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Abstract

The application of autonomous robots is drawing increasing attention in many
fields. An autonomous robot can accomplish dangerous or tedious tasks that are
difficult for humans, including aerial and underwater tasks. To achieve the task goals
precisely and steadily, using a suitable control scheme is vital to an autonomous
robot. Adaptive control, with its advantage in overcoming parametric uncertainties,
is widely accepted as an advanced control method for robots.

Most research in this field has been focused on the adaptive control of underwater
robots, but robot control in a varying environment remains an open problem. This
thesis proposes a multiple-model-based adaptive control scheme to deal with the ef-
fect of the varying environment. The equations of motion of a robot manipulator are
specifically derived. The complete model is based on the original model of a robot
manipulator, with the effects of added mass, buoyancy, damping, drag, and lift con-
sidered as the varying environmental factors. Then a multiple-model-based control
scheme is adopted to deal with the varying environment. Multiple controllers are
being compared while controlling the robot. The controller with the slightest error
is adopted to compensate for the varying environment effect, and the control perfor-
mance can be better than a single-model controller. The control scheme is applicable
for the robot moving in the air or any other fluid environments. Simulation results
of the developed multiple-model adaptive controller on a planar elbow robot moving

in the air and underwater are given to illustrate the improved control performance.
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Chapter 1

Introduction

Robots are a kind of mechanical device that can achieve various tasks. A robot
is generally integrated with knowledge from different fields such as mechanics, elec-
tronics, and information processing. Robots can have many forms, including robot
manipulators, wheeled robots, aerial robots, etc. Among these forms, the robot ma-
nipulator is widely applied in welding, grabbing, surgery, and assembly line. To meet
the requirements of the tasks, using a good control scheme is an essential part of
designing a robot manipulator. As people’s demand for autonomous robots is in-
creasing, better control methods need to be carried out to guarantee the performance
of the robot.

The control of underwater robots is a challenging task. The dynamics of such a
system are nonlinear, coupled, and can be time-varying. In application, some system
parameters may not be precisely known. In this case, a parameter estimator that can
identify the parameters’ uncertainty is necessary to optimize the control performance.
Adaptive controllers are suitable for this problem. An adaptive controller consists of
a controller and a parameter update law, which can guarantee the system output is

as good as if the parameters were known.



This thesis will consider the case where the robot is moving in the wind or in/out
of the water or some liquid. The effect of changing environment can be compensated

by switching the robot estimation model for adequate control.

1.1 Literature Review

In this section, we introduce some contributions in robot manipulator control in a
fluid environment, including the modeling of the robot, the adaptive control schemes,
the control of underwater robots, and multiple-model based control schemes. By

going through the literature, we can glance at the current research stage.

Modeling of robot manipulators under varying environments. To design
a robot and analyze its stability, we need the mathematical model of the robot at
first. For the robot manipulator, a detailed description of the dynamic models can
be found in [25]. Here we mainly discuss the literature on aerial and underwater
manipulators.

The dynamic model is different from the original model for the robot acting in
the air or underwater. The aerial manipulator has prospered in the past decade. The
work of carrying a manipulator on an unmanned aerial vehicle (UAV) was first pro-
posed in 2012. In [27], Korpela et al. first brought the idea of combining a UAV and a
4-DOF manipulator. Following this, the modeling and control [31], the dynamic sta-
bility analysis [30] and model reference adaptive control [32] of the UAV-manipulator
system were carried out. Disturbances are also an essential fact that needs to be con-
sidered. In [28], Lippielo and Ruggiero considered the external disturbances in the
modeling and control of their research. However, the disturbances were not explicitly
expressed. They were only regarded as an additional term. Besides the theoretical

study, implementation was also done by researchers. In [36], Ore et al. showed an



experimental result of an aerial manipulator which is capable of doing water sam-
pling tasks. The performance stability can be guaranteed in a wind environment up
to 10m/s.

As for the underwater case, the modeling of a robot manipulator is much different
from that in the atmosphere. In 1991, Janocha and Papadimitriou simulated and
analyzed the difference between an underwater manipulator and an original one [6].
The simulation result showed that a more substantial torque is needed underwater,
and the coupling is also higher among axes. Later in 1994, Levesque and Richard
gave a detailed modeling method of robot manipulator link in the water, including
the geometric description and forces exerted on the manipulator [10]. In [13], detailed
modeling of underwater manipulator considering the added mass, buoyancy, current
load, drag, and lift force was introduced by Schjolberg. The drag and lift force has
attracted the most attention among the forces exerted on the robot manipulator. In
1998, Leabourne and Rock used strip theory to model the drag force exerted on a robot
manipulator link [16]. They separated a robot link into small segments, computed the
drag force on each segment, and added them together to get the total drag force. In
the same year, McLain and Rock validated this modeling method through experiment
[17]. Some researchers also obtain the drag force through an integral computation on

the manipulator link [5] and [38].

Adaptive control of robot manipulators. Since the robot manipulator may
have many unknown parameters in the application, the adaptive control scheme is
commonly adopted. There are two different kinds of adaptive control schemes applied
in the robot manipulator control field, namely direct adaptive control and indirect
adaptive control. The difference lies in the error signal used to generate the parameter
adaptation law. As its name suggests, direct adaptive control takes the joint position

and velocity error to update parameters. In 1987, Craig et al. proposed an adaptive



control scheme for robot manipulators [1]. Their work combined adaptive control
law with a computed-torque controller, and global convergence was achieved. Still,
it required the knowledge of the measurement of the system acceleration. To avoid
this, Slotine and Li added the first-order filter into the controller, and the global
convergence can also be reached [2]. A case study was then carried out with the
theoretical research [4]. Indirect adaptive control uses the error between the true
and estimated parameters to generate the parameter update law. In 1988, Li and
Slotine introduced an indirect robot manipulator control scheme, and exponential
convergence of tracking errors and estimated parameters are proved [3].

With the support of theoretical results, many researchers have applied adaptive
control schemes for aerial manipulators and underwater manipulators. In 2014, An-
tonelli and Cataldi did research on the adaptive control of arm-equipped quadrotors,
where the wind disturbance was not considered [33]. In the same year, Caccavale et
al. implemented an adaptive controller on a manipulator-UAV system [34]. However,
their method requires measurement of the external disturbances. Research with a
more detailed model was carried out in the underwater robot adaptive control field.
In 1991, Fossen and Sagatun implemented an adaptive controller and a hybrid con-
troller with an adaptive and sliding mode controller to the underwater robot system.
The uncertainties of the vehicle thruster were considered, and a simulation study was
done on an underwater vehicle. In the same year, Broome and Wang applied an
adaptive parameter update law with a PID controller on an underwater manipulator.
The PID gains are also updated during the control process. In 1998, Antonelli and
Chiaverini researched the adaptive control of a vehicle-manipulator system where the
hydrodynamic forces were considered [15]. The tracking error’s asymptotic conver-
gence and the parameter estimations’ boundedness were proven. In 1999, Lee and

Yuh applied a non-regressor based adaptive control to an underwater manipulator



[19], and later in 2000, the experimental validation was carried out [20]. Indirect
adaptive control was also applied in the field of underwater robot control. In 2012,
Mohan and Kim proposed an indirect adaptive control scheme on an underwater
vehicle-manipulator system [29]. In their simulation, the pick and place operation
and the drilling operation can be successfully achieved.

In addition, there is also research on the control of time-varying parameters. In
[23], the adaptive control of a linear system with time-varying parameters is discussed.
In 2014, impedance control of robots interacting with the environment was introduced
[35]. Later in 2015, Wang et al. proposed critic learning for robot control in varying

environments.

Multiple-model control of robot manipulators. In adaptive control, when
the structure of the system remains identical, but the parameters of the dynamic
model of the system change, it takes a period for the adaptation. Moreover, a huge
error could be caused at the beginning of the adaptation. To solve this problem,
a multiple-model and switching method was proposed. In 1994, Narendra and Bal-
akrishnan developed an adaptive control scheme using multiple-model and switching,
where the controller output was determined online to minimize the transient error
[11]. The proof of global stability was given despite the chosen switching scheme.
Later in 1997, a specific switching rule was proposed [14], suggesting that a cost func-
tion corresponding to the error of each model should be computed at every moment,
and the controller is derived using the model with the least cost function. The simu-
lation showed that the multiple-model based controller performs significantly better
than the single-model based one.

The multiple-model and switching is suitable for the robot manipulator control,
especially when the robot’s operating environment varies. The multiple-model based

adaptive control was first brought into the field of robot control in 1994 by Ciliz and



Narendra [9]. In their work, the robot manipulator’s modeling and the algorithm’s
formulation were introduced. In 2006, Ciliz proposed a combined direct and indi-
rect multiple-model adaptive control [24]. The simulation results showed that the

combination improved the controller performance.

1.2 Research Problems

In the robot manipulator control literature, the aerial and underwater manipulator
controls are mature. However, previous work has not addressed the situation when the
robot manipulator is in a varying environment, for example, when the manipulator is
moving in and out of the water. To achieve some sampling and manipulating tasks,
the knowledge of canceling the effect is necessary. To achieve this, several problems

need to be solved.

The modeling of the robot moving in varying environments. To achieve
an optimal control objective, knowledge of the system dynamic model is necessary.
However, for an object moving in a varying environment, various effects would influ-
ence the equations of motion, e.g., the added mass added inertia, drag, and buoyancy.
These are unknown environmental factors. When we derive the equations of motion
of a robot, these effects will be exerted on each link and will also impact other links.
Thus, the modeling of the robot is complicated. In addition, to estimate the sys-
tem and environment parameters, we need to write the equations of motion in a

parameterized form.

The asymptotic tracking of the desired trajectory. In the past several
decades, many researchers have focused on the control of robots, and the controller

stability has been proven for different control methods. However, little attention has



been drawn to the situation where the environment varies. The asymptotic tracking

of the robot under this situation remains a problem.

1.3 Research Motivation

Robotics has gained increasing attention in the past few decades. Robots are
designed to help a human do different tasks automatically. For some tasks, we only
want the robot to detect the environment. In such cases, an automatic mobile vehicle
can reach the requirement. These vehicles include land vehicles, aerial platforms,
underwater vehicles, etc. When the manipulator is working in strong wind, it has to
reject the effect of the air. However, automatic mobile vehicles are only able to sense
the environment but are not capable of interacting with it.

One way to interact with the environment is to carry a manipulator. In order to
achieve different tasks, the manipulator may need to work in various environments.
When it is mounted on an underwater vehicle, the hydrostatic and hydrodynamic
forces should be well considered. There are also situations that the manipulator needs
to work both in the air and underwater. When the task requires the manipulator to
pick an object underwater and place it on the land or sample the water and analyze
it on the land station, both the effect of the wind and the water should be taken into
account. Robot manipulators operating in varying environments such as in and out of
water and gust winds have additional dynamic uncertainties, which are characterized
by additional dynamic functions and parameters.

Although existing literature has concerned about the adaptive control scheme of
robot manipulators, there has still been little discussion on the multiple-model control
schemes applied in this field. Our research goals are to study the characteristics of

the additional dynamic uncertainties to establish the complete dynamic models of



robot manipulators operating in uncertain environments and to discuss the multiple-
model adaptive control schemes for control of robot manipulators under the presence

of additional uncertainties.

1.4 Thesis Outline

After analyzing the research problems, we show that the thesis research objectives
are modeling the robot moving in a varying environment, controlling the robot, and
dealing with the situation when the environment changes.

In Chapter 2, we introduce some related backgrounds in the robot modeling and
adaptive control field, including the dynamic modeling of a robot manipulator, the
adaptive control of robot manipulators, and the multiple-model control method. With
this knowledge, we can better understand the control of the robot manipulator.

In Chapter 3, we discuss the effects on the robot manipulator in varying environ-
ments. These effects include the added mass, the added moment of inertia, friction
and drag forces, and buoyancy. We first analyze these effects on an object. We use
the Newton-Euler method to derive the dynamic equations of the whole robot by
going through each link, and we give an example of the modeling of a planar elbow
robot.

In Chapter 4, we apply single-model based adaptive control methods on the motion
of a robot considering the environmental factors, including the direct adaptive control
method and the indirect adaptive control method, as well as the stability analysis.
The simulation results show that these adaptive control methods can achieve the
asymptotic tracking of the robot trajectory.

In Chapter 5, with the knowledge from Chapter 4, we develop a multiple-model

adaptive control method on the varying environment situation and compare the



multiple-model control method and the single-model control method.
In Chapter 6, we give the conclusions of the thesis and discuss the future research

topics.



Chapter 2

Research Background

Before discussing the adaptive control, some background about robot manipulator
control will be presented. In this chapter, the dynamic model, the adaptive control
scheme, and the multiple-model based control scheme will be introduced first. Then,
the research motivation will be addressed. The research problems will be presented

in the last section of this chapter.

2.1 Dynamic Models of Robot Manipulators

In this section, we introduce the Denavit-Hartenberg convention for robot kine-
matics and the Newton-Euler formulation to derive the dynamic equations of the

robot manipulator.

2.1.1 Kinematics

The kinematics of the robot is the description of the relationship between the
joint values of the robot and the position/orientation of the robot. Given a robot

manipulator with n joints, we first assume that each joint has only one degree of

10
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freedom since we can decompose joints with two or more degrees of freedom into one
degree of freedom joints with zero distance in between. Then the action of each joint
can be represented by a single real number: the angle or distance of each joint. We
denote this real number as joint variable g;.

