
Page 1 of 45

ADVISOR

Harry C. Powell, Department of Electrical and Computer Engineering

Autonomous Obstacle Avoidance for

Unmanned Aerial Vehicles – SPSC

Chase Moore, Sammy Nayhouse, Samir Chadha, Patrick Hourican

12/13/2022

Capstone Design ECE 4440 / ECE4991

Page 2 of 45

Statement of work:

Samir Chadha

I worked on the software side of the project. This included making sure the sensors could read in

data and print out specific values to a computer, integrating ROS with the sensors so that the

sensors could publish to specific ROS topics, working with the Gazebo simulator to test the

sensor integration with the drone, creating python scripts to integrate the sensor readings with the

drone so that the drone’s movement would be affected by sensor readings, integrating the

joystick with the drone to allow for teleoperation, implementing autonomous obstacle avoidance

for the drone based on sensor input, and porting over the software from the remote server to the

Jetson to allow for a real life drone to use the software we developed to autonomously avoid

objects. I also engaged in debugging all of the scripts that allowed for the sensors to affect drone

movement along with the teleoperation of the drone.

Patrick Hourican

I worked on the software side of this project, along with the 3D CAD design. On the

software side, I set up the simulator and ROS environments on our computer to enable the testing

of the software implementation with the sensor integration. Also, I aided in the implementation

of the Joystick programs to allow teleoperation of the drone. Additionally, I aided in the

development and debugging of other python scripts that were published to rostopics. Finally, I

designed, updated, sliced and 3D printed the 3D designs for the project, creating several different

iterations of specific structures and testing them to see which fit our intended design the best.

Sammy Nayhouse

 I worked on the majority of our hardware implementation, including both the PCB design

and hardware interface with the embedded microcontroller. I designed the 4-layer PCB, with two

signal layers, a power plane, and a ground plane, using Altium designer software. I chose all the

components for the PCB, as well as the headers to physically interface with the sensors, motor

and microcontroller. I read through datasheets to ensure the I2C multiplexer we utilized would

work for our sensor configuration, delay requirements, power requirements, and physical

footprint requirements on the PCB. I also created a chassis around the PCB to create an effective

Faraday cage, due to the large amount of EMF interference on the drone caused by WIFI and

GPS signals being transmitted back and forth from the tele operational joystick. I also

implemented the test plan for our PCB to ensure all requirements for the system were met and

our software system could be interfaced seamlessly.

Page 3 of 45

Chase Moore

 I worked on a wide variety of sections of our project. The first task I worked on was

choosing a battery that would be within the scope of our project. This involved doing several

calculations such as the current and voltage needed for each component and then choosing a

battery that would meet design specifications. On the circuity side of the project, I helped

Sammy to design parts of the PCB such as all the headers to sensors and forty pin ribbon cable.

Also, I implemented our test plan for the PCB in order to resolve any issue that existed and

ensure that it would function properly. In terms of the software, I helped with interfacing with

sensors and reading and collecting data. Lastly, I had the role of maintaining the budget for our

project as well as ordering any of the components that we needed. This involved keeping track of

a detailed spreadsheet with all of the components’ prices, specifications, and distributors.

Page 4 of 45

Table of Contents

Contents

Capstone Design ECE 4440 / ECE 4991………...……………….……………………………….1

Signatures…………..…………………………………..………………………………………….1

Statement of work……...…….……………………………………………………….…………2-3

Table of Contents……….………………………………………….……………………………4-5

Table of

Figures..………………………………………….……………………………...…...,…………6-7

Abstract..………………………………………….…………………………………………….…8

Background..…………………………………..……….……………………………………..…8-9

Physical Constraints……….……………………….………………………………………….9-12

Manufacturing and Usability…………….………………………..…………………………...9-10

Parts Availability..…………………………...…………………………………………………..10

Economic and Cost Constraints..………………………..……………………………………….10

Tools Employed..………………………………...…………………………………………...10-12

Societal Impact Constraints……………..………...……………………………………….....12-13

Environmental Impact and Sustainability.……………………..……………………………..12-13

Health and Safety…………………...……………………………………….…………………...13

Ethical, Social, and Economic Concerns.………...…………………………………………...…13

External Considerations…………………..………………………………...………………...13-15

External Standards……………………………………………………...…………………….13-14

Intellectual Property Issues..……………………………..……..…..………………………...14-15

Detailed Technical Description of Project………………...………………………………….15-35

Page 5 of 45

Project Timeline..…………………………………………………………………………….36-37

Test Plan..……………………………………………...……………………………………..37-38

Final Results..………………………………………………………...………………………39-40

Costs..……………………………………………………………...…………………………41-42

Future Work..…………………………………………………...…………………………….42-43

References..……………………………………………………..…………………………....44-45

Page 6 of 45

Table of Figures/Tables

Figure 1. High-level Logic of System………...……………………………………………….....15

Figure 2. Connection of System Components…………………………………………..…….…16

Figure 3. Schematic Diagram…………………………………………………………………....18

Figure 4. Top layer of board (2D)…………………….………………………………………….19

Figure 5. Bottom layer of board (2D)……………………………………………………………20

Figure 6. Top layer of board (3D)……………………………………….…………...…………..21

Figure 7. Bottom layer of board (3D)………………………………...………………………….22

Figure 8. Design rule check showing no errors………………………....……………………….23

Figure 9. FreeDFM report showing no errors……………………………………………………23

Figure 10. Picture of fabricated and assembled PCB……………………..….………………….24

Figure 11. Snippet of code from takeoff_land program setting drone position to [0,0,2]……….27

Figure 12. Main while loop of front sensor script………………………………………….....…28

Figure 13. ROSVars class which contains sensor readings and joystick inputs…..….………….29

Figure 14. Start of the main loop in uav_quadJoy20.py that contains the initialization of the

nodes, the rate, the ROSVars object, and the Twist object that will publish the drone velocity...30

Figure 15. Start of the while loop in uav_quadJoy20.py that contains the initialization of the

drone velocities and a table illustrating joystick directions……………………………..……….31

Figure 16. Code snippet from uav_quadJoy20.py illustrating how object detection from a sensor

affects drone velocity……………………………………………………………………….....…32

Figure 17. Code snippet from uav_quadJoy20.py illustrating code output before drone velocities

are published…………………….………………………………………………………….....…33

Figure 18: Finite State Machine illustrating software behavior…………………………….....…34

Figure 19. Front Wall of 3D design…………………………………………..……………….…35

Figure 20. Back Wall and Cover of 3D Design………………………………………..……...…35

Page 7 of 45

Figure 21. Original Gantt Chart………………………………..……………………………...…36

Figure 22. Revised Gantt Chart………………………….…………………………………...….37

Figure 23. Blocking the right sensor causes the drone to move to the left regardless of joystick

input……………………………………………………………………………………………...40

Figure 24. Blocking the left sensor causes the drone to move to the right regardless of joystick

input………………………………………………………………….…………….……….……40

Table 1. PCB Components……………………………………………..………………………...25

Table 2. System Components………………………………………….………………………...26

Table 3. Project Tasks…………………………………………………….…….……………..…39

Table 4. Letter Grade Based Upon Number of Tasks Completed……………………..……...…39

Table 5. PCB Parts and Costs………………………………………………………….……..….41

Table 6. Drone with Obstacle Avoidance Module Cost……………………………….……..….42

Page 8 of 45

Abstract

Team SPSC designed and developed an aerial platform to enable shared autonomy and obstacle

detection for unmanned aerial vehicles (UAV). A printed circuit board (PCB) was designed and

manufactured to aid in UAV obstacle avoidance using a series of 1-D time of flight light

detection and ranging (LIDAR) sensors [1][2]. A servo motor was utilized in order to increase

the range and visibility of the front sensor. This allows obstacle detection within the range of the

UAVs movements and simultaneously delivers real-time data through inter-integrated circuit

(I2C) communication protocols [3]. A 3-D printed tower was manufactured to physically mount

the PCB, Lidar sensors and motor to the aerial platform. An embedded Robotic Operating

System (ROS) was used to visualize real time Lidar data and simulate obstacle avoidance for

UAV systems [1][4].

