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Statement of work: 

Samir Chadha 

I worked on the software side of the project. This included making sure the sensors could read in 

data and print out specific values to a computer, integrating ROS with the sensors so that the 

sensors could publish to specific ROS topics, working with the Gazebo simulator to test the 

sensor integration with the drone, creating python scripts to integrate the sensor readings with the 

drone so that the drone’s movement would be affected by sensor readings, integrating the 

joystick with the drone to allow for teleoperation, implementing autonomous obstacle avoidance 

for the drone based on sensor input, and porting over the software from the remote server to the 

Jetson to allow for a real life drone to use the software we developed to autonomously avoid 

objects. I also engaged in debugging all of the scripts that allowed for the sensors to affect drone 

movement along with the teleoperation of the drone. 

Patrick Hourican 

I worked on the software side of this project, along with the 3D CAD design. On the 

software side, I set up the simulator and ROS environments on our computer to enable the testing 

of the software implementation with the sensor integration. Also, I aided in the implementation 

of the Joystick programs to allow teleoperation of the drone. Additionally, I aided in the 

development and debugging of other python scripts that were published to rostopics. Finally, I 

designed, updated, sliced and 3D printed the 3D designs for the project, creating several different 

iterations of specific structures and testing them to see which fit our intended design the best. 

Sammy Nayhouse 

 I worked on the majority of our hardware implementation, including both the PCB design 

and hardware interface with the embedded microcontroller. I designed the 4-layer PCB, with two 

signal layers, a power plane, and a ground plane, using Altium designer software. I chose all the 

components for the PCB, as well as the headers to physically interface with the sensors, motor 

and microcontroller. I read through datasheets to ensure the I2C multiplexer we utilized would 

work for our sensor configuration, delay requirements, power requirements, and physical 

footprint requirements on the PCB. I also created a chassis around the PCB to create an effective 

Faraday cage, due to the large amount of EMF interference on the drone caused by WIFI and 

GPS signals being transmitted back and forth from the tele operational joystick. I also 

implemented the test plan for our PCB to ensure all requirements for the system were met and 

our software system could be interfaced seamlessly.  
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Chase Moore 

 I worked on a wide variety of sections of our project. The first task I worked on was 

choosing a battery that would be within the scope of our project. This involved doing several 

calculations such as the current and voltage needed for each component and then choosing a 

battery that would meet design specifications. On the circuity side of the project, I helped 

Sammy to design parts of the PCB such as all the headers to sensors and forty pin ribbon cable. 

Also, I implemented our test plan for the PCB in order to resolve any issue that existed and 

ensure that it would function properly. In terms of the software, I helped with interfacing with 

sensors and reading and collecting data. Lastly, I had the role of maintaining the budget for our 

project as well as ordering any of the components that we needed. This involved keeping track of 

a detailed spreadsheet with all of the components’ prices, specifications, and distributors.  
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Abstract 

Team SPSC designed and developed an aerial platform to enable shared autonomy and obstacle 

detection for unmanned aerial vehicles (UAV). A printed circuit board (PCB) was designed and 

manufactured to aid in UAV obstacle avoidance using a series of 1-D time of flight light 

detection and ranging (LIDAR) sensors [1][2]. A servo motor was utilized in order to increase 

the range and visibility of the front sensor. This allows obstacle detection within the range of the 

UAVs movements and simultaneously delivers real-time data through inter-integrated circuit 

(I2C) communication protocols [3]. A 3-D printed tower was manufactured to physically mount 

the PCB, Lidar sensors and motor to the aerial platform. An embedded Robotic Operating 

System (ROS) was used to visualize real time Lidar data and simulate obstacle avoidance for 

UAV systems [1][4]. 

Background 

Flying is the dream of many but only a few can truly experience it freely. What was once seen as 

science fiction, however, is now becoming a reality as new advances in computation and sensing 

lead to the development of advanced robotic systems. Autonomous mobile robots, and in 

particular aerial vehicles, are entering our society and finding many applications like aerial 

photography, infrastructure inspection, surveillance, hobby application, and even search and 

rescue operations. This has led to a common debate among experts regarding if fully autonomous 

aerial vehicles provide greater benefits than human controlled aerial vehicles. Drone crashes, 

safety challenges, security issues and privacy concerns have led many to believe that fully 

autonomous unmanned aerial vehicles are not worth the risk or cost. 

This project was chosen to address the common types of issues with fully autonomous UAVs. 

Robotics is an area that interests all members of the team, and previous project and internship 

work with autonomous technologies paved the way for creating a potential solution to current 

issues with fully autonomous aerial vehicles. Our team’s goal was to investigate and enable a 

form of shared autonomy that incorporates both capabilities – human controlled input and 

onboard autonomy. This compromise allows for desired human input (e.g., flying a drone to an 

area of interest), while keeping the system safe (or performing other tasks) through onboard 

autonomy and obstacle avoidance. This will allow for a much safer and efficient drone that is 

less likely to crash due to operator error, which our team believes is a necessary development in 

the advancement of autonomous UAVs. 

Similar projects pertaining to shared autonomy have been completed in the past. A commercial-

off-the-shelf (COTS) aerial vehicle was enhanced to include mathematical models of the 

quadcopter dynamics for real-time improved flight stability [5]. The American Automobile 

Association did an experiment on semi-autonomous driving technology that utilized systems that 
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assist drivers in driving and parking functions and found that collisions with cyclists occur 33% 

of the time at four-way crossings [6]. 