For the convenience of further computation, we introduce the numbering rules
of the robot as shown in Figure 2.1. A robot with n joints will have n + 1 links,
including the base, and each joint connects two links. For the joints, we name the
joint which connects the base as the first joint, then the second to the n-th joint are
named sequentially. For the links, we name the base as link 0. Then each joint ¢
connects the link 2 — 1 and ¢. Thus, we consider the link ¢+ moves when the joint i is

actuated.

Joint3

@ Jointn

Joint 2

Link n

Joint 1 End-effector

Base(Link 0)

SIS S S S S S S S S

Figure 2.1: Joint and link numbering rules.

To simplify the analysis of the kinematics, we assign coordinate frames according
to the Denavit-Hartenberg (DH) convention [39], where the i-th frame is fixed with
the i-th link. This convention describes a robot link ¢ with four parameters l;, oy, d;

and 6;, namely the link length, link twist, link offset, and joint angle, respectively.



12

Suppose we consider the link’s position between the i-th frame and the (i + 1)-th
frame. The link length is the distance between the two origins of each frame along
the ;.1 direction, the link twist is the angle between the axis z; and z;,; measured
in the plane normal to z;.1, the link offset is the distance between two origins along
the z; axis and the joint angle is the angle between x; and x;,; measured in the plane
normal to z;.

The transformation between any two joints can be expressed by a matrix T; =

Ri O;
, namely the homogeneous transformation matrix, where R; is a 3 x 3
0 1

matrix describing the orientation between the frame ¢ and ¢ + 1, and o; is a 3 x 1

vector describing the position between the frame ¢ and i+1. Using the DH convention,
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the homogeneous transformation matrix can be written as

T; = Rot, y, Trans, 4, Trans, ,, Rot, o,

co, —So, 0 O 1 00 0

k3 k3

co, 0 0 010 0

(3

S0,

k3

0O 0 10 001 4

8. 0 (2.1)

Co, —350,Cq, S50,5a; a;Cyp,
Se,  Co.Ca;  —CoSa; @iSp,
= 7
0 Sa; Cay; d;
0 0 0 1
with _ - _ ,
Co; —S50,Ca;  560;5q; @;C,
R, = S0, C0,Ca; —C9;Sa; | 2Oi = | ;Sg, | - (22)
0 Sa; Cay d;

2.1.2 Dynamics

Typically, there are two ways of deriving the dynamic equations of the robot,
namely the Euler-Lagrange method and the Newton-Euler method. The Euler-

Lagrange method computes the dynamic equations through the robot’s energy, while
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the Newton-Euler method recursively computes the torques of the robot through the
force and torque analysis. In this thesis, the Newton-Euler formulation is adopted
to analyze the dynamics of the manipulator since the energy of the environment will
have a significant influence on the robot energy, making it hard to obtain the energy
of the robot. The Newton-Euler method consists of two parts, the forward recursion
and the backward recursion, where the forward recursion computes the velocity, an-
gular velocity, acceleration, and angular acceleration from the first link to the n-th
link, and the backward recursion computes the force and torque of each joint from
the n-th link to the first one.

Before presenting the recursion equations, several notations need to be introduced
at first. We use superscript *(-) and subscript (-); to represent a vector expressed
in the k-th frame and the vector of link k, respectively. Then the forward recursion

computation steps are [25]:

k+1 _ pktl/k .
wi1 = Ry ("wi + 2eGrgr) (2.3)
k+1 _ pktlk k . .

op1 = Ry ("o 7 wi X ZpGrg1 + Zrlit) (2.4)

k+1 _ pk+1F k+1 k+1
Vi1 = Rk v + Wrr1 X dk/k:-H (25)

k+1 _ pk+1F k+1 k+1
Vppte = B 0+ Wigr X7 dijige (2.6)

k+1 _ pk+ik k+1 k+1 k+1 k+1 k+1
ar1 =R ap +7 appn XK dygpgr 7 W X (T wpgr X5 digeg)
(2.7)
k+1 _ pk+ik k+1 k+1 k+1 k+1 k+1
Apr1e =Ry ap +77 agqr X Aijprre ' Wi X (T wpg X di/ki1,c)

(2.8)

where wy, is the angular velocity of link k, a, is the angular acceleration of link k, v
is the linear velocity of link k at the position of joint k + 1, vy is the linear velocity

of the center of mass of link k, a; is the linear acceleration of link k£ at the position of
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joint k£ +1, ay is the linear acceleration of the center of mass of link %, dj /41 is the
vector from frame k to frame k + 1, dj/p41,c is the vector from frame k to the center
of mass of link £+ 1, R,’j“ is the transformation matrix from frame k to frame k + 1
and z, is the unit vector along the z-axis of frame k.

The backward recursion computation steps are:

k+1
“fo =R foe + Fro—mitge (2.9)

1k‘+1

k+1
ka = R]]z-i-l Th+1 + dk/k—i—l X (RIZ"" fk+1> + dk/k—i—l,c X Fk + Tk (210)

+ digjiv1,e X (—Migr)

where ¥ f, and *7;, represent the force and torque acting on the k-th link expressing
in the frame fixed on the k-th link respectively, m; is the mass of link k, g; is the
gravity vector of link k. The vector Fj, are the forces acting at the center of mass of
link %

F, = mlay (2.11)

and the vector T}, are the moments acting at the center of mass of link &

The process of recursively deriving the dynamic equations of the robot is described
as follows. First, let us assume that the configuration of the robot is known, i.e., the
link twist between two coordinate frames does not need to be estimated. Then the
rotation matrix between any two link-attached frames is merely a function of the
joint angle, denoted by R{(q), which indicates the rotation matrix transforming a
coordinate from frame i to frame j. For simplicity, we write it as Rg instead. Using

(2.3), we can recursively get the equations of the angular velocities for each robot link.



16

The angular velocities consist of several terms, and each term is a multiplication of
a rotation matrix, which is a function of @, and a joint velocity vector containing g.
Using the knowledge of the angular velocities wg, k = 1,2,--- ;n and (2.4), we can
obtain the angular accelerations «a; of each link . The angular acceleration consists
of two kinds of terms. One is the multiplication of a rotation matrix and a joint
acceleration vector containing ¢. The other is the product of a rotation matrix and
two joint angular velocity vectors’ cross product. Substituting the angular velocities
into (2.5) and (2.6), we can get the linear velocities of each link on the center of mass,
which is the sum of terms in w multiplying the link length parameters—in the same
way, using (2.7) and (2.8), the linear acceleration of each link’s center of mass can
be obtained as a sum consisted with terms in the form of the product of link length
parameters, rotation matrix, and joint angular acceleration vector or a cross product
of two joint angular velocity vectors.

For the backward steps, the forces and the torques of each link are computed
using the kinetic variables above. The force contains two parts. One is the product
of the mass of the link and the acceleration, and the other is the gravity force which
is a function of the joint angles. The torque of each link is computed by the cross
products of the link length and forces and the product of the moment of inertia and
the angular acceleration. Finally, the torque applied on each joint is the z-axis value
of the torque vector. The detailed process of deriving the dynamic equations can be
found in Chapter 3.

After going through the forward and the backward steps, each torque 7; can be
written as a sum of different terms, containing:

- Mass, link length, rotation matrix elements and ¢; term.

- Moment of inertia, rotation matrix elements and ¢; term.

- Mass, link length, rotation matrix elements and two of ¢; term.
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- Moment of Inertia, rotation matrix elements and ¢ term.

- Mass, gravitational acceleration constant and rotation matrix elements.

Then we regroup the equations of the robot, i.e. write torques in a column vector.
Extract the ¢; term from each torque i, we can get a mass matrix M (q) which is a
function of mass, link length and joint positions, and a joint acceleration vector q. In
the same manner, we can get a coriolis and centripetal matrix C/(q,q) with a joint
velocity vector g, and a gravity vector g(q).

Thus, the dynamic model of an n-link manipulator can be written as [25]

M(q)Gg+C(q,9)q+g(q) =T (2.13)

where M (q)g € R" is the vector of inertial forces and moments of the manipulator,
C(q,q)q € R" is the vector of Coriolis and centripetal effects of the manipulator,
g(q) € R™ is the restoring vector of the manipulator and 7 is the control input

vector. The detailed structure of these matrices can be found in [25].

2.1.3 Model of a Two-link Manipulator

Let us go through the modeling process of a two-link planar elbow robot manip-
ulator. The geometry of the manipulator is shown in Figure 2.2. ¢; and ¢» are joint
variables, [y and [, are the length of each link, ;. and l5. are the length from each
joint to the center of the corresponding link, and the mass of the two links are m;
and meg, respectively.

To simplify the notation of the variables in the equations, we omit the superscript

of each variable, and all variables are represented in the frame attached to their own
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.xo
Figure 2.2: Planar elbow robot manipulator.

link. In the beginning, the initial conditions of the recursion should be settled as
w0:0,a0:0,v0:0,a020 (214)

and

fg = 0, T3 = 0. (215)

The forward recursion is computed first to find the value of kinematic variables.
Since the robot arm is planar, the angular velocity and angular acceleration can be

easily obtained as

wi=| 0 |,w2= 0 ap=| 0 |, 2= 0 - (2.16)
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Then according to (2.5) and (2.6), the velocities can be computed as

0
Vi, = R(l)vo + wi X dO/l,c = llcq.1 ) (217)

0

0
v = R(l]’UO + wp X d0/1 = llql , (218)

0

L Siﬂ(QQ)Ch
vy, = Ryv; + wy X dijge= | lo(Gy + G2) + 1 cos(q)@r | - (2.19)

0

Finally, the linear acceleration of each link and joint can be obtained according

to (2.8) as
_llcQ%
a .= R(l)ao + oy X doje+wi X (W Xdoje) = lieGh ) (2.20)
0
—h
a; = R(l)ao + ap X d0/1 + wp X (L&Jl X dO/l) = llq'l , (221)

0



as. = Réal +a; X dy.+wr X (wy X d1/2,c)

L sin(go)d1 — lac(dr + d2)? — 11 sin(ga)d?

= b SiH(QZ)Q% + loe(G1 + Go) + 11 cos(qa) G

0

20

(2.22)

The accelerations are what we need to compute the force and torque of each link.

Substituting the results into (2.11) and (2.12) leads to

l1sin(q2)d1 — lac(gr + QQ)2 -4 Siﬂ(%)(]%

Fy =moazc=ma | 1;sin(q2)G? + lae(G1 + Go) + 11 cos(qa)dy

0
0
T2 = I2a2 + wy X IQ(.UQ = 0
Iy (G1 + Ga)
_ZICQ%
Fl =mia; .= my llcql
0
0
T1:I10£1+L4J1 ><I1w1 = 0

L

(2.23)

(2.24)

(2.25)

(2.26)
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Substitute the initial conditions (2.15) into the equation (2.9), we can get

fo=Rofs+ Fy — mags

magsin(qr + g2) — ma(lac(qr + ¢2)* — 11 sin(go) 1 + 11 sin(g2)gt)

= | magcos(qr + q2) + ma(ly sin(q2) G} + lac(G1 + Ga) + 11 cos(ga)da) (2.27)
0
and
fi=Rifo+ FL —mg (2.28)

which leads to

fiz = (mq +ma)gsin(q) — imag; — Limag;
— malae sin(g2) (G1 + G2) — Mmalae cos(g2) (1 + G2)? (2.29)
fiy = (m1 +my)gcos(q) + mag cos(qr) + maliGy + milicGy

+ loems cos(g2) (41 + ) — Malaesin(ge) (1 + ¢2)*. (2.30)

Substituting T4, Ty, fi and f, into (2.10), the torque of each joint can be finally

obtained as

To = ((.jl(mglgc + mglllgc COS((]Q) —+ ]2)
+ Go(malilye cos(qa) + Io)
(2.31)
+ ¢1(malilae sin(gz) 1)

+ malacg cos(qr + q2))k
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and

71 = (Gi(mald, + mals, + mal? + 2malylo. cos(qe) + Iy + Iy)
+ Ga (mal3, + malilae cos(qa) + 1)
+ q1(—malilae sin(g2)q2) (2.32)
+ Ga(—malila. sin(g2) (g1 + G2))

+ (malie + maly)g cos(qr) + malaeg cos(qr + qa2) )k

where k is the unit vector on the z-axis direction of the corresponding frame of each

torque.

2.1.4 Properties

There are several important properties of the robot manipulator dynamics equa-

tion. Proof of these properties are shown in [25].

Property 2.1. There exists an n x 1 function Y (q,q, q) and an | dimensional vector

0 such that the rigid robot dynamic equation can be written as

M(q)qg+C(q,9)a+g(q) =Y (q,q.4)6. (2.33)

The function Y (q, q, q) is called the regressor and 6 € R! is the parameter vector.

The number of parameters needed to write the dynamics is not unique.

From the above description in Section 2.1.2, we can see that the each torque is a
sum of terms which are products of joint variables (q, g, q) and system parameters
(mass, link length, moment of inertia, gravity acceleration). Suppose there are a
total of [ different combinations of system parameters among n torques, then for each

torque, we can write it in the form of a dot product of two vectors, where the joint
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variables and the system parameters are in the two vectors correspondingly.

Property 2.2. The mass matrix for an n-link rigid robot is symmetric and positive
definite. Specifically, for a fized value of the generalized coordinate q, let 0 < Ai(q) <
Aa(q) < -+ < A\u(q) denote the n eigenvalues of M (q), then the inertia matriz M (q)
satisfies

In addition, from basic linear algebra knowledge, we know that a positive definite

matrix is invertible. Thus, the matrix M (q) is invertible.