Background

Flying is the dream of many but only a few can truly experience it freely. What was once seen as

science fiction, however, is now becoming a reality as new advances in computation and sensing

lead to the development of advanced robotic systems. Autonomous mobile robots, and in

particular aerial vehicles, are entering our society and finding many applications like aerial

photography, infrastructure inspection, surveillance, hobby application, and even search and

rescue operations. This has led to a common debate among experts regarding if fully autonomous

aerial vehicles provide greater benefits than human controlled aerial vehicles. Drone crashes,

safety challenges, security issues and privacy concerns have led many to believe that fully

autonomous unmanned aerial vehicles are not worth the risk or cost.

This project was chosen to address the common types of issues with fully autonomous UAVs.

Robotics is an area that interests all members of the team, and previous project and internship

work with autonomous technologies paved the way for creating a potential solution to current

issues with fully autonomous aerial vehicles. Our team’s goal was to investigate and enable a

form of shared autonomy that incorporates both capabilities – human controlled input and

onboard autonomy. This compromise allows for desired human input (e.g., flying a drone to an

area of interest), while keeping the system safe (or performing other tasks) through onboard

autonomy and obstacle avoidance. This will allow for a much safer and efficient drone that is

less likely to crash due to operator error, which our team believes is a necessary development in

the advancement of autonomous UAVs.

Similar projects pertaining to shared autonomy have been completed in the past. A commercial-

off-the-shelf (COTS) aerial vehicle was enhanced to include mathematical models of the

quadcopter dynamics for real-time improved flight stability [5]. The American Automobile

Association did an experiment on semi-autonomous driving technology that utilized systems that

Page 9 of 45

assist drivers in driving and parking functions and found that collisions with cyclists occur 33%

of the time at four-way crossings [6].

This project is different from past work by others because of the simultaneous use of both human

controlled inputs and onboard autonomy, instead of switching between one or the other. For

example, if the human is manually flying the drone forward, the robot can override the manual

input and stop the UAVs movement (or change the movement) in order to avoid an obstacle.

Previous projects with shared autonomy usually have two operating modes, either manual

(human) or autonomous. This method, however, analyzes both manual inputs from a human

operator and onboard sensors/autonomy to avoid obstacles while completing the desired flight

plan or performance tasks.

This project draws from a variety of previous coursework completed by our four team members.

ECE coursework, such as the FUN series (ECE 2630, ECE 2660, ECE 3750), which allowed us

to successfully design a PCB component using voltage regulators, filters, and so forth to

interface with the motors, sensors and Jetson computer. The topics learned in the Embedded

Robotics courses (ECE 3501, ECE 3502) will allow us to incorporate an embedded system by

interfacing with a microcontroller and implementing object detection and data communication

through I2C communication protocols. Coursework from the CS department (Samir Chadha and

Patrick Hourican are CPEs), such as Operating Systems (CS 4414), will allow for swift Robotic

Operating System (ROS) development and the implementation of Lidar data visualization and

drone simulations.

Physical Constraints

Manufacturing & Usability

This project is safe and robust enough to ensure the electrical components are able to withstand

the normal uses of drone flight and accidental bumps. The components on the drone are able to

withstand all flying conditions in order to not be disconnected or altered during flight. The PCB

will be inexpensive to manufacture as well as solder the appropriate components to meet design

specifications. This design was manufactured and constructed in a way, so that it could be

recreated and scaled to fit similarly structured drones that require obstacle detection. Such a

design can be replicated and utilized for obstacle detection and adapted to avoid obstacles as the

drone travels.

Page 10 of 45

Part Availability

Due to our design’s modularity, it could easily be implemented on other drones within the

CoStar fleet. The parts we are utilizing in our design are widely used within industry, and all

parts are readily available and able to be shipped quickly from well-known electrical part

suppliers, such as Mouser, DigiKey, and other online suppliers.

Economic and Cost Constraints

The goal of this design is to create a modular design incorporating four sensors, one motor, an

embedded microcontroller (Jetson), and an external power supply (battery). The components

must be lightweight and meet weight constraints, while also being compact and capable of fitting

on the drone. These are the primary constraints, as cost constraints are not as relevant due to the

funding of this project by CoStar. All purchases will be itemized and receipts maintained

throughout the design, but our team has been encouraged to purchase and test a variety of

products that may make our design more efficient, safe and robust.

Tools Employed

Altium Designer

Altium Designer was used for circuit design and PCB design. Both tools have been used

in previous internships so a large amount of knowledge already existed in the team. Overall, the

simplified process of making a PCB with Altium Designer involved creating a new project and

PCB design, adding components to the design, generating the connections between the

components, routing the connections to create the final layout, and then generating the

manufacturing files that will be used to manufacture the PCB. There were no new skills learned

within using this software, but our abilities were sharpened in that we could go through the

above process quicker the more we used it.

FreeCAD

In terms of 3D printing, we used FreeCAD which is a free and open-source CAD

program that can be used to create 3D models. The process involved printing incorporated

creating a 3D model in FreeCAD, exporting the model as an STL file, slicing the STL file to

generate G-code instructions, and then using a 3D printer to create the physical object based on

those instructions. Again, there were no new skills learned within using this software, but our

abilities were sharpened in that we could go through the above process quicker the more we used

it.

Page 11 of 45

Cura and Ultimaker S3

In order to 3D print our FreeCAD design we used the Cura Slicing software and exported

the files to the Ultimaker S3 3D printer.

Robotic Operating System

Another tool we employed was using ROS (Robot Operating System). Essentially, ROS

is a set of software libraries and tools that provide a common framework for developing robot

applications. It is often in various areas such as in research and academic settings, as well as in

the development of robots. In terms of our project, ROS provided a set of tools and libraries for

building autonomous robot applications, which included support for low-level device control and

high-level robot capabilities such as planning and navigation. In order to implement Python

scripts in ROS, we first needed to create a new ROS package and make sure that it has a proper

directory structure and build configuration. This usually involved creating a src directory, where

our Python scripts would be stored, as well as a CMakeLists.txt file that specified how to build

your package.

One major aspect that we had to adhere to was that our Python code needed to follow the ROS

conventions for writing nodes, including importing the rospy library and using the

rospy.init_node() function to create a new ROS node. This also involved implementing any ROS

message types that were used to communicate with other nodes, as well as any ROS topics,

services, or actions that are used to publish or receive data. From here, we could use the roscd

and rosmake commands to navigate to our package directory and build our package. From our

Python we could compile and generate the necessary files that were needed to run our Python

scripts within ROS.

In order to run our Python scripts within ROS, we used rosrun command, followed by the name

of our package and the name of our Python file. This would start our Python script as a ROS

node, allowing it to communicate with other nodes and participate in the ROS system.

For this we all had little to no experience using ROS, so this involved all of us going through

several tutorials on how to incorporate this technology into our project.

Gazebo and RViz Simulator

Gazebo is a robot simulation software package used to simulate a wide variety of

different robots, including ground and aerial robots. It is used by a number of different

organizations to test and develop robotics technology. Gazebo is typically used in conjunction

with other software packages, such as ROS in our case, to create complex, realistic simulations

of robotic systems.

Page 12 of 45

RViz is a 3D visualizer for robotic systems. It is part of the ROS framework and is typically used

to visualize data from a variety of sensors, such as LiDAR in our project. RViz allowed us to see

a 3D representation of the robot and its environment, which was helpful for debugging and

analyzing the robot's behavior. It was also used to display data from other sources.

Both Gazebo and RViz we had no experience using before, so we had to use several methods to

gain this knowledge such as textbooks and online tutorials.

