinematics of the robot is the description of the relationship between the

joint values of the robot and the position/orientation of the robot. Given a robot

manipulator with n joints, we first assume that each joint has only one degree of

10
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freedom since we can decompose joints with two or more degrees of freedom into one

degree of freedom joints with zero distance in between. Then the action of each joint

can be represented by a single real number: the angle or distance of each joint. We

denote this real number as joint variable qi.

For the convenience of further computation, we introduce the numbering rules

of the robot as shown in Figure 2.1. A robot with n joints will have n + 1 links,

including the base, and each joint connects two links. For the joints, we name the

joint which connects the base as the first joint, then the second to the n-th joint are

named sequentially. For the links, we name the base as link 0. Then each joint i

connects the link i− 1 and i. Thus, we consider the link i moves when the joint i is

actuated.

Figure 2.1: Joint and link numbering rules.

To simplify the analysis of the kinematics, we assign coordinate frames according

to the Denavit-Hartenberg (DH) convention [39], where the i-th frame is fixed with

the i-th link. This convention describes a robot link i with four parameters li, αi, di

and θi, namely the link length, link twist, link offset, and joint angle, respectively.
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Suppose we consider the link’s position between the i-th frame and the (i + 1)-th

frame. The link length is the distance between the two origins of each frame along

the xi+1 direction, the link twist is the angle between the axis zi and zi+1 measured

in the plane normal to xi+1, the link offset is the distance between two origins along

the zi axis and the joint angle is the angle between xi and xi+1 measured in the plane

normal to zi.

The transformation between any two joints can be expressed by a matrix Ti =Ri oi

0 1

, namely the homogeneous transformation matrix, where Ri is a 3 × 3

matrix describing the orientation between the frame i and i + 1, and oi is a 3 × 1

vector describing the position between the frame i and i+1. Using the DH convention,



13

the homogeneous transformation matrix can be written as

Ti = Rotz,θi Transz,di Transx,ai Rotx,αi

=



cθi −sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1



·



1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 cαi −sαi 0

0 sαi cαi 0

0 0 0 1



=



cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1


,

(2.1)

with

Ri =


cθi −sθicαi sθisαi

sθi cθicαi −cθisαi

0 sαi cαi

 ,oi =


aicθi

aisθi

di

 . (2.2)

2.1.2 Dynamics

Typically, there are two ways of deriving the dynamic equations of the robot,

namely the Euler-Lagrange method and the Newton-Euler method. The Euler-

Lagrange method computes the dynamic equations through the robot’s energy, while
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the Newton-Euler method recursively computes the torques of the robot through the

force and torque analysis. In this thesis, the Newton-Euler formulation is adopted

to analyze the dynamics of the manipulator since the energy of the environment will

have a significant influence on the robot energy, making it hard to obtain the energy

of the robot. The Newton-Euler method consists of two parts, the forward recursion

and the backward recursion, where the forward recursion computes the velocity, an-

gular velocity, acceleration, and angular acceleration from the first link to the n-th

link, and the backward recursion computes the force and torque of each joint from

the n-th link to the first one.

Before presenting the recursion equations, several notations need to be introduced

at first. We use superscript k(·) and subscript (·)k to represent a vector expressed

in the k-th frame and the vector of link k, respectively. Then the forward recursion

computation steps are [25]:

k+1ωk+1 = Rk+1
k (kωk + zkq̇k+1) (2.3)

k+1αk+1 = Rk+1
k (kαk +k ωk × zkq̇k+1 + zkq̈k+1) (2.4)

k+1vk+1 = Rk+1
k

k
vk +k+1 ωk+1 ×k+1 dk/k+1 (2.5)

k+1vk+1,c = Rk+1
k

k
vk +k+1 ωk+1 ×k+1 dk/k+1,c (2.6)

k+1ak+1 = Rk+1
k

k
ak +k+1 αk+1 ×k+1 dk/k+1 +k+1 ωk+1 × (k+1ωk+1 ×k+1 dk/k+1)

(2.7)

k+1ak+1,c = Rk+1
k

k
ak +k+1 αk+1 ×k+1 dk/k+1,c +k+1 ωk+1 × (k+1ωk+1 ×k+1 dk/k+1,c)

(2.8)

where ωk is the angular velocity of link k, αk is the angular acceleration of link k, vk

is the linear velocity of link k at the position of joint k + 1, vk,c is the linear velocity

of the center of mass of link k, ak is the linear acceleration of link k at the position of
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joint k+ 1, ak,c is the linear acceleration of the center of mass of link k, dk/k+1 is the

vector from frame k to frame k + 1, dk/k+1,c is the vector from frame k to the center

of mass of link k+ 1, Rk+1
k is the transformation matrix from frame k to frame k+ 1

and zk is the unit vector along the z-axis of frame k.

The backward recursion computation steps are:

kfk = Rk+1
k

k+1
fk+1 + Fk −mk

kgk (2.9)

kτk = Rk+1
k

k+1
τk+1 + dk/k+1 ×

(
Rk+1
k

k+1
fk+1

)
+ dk/k+1,c × Fk + Tk (2.10)

+ dk/k+1,c × (−mkgk)

where kfk and kτk represent the force and torque acting on the k-th link expressing

in the frame fixed on the k-th link respectively, mk is the mass of link k, gk is the

gravity vector of link k. The vector Fk are the forces acting at the center of mass of

link k

Fk = mk
kak (2.11)

and the vector Tk are the moments acting at the center of mass of link k

Tk = Ik
kαk +k ωk × Ikkωk. (2.12)

The process of recursively deriving the dynamic equations of the robot is described

as follows. First, let us assume that the configuration of the robot is known, i.e., the

link twist between two coordinate frames does not need to be estimated. Then the

rotation matrix between any two link-attached frames is merely a function of the

joint angle, denoted by Rj
i (q), which indicates the rotation matrix transforming a

coordinate from frame i to frame j. For simplicity, we write it as Rj
i instead. Using

(2.3), we can recursively get the equations of the angular velocities for each robot link.
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The angular velocities consist of several terms, and each term is a multiplication of

a rotation matrix, which is a function of q, and a joint velocity vector containing q̇.

Using the knowledge of the angular velocities ωk, k = 1, 2, · · · , n and (2.4), we can

obtain the angular accelerations αi of each link i. The angular acceleration consists

of two kinds of terms. One is the multiplication of a rotation matrix and a joint

acceleration vector containing q̈. The other is the product of a rotation matrix and

two joint angular velocity vectors’ cross product. Substituting the angular velocities

into (2.5) and (2.6), we can get the linear velocities of each link on the center of mass,

which is the sum of terms in ω multiplying the link length parameters—in the same

way, using (2.7) and (2.8), the linear acceleration of each link’s center of mass can

be obtained as a sum consisted with terms in the form of the product of link length

parameters, rotation matrix, and joint angular acceleration vector or a cross product

of two joint angular velocity vectors.

For the backward steps, the forces and the torques of each link are computed

using the kinetic variables above. The force contains two parts. One is the product

of the mass of the link and the acceleration, and the other is the gravity force which

is a function of the joint angles. The torque of each link is computed by the cross

products of the link length and forces and the product of the moment of inertia and

the angular acceleration. Finally, the torque applied on each joint is the z-axis value

of the torque vector. The detailed process of deriving the dynamic equations can be

found in Chapter 3.

After going through the forward and the backward steps, each torque τi can be

written as a sum of different terms, containing:

· Mass, link length, rotation matrix elements and q̈j term.

· Moment of inertia, rotation matrix elements and q̈j term.

· Mass, link length, rotation matrix elements and two of q̇j term.
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· Moment of Inertia, rotation matrix elements and q̇ term.

· Mass, gravitational acceleration constant and rotation matrix elements.

Then we regroup the equations of the robot, i.e. write torques in a column vector.

Extract the q̈j term from each torque i, we can get a mass matrix M(q) which is a

function of mass, link length and joint positions, and a joint acceleration vector q̈. In

the same manner, we can get a coriolis and centripetal matrix C(q, q̇) with a joint

velocity vector q̇, and a gravity vector g(q).

Thus, the dynamic model of an n-link manipulator can be written as [25]

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ (2.13)

where M (q)q̈ ∈ Rn is the vector of inertial forces and moments of the manipulator,

C(q, q̇)q̇ ∈ Rn is the vector of Coriolis and centripetal effects of the manipulator,

g(q) ∈ Rn is the restoring vector of the manipulator and τ is the control input

vector. The detailed structure of these matrices can be found in [25].

2.1.3 Model of a Two-link Manipulator

Let us go through the modeling process of a two-link planar elbow robot manip-

ulator. The geometry of the manipulator is shown in Figure 2.2. q1 and q2 are joint

variables, l1 and l2 are the length of each link, l1c and l2c are the length from each

joint to the center of the corresponding link, and the mass of the two links are m1

and m2, respectively.

To simplify the notation of the variables in the equations, we omit the superscript

of each variable, and all variables are represented in the frame attached to their own
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Figure 2.2: Planar elbow robot manipulator.

link. In the beginning, the initial conditions of the recursion should be settled as

ω0 = 0,α0 = 0,v0 = 0,a0 = 0 (2.14)

and

f3 = 0, τ3 = 0. (2.15)

The forward recursion is computed first to find the value of kinematic variables.

Since the robot arm is planar, the angular velocity and angular acceleration can be

easily obtained as

ω1 =


0

0

q̇1

 ,ω2 =


0

0

q̇1 + q̇2

 ,α1 =


0

0

q̈1

 ,α2 =


0

0

q̈1 + q̈2

 . (2.16)



19

Then according to (2.5) and (2.6), the velocities can be computed as

v1,c = R0
1v0 + ω1 × d0/1,c =


0

l1cq̇1

0

 , (2.17)

v1 = R0
1v0 + ω1 × d0/1 =


0

l1q̇1

0

 , (2.18)

v2,c = R1
2v1 + ω2 × d1/2,c =


l1 sin(q2)q̇1

l2c(q̇1 + q̇2) + l1 cos(q2)q̇1

0

 . (2.19)

Finally, the linear acceleration of each link and joint can be obtained according

to (2.8) as

a1,c = R0
1a0 +α1 × d0/1,c + ω1 × (ω1 × d0/1,c) =


−l1cq̇2

1

l1cq̈1

0

 , (2.20)

a1 = R0
1a0 +α1 × d0/1 + ω1 × (ω1 × d0/1) =


−l1q̇2

1

l1q̈1

0

 , (2.21)
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a2,c = R1
2a1 +α1 × d1/2,c + ω1 × (ω1 × d1/2,c)

=


l1 sin(q2)q̈1 − l2c(q̇1 + q̇2)2 − l1 sin(q2)q̇2

1

l1 sin(q2)q̇2
1 + l2c(q̈1 + q̈2) + l1 cos(q2)q̈1

0

 . (2.22)

The accelerations are what we need to compute the force and torque of each link.

Substituting the results into (2.11) and (2.12) leads to

F2 = m2a2,c = m2


l1 sin(q2)q̈1 − l2c(q̇1 + q̇2)2 − l1 sin(q2)q̇2

1

l1 sin(q2)q̇2
1 + l2c(q̈1 + q̈2) + l1 cos(q2)q̈1

0

 (2.23)

T2 = I2α2 + ω2 × I2ω2 =


0

0

I2(q̈1 + q̈2)

 (2.24)

F1 = m1a1,c = m1


−l1cq̇2

1

l1cq̈1

0

 (2.25)

T1 = I1α1 + ω1 × I1ω1 =


0

0

I1q̈1

 . (2.26)
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Substitute the initial conditions (2.15) into the equation (2.9), we can get

f2 = R3
2f3 + F2 −m2g2

=


m2g sin(q1 + q2)−m2(l2c(q̇1 + q̇2)2 − l1 sin(q2)q̈1 + l1 sin(q2)q̇2

1)

m2g cos(q1 + q2) +m2(l1 sin(q2)q̇2
1 + l2c(q̈1 + q̈2) + l1 cos(q2)q̈1)

0

 (2.27)

and

f1 = R2
1f2 + F1 −m1g1 (2.28)

which leads to

f1,x = (m1 +m2)gsin(q1)− l1m2q̇
2
1 − l1cm1q̇

2
1

−m2l2c sin(q2)(q̈1 + q̈2)−m2l2c cos(q2)(q̇1 + q̇2)2 (2.29)

f1,y = (m1 +m2)g cos(q1) +m2g cos(q1) +m2l1q̈1 +m1l1cq̈1

+ l2cm2 cos(q2)(q̈1 + q̈2)−m2l2c sin(q2)(q̇1 + q̇2)2. (2.30)

Substituting T1, T2, f1 and f2 into (2.10), the torque of each joint can be finally

obtained as

τ2 = (q̈1(m2l
2
2c +m2l1l2c cos(q2) + I2)

+ q̈2(m2l1l2c cos(q2) + I2)

+ q̇1(m2l1l2c sin(q2)q̇1)

+m2l2cg cos(q1 + q2))k

(2.31)
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and

τ1 = (q̈1(m1l
2
1c +m2l

2
2c +m2l

2
1 + 2m2l1l2c cos(q2) + I1 + I2)

+ q̈2(m2l
2
2c +m2l1l2c cos(q2) + I2)

+ q̇1(−m2l1l2c sin(q2)q̇2)

+ q̇2(−m2l1l2c sin(q2)(q̇1 + q̇2))

+ (m1l1c +m2l1)g cos(q1) +m2l2cg cos(q1 + q2))k

(2.32)

where k is the unit vector on the z-axis direction of the corresponding frame of each

torque.