2.1.5 Parameterization of the Two-link Manipulator Model

In this section, we show the parameterized form of the two-link manipulator. From
the two-link manipulator dynamic equations (2.32) and (2.31), we can write them in

the form of

1
T = =Y (q,q,q9)0" (2.34)
T2
where
o Gi+G G Gr GG Gi 2co8(g)dr + cos(ga)da + sin(ge) gt
Y(q,q,q) =

Gi1+¢g 0 0 2 0 cos(g2)dr + sin(ga)q7
cos*(¢2)G1 + sin(ga) cos(ga)di  sin*(g2)d1 — sin(ga) cos(ga)di
0 0
—sin(g2)gi — 2sin(g2)q1g2 — sin(g2)d5  cos(qr) cos(q + ¢o)

0 0 cos(q1 + q2)
(2.35)
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0" = ( mglgc mll%c [ml Img 0 mglllgc mgl% mQZ%
malilae  (moly + myly, — Lilopmrs — liliepmrd)g (2.36)

T
loc(my — lapmrd)g ) :

2.2 Adaptive Control of Robot Manipulators

Adaptive control is a control algorithm that can estimate the system parameters,
which may vary or be unknown, while reaching the control goal simultaneously so that
the system output can track the desired output asymptotically, canceling the effect of
the unknown system parameters. In the adaptive control of robot manipulators, the
control objective is that given a bounded desired robot joint trajectory g4(t) and its
bounded derivatives ¢q(t) and qq(t), design a feedback control input signal u for the
robot manipulator system without the knowledge of the system parameters in M (q),
C(q,q) and g(q), so that all signals in the closed-loop system are bounded and the

joint position g(t) tracks gq(t) asymptotically.

Preliminaries. In order to analyse the stability of the control system, we need

to introduce several definitions and properties at first [22].

Definition 2.1. A vector z(t) € R™ belongs to the signal space L* if [ (23(t) + 23(t)

..+ 22(t)) dt < 0.

Definition 2.2. A vector z(t) € R™ belongs to the signal space L™ if sup;», maxXi<i<n

|z (t)] < o0.
Lemma 2.1. If z(t) € L? and (t) € L™, then lim;_,o, x(t) = 0.

Then we introduce two kinds of adaptive control methods on the robot, namely the

direct adaptive control and the indirect adaptive control. The direct adaptive control
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method uses the tracking error e(t) to generate the adaptive parameter update law.
For the indirect adaptive control method, the adaptive parameter update law is driven
by the prediction error, which is the difference between the predicted torque and the

real torque applied on joints.

2.2.1 Direct Adaptive Control

Using the fact that the inertia matrix is invertible, an adaptive control algorithm

based on the concept of feedback linearization is proposed. The control law u is

~ A

u = M(q)a, +C(q,9)q + g(q) (2.37)

~

where the notation (-) represents the estimated value of (-), the error of the mismatch

is denoted as (-) = (A) — (+), and
a, = qq(t) — Ki(q — qa) — Ko(q — qa) (2.38)

where K, K; are diagonal matrices with diagonal elements consisting of position
and velocity gains, respectively.

Using the linear parameterization property, we can get
q+K\q+Koqg=M"Y(q,qq)0 (2.39)

where Y is the regressor function and 6 = 0 — 0, where 0 is the estimation of the

parameter vector . Writing (2.39) in the state space form, we can get

é= Ae+ B¢b (2.40)
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where
q
e= (2.41)
q
is the joint space error, and
0n><n ITLXTL O?’LX?’L ~
A= >B = 7¢: M_1Y(q7q’ q) (242)
_KO _Kl In><n

Let @Q be a matrix satisfying Q@ = Q* > 0. Since K and K, are diagonal matrices
of positive elements, the matrix A is stable. Let P be the solution of the Lyapunov
equation

ATP+PA=-Q (2.43)

then set the adaptive update law as
90— T '¢"B" Pe (2.44)

where I' is a positive definite constant symmetric matrix.

Theorem 2.1. For the robot system described as (2.13) with the system parameters
unknown, using the control law (2.37) and the adaptive parameter update law (2.44),

it can be guaranteed that the parameter estimates are bounded and lim;_,, e(t) = 0.

Proof. Using the Lyapunov function
V =el'Pe+0'T0, (2.45)

we can show that the tracking error will converge globally to zero while all internal
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signals are bounded. The derivative of the Lyapunov function V is
V =—e'Qe+ 20" {¢p" BT Pe + I‘é} (2.46)
then substitute the adaptive control law(2.44) into(2.46) we can get
V =—-e'Qe (2.47)

thus we have

e(t) e L™ e(t) € L e(t) € L>,0 € L™ (2.48)

which indicates that the parameter estimation error remains bounded and the position

tracking error can converge to zero asymptotically. [37] O

2.2.2 Indirect Adaptive Control

For the indirect adaptive control on the robot, the parameter estimation and the
control input are divided into two parts. The estimated parameters are used in the
dynamic equations to predict the torques on the joints, and the actual torques on
the joints are obtained by sensors. The difference between the predicted torques
and the sensed torques is computed, namely the prediction error. Compared to the
direct adaptive control method, this prediction error is used to generate the parameter
update law instead of the joint tracking error.

The predicted torques are computed as

A A A

7=M(q)qg+C(q,0)q+g(q) =Y (q,4.9)6. (2.49)
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Then the torque prediction errors are

N
I
<

— T
(¢.9.@)0 — Y (q,4.4)0 (2.50)

=Y
=Y(q,4,9)8.

The adaptive update law is chosen as

0=-TY"(q,q,4)7 (2.51)

where I' is a symmetric positive definite coefficient matrix.
The control input has the same structure as in (2.37). Then the stability of this

method can be proved as follows [12].

Theorem 2.2. The adaptive control scheme (2.49)-(2.51) guarantees boundedness

for all closed-loop signals and lim;_, e(t) = 0.

Proof. Considering the Lyapunov function

1~ N
V = 5¢9Tr—1¢9, (2.52)
taking its derivative
. 1= ~ 1~ 2
V= §0TI‘*19 + §0TI‘*10, (2.53)

and substituting the adaptive parameter update law (2.51) in (2.53), we get

(Y aaa e 50 a0)

— 8T (TY (q.4.)7) (2:59)
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Thus, we can conclude that
6clL> el (2.55)

Since 7 = 7 — 7, and we have the equations (2.49) and (2.37) for 7 and 7, the

prediction error can be derived as

~

7= M(q)(é+ Kpé + Kpe), (2.56)

which indicates that

e = (s*I +sKp+ Kp)M }(q)7. (2.57)

Since e = q — q4 and qg4, q4 are bounded, we have

e,ec L’ ec L™ (2.58)

2.3 Multiple-model Control of Robot Manipula-
tors

In this section, we introduce the Multiple-model based adaptive control for robot
manipulators. The main idea of this control scheme is to have multiple models with
different dynamic structures, and the initial estimates of the system parameters are
different. Suppose there are total N models, then the i-th model uses the i-th param-
eter estimate to compute the corresponding torque prediction. We choose the closest

approximation to be the model of computing the actual controller.
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In practice, q, q, T can be detected by sensors, and the joint acceleration q
can be derived from q. Thus, for each model, we can individually obtain the torque
prediction computed from joint variables and parameter estimates, and then compute

the torque prediction errors for each model. The predictions are computed as

A

where Y;(g, q, q) is the regressor for the i-th model and 0, is the parameter estimate
vector for the i-th model. Since the actual torques are obtained by sensors, we can
compute the predictions as

F=F—T (2.60)

We then choose the adaptive parameter update law for the i-th model as
0=-I,Y,"(q,q9,4)7 (2.61)

where T'; is the coefficient matrix for the i-th model satisfying I'; = I'; > 0, and let
the initial estimate for the i-th parameter vector in the parameter space R! be 0.

The control signal for each model is computed as

~ A

u; = M;(q)a, + Ci(q,q)q + gi(q) (2.62)

where

Qg = ijd — KDze — Kpie (263)

and Kp; and Kp; are diagonal positive definite coefficient matrices for the model i.
From Theorem 2.2, we know that for each model i, the computed controller i can

achieve asymptotic tracking of the desired trajectory.
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The reason for using a multiple-model adaptive controller is to reduce the transient
error. For the single model case, since we have no information for the true values
of system parameters, the prediction error may be huge and take a long time for
the estimation. However, for the multiple-model case, we can have multiple initial
estimates for the parameters, and we can choose the model with the least prediction
error to generate the control signal. From the prediction errors, we have a function
to decide which model estimate we should use to generate the controller. Generally,

the function is named as a performance index, and is defined as [9]

T (#(1) = vF (1R (1) + B / ORI with,f>0  (2.64)

where 7;(t) = 7;(t) — 7;(t) is the torque prediction error vector, 7;(t) is the torque
prediction, v > 0 and 8 > 0 are weights to be tuned in practice. Then, at the start
of the control process, the performance index can be obtained, and the model with

the least performance index under the current situation will be chosen.



Chapter 3

Modeling of Robot Manipulators

in Varying Environments

The modeling of a robot manipulator moving in wind or water is shown in this
chapter. We first introduce the effects of fluid on a robot link. Then we use the
Newton-Euler formulation to derive the dynamic equations for the whole robot ma-
nipulator. Most robot manipulators consist of rectangular or cylindrical links. In this

thesis, we discuss the cylindrical case and assume that the robot is operating in an

ideal fluid.

3.1 Fluid Effects on a Robot Manipulator Link

The motion of the rigid body driven by forces in fluid causes the fluid to give
forces and moments proportional to the rigid body acceleration. These effects are
called the added mass and the added moment of inertia. The fluid friction forces are
denoted as drag forces. They are acting along the direction of the relative velocity
between the link and the fluid velocity v¢. The motion will also cause vortex shedding

around the rigid body, and this results in the lift forces, which are in the direction

32
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orthogonal with the drag forces. The displacement of water exerts buoyant forces
on the manipulator, attacking in the gravity center of displaced water and in the

opposite direction of the gravity force. These forces are shown in Figure 3.1.

Drag center

7Ril+1fi+1

: Center of buoyancy

m;g

Figure 3.1: Fluid forces on a rigid body.

3.1.1 Added Mass and Added Moment of Inertia

The added mass and added moment of inertia of a rigid body are denoted as Aa,
where A is the coefficient matrix, and a is the acceleration of the rigid body. For a
cylinder, the cross elements are small due to the symmetry of the cylinder, so they

can be ignored. The coefficient values are

All = 01m, A22 = 7Tp’l“2l, A33 = 7Tp’l“2l
1 1
A44 = 0, A55 = Eﬂp7"2l3, A66 = EﬂpT2l3

where p is the fluid density, r is the radius of a link, [ is the length of the link and m
is the mass of the link. The directions of the added mass on a cylinder is shown in

Figure 3.2.
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NN xw)
A33

\ A

Figure 3.2: Added mass on a cylinder.

Then the total mass M} of the link including the added mass is
Mk = diag(Au, AQQ, A33) + mlI (31)

where I is the identity matrix, and the total moment of inertia I}, including the added

moment of inertia is

Ik = diag(A44, A55, AGG) + Im (32)

where I,, is the inertia of the link.

3.1.2 Drag and Lift

The total hydrodynamic drag force can be approximated as a nonlinear expansion

Fp = D, + D,|v.|v, + Dv? + o(v?) (3.3)
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where D;, D, and D, are friction coefficients and v, is the relative velocity between
the rigid body and the fluid. In the cylinder case, due to the symmetry, the third
term can be canceled, and higher order terms are small compared to the second term
so that it can be ignored.

In order to express the direction of the fluid velocity, we define an axis system(xy,
Yy, zs) such that the fluid velocity is along the x-axis of the coordinate frame, which
means that the drag force is along the same direction, and the lift force is along
the y-axis. The z-axis is placed to satisfy the right-hand rule. The transformation
between the flow frame and the link fixed frame(xy, yi, zx) can be achieved with two
rotations: rotation av about the y; axis and then a rotation g about the new z; axis.

The transformation matrix can be written as

R} = R.(-A)R,(a) (3.4)

- cos(f) cos(ar) sin(f)  cos(B) sin(a) -
= | —sin(B) cos(a) cos(B8) —sin(B)sin(a) (3.5)

—sin(a) 0 cos(a)

then the relative velocity v, can be expressed as
v, =V — vagwf = [Vra, Vpy, U] " (3.6)

where v is the translational velocity expressed in the link fixed frame, vy is the velocity
value of the fluid, and @ is the unit vector along the x; axis.
After getting the knowledge of the expression of the relative velocity, we are able

to write the total drag force. The linear term in(3.3) is

F, = D,v, (3.7)
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where D, is a 3 x 3 diagonal matrix containing linear friction coefficients, and the

quadratic term can be approximated as [26]

F; = (Dp+ Dp)|v,|" v, (3.8)

where Dp and Dy, are 3 x 3 diagonal matrix containing drag and lift coefficients,

respectively.

3.1.3 Buoyancy

The buoyant force is given as b = pgA where g is the acceleration of gravity, and
A is the total volume of fluid displaced by the rigid body. The center of buoyancy
depends on the geometry of the manipulator link. For a cylindrical link, it coincides

with the center of mass and along the opposite direction of gravity.