Societal Impact Constraints

Environmental Impact and Sustainability

In terms of building the drone the biggest environmental impact would be the use of lithium

batteries. When creating lithium batteries there needs to be a large supply of water involved,

specifically 500,000 gallons per metric ton of lithium. This can lead to a scarcity of water in

places due to utilization of such a large amount for this process. For example, 65% of water is

consumed by mining in Salar de Atacama which is a massive salt flat located in Chile [7][8].

Ultimately, this had led to locals finding sources of water from elsewhere to support the

community.

When disposing of the batteries, they contain several metals, such as nickel, manganese, and

cobalt that can be very harmful to bodies of water as well as the environment if they are not

disposed of properly in say a landfill for example. In addition, these batteries can’t be reused in

new batteries because of the lithium cathodes becoming degraded after a certain amount of time.

With this being said, lithium batteries need to be recycled in an appropriate manner to prevent

further damage. According to the United States Environmental Protection Agency (EPA) it is

recommended that lithium batteries be sent to a recycling center that is nearby to one’s location.

The EPA lists two resources to find a recycle which are Earth911 and Call2Recycle. Both of

these specialize in finding relevant locations depending on zip code. The EPA describes how the

batteries should be packaged before being sent off and this can be seen below [9].

When looking at our device in terms of sustainability there are several benefits it brings. One of

which being the capability of drones being able to aid in inspection of agricultural fields and

crops [10][11]. Due to the typical large amount of land on most farms this is very beneficial in

being able to see what is happening all over the entire area in a relatively quick manner.

In addition, our device could be used to have an aerial view of solar panels and wind turbines in

plants [12][13]. This allows one to easily identify problems such as malfunction of failures.

Essentially, this would eliminate the need for someone physically having to inspect these

Page 13 of 45

systems which would require a lot of time and is unsafe in certain situations. These are just a few

of the ways our device will be sustainable and especially in the environmental aspect.

Health and Safety

This project takes into health and safety by including a hybrid option that involves a person

operating the drone as well as the autonomous capability. For example, if the operator was flying

the drone and the drone sensed a car, the drone would take over and avoid running into the car.

This aspect makes our drone much safer compared to ones currently used in industry today.

Ethical, Social, and Economic Concerns

Our project might affect society, both from a human interaction perspective as well as economic

one in terms of the ethics surrounding automated weapons systems. In particular, the ethics of

automated weapons systems, is a topic that has been widely debated currently by experts in

various fields all over the world. One of the main ethical concerns surrounding the use of these

systems is the potential for them to be used to carry out violence without human oversight or

accountability. This could result in unnecessary loss of life, especially if the weapons are not

able to differentiate between civilian and military targets. Another concern is the potential for

these systems to be used as a tool for governments or other groups to carry out violent actions

without accountability. Overall, the ethics of automated weapons systems is a complex and

multifaceted issue that raises important questions about the role of technology in warfare, the

responsibility of individuals and governments in the use of force, and the potential risks and

benefits of these systems.

External Considerations

External Standards

Per the IEEE 802.1 Standard for Wireless Networks, having 4 streams of data (1 for each

sensor) would require a frequency band of either 2.4 GHz or 5 GHz to be used, with a bandwidth

of either 20 MHz or 40 MHz. Depending on the bandwidth, we would have a different allowed

data rate per stream. For example, if we utilized a bandwidth of 20MHz, the potential data rates

per stream that we could use include 7.2 Mbps, 14.4 Mbps, 21.7 Mbps, 28.9 Mbps, 43.3 Mbps,

57.8 Mbps, 65 Mbps, or 72.2 Mbps. For a bandwidth of 40 MHz, we are allowed to use a data

rate per stream of 15 Mbps, 30 Mbps, 45 Mbps, 60 Mbps, 90 Mbps, 120 Mbps, 135 Mbps, or

150 Mbps [11].

Page 14 of 45

In addition, under the Federal Aviation Administration regulations Part 107.7 rules, the

pilot for our system must have a remote pilot certificate with a small UAS rating and

identification when flying the quadcopter [14]. Under section 107.12, however, it indicates that

someone without a remote pilot certificate could pilot the quadcopter as long as someone with a

remote pilot certificate could take control of the quadcopter if necessary [14]. If the unmanned

vehicle were to cause harm to someone or any damage, the individual with a remote pilot

certificate should, under section 107.9, report if any person sustained serious injuries or if any

damage was caused that exceeds $500[14]. Under section 107.29, we could not operate our

quadcopter at night until our Lidar sensors allowed for the UAV to avoid obstacles, and under

section 107.51, the group speed of the quadcopter cannot exceed 100 mph and cannot fly over

400 mph [14].

Intellectual Property Issues

 While obstacle avoidance is a common topic for design with many different

implementations already having patents, our project has several components that set our design

apart from other patents. For example, the patent titled Unmanned Aerial Vehicle Obstacle

Detection and Avoidance invented by Parag Mohan Kanade, Charles Wheeler Sweet III, and

Jeffrey Baginsky Gehlhaar [15], detects and avoids obstacles using a camera that identifies the

presence of an obstacle and notifies the operator to perform the avoidance (Independent Claim 1

and Dependent Claim 8). Our design differs from this by incorporating software to detect and

avoid the obstacles autonomously. Additionally, our design uses LiDAR sensors rather than a

camera.

 Another related patent Method for Training Heterogeneous Sensing System and

Heterogeneous Sensing System invented by 伊利亚·布雷瓦兹 [16] using sensors to detect

obstacles in the environment of a system and analyzes this data through a processing unit

(Independent Claim 1), leading to the adjustment of level of cognition for the sensor system to

incorporate the obstacle conditions in the environment (Dependent Claims 5 and 6). Our sensor

design and application differs from this design by processing the sensor data containing obstacle

detection in the environment in real time. The information is processed and adjustments in

movement are made in real time, rather than cognition adjustments.

 The final patent to consider in relation to our projects design and patentability is titled

Method and Control Device for Identifying a Potential Collision Between an Unmanned Aerial

Vehicle and an Object, invented by Pablo Luis Guarnizo, Gabriele Michalke, and Thomas

Michalke [17]. This design uses a camera to provide images to analyze the pixels representing

the detected object, speed/position/direction information (Independent Claim 4) and detect the

collision time between the vehicle and the obstacle in its path (Dependent Claim 6). Our design

differs from this, as we incorporate the distance between the drone and the obstacle using sensor

https://patents.google.com/?inventor=Parag+Mohan+Kanade
https://patents.google.com/?inventor=Charles+Wheeler+Sweet%2c+III
https://patents.google.com/?inventor=Jeffrey+Baginsky+GEHLHAAR
https://patents.google.com/?inventor=%E4%BC%8A%E5%88%A9%E4%BA%9A%C2%B7%E5%B8%83%E9%9B%B7%E7%93%A6%E5%85%B9
https://patents.google.com/?inventor=Pablo+Luis+Guarnizo
https://patents.google.com/?inventor=Gabriele+Michalke
https://patents.google.com/?inventor=Thomas+Michalke
https://patents.google.com/?inventor=Thomas+Michalke

Page 15 of 45

data (with the drone moving at a constant speed), and change the directory of the drone, rather

than incorporating the trajectory of the obstacle through image analysis.

Detailed Technical Description of Project

For our project, we created autonomous obstacle avoidance for unmanned aerial vehicles,

commonly known as UAVs. Using a non-autonomous drone as our base (just a normal drone that

a human would control with a joystick), and by adding our design to this base, we created a

semi-autonomous drone with built-in safety features, capable of fully autonomous obstacle

avoidance using data from real-time LIDAR sensors. At a high level, the logic is very simple. A

human tele-operator begins navigating the drone towards a destination using a joystick. While

the drone is flying, 4 LIDAR sensors (on the front, right, left, and rear of the drone) read in data

and map the surrounding environment. If an object is detected too close to the drone (this could

be a bird flying towards the drone or even human error, navigating the drone towards an unseen

obstacle), the drone will fully autonomously avoid that obstacle using waypoint navigation and

once an object is no longer detected, it will continue towards the destination like normal.