2.1.4 Properties

There are several important properties of the robot manipulator dynamics equa-

tion. Proof of these properties are shown in [25].

Property 2.1. There exists an n× l function Y (q, q̇, q̈) and an l dimensional vector

θ such that the rigid robot dynamic equation can be written as

M (q)q̈ +C(q, q̇)q̇ + g(q) = Y (q, q̇, q̈)θ. (2.33)

The function Y (q, q̇, q̈) is called the regressor and θ ∈ Rl is the parameter vector.

The number of parameters needed to write the dynamics is not unique.

From the above description in Section 2.1.2, we can see that the each torque is a

sum of terms which are products of joint variables (q, q̇, q̈) and system parameters

(mass, link length, moment of inertia, gravity acceleration). Suppose there are a

total of l different combinations of system parameters among n torques, then for each

torque, we can write it in the form of a dot product of two vectors, where the joint
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variables and the system parameters are in the two vectors correspondingly.

Property 2.2. The mass matrix for an n-link rigid robot is symmetric and positive

definite. Specifically, for a fixed value of the generalized coordinate q, let 0 < λ1(q) ≤

λ2(q) ≤ · · · ≤ λn(q) denote the n eigenvalues of M(q), then the inertia matrix M(q)

satisfies

λ1(q)In×n ≤M(q) ≤ λn(q)In×n.

In addition, from basic linear algebra knowledge, we know that a positive definite

matrix is invertible. Thus, the matrix M(q) is invertible.

2.1.5 Parameterization of the Two-link Manipulator Model

In this section, we show the parameterized form of the two-link manipulator. From

the two-link manipulator dynamic equations (2.32) and (2.31), we can write them in

the form of

τ =

τ1

τ2

 = Y (q, q̇, q̈)θ∗ (2.34)

where

Y (q, q̇, q̈) =

 q̈1 + q̈2 q̈1 q̈1 q̈1 + q̈2 q̈1 2 cos(q2)q̈1 + cos(q2)q̈2 + sin(q2)q̇2
1

q̈1 + q̈2 0 0 q̈2 0 cos(q2)q̈1 + sin(q2)q̇2
1

cos2(q2)q̈1 + sin(q2) cos(q2)q̇2
1 sin2(q2)q̈1 − sin(q2) cos(q2)q̇2

1

0 0

− sin(q2)q̇2
1 − 2 sin(q2)q̇1q̇2 − sin(q2)q̇2

2 cos(q1) cos(q1 + q2)

0 0 cos(q1 + q2)


(2.35)
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θ∗ =

(
m2l

2
2c m1l

2
1c Im1 Im2 0 m2l1l2c m2l

2
1 m2l

2
1

m2l1l2c (m2l1 +m1l1c − l1l2ρπr2
2 − l1l1cρπr2

1)g

l2c(m2 − l2ρπr2
2)g

)T
.

(2.36)

2.2 Adaptive Control of Robot Manipulators

Adaptive control is a control algorithm that can estimate the system parameters,

which may vary or be unknown, while reaching the control goal simultaneously so that

the system output can track the desired output asymptotically, canceling the effect of

the unknown system parameters. In the adaptive control of robot manipulators, the

control objective is that given a bounded desired robot joint trajectory qd(t) and its

bounded derivatives q̇d(t) and q̈d(t), design a feedback control input signal u for the

robot manipulator system without the knowledge of the system parameters in M (q),

C(q, q̇) and g(q), so that all signals in the closed-loop system are bounded and the

joint position q(t) tracks qd(t) asymptotically.

Preliminaries. In order to analyse the stability of the control system, we need

to introduce several definitions and properties at first [22].

Definition 2.1. A vector x(t) ∈ Rn belongs to the signal space L2 if
∫∞

0
(x2

1(t) + x2
2(t)

+...+ x2
n(t)) dt <∞.

Definition 2.2. A vector x(t) ∈ Rn belongs to the signal space L∞ if supt≥0 max1≤i≤n

|xi(t)| <∞.

Lemma 2.1. If x(t) ∈ L2 and ẋ(t) ∈ L∞, then limt→∞ x(t) = 0.

Then we introduce two kinds of adaptive control methods on the robot, namely the

direct adaptive control and the indirect adaptive control. The direct adaptive control
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method uses the tracking error e(t) to generate the adaptive parameter update law.

For the indirect adaptive control method, the adaptive parameter update law is driven

by the prediction error, which is the difference between the predicted torque and the

real torque applied on joints.

2.2.1 Direct Adaptive Control

Using the fact that the inertia matrix is invertible, an adaptive control algorithm

based on the concept of feedback linearization is proposed. The control law u is

u = M̂ (q)aq + Ĉ(q, q̇)q̇ + ĝ(q) (2.37)

where the notation (̂·) represents the estimated value of (·), the error of the mismatch

is denoted as (̃·) = (̂·)− (·), and

aq = q̈d(t)−K1(q̇ − q̇d)−K0(q − qd) (2.38)

where K0, K1 are diagonal matrices with diagonal elements consisting of position

and velocity gains, respectively.

Using the linear parameterization property, we can get

¨̃q +K1
˙̃q +K0q̃ = M̂−1Y (q, q̇, q̈)θ̃ (2.39)

where Y is the regressor function and θ̃ = θ̂ − θ, where θ̂ is the estimation of the

parameter vector θ. Writing (2.39) in the state space form, we can get

ė = Ae+Bφθ̃ (2.40)
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where

e =

q̃
˜̇q

 (2.41)

is the joint space error, and

A =

0n×n In×n

−K0 −K1

 ,B =

0n×n

In×n

 ,φ = M̂−1Y (q, q̇, q̈). (2.42)

LetQ be a matrix satisfyingQ = QT > 0. SinceK0 andK1 are diagonal matrices

of positive elements, the matrix A is stable. Let P be the solution of the Lyapunov

equation

ATP + PA = −Q (2.43)

then set the adaptive update law as

˙̂
θ = −Γ−1φTBTPe (2.44)

where Γ is a positive definite constant symmetric matrix.

Theorem 2.1. For the robot system described as (2.13) with the system parameters

unknown, using the control law (2.37) and the adaptive parameter update law (2.44),

it can be guaranteed that the parameter estimates are bounded and limt→∞ e(t) = 0.

Proof. Using the Lyapunov function

V = eTPe+ θ̃TΓθ̃, (2.45)

we can show that the tracking error will converge globally to zero while all internal
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signals are bounded. The derivative of the Lyapunov function V is

V̇ = −eTQe+ 2θ̃T{φTBTPe+ Γ
˙̂
θ} (2.46)

then substitute the adaptive control law(2.44) into(2.46) we can get

V̇ = −eTQe (2.47)

thus we have

e(t) ∈ L∞, e(t) ∈ L2, ė(t) ∈ L∞, θ̃ ∈ L∞ (2.48)

which indicates that the parameter estimation error remains bounded and the position

tracking error can converge to zero asymptotically. [37]

2.2.2 Indirect Adaptive Control

For the indirect adaptive control on the robot, the parameter estimation and the

control input are divided into two parts. The estimated parameters are used in the

dynamic equations to predict the torques on the joints, and the actual torques on

the joints are obtained by sensors. The difference between the predicted torques

and the sensed torques is computed, namely the prediction error. Compared to the

direct adaptive control method, this prediction error is used to generate the parameter

update law instead of the joint tracking error.

The predicted torques are computed as

τ̂ = M̂(q)q̈ + Ĉ(q, q̇)q̇ + ĝ(q) = Y (q, q̇, q̈)θ̂. (2.49)
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Then the torque prediction errors are

τ̃ = τ̂ − τ

= Y (q, q̇, q̈)θ − Y (q, q̇, q̈)θ̂

= Y (q, q̇, q̈)θ̃.

(2.50)

The adaptive update law is chosen as

˙̃θ = −ΓY T (q, q̇, q̈)τ̃ (2.51)

where Γ is a symmetric positive definite coefficient matrix.

The control input has the same structure as in (2.37). Then the stability of this

method can be proved as follows [12].

Theorem 2.2. The adaptive control scheme (2.49)-(2.51) guarantees boundedness

for all closed-loop signals and limt→∞ e(t) = 0.

Proof. Considering the Lyapunov function

V =
1

2
θ̃TΓ−1θ̃, (2.52)

taking its derivative

V̇ =
1

2
˙̃θTΓ−1θ̃ +

1

2
θ̃TΓ−1 ˙̃θ, (2.53)

and substituting the adaptive parameter update law (2.51) in (2.53), we get

V̇ =
1

2

((
−ΓY T (q, q̇, q̈)τ̃

)T
Γ−1θ̃ + θ̃TΓ−1

(
−ΓY T (q, q̇, q̈)τ̃

))
= −θ̃TΓ−1 (ΓY (q, q̇, q̈)τ̃ )

= −τ̃ T τ̃ ≤ 0.

(2.54)
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Thus, we can conclude that

θ̃ ∈ L∞, τ̃ ∈ L2. (2.55)

Since τ̃ = τ̂ − τ , and we have the equations (2.49) and (2.37) for τ̂ and τ , the

prediction error can be derived as

τ̃ = M̂(q)(ë+KDė+KPe), (2.56)

which indicates that

e = (s2I + sKD +KP )M̂−1(q)τ̃ . (2.57)

Since e = q − qd and qd, q̇d are bounded, we have

e, ė ∈ L2, e ∈ L∞. (2.58)

2.3 Multiple-model Control of Robot Manipula-

tors

In this section, we introduce the Multiple-model based adaptive control for robot

manipulators. The main idea of this control scheme is to have multiple models with

different dynamic structures, and the initial estimates of the system parameters are

different. Suppose there are total N models, then the i-th model uses the i-th param-

eter estimate to compute the corresponding torque prediction. We choose the closest

approximation to be the model of computing the actual controller.
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In practice, q, q̇, τ can be detected by sensors, and the joint acceleration q̈

can be derived from q̇. Thus, for each model, we can individually obtain the torque

prediction computed from joint variables and parameter estimates, and then compute

the torque prediction errors for each model. The predictions are computed as

τ̂i = Yi(q, q̇, q̈)θ̂i (2.59)

where Yi(q, q̇, q̈) is the regressor for the i-th model and θ̂i is the parameter estimate

vector for the i-th model. Since the actual torques are obtained by sensors, we can

compute the predictions as

τ̃i = τ̂ − τ . (2.60)

We then choose the adaptive parameter update law for the i-th model as

˙̂
θ = −ΓiY

T
i (q, q̇, q̈)τ̃i, (2.61)

where Γi is the coefficient matrix for the i-th model satisfying Γi = Γi > 0, and let

the initial estimate for the i-th parameter vector in the parameter space Rl be θi0.

The control signal for each model is computed as

ui = M̂i(q)aqi + Ĉi(q, q̇)q̇ + ĝi(q) (2.62)

where

aqi = q̈d −KDiė−KPie (2.63)

and KDi and KPi are diagonal positive definite coefficient matrices for the model i.

From Theorem 2.2, we know that for each model i, the computed controller i can

achieve asymptotic tracking of the desired trajectory.
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The reason for using a multiple-model adaptive controller is to reduce the transient

error. For the single model case, since we have no information for the true values

of system parameters, the prediction error may be huge and take a long time for

the estimation. However, for the multiple-model case, we can have multiple initial

estimates for the parameters, and we can choose the model with the least prediction

error to generate the control signal. From the prediction errors, we have a function

to decide which model estimate we should use to generate the controller. Generally,

the function is named as a performance index, and is defined as [9]

J (τ̃i(t)) = γτ̃ Ti (t)τ̃i(t) + β

∫ t

0

τ̃ Ti (t)τ̃i(ζ)dζ with γ, β > 0 (2.64)

where τ̃i(t) = τ̂i(t) − τi(t) is the torque prediction error vector, τ̂i(t) is the torque

prediction, γ > 0 and β > 0 are weights to be tuned in practice. Then, at the start

of the control process, the performance index can be obtained, and the model with

the least performance index under the current situation will be chosen.



Chapter 3

Modeling of Robot Manipulators

in Varying Environments

The modeling of a robot manipulator moving in wind or water is shown in this

chapter. We first introduce the effects of fluid on a robot link. Then we use the

Newton-Euler formulation to derive the dynamic equations for the whole robot ma-

nipulator. Most robot manipulators consist of rectangular or cylindrical links. In this

thesis, we discuss the cylindrical case and assume that the robot is operating in an

ideal fluid.

3.1 Fluid Effects on a Robot Manipulator Link

The motion of the rigid body driven by forces in fluid causes the fluid to give

forces and moments proportional to the rigid body acceleration. These effects are

called the added mass and the added moment of inertia. The fluid friction forces are

denoted as drag forces. They are acting along the direction of the relative velocity

between the link and the fluid velocity vf . The motion will also cause vortex shedding

around the rigid body, and this results in the lift forces, which are in the direction

32
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orthogonal with the drag forces. The displacement of water exerts buoyant forces

on the manipulator, attacking in the gravity center of displaced water and in the

opposite direction of the gravity force. These forces are shown in Figure 3.1.

Figure 3.1: Fluid forces on a rigid body.

3.1.1 Added Mass and Added Moment of Inertia

The added mass and added moment of inertia of a rigid body are denoted as Aa,

where A is the coefficient matrix, and a is the acceleration of the rigid body. For a

cylinder, the cross elements are small due to the symmetry of the cylinder, so they

can be ignored. The coefficient values are

A11 = 0.1m, A22 = πρr2l, A33 = πρr2l

A44 = 0, A55 =
1

12
πρr2l3, A66 =

1

12
πρr2l3

where ρ is the fluid density, r is the radius of a link, l is the length of the link and m

is the mass of the link. The directions of the added mass on a cylinder is shown in

Figure 3.2.
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Figure 3.2: Added mass on a cylinder.