3.1.4 Other Fluid Effects

Rotational damping. Not only the translational motion can cause damping
force in the fluid. When the manipulator link is rotating, rotational damping force is

exerted on the link. The damping is denoted as

Td = [sz,Tdy,sz]T, (3-9)
where
Ta, = Cy, |0, ||we (3.10)
Tq, = C’dyH'vTHwy (3.11)
7. = Ca|[v, |- (3.12)
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Current loads. The current loads 7.; are torques that are only effective to rigid

bodies with non-circular cross sections. The equation is shown as [§]
Tel — S(Ur)[diag(All,AQQ,Agg)’UT] (313)

where S is the skew-symmetric matrix operator. It is defined as @ x b = S(a)b.

The total friction torques exerted on a link is denoted as [13]

TD = Td+ Ta. (3.14)

3.2 Dynamic Equations for the Manipulator in Vary-

ing Environments

3.2.1 Modeling of the Manipulator

We use the Newton-Euler formulation to compute the force and moment of each
link recursively and write them together to obtain the dynamic equations of the whole

robot manipulator. The forward steps are introduced in Chapter 2. To recall, the
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forward steps are [25]

k+1wk+1 = RZJrl(kwk + quk+1) (315)

"oy = BT (Fay, +F wi X zp@rrr + 2ade) (3.16)
k

k‘+1,vk+1 — R;’erl vk +k+1 wk+1 Xk+1 dk/k+1 (317>
k

k+1'vk+1,c — Rllerl vy, +k+1 Wit Xk+1 dk/kz—i—Lc (318)

k+1 k+1k k41 k+1 k+1 k+1 k+1
a1 = R ap 7 agpr X dygpr 0 Wi X (T wegr X5 i)

(3.19)

k+1 _ pk+1k k+1 k+1 k41 k+1 k+1
Apyre =R a7 agn X dpgpgne T Wi X (T X dpgrge)-

(3.20)

In order to get the explicit dynamic equations of the robot and the parameter-
ized form, we apply the forward steps and obtain the equations for velocities and

accelerations of robot links. By using (3.15) recursively, we can get

0
k-1
wi=S R0 | (3.21)
=0
Git1

Using (3.16) recursively, and substitute (3.21) into it, we have

0 0 0
k—1 k—2 k—1
ay=> Rf| 0 +Y [ RE[ o | x| D R o . (3.22)
=0 i=0 j=it1

Gi+1 di+1 Gj+1
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By (3.17) and (3.18), substituting (3.21), we have

0
k—1 k
ve=> |RI| 0 |x (Z R;?dj> (3.23)
i=0 j=i+1
Qi+1
and
0
i—1
vpe =Ry o+ [ DRI 0 xd;, | . (3.24)
7=0

j+1
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For the linear acceleration, from (3.20) and using (3.21) and (3.22), we can get

0 0
k—2 k-1 k-1
ai.— Z Rf 0 X Z Rfd] + Z Rf 0 X d]ﬁc
=0 Jj=i+1 1=0
q‘i—l-l q.i-i-l
0 0
k-3 k—1 k—2
- Rl o |x2 Ri| o |xRid
=0 [=i+2 Jj=t+1
di+1 dj+1
0 0
k—2 k—1
+> R | 0 x Y R 0 X d . (3.25)
i=0 j=i+1
Jiv1 djt1
0
k—2 ) i
+ R o < | Y R | 0 x RF d;y,
i=0 | =0 1=0
Gj+1 Qiv1
0 0
k—1 k-1
+Y R 0o < | Y Rf| o X dy, .
=0 1=0
dj+1 Git1

For the backward steps to compute the force and moment considering the hydro-

dynamic forces, we use [25] [13]

k+1
kfk = RiJrl * fk+1 —+ Fk — Mrgg + bk -+ FDk (326)

k +

k+1 k+1
e =R Tep + dypi ¥ (RZH fk+1) +dyspire X" fro+ Top + T (3.27)

where dj;, p, is the vector from frame & to the center of pressure of link %, dj /i is the
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vector from frame k to the center of buoyancy of link &k, Fpy, is the total hydrodynamic
drag force exerted on the link k£ and 7p; is the total friction moment acting on the
link k. Another difference from the normal case is that when we compute the force
and moment acting on the center of mass, we need to use the total mass of the link,

including the added mass and added moment of inertia. The vector F}, is written as
F. = M (*ai, +" ci X5 dy e +F wp x (Fwp x5 dy i) (3.28)

and the vector T}, is written as
T, = I.. o, +* wy, x I, wp (3.29)

where M, is the total mass of link k£ and I, is the total inertia of link k, and the
added mass and added inertia are included, respectively.
Using (3.26) and substituting (3.28) into it, we can get

n—k
fk - Z Rﬁ—m (Mn—ian—i,c + Prn—iGn—i — FDn—i) (330>

=0

where n is the total number of links, p,—; = Myu—;i — Pfiwid - Vii is the parameter for
the gravity vector g,,_;.

Finally, by (3.27), we can obtain the torque of each link as

i=k

+ Z R} (dic x (M;a; .+ pigi — Fp,)) (3.31)

i=k

n i—1
+ > R} ((Z R;idj> x (M;a; . + pigi — FDZ.)> .
j=k

i=k+1
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Note that the angular velocity (3.21), angular acceleration (3.22) and the linear
acceleration (3.25) of each link are sums of one term, two types of terms, and six

types of terms, respectively. In addition, for the cross product, we have
ax(b+c)=axb+axec, (3.32)
and for an orthogonal matrix R, we have
R(a+b) = Ra x Rb, (3.33)

where a, b, c are arbitrary vectors with the corresponding dimensions with the matrix
R.

Substituting the angular velocity (3.21), angular acceleration (3.22) and linear
velocity (3.25) into (3.31), we can get the terms which contain mass terms and moment
of inertia terms.

The terms coming from RFI;c; are

n i1 i1 i=1
Thoy = Z (Rf:n]il Z Riysdi 1+ Rigolio Z Rigsdin + Rizlis Z R;‘33€-I.j+1>

i=k i=0 =0 Jj=1
(3.34)

n =2 i—1 i—1
= :Z (Rffil Z (R;Qs‘?jﬂ Z R§33Qi+1 - R§33(jj+1 Z R§23QI+1> I

i=k §=0 I=j+1 I=j+1

-2 i1 i—1
+ Riz Z (R§3sqj+1 Z Rii3Gis1 — Réls(jjJrl Z R§33Ql+1> Iiy (3.35)

l=j+1 I=j+1

_ i—1 1—1
+Riz (Rzlgqm > Risgdivs — Riggdjen Y R;'lml) [z'3> ,

l=j+1 I=j+1
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the terms coming from R} (w; x Lw;) is

Th.s —Z ( i31 ZRﬂ:«quH ZR133q]+1 i3 — Lia)

i=k
132 Z RJ33qJ+1 Z R113qj+1 i — Ii3) (3.36)
=1
133 Z 13QJ+1 Z R123q]+1 (Liz — Iz’l)) )
1=0

the terms containing ¢ and mass M coming from the linear accelerations are

0
Thy = Rf[dicx M Z R| o Z Rid,
i=k =0 I=j+1
dj—1
0
i—1
+ Z R; 0 X di7c
j=0
Gj+1

z

1—2 1—1 (337>
( 232 Z Z ]13¢ij+lR;21 - R;23dj+lR;) a; . Miza

i=k 7=0l=j4+1
1—2 1—1
233 E E ]33Qj+1Rlll - Rj13Qj+lRl31) a;Mpa
J=0l=j+1
1=1
7,32 § :RJQSQJ-HCLZ CM'L?)
7=0

7j—1
233 § :Rj13%+1az c‘/wl2

7=0
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0
n i1 i1
Tho = > RE[D RId;x M) Rj| 0o |xdi
i=k+1 j=Fk 1=0
Qi1
n i1 i—1 i—1
= Z <R i31 Z (Z R321R123QI+1 Risy Z ZR]‘11R123(]Z+1> ajMif%ai,c
i=k+1 j=k j=k 1=0
i-1 [i-1 i—1 i1
+Ryss Z (Z R3\ Rigsin — Rl R 31Rz33QZ+1) Mi2ai,c>
=k \1=0 j=k 1=0
(3.38)
0
n i1 i—2 i1
Tho = > RS (ZR;idj> xM> [R| 0 |x ) R,dn
i=k+1 j=k 1=0 m=j+1
i1
n i—1 =2 -1
= Z Ris Z Z (RjZI (Rllgqj+1Rm21 - R123Qj—1Rm11> a; Mizan,
i=k+1 j=k 1=0 m=j+1

+ Ri3y Z (Rj31 (R123Qj+1Rm31 - Rl33qj*1Rm21) a; Miran,
_Ré‘n (RzﬁdﬁlRmzl R§23C.1'j+1Rin11) ajMiSam)
+ Ris3 (lel (nggquRmn - Rllst—lRmsl) ajMiZam

—R;Ql (Rg3(']-j+1Rin31 - R§33fjj+1Rin21) ajMilam)) ’
(3.39)
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and terms containing ¢ coming from the linear accelerations are

0
n i-3 i1
L .
Tkyr = E Rz d@c X Mz E E Ré 0
i=k =0 m=j+2
qj+1
0
i—2
X E R/ | 0 x R d,
I=j+1
Qi1
i—2 i—2
= Rj23qj+1 E Rissq1+1 — R3‘33Qj+1 E Rpsqi
I=j+1 I=j+1
n -3 i—1 i—2 i—2
_ k i i i i i
= E Ris, E § R0 Rj23‘1j+1 § Rigsqit1 — Rj33qj+1 E Rissqi1
i=k 3=0 m=j+2 I=j+1 I=j+1
i—2 i—2
— R | Rjssdin E Rjsqiv1 — R34+ E Ris3i41 @i Mizm
I=j+1 =541
T | i—2 i—2
+ Ri3y E § R | Bjisdin E  RigsGis1 — Rio3dj+1 § Ry3qia
=0 m=j+2 l=j+1 l=j+1
i—2 i—2
—Rg1 | Rjasdin E Rigsqit1 — Ris3Gi+ E Ria3Gi41 @i Miom
I=j+1 l=j+1
(3.40)
0 0
n i—2 i—1
L . .
Thk,s — E Rz d@c X Mz E R; 0 X E R; 0 X dz‘,c
i=k j=0 l=j+1
qj+1 dj+1
z
n i—2 i—1 i-1
_ k i i i i 2
= § Ris E Rj33Qj+1 § Rpsqie — Rj13qj+1 E Ris3dit1 Mi3ai,c
i=k §=0 i=j+1 I=j+1

i—2 i—1 i—1
+Riss (R;‘wqﬂl Z Ryt — Rjasjen Z R§13Qz‘+1> Mi?a?,c)

J=0 1=j+1 I=j+1
(3.41)
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n i—1 =3 i—1

%

Tkzo E R31 Ry tl m21 t2Rm11) apMizam,
i=k+1 h=k j=0 m=3+2

B R;l:n (t?’Rinll thmE}l) an Mz,

i—1 =3 -1

23222 Z Rh31 ta R g t3Rm21) apMi1 G,

h=k j=0 m=j+2 (3.42)
- Riu (thirQl tZlel) anMizan,

i—1 —3 i—1

Z3SZZ Z Rhll 3l thm31) apMizam,

h=k j=0 m=i+2

_Rém (tQani%l - tSanﬂ) anM;, am)
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i—1
k i
Thz10 — E R E thh
i=k+1
0
i—2 i—1 ‘ i1
7 2 7 h
x M, Z R]13qj+1 >0 Riggier — Rigsj1 > RisGier | aie
J=0 I=j+1 I=j+1
i—2 4 izl , i-1
7 . 7 . i . i .
-2 Rj33q]‘+1 > Rl13Ql+1_Rj13%‘+1 > Ris3Giv1 | @i
J=0 I=j+1 I=j+1
n i—1 =2 i—1
— i .
= § z31 Rh21 333qa+1 E Rpi3qi4+1
i=k+1 h=k j=0 l=j+1
i—1
—Rj135+1 E Rizsqi1 | anMiza; .
I=j+1
i—1 i—2 ie1
- E § :Rh31 Rj13Qj+1 E Riosqii1
h=k j=0 I=j+1
i—1
_Rj23qj'+1 § Rj3qi1 | anMiai .
I=j+1
i—1 i—2 i—1
+Rz32§ E Ry, 333Qj+1 E Riy3Gi+1
h=k j=0 I=j+1
i—1
_Rj13Qj+1 E Rissqi1 | anMiza; .
I=j+1
i—1 i—2 i—1
+Ri33§ § Ry Rj13qj+1 E Riosit
h=k j=0 I=j+1
i—1
_Rj23Qj+1 § Ryisqiv1 | anMipa; .
I=j+1

(3.43)
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0
n =2 J
T = QB | diex M| ) | > Ri| 0
i=k 7=0 =0
Q141
0
j .
<[> R, | o x Ri,d;.
m=0
Qm+1

n i—2 J
= ( Riy (Z Ri15Gi41 Z tsm — Z R123QI+1 Z t4m> a; - Miza; 1
k =0

Jj=

i—2 J
133 ( RZBSqlJrl Z t4m Z Rll3Q1+1 Z t6m) Qj ¢ z2a]+1>
l

7=0 =0 m=0

1=

(3.44)
0 0
n 1—1 i—1
Thz12 = Z Rf di.x M, ZR; 0 X Z R; 0 X d; .
—k =0 =0
Gj+1 Qiv1
= —3532 ( Rj13qa+1) ( nggdm) Misa;,
- Rf33 ( Rg13%+1> ( R§2gql+1) Mﬂa?,c
Jj= =
(3.45)
n i—1 1—2
Thars = (R 31 (Rijgito; Misanajg1 — Rz ts; Mioana;ir)
ikt 1 h—k j—0
i—1 1—2
Rl > > (RigitriMaanaji1 — Riyto; Misana; ) (3.46)
h—k j=0
i—1 1—