This project is different from past work by others because of the simultaneous use of both human 

controlled inputs and onboard autonomy, instead of switching between one or the other. For 

example, if the human is manually flying the drone forward, the robot can override the manual 

input and stop the UAVs movement (or change the movement) in order to avoid an obstacle. 

Previous projects with shared autonomy usually have two operating modes, either manual 

(human) or autonomous. This method, however, analyzes both manual inputs from a human 

operator and onboard sensors/autonomy to avoid obstacles while completing the desired flight 

plan or performance tasks.   

This project draws from a variety of previous coursework completed by our four team members. 

ECE coursework, such as the FUN series (ECE 2630, ECE 2660, ECE 3750), which allowed us 

to successfully design a PCB component using voltage regulators, filters, and so forth to 

interface with the motors, sensors and Jetson computer. The topics learned in the Embedded 

Robotics courses (ECE 3501, ECE 3502) will allow us to incorporate an embedded system by 

interfacing with a microcontroller and implementing object detection and data communication 

through I2C communication protocols. Coursework from the CS department (Samir Chadha and 

Patrick Hourican are CPEs), such as Operating Systems (CS 4414), will allow for swift Robotic 

Operating System (ROS) development and the implementation of Lidar data visualization and 

drone simulations. 

 

Physical Constraints 

Manufacturing & Usability 

This project is safe and robust enough to ensure the electrical components are able to withstand 

the normal uses of drone flight and accidental bumps. The components on the drone are able to 

withstand all flying conditions in order to not be disconnected or altered during flight. The PCB 

will be inexpensive to manufacture as well as solder the appropriate components to meet design 

specifications. This design was manufactured and constructed in a way, so that it could be 

recreated and scaled to fit similarly structured drones that require obstacle detection. Such a 

design can be replicated and utilized for obstacle detection and adapted to avoid obstacles as the 

drone travels. 
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Part Availability 

Due to our design’s modularity, it could easily be implemented on other drones within the 

CoStar fleet. The parts we are utilizing in our design are widely used within industry, and all 

parts are readily available and able to be shipped quickly from well-known electrical part 

suppliers, such as Mouser, DigiKey, and other online suppliers. 

Economic and Cost Constraints 

The goal of this design is to create a modular design incorporating four sensors, one motor, an 

embedded microcontroller (Jetson), and an external power supply (battery). The components 

must be lightweight and meet weight constraints, while also being compact and capable of fitting 

on the drone. These are the primary constraints, as cost constraints are not as relevant due to the 

funding of this project by CoStar. All purchases will be itemized and receipts maintained 

throughout the design, but our team has been encouraged to purchase and test a variety of 

products that may make our design more efficient, safe and robust. 

Tools Employed 

Altium Designer 

Altium Designer was used for circuit design and PCB design. Both tools have been used 

in previous internships so a large amount of knowledge already existed in the team. Overall, the 

simplified process of making a PCB with Altium Designer involved creating a new project and 

PCB design, adding components to the design, generating the connections between the 

components, routing the connections to create the final layout, and then generating the 

manufacturing files that will be used to manufacture the PCB. There were no new skills learned 

within using this software, but our abilities were sharpened in that we could go through the 

above process quicker the more we used it.  

FreeCAD 

In terms of 3D printing, we used FreeCAD which is a free and open-source CAD 

program that can be used to create 3D models. The process involved printing incorporated 

creating a 3D model in FreeCAD, exporting the model as an STL file, slicing the STL file to 

generate G-code instructions, and then using a 3D printer to create the physical object based on 

those instructions. Again, there were no new skills learned within using this software, but our 

abilities were sharpened in that we could go through the above process quicker the more we used 

it.  
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Cura and Ultimaker S3 

In order to 3D print our FreeCAD design we used the Cura Slicing software and exported 

the files to the Ultimaker S3 3D printer. 

Robotic Operating System 

Another tool we employed was using ROS (Robot Operating System). Essentially, ROS 

is a set of software libraries and tools that provide a common framework for developing robot 

applications. It is often in various areas such as in research and academic settings, as well as in 

the development of robots. In terms of our project, ROS provided a set of tools and libraries for 

building autonomous robot applications, which included support for low-level device control and 

high-level robot capabilities such as planning and navigation. In order to implement Python 

scripts in ROS, we first needed to create a new ROS package and make sure that it has a proper 

directory structure and build configuration. This usually involved creating a src directory, where 

our Python scripts would be stored, as well as a CMakeLists.txt file that specified how to build 

your package. 

One major aspect that we had to adhere to was that our Python code needed to follow the ROS 

conventions for writing nodes, including importing the rospy library and using the 

rospy.init_node() function to create a new ROS node. This also involved implementing any ROS 

message types that were used to communicate with other nodes, as well as any ROS topics, 

services, or actions that are used to publish or receive data. From here, we  could use the roscd 

and rosmake commands to navigate to our package directory and build our package. From our 

Python we could compile and generate the necessary files that were needed to run our Python 

scripts within ROS. 

In order to run our Python scripts within ROS, we used rosrun command, followed by the name 

of our package and the name of our Python file. This would start our Python script as a ROS 

node, allowing it to communicate with other nodes and participate in the ROS system. 

For this we all had little to no experience using ROS, so this involved all of us going through 

several tutorials on how to incorporate this technology into our project.  