Then the total mass Mk of the link including the added mass is

Mk = diag(A11,A22,A33) +mI (3.1)

where I is the identity matrix, and the total moment of inertia Ik including the added

moment of inertia is

Ik = diag(A44,A55,A66) + Im (3.2)

where Im is the inertia of the link.

3.1.2 Drag and Lift

The total hydrodynamic drag force can be approximated as a nonlinear expansion

FD = Dsvr +Dr|vr|vr +Dqv
2
r + o(v3

r) (3.3)
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where Ds, Dr and Dq are friction coefficients and vr is the relative velocity between

the rigid body and the fluid. In the cylinder case, due to the symmetry, the third

term can be canceled, and higher order terms are small compared to the second term

so that it can be ignored.

In order to express the direction of the fluid velocity, we define an axis system(xf ,

yf , zf ) such that the fluid velocity is along the x-axis of the coordinate frame, which

means that the drag force is along the same direction, and the lift force is along

the y-axis. The z-axis is placed to satisfy the right-hand rule. The transformation

between the flow frame and the link fixed frame(xk, yk, zk) can be achieved with two

rotations: rotation α about the yk axis and then a rotation β about the new zk axis.

The transformation matrix can be written as

Rk
f = Rz(−β)Ry(α) (3.4)

=


cos(β) cos(α) sin(β) cos(β) sin(α)

− sin(β) cos(α) cos(β) − sin(β) sin(α)

− sin(α) 0 cos(α)

 (3.5)

then the relative velocity vr can be expressed as

vr = v − vfRf
kxf = [vrx,vry,vrz]

T (3.6)

where v is the translational velocity expressed in the link fixed frame, vf is the velocity

value of the fluid, and xf is the unit vector along the xf axis.

After getting the knowledge of the expression of the relative velocity, we are able

to write the total drag force. The linear term in(3.3) is

Fs = Dsvr (3.7)
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where Ds is a 3 × 3 diagonal matrix containing linear friction coefficients, and the

quadratic term can be approximated as [26]

Fd = (DD +DL)|vr|Tvr (3.8)

where DD and DL are 3 × 3 diagonal matrix containing drag and lift coefficients,

respectively.

3.1.3 Buoyancy

The buoyant force is given as b = ρg∆ where g is the acceleration of gravity, and

∆ is the total volume of fluid displaced by the rigid body. The center of buoyancy

depends on the geometry of the manipulator link. For a cylindrical link, it coincides

with the center of mass and along the opposite direction of gravity.

3.1.4 Other Fluid Effects

Rotational damping. Not only the translational motion can cause damping

force in the fluid. When the manipulator link is rotating, rotational damping force is

exerted on the link. The damping is denoted as

τd = [τdx , τdy , τdz ]
T , (3.9)

where

τdx = Cdx||vr||ωx (3.10)

τdy = Cdy ||vr||ωy (3.11)

τdz = Cdz ||vr||ωz (3.12)
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Current loads. The current loads τcl are torques that are only effective to rigid

bodies with non-circular cross sections. The equation is shown as [8]

τcl = S(vr)[diag(A11, A22, A33)vr] (3.13)

where S is the skew-symmetric matrix operator. It is defined as a× b = S(a)b.

The total friction torques exerted on a link is denoted as [13]

τD = τd + τcl. (3.14)

3.2 Dynamic Equations for the Manipulator in Vary-

ing Environments

3.2.1 Modeling of the Manipulator

We use the Newton-Euler formulation to compute the force and moment of each

link recursively and write them together to obtain the dynamic equations of the whole

robot manipulator. The forward steps are introduced in Chapter 2. To recall, the
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forward steps are [25]

k+1ωk+1 = Rk+1
k (kωk + zkq̇k+1) (3.15)

k+1αk+1 = Rk+1
k (kαk +k ωk × zkq̇k+1 + zkq̈k+1) (3.16)

k+1vk+1 = Rk+1
k

k
vk +k+1 ωk+1 ×k+1 dk/k+1 (3.17)

k+1vk+1,c = Rk+1
k

k
vk +k+1 ωk+1 ×k+1 dk/k+1,c (3.18)

k+1ak+1 = Rk+1
k

k
ak +k+1 αk+1 ×k+1 dk/k+1 +k+1 ωk+1 × (k+1ωk+1 ×k+1 dk/k+1)

(3.19)

k+1ak+1,c = Rk+1
k

k
ak +k+1 αk+1 ×k+1 dk/k+1,c +k+1 ωk+1 × (k+1ωk+1 ×k+1 dk/k+1,c).

(3.20)

In order to get the explicit dynamic equations of the robot and the parameter-

ized form, we apply the forward steps and obtain the equations for velocities and

accelerations of robot links. By using (3.15) recursively, we can get

ωk =
k−1∑
i=0

Rk
i


0

0

q̇i+1

 . (3.21)

Using (3.16) recursively, and substitute (3.21) into it, we have

αk =
k−1∑
i=0

Rk
i


0

0

q̇i+1

+
k−2∑
i=0

Rk
i


0

0

q̇i+1

×


k−1∑
j=i+1

Rk
j


0

0

q̇j+1





 . (3.22)
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By (3.17) and (3.18), substituting (3.21), we have

vk =
k−1∑
i=0

Rk
i


0

0

q̇i+1

×
(

k∑
j=i+1

Rk
jdj

) (3.23)

and

vk,c = Rk+1
k vk−1 +


i−1∑
j=0

Ri
j


0

0

q̇j+1



× di,c
 . (3.24)
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For the linear acceleration, from (3.20) and using (3.21) and (3.22), we can get

ak,c =
k−2∑
i=0

Rk
i


0

0

q̈i+1

×
k−1∑
j=i+1

Rk
jdj

+
k−1∑
i=0

Rk
i


0

0

q̈i+1

× dk,c

+
k−3∑
i=0

k−1∑
l=i+2

Rk
i


0

0

q̇i+1

×
k−2∑
j=i+1

Rk
j


0

0

q̇j+1

×Rk
l dl



+
k−2∑
i=0

Rk
i


0

0

q̇i+1

×
k−1∑
j=i+1

Rk
j


0

0

q̇j+1



× dk,c


+
k−2∑
i=0


i∑

j=0

Rk
j


0

0

q̇j+1

×


i∑
l=0

Rk
l


0

0

q̇l+1

×Rk
i+1di+1





+
k−1∑
j=0

Rk
j


0

0

q̇j+1

×


k−1∑
l=0

Rk
l


0

0

q̇i+1

× dk,c
 .

(3.25)

For the backward steps to compute the force and moment considering the hydro-

dynamic forces, we use [25] [13]

kfk = Rk
k+1

k+1
fk+1 + Fk −mkgk + bk + FDk (3.26)

kτk = Rk
k+1

k+1
τk+1 + dk/k+1 ×

(
Rk
k+1

k+1
fk+1

)
+ dk/k+1,c ×k fk + τDk + Tk (3.27)

where dk/k,p is the vector from frame k to the center of pressure of link k, dk/k,b is the
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vector from frame k to the center of buoyancy of link k, FDk is the total hydrodynamic

drag force exerted on the link k and τDk is the total friction moment acting on the

link k. Another difference from the normal case is that when we compute the force

and moment acting on the center of mass, we need to use the total mass of the link,

including the added mass and added moment of inertia. The vector Fk is written as

Fk = Mk(
kak +k αk ×k dk/k+1,c +k ωk × (kωk ×k dk/k+1,c)) (3.28)

and the vector Tk is written as

Tk = Imk
kαk +k ωk × Imkkωk (3.29)

where Mk is the total mass of link k and Imk is the total inertia of link k, and the

added mass and added inertia are included, respectively.

Using (3.26) and substituting (3.28) into it, we can get

fk =
n−k∑
i=0

Rk+i
n (Mn−ian−i,c + pn−ign−i − FDn−i) (3.30)

where n is the total number of links, pn−i = mn−i − ρfluid · Vn−i is the parameter for

the gravity vector gn−i.

Finally, by (3.27), we can obtain the torque of each link as

τk =
n∑
i=k

Rk
i (Iiαi + ωi × Iiωi)

+
n∑
i=k

Rk
i (di,c × (Miai,c + pigi − FDi))

+
n∑

i=k+1

Rk
i

((
i−1∑
j=k

Ri
jdj

)
× (Miai,c + pigi − FDi)

)
.

(3.31)
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Note that the angular velocity (3.21), angular acceleration (3.22) and the linear

acceleration (3.25) of each link are sums of one term, two types of terms, and six

types of terms, respectively. In addition, for the cross product, we have

a× (b+ c) = a× b+ a× c, (3.32)

and for an orthogonal matrix R, we have

R(a+ b) = Ra×Rb, (3.33)

where a, b, c are arbitrary vectors with the corresponding dimensions with the matrix

R.

Substituting the angular velocity (3.21), angular acceleration (3.22) and linear

velocity (3.25) into (3.31), we can get the terms which contain mass terms and moment

of inertia terms.

The terms coming from Rk
i Iiαi are

τkz1 =
n∑
i=k

(
Rk
i31Ii1

i−1∑
i=0

Ri
j13q̈j+1 +Rk

i32Ii2

i−1∑
i=0

Ri
j33q̈j+1 +Rk

i,3Ii3

i=1∑
j=1

Ri
j33q̈j+1

)
(3.34)

τkz2 =
n∑
i=k

(
Rk
i31

i=2∑
j=0

(
Ri
j23q̇j+1

i−1∑
l=j+1

Ri
l33q̇i+1 −Ri

j33q̇j+1

i−1∑
l=j+1

Ri
l23q̇l+1

)
Ii1

+Rk
i32

i−2∑
j=0

(
Ri
j33q̇j+1

i−1∑
l=j+1

Ri
l13q̇i+1 −Ri

j13q̇j+1

i−1∑
l=j+1

Ri
l33q̇l+1

)
Ii2

+Rk
i33

i−2∑
j=0

(
Ri
j13q̇j+1

i−1∑
l=j+1

Ri
l23q̇i+1 −Ri

j23q̇j+1

i−1∑
l=j+1

Ri
l13q̇l+1

)
Ii3

)
,

(3.35)
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the terms coming from Rk
i (ωi × Iiωi) is

τkz3 =
n∑
i=k

(
Rk
i31

i−1∑
j=0

Ri
j23q̇j+1

i=1∑
l=0

Ri
l33q̇j+1 (Ii3 − Ii2)

+Rk
i32

i−1∑
j=0

Ri
j33q̇j+1

i=1∑
l=0

Ri
l13q̇j+1 (Ii1 − Ii3)

+Rk
i33

i−1∑
j=0

Ri
j13q̇j+1

i=1∑
l=0

Ri
l23q̇j+1 (Ii2 − Ii1)

)
,

(3.36)

the terms containing q̈ and mass M coming from the linear accelerations are

τkz4 =
n∑
i=k

Rk
i

di,c ×Mi


i−2∑
j=0

Ri
j


0

0

q̈j−1

×
i−1∑
l=j+1

Ri
ldl



+
i−1∑
j=0

Ri
j


0

0

q̈j+1

× di,c



z

=
n∑
i=k

(
−Rk

i32

i−2∑
j=0

i−1∑
l=j+1

(
Ri
j13q̈j+1R

i
l21 −Ri

j23q̈j+1R
i
l

)
ai,cMi3al

+Rk
i33

i−2∑
j=0

i−1∑
l=j+1

(
Ri
j33q̈j+1R

i
l11 −Ri

j13q̈j+1R
i
l31

)
ai,cMi2al

−Rk
i32

i=1∑
j=0

Ri
j23q̈j+1a

2
i,cMi3

+Rk
i33

j−1∑
j=0

Ri
j13q̈j+1a

2
i,cMi2

)

(3.37)
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τkz5 =
n∑

i=k+1

Rk
i


i−1∑
j=k

Rk
jdj ×Mi

i−1∑
l=0

Ri
l


0

0

q̈l+1

× di,c

z

=
n∑

i=k+1

(
Rk
i31

i−1∑
j=k

(
i−1∑
l=0

Rk
j21R

i
l23q̈l+1 −Rk

i32

i−1∑
j=k

i−1∑
l=0

Rk
j11R

i
l23q̈l+1

)
ajMi3ai,c

+Ri
k33

i−1∑
j=k

(
i−1∑
l=0

Rk
j11R

i
l33q̈l+1 −Rk

i31

i−1∑
j=k

i−1∑
l=0

Rk
j31R

i
l33q̈l+1

)
ajMi2ai,c

)
(3.38)

τkz6 =
n∑

i=k+1

Rk
i


(

i−1∑
j=k

Ri
jdj

)
×Mi

i−2∑
l=0

Ri
l


0

0

q̈l+1

×
i−1∑

m=j+1

Ri
mdm




z

=
n∑

i=k+1

(
Rk
i31

i−1∑
j=k

i−2∑
l=0

i−1∑
m=j+1

(
Ri
j21

(
Ri
l13
q̈j+1R

i
m21 −Ri

l23q̈j−1R
i
m11

)
ajMi3am

−Ri
j31

(
Ri

33q̈j+1R
i
m11 −Ri

l13q̈j+1R
i
m31

)
ajMi2am

)
+Rk

i32

i−1∑
j=k

i−2∑
l=0

i−1∑
m=j+1

(
Ri
j31

(
Ri
l23
q̈j+1R

i
m31 −Ri

l33q̈j−1R
i
m21

)
ajMi1am

−Ri
j11

(
Ri

13q̈j+1R
i
m21 −Ri

l23q̈j+1R
i
m11

)
ajMi3am

)
+Rk

i33

i−1∑
j=k

i−2∑
l=0

i−1∑
m=j+1

(
Ri
j11

(
Ri
l33
q̈j+1R

i
m11 −Ri

l13q̈j−1R
i
m31

)
ajMi2am

−Ri
j21

(
Ri

23q̈j+1R
i
m31 −Ri

l33q̈j+1R
i
m21

)
ajMi1am

))
,

(3.39)
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and terms containing q̇ coming from the linear accelerations are