2
'L
133 E Rh11t83M12aha]+1 - Rh21t7JMl1ahaj+1)>
0

h=k j=



n i—1
Z k i i
Thoy = (Rz'iil (Rh21t12Mi3ai7cah - Rh31t11Mz’2ai,cah)

i=k+1 h=k
i=1
+ RE, Z (R;LgltloMilai,cah - R211t12Mi3ai,cah)
h=k
i=1
+RE, (Rp11ti1 Mipa; can — RZzltlﬂMilai,cah))
h=k
where in (3.42),
i—2 i—2
131 :RE'Q:}‘L‘H Z Rissqi1 — R;':asqjﬂ Z Rl
I=j+1 I=j+1
i—2 i—2
lo :Rz'zsqjﬂ Z Riy3qi1 — R;'13q1+1 Z Rz
I=j+1 I=j+1
i—2 i—2
i3 :R3'13Qj+1 Z R§23QZ+1 - R}Q:ﬂjﬂ Z R§13QZ+17
I=j+1 I=j+1
in (3.44),
lam = R:7123Qm+1sz+1)31 - Rin33qm+1R’éj+1)21
tsm = an33(?m+1sz+1)11 - Rzn13q'm+1RZ(j+1)31
tom = R§n13Qm+1sz+1)21 - R:n23qm+1RZ(j+1)11’
in (3.46),
i—2 J . J J ) J
l7j = Z Z Ria3i+1 Z tom — Z Ri33i+1 Z lsm
j=0 \1=0 m=0 =0 n=0
i—2 J . J J . J
lgj = Z Z Ris3q141 Z Lam — Z Rp13Gi+1 Z tem
§=0 \ =0 m=0 =0 n=0
i—2 J . J J . J
to; = Y Rigiicr Y tom — > Rigdr Y tam |
j 1=0 m=0 1=0 n=0
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(3.47)

(3.48)

(3.49)

(3.50)



and in (3.47),

i1 i=1
_ i i
tn = E Ri15G5+1 E Rip3Gi+1
=0 1=0

1—1 =1
_ i i -
lig = E:le?)qurl E Ris3qi41
j=0 1=0

The gravity and the buoyancy terms are

Thz15 — Z Rf (di,c X pigi)
i=k

= Z <R§32Rfu32ai,cpig - Rf:;stuzzai,cpig)

i=k

n 1—1
e =S R ((z R;:dj) ; pigi)
i=k j=k

n 1—1
= Z (‘Rfsl Z <R§21Riu32 + R§31Riu22) Dig
i=k+1 =k
- Rf32 Z (R}31Riu12 + R;‘nRzu?,z) pig

=k
— Rl (R;'HR:Um + R;21Rzu12> pig)

i=k

i—1 i=1 i—1 =1
th = Z R;23qj+1 Z R§23q.l+1 - (Z R}ggq'j_i_l) (Z R;S?,q'l—l—l)
j=0 1=0 §=0 =0

20

(3.51)

(3.52)

(3.53)

where g; is the gravity vector described in the i-th frame, R’ denotes the rotation

matrix transforming from the world attached frame to the i-th frame and p; = m; —

Pruid Vi 18 the coefficient of the gravity acceleration vector which contains the gravity

part and the buoyancy part.

Substituting the velocity (3.17) into the friction and drag forces, we can get terms



in the torques as

n =2 i=1
Thar = i32 j1395+1121 j2395+14011 sAUic

i=k §=0 I=j+1
i—2 i—1
k i i i i1
+R;53 E E (Rj33qj+1Rlll - Rj13Qj+1R131 ) Dsajaic
§=0 1=j+1

n i—1 i—1
o )
Tha1s — Z ( i32 Z Rgz3qy+1D a; et Rz33 Z R;’Squ-l-lDSai,c)

Jj=0 7=0

Tho1g = Z R132Rf31D Vflie — R§33R§21stfai,c

i=k

n i—1 i=2 -1
k i i
Thaoo — E <Ri31 (Rh21t15jl — Rh31t14ﬂ) Dsapa

i—1 =2 i—1

132 Z Z Rh31t13ﬂ - Rh11t1531) D,ana;
h=k j=0 I=j+1
i—1 =2 i—1

Z3SZZ Z Rh11t14jl Rh21t13yl) D ahal)

h=k j=0 l=j+1

n i—1 i—1
_ k i i
Thkoo1r = E (Ri?,lE E (Rh21R]23qJ+l Rh31Rj33QJ’+1) Dsapa; .
0

1—1 +—1
Risy E E RhllRJQS(]J-HD ApQi,c
h=k j=0
i—1 1—1
) .
133 E R, 11Rj33CIj+1Dsahai,c
h=k j3=0

n i—1
Thazo = Z (Rf:n Z ( 21Rf31 231R3}21) Dsvyap,
k

i=k+1 n=
i—1
+ Rz32 Z ( 31Rf11 RZHR}M) Dsvyay,
n=k

i—1

+Rz33 ( lRf21 lRfll) Ds”fah>
n==k

o1

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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where in (3.57),
tizji = R§23Qj+1R§31 - Rli3sqj+1R§2_11
tiaj = Rjsadj1Riny — Rigdj Rigy' (3.60)
tisji = R;‘lfiqj-f—leQl - R§23€}j+1R§1_11'

Then the torque of the k-th joint is the sum of all 75 terms shown in (3.34) to (3.59).

Next, we write the equations into the matrix form. First, we write the n joint
torque values into a column vector. In this vector, each element equals the torque
described in the above equations. Then we separate the equations into four parts.

The first part is the mass terms which contains the added mass and ¢ terms, as
described in equations (3.34), (3.37), (3.38) and (3.39). Each of these terms can be
regarded as a product of §;,7 = 1,2, ..., n, system parameters added mass, the moment
of inertia, and link length, and a function of gq. Thus we can write it in the form of
a dot product of two vectors where the row vector contains the system parameters
and the g elements, and the column vector is the g vector. In this way, we can write
all the torque values in the same form with the same vector ¢ and an exclusive row
vector. Write these row vectors in the same order as the torque vector vertically. We
can get the mass matrix M (q).

The second part is the Coriolis and centripetal terms which contains the added
mass and ¢ terms, as shown in equations (3.35), (3.36) and (3.40)-(3.47). From these
equations, we can see that each term contains two ¢;,7 = 1,2, ..., n, system parameters
added mass, added moment of inertia and link length, and a function of q. Using the
same method above, we can write terms in each torque as an exclusive row vector
and a q vector, and write them in a matrix to get C(q, q) matrix.

The third and fourth parts are the friction and drag part and the gravity and
buoyancy part, described in equations (3.52)-(3.53) and (3.54)-(3.59), respectively.

We simply write these terms in the same order as the torque values in column vectors
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to get the drag vector D(q, q) and the gravity vector g(q).
Finally, we can get the dynamic equations of a robot manipulator moving in fluid
as [13]

M,.(q)q + C.(q,4)q + Di(q,q) + gn(q) = T (3.61)

which is linear in the parameters and linear in the generalized joint coordinates.
q € R" is the vector of generalized coordinates, 7 € R™ is the vector of control input
of each joint, and n is equal to the number of joints of the manipulator. The matrix
M,,(q) is the matrix of total mass and inertia, C,,(q,q) contains the Coriolis and
centripetal terms, D,,(q,q) is the hydrodynamic damping terms and g,,(q) is the
vector containing gravity and buoyancy terms. The difference between the matrices
in (3.61) and those in (2.13) is the environmental factors. The matrices M,,(q) and
C..(q,q) contain the added mass and added moment of inertia effect comparing to
M (q) and C(q,q), and g,,(q) contains the buoyancy effect comparing to g(q).

In addition, we can write the equations in a parameterized form. In the torque
equations (3.34)-(3.59), we can see that each term is a product of one or more sys-
tem parameters and a function of q, q,q. Thus each torque value can be written in
a form of a dot product of two vectors: A row vector of joint variables and a col-
umn vector containing all combinations of system parameters appearing in equations
(3.34)-(3.59). Writing the row vectors in the same order of the torque vector, we
can get the matrix form of parameterizing the torque equations, namely the regressor

Y (q, q,q) and the parameter vector .. Thus, it can be denoted as

The robot system has the following property:

Property 3.1. The mass matriz M,,(q) is positive definite and symmetric, i.e.
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M,.(q) = M,,(q)" > 0.

The mass matrix is positive definite due to the positive kinetic energy, and New-
ton’s third law indicates that the matrix is symmetric. The proof can be found in

[13] and [18].

3.2.2 Effects of Varying Environments

When the environment of the robot manipulator changes, the difference reflects
on the varying system parameters, which indicates that the parameter vector 8},
is a function of time, namely 6 (f). In the same manner, the matrices containing
the environment factors in the dynamic model are also functions of time. Thus, the

dynamic model of the system will become

M,.(q,t)G+ C..(q,q,t)qg+ D..(q,q,t) + gn(q,t) =T, (3.63)

and the linearity in the parameters property becomes

T =Yn(q.4,4)0;,(t). (3.64)

3.3 The Two-link Manipulator Model

Recall that using the Newton-Euler formulation, we need to go through the for-
ward recursion to obtain the kinematic variables and the backward recursion to com-
pute the forces and torques. For the underwater case, since the geometric properties
are identical to the normal case, the kinematic variables remain the same. Thus
these variables are as shown from (2.16) to (2.22). Next, we consider the backward

recursion. Compared to the normal case, we need to take the hydrostatic and hydro-
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dynamic forces into account. Here we consider the added mass, drag, and buoyancy.

The force and torque acting on the second link can then be computed as

J2 = Msag . — maga — by — Fipo (3.65)
T =T — d2,c/2 X fa (3.66)
where
Tg = ImgOLQ —+ wqy X (Imng) (367)
5 —sin(q1 + ¢2)
by + mage = (Mmag — pgmryls) (3.68)
—cos(q1 + ¢2)
FD2 = DS’UZC -+ Dd|’02,c|T'l)27c (369)
and
MQ = diag(An, AQQ) + mI (370)

where I is a 2 X 2 identity matrix. Finally we get

Ty = ‘jl(M22l§c + Maslyla. cos qa + In2)
+ dQ(Mzzlgc + L)
+ 1 (Maglylae sin gay)
(3.71)
+ QI (Dsglgc + DsglllQC COS @2 + Dd2l20 Sgn(vmy)sﬂ)
+ qQ(Dszlgc + Dd2l§c Sgn(”rzy)dQ)

+ lae(mg — lypmrs)g cos(qr + ga)
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where
So1 = U561 + 17 cos® qady + 205,42 + 2l11a. cos g2 (G1 + d2) (3.72)

and My = mo + Ay1,, Moy = mg + Agy, are the total mass of the link 2 on the z and
y direction, respectively. I,,o = Is 4+ Agg, is the total moment of inertia of link 2 and
sgn(-) denotes the sign function.

In the same manner, we can get

71 = 1 (Masl3, + 2Maslylse cos(ga) + Mool cos®(qz) + Moyl sin®(go)
+ Miol3, + Iy + In2)
+ Go(Mosl5, + Maolylo cos(qz) + Iin2)
+ 41 (Maslylye sin(qa) g1 + Maol3 sin(gs) cos(gz) gy
— Malilaesin(qa) (g1 + ¢2) — Mml% sin(ga) cos(g2)q1)
+ Go(— M liloe sin(g2)(d1 + G2))
+ G1(Dgy 13, + Dyylilae c08(qa) + Dayloe 50 () Sar + Dyyliloc cos(qa) — (3.73)
+ Dy, 2 cos®(qa) + D,y cos(qa) sgn(vy,,)Sa1 + Dy, 15 sin®(gs)
+ Dy, 17 sin®(g2) sg(vyy0) 41 + Dy l3, + Dayli. sgn(vy,)d1)
+ q'g(DS2l§C + Dd2lgc SgN(Vryy )2 + Ds,lila cos(qz)
+ D, 15, cos(gz) sgn(vr,y )d2)
+ (maly + mayli, — Liloprri — Ll pmr?) g cos(qr)
+ (malse — lalacpmr3)g cos(qr + g2)
where My = my + Agy, is the total mass of the link 1, [0 = Iy + Agg, is the total

moment of inertia of link 2. In these equations, the environment fact is modeled in

the total mass and total moment of inertia which contain the added mass and the
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added moment of inertia, the friction and drag coefficients, and the buoyancy terms.