Gazebo and RViz Simulator  

Gazebo is a robot simulation software package used to simulate a wide variety of 

different robots, including ground and aerial robots. It is used by a number of different 

organizations to test and develop robotics technology. Gazebo is typically used in conjunction 

with other software packages, such as ROS in our case, to create complex, realistic simulations 

of robotic systems.  
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RViz is a 3D visualizer for robotic systems. It is part of the ROS framework and is typically used 

to visualize data from a variety of sensors, such as LiDAR in our project.  RViz allowed us to see 

a 3D representation of the robot and its environment, which was helpful for debugging and 

analyzing the robot's behavior. It was also used to display data from other sources. 

Both Gazebo and RViz we had no experience using before, so we had to use several methods to 

gain this knowledge such as textbooks and online tutorials.  

 

Societal Impact Constraints 

Environmental Impact and Sustainability 

In terms of building the drone the biggest environmental impact would be the use of lithium 

batteries. When creating lithium batteries there needs to be a large supply of water involved, 

specifically 500,000 gallons per metric ton of lithium. This can lead to a scarcity of water in 

places due to utilization of such a large amount for this process. For example, 65% of water is 

consumed by mining in Salar de Atacama which is a massive salt flat located in Chile [7][8]. 

Ultimately, this had led to locals finding sources of water from elsewhere to support the 

community.  

When disposing of the batteries, they contain several metals, such as nickel, manganese, and 

cobalt that can be very harmful to bodies of water as well as the environment if they are not 

disposed of properly in say a landfill for example. In addition, these batteries can’t be reused in 

new batteries because of the lithium cathodes becoming degraded after a certain amount of time. 

With this being said, lithium batteries need to be recycled in an appropriate manner to prevent 

further damage. According to the United States Environmental Protection Agency (EPA) it is 

recommended that lithium batteries be sent to a recycling center that is nearby to one’s location. 

The EPA lists two resources to find a recycle which are Earth911 and Call2Recycle. Both of 

these specialize in finding relevant locations depending on zip code. The EPA describes how the 

batteries should be packaged before being sent off and this can be seen below [9]. 

When looking at our device in terms of sustainability there are several benefits it brings. One of 

which being the capability of drones being able to aid in inspection of agricultural fields and 

crops [10][11]. Due to the typical large amount of land on most farms this is very beneficial in 

being able to see what is happening all over the entire area in a relatively quick manner. 

In addition, our device could be used to have an aerial view of solar panels and wind turbines in 

plants [12][13]. This allows one to easily identify problems such as malfunction of failures. 

Essentially, this would eliminate the need for someone physically having to inspect these 
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systems which would require a lot of time and is unsafe in certain situations. These are just a few 

of the ways our device will be sustainable and especially in the environmental aspect. 

Health and Safety 

This project takes into health and safety by including a hybrid option that involves a person 

operating the drone as well as the autonomous capability. For example, if the operator was flying 

the drone and the drone sensed a car, the drone would take over and avoid running into the car. 

This aspect makes our drone much safer compared to ones currently used in industry today. 

 

Ethical, Social, and Economic Concerns 

Our project might affect society, both from a human interaction perspective as well as economic 

one in terms of the ethics surrounding automated weapons systems. In particular, the ethics of 

automated weapons systems, is a topic that has been widely debated currently by experts in 

various fields all over the world. One of the main ethical concerns surrounding the use of these 

systems is the potential for them to be used to carry out violence without human oversight or 

accountability. This could result in unnecessary loss of life, especially if the weapons are not 

able to differentiate between civilian and military targets. Another concern is the potential for 

these systems to be used as a tool for governments or other groups to carry out violent actions 

without accountability. Overall, the ethics of automated weapons systems is a complex and 

multifaceted issue that raises important questions about the role of technology in warfare, the 

responsibility of individuals and governments in the use of force, and the potential risks and 

benefits of these systems. 

 

External Considerations 

External Standards 

Per the IEEE 802.1 Standard for Wireless Networks, having 4 streams of data (1 for each 

sensor) would require a frequency band of either 2.4 GHz or 5 GHz to be used, with a bandwidth 

of either 20 MHz or 40 MHz. Depending on the bandwidth, we would have a different allowed 

data rate per stream. For example, if we utilized a bandwidth of 20MHz, the potential data rates 

per stream that we could use include 7.2 Mbps, 14.4 Mbps, 21.7 Mbps, 28.9 Mbps, 43.3 Mbps, 

57.8 Mbps, 65 Mbps, or 72.2 Mbps. For a bandwidth of 40 MHz, we are allowed to use a data 

rate per stream of 15 Mbps, 30 Mbps, 45 Mbps, 60 Mbps, 90 Mbps, 120 Mbps, 135 Mbps, or 

150 Mbps [11]. 
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In addition, under the Federal Aviation Administration regulations Part 107.7 rules, the 

pilot for our system must have a remote pilot certificate with a small UAS rating and 

identification when flying the quadcopter [14]. Under section 107.12, however, it indicates that 

someone without a remote pilot certificate could pilot the quadcopter as long as someone with a 

remote pilot certificate could take control of the quadcopter if necessary [14]. If the unmanned 

vehicle were to cause harm to someone or any damage, the individual with a remote pilot 

certificate should, under section 107.9, report if any person sustained serious injuries or if any 

damage was caused that exceeds $500[14]. Under section 107.29, we could not operate our 

quadcopter at night until our Lidar sensors allowed for the UAV to avoid obstacles, and under 

section 107.51, the group speed of the quadcopter cannot exceed 100 mph and cannot fly over 

400 mph [14]. 