τkz7 =
n∑
i=k

Rk
i

di,c ×Mi

i−3∑
j=0

i−1∑
m=j+2

Ri
j


0

0

q̇j+1



×
i−2∑
l=j+1

Ri
l


0

0

q̇l+1

×Ri
mdm




= Ri

j23q̇j+1

i−2∑
l=j+1

Ri
l33q̇1+1 −Ri

j33q̇j+1

i−2∑
l=j+1

Ri
l13q̇l+1

=
n∑
i=k

Rk
i32

i−3∑
j=0

i−1∑
m=j+2

(
Ri
m21

(
Ri
j23q̇j+1

i−2∑
l=j+1

Ri
l33q̇1+1 −Ri

j33q̇j+1

i−2∑
l=j+1

Ri
l23q̇l+1

)

−Ri
m11

(
Ri
j33q̇j+1

i−2∑
l=j+1

Ri
l13q̇1+1 −Ri

j13q̇j+1

i−2∑
l=j+1

Ri
l33q̇l+1

))
ai,cMi3am

+Rk
i32

i−3∑
j=0

i−1∑
m=j+2

(
Ri
m11

(
Ri
j13q̇j+1

i−2∑
l=j+1

Ri
l23q̇1+1 −Ri

j23q̇j+1

i−2∑
l=j+1

Ri
l13q̇l+1

)

−Ri
m31

(
Ri
j23q̇j+1

i−2∑
l=j+1

Ri
l33q̇1+1 −Ri

j33q̇j+1

i−2∑
l=j+1

Ri
l23q̇l+1

))
ai,cMi2am

(3.40)

τkz8 =
n∑
i=k

Rk
i

di,c ×Mi


i−2∑
j=0

Ri
j


0

0

q̇j+1

×
i−1∑
l=j+1

Ri
l


0

0

q̇j+1

× di,c



z

=
n∑
i=k

(
Rk
i32

i−2∑
j=0

(
Ri
j33q̇j+1

i−1∑
i=j+1

Ri
l13q̇l+1 −Ri

j13q̇j+1

i−1∑
l=j+1

Ri
l33q̇i+1

)
Mi3a

2
i,c

+Rk
i33

i−2∑
j=0

(
Ri
j13q̇j+1

i−1∑
i=j+1

Ri
l23q̇l+1 −Ri

j23q̇j+1

i−1∑
l=j+1

Ri
l13q̇i+1

)
Mi2a

2
i,c

)
(3.41)
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τkz9 =
n∑

i=k+1

(
Rk
i31

i−1∑
h=k

i−3∑
j=0

i−1∑
m=j+2

Ri
h21

(
t1R

i
m21 − t2Ri

m11

)
ahMi3am

−Ri
h31

(
t3R

i
m11 − t1Ri

m31

)
anMi2am

+Rk
i32

i−1∑
h=k

i−3∑
j=0

i−1∑
m=j+2

Ri
h31

(
t2R

i
m31 − t3Ri

m21

)
ahMi1am

−Ri
h11

(
t1R

i
m21 − t2Ri

m11

)
anMi3am

+Rk
i33

i−1∑
h=k

i−3∑
j=0

i−1∑
m=i+2

Ri
h11

(
t3R

i
m11 − t1Ri

m31

)
ahMi2am

−Ri
h21

(
t2R

i
m31 − t3Ri

m21

)
anMi, am

)

(3.42)
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τkz10 =
n∑

i=k+1

Rk
i

(
i−1∑
h=k

Ri
hdh

×Mi



0

i−2∑
j=0

(
Ri
j13q̇j+1

i−1∑
l=j+1

Ri
l23q̇l+1 −Ri

j23q̇j+1

i−1∑
l=j+1

Ri
l13q̇l+1

)
ai,c

−
i−2∑
j=0

(
Ri
j33q̇j+1

i−1∑
l=j+1

Ri
l13q̇l+1 −Ri

j13q̇j+1

i−1∑
l=j+1

Ri
l33q̇l+1

)
ai,c




=

n∑
i=k+1

(
Rk
i31

(
−

i−1∑
h=k

i=2∑
j=0

Ri
h21

(
Ri
j33q̇j+1

i−1∑
l=j+1

Ri
l13q̇l+1

−Ri
j13q̇j+1

i−1∑
l=j+1

Ri
l33q̇l+1

)
ahMi3ai,c

−
i−1∑
h=k

i−2∑
j=0

Ri
h31

(
Ri
j13q̇j+1

i−1∑
l=j+1

Ri
i23q̇l+1

−Ri
j23q̇j+1

i−1∑
l=j+1

Ri
l13q̇l+1

)
ahMi2ai,c

)

+Ri32

i−1∑
h=k

i−2∑
j=0

Ri
h11

(
Ri
j33q̇j+1

i−1∑
l=j+1

Ri
i13q̇l+1

−Ri
j13q̇j+1

i−1∑
l=j+1

Ri
l33q̇l+1

)
ahMi3ai,c

+Ri33

i−1∑
h=k

i−2∑
j=0

Ri
h11

(
Ri
j13q̇j+1

i−1∑
l=j+1

Ri
i23q̇l+1

−Ri
j23q̇j+1

i−1∑
l=j+1

Ri
l13q̇l+1

)
ahMi2ai,c

)
(3.43)
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τkz11 =
n∑
i=k

Rk
i

di,c ×Mi


i=2∑
j=0


j∑
l=0

Ri
l


0

0

q̇l+1



×


j∑

m=0

Ri
m


0

0

q̇m+1

×Ri
j+1di,c








=

n∑
i=k

(
−Rk

i32

i−2∑
j=0

(
j∑
l=0

Ri
l13q̇l+1

j∑
m=0

t5m −
j∑
l=0

Ri
l23
q̇l+1

j∑
m=0

t4m

)
ai,cMi3aj+1

+Rk
i33

i−2∑
j=0

(
j∑
l=0

Ri
i33ql+1

j∑
m=0

t4m −
j∑
l=0

Ri
l13q̇1+1

j∑
m=0

t6m

)
ai,cMi2aj+1

)
(3.44)

τkz12 =
n∑
i=k

Rk
i

di,c ×Mi


i−1∑
j=0

Ri
j


0

0

q̇j+1

×


i−1∑
l=0

Ri
l


0

0

q̇l+1

× di,c





= −Rk

i32

(
i−1∑
j=0

Ri
j13q̇j+1

)(
i−1∑
l=0

Ri
l33q̇l+1

)
Mi3a

2
i,c

−Rk
i33

(
i−1∑
j=0

Ri
j13q̇j+1

)(
i−1∑
l=0

Ri
l23q̇l+1

)
Mi2a

2
i,c

(3.45)

τkz13 =
n∑

i=k+1

(
Rk
i31

i−1∑
h=k

i−2∑
j=0

(
Ri
h21t9jMi3ahaj+1 −Ri

h31t8jMi2ahaj+1

)
+Rk

i32

i−1∑
h=k

i−2∑
j=0

(
Ri
h31t7jMi1ahaj+1 −Ri

h11t9jMi3ahaj+1

)
+Rk

i33

i−1∑
h=k

i−2∑
j=0

(
Ri
h11t8jMi2ahaj+1 −Ri

h21t7jMi1ahaj+1

))
(3.46)
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τkz14 =
n∑

i=k+1

(
Rk
i31

i−1∑
h=k

(
Ri
h21t12Mi3ai,cah −Ri

h31t11Mi2ai,cah
)

+Rk
i32

i=1∑
h=k

(
Ri
h31t10Mi1ai,cah −Ri

h11t12Mi3ai,cah
)

+Rk
i33

i=1∑
h=k

(
Ri
h11t11Mi2ai,cah −Ri

h21t10Mi1ai,cah
))

(3.47)

where in (3.42),

t1 =Ri
j23q̇j+1

i−2∑
l=j+1

Ri
l33q̇l+1 −Ri

j33q̇j+1

i−2∑
l=j+1

Ri
l23q̇l+1

t2 =Ri
j33q̇j+1

i−2∑
l=j+1

Ri
l13q̇l+1 −Ri

j13q̇j+1

i−2∑
l=j+1

Ri
l33q̇l+1

t3 =Ri
j13q̇j+1

i−2∑
l=j+1

Ri
l23q̇l+1 −Ri

j23q̇j+1

i−2∑
l=j+1

Ri
l13q̇l+1,

(3.48)

in (3.44),

t4m = Ri
m23q̇m+1R

i
(j+1)31 −Ri

m33q̇m+1R
i
(j+1)21

t5m = Ri
m33q̇m+1R

i
(j+1)11 −Ri

m13q̇m+1R
i
(j+1)31

t6m = Ri
m13q̇m+1R

i
(j+1)21 −Ri

m23q̇m+1R
i
(j+1)11,

(3.49)

in (3.46),

t7j =
i−2∑
j=0

(
j∑
l=0

Ri
l23q̇l+1

j∑
m=0

t6m −
j∑
l=0

Ri
l33q̇l+1

j∑
n=0

t5m

)

t8j =
i−2∑
j=0

(
j∑
l=0

Ri
l33q̇l+1

j∑
m=0

t4m −
j∑
l=0

Ri
l13q̇l+1

j∑
n=0

t6m

)

t9j =
i−2∑
j=0

(
j∑
l=0

Ri
l13q̇l+1

j∑
m=0

t5m −
j∑
l=0

Ri
l23q̇l+1

j∑
n=0

t4m

)
,

(3.50)
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and in (3.47),

t10 =

(
i−1∑
j=0

Ri
j23q̇j+1

)(
i=1∑
l=0

Ri
l23q̇l+1

)
−

(
i−1∑
j=0

Ri
j33q̇j+1

)(
i=1∑
l=0

Ri
l33q̇l+1

)

t11 =

(
i−1∑
j=0

Ri
j13q̇j+1

)(
i=1∑
l=0

Ri
l23q̇l+1

)

t12 =

(
i−1∑
j=0

Ri
j13q̇j+1

)(
i=1∑
l=0

Ri
l33q̇l+1

)
.

(3.51)

The gravity and the buoyancy terms are

τkz15 =
n∑
i=k

Rk
i (di,c × pigi)

=
n∑
i=k

(
Rk
i32R

i
w32ai,cpig −Rk

i33R
i
w22ai,cpig

) (3.52)

τkz16 =
n∑
i=k

Rk
i

((
i−1∑
j=k

Ri
jdj

)
× pigi

)

=
n∑

i=k+1

(
−Rk

i31

i−1∑
j=k

(
Ri
j21R

i
w32 +Ri

j31R
i
w22

)
pig

−Rk
i32

i−1∑
j=k

(
Ri
j31R

i
w12 +Ri

j11R
i
w32

)
pig

−Rk
i33

i−1∑
j=k

(
Ri
j11R

i
w22 +Ri

j21R
i
w12

)
pig

)
(3.53)

where gi is the gravity vector described in the i-th frame, Ri
w denotes the rotation

matrix transforming from the world attached frame to the i-th frame and pi = mi −

ρfluidVi is the coefficient of the gravity acceleration vector which contains the gravity

part and the buoyancy part.

Substituting the velocity (3.17) into the friction and drag forces, we can get terms
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in the torques as

τkz17 =
n∑
i=k

(
−Rk

i32

i=2∑
j=0

i=1∑
l=j+1

(
Ri
j13q̇j+1R

i
l21 −Ri

j23q̇j+1R
i−1
l11

)
Dsalai,c

+Rk
i33

i−2∑
j=0

i−1∑
l=j+1

(
Ri
j33q̇j+1R

i
l11 −Ri

j13q̇j+1R
i−1
l31

)
Dsalai,c

) (3.54)

τkz18 =
n∑
i=k

(
Rk
i32

i−1∑
j=0

Ri
j23q̇j+1Dsa

2
i,c +Rk

i33

i−1∑
j=0

Ri
j33q̇j+1Dsa

2
i,c

)
(3.55)

τkz19 =
n∑
i=k

Rk
i32R

i
f31Dsvfai,c −Rk

i,33R
i
f21Dsvfai,c (3.56)

τkz20 =
n∑

i=k+1

(
Rk
i31

i−1∑
h=k

i=2∑
j=0

i−1∑
l=j+1

(
Ri
h21t15jl −Ri

h31t14jl

)
Dsahal

+Rk
i32

i−1∑
h=k

i=2∑
j=0

i−1∑
l=j+1

(
Ri
h31t13jl −Ri

h11t15jl

)
Dsahal

+Rk
i33

i−1∑
h=k

i=2∑
j=0

i−1∑
l=j+1

(
Ri
h11t14jl −Ri

h21t13jl

)
Dsahal

) (3.57)

τkz21 =
n∑

i=k+1

(
Rk
i31

i−1∑
h=k

i−1∑
j=0

(
Ri
h21R

i
j23q̇j+1 −Ri

h31R
i
j33q̇j+1

)
Dsahai,c

−Rk
i32

i−1∑
h=k

i−1∑
j=0

Ri
h11R

i
j23q̇j+1Dsahai,c

+Rk
i33

i−1∑
h=k

i−1∑
j=0

Ri
h11R

i
j33q̇j+1Dsahai,c

) (3.58)

τkz22 =
n∑

i=k+1

(
Rk
i31

i−1∑
n=k

(
Ri
h21R

i
f31 −Ri

h31R
i
f21

)
Dsvfah

+Rk
i32

i−1∑
n=k

(
Ri
h31R

i
f11 −Ri

h11R
i
f31

)
Dsvfah

+Rk
i33

i−1∑
n=k

(
Ri
h11R

i
f21 −Ri

h21R
i
f11

)
Dsvfah

) (3.59)
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where in (3.57),

t13jl = Ri
j23q̇j+1R

i
l31 −Ri

l33q̇j+1R
i−1
l21

t14jl = Ri
j33q̇j+1R

i
l11 −Ri

l13q̇j+1R
i−1
l31

t15jl = Ri
j13q̇j+1R

i
l21 −Ri

l23q̇j+1R
i−1
l11 .