Figure 1. High-level Logic of System

To detect objects in the environment, four blind-spot Lidar sensors were utilized on the front,

left, right and rear of the drone. The sensors were physically mounted to a 3D tower attached to

the drone, and connected to our PCB which then filtered and sent the data from our sensors (as

well as power the sensors) to our microcontroller. Once the microcontroller received the data,

our software could then analyze the data and perform obstacle detection and avoidance.

Page 16 of 45

Figure 2. Connection of System Components

The specific technical implementation is as follows. For the sensors, each came with a yellow

backboard that has a 9 pin I2C/UART output. We used the I2C protocol (SDA and SCL pins),

and have physical connectors running from each of the sensors to headers on our PCB. Once the

signals reach our PCB, we implemented a I2C bus using an I2C multiplexer chip that physically

assigns an address to each of the four sensors, and then outputs one I2C signal to our

microcontroller that will be used on the software side for autonomous obstacle detection and

avoidance.

A servo motor was also implemented underneath the front sensor, which continuously swings

back and forth (total view of 60 degrees) to increase the field of view of the front sensor. To

implement this, our microcontroller (Jetson) outputs a PWM signal based on our desired duty

cycle for a 60 degree field of view (with the sensor operating at 240 reading per second), and that

PWM signal is sent to our PCB via a 40 pin ribbon cable, and then connected to Pin 1 of the

motor’s header through an onboard-trace.

To power all components, a Lipo battery was utilized. Our goal was to make the design modular

so it can be added to a non-autonomous drone and just plug and play, thus we are using a

separate power source for our modular design, which will only power the PCB and 4 sensors and

motor attached to it. Our microcontroller (Jetson) and the rest of the drone are powered from a

different battery source, external to our design. Each sensor and the motor operate at 5V, and the

total current requirements equal 1.7 A (and that is the max current requirement for all 4 sensors

and the motor, as well as the I2C multiplexer chip which is only a few microamps). Our 11.1V

battery can sustain a maximum continuous load of 0.85A*45C = about 38 A, which is well

above our current requirements. The final draw on the battery may be higher than the maximum

draw listed for each of the components, so that overhead is good for our design. The flight time

of the drone we are using (the Holybro X500 drone) is 15 min, which our battery can sufficiently

power. We also decided on using a step-down switching regulator to output the 5V, 2A over a

linear regulator because a linear regulator would produce too much heat and a heat sink would be

required. Switching regulators are also highly efficient and available as modular chips which are

compact and reliable. The regulator was implemented externally to our PCB and the resulting 5V

https://www.renesas.com/products/power-management/dc-dc-converters

Page 17 of 45

signal was sent to our PCB via an XT30 power cable.

The PCB, which incorporates the four sensors, motor and power supply, is detailed next. The

schematic diagram and board layouts are shown below. The PCB is four layers, with two signal

layers, a power plane, and a ground plane. The logic of the PCB is very straightforward. A 2-pin

XT30 header is utilized to connect the 5V power supply to our PCB, and apply a 5V signal to the

power plane. 9-pin headers allow physical connection from each of the sensors to the PCB. The

relevant pins are the SDA and SCL pins, which are needed for I2C communication. The 5V and

GND pins are used to power the sensors. Each of the sensors’ I2C outputs (SDA and SCL) are

connected to an I2C multiplexer chip, which gives a physical hardware address to each of the

sensors (which have the same physical address out of the box). The chip then creates an I2C bus,

which can be used to differentiate between each of the slave devices (sensors) and read the I2C

data. The I2C data is connected to the SDA and SCL pins on the 40-pin header used to connect

to our microcontroller (Jetson). The 40-pin header for the microcontroller also includes 5V and

GND pins for logic level signals, as well as a GPIO pin for the PWM signal coming from the

microcontroller, which controls the speed and orientation of the servo motor through the 3-pin

header used to physically connect the motor to the PCB. The 3-pin header has the PWM signal

pin, as well as a 5V and GND pin to power the motor. Jumpers to the 5V supply were included

for the SDA and SCL pins on the I2C multiplexer chip in case a pull-up is needed, in which a

shunt can be used to create the electrical connection. Jumpers to the 5V supply on each of the

three hardware selectable addresses on the I2C chip (A0, A1, A2) can be used with shunts to

change the address of the chip itself, effectively changing the address of the I2C bus in case more

than 8 sensors are used and other future applications where multiple I2C chips are needed to be

differentiated. Due to the large amount of EMF interference on the drone caused by WIFI and

GPS signals being transmitted back and forth from the tele operational joystick, a chassis was

added, made up of a conductive material and ground, around the PCB to serve as a Faraday cage.

A Faraday cage is a conductive enclosure that is used to block out external electric fields. This

creates a conductive barrier around the PCB, which helps to shield it from external electric

fields. The result is that the electric fields are diverted around the chassis and do not affect the

components on the PCB. The PCB size is 75mm x 90mm in order to fit onto the top plate of the

drone, within the 3D printed tower walls surrounding it.

Page 18 of 45

Figure 3. Schematic Diagram

Page 19 of 45

Figure 4. Top layer of board (2D)

Page 20 of 45

Figure 5. Bottom layer of board (2D)

Page 21 of 45

Figure 6. Top layer of board (3D)

Page 22 of 45

Figure 7. Bottom layer of board (3D)

Page 23 of 45

Figure 8. Design rule check showing no errors

Figure 9. FreeDFM report showing no errors

Page 24 of 45

Figure 10. Picture of fabricated and assembled PCB

Page 25 of 45

Each of the physical components (sensors, motor, power supply, PCB, microcontroller, drone,

and 3D tower) and associated components are described in detail below.

Designator

Quan

tity Manufacturer

Manufacturer

Part Number

Suppli

er

Supplier

Part

Number

Mounting

Type

Operating

Temperature

Valu

e

C1 1
TDK

Corporation

C2012X7R1A

106K125AC

Digi-

Key

445-6857-

1-ND

Surface

Mount,

MLCC

-55°C ~

125°C
10uF

J1, J2, J3,

J4, J5
5

JST Sales

America Inc.

B9B-PH-K-

S(LF)(SN)

Digi-

Key

455-1711-

ND

Through

Hole

-25°C ~

85°C

J6 1 Amass XT30UPB-M
Through

Hole

-20°C ~

120°C

J7 1
Amphenol ICC

(FCI)

69167-

103HLF

Digi-

Key

609-2410-

ND

Through

Hole

-40°C ~

105°C

J8, J9, J10,

J11, J12
5 Samtec Inc.

TMM-102-03-

G-S

Digi-

Key

SAM10191

-ND

Through

Hole

-55°C ~

125°C

J13 1

TE Connectivity

AMP

Connectors

3-1761608-3
Digi-

Key

A107237-

ND

Through

Hole

-65°C ~

105°C

R1, R2,

R3, R4,

R5, R6

6 Panasonic
ERA-

6AEB103V

Digi-

Key

P10KDAC

T-ND

Surface

Mount

-55°C ~

155°C

10kO

hms

R7 1
Digi-

Key
 DNP

TP1 1 Keystone 5010
Digi-

Key

36-5010-

ND

Through

Hole

-40°C ~

185°C
Red

TP2 1 Keystone 5011
Digi-

Key

36-5011-

ND

Through

Hole

-40°C ~

185°C

Blac

k

TP3, TP6 2 Keystone 5012
Digi-

Key

36-5012-

ND

Through

Hole

-40°C ~

185°C

Whit

e

TP4 1 Keystone 5014
Digi-

Key

36-5014-

ND

Through

Hole

-40°C ~

185°C

Yello

w

TP5 1 Keystone 5013
Digi-

Key

36-5013-

ND

Through

Hole

-40°C ~

185°C

Oran

ge

U1 1
Texas

Instruments

TCA9548AP

WR

Digi-

Key

296-34905-

1-ND

Surface

Mount

-40°C ~

85°C

Table 1. PCB components

Page 26 of 45

Product Specification: Value

Holybro X500 V2 ARF Kit (SKU30125)