Intellectual Property Issues 

 While obstacle avoidance is a common topic for design with many different 

implementations already having patents, our project has several components that set our design 

apart from other patents. For example, the patent titled Unmanned Aerial Vehicle Obstacle 

Detection and Avoidance invented by Parag Mohan Kanade, Charles Wheeler Sweet III, and 

Jeffrey Baginsky Gehlhaar [15], detects and avoids obstacles using a camera that identifies the 

presence of an obstacle and notifies the operator to perform the avoidance (Independent Claim 1 

and Dependent Claim 8). Our design differs from this by incorporating software to detect and 

avoid the obstacles autonomously. Additionally, our design uses LiDAR sensors rather than a 

camera.  

 Another related patent Method for Training Heterogeneous Sensing System and 

Heterogeneous Sensing System invented by 伊利亚·布雷瓦兹 [16] using sensors to detect 

obstacles in the environment of a system and analyzes this data through a processing unit 

(Independent Claim 1), leading to the adjustment of level of cognition for the sensor system to 

incorporate the obstacle conditions in the environment (Dependent Claims 5 and 6). Our sensor 

design and application differs from this design by processing the sensor data containing obstacle 

detection in the environment in real time. The information is processed and adjustments in 

movement are made in real time, rather than cognition adjustments. 

 The final patent to consider in relation to our projects design and patentability is titled 

Method and Control Device for Identifying a Potential Collision Between an Unmanned Aerial 

Vehicle and an Object, invented by Pablo Luis Guarnizo, Gabriele Michalke, and Thomas 

Michalke [17]. This design uses a camera to provide images to analyze the pixels representing 

the detected object, speed/position/direction information (Independent Claim 4) and detect the 

collision time between the vehicle and the obstacle in its path (Dependent Claim 6). Our design 

differs from this, as we incorporate the distance between the drone and the obstacle using sensor 

https://patents.google.com/?inventor=Parag+Mohan+Kanade
https://patents.google.com/?inventor=Charles+Wheeler+Sweet%2c+III
https://patents.google.com/?inventor=Jeffrey+Baginsky+GEHLHAAR
https://patents.google.com/?inventor=%E4%BC%8A%E5%88%A9%E4%BA%9A%C2%B7%E5%B8%83%E9%9B%B7%E7%93%A6%E5%85%B9
https://patents.google.com/?inventor=Pablo+Luis+Guarnizo
https://patents.google.com/?inventor=Gabriele+Michalke
https://patents.google.com/?inventor=Thomas+Michalke
https://patents.google.com/?inventor=Thomas+Michalke
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data (with the drone moving at a constant speed), and change the directory of the drone, rather 

than incorporating the trajectory of the obstacle through image analysis. 

Detailed Technical Description of Project 

For our project, we created autonomous obstacle avoidance for unmanned aerial vehicles, 

commonly known as UAVs. Using a non-autonomous drone as our base (just a normal drone that 

a human would control with a joystick), and by adding our design to this base, we created a 

semi-autonomous drone with built-in safety features, capable of fully autonomous obstacle 

avoidance using data from real-time LIDAR sensors. At a high level, the logic is very simple. A 

human tele-operator begins navigating the drone towards a destination using a joystick. While 

the drone is flying, 4 LIDAR sensors (on the front, right, left, and rear of the drone) read in data 

and map the surrounding environment. If an object is detected too close to the drone (this could 

be a bird flying towards the drone or even human error, navigating the drone towards an unseen 

obstacle), the drone will fully autonomously avoid that obstacle using waypoint navigation and 

once an object is no longer detected, it will continue towards the destination like normal.  

 

 
Figure 1. High-level Logic of System 

 

To detect objects in the environment, four blind-spot Lidar sensors were utilized on the front, 

left, right and rear of the drone. The sensors were physically mounted to a 3D tower attached to 

the drone, and connected to our PCB which then filtered and sent the data from our sensors (as 

well as power the sensors) to our microcontroller. Once the microcontroller received the data, 

our software could then analyze the data and perform obstacle detection and avoidance.  
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Figure 2. Connection of System Components 

 

The specific technical implementation is as follows. For the sensors, each came with a yellow 

backboard that has a 9 pin I2C/UART output. We used the I2C protocol (SDA and SCL pins), 

and have physical connectors running from each of the sensors to headers on our PCB. Once the 

signals reach our PCB, we implemented a I2C bus using an I2C multiplexer chip that physically 

assigns an address to each of the four sensors, and then outputs one I2C signal to our 

microcontroller that will be used on the software side for autonomous obstacle detection and 

avoidance.  

 

A servo motor was also implemented underneath the front sensor, which continuously swings 

back and forth (total view of 60 degrees) to increase the field of view of the front sensor. To 

implement this, our microcontroller (Jetson) outputs a PWM signal based on our desired duty 

cycle for a 60 degree field of view (with the sensor operating at 240 reading per second), and that 

PWM signal is sent to our PCB via a 40 pin ribbon cable, and then connected to Pin 1 of the 

motor’s header through an onboard-trace.  

 

To power all components, a Lipo battery was utilized. Our goal was to make the design modular 

so it can be added to a non-autonomous drone and just plug and play, thus we are using a 

separate power source for our modular design, which will only power the PCB and 4 sensors and 

motor attached to it. Our microcontroller (Jetson) and the rest of the drone are powered from a 

different battery source, external to our design. Each sensor and the motor operate at 5V, and the 

total current requirements equal 1.7 A (and that is the max current requirement for all 4 sensors 

and the motor, as well as the I2C multiplexer chip which is only a few microamps). Our 11.1V 

battery can sustain a maximum continuous load of 0.85A*45C = about 38 A, which is well 

above our current requirements. The final draw on the battery may be higher than the maximum 

draw listed for each of the components, so that overhead is good for our design. The flight time 

of the drone we are using (the Holybro X500 drone) is 15 min, which our battery can sufficiently 

power. We also decided on using a step-down switching regulator to output the 5V, 2A over a 

linear regulator because a linear regulator would produce too much heat and a heat sink would be 

required. Switching regulators are also highly efficient and available as modular chips which are 

compact and reliable. The regulator was implemented externally to our PCB and the resulting 5V 

https://www.renesas.com/products/power-management/dc-dc-converters
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signal was sent to our PCB via an XT30 power cable.  