(3.60)

Then the torque of the k-th joint is the sum of all τkz terms shown in (3.34) to (3.59).

Next, we write the equations into the matrix form. First, we write the n joint

torque values into a column vector. In this vector, each element equals the torque

described in the above equations. Then we separate the equations into four parts.

The first part is the mass terms which contains the added mass and q̈ terms, as

described in equations (3.34), (3.37), (3.38) and (3.39). Each of these terms can be

regarded as a product of q̈i, i = 1, 2, ..., n, system parameters added mass, the moment

of inertia, and link length, and a function of q. Thus we can write it in the form of

a dot product of two vectors where the row vector contains the system parameters

and the q elements, and the column vector is the q̈ vector. In this way, we can write

all the torque values in the same form with the same vector q̈ and an exclusive row

vector. Write these row vectors in the same order as the torque vector vertically. We

can get the mass matrix M (q).

The second part is the Coriolis and centripetal terms which contains the added

mass and q̇ terms, as shown in equations (3.35), (3.36) and (3.40)-(3.47). From these

equations, we can see that each term contains two qi, i = 1, 2, ..., n, system parameters

added mass, added moment of inertia and link length, and a function of q. Using the

same method above, we can write terms in each torque as an exclusive row vector

and a q̇ vector, and write them in a matrix to get C(q, q̇) matrix.

The third and fourth parts are the friction and drag part and the gravity and

buoyancy part, described in equations (3.52)-(3.53) and (3.54)-(3.59), respectively.

We simply write these terms in the same order as the torque values in column vectors
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to get the drag vector D(q, q̇) and the gravity vector g(q).

Finally, we can get the dynamic equations of a robot manipulator moving in fluid

as [13]

Mm(q)q̈ +Cm(q, q̇)q̇ +Dm(q, q̇) + gm(q) = τm (3.61)

which is linear in the parameters and linear in the generalized joint coordinates.

q ∈ Rn is the vector of generalized coordinates, τ ∈ Rn is the vector of control input

of each joint, and n is equal to the number of joints of the manipulator. The matrix

Mm(q) is the matrix of total mass and inertia, Cm(q, q̇) contains the Coriolis and

centripetal terms, Dm(q, q̇) is the hydrodynamic damping terms and gm(q) is the

vector containing gravity and buoyancy terms. The difference between the matrices

in (3.61) and those in (2.13) is the environmental factors. The matrices Mm(q) and

Cm(q, q̇) contain the added mass and added moment of inertia effect comparing to

M (q) and C(q, q̇), and gm(q) contains the buoyancy effect comparing to g(q).

In addition, we can write the equations in a parameterized form. In the torque

equations (3.34)-(3.59), we can see that each term is a product of one or more sys-

tem parameters and a function of q, q̇, q̈. Thus each torque value can be written in

a form of a dot product of two vectors: A row vector of joint variables and a col-

umn vector containing all combinations of system parameters appearing in equations

(3.34)-(3.59). Writing the row vectors in the same order of the torque vector, we

can get the matrix form of parameterizing the torque equations, namely the regressor

Y (q, q̇, q̈) and the parameter vector θ∗m. Thus, it can be denoted as

τ = Ym(q, q̇, q̈)θ∗m. (3.62)

The robot system has the following property:

Property 3.1. The mass matrix Mm(q) is positive definite and symmetric, i.e.
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Mm(q) = Mm(q)T > 0.

The mass matrix is positive definite due to the positive kinetic energy, and New-

ton’s third law indicates that the matrix is symmetric. The proof can be found in

[13] and [18].

3.2.2 Effects of Varying Environments

When the environment of the robot manipulator changes, the difference reflects

on the varying system parameters, which indicates that the parameter vector θ∗m

is a function of time, namely θ∗m(t). In the same manner, the matrices containing

the environment factors in the dynamic model are also functions of time. Thus, the

dynamic model of the system will become

Mm(q, t)q̈ +Cm(q, q̇, t)q̇ +Dm(q, q̇, t) + gm(q, t) = τ , (3.63)

and the linearity in the parameters property becomes

τ = Ym(q, q̇, q̈)θ∗m(t). (3.64)

3.3 The Two-link Manipulator Model

Recall that using the Newton-Euler formulation, we need to go through the for-

ward recursion to obtain the kinematic variables and the backward recursion to com-

pute the forces and torques. For the underwater case, since the geometric properties

are identical to the normal case, the kinematic variables remain the same. Thus

these variables are as shown from (2.16) to (2.22). Next, we consider the backward

recursion. Compared to the normal case, we need to take the hydrostatic and hydro-
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dynamic forces into account. Here we consider the added mass, drag, and buoyancy.

The force and torque acting on the second link can then be computed as

f2 = M2a2,c −m2g2 − b2 − FD2 (3.65)

τ2 = T2 − d2,c/2 × f2 (3.66)

where

T2 = Im2α2 + ω2 × (Im2ω2) (3.67)

b2 +m2g2 = (m2g − ρgπr2
2l2)

− sin(q1 + q2)

− cos(q1 + q2)

 (3.68)

FD2 = Dsv2,c +Dd|v2,c|Tv2,c (3.69)

and

M2 = diag(A11, A22) +mI (3.70)

where I is a 2× 2 identity matrix. Finally we get

τ2 = q̈1(M22l
2
2c +M22l1l2c cos q2 + Im2)

+ q̈2(M22l
2
2c + Im2)

+ q̇1(M22l1l2c sin q2q̇1)

+ q̇1(Ds2l
2
2c +Ds2l1l2c cos q2 +Dd2l2c sgn(vr2y)S21)

+ q̇2(Ds2l
2
2c +Dd2l

3
2c sgn(vr2y)q̇2)

+ l2c(m2 − l2ρπr2
2)g cos(q1 + q2)

(3.71)
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where

S21 = l22cq̇1 + l21 cos2 q2q̇1 + 2l22cq̇2 + 2l1l2c cos q2(q̇1 + q̇2) (3.72)

and M21 = m2 +A112 , M22 = m2 +A222 are the total mass of the link 2 on the x and

y direction, respectively. Im2 = I2 +A662 is the total moment of inertia of link 2 and

sgn(·) denotes the sign function.

In the same manner, we can get

τ1 = q̈1(M22l
2
2c + 2M22l1l2c cos(q2) +M22l

2
1 cos2(q2) +M21l

2
1 sin2(q2)

+M12l
2
1c + Im1 + Im2)

+ q̈2(M22l
2
2c +M22l1l2c cos(q2) + Im2)

+ q̇1(M22l1l2c sin(q2)q̇1 +M22l
2
1 sin(q2) cos(q2)q̇1

−M21l1l2c sin(q2)(q̇1 + q̇2)−M21l
2
1 sin(q2) cos(q2)q̇1)

+ q̇2(−M21l1l2c sin(q2)(q̇1 + q̇2))

+ q̇1(Ds2l
2
2c +Ds2l1l2c cos(q2) +Dd2l2c sgn(vr2y)S21 +Ds2l1l2c cos(q2)

+Ds2l
2
1 cos2(q2) +Dd2l1 cos(q2) sgn(vr2y)S21 +Ds1l

2
1 sin2(q2)

+Dd1l
3
1 sin3(q2) sgn(vr2x)q̇1 +Ds2l

2
1c +Dd2l

3
1c sgn(vr1y)q̇1)

+ q̇2(Ds2l
2
2c +Dd2l

3
2c sgn(vr2y)q̇2 +Ds2l1l2c cos(q2)

+Dd2l1l
2
2c cos(q2) sgn(vr2y)q̇2)

+ (m2l1 +m1l1c − l1l2ρπr2
2 − l1l1cρπr2

1)g cos(q1)

+ (m2l2c − l2l2cρπr2
2)g cos(q1 + q2)

(3.73)

where M11 = m1 + A221 is the total mass of the link 1, Im2 = I2 + A661 is the total

moment of inertia of link 2. In these equations, the environment fact is modeled in

the total mass and total moment of inertia which contain the added mass and the
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added moment of inertia, the friction and drag coefficients, and the buoyancy terms.

The system can also be written in the form of

Mm(q)q̈ +Cm(q, q̇)q̇ +Dm(q, q̇)q̇ + gm(q) = τ (3.74)

where

Mm(q) =

Mm11 Mm12

Mm21 Mm22

 ,Cm(q, q̇) =

Cm11 Cm12

Cm21 Cm22


Dm(q, q̇) =

Dm11 Dm12

Dm21 Dm22

 , gm(q) =

gm1

gm2


(3.75)

and

Mm11 = M22l
2
2c + 2M22l1l2c cos(q2) +M22l

2
1 cos2(q2) +M21l

2
1 sin2(q2)

+M12l
2
1c + Im1 + Im2

Mm12 = M22l
2
2c +M22l1l2c cos(q2) + Im2

Mm21 = M22l
2
2c +M22l1l2c cos q2 + Im2

Mm22 = M22l
2
2c + Im2

(3.76)

Cm11 = M22l1l2c sin(q2)q̇1 +M22l
2
1 sin(q2) cos(q2)q̇1

−M21l1l2c sin(q2)(q̇1 + q̇2)−M21l
2
1 sin(q2) cos(q2)q̇1

Cm12 = −M21l1l2c sin(q2)(q̇1 + q̇2)

Cm21 = M22l1l2c sin q2q̇1

Cm22 = 0

(3.77)
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Dm11 = Ds2l
2
2c +Ds2l1l2c cos(q2) +Dd2l2c sgn(vr2y)S21 +Ds2l1l2c cos(q2)

+Ds2l
2
1 cos2(q2) +Dd2l1 cos(q2) sgn(vr2y)S21 +Ds1l

2
1 sin2(q2)

+Dd1l
3
1 sin3(q2) sgn(vr2x)q̇1 +Ds2l

2
1c +Dd2l

3
1c sgn(vr1y)q̇1

Dm12 = Ds2l
2
2c +Dd2l

3
2c sgn(vr2y)q̇2 +Ds2l1l2c cos(q2)

+Dd2l1l
2
2c cos(q2) sgn(vr2y)q̇2

Dm21 = Ds2l
2
2c +Ds2l1l2c cos q2 +Dd2l2c sgn(vr2y)S21

Dm22 = Ds2l
2
2c +Dd2l

3
2c sgn(vr2y)q̇2

(3.78)

gm1 = (m2l1 +m1l1c − l1l2ρπr2
2 − l1l1cρπr2

1)g cos(q1)

+ (m2l2c − l2l2cρπr2
2)g cos(q1 + q2)

gm2 = l2c(m2 − l2ρπr2
2)g cos(q1 + q2).

(3.79)

From equations (3.76) to (3.79), we can see that the martix form terms are the

corresponding terms in (3.73) and (3.71).

The dynamic equations can also be written as

Ym(q, q̇, q̈)θ∗m = τ (3.80)
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where Y (q, q̇, q̈) ∈ R24×2 is a matrix and θ∗m ∈ R24 is a vector.

Ym(q, q̇, q̈) =

 q̈1 + q̈2 q̈1 q̈1 q̈1 + q̈2 q̈1 2 cos(q2)q̈1 + cos(q2)q̈2 + sin(q2)q̇2
1

q̈1 + q̈2 0 0 q̈2 0 cos(q2)q̈1 + sin(q2)q̇2
1

cos2(q2)q̈1 + sin(q2) cos(q2)q̇2
1 sin2(q2)q̈1 − sin(q2) cos(q2)q̇2

1

0 0

− sin(q2)q̇2
1 − 2 sin(q2)q̇1q̇2 − sin(q2)q̇2

2 cos(q1) cos(q1 + q2) q̇1 + q̇2 q̇1

0 0 cos(q1 + q2) q̇1 + q̇2 0

2 cos(q2)q̇1 sgn(vr2y)q̇
2
1 + 2 sgn(vr2y)q̇1q̇2 + sgn(vr2y)q̇

2
2 2 sgn(vr2y) cos2 q2q̇

2
1

cos(q2)q̇1 sgn(vr2y)q̇
2
1 + 2 sgn(vr2y)q̇1q̇2 + sgn(vr2y)q̇

2
2 sgn(vr2y) cos2 q2q̇

2
1

sgn(vr2y) cos2 q2q̇
2
1 + 2 cos2(q2) sgn(vr2y)q̇1q̇2 + cos(q2)q̇2 cos2(q2)q̇1

0 0

2 sgn(vr2y) cos(q2)q̇2
1 + 2 sgn(vr2y) cos(q2)q̇1q̇2 cos3 q2 sgn(vr2y)q̇

2
1

0 0

sgn(vr2y) cos(q2)q̇2
1 + 2 sgn(vr2y) cos(q2)q̇1q̇2 + cos(q2) sgn(vr2y)q̇

2
2 sin2(q2)q̇1

2 sgn(vr2y) cos(q2)q̇2
1 + 2 sgn(vr2y) cos(q2)q̇1q̇2 0

sin3(q2) sgn(vr2x)q̇
2
1 sgn(vr1y)q̇

2
1

0 0


(3.81)
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θ∗m =

(
M22l

2
2c M12l

2
1c Im1 Im2 0 M22l1l2c M22l

2
1 M21l

2
1

M21l1l2c (m2l1 +m1l1c − l1l2ρπr2
2 − l1l1cρπr2

1)g

l2c(m2 − l2ρπr2
2)g Ds2l

2
2c Ds2l

2
1c Ds2l1l2c Dd2l

3
2c

Dd2l
2
1l2c Dd2l2cl

2
1 Ds2l

2
1 Dd2l1l

2
2c Dd2l

3
1 Dd2l1l

2
2c

Ds1l
2
1 Dd1l

3
1 Dd2l

3
1c

)T
.