(Link)

Drone

Wheelbase: 500mm

Motor mount pattern: 16x16mm
Frame Body: 144x144mm, 2mm thick

Landing gear height: 215mm

Space between top and bottom plates: 28mm
Weight: 610g

HRB 4S Lipo Battery 14.8V 5000mAh

Battery

Material: Li-Polymer

Cells: 4S, Voltage: 14.8v
Capacity: 5000mAh

Discharge Rate: 50C

Burst Rate: 100C
Size(L*W*H): 6.10*1.89*1.26in / 155*48*32mm (0 - 3mm

difference)

Weight: 1.08lb / 17.35oz / 492g (± 2g)

PM07 12s Power Module

Power Management/Distribution

Current: Total 120A Outputs (MAX)

UBEC 5V Output Current: 3A
UBEC Input Voltage: Total 120A Outputs (MAX)

Dimensions: 68*50*10 mm

Mounting Holes: 45*45mm
Weight: 40.3g

Terabee TeraRanger Evo 15m

Laser Imaging, Detection and Ranging (LIDAR) Sensor

Range: 0.5m to 15m
Rate: 240 readings/sec

Field of View: 2°

Supply Voltage: 5V DC +/-5%
Supply Current: 90mA-330mA

Interfaces: USB 2.0 Micro-B, UART, I2C

Dimensions: 29x29x22mm (sensor + backboard)

Parallax 360 Degree High Speed Continuous Rotation

Servo

Servo Motor

Peak stall torque at 6 V: 2.2 kg-cm (30.5 oz-in)

RPM: +/-120 w/feedback control, 140 max (+/- 10) at 6 V, no load
Voltage requirements: 6 VDC typical, 5–8.4 VDC max range

Current Requirements: 15 mA (+/- 10) idle, 150 mA (+/- 40) no-load,

1200 mA stalled
Control Signal: PWM, 3–5 V 50 Hz, 1280–1720 µs

Feedback Signal: PWM, 3.3V, 910 Hz, 2.7–97.1% duty cycle

Dimensions: 2.15 x 1.46 x 0.79 in (50.4 x 37.2 x 20 mm)

NVIDIA Jetson AGX Orin Developer Kit

Embedded Microcontroller

GPU: NVIDIA Ampere architecture with 2048 NVIDIA® CUDA®
cores and 64 Tensor cores

CPU: 12-core Arm Cortex-A78AE v8.2 64-bit CPU 3MB L2 + 6MB

L3
Memory: 32GB 256-bit LPDDR5 204.8GB/s

Storage: 64GB eMMC 5.1

Power: 15W-60W

M.2 Key M: x4 PCIe Gen 4

M.2 Key E: x1 PCIe Gen 4, USB 2.0, UART, I2S

USB Type-C: 2x USB 3.2 Gen2
USB Type-A: 2x USB 3.2 Gen2, 2x USB 3.2 Gen1

USB Micro-B: USB 2.0

Dimensions: 110mm x 110mm x 71.65mm

Table 2. System components

For the software, we started by installing the Gazebo simulator, which was used to test if our

software for the sensor readings would work properly for a real aerial vehicle. We then used a

https://shop.holybro.com/x500-v2-kit_p1288.html

Page 27 of 45

script to takeoff the drone in the simulator since the simulator starts with the drone on the ground

plane. A code snippet from it is shown in Figure 11 below.

Figure 11. Snippet of code from takeoff_land program setting drone position to [0,0,2]

The basic idea of this script is that it first engages offboard mode and arms the vehicle, which

should allow the drone to take off and go from position [0,0,0] to position [0,0,2]. By the time

the script is in its main loop, the drone should be airborne with the same x and y position as

before, with that position being constantly published to the simulator via the Pose Stamped

message from geometry_msgs in ROS [18]. Once the program is halted, the drone will safely

land back to position [0,0,0], the vehicle will be disarmed, and offboard mode should be

disengaged.

Next, 4 separate python scripts will be run to read values from the four Terabee EvoRanger

sensors and publish them to ROS topics. An example snippet from the program for the front

sensor is shown in Figure 12 below.

Page 28 of 45

Figure 12. Main while loop of front sensor script

In this script, the sensor ports are initialized along with the node that the script should publish to.

Once these are all initialized and the port that the sensor is being connected to for a specific

script, the main while loop begins. In this loop, the sensor range that is detected at that specific

moment is read in and if that value is successfully read in from the port and is a valid float value,

it will be published to the ROS topic for that sensor (for example, the sensor value read in from

the front sensor program would publish to a topic called tera_readingFront). If the value read in

from the sensor is not a valid float, a value of 0 will be published to the topic and a warning will

print out stating that the sensor value is not a float. If the port disconnects so that it can no longer

can be read from, the program will try to open the next available port, which for us happened to

be the port 4 spaces ahead of the initial port (ACM0 would be ACM4, ACM1 would be ACM5,

etc.). If this also failed, the program would print out an error message stating that the port was

disconnected. In either case, 0 would be published to the topic since it is important to have some

data constantly published to the topic.

The programs for the left, right, and back sensors are very similar to the front sensor program.

The only difference comes down to the specific port names (ACM0, ACM1, ACM2, and ACM3

for the front, left, back, and right sensors respectively) and the publisher nodes that each of the

Page 29 of 45

programs output to (tera_readingFront, tera_readingLeft, tera_readingBack, and

tera_readingRight).

The last program that we made was uav_quadJoy20.py, which took in the sensor readings

published by the sensor programs and utilized those to autonomously control a drone. The first

part of the program involved making a class, ROSVars, that would contain the published values

from all four sensors and the joystick input. Figure 13 displays a code snippet from this part of a

program below.

Figure 13. ROSVars class which contains sensor readings and joystick inputs

Page 30 of 45

All four sensor readings are stored in one array, sensors, that is continuously updating, even if

the main while loop for this program is interrupted. In addition the readings from the left joystick

and a button from the controller are read in and updated continuously.

In the main loop all of the subscriber nodes that the program is reading from are initialized along

with the node for the program itself, the ROSVars object, the node to publish the drone velocity

to (Twist), and the rate of the main while loop, which was set to 1000 since that would allow it to

operate as fast as possible. As for the subscriber nodes that the joy program drew from, they

included each of the sensors used along with the node that took in the joystick readings. The

Twist [19] object in ROS is also initialized. This can be seen in Figure 14 below.

Figure 14. Start of the main loop in uav_quadJoy20.py that contains the initialization of the

nodes, the rate, the ROSVars object, and the Twist object that will publish the drone velocity

After this, the main while loop begins. Initially, the loop starts with setting the x and y velocity

equal to the value of the joystick input from the controller multiplied by a constant variable

representing the speed multiplier (this was initialized before the while loop). Then if the button

input from the joystick isn’t pressed, then the program should loop through all four sensor

readings. This button input for overriding the sensors was included as a fail-safe in case one of

the sensors had unexpected behavior or there was a software bug that would otherwise cause the

drone to crash. This code is shown in figure 15 below.

Page 31 of 45

Figure 15. Start of the while loop in uav_quadJoy20.py that contains the initialization of the

drone velocities and a table illustrating joystick directions

Within the for loop, a sensor value is read in from the sensor array and if it is less than 1 meter,

the program determines which sensor has the reading. This is done by determining which index

in the sensor array the value is located since the array contains readings for the front, left, back,

and right sensors respectively. Depending on which sensor the <1.0 meter reading is for, the

drone may either stop completely (for the front sensor), be forced to move in the direction

opposite of which sensor detected the object (if the left sensor detected the object, the drone

would be forced to move right), or may be only have limited movement in 1 direction (as is the

case with the back sensor). All of these actions are done by modifying the x and y velocities to

either be close to 0 (for it to stop) or 0.5 times the speed variable in the opposite direction for the

x velocity for the right and left sensors. In the case where the drone is forced to move in the

direction opposite of the object that is detected (for the left and right), this represents the drone

autonomously avoiding an object. This code is shown in Figure 16 below.