The PCB, which incorporates the four sensors, motor and power supply, is detailed next. The 

schematic diagram and board layouts are shown below. The PCB is four layers, with two signal 

layers, a power plane, and a ground plane. The logic of the PCB is very straightforward. A 2-pin 

XT30 header is utilized to connect the 5V power supply to our PCB, and apply a 5V signal to the 

power plane. 9-pin headers allow physical connection from each of the sensors to the PCB. The 

relevant pins are the SDA and SCL pins, which are needed for I2C communication. The 5V and 

GND pins are used to power the sensors. Each of the sensors’ I2C outputs (SDA and SCL) are 

connected to an I2C multiplexer chip, which gives a physical hardware address to each of the 

sensors (which have the same physical address out of the box). The chip then creates an I2C bus, 

which can be used to differentiate between each of the slave devices (sensors) and read the I2C 

data. The I2C data is connected to the SDA and SCL pins on the 40-pin header used to connect 

to our microcontroller (Jetson). The 40-pin header for the microcontroller also includes 5V and 

GND pins for logic level signals, as well as a GPIO pin for the PWM signal coming from the 

microcontroller, which controls the speed and orientation of the servo motor through the 3-pin 

header used to physically connect the motor to the PCB. The 3-pin header has the PWM signal 

pin, as well as a 5V and GND pin to power the motor. Jumpers to the 5V supply were included 

for the SDA and SCL pins on the I2C multiplexer chip in case a pull-up is needed, in which a 

shunt can be used to create the electrical connection. Jumpers to the 5V supply on each of the 

three hardware selectable addresses on the I2C chip (A0, A1, A2) can be used with shunts to 

change the address of the chip itself, effectively changing the address of the I2C bus in case more 

than 8 sensors are used and other future applications where multiple I2C chips are needed to be 

differentiated. Due to the large amount of EMF interference on the drone caused by WIFI and 

GPS signals being transmitted back and forth from the tele operational joystick, a chassis was 

added, made up of a conductive material and ground, around the PCB to serve as a Faraday cage. 

A Faraday cage is a conductive enclosure that is used to block out external electric fields. This 

creates a conductive barrier around the PCB, which helps to shield it from external electric 

fields. The result is that the electric fields are diverted around the chassis and do not affect the 

components on the PCB. The PCB size is 75mm x 90mm in order to fit onto the top plate of the 

drone, within the 3D printed tower walls surrounding it.  
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Figure 3. Schematic Diagram 
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Figure 4. Top layer of board (2D) 
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Figure 5. Bottom layer of board (2D) 
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Figure 6. Top layer of board (3D) 
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Figure 7. Bottom layer of board (3D) 
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Figure 8. Design rule check showing no errors 

 

Figure 9. FreeDFM report showing no errors 
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Figure 10. Picture of fabricated and assembled PCB 
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Each of the physical components (sensors, motor, power supply, PCB, microcontroller, drone, 

and 3D tower) and associated components are described in detail below.  

 

Designator 

Quan

tity Manufacturer 

Manufacturer 

Part Number 

Suppli

er 

Supplier 

Part 

Number 

Mounting 

Type 

Operating 

Temperature 

Valu

e 

C1 1 
TDK 

Corporation 

C2012X7R1A

106K125AC 

Digi-

Key 

445-6857-

1-ND 

Surface 

Mount, 

MLCC 

-55°C ~ 

125°C 
10uF 

J1, J2, J3, 

J4, J5 
5 

JST Sales 

America Inc. 

B9B-PH-K-

S(LF)(SN) 

Digi-

Key 

455-1711-

ND 

Through 

Hole 

-25°C ~ 

85°C 
 

J6 1 Amass XT30UPB-M   
Through 

Hole 

-20°C ~ 

120°C 
 

J7 1 
Amphenol ICC 

(FCI) 

69167-

103HLF 

Digi-

Key 

609-2410-

ND 

Through 

Hole 

-40°C ~ 

105°C 
 

J8, J9, J10, 

J11, J12 
5 Samtec Inc. 

TMM-102-03-

G-S 

Digi-

Key 

SAM10191

-ND 

Through 

Hole 

-55°C ~ 

125°C 
 

J13 1 

TE Connectivity 

AMP 

Connectors 

3-1761608-3 
Digi-

Key 

A107237-

ND 

Through 

Hole 

-65°C ~ 

105°C 
 

R1, R2, 

R3, R4, 

R5, R6 

6 Panasonic 
ERA-

6AEB103V 

Digi-

Key 

P10KDAC

T-ND 

Surface 

Mount 

-55°C ~ 

155°C 

10kO

hms 

R7 1   
Digi-

Key 
   DNP 

TP1 1 Keystone 5010 
Digi-

Key 

36-5010-

ND 

Through 

Hole 

-40°C ~ 

185°C 
Red 

TP2 1 Keystone 5011 
Digi-

Key 

36-5011-

ND 

Through 

Hole 

-40°C ~ 

185°C 

Blac

k 

TP3, TP6 2 Keystone 5012 
Digi-

Key 

36-5012-

ND 

Through 

Hole 

-40°C ~ 

185°C 

Whit

e 

TP4 1 Keystone 5014 
Digi-

Key 

36-5014-

ND 

Through 

Hole 

-40°C ~ 

185°C 

Yello

w 

TP5 1 Keystone 5013 
Digi-

Key 

36-5013-

ND 

Through 

Hole 

-40°C ~ 

185°C 

Oran

ge 

U1 1 
Texas 

Instruments 

TCA9548AP

WR 

Digi-

Key 

296-34905-

1-ND 

Surface 

Mount 

-40°C ~ 

85°C 
 

Table 1. PCB components 
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Product Specification: Value 