(3.82)

From (3.82), we can see that the added mass, the added moment of inertia, drag

coefficients, and fluid density are all modeled in the system parameters.



Chapter 4

Adaptive Single-model Based

Control Designs

In this chapter, we build the robot dynamic models for different environmental

situations, present single-model adaptive controllers to satisfy asymptotic tracking

of manipulator joints and stable estimation of unknown system parameters for each

situation, then use a two-link planar elbow manipulator to illustrate the controller

performance for each fixed situation. Then we use the obtained knowledge to develop

the multiple-model based adaptive control design to deal with the situations when

environments change in the next chapter.

4.1 Nominal Controller

A nominal controller is designed as if the estimated parameters were exactly

known. An adaptive controller can be built based on the knowledge obtained from

the nominal controller. Recall that the system model of a robot moving in a fluid

61
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environment is

Mm(q)q̈ +Cm(q, q̇)q̇ +Dm(q, q̇) + gm(q) = τ (4.1)

where the system parameters contain the environmental effects. In this case, these

system parameters are known, and joint variables can be obtained by sensors, which

means that matrices Mm(q), Cm(q, q̇), Dm(q, q̇), gm(q) and vectors q, q̇, q̈ can be

obtained. We can adopt a controller structure [21]

u = Mm(q)aq +Cm(q, q̇)q̇ +Dm(q, q̇) + gm(q) (4.2)

where

aq = q̈d −K1
˙̃q −K0q̃. (4.3)

Theorem 4.1. For the robot moving in a specific environment described as (4.1),

using the controller (4.2), the robot can track the desired trajectory asymptotically.

Proof. Since the inertia matrix Mm(q) is invertible, the system reduces to

¨̃q +K1
˙̃q +K0q̃ = 0. (4.4)

Let e be the system state error vector

e =

q̃
˙̃q

 . (4.5)
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Then we have

ė =

 ˙̃q

¨̃q


=

0n×n In×n

−K0 −K1


q̃

˙̃q


= Ae. (4.6)

Since matrix A is stable, we have the whole system stable, which also indicates

that the system tracking error e will converge to 0, i.e., limt→∞ e = 0. Thus the

system output can track the desired trajectory asymptotically.

4.2 Direct Adaptive Control

In an application, the system parameters may not be exactly known, and the

environmental factors will also have a huge influence on the dynamic equations. We

need to use an adaptive controller and parameter estimation to achieve asymptotic

tracking. First, from (3.62), we parameterize the dynamic equations of the robot as

Mm(q)q̈ +Cm(q, q̇)q̇ +Dm(q, q̇) + gm(q) = Ym(q, q̇, q̈)θm, (4.7)

where Ym(q, q̇, q̈) is the regressor matrix and θm contains the parameters of the

environment and robot.

In the unknown parameters case, we adopt the controller structure

u = M̂m(q)aq + Ĉm(q, q̇)q̇ + D̂m(q, q̇) + ĝm(q) (4.8)
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where aq has the same structure with (4.3), the matrices M̂m, Ĉm, D̂m and ĝm

represents the estimated value of Mm, Cm, Dm and gm, respectively.

The closed-loop system becomes

¨̃q +K1
˙̃q +K0q̃ = M̂−1Y (q, q̇, q̈)θ̃, θ̃ = θ̂ − θ. (4.9)

We then choose the adaptive update law

˙̂
θ = −Γ−1(M̂−1Y (q, q̇, q̈))TBTPe (4.10)

where Γ is a positive definite coefficient matrix, and P is the solution to the Lyapunov

equation

ATP + PA = −Q. (4.11)

Theorem 4.2. For the robot moving in a specific fluid environment (4.1) where the

environment system parameters are unknown, using the controller structure shown in

(4.8) and the adaptive update law (4.10), the global asymptotic tracking of the joint

angles can be achieved, and the parameter estimates are bounded.

Proof. Let the Lyapnov function V be

V = eTPe+ θ̃TΓθ̃. (4.12)

Then the derivative of V is

V̇ = −eTQe < 0 (4.13)

where Q is a random positive matrix satisfying Q = QT > 0. By Lyapunov direct

method [7], we can see that the the position tracking errors e converge to zero asymp-
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totically, and the parameter estimation errors θ̃ remain bounded, which indicates that

the system parameter estimates θ̂ are bounded. [25]

4.3 Indirect Adaptive control

With the parameterize method shown in (4.7) and the controller structure shown

in (4.8), the indirect adaptive control scheme uses the error between the actual torque

and the estimated torque to generate the parameter update law. Let the torque

prediction and its parameterized form be

τ̂ = M̂m(q)q̈ + Ĉm(q, q̇)q̇ + D̂m(q, q̇) + ĝm(q) = Ym(q, q̇, q̈)θ̂m. (4.14)

Then the prediction error can be written as

τ̃ = τ̂ − τ = Y (q, q̇, q̈)θ̃ (4.15)

where θ̃ = θ̂ − θ is the parameter estimation error. The adaptive update law can be

chosen as

˙̃θ =
˙̂
θ = −ΓY (q, q̇, q̈)T τ̃ . (4.16)

Theorem 4.3. For the robot moving in a specific environment described by (4.1), ap-

plying the controller (4.8) and the adaptive update law (4.16) guarantees boundedness

for parameter estimates θ̂ and globally asymptotic tracking of the desired trajectory.

Proof. To analyse the stability and parameter estimate convergence of the closed-loop

system, let us consider the Lyapunov function

V =
1

2
θ̃Γ−1θ̃ (4.17)
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and substitute (4.16) into its derivative to get

V̇ = θ̃TΓ−1 ˙̃θ (4.18)

= −θ̃TY (q, q̇, q̈)T τ̃

= −τ̃ T τ̃

≤ 0

thus

θ̃ ∈ L∞, τ̃ ∈ L2 (4.19)

which follows that parameter estimates θ̂ are bounded.

Substituting the torque prediction (4.14) and the actual torque (4.8) into the

prediction error (4.15), we can get

τ̃ = τ̂ − τ

= (M̂q̈ + Ĉ(q, q̇)q̇ + D̂(q, q̇) + ĝ(q))− (M̂aq + Ĉ(q, q̇)q̇ + D̂(q, q̇) + ĝ(q))

= M̂(¨̃q +K1
˙̃q +K0q̃) (4.20)

which leads to

q̃ =
(
s2I + sKD +KP

)
M̂−1(q)τ̃. (4.21)

From (4.19), we know that M̂−1τ̃ is bounded. In addition, q̃ = q− qd and qd, q̇d

are bounded. Thus, we can conclude that

q̃, ˙̃q ∈ L2, q̃ ∈ L∞ (4.22)

and according to Lemma 2.1, the theorem holds.
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4.4 Simulation Study

Consider the planar elbow robot manipulator as shown in Figure 2.2, which is

moving in the water. We have already analyzed the dynamics of this manipulator in

Chapter 2. Now we consider the forces that are exerted on the manipulator to get the

dynamic equations. Then we carry out adaptive controllers and parameter update

laws for both the normal case and the underwater case.

Dynamic model. The dynamic equations for the underwater manipulator can

be found in Chapter 3.3, as shown in (3.74)

Mm(q)q̈ +Cm(q, q̇)q̇ +Dm(q, q̇)q̇ + gm(q) = τ , (4.23)

which can also be written as

τ = Ym(q, q̇, q̈)θ∗m, (4.24)
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where

Ym(q, q̇, q̈) =

 q̈1 + q̈2 q̈1 q̈1 q̈1 + q̈2 q̈1 2 cos(q2)q̈1 + cos(q2)q̈2 + sin(q2)q̇2
1

q̈1 + q̈2 0 0 q̈2 0 cos(q2)q̈1 + sin(q2)q̇2
1

cos2(q2)q̈1 + sin(q2) cos(q2)q̇2
1 sin2(q2)q̈1 − sin(q2) cos(q2)q̇2

1

0 0

− sin(q2)q̇2
1 − 2 sin(q2)q̇1q̇2 − sin(q2)q̇2

2 cos(q1) cos(q1 + q2) q̇1 + q̇2 q̇1

0 0 cos(q1 + q2) q̇1 + q̇2 0

2 cos(q2)q̇1 sgn(vr2y)q̇
2
1 + 2 sgn(vr2y)q̇1q̇2 + sgn(vr2y)q̇

2
2 2 sgn(vr2y) cos2 q2q̇

2
1

cos(q2)q̇1 sgn(vr2y)q̇
2
1 + 2 sgn(vr2y)q̇1q̇2 + sgn(vr2y)q̇

2
2 sgn(vr2y) cos2 q2q̇

2
1

sgn(vr2y) cos2 q2q̇
2
1 + 2 cos2(q2) sgn(vr2y)q̇1q̇2 + cos(q2)q̇2 cos2(q2)q̇1

0 0

2 sgn(vr2y) cos(q2)q̇2
1 + 2 sgn(vr2y) cos(q2)q̇1q̇2 cos3 q2 sgn(vr2y)q̇

2
1

0 0

sgn(vr2y) cos(q2)q̇2
1 + 2 sgn(vr2y) cos(q2)q̇1q̇2 + cos(q2) sgn(vr2y)q̇

2
2 sin2(q2)q̇1

2 sgn(vr2y) cos(q2)q̇2
1 + 2 sgn(vr2y) cos(q2)q̇1q̇2 0

sin3(q2) sgn(vr2x)q̇
2
1 sgn(vr1y)q̇

2
1

0 0


(4.25)
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θ∗m =

(
M22l

2
2c M12l

2
1c Im1 Im2 0 M22l1l2c M22l

2
1 M21l

2
1

M21l1l2c (m2l1 +m1l1c − l1l2ρπr2
2 − l1l1cρπr2

1)g

l2c(m2 − l2ρπr2
2)g Ds2l

2
2c Ds2l

2
1c Ds2l1l2c Dd2l

3
2c

Dd2l
2
1l2c Dd2l2cl

2
1 Ds2l

2
1 Dd2l1l

2
2c Dd2l

3
1 Dd2l1l

2
2c

Ds1l
2
1 Dd1l

3
1 Dd2l

3
1c

)
,

(4.26)

as shown in (3.81) and (3.82).

The dynamic equations of the robot moving without the effects of the fluid can

also be written in the form of

τ = Y (q, q̇, q̈)θ∗ (4.27)

where the matrix Y and the parameter θ∗ are

Y (q, q̇, q̈) =

 q̈1 + q̈2 q̈1 q̈1 q̈1 + q̈2 q̈1 2 cos(q2)q̈1 + cos(q2)q̈2 + sin(q2)q̇2
1

q̈1 + q̈2 0 0 q̈2 0 cos(q2)q̈1 + sin(q2)q̇2
1

cos2(q2)q̈1 + sin(q2) cos(q2)q̇2
1 sin2(q2)q̈1 − sin(q2) cos(q2)q̇2

1

0 0

− sin(q2)q̇2
1 − 2 sin(q2)q̇1q̇2 − sin(q2)q̇2

2 cos(q1) cos(q1 + q2)

0 0 cos(q1 + q2)


(4.28)

θ∗ =

(
m2l

2
2c m1l

2
1c Im1 Im2 0 m2l1l2c m2l

2
1 m2l

2
1

m2l1l2c (m2l1 +m1l1c − l1l2ρπr2
2 − l1l1cρπr2

1)g

l2c(m2 − l2ρπr2
2)g

)T
.

(4.29)

.
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Here we suppose Let the true values of the system parameters be

m1 = 25.494, m2 = 21.245, l1 = 1.2, l1,c = 0.6,

l2 = 1, l2,c = 0.5, r1 = 0.05, r2 = 0.05,

g = 9.8, ρfluid = 997,

Ds = diag{0.04, 0.04}

Dd = diag{0.8, 1.2}.

(4.30)

The parameters simulate a real robot manipulator, and the mass of the manipulator

is computed from the geometry with the density of iron. In addition, the fluid density

and friction/drag coefficients simulate the water.

The initial conditions of joint variables be (q1, q2, q̇1, q̇2)|t=0 = (1, 1,−0.5,−0.2)

and the desired joint variables be qd1(t) = qd2(t) = sin t. Then the initial tracking

errors are (q̃1, q̃2, ˙̃q1, ˙̃q2)|t=0 = (1, 1,−1.5,−1.2)

Nominal controller. First we show the control result of the nominal controller.

Take (4.2) as the controller structure, and set the controller parameters as

K1 = diag{50, 50},K0 = diag{75, 75}. (4.31)

The system tracking errors are shown in Figure 4.1. From the figure, we can see

that the joint positions and velocities track the desired trajectory asymptotically.
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Figure 4.1: System tracking error for nominal control.