The system can also be written in the form of

M,.(q)q + Cn(q.4)q4 + Dy(q,4)q + gm(q) =T (3.74)
where )
Mmll Mm12 . lel le?
M, (q) = ,Cn(q.q) =
Mm21 Mm22 Cm21 Cm22
- (3.75)
. D11 Do Im1
D,.(q.q) = ,gm(q) =
_Dm21 D20 gm2
and

M1 = Maoly, + 2Moslylo. cos(qa) + Maol? cos®(qa) + Moy I3 sin®(¢o)

+ Miol3, + Iy + Lo
M2 = M22l§c + Moolylae cos(qa) + L2 (3.76)
Moo = Mooy, + Masliloe cos qo + Lo

M2 = M22l§c + Lo

Cim1 = Maolylaesin(ga)gn + MQQZ% sin(gz) cos(qa2)g1

— Moylyloe sin(gz) (41 + G2) — M l5 sin(gz) cos(q2)da
Cniz = — M lilaesin(qz) (41 + G2) (3.77)
Cima1 = Maalilae sin g2

Cra2 =0
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D11 = Diyl5, + Dy, lilac c05(q2) + Daylac $80(Uryy) So1 + Daylilac cos(g2)
+ Dy, 3 cos®(q2) + Dgyl1 cos(q2) 8N (Vyyy) Sa1 + Dy, 5 sin’(qo)
+ D, 1§ sin®(g2) sgn(vrye )1 + Dsyli. + Dayli. sgn(vy,,)d

Dyt = Dg,l5. + D15, 3g0(0ryy )Ga + Daylila. cos(qs) (3.78)
+ Dy, 1113, cos(go) SgN(Vryy ) o

Do = Dszlgc + Dg,liloc cos g2 + Da,loe sgn (v, ) So1

Dm22 = DSQZSC + Ddglgc Sgn(UT2y)QQ

Gm1 = (maly + milie — Liloprry — Lilepmr?)g cos(qy)
+ (malae — lalaeprrs)g cos(qr + g2) (3.79)
Gma = lac(ma — lopmr3)g cos(q + q2).
From equations (3.76) to (3.79), we can see that the martix form terms are the

corresponding terms in (3.73) and (3.71).

The dynamic equations can also be written as

Y.(q,9,9)8,, =7 (3.80)
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where Y (q, q, q) € R**? is a matrix and 07, € R* is a vector.

o G+G G G GG Gi 2c08(qe)dr + cos(qz)da + sin(qa)di
Y.(q,9,9) =
Gi+gG 0 0 2 0 cos(q2) G + sin(q) ¢}

cos?(g2) G + sin(gz) cos(g2)di  sin®(g2)di — sin(gz) cos(g2)¢7

0 0

—sin(g2)gi — 2sin(g2) @142 — sin(g2)@3  cos(qr) cos(qr +q2) @i+ G ¢

0 0 cos(g1 +q2) G1+¢ O

2 cos(q2)q1 sgn(vmy)q’f + 2580 (Vryy ) G1G2 + sgn(vrzy)qg 25gn(Vyyy) cos? ug?
COS(QQ)QI Sgn(“rw)d% + 2 Sgn(vrzy)qlcb + Sgn(vrzy)qg Sgn(vrzy) C082 QQQ%

581(Vryy) c08? gagf + 2 c0s” (g2) sgn(vryy ) d1de + co8(g2)da  cos®(g2)d

0 0

2381 (Vyyy ) €08(q2)G3 + 2580 (Uryy) €08(ga)d1da c0s® ga sgn (v, )G7

0 0
e (Vyyy) c08(q2)G3 + 25gN(Vyyy) c08(q2)G1G2 + cos(q2) sgn (v, )43 sin®(g2)d1

2 Sgn(vmy) COS(Q2)(J% + 2 Sgn(”rzy) COS(QQ)QlQQ 0

sin®(g2) sgn(vrae )47 5g0(vr,y )41

0 0
(3.81)
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9;}=<Mzzl§c Mli, I Iy 0 Mallae Moli My li
Mgllllgc (m2l1 + mlllc — lllgpﬂ"l“% — llllcp’ﬂ'T%)g
l2c(m2_l2pﬂ-r%)g Ds2l%c Dszl%c DS2lll20 Ddzlgc (382)
Dg,l3ls. Dgylod? D03 Dg,lyl3, Da,l3 Dg,lyl3.
T
D81l% Dd1l§) Ddzlzlsc> )

From (3.82), we can see that the added mass, the added moment of inertia, drag

coefficients, and fluid density are all modeled in the system parameters.



Chapter 4

Adaptive Single-model Based

Control Designs

In this chapter, we build the robot dynamic models for different environmental
situations, present single-model adaptive controllers to satisfy asymptotic tracking
of manipulator joints and stable estimation of unknown system parameters for each
situation, then use a two-link planar elbow manipulator to illustrate the controller
performance for each fixed situation. Then we use the obtained knowledge to develop
the multiple-model based adaptive control design to deal with the situations when

environments change in the next chapter.

4.1 Nominal Controller

A nominal controller is designed as if the estimated parameters were exactly
known. An adaptive controller can be built based on the knowledge obtained from

the nominal controller. Recall that the system model of a robot moving in a fluid
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environment is

M,.(q)q + C(q,4)q + Dyi(q,q) + gm(q) =T (4.1)

where the system parameters contain the environmental effects. In this case, these
system parameters are known, and joint variables can be obtained by sensors, which
means that matrices M,,(q), C.(q,q), D..(q,q), gn(q) and vectors q, q, g can be

obtained. We can adopt a controller structure [21]

u=M,(q)a,+ Cy(q,9)q + D,,(q,q) + gn(q) (4.2)

where

a, = 4. — K1q — Kyq. (4.3)

Theorem 4.1. For the robot moving in a specific environment described as (4.1),

using the controller (4.2), the robot can track the desired trajectory asymptotically.

Proof. Since the inertia matrix M,,(q) is invertible, the system reduces to

q+ Ki1q+ Koq =0. (4.4)

Let e be the system state error vector

Qe
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Then we have

0n><n I7Z><7’l q

-K, —K;

Qe

= Ae. (4.6)

Since matrix A is stable, we have the whole system stable, which also indicates
that the system tracking error e will converge to 0, i.e., lim; ,.oe = 0. Thus the

system output can track the desired trajectory asymptotically. O]

4.2 Direct Adaptive Control

In an application, the system parameters may not be exactly known, and the
environmental factors will also have a huge influence on the dynamic equations. We
need to use an adaptive controller and parameter estimation to achieve asymptotic

tracking. First, from (3.62), we parameterize the dynamic equations of the robot as

M,.(q)q + C.(q,4)q + Dri(q, @) + gm(q) = Yiu(q,q,4)0,n, (4.7)

where Y,,(q,q,q) is the regressor matrix and 6, contains the parameters of the
environment and robot.

In the unknown parameters case, we adopt the controller structure

u = M, (q)a, + Cn(q,q)d + D.(q,q) + gm(q) (4.8)
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where a, has the same structure with (4.3), the matrices Mm, C’m, D,, and g,,
represents the estimated value of M,,, C,,, D,, and g,,, respectively.

The closed-loop system becomes
qd+Kiqg+Kyg=M"'Y(q,q,4)0,0 =60—6. (4.9)
We then choose the adaptive update law
6= T (M'Y(q,q )" B Pe (4.10)

where T is a positive definite coefficient matrix, and P is the solution to the Lyapunov
equation

AP+ PA=-Q. (4.11)

Theorem 4.2. For the robot moving in a specific fluid environment (4.1) where the
environment system parameters are unknown, using the controller structure shown in
(4.8) and the adaptive update law (4.10), the global asymptotic tracking of the joint

angles can be achieved, and the parameter estimates are bounded.

Proof. Let the Lyapnov function V' be
V =e"Pe+0'TH. (4.12)
Then the derivative of V' is
V=-e'Qe<0 (4.13)

where @ is a random positive matrix satisfying Q@ = Q7 > 0. By Lyapunov direct

method [7], we can see that the the position tracking errors e converge to zero asymp-
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totically, and the parameter estimation errors 0 remain bounded, which indicates that

the system parameter estimates @ are bounded. [25] O]

4.3 Indirect Adaptive control

With the parameterize method shown in (4.7) and the controller structure shown
in (4.8), the indirect adaptive control scheme uses the error between the actual torque
and the estimated torque to generate the parameter update law. Let the torque

prediction and its parameterized form be

~ ~

7 =M, ()4 + Cn(q,q)q + Dp(q,q) + G (q) = You(q, q,3)0,m. (4.14)

Then the prediction error can be written as

—-7=Y(q,q,9)0 (4.15)

<>

F=

where 8 = 0 — 0 is the parameter estimation error. The adaptive update law can be
chosen as

0—=0=-TY(qqq (4.16)

Theorem 4.3. For the robot moving in a specific environment described by (4.1), ap-
plying the controller (4.8) and the adaptive update law (4.16) guarantees boundedness

for parameter estimates 0 and globally asymptotic tracking of the desired trajectory.

Proof. To analyse the stability and parameter estimate convergence of the closed-loop

system, let us consider the Lyapunov function

1-~ -
V= 5¢9r—1¢9 (4.17)
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and substitute (4.16) into its derivative to get

V=6"T"'6 (4.18)
= _éTY(qv q7 q)T%
T

= 717

<0
thus
0clL>Fecl? (4.19)

which follows that parameter estimates 6 are bounded.
Substituting the torque prediction (4.14) and the actual torque (4.8) into the

prediction error (4.15), we can get

= (Mg+C(q,9)a+ D(q,q) +g(a)) — (Ma, + C(q,q)q + D(q.4) + §(q))

= M(q+ K¢+ Ko@) (4.20)

which leads to

q=(s’I +sKp+ Kp) M~ (q)F (4.21)

From (4.19), we know that M7 is bounded. In addition, § = ¢ — g4 and qq, §u

are bounded. Thus, we can conclude that
q.q€ L’ qel™ (4.22)

and according to Lemma 2.1, the theorem holds. O]
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4.4 Simulation Study

Consider the planar elbow robot manipulator as shown in Figure 2.2, which is
moving in the water. We have already analyzed the dynamics of this manipulator in
Chapter 2. Now we consider the forces that are exerted on the manipulator to get the
dynamic equations. Then we carry out adaptive controllers and parameter update

laws for both the normal case and the underwater case.

Dynamic model. The dynamic equations for the underwater manipulator can

be found in Chapter 3.3, as shown in (3.74)

M,.(q)q + Cy.(q,4)q + Dy, (q,4)q + gm(q) = T, (4.23)

which can also be written as

T = Ym(q7 Qa q)ejna (424)
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where

o Gi+G G oG Gt G G 2c08(q2)dy + cos(qz)da + sin(ge) ¢t
Y,.(q.9,q) =
Gi+d 0 0 G 0 cos(qa) Gy + sin(q)¢?

cos?(q2) G + sin(gz) cos(q2)di  sin(g2)d1 — sin(gz) cos(q2)g;

0 0

—sin(q2)¢7 — 2sin(q2)q1ge — sin(qz)gs  cos(q1) cos(qr +q2) ¢1+ G2 G

0 0 cos(qi +q2) G1+q O
2¢08(q2)G1 S8 (Vrpy)dT + 2580 (Vryy)G1do + SEN(Vryy )45 258N (Uryy) COS® g2gi

cos(q2)d 58N (Vroy)di + 2580 (Vray )12 + 580(Uryy )45 881(Uryy) cOS? 2]

SgN(Vyyy) €08% gagi + 2 €082 (q2) SEN(Vryy )G1G2 + cO8(q2)d2  cos?(q2)¢1

0 0

2881 (Vryy) €08(q2)GF + 28g0(Vryy) c08(q2)G1Ga cOS* ga SgN(Vyyy )47
0 0
s8N (Vryy) €08(q2) G5 + 2580(Vryy) c08(q2) G142 + cos(g2) 580 (Vryy)d5  sin*(g2) G
2381 (Vypy) €08(q2) G + 2880 (Vryy) c08(g2) 12 0
sin’(g2) sgn(Vrye) G sg0(ryy) 47

0 0
(4.25)
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92}=<Mzzl§c Mioli, Imi Ima 0 Maolilye Mooli My l3
Morlilae  (maly + malye — liloprry — Lilieprri)g
loe(ms — Lprr2)g Dyl2 Dyl2 Dylils. Dl (4.26)
D, 2loy Dygylocl? D12 Dy i3, Dgl? Dglil2,
D, 12 Dy 13 Dd21§c>,

as shown in (3.81) and (3.82).
The dynamic equations of the robot moving without the effects of the fluid can

also be written in the form of
T=Y(q.9,4)0" (4.27)
where the matrix Y and the parameter 8* are

Gi+G G G G+ G 2co8(q2)dr + cos(qa)Ga + sin(ga)d?

Y(q,q,q) =
Gi1+G 0 0 Go 0 cos(q2) G + sin(ga)q7

cos?(q2) G + sin(gz) cos(q2)di  sin®(g2)di — sin(gz) cos(q2)¢;

0 0

- Sm(fh)fﬁ — 2sin(q2) 1 — SiH(QQ)qg cos(q1) cos(q1 + g2)

0 0 cos(q1 + ¢2)
(4.28)
0" = ( mzlgc mllfc [ml Img 0 mglllgc mgl% mgl%
malilae  (maly + malye — Lilopmry — Lilicprry)g (4.29)

T
ch(mQ — l2,07T7’§>g > .
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Here we suppose Let the true values of the system parameters be

my = 25494, my =21.245, [, =12, I, .= 0.6,

lo=1, I, =05 1 =005 7ry=0.05

9=98, pria =997, (4.30)
Dy = diag{0.04,0.04}

Dy = diag{0.8,1.2}.

The parameters simulate a real robot manipulator, and the mass of the manipulator
is computed from the geometry with the density of iron. In addition, the fluid density
and friction/drag coefficients simulate the water.

The initial conditions of joint variables be (q1, g2, d1,42)]i=0 = (1,1, —0.5,—0.2)
and the desired joint variables be qq1(t) = ga2(t) = sint. Then the initial tracking

errors are (qy, o, 41, G2)|e—o = (1,1, —1.5, —1.2)

Nominal controller. First we show the control result of the nominal controller.