Holybro X500 V2 ARF Kit (SKU30125) 

(Link) 

 

Drone 

 

Wheelbase: 500mm 

Motor mount pattern: 16x16mm 
Frame Body: 144x144mm, 2mm thick 

Landing gear height: 215mm 

Space between top and bottom plates: 28mm 
Weight: 610g 

HRB 4S Lipo Battery 14.8V 5000mAh 

 

Battery 

 

Material: Li-Polymer 

Cells: 4S, Voltage: 14.8v 
Capacity: 5000mAh 

Discharge Rate: 50C 

Burst Rate: 100C 
Size(L*W*H): 6.10*1.89*1.26in / 155*48*32mm (0 - 3mm 

difference) 

Weight: 1.08lb / 17.35oz / 492g (± 2g) 

PM07 12s Power Module 

 

 

Power Management/Distribution 

Current: Total 120A Outputs (MAX) 

UBEC 5V Output Current: 3A 
UBEC Input Voltage: Total 120A Outputs (MAX) 

Dimensions: 68*50*10 mm 

Mounting Holes: 45*45mm 
Weight: 40.3g 

Terabee TeraRanger Evo 15m 

 

Laser Imaging, Detection and Ranging (LIDAR) Sensor 

Range: 0.5m to 15m 
Rate: 240 readings/sec 

Field of View: 2° 

Supply Voltage: 5V DC +/-5% 
Supply Current: 90mA-330mA 

Interfaces: USB 2.0 Micro-B, UART, I2C 

Dimensions: 29x29x22mm (sensor + backboard) 

Parallax 360 Degree High Speed Continuous Rotation 

Servo  

 

Servo Motor 

Peak stall torque at 6 V: 2.2 kg-cm (30.5 oz-in) 

RPM: +/-120 w/feedback control, 140 max (+/- 10) at 6 V, no load 
Voltage requirements: 6 VDC typical, 5–8.4 VDC max range 

Current Requirements: 15 mA (+/- 10) idle, 150 mA (+/- 40) no-load, 

1200 mA stalled 
Control Signal: PWM,  3–5 V 50 Hz,  1280–1720 µs 

Feedback Signal: PWM, 3.3V,  910 Hz, 2.7–97.1% duty cycle 

Dimensions: 2.15 x 1.46 x 0.79 in (50.4 x 37.2 x 20 mm) 

NVIDIA Jetson AGX Orin Developer Kit 

 

Embedded Microcontroller 

 

GPU: NVIDIA Ampere architecture with 2048 NVIDIA® CUDA® 
cores and 64 Tensor cores 

CPU: 12-core Arm Cortex-A78AE v8.2 64-bit CPU 3MB L2 + 6MB 

L3 
Memory: 32GB 256-bit LPDDR5 204.8GB/s 

Storage: 64GB eMMC 5.1 

Power: 15W-60W 

M.2 Key M: x4 PCIe Gen 4 

M.2 Key E: x1 PCIe Gen 4, USB 2.0, UART, I2S 

USB Type-C: 2x USB 3.2 Gen2 
USB Type-A: 2x USB 3.2 Gen2, 2x USB 3.2 Gen1 

USB Micro-B: USB 2.0 

Dimensions: 110mm x 110mm x 71.65mm 

 

Table 2. System components 

 

For the software, we started by installing the Gazebo simulator, which was used to test if our 

software for the sensor readings would work properly for a real aerial vehicle. We then used a 

https://shop.holybro.com/x500-v2-kit_p1288.html
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script to takeoff the drone in the simulator since the simulator starts with the drone on the ground 

plane. A code snippet from it is shown in Figure 11 below. 

 

Figure 11. Snippet of code from takeoff_land program setting drone position to [0,0,2] 

The basic idea of this script is that it first engages offboard mode and arms the vehicle, which 

should allow the drone to take off and go from position [0,0,0] to position [0,0,2]. By the time 

the script is in its main loop, the drone should be airborne with the same x and y position as 

before, with that position being constantly published to the simulator via the Pose Stamped 

message from geometry_msgs in ROS [18]. Once the program is halted, the drone will safely 

land back to position [0,0,0], the vehicle will be disarmed, and offboard mode should be 

disengaged. 

Next, 4 separate python scripts will be run to read values from the four Terabee EvoRanger 

sensors and publish them to ROS topics. An example snippet from the program for the front 

sensor is shown in Figure 12 below. 



Page 28 of 45 

 

Figure 12. Main while loop of front sensor script 

In this script, the sensor ports are initialized along with the node that the script should publish to. 