Direct adaptive controller. Use the adaptive controller as shown in (4.8) and

(4.3). Set the initial conditions of joint variables as (q1, q2, q̇1, q̇2)|t=0 = (1, 1,−0.5,−0.2)
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and the desired joint variables as qd1(t) = qd2(t) = sin t. Choose the controller pa-

rameters as

K1 = diag{50, 50},K0 = diag{75, 75}. (4.32)

Let the estimate of the system parameters be

θ̂(t) =

[
θ̂1(t) θ̂2(t) θ̂3(t) · · · θ̂24(t)

]
(4.33)

then the parameter estimation error is denoted by θ̃ = θ̂ − θ∗m. Set the initial values

of the parameter estimates θ̂0 as 90% of the true values. The adaptive update law is

given as (4.10) with the parameters as

Γ = diag{0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.45, 0.9, 0.03, 0.03, · · · , 0.03}.

(4.34)

Figure 4.2 shows that the close-loop tracking errors converge to zero asymptot-

ically. The parameter estimation errors are shown in Figures 4.3 to 4.9. From the

figures, we can see that the parameter estimates are bounded.
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Figure 4.2: System tracking error for single model direct adaptive control.
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Figure 4.3: Parameter estimation errors 1 to 3 for single model direct adaptive control.

Figure 4.4: Parameter estimation errors 4 to 6 for single model direct adaptive control.
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Figure 4.5: Parameter estimation errors 7 to 9 for single model direct adaptive control.

Figure 4.6: Parameter estimation errors 10 and 11 for single model direct adaptive
control.
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Figure 4.7: Parameter estimation errors 12 to 15 for single model direct adaptive
control.
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Figure 4.8: Parameter estimation errors 16 to 19 for single model direct adaptive
control.
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Figure 4.9: Parameter estimation errors 20 to 24 for single model direct adaptive
control.

Indirect adaptive controller. Apply the controller (4.8) and the parameter

update law (4.16) to the system (3.74) with the estimate of the system parameters

being

θ̂(t) =

[
θ̂1(t) θ̂2(t) θ̂3(t) · · · θ̂24(t)

]
(4.35)

and set the initial values of the parameter estimates θ̂0 as 90% of the true values. Set

the initial conditions of joint variables as (q1, q2, q̇1, q̇2)|t=0 = (1, 1,−0.5,−0.2) and

the desired joint variables as qd1(t) = qd2(t) = sin t. Choose the controller parameters

as (4.31) and the parameter update coefficients as

Γ = diag{0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.45, 0.9, 0.03, 0.03, · · · , 0.03}.

(4.36)

The tracking errors are shown in Figure 4.10, and the parameter estimation errors
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are shown in Figures 4.11 to 4.17. The figures indicate that the tracking errors

converge to zero asymptotically, and the parameter estimates are bounded.

Figure 4.10: System tracking error for single model indirect adaptive control.
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Figure 4.11: Parameter estimation errors 1 to 3 for single model indirect adaptive
control.

Figure 4.12: Parameter estimation errors 4 to 6 for single model indirect adaptive
control.
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Figure 4.13: Parameter estimation errors 7 to 9 for single model indirect adaptive
control.

Figure 4.14: Parameter estimation errors 10 and 11 for single model indirect adaptive
control.
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Figure 4.15: Parameter estimation errors 12 to 15 for single model indirect adaptive
control.

Figure 4.16: Parameter estimation errors 16 to 19 for single model indirect adaptive
control.
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Figure 4.17: Parameter estimation errors 20 to 24 for single model indirect adaptive
control.



Chapter 5

Adaptive Multiple-model Based

Control Design

When the robot manipulator is moving in a fluid environment or carrying a load,

the parameters of the robot dynamic equations are different from the original ones.

The single-model based adaptive control is able to learn the parameters when they

change, but this may cause a huge transient error during the learning process. To

avoid this error, we adopt a multiple-model based adaptive control scheme so that

when the model of the robot changes, the parameter estimates can rapidly convert to

a relatively closer one with respect to the new true value. Thus after learning all the

possible parameters, the transient error can be largely reduced after the controller

with the least estimation error is chosen.

5.1 Controller Design

In this section, we develop an adaptive multiple-model control scheme to deal

with the changing environment. First, we analyze the system models and show the

reason why we adopt a multiple-model based control scheme, then we introduce the

84
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adaptive controller we use to solve this problem, and finally, we analyze the stability

of the closed-loop system.

5.1.1 System Models

Recall that the original dynamic equations of a robot manipulator is shown as in

(2.13):

M(q)q̈ +C(q, q̇) + g(q) = τ (5.1)

and the dynamic equations of a robot in a fluid environment is shown as in (3.61):

Mm(q)q̈ +Cm(q, q̇)q̇ +Dm(q, q̇)q̇ + gm(q) = τ (5.2)

where M(q) and Mm(q), C(q, q̇) and Cm(q, q̇) have the same structure, but the

mass terms are changed because of the added mass, and g(q) and gm(q) are changed

because of the buoyancy. In addition, there is an extra term Dm(q, q̇) which models

the effects of fluid friction and drag forces. The detailed description of the matrices

Mm(q), Cm(q, q̇), gm(q) and Dm(q, q̇) can be found in (3.34)-(3.47), (3.52)-(3.53)

and (3.54)-(3.59), respectively.

Recall that for single-model indirect adaptive control, the controller structure is

u = M̂m(q)aq + Ĉm(q, q̇)q̇ + D̂m(q, q̇) + ĝm(q), (5.3)

where u is the input torque. The adaptive update law using the prediction error is

˙̃θ(t) = −ΓY (q, q̇, q̈)T τ̃ . (5.4)

Consider the following condition: a robot manipulator is rapidly submerged by
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water or moving out of the water. Suppose the manipulator is submerged at time tc,

then the dynamic model of the robot manipulator becomes

M (q, t)q̈ +C(q, q̇, t)q̇ +D(q, q̇, t)q̇ + g(q, t) = τ , (5.5)

where

M (q, t) =


M (q), if t ≤ tc

Mm(q), if t > tc

,C(q, q̇, t) =


C(q, q̇), if t ≤ tc

Cm(q, q̇), if t > tc

D(q, q̇, t) =


0, if t ≤ tc

Dm(q, q̇), if t > tc

,g(q, t) =


g(q), if t ≤ tc

gm(q), if t > tc

,

(5.6)

which also has the form of

τ = Y (q, q̇, q̈, t)θ∗(t) (5.7)

where

θ∗(t) =


θ∗, if t < tc

θ∗m, if t ≥ tc.

(5.8)

and

Y (q, q̇, q̈, t) =


Y (q, q̇, q̈), if t < tc

Ym(q, q̇, q̈), if t ≥ tc.

(5.9)

For a system described in (5.5)-(5.9), a single-model based adaptive controller

may need to go through a learning process, which increases the transient error. Thus,

a multiple-model adaptive control scheme is considered.
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5.1.2 Multiple Model Adaptive Controller

Here we propose a multiple-model based adaptive controller to avoid having huge

transient errors when the robot dynamic model changes. Before the environment

changes, we have no prior knowledge on what environment it will be, so multiple

models and the performance index can make sure that the most suitable model can be

adopted. The controller consists of multiple identification models with corresponding

parameter estimate initial values. Based on (4.14), the multiple models can be chosen

as

τ̂i = Yi(q, q̇, q̈)θ̂i(t), i = 1, 2, · · · , N (5.10)

where each model i is an estimate of one corresponding environment, θ̂i is the pa-

rameter estimate of the environmental system parameters θ∗i , and each model has a

corresponding regressor Yi(q, q̇, q̈). Note that each θ∗i and Yi(q, q̇, q̈) can have much

different structures, respectively. The input torque of these models are computed as

ui = M̂iaq + Ĉi(q, q̇)q̇ + D̂i(q, q̇) + ĝi(q). (5.11)

Note that τ̂i is the torque prediction vector of each model, and ui is the actual torque

input of the manipulator computed from each model.

Then the prediction error of each model is given as

τ̃i = τ̂i − τ , i = 1, 2, · · · , N, (5.12)

where τ is the selected actual torque input.

The switching strategy is described as follows. Suppose we know the time when

the environment condition will change, and we have N models in total. At the time

t, only one among the N models is adopted to obtain the controller and be updated
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by the adaptation law. Other models remain constant until adopted. The adoption

follows the rule that the model with the minimal performance index is adopted. Then

the torque input is selected as

τ = uj (5.13)

where j is the id of the selected model, and the adaptation law is obtained as

˙̃θi(t) =


−ΓiYi(q, q̇, q̈)T τ̃i, if i = j

0, otherwise

(5.14)

Parameter Projection. In the case when we have a prior knowledge on the

range of the parameter vector θi, we can limit the parameters in the range by using a

parameter projection design. The parameter region of the j-th parameter in the i-th

model is defined as [θai,j, θ
b
i,j], j = 1, 2, . . . , nθ, such that θ∗i,j ∈ [θai,j, θ

b
i,j], j = 1, 2, . . . , nθ,

for θ∗i = [θ∗i,1, θ
∗
i,2, . . . , θ

∗
i,nθ

]T , i = 1, 2, . . . , N . In our parameter update law design, let

gi(t) = −ΓiYi(q, q̇, q̈)T τ̃i (5.15)

and

˙̃θi(t) = gi(t)− hi(t) (5.16)

when the model i is chosen, where

hi,j(t) =


0,

if θi,j(t) ∈ (θai,j, θ
b
i,j), or

if θi,j(t) = θai,j, gi,j(t) ≥ 0, or

if θi,j(t) = θbi,j, gi,j(t) ≤ 0,

−gi,j(t), otherwise

(5.17)
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and choose the initial estimates as

θi,j(0) ∈ [θai,j, θ
b
i,j]. (5.18)

With the prior knowledge [θai,j, θ
b
i,j], j = 1, 2, . . . , nθ and the projection function

hi(t), we can ensure that the parameter estimates are in the region and so that

θi(t) ∈ L∞, i = 1, 2, . . . , N .

5.1.3 Stability Analysis

For each identification model, we have the Lyapunov function

Vi =
1

2
θ̃Ti (t)Γiθ̃i(t) (5.19)

and its derivative

V̇i = θ̃Ti Γ−1
i

˙̃θi (5.20)

= −θ̃Ti Yi(q, q̇, q̈)T τ̃i

= −τ̃ Ti τ̃i

≤ 0

which indicates that τ̃i ∈ L2 and θ̃i ∈ L∞. Then from the equation (4.20)

τ̃ = τ̂ − τ

= (M̂q̈ + Ĉ(q, q̇)q̇ + D̂(q, q̇) + ĝ(q))− (M̂aq + Ĉ(q, q̇)q̇ + D̂(q, q̇) + ĝ(q))

= M̂(¨̃q +K1
˙̃q +K0q̃), (5.21)
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we have

q̃ =
(
s2I + sKD +KP

)
M̂−1

i (q)τ̃i (5.22)

which shows that

q̃, ˙̃q ∈ L2, q̃ ∈ L∞. (5.23)

Thus for each selected model, all signal is bounded, and the trajectory tracking

error q̃ → 0 asymptotically.

5.2 Simulation Study

In this section we show the performance of multiple model switching and the

advantage of using switching strategy.

Dynamic models. Suppose the robot manipulator is moving in the atmosphere

in t ∈ [0, 90), then submerged by water in t ∈ [90, 180), and finally move out in

t ∈ [180, 270]. The dynamic model of the robot is as shown in (2.31) and (2.32)

τ2 = (q̈1(m2l
2
2c +m2l1l2c cos(q2) + I2)

+ q̈2(m2l1l2c cos(q2) + I2)

+ q̇1(m2l1l2c sin(q2)q̇1)

+m2l2cg cos(q1 + q2))k

(5.24)
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and

τ1 = (q̈1(m1l
2
1c +m2l

2
2c +m2l

2
1 + 2m2l1l2c cos(q2) + I1 + I2)

+ q̈2(m2l
2
2c +m2l1l2c cos(q2) + I2)

+ q̇1(−m2l1l2c sin(q2)q̇2)

+ q̇2(−m2l1l2c sin(q2)(q̇1 + q̇2))

+ (m1l1c +m2l1)g cos(q1) +m2l2cg cos(q1 + q2))k,

(5.25)

and for the underwater case, the dynamic model is shown in (3.71) and (3.73)

τ1 = q̈1(M22l
2
2c + 2M22l1l2c cos(q2) +M22l

2
1 cos2(q2) +M21l

2
1 sin2(q2)

+M12l
2
1c + Im1 + Im2)

+ q̈2(M22l
2
2c +M22l1l2c cos(q2) + Im2)

+ q̇1(M22l1l2c sin(q2)q̇1 +M22l
2
1 sin(q2) cos(q2)q̇1

−M21l1l2c sin(q2)(q̇1 + q̇2)−M21l
2
1 sin(q2) cos(q2)q̇1)

+ q̇2(−M21l1l2c sin(q2)(q̇1 + q̇2))

+ q̇1(Ds2l
2
2c +Ds2l1l2c cos(q2) +Dd2l2c sgn(vr2y)S21 +Ds2l1l2c cos(q2)

+Ds2l
2
1 cos2(q2) +Dd2l1 cos(q2) sgn(vr2y)S21 +Ds1l

2
1 sin2(q2)

+Dd1l
3
1 sin3(q2) sgn(vr2x)q̇1 +Ds2l

2
1c +Dd2l

3
1c sgn(vr1y)q̇1)

+ q̇2(Ds2l
2
2c +Dd2l

3
2c sgn(vr2y)q̇2 +Ds2l1l2c cos(q2)

+Dd2l1l
2
2c cos(q2) sgn(vr2y)q̇2)

+ (m2l1 +m1l1c − l1l2ρπr2
2 − l1l1cρπr2

1)g cos(q1)

+ (m2l2c − l2l2cρπr2
2)g cos(q1 + q2)

(5.26)
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τ2 = q̈1(M22l
2
2c +M22l1l2c cos q2 + Im2)

+ q̈2(M22l
2
2c + Im2)

+ q̇1(M22l1l2c sin q2q̇1)

+ q̇1(Ds2l
2
2c +Ds2l1l2c cos q2 +Dd2l2c sgn(vr2y)S21)

+ q̇2(Ds2l
2
2c +Dd2l

3
2c sgn(vr2y)q̇2)

+ l2c(m2 − l2ρπr2
2)g cos(q1 + q2).