Take (4.2) as the controller structure, and set the controller parameters as

K, = diag{50,50}, K, = diag{75,75}. (4.31)

The system tracking errors are shown in Figure 4.1. From the figure, we can see

that the joint positions and velocities track the desired trajectory asymptotically.
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Position and velocity error of joint 1 - Nominal control case
I

1 ‘ —
qy inrad
Z[L{iul‘a(ls
05
|
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05 - .
s |
_15 | | |
0 50 100 150 200 250
Time (in seconds)
1 Position and velocity error of joint 2 - Nominal control case
[ I T -
q; inrad
?iginrads
0.5+ |
\
|
0:;,,,,,,,,,,,,,,,,,*,, e . |
-0.5 - |
11 i
_15 | | | |
0 50 100 150 200 250

Time (in seconds)

Figure 4.1: System tracking error for nominal control.

Direct adaptive controller. Use the adaptive controller as shown in (4.8)

and

(4.3). Set the initial conditions of joint variables as (q1, g2, ¢1, ¢2)|1=0 = (1,1, —0.5, —0.2)
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and the desired joint variables as qq1(t) = ga2(t) = sint. Choose the controller pa-
rameters as

K, = diag{50,50}, Ko = diag{75,75}. (4.32)

Let the estimate of the system parameters be

0() = |0:(t) 0a(t) Os(t) - Oau(t) (4.33)

then the parameter estimation error is denoted by 6 = 6 — 0. Set the initial values
of the parameter estimates 90 as 90% of the true values. The adaptive update law is

given as (4.10) with the parameters as

I' = diag{0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.45,0.9,0.03,0.03, - - - ,0.03}.
(4.34)
Figure 4.2 shows that the close-loop tracking errors converge to zero asymptot-
ically. The parameter estimation errors are shown in Figures 4.3 to 4.9. From the

figures, we can see that the parameter estimates are bounded.
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Position and velocity error of joint 1 - Single model direct adaptive control case
[ I

1 \
Gy inrad
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1 Position and velocity error of joint 2 - Single model direct adaptive control case
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Figure 4.2: System tracking error for single model direct adaptive control.
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Parameter estimation errors 1 to 3 - Single model direct adaptive control case
I I I I

0
; in kg'm 2
8, in kg'm 2
05 in kg'm 2
-0.5
Y AV — |
-1.5
2 i
25 \ \ \ \
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Figure 4.3: Parameter estimation errors 1 to 3 for single model direct adaptive control.

Parameter estimation errors 4 to 6 - Single model direct adaptive control case
I I I I
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8, in kg:m 2
B in kg'm 2
B in kg'm 2
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-0.5 L Y ]
A -
151 i
2 \ \ \ \
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Figure 4.4: Parameter estimation errors 4 to 6 for single model direct adaptive control.
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05 Parameter estimation errors 7 to 9 - Single model direct adaptive control case
-VU. T I I I

- 85 in kg-m 2
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Figure 4.5: Parameter estimation errors 7 to 9 for single model direct adaptive control.

0 Parameter estimation errors 10 to 11 - Single model direct adaptive control case
[ I I [
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— 6o in N-m
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Figure 4.6: Parameter estimation errors 10 and 11 for single model direct adaptive
control.
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Parameter estimation errors 12 to 15 - Single model direct adaptive control case
I I
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Figure 4.7: Parameter estimation errors 12 to 15 for single model direct adaptive
control.
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0.02 Parameter estimation errors 16 to 19 - Single model direct adaptive control case
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Figure 4.8: Parameter estimation errors 16 to 19 for single model direct adaptive
control.
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0 Parameter estimation errors 20 to 24 - Single model direct adaptive control case
B o I I - T - T
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Figure 4.9: Parameter estimation errors 20 to 24 for single model direct adaptive
control.

Indirect adaptive controller. Apply the controller (4.8) and the parameter
update law (4.16) to the system (3.74) with the estimate of the system parameters
being

~

O(t) = |6,(t) ba(t) Bs(t) - fui(t) (4.35)

and set the initial values of the parameter estimates 6, as 90% of the true values. Set
the initial conditions of joint variables as (qi, g2, ¢1,G2)]i=0 = (1,1, —0.5,—0.2) and
the desired joint variables as qq1(t) = qa2(t) = sint. Choose the controller parameters

as (4.31) and the parameter update coefficients as

I' = diag{0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.45,0.9,0.03,0.03, - - - ,0.03}.
(4.36)

The tracking errors are shown in Figure 4.10, and the parameter estimation errors
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are shown in Figures 4.11 to 4.17. The figures indicate that the tracking errors
converge to zero asymptotically, and the parameter estimates are bounded.

Position and velocity error of joint 1 - Single model indirect adaptive control case
T I I I I

qy inrad

gy inrad’s

-1 5 | | | | |
0 50 100 150 200 250

Time (in seconds)
Position and velocity error of joint 2 - Single model indirect adaptive control case
I I [ I

1

G in rad

G, inrad/s

05 |

15 \ \ \ \ I
0 50 100 150 200 250

Time (in seconds)

Figure 4.10: System tracking error for single model indirect adaptive control.
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Parameter estimation errors 1 to 3 - Single model indirect adaptive control case
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Parameter estimation errors 4 to 6 - Single model indirect adaptive control case
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Parameter estimation errors 4 to 6 for single model indirect adaptive
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Parameter estimation errors 7 to 9 - Single model indirect adaptive control case
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Figure 4.13:
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Parameter estimation errors 10 to 11 - Single model indirect adaptive control case
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Parameter estimation errors 10 and 11 for single model indirect adaptive
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Parameter estimation errors 12 to 15 - Single model indirect adaptive control case
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Figure 4.15: Parameter estimation errors 12 to 15 for single model indirect adaptive
control.

Parameter estimation errors 16 to 19 - Single model indirect adaptive control case
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Figure 4.16: Parameter estimation errors 16 to 19 for single model indirect adaptive
control.
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0 Parameter estimation errors 20 to 24 - Single model indirect adaptive control case
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Figure 4.17: Parameter estimation errors 20 to 24 for single model indirect adaptive
control.



Chapter 5

Adaptive Multiple-model Based

Control Design

When the robot manipulator is moving in a fluid environment or carrying a load,
the parameters of the robot dynamic equations are different from the original ones.
The single-model based adaptive control is able to learn the parameters when they
change, but this may cause a huge transient error during the learning process. To
avoid this error, we adopt a multiple-model based adaptive control scheme so that
when the model of the robot changes, the parameter estimates can rapidly convert to
a relatively closer one with respect to the new true value. Thus after learning all the
possible parameters, the transient error can be largely reduced after the controller

with the least estimation error is chosen.

5.1 Controller Design

In this section, we develop an adaptive multiple-model control scheme to deal
with the changing environment. First, we analyze the system models and show the

reason why we adopt a multiple-model based control scheme, then we introduce the

84
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adaptive controller we use to solve this problem, and finally, we analyze the stability

of the closed-loop system.

5.1.1 System Models

Recall that the original dynamic equations of a robot manipulator is shown as in
(2.13):

M(q)g+C(q,q) +g(q) =T (5.1)

and the dynamic equations of a robot in a fluid environment is shown as in (3.61):

M.,.(q)4 + C(q,4)q + Dni(q,4)q + gm(q) = T (5.2)

where M (q) and M,,(q), C(q,q) and C,,(g,q) have the same structure, but the
mass terms are changed because of the added mass, and g(q) and g,,(q) are changed
because of the buoyancy. In addition, there is an extra term D,,(q, ¢) which models
the effects of fluid friction and drag forces. The detailed description of the matrices
M,.(q), Cn.(q,q), gm(q) and D,,(q,q) can be found in (3.34)-(3.47), (3.52)-(3.53)
and (3.54)-(3.59), respectively.

Recall that for single-model indirect adaptive control, the controller structure is

u = M, (q)a, + Cn(q,@)q + Dm(q, q) + Gm(), (5.3)
where u is the input torque. The adaptive update law using the prediction error is

0(t) = -TY(q,4,4)" 7. (5.4)

Consider the following condition: a robot manipulator is rapidly submerged by
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water or moving out of the water. Suppose the manipulator is submerged at time t.,

then the dynamic model of the robot manipulator becomes

M(q,t)g +C(q,q,t)qg +D(q,q,t)qg +9g(q,t) =T,

where
M (q), if t <t, C(q,9), if ¢t <t,
M(q,t) = 7C(q7Qat) =
M, (q), ift>t. C.(q,q), ift>t.
0, if ¢t <t¢, g(q), if ¢t <t¢,
D(q7q7t) - 7g(qat) = )
D,.(q,q), ift>t. gn(q), ift>t,

which also has the form of

T=Y(q.q,4,t)0"(t)

where
0, ift<t,
0" (t) =
0, ift>t.
and
Y(q7Q7 Q)7 ift < tc
Y(q,q.q4.t) =

Y.(q,q,q), ift>t.

(5.6)

For a system described in (5.5)-(5.9), a single-model based adaptive controller

may need to go through a learning process, which increases the transient error. Thus,

a multiple-model adaptive control scheme is considered.
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5.1.2 Multiple Model Adaptive Controller

Here we propose a multiple-model based adaptive controller to avoid having huge
transient errors when the robot dynamic model changes. Before the environment
changes, we have no prior knowledge on what environment it will be, so multiple
models and the performance index can make sure that the most suitable model can be
adopted. The controller consists of multiple identification models with corresponding
parameter estimate initial values. Based on (4.14), the multiple models can be chosen
as

A

where each model 7 is an estimate of one corresponding environment, 6; is the pa-

*
19

rameter estimate of the environmental system parameters 87, and each model has a
corresponding regressor Y;(q, q, q). Note that each 8 and Y;(q, q, q) can have much

different structures, respectively. The input torque of these models are computed as

u; = Mia, + Ci(q,4)q + Di(q.q) + 4i(q). (5.11)

Note that 7; is the torque prediction vector of each model, and u; is the actual torque
input of the manipulator computed from each model.

Then the prediction error of each model is given as
%i:+i_77i:1727”'7N7 (512)

where 7 is the selected actual torque input.
The switching strategy is described as follows. Suppose we know the time when
the environment condition will change, and we have N models in total. At the time

t, only one among the N models is adopted to obtain the controller and be updated
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by the adaptation law. Other models remain constant until adopted. The adoption
follows the rule that the model with the minimal performance index is adopted. Then
the torque input is selected as

T =u; (5.13)

where j is the id of the selected model, and the adaptation law is obtained as

0:(t) = (5.14)

0, otherwise

Parameter Projection. In the case when we have a prior knowledge on the
range of the parameter vector 8;, we can limit the parameters in the range by using a
parameter projection design. The parameter region of the j-th parameter in the i-th

model is defined as [67;,67 ], 7 = 1,2, ..., ng, such that 07, € [0f 0°.],75=1,2,... ,ng,

7/7]’ Z7J 17]’ Z7‘7
for 6} = [07,,0;,,. .. ,G;ne]T,i =1,2,...,N. In our parameter update law design, let
gi(t) = ~TYi(q,4.9)" 7 (5.15)
and
0i(t) = gi(t) — hi(1) (5.16)

when the model i is chosen, where

07 if 9173(15) = 92]-, gz,j<t) 2 0, or
hij(t) = S (5.17)
if 9%](15) = 9?7]-, gld(t) S 0,

—gi;(t), otherwise
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and choose the initial estimates as

0:;(0) € [67.,6°.]. (5.18)

lhj ’ 27‘7

With the prior knowledge [0¢.,0°.],7 = 1,2,...,ns and the projection function

17.77 Z?]

hi(t), we can ensure that the parameter estimates are in the region and so that

6,(t)e L>,i=1,2,...,N.

5.1.3 Stability Analysis

For each identification model, we have the Lyapunov function
6 (1)T:6;(t) (5.19)
and its derivative

V= 6T, (5.20)
=—0]Yi(q,4.9)"
~T~

<0
which indicates that #; € L? and §; € L. Then from the equation (4.20)

= (Mg+C(q,9)a+ D(q,q)+d(q)) — (Ma, + C(q,q)q+ D(q,4) + §(q))

= M(q+ K1q + Koq), (5.21)
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we have

q=(s’I +sKp+ Kp) M; " (q)7 (5.22)

which shows that

q,q€ L’ qe L™ (5.23)

Thus for each selected model, all signal is bounded, and the trajectory tracking

error ¢ — 0 asymptotically.

5.2 Simulation Study

In this section we show the performance of multiple model switching and the

advantage of using switching strategy.