Once these are all initialized and the port that the sensor is being connected to for a specific 

script, the main while loop begins. In this loop, the sensor range that is detected at that specific 

moment is read in and if that value is successfully read in from the port and is a valid float value, 

it will be published to the ROS topic for that sensor (for example, the sensor value read in from 

the front sensor program would publish to a topic called tera_readingFront). If the value read in 

from the sensor is not a valid float, a value of 0 will be published to the topic and a warning will 

print out stating that the sensor value is not a float. If the port disconnects so that it can no longer 

can be read from, the program will try to open the next available port, which for us happened to 

be the port 4 spaces ahead of the initial port (ACM0 would be ACM4, ACM1 would be ACM5, 

etc.). If this also failed, the program would print out an error message stating that the port was 

disconnected. In either case, 0 would be published to the topic since it is important to have some 

data constantly published to the topic. 

The programs for the left, right, and back sensors are very similar to the front sensor program. 

The only difference comes down to the specific port names (ACM0, ACM1, ACM2, and ACM3 

for the front, left, back, and right sensors respectively) and the publisher nodes that each of the 
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programs output to (tera_readingFront, tera_readingLeft, tera_readingBack, and 

tera_readingRight). 

The last program that we made was uav_quadJoy20.py, which took in the sensor readings 

published by the sensor programs and utilized those to autonomously control a drone. The first 

part of the program involved making a class, ROSVars, that would contain the published values 

from all four sensors and the joystick input. Figure 13 displays a code snippet from this part of a 

program below. 

 

Figure 13. ROSVars class which contains sensor readings and joystick inputs 
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All four sensor readings are stored in one array, sensors, that is continuously updating, even if 

the main while loop for this program is interrupted. In addition the readings from the left joystick 

and a button from the controller are read in and updated continuously.  

In the main loop all of the subscriber nodes that the program is reading from are initialized along 

with the node for the program itself, the ROSVars object, the node to publish the drone velocity 

to (Twist), and the rate of the main while loop, which was set to 1000 since that would allow it to 

operate as fast as possible. As for the subscriber nodes that the joy program drew from, they 

included each of the sensors used along with the node that took in the joystick readings. The 

Twist [19] object in ROS is also initialized. This can be seen in Figure 14 below. 

 

Figure 14. Start of the main loop in uav_quadJoy20.py that contains the initialization of the 

nodes, the rate, the ROSVars object, and the Twist object that will publish the drone velocity 

After this, the main while loop begins. Initially, the loop starts with setting the x and y velocity 

equal to the value of the joystick input from the controller multiplied by a constant variable 

representing the speed multiplier (this was initialized before the while loop). Then if the button 

input from the joystick isn’t pressed, then the program should loop through all four sensor 

readings. This button input for overriding the sensors was included as a fail-safe in case one of 

the sensors had unexpected behavior or there was a software bug that would otherwise cause the 

drone to crash. This code is shown in figure 15 below. 
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Figure 15. Start of the while loop in uav_quadJoy20.py that contains the initialization of the 

drone velocities and a table illustrating joystick directions 

Within the for loop, a sensor value is read in from the sensor array and if it is less than 1 meter, 

the program determines which sensor has the reading. This is done by determining which index 

in the sensor array the value is located since the array contains readings for the front, left, back, 

and right sensors respectively. Depending on which sensor the <1.0 meter reading is for, the 

drone may either stop completely (for the front sensor), be forced to move in the direction 

opposite of which sensor detected the object (if the left sensor detected the object, the drone 

would be forced to move right), or may be only have limited movement in 1 direction (as is the 

case with the back sensor). All of these actions are done by modifying the x and y velocities to 

either be close to 0 (for it to stop) or 0.5 times the speed variable in the opposite direction for the 

x velocity for the right and left sensors. In the case where the drone is forced to move in the 

direction opposite of the object that is detected (for the left and right), this represents the drone 

autonomously avoiding an object. This code is shown in Figure 16 below. 
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Figure 16. Code snippet from uav_quadJoy20.py illustrating how object detection from a sensor 

affects drone velocity 

Once out of the for loop for the sensors and the if statement for the buttons, the program outputs 

messages based on its current operation. For example, if the drone has its x and y velocities set to 

0.001 (close to 0), the program will print out a message stating “stop”, meaning that the drone 

has been completely stopped. Another example is that if the drone is moving at a speed equal to 

half the speed constant in the positive direction, the program will print “moving right” since it is 
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forced to be moving right to move out of the way of an obstacle. If the movement of the drone 

isn’t forced to the left/right, isn’t stopped, and isn’t being overridden by the button on the 

controller being pressed, the program will print out the message “keep going”, meaning that the 

drone movement is largely unhindered by the sensors. At the end, the velocities are published to 

the drone and rate.sleep is called so that the main while loop can be run again. Figure 17 has this 

code snippet below. 

 

Figure 17. Code snippet from uav_quadJoy20.py illustrating code output before drone velocities 

are published. 
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The entire software process is illustrated by an FSM shown in Figure 18. 

 

Figure 18: Finite State Machine illustrating software behavior 

The physical implementation of our design was brought together using a 3D printed figure. This 

3D design was prepared using FreeCAD, then sliced and printed using Cura slicing software and 

the Ultimaker S3 3D printer. The design held a hollow pentagonal prism structure, leaving space 

on the front to mount the LiDAR sensors facing forward, right , left and backwards. The shape 

allowed for the PCB to sit inside the prism, with the 40 pin ribbon cable feeding out a 

rectangular cut out in the back of the shape, and the micro-usb to I2C cables feeding through a 

cylindrical cut out in the top level of the structure to connect to the sensors. This structure and 

components sat on top of a carbon fiber plate that is screwed into the second level of the drones 

top layer. 
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Figure 19. Front Wall of 3D design 

 

Figure 20. Back Wall and Cover of 3D Design 
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Project Time Line 

Original Gantt Chart  

In the original timeline for our project, we were very optimistic in how quickly we could 

complete each task and eventually come to a final deliverable. A large majority of our tasks were 

serial in terms of hardware and software. This allowed for us to progress very quickly in 

accomplishing tasks. 