Page 32 of 45

Figure 16. Code snippet from uav_quadJoy20.py illustrating how object detection from a sensor

affects drone velocity

Once out of the for loop for the sensors and the if statement for the buttons, the program outputs

messages based on its current operation. For example, if the drone has its x and y velocities set to

0.001 (close to 0), the program will print out a message stating “stop”, meaning that the drone

has been completely stopped. Another example is that if the drone is moving at a speed equal to

half the speed constant in the positive direction, the program will print “moving right” since it is

Page 33 of 45

forced to be moving right to move out of the way of an obstacle. If the movement of the drone

isn’t forced to the left/right, isn’t stopped, and isn’t being overridden by the button on the

controller being pressed, the program will print out the message “keep going”, meaning that the

drone movement is largely unhindered by the sensors. At the end, the velocities are published to

the drone and rate.sleep is called so that the main while loop can be run again. Figure 17 has this

code snippet below.

Figure 17. Code snippet from uav_quadJoy20.py illustrating code output before drone velocities

are published.

Page 34 of 45

The entire software process is illustrated by an FSM shown in Figure 18.

Figure 18: Finite State Machine illustrating software behavior

The physical implementation of our design was brought together using a 3D printed figure. This

3D design was prepared using FreeCAD, then sliced and printed using Cura slicing software and

the Ultimaker S3 3D printer. The design held a hollow pentagonal prism structure, leaving space

on the front to mount the LiDAR sensors facing forward, right , left and backwards. The shape

allowed for the PCB to sit inside the prism, with the 40 pin ribbon cable feeding out a

rectangular cut out in the back of the shape, and the micro-usb to I2C cables feeding through a

cylindrical cut out in the top level of the structure to connect to the sensors. This structure and

components sat on top of a carbon fiber plate that is screwed into the second level of the drones

top layer.

Page 35 of 45

Figure 19. Front Wall of 3D design

Figure 20. Back Wall and Cover of 3D Design

Page 36 of 45

Project Time Line

Original Gantt Chart

In the original timeline for our project, we were very optimistic in how quickly we could

complete each task and eventually come to a final deliverable. A large majority of our tasks were

serial in terms of hardware and software. This allowed for us to progress very quickly in

accomplishing tasks.

Figure 21. Original Gantt Chart

Revised Gantt Chart

Our revised Gantt chart below shows a more realistic timeline of the project. Some of the dates

have been shifted back and there is also a more detailed list of tasks provided. The previous

timeline did not accurately reflect how difficult some tasks would be and the time needed to

complete them.

Page 37 of 45

Figure 22. Revised Gantt Chart

Test Plan

The main purpose for our test plan is to provide a systematic and organized approach to ensure

that it is functioning correctly and meets the specified design requirements. Our test plan outlines

the specific tests that were performed, the equipment and tools that were used, the criteria for

passing or failing each test, and the procedures for recording and reporting the test results. This is

an important part of the overall design and manufacturing process, as it helps to ensure that the

project is of high quality and meets the desired specifications.

In terms of testing the PCB, the following methodology was utilized:

- Visual inspection: We examined the PCB by eye to look for any obvious defects, such as

broken traces, missing components, or other issues.

- Continuity testing: For this aspect a multimeter was utilized to check for electrical

continuity between different points on the PCB. This was crucial in helping identify any

broken traces in the circuit.

- Power-on testing: Here we applied power to the PCB and used a multimeter to measure

the voltage level at the power and ground test points. We successfully measured 5V

relative to GND.

Page 38 of 45

- Functional testing: We tested the PCB as part of the final product to ensure that it is

functioning correctly for our application. We tested the PCB under a variety of different

conditions and environments to ensure that it performs as expected, including with the

drone off, drone on and not flying, and the drone on and flying. The software received the

I2C signals from the PCB with delays within our allowed specified range.

In terms of testing the sensors and obstacle detection and avoidance, the following methodology

was utilized:

- Sensor readings: We simulated sensor readings with 1 sensor first, ensuring the data is

read in correctly and the Gazebo simulator visualizing the quadrotor halt when an object

is detected within 2-5 meters in front of the sensor. We then expanded the previous

criteria to all 4 sensors and connected the indicated sensors to the servo motors, testing

again for functionality of the sensor data.

- Drone obstacle avoidance: In order to test this we ran the simulator with someone

covering one of the sensors and observing what direction the drone would move when

flying with this action.

1. We first texted that we could get the drone in the simulator to be controlled with a

joystick

2. We then tested if the drone would stop based on the reading from 1 sensor

regardless of joystick input

3. We then expanded this to 4 sensors, with each sensor representing a different

direction

4. Next we tested the drone and four sensors to see if we could eliminate any

noticeable delay between the sensor readings and when the drone stops based on

those readings

5. We then changed what the drone would do when the sensors detected an object.

Instead of not being able to move in one direction, the drone would either stop

completely (for the front sensor) or move away from the detected object (for the

left and right sensors)

6. Once the above worked on a simulator, we connected the Jetson with our

computer and made sure 1 sensor could be hooked up to the Jetson and transmit

data to the computer

7. We expanded this to include 4 sensors that could be connected to the Jetson

8. Once we got 4 sensors from the Jetson to transmit data to our computer, we ran

the software on a real drone and tested it to see if it could detect objects and move

based on that

Page 39 of 45

Final Results

Tasks

Device accurately takes in field of view with LIDAR sensors

Device always starts up with battery supply

PCB sends correct data from I2C to embedded microcontroller (Jetson)

Data can be simulated with LIDAR Data Visualization (RViz) and Drone Simulator (Gazebo)

Drone will perform obstacle avoidance and not allow movement towards detected (i.e., if an object is

detected in front of done, even if the human operator commands the drone to move forward, it will not

move towards the object

3D printed board accommodates physical components

Table 3. Project Tasks

Letter Grade Number of Tasks Completed

A+ 6 Tasks

A 5 Tasks

B 4 Tasks

C 3 Tasks

D 0-2 Tasks

Table 4. Letter Grade Based Upon Number of Tasks Completed

For the task of “Data can be simulated with LIDAR Data Visualization (RViz) and Drone

Simulator (Gazebo)”, we had one of the sensor programs running and we published the topic that

the program was being published to. For instance, when we ran our script for the first sensor

(uav_sensor0_ROS.py), if we ran rostopic echo /tera_readingFront, sensor values from the front

sensor would continuously print out and would be responsive to an obstacle moving in front of it.

Page 40 of 45

For the task of “Drone will perform obstacle avoidance and not allow movement towards

detected (i.e., if an object is detected in front of done, even if the human operator commands the

drone to move forward, it will not move towards the object”, we accomplished this by having the

simulator up and running and having someone cover the left sensor, which caused the drone to

move to the right regardless of the joystick input provided. Similarly, when the right sensor was

covered, the drone in the simulator would move left regardless of the joystick input. This can be

shown in Figure 23 and 24 below.

Figure 23. Blocking the right sensor causes the drone to move to the left regardless of joystick

input

Figure 24. Blocking the left sensor causes the drone to move to the right regardless of joystick

input

For the task of “3D printed board accommodates physical components”, we designed prototypes

using paper and other materials at first, mapping out how we wanted the structure to sit on the

Page 41 of 45

drone before printing. Following this we designed structures in FreeCAD to visualize the

prototypes. There were several CAD designs printed throughout the project, each time we

attempted to mount the sensors on the structure and found issues with field of view, we edited

the design and printed again in order to get the most efficient design.

Costs

The following shows the cost of each component of our PCB.