(5.27)

Let the true values of system parameters be as in (4.30)

m1 = 25.494, m2 = 21.245, l1 = 1.2, l1,c = 0.6,

l2 = 1, l2,c = 0.5, r1 = 0.05, r2 = 0.05,

g = 9.8, ρfluid = 997,

Ds = diag{0.04, 0.04}

Dd = diag{0.8, 1.2}.

(5.28)

For the underwater case, the dynamic model can be expressed as

τ = Ym(q, q̇, q̈)θ∗m (5.29)

and for the atmosphere case, the dynamic model can be written in the same form as

τ = Y (q, q̇, q̈)θ∗ (5.30)

which can also be expressed as

τ = Y (q, q̇, q̈)θ∗(t) (5.31)
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where

θ∗(t) =


θ∗, if t ∈ [0, 90), or t ∈ [180, 270],

θ∗m, if t ∈ [90, 180),

(5.32)

and Ym(q, q̇, q̈), θ∗m are shown in (3.81) and (3.82) as

Ym(q, q̇, q̈) =

 q̈1 + q̈2 q̈1 q̈1 q̈1 + q̈2 q̈1 2 cos(q2)q̈1 + cos(q2)q̈2 + sin(q2)q̇2
1

q̈1 + q̈2 0 0 q̈2 0 cos(q2)q̈1 + sin(q2)q̇2
1

cos2(q2)q̈1 + sin(q2) cos(q2)q̇2
1 sin2(q2)q̈1 − sin(q2) cos(q2)q̇2

1

0 0

− sin(q2)q̇2
1 − 2 sin(q2)q̇1q̇2 − sin(q2)q̇2

2 cos(q1) cos(q1 + q2) q̇1 + q̇2 q̇1

0 0 cos(q1 + q2) q̇1 + q̇2 0

2 cos(q2)q̇1 sgn(vr2y)q̇
2
1 + 2 sgn(vr2y)q̇1q̇2 + sgn(vr2y)q̇

2
2 2 sgn(vr2y) cos2 q2q̇

2
1

cos(q2)q̇1 sgn(vr2y)q̇
2
1 + 2 sgn(vr2y)q̇1q̇2 + sgn(vr2y)q̇

2
2 sgn(vr2y) cos2 q2q̇

2
1

sgn(vr2y) cos2 q2q̇
2
1 + 2 cos2(q2) sgn(vr2y)q̇1q̇2 + cos(q2)q̇2 cos2(q2)q̇1

0 0

2 sgn(vr2y) cos(q2)q̇2
1 + 2 sgn(vr2y) cos(q2)q̇1q̇2 cos3 q2 sgn(vr2y)q̇

2
1

0 0

sgn(vr2y) cos(q2)q̇2
1 + 2 sgn(vr2y) cos(q2)q̇1q̇2 + cos(q2) sgn(vr2y)q̇

2
2 sin2(q2)q̇1

2 sgn(vr2y) cos(q2)q̇2
1 + 2 sgn(vr2y) cos(q2)q̇1q̇2 0

sin3(q2) sgn(vr2x)q̇
2
1 sgn(vr1y)q̇

2
1

0 0


(5.33)
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θ∗m =

(
M22l

2
2c M12l

2
1c Im1 Im2 0 M22l1l2c M22l

2
1 M21l

2
1

M21l1l2c (m2l1 +m1l1c − l1l2ρπr2
2 − l1l1cρπr2

1)g

l2c(m2 − l2ρπr2
2)g Ds2l

2
2c Ds2l

2
1c Ds2l1l2c Dd2l

3
2c

Dd2l
2
1l2c Dd2l2cl

2
1 Ds2l

2
1 Dd2l1l

2
2c Dd2l

3
1 Dd2l1l

2
2c

Ds1l
2
1 Dd1l

3
1 Dd2l

3
1c

)T
,

(5.34)

and Y (q, q̇, q̈), θ∗ are

Y (q, q̇, q̈) =

 q̈1 + q̈2 q̈1 q̈1 q̈1 + q̈2 q̈1 2 cos(q2)q̈1 + cos(q2)q̈2 + sin(q2)q̇2
1

q̈1 + q̈2 0 0 q̈2 0 cos(q2)q̈1 + sin(q2)q̇2
1

cos2(q2)q̈1 + sin(q2) cos(q2)q̇2
1 sin2(q2)q̈1 − sin(q2) cos(q2)q̇2

1

0 0

− sin(q2)q̇2
1 − 2 sin(q2)q̇1q̇2 − sin(q2)q̇2

2 cos(q1) cos(q1 + q2)

0 0 cos(q1 + q2)


(5.35)

θ∗ =

(
m2l

2
2c m1l

2
1c I1 I2 m2l

2
1 m2l1l2c 0 0

m2l1l2c (m1l1c +m2l1)g m2l2cg

)T
.

(5.36)

We can see from the models that the regressors of the two models Y (q, q̇, q̈) and

Ym(q, q̇, q̈) are significantly different.

Adaptive controller. First we apply a single-model adaptive controller for the

varying environment. For the estimation model, we use Ym(q, q̇, q̈) and θ̂, where

θ̂(t) =

[
θ̂1(t) θ̂2(t) θ̂3(t) · · · θ̂24(t)

]
, (5.37)
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and set the initial values of the parameter estimates as 90% of the parameter true

values of θ∗m. Set the initial conditions of joint variables as (q1, q2, q̇1, q̇2)|t=0 =

(1, 1,−0.5,−0.2) and the desired joint variables as qd1(t) = qd2(t) = sin t. Use the

adaptive controller

u = M̂m(q)aq + Ĉm(q, q̇)q̇ + D̂m(q, q̇) + ĝm(q), (5.38)

and choose the controller parameters as

K1 = diag{50, 50},K0 = diag{75, 75}, (5.39)

and the parameter update law

˙̃θ =
˙̂
θ = −ΓYm(q, q̇, q̈)T τ̃ . (5.40)

with the coefficients

Γ = diag{0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.45, 0.9, 0.03, 0.03, · · · , 0.03}.

(5.41)

The tracking errors q̃ and ˜̇q are shown in Figure 5.1, and parameter estimation er-

rors are shown in Figures 5.2 to 5.8. From the figures, we can see that in t ∈ [90, 180),

the environmental factors are close to the estimated model, and the parameter esti-

mate can converge and the system tracking error goes to zero. However, in t ∈ [0, 90)

and t ∈ [180, 270], the environment parameters are far from the model, the parameter

estimates start to oscillate and the tracking error does not converge to zero.
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Figure 5.1: System tracking error for single model adaptive control when system
parameters change.
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Figure 5.2: Parameter estimation errors 1 to 3 for single model adaptive control when
system parameters change.

Figure 5.3: Parameter estimation errors 4 to 6 for single model adaptive control when
system parameters change.
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Figure 5.4: Parameter estimation errors 7 to 9 for single model adaptive control when
system parameters change.

Figure 5.5: Parameter estimation errors 10 and 11 for single model adaptive control
when system parameters change.
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Figure 5.6: Parameter estimation errors 12 to 15 for single model adaptive control
when system parameters change.

Figure 5.7: Parameter estimation errors 16 to 19 for single model adaptive control
when system parameters change.
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Figure 5.8: Parameter estimation errors 20 to 24 for single model adaptive control
when system parameters change.

Multiple-model based adaptive controller. The dynamic model of the system

is shown through (5.24) to (5.36). The robot moves into water at time t1 = 30s, then

move out of water at time t2 = 60s. Let the initial conditions of joint variables

be (q1, q2, q̇1, q̇2)|t=0 = (1, 1,−0.5,−0.2) and the desired joint variables be qd1(t) =

qd2(t) = sin t. In this case, we use a controller with two identification models and

switch between them to reduce the transient error. These models are

τ̂i = Yi(q, q̇, q̈)θ̂i, i = 1, 2 (5.42)

where the regressor Y1(q, q̇, q̈) = Ym(q, q̇, q̈) and Y2(q, q̇, q̈) = Y (q, q̇, q̈), the param-

eter estimates are θ̂1, θ̂2, and the initial values of the parameter estimates θ̂1|t=0 =

0.9 ∗ θ∗m, θ̂2|t=0 = 0.85 ∗ θ∗, respectively. The controller for the first model is

u = M̂m(q)aq + Ĉm(q, q̇)q̇ + D̂m(q, q̇) + ĝm(q) (5.43)
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and for the second model is

u = M̂ (q)aq + Ĉ(q, q̇)q̇ + ĝ(q) (5.44)

with the controller coefficients as

K1 = diag{50, 50},K0 = diag{75, 75}. (5.45)

Choose the parameter adaptation law as

˙̃θi(t) =


−ΓiYi(q, q̇, q̈)T τ̃i, if i = j

0, otherwise

(5.46)

with the coefficients

Γ = diag{0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.45, 0.9, 0.03, 0.03, · · · , 0.03}.

(5.47)

and

Γ = diag{0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.45, 0.9}. (5.48)

In addition, we have the performance index

Ji(t) =

∫ t

0

e−λ(t−σ)τ̃ Ti (σ)τ̃i(σ)dσ, i = 1, 2 (5.49)

to decide which model should be updated and used to generate the controller.

Discussion. The tracking errors of the system are shown in Figure 5.9. The

parameter estimation errors of model 1 and 2 are shown in Figure 5.10 to 5.13 and

5.14 to 5.17, respectively. The simulate time periods are chosen so that the conver-
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gence of the parameter estimates can be shown, although the tracking errors converge

faster than the parameter estimates. The figures illustrate that the transient error

is significantly reduced compared to the single-model case, and after switching the

model, the system tracking error converge to zero and parameter estimates does not

oscillate.

In practical use, There is a trade-off between the model number and the computa-

tion complexity. For each model added, the regressor, the torque prediction and the

performance index should be computed separately, and more computation is needed

than in the single model case. In addition, to obtain the regressor of each model, we

need sensors on each link to measure the relative velocity to the fluid environment.
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Figure 5.9: System tracking error for multiple model indirect adaptive control.
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Figure 5.10: Parameter estimation errors 1 to 3 of model 1 for multiple model indirect
adaptive control.

Figure 5.11: Parameter estimation errors 4 to 6 of model 1 for multiple model indirect
adaptive control.
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Figure 5.12: Parameter estimation errors 7 to 9 of model 1 for multiple model indirect
adaptive control.

Figure 5.13: Parameter estimation errors 10 and 11 of model 1 for multiple model
indirect adaptive control.
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Figure 5.14: Parameter estimation errors 1 to 3 of model 2 for multiple model indirect
adaptive control.

Figure 5.15: Parameter estimation errors 4 to 6 of model 2 for multiple model indirect
adaptive control.
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Figure 5.16: Parameter estimation errors 7 to 9 of model 2 for multiple model indirect
adaptive control.

Figure 5.17: Parameter estimation errors 10 and 11 of model 2 for multiple model
indirect adaptive control.



Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, we have built the dynamic models of the robot manipulator moving

in a varying environment, i.e., in gust wind or in/out of the water, and developed a

multiple-model based adaptive control scheme for the manipulator. The background

of the research topic and the research motivation are introduced at first. Following

this, the effects of the fluid exerting on the robot are analyzed, and the dynamic

model of the robot moving in the fluid is proposed. After gaining the knowledge

of the model, we developed the model reference adaptive control accordingly. The

direct and indirect adaptive control method for controlling the robot was introduced,

then the multiple model adaptive control was presented to handle the case when the

environment varies. The movement of a two-link planar robot manipulator going

in and out of the water was considered in the simulation. The comparison work

between a single model adaptive controller and a multiple model adaptive controller

is proposed. The simulation result implied that the tracking of the robot is not

disturbed by the variance of the environment parameters in the multiple model case,

108
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which has better performance than the single model case.

6.2 Future Research Topics

Applying the multiple model adaptive control on the robot manipulator in the

varying environment is a new attempt. In this work, we only discuss the general

situations, but there are still many topics in this field to be addressed.

In Chapter 3, we discussed the effects that the fluid environment would have on

the robot. However, when the robot is moving at high speed, the effects will be more

complicated, and the structure of the system is different. Thus, the modeling of the

robot in this situation is worth investigating. In addition, we only consider the robot

link to be a cylinder, but in real life, according to the usage of the robot, links can

be in different shapes. When putting this work into application, the specific shape of

the robot should be considered to obtain the system model.

In Chapters 4 and 5, the adaptive control schemes were carried out for the robot

moving in a varying environment. In these control schemes, we assumed that the

joint variables could be exactly obtained. In real-life situations, the joint variable

values are detected by sensors, and errors may exist between sensed values and real

values. Thus, how to cancel the effect brought by observation error is a topic to be

studied.
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