 

Figure 21. Original Gantt Chart 

Revised Gantt Chart 

Our revised Gantt chart below shows a more realistic timeline of the project. Some of the dates 

have been shifted back and there is also a more detailed list of tasks provided. The previous 

timeline did not accurately reflect how difficult some tasks would be and the time needed to 

complete them.  
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Figure 22. Revised Gantt Chart 

Test Plan 

The main purpose for our test plan is to provide a systematic and organized approach to ensure 

that it is functioning correctly and meets the specified design requirements. Our test plan outlines 

the specific tests that were performed, the equipment and tools that were used, the criteria for 

passing or failing each test, and the procedures for recording and reporting the test results. This is 

an important part of the overall design and manufacturing process, as it helps to ensure that the 

project is of high quality and meets the desired specifications. 

In terms of testing the PCB, the following methodology was utilized: 

- Visual inspection: We examined the PCB by eye to look for any obvious defects, such as 

broken traces, missing components, or other issues. 

- Continuity testing: For this aspect a multimeter was utilized to check for electrical 

continuity between different points on the PCB. This was crucial in helping identify any 

broken traces in the circuit. 

- Power-on testing: Here we applied power to the PCB and used a multimeter to measure 

the voltage level at the power and ground test points. We successfully measured 5V 

relative to GND.  
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- Functional testing: We tested the PCB as part of the final product to ensure that it is 

functioning correctly for our application. We tested the PCB under a variety of different 

conditions and environments to ensure that it performs as expected, including with the 

drone off, drone on and not flying, and the drone on and flying. The software received the 

I2C signals from the PCB with delays within our allowed specified range.  

In terms of testing the sensors and obstacle detection and avoidance, the following methodology 

was utilized: 

- Sensor readings: We simulated sensor readings with 1 sensor first, ensuring the data is 

read in correctly and the Gazebo simulator visualizing the quadrotor halt when an object 

is detected within 2-5 meters in front of the sensor. We then expanded the previous 

criteria to all 4 sensors and connected the indicated sensors to the servo motors, testing 

again for functionality of the sensor data. 

- Drone obstacle avoidance: In order to test this we ran the simulator with someone 

covering one of the sensors and observing what direction the drone would move when 

flying with this action.  

1. We first texted that we could get the drone in the simulator to be controlled with a 

joystick 

2. We then tested if the drone would stop based on the reading from 1 sensor 

regardless of joystick input 

3. We then expanded this to 4 sensors, with each sensor representing a different 

direction 

4. Next we tested the drone and four sensors to see if we could eliminate any 

noticeable delay between the sensor readings and when the drone stops based on 

those readings 

5. We then changed what the drone would do when the sensors detected an object. 

Instead of not being able to move in one direction, the drone would either stop 

completely (for the front sensor) or move away from the detected object (for the 

left and right sensors) 

6. Once the above worked on a simulator, we connected the Jetson with our 

computer and made sure 1 sensor could be hooked up to the Jetson and transmit 

data to the computer 

7. We expanded this to include 4 sensors that could be connected to the Jetson 

8. Once we got 4 sensors from the Jetson to transmit data to our computer, we ran 

the software on a real drone and tested it to see if it could detect objects and move 

based on that  
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Final Results 

Tasks  

Device accurately takes in field of view with LIDAR sensors 

Device always starts up with battery supply 

PCB sends correct data from I2C to embedded microcontroller (Jetson) 

Data can be simulated with LIDAR Data Visualization (RViz) and Drone Simulator (Gazebo)  

Drone will perform obstacle avoidance and not allow movement towards detected (i.e., if an object is 

detected in front of done, even if the human operator commands the drone to move forward, it will not 

move towards the object 

3D printed board accommodates physical components 

Table 3. Project Tasks 

Letter Grade Number of Tasks Completed 

A+ 6 Tasks 

A 5 Tasks 

B 4 Tasks 

C 3 Tasks 

D 0-2 Tasks 

Table 4. Letter Grade Based Upon Number of Tasks Completed  

 

For the task of “Data can be simulated with LIDAR Data Visualization (RViz) and Drone 

Simulator (Gazebo)”, we had one of the sensor programs running and we published the topic that 

the program was being published to. For instance, when we ran our script for the first sensor 

(uav_sensor0_ROS.py), if we ran rostopic echo /tera_readingFront, sensor values from the front 

sensor would continuously print out and would be responsive to an obstacle moving in front of it. 



Page 40 of 45 

For the task of “Drone will perform obstacle avoidance and not allow movement towards 

detected (i.e., if an object is detected in front of done, even if the human operator commands the 

drone to move forward, it will not move towards the object”, we accomplished this by having the 

simulator up and running and having someone cover the left sensor, which caused the drone to 

move to the right regardless of the joystick input provided. Similarly, when the right sensor was 

covered, the drone in the simulator would move left regardless of the joystick input. This can be 

shown in Figure 23 and 24 below. 

 

Figure 23. Blocking the right sensor causes the drone to move to the left regardless of joystick 

input 

 

Figure 24. Blocking the left sensor causes the drone to move to the right regardless of joystick 

input 

For the task of “3D printed board accommodates physical components”, we designed prototypes 

using paper and other materials at first, mapping out how we wanted the structure to sit on the 
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drone before printing. Following this we designed structures in FreeCAD