Line

Designator Quantity

Manufacture

r

Manufacturer

Part Number Supplier

Supplier

Part

Number Price/Unit Total Price

1

C1 1
TDK

Corporation

C2012X7R1A

106K125AC

Digi-

Key

445-

6857-1-

ND

0.33 0.33

2

J1, J2, J3,

J4, J5
5

JST Sales

America Inc.

B9B-PH-K-

S(LF)(SN)

Digi-

Key

455-

1711-ND
0.48 2.4

3 J6 1 Amass XT30UPB-M 0.48 0.48

4
J7 1

Amphenol

ICC (FCI)

69167-

103HLF

Digi-

Key

609-

2410-ND
0.99 0.99

5

J8, J9, J10,

J11, J12
5 Samtec Inc.

TMM-102-03-

G-S

Digi-

Key

SAM101

91-ND
0.65 3.25

6

J13 1

TE

Connectivity

AMP

Connectors

3-1761608-3
Digi-

Key

A107237

-ND
11.62 11.62

7

R1, R2, R3,

R4, R5, R6
6 Panasonic

ERA-

6AEB103V

Digi-

Key

P10KDA

CT-ND
0.36 2.16

8
R7 1

Digi-

Key
 0.1 0.1

9
TP1 1 Keystone 5010

Digi-

Key

36-5010-

ND
0.1 0.1

10
TP2 1 Keystone 5011

Digi-

Key

36-5011-

ND
0.42 0.42

11
TP3, TP6 2 Keystone 5012

Digi-

Key

36-5012-

ND
0.42 0.84

12
TP4 1 Keystone 5014

Digi-

Key

36-5014-

ND
0.42 0.42

13
TP5 1 Keystone 5013

Digi-

Key

36-5013-

ND
0.42 0.42

14

U1 1
Texas

Instruments

TCA9548AP

WR

Digi-

Key

296-

34905-1-

ND

2.09 2.09

Page 42 of 45

Total

Cost
$ 25.62

Table 5: PCB Parts and Costs

The standard price to fabricate a 4-layer PCB with the number of holes, traces, pad, etc. that we

utilized in our design is about $274.38. Thus, the total cost of one PCB is about $300.

Part Cost for 1 Unit Cost for 10,000 Units

Holybro X500 V2 ARF KIT $117.00 $1,170,000

HRB 4S Lipo Battery 14.8V

5000mAh

$49.95 $499,500

PM07 12s Power Module $42.00 $420,000

Terabee TeraRanger Evo 15m $64.00 $640,000

Parallax 360 Degree High Speed

Continuous Rotation Servo

$49.90 $499,000

NVIDIA Jetson AGX Orin

Developer Kit

$1,999 $19,990,000

PCB Costs $300 #3,000,000

Total $2,621.85 $26,218,500

Table 6: Drone with Obstacle Avoidance Module Cost

Future Work

If a group were to expand upon our design, there are several concerns to account for in

order to speed up implementation and avoid roadblocks. On the software side of the

implementation, we had lingering issues with delays and timing for the intake and printing of

sensor values. A way to avoid such setbacks would be to publish each sensor implementation as

separate rostopics, rather than all being published to one rostopic. Also, in connection with the

3D CAD design, we would recommend accounting for 3D implementation when making

changes to software, as we ran into issues with making small tweaks to fit our software, printing

several 3D designs, each taking at least 3 hours to complete. The 3D design was also affected by

changes in hardware, as we would recommend accounting for where to feed wires, place new

components (sensors and PCB), and encase parts as needed. Each change to hardware requires

several tweaks to the 3D design.

Page 43 of 45

When developing and updating the PCB, it would be good practice, and avoid many

setbacks, to think about how and where wires from sensors will be connected to the PCB, for

example, our first iteration of the PCB had difficulties connecting to sensors because headers

were in weird locations. Our second iteration took into account location of headers and wires,

leaving our design in a better position to expand upon.

Finally, with our high budget, we ended up using many parts that are high quality but

scarce in supply, making some difficult to order. Focusing on parts that are good quality and

have a higher supply would help avoid issues with ordering and running into problems with

replacing parts if some were to break.

Page 44 of 45

References

[1] “ROS Documentation.” Open Robotics, May 20, 2022. Accessed: Sep. 12, 2022. [Online].

Available: http://wiki.ros.org/

[2] N. O. and A. A. US Department of Commerce, “What is LIDAR.”

https://oceanservice.noaa.gov/facts/Lidar.html (accessed Sep. 27, 2022).

[3] “What is Inter-IC (I2C)? - Definition from Techopedia,” Techopedia.com.

http://www.techopedia.com/definition/319/inter-ic-i2c (accessed Sep. 27, 2022).

[4] “User Manual for TeraRanger Evo single point distance sensors and backboards.” Terabee,

2021. Accessed: Sep. 12, 2022. [Online]. Available: https://terabee.b-cdn.net/wp-content

[5] “Product Description for Smraza 10 Pcs SG90 9G Micro Servo Metal Geared Motor Kit for

RC Robot Arm/Hand/Control with Cable, Mini Servos for Arduino Project (10).” Maxmartt.

Accessed: Sep. 12, 2022. [Online]. Available: https://www.amazon.com/Maxmartt-Stepper-

Linear-Engraving-Machine/dp/B087Q8B38R/ref=asc_df_B087Q8B38R/?tag=hyprod-

20&linkCode=df0&hvadid=532923056828&hvpos=&hvnetw=g&hvrand=98023714218018555

86&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9008337&hvta

rgid=pla-1456359630889&psc=1

[6] “Product Description for DC 5V-9V 12V 2 Phase 4 Wire Stepper Motor Linear Rail 90mm

Stroke Lead Screw Linear Stage Actuator with Nut Slider Step Angle 18 Degree for DIY Laser

Engraving Machine.” QINZX. Accessed: Sep. 12, 2022. [Online]. Available:

https://www.amazon.com/Stepper-Linear-Actuator-

EngravingMachine/dp/B09BZDSY7V/ref=pd_lpo_3?pd_rd_i=B09BZDSY7V&psc=1

[7] “Understanding the IEEE 802.11 Standard for Wireless Networks,” Juniper Networks, Oct.

2018. Accessed: Sep. 12, 2022. [Online]. Available:

https://www.juniper.net/documentation/en_US/junos-space-apps/network-

director4.0/topics/concept/wireless-80211.html

[8] “The Environmental Impact of Lithium Batteries,” IER, Nov. 12, 2020.

https://www.instituteforenergyresearch.org/renewable/the-environmental-impact-oflithium-

batteries/ (accessed Sep. 27, 2022).

[9] Carlton Reid, “Semi-Autonomous Cars Hit Cyclist In 5 Out Of 15 Test Runs, Finds AAA,”

Forbes Magazine, May 2022, Accessed: Sep. 12, 2022. [Online]. Available:

https://www.forbes.com/sites/carltonreid/2022/05/16/semi-autonomous-car-hitcyclist-in-5-out-