Dynamic models. Suppose the robot manipulator is moving in the atmosphere
in t € [0,90), then submerged by water in ¢ € [90,180), and finally move out in

t € [180,270]. The dynamic model of the robot is as shown in (2.31) and (2.32)

Ty = (C.jl(mglgc + mglllgc COS((]Q) + _[2)
+ dg(mglllgc COS(QQ) + ]2)
(5.24)
+ q.l (m2l1126 Sin(q2)q1)

+ malacg cos(qr + q2))k
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and

71 = (Gi(mald, + mals, + mal? + 2malylo. cos(qe) + Iy + Iy)
+ Ga (mal3, + malilae cos(qa) + 1)
+ q1(—malilae sin(g2)q2) (5.25)
+ Ga(—malila. sin(g2) (g1 + G2))

+ (malie + maly)g cos(q1) + malacg cos(q1 + ¢2))k,

and for the underwater case, the dynamic model is shown in (3.71) and (3.73)

71 = 1 (Maal3, + 2Maslylse cos(g2) + Mol cos®(qz) + Maylf sin®(go)

+ Mioly, 4 Ly + o)

+ Go(Masl5, + Maolyloc cos(qz) + Iin2)

+ 41 (Maslyloe sin(ga) g1 + Maol3 sin(gs) cos(gz) g1
— Morliloe sin(g2) (g1 + d2) — Manli sin(gs) cos(ga)dr)

+ G2 (—Ma1lyla sin(ga) (¢1 + G2))

+ G1(Dsyl3. + Dsylilae c08(g2) + Dayloc 5N (Vy5y)Sa1 + Dy, lilae cos(qo) (5.26)
+ Dy, 13 cos*(q2) + Dayly cos(ga) 8g0(vryy)So1 + Dy, 17 sin®(go)
+ Dy, 17 sin®(g2) g0 (vry) @1 + Dyl + Dyl sgn(vry)dn)

+G2(Dsyl5. + Dyl 580(Vrsy )62 + Diylilac cos(ga)
+ D, 1113, cos(qa) sgn(vy,y ) da)

+ (maly + maylie — lLiloprry — Liliepmr?) g cos(qr)

+ (malge — lalocpmry)g cos(qr + go)
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Ty = éjl(M22l§C + Moslylac cos qa + Io2)
+ C:iz(Mlegc + Ipn2)
+ ¢1(Maalyloe sin g2gy )
(5.27)
+ Q1(D32l§c + D, liloc cos g2 + Dayloc sgn(vy,,)So1)
+ QQ(D32l§c + Ddzlgc Sgn(va)QQ)

+ loe(mg — lgpm“g)g cos(q1 + q2).

Let the true values of system parameters be as in (4.30)

my = 25.494, my=21.245 1, =12, I;.=0.6,
lb=1, ly=05 1 =005 7ry=0.05
9=98, pruia =997, (5.28)
D, = diag{0.04,0.04}

Dy = diag{0.8,1.2}.

For the underwater case, the dynamic model can be expressed as
T =Y.(q.q,9)0;, (5.29)
and for the atmosphere case, the dynamic model can be written in the same form as
T=Y(q,q,49)0" (5.30)
which can also be expressed as

T=Y(q,q,4)0"(¢) (5.31)
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where

6%, ift € [0,90),0r t € [180,270],
0*(t) = (5.32)

6:,, ift e [90,180),

and Y,.(q, q,q), 0, are shown in (3.81) and (3.82) as

o Gi+G G G G+d @ 2cos(ge)d + cos(q)da + sin(ge)dr
Y.(q.q,q) =
Gi+q¢ 0 0 G2 0 cos(g2)r + sin(ga)ds

cos?(q2) G + sin(gz) cos(q2)di  sin®(g2)di — sin(gz) cos(g2)¢7

0 0

—sin(g2)gi — 2sin(g2) @142 — sin(g2)@3  cos(qr) cos(qr +q2) @1+ G @

0 0 cos(g1 +q2) G1+¢ O
2cos(q2)q1 SEN(Vroy )i + 2580 (Vryy)Gida + 580 (Vryy )45 2580 (Vryy) COS® gad}
cos(q2)q1  SgN(Vryy )47 + 2580 (Vryy)G1G2 + 5N (Vryy )5 SEN(Vryy) COS® ¢ad7

SEN(Uryy) €08 G247 + 2 c0s*(q2) 580 (Vryy ) G142 4 c08(g2)da  c08*(q2) G

0 0

2580(Uryy) c08(q2)F + 2580(Vryy) cO8(g2)d1G2  €0S” g2 580(Vray )G

0 0

SgN(Vyyy) cos(q)G? + 2 SgN(Vyyy) c08(g2)d1G2 + cos(ga) sgn(va)qg sin?(q2) G
2580 (Vpyy) c08(q2)d7 4 258N (Vryy) c08(g2)d1G2 0
Sing(QQ) Sgn(vrzm)(ﬁ Sgn(vmy)(ﬁ

0 0
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0, = < Moyol3, Mippl3, ILni ILnz 0 Moglilo, Mal? Moyl3

Maililoe  (moly + maly. — lllQPWTS — llllcpﬂ—T%)g

l2c(m2 - lQpWT%)g Ds2l%c Dszl%c D8211l20 Ddzlgc (534)

Dg,l3ls. Dgylod? D03 Dg,lyl3, Da,l3 Dg,lyl3.

T
D2 Dyl Dg,l3. > ;
and Y (q,,d), 0" are
o G+d G G GG G 2c08(ge)dr + cos(ge)da + sin(gz)dt
Y(q,q,q) =
G1+g 0 0 Go 0 cos(q2)q1 + sin(q2)q?
cos?(q2) G + sin(gz) cos(q2)df  sin®(g2)d1 — sin(gz) cos(q2)¢;
0 0

—sin(q2)¢} — 2sin(g2)G1g2 — sin(ga)d3  cos(q1) cos(q1 + q2)

0 0 cos(q1 + ¢2)
(5.35)

B*Z(mglgc mll%c Il Ig mgl% mglllzc 0 0
(5.36)

T
molila.  (malie +mali)g m2l20.g> :

We can see from the models that the regressors of the two models Y (g, q, q) and

Y..(q, q, q) are significantly different.

Adaptive controller. First we apply a single-model adaptive controller for the

varying environment. For the estimation model, we use Y,,(q, q, ) and 6, where

0() = 16:(t) 0a(t) O3(t) -~ Oau(t)| (5.37)
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and set the initial values of the parameter estimates as 90% of the parameter true
values of @}. Set the initial conditions of joint variables as (¢i1,¢2,d1,42)|t=0 =
(1,1,—0.5,—0.2) and the desired joint variables as g1 (t) = qa2(t) = sint. Use the

adaptive controller

~

u = M,,(q)a, + Cn(q,d)q + Dn(a,d) + §u(), (5.38)
and choose the controller parameters as
K, = diag{50,50}, Ky = diag{75, 75}, (5.39)
and the parameter update law
0=6=-TY,(qqq 7 (5.40)
with the coefficients

I' = diag{0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.45,0.9,0.03,0.03, - - - ,0.03}.
(5.41)
The tracking errors g and q are shown in Figure 5.1, and parameter estimation er-
rors are shown in Figures 5.2 to 5.8. From the figures, we can see that in ¢ € [90, 180),
the environmental factors are close to the estimated model, and the parameter esti-
mate can converge and the system tracking error goes to zero. However, in t € [0, 90)
and t € [180, 270], the environment parameters are far from the model, the parameter

estimates start to oscillate and the tracking error does not converge to zero.
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Position/velocity error of joint 1 - Single model
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Figure 5.1: System tracking error for single model adaptive control when system
parameters change.
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Parameter estimation errors 1 to 3 - Single model
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Figure 5.2: Parameter estimation errors 1 to 3 for single model adaptive control when

system parameters change.

Parameter estimation errors 4 to 6 - Single model
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Figure 5.3: Parameter estimation errors 4 to 6 for single model adaptive control when

system parameters change.
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5 Parameter estimation errors 7 to 9 - Single model
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Figure 5.4: Parameter estimation errors 7 to 9 for single model adaptive control when
system parameters change.

Parameter estimation errors 10 to 11 - Single model
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Figure 5.5: Parameter estimation errors 10 and 11 for single model adaptive control
when system parameters change.
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Parameter estimation errors 12 to 15 - Single model
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Figure 5.6: Parameter estimation errors 12 to 15 for single model adaptive control
when system parameters change.

Parameter estimation errors 16 to 19 - Single model
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Figure 5.7: Parameter estimation errors 16 to 19 for single model adaptive control
when system parameters change.
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Parameter estimation errors 20 to 24 - Single model
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Figure 5.8: Parameter estimation errors 20 to 24 for single model adaptive control
when system parameters change.

Multiple-model based adaptive controller. The dynamic model of the system
is shown through (5.24) to (5.36). The robot moves into water at time ¢; = 30s, then
move out of water at time ¢, = 60s. Let the initial conditions of joint variables
be (q1,q2,G1,G2)]i=0 = (1,1,—0.5,—0.2) and the desired joint variables be gg (t) =
qa2(t) = sint. In this case, we use a controller with two identification models and

switch between them to reduce the transient error. These models are
% =Yi(q,q4,4)0;,i = 1,2 (5.42)

where the regressor Yi(q, q,q) = Y(q,q,q) and Y2(q,q,q) = Y(q, q, G), the param-
eter estimates are 91, 92, and the initial values of the parameter estimates 91|t:0 =

09x%86;, 92|t:0 = 0.85 * 0%, respectively. The controller for the first model is

u= M, (q)a, +Cn(q,d)d + D,.(a,q) + gm(q) (5.43)
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and for the second model is

~ A

u = M(q)a, +C(q, )4+ 9(q) (5.44)
with the controller coefficients as
K, = diag{50,50}, Ky = diag{75,75}. (5.45)
Choose the parameter adaptation law as

0, otherwise

with the coefficients

I' = diag{0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.45,0.9,0.03,0.03, - - - ,0.03}.

(5.47)
and
I' = diag{0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.45,0.9}. (5.48)
In addition, we have the performance index
t
Ji(t) = / e N2 () (0)do,i = 1,2 (5.49)
0

to decide which model should be updated and used to generate the controller.

Discussion. The tracking errors of the system are shown in Figure 5.9. The
parameter estimation errors of model 1 and 2 are shown in Figure 5.10 to 5.13 and

5.14 to 5.17, respectively. The simulate time periods are chosen so that the conver-
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gence of the parameter estimates can be shown, although the tracking errors converge
faster than the parameter estimates. The figures illustrate that the transient error
is significantly reduced compared to the single-model case, and after switching the
model, the system tracking error converge to zero and parameter estimates does not
oscillate.

In practical use, There is a trade-off between the model number and the computa-
tion complexity. For each model added, the regressor, the torque prediction and the
performance index should be computed separately, and more computation is needed
than in the single model case. In addition, to obtain the regressor of each model, we

need sensors on each link to measure the relative velocity to the fluid environment.
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1 Position/velocity error of joint 1 - Multiple models
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Figure 5.9: System tracking error for multiple model indirect adaptive control.
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Parameter estimation errors 1 to 3 - Model 1
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Figure 5.10: Parameter estimation errors 1 to 3 of model 1 for multiple model indirect

adaptive control.

Parameter estimation errors 4 to 6 - Model 1

2
— 8, inkgm?
4. ==  Bginkgm?
¢ B, in kg:m 2
_6 | | T
0 50 100 150 200 250

Time (in seconds)

Figure 5.11: Parameter estimation errors 4 to 6 of model 1 for multiple model indirect

adaptive control.
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Parameter estimation errors 7 to 9 - Model 1
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Figure 5.12: Parameter estimation errors 7 to 9 of model 1 for multiple model indirect
adaptive control.

Parameter estimation errors 10 to 11 - Model 1
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Figure 5.13: Parameter estimation errors 10 and 11 of model 1 for multiple model
indirect adaptive control.
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Parameter estimation errors 1 to 3 - Model 2
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Figure 5.14: Parameter estimation errors 1 to 3 of model 2 for multiple model indirect
adaptive control.

8 Parameter estimation errors 4 to 6 - Model 2
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Figure 5.15: Parameter estimation errors 4 to 6 of model 2 for multiple model indirect
adaptive control.
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Parameter estimation errors 7 to 9 - Model 2
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Figure 5.16: Parameter estimation errors 7 to 9 of model 2 for multiple model indirect
adaptive control.

Parameter estimation errors 10 to 11 - Model 2
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Figure 5.17: Parameter estimation errors 10 and 11 of model 2 for multiple model
indirect adaptive control.



Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, we have built the dynamic models of the robot manipulator moving
in a varying environment, i.e., in gust wind or in/out of the water, and developed a
multiple-model based adaptive control scheme for the manipulator. The background
of the research topic and the research motivation are introduced at first. Following
this, the effects of the fluid exerting on the robot are analyzed, and the dynamic
model of the robot moving in the fluid is proposed. After gaining the knowledge
of the model, we developed the model reference adaptive control accordingly. The
direct and indirect adaptive control method for controlling the robot was introduced,
then the multiple model adaptive control was presented to handle the case when the
environment varies. The movement of a two-link planar robot manipulator going
in and out of the water was considered in the simulation. The comparison work
between a single model adaptive controller and a multiple model adaptive controller
is proposed. The simulation result implied that the tracking of the robot is not

disturbed by the variance of the environment parameters in the multiple model case,
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which has better performance than the single model case.

6.2 Future Research Topics

Applying the multiple model adaptive control on the robot manipulator in the
varying environment is a new attempt. In this work, we only discuss the general
situations, but there are still many topics in this field to be addressed.

In Chapter 3, we discussed the effects that the fluid environment would have on
the robot. However, when the robot is moving at high speed, the effects will be more
complicated, and the structure of the system is different. Thus, the modeling of the
robot in this situation is worth investigating. In addition, we only consider the robot
link to be a cylinder, but in real life, according to the usage of the robot, links can
be in different shapes. When putting this work into application, the specific shape of
the robot should be considered to obtain the system model.

In Chapters 4 and 5, the adaptive control schemes were carried out for the robot
moving in a varying environment. In these control schemes, we assumed that the
joint variables could be exactly obtained. In real-life situations, the joint variable
values are detected by sensors, and errors may exist between sensed values and real
values. Thus, how to cancel the effect brought by observation error is a topic to be

studied.
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