of-15-test-runs-finds-aaa/?sh=5c991fdc3d03

http://wiki.ros.org/
https://oceanservice.noaa.gov/facts/Lidar.html
http://www.techopedia.com/definition/319/inter-ic-i2c
https://terabee.b-cdn.net/wp-content/uploads/2021/02/User-Manual-forTeraRanger-Evo-single-point-distance-sensors-and-backboards.pdf
https://www.amazon.com/Maxmartt-Stepper-Linear-Engraving-Machine/dp/B087Q8B38R/ref=asc_df_B087Q8B38R/?tag=hyprod-20&linkCode=df0&hvadid=532923056828&hvpos=&hvnetw=g&hvrand=9802371421801855586&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9008337&hvtargid=pla-1456359630889&psc=1
https://www.amazon.com/Maxmartt-Stepper-Linear-Engraving-Machine/dp/B087Q8B38R/ref=asc_df_B087Q8B38R/?tag=hyprod-20&linkCode=df0&hvadid=532923056828&hvpos=&hvnetw=g&hvrand=9802371421801855586&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9008337&hvtargid=pla-1456359630889&psc=1
https://www.amazon.com/Maxmartt-Stepper-Linear-Engraving-Machine/dp/B087Q8B38R/ref=asc_df_B087Q8B38R/?tag=hyprod-20&linkCode=df0&hvadid=532923056828&hvpos=&hvnetw=g&hvrand=9802371421801855586&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9008337&hvtargid=pla-1456359630889&psc=1
https://www.amazon.com/Maxmartt-Stepper-Linear-Engraving-Machine/dp/B087Q8B38R/ref=asc_df_B087Q8B38R/?tag=hyprod-20&linkCode=df0&hvadid=532923056828&hvpos=&hvnetw=g&hvrand=9802371421801855586&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9008337&hvtargid=pla-1456359630889&psc=1
https://www.amazon.com/Maxmartt-Stepper-Linear-Engraving-Machine/dp/B087Q8B38R/ref=asc_df_B087Q8B38R/?tag=hyprod-20&linkCode=df0&hvadid=532923056828&hvpos=&hvnetw=g&hvrand=9802371421801855586&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9008337&hvtargid=pla-1456359630889&psc=1
https://www.amazon.com/Maxmartt-Stepper-Linear-Engraving-Machine/dp/B087Q8B38R/ref=asc_df_B087Q8B38R/?tag=hyprod-20&linkCode=df0&hvadid=532923056828&hvpos=&hvnetw=g&hvrand=9802371421801855586&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9008337&hvtargid=pla-1456359630889&psc=1
https://www.amazon.com/Stepper-Linear-Actuator-EngravingMachine/dp/B09BZDSY7V/ref=pd_lpo_3?pd_rd_i=B09BZDSY7V&psc=1
https://www.amazon.com/Stepper-Linear-Actuator-EngravingMachine/dp/B09BZDSY7V/ref=pd_lpo_3?pd_rd_i=B09BZDSY7V&psc=1
https://www.juniper.net/documentation/en_US/junos-space-apps/network-director4.0/topics/concept/wireless-80211.html
https://www.juniper.net/documentation/en_US/junos-space-apps/network-director4.0/topics/concept/wireless-80211.html
https://www.juniper.net/documentation/en_US/junos-space-apps/network-director4.0/topics/concept/wireless-80211.html
https://www.juniper.net/documentation/en_US/junos-space-apps/network-director4.0/topics/concept/wireless-80211.html
https://www.instituteforenergyresearch.org/renewable/the-environmental-impact-oflithium-batteries/
https://www.instituteforenergyresearch.org/renewable/the-environmental-impact-oflithium-batteries/
https://www.forbes.com/sites/carltonreid/2022/05/16/semi-autonomous-car-hitcyclist-in-5-out-of-15-test-runs-finds-aaa/?sh=5c991fdc3d03
https://www.forbes.com/sites/carltonreid/2022/05/16/semi-autonomous-car-hitcyclist-in-5-out-of-15-test-runs-finds-aaa/?sh=5c991fdc3d03

Page 45 of 45

[10] “Understanding the IEEE 802.11 Standard for Wireless Networks,” Juniper Networks, Oct.

2018. Accessed: Sep. 12, 2022. [Online]. Available:

https://www.juniper.net/documentation/en_US/junos-space-apps/network-

director4.0/topics/concept/wireless-80211.html

[11] “Drones and Sustainability: Protecting The Environment.”

https://www.unsustainablemagazine.com/drones-and-sustainability-5-ways/ (accessed Sep. 27,

2022).

[12] WilliamWoodall, “rviz - ROS Wiki,” ROS.org, May 16, 2018. https://wiki.ros.org/rviz

(accessed Sep. 25, 2022).

[13] “Drones, the great ally of sustainability.” https://www.activesustainability.com/sustainable-

development/drones-the-great-ally-ofsustainability/ (accessed Sep. 27, 2022). Page 13 of 13

[14] “14 CFR Part 107 -- Small Unmanned Aircraft Systems,” Code of Federal Regulations.

https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-107 (accessed Sep. 25, 2022).

[15] P. M. Kanade, C. W. S. III, and J. B. GEHLHAAR, “Unmanned aerial vehicle obstacle

detection and avoidance,” US10019907B2, Jul. 10, 2018 Accessed: Dec. 13, 2022. [Online].

Available:

https://patents.google.com/patent/US10019907B2/en?q=obstacle+detection+drones&oq=obstacl

e+detection+for+drones

[16] 伊利亚·布雷瓦兹, “Method for training heterogeneous sensing

system and heterogeneous sensing system,” CN108052097B, Apr. 09,

2021 Accessed: Dec. 13, 2022. [Online]. Available:

https://patents.google.com/patent/CN108052097B/en?q=obstacle+detection+drones&oq=obstacl

e+detection+for+drones

[17] P. L. Guarnizo, G. Michalke, and T. Michalke, “Method and control device for identifying a

potential collision between an unmanned aerial vehicle and an object,” WO2017097596A2, Jun.

15, 2017 Accessed: Dec. 13, 2022. [Online]. Available:

https://patents.google.com/patent/WO2017097596A2/en?q=obstacle+avoidance+drones&oq=ob

stacle+avoidance+for+drones

[18] “geometry_msgs/PoseStamped Documentation,” ROS.org, Mar. 02, 2022.

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/PoseStamped.html (accessed Dec.

13, 2022).

[19] “geometry_msgs/Twist Documentation,” ROS.org, Mar. 02, 2022.

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Twist.html (accessed Dec. 13, 2022)

https://www.juniper.net/documentation/en_US/junos-space-apps/network-director4.0/topics/concept/wireless-80211.html
https://www.juniper.net/documentation/en_US/junos-space-apps/network-director4.0/topics/concept/wireless-80211.html
https://www.juniper.net/documentation/en_US/junos-space-apps/network-director4.0/topics/concept/wireless-80211.html
https://www.juniper.net/documentation/en_US/junos-space-apps/network-director4.0/topics/concept/wireless-80211.html
https://www.unsustainablemagazine.com/drones-and-sustainability-5-ways/
https://wiki.ros.org/rviz
https://www.activesustainability.com/sustainable-development/drones-the-great-ally-ofsustainability/
https://www.activesustainability.com/sustainable-development/drones-the-great-ally-ofsustainability/
https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-107
https://patents.google.com/patent/US10019907B2/en?q=obstacle+detection+drones&oq=obstacle+detection+for+drones
https://patents.google.com/patent/US10019907B2/en?q=obstacle+detection+drones&oq=obstacle+detection+for+drones
https://patents.google.com/patent/US10019907B2/en?q=obstacle+detection+drones&oq=obstacle+detection+for+drones
https://patents.google.com/patent/US10019907B2/en?q=obstacle+detection+drones&oq=obstacle+detection+for+drones
https://patents.google.com/patent/CN108052097B/en?q=obstacle+detection+drones&oq=obstacle+detection+for+drones
https://patents.google.com/patent/CN108052097B/en?q=obstacle+detection+drones&oq=obstacle+detection+for+drones
https://patents.google.com/patent/CN108052097B/en?q=obstacle+detection+drones&oq=obstacle+detection+for+drones
https://patents.google.com/patent/CN108052097B/en?q=obstacle+detection+drones&oq=obstacle+detection+for+drones
https://patents.google.com/patent/WO2017097596A2/en?q=obstacle+avoidance+drones&oq=obstacle+avoidance+for+drones
https://patents.google.com/patent/WO2017097596A2/en?q=obstacle+avoidance+drones&oq=obstacle+avoidance+for+drones
https://patents.google.com/patent/WO2017097596A2/en?q=obstacle+avoidance+drones&oq=obstacle+avoidance+for+drones
https://patents.google.com/patent/WO2017097596A2/en?q=obstacle+avoidance+drones&oq=obstacle+avoidance+for+drones
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/PoseStamped.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/PoseStamped.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/PoseStamped.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Twist.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Twist.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Twist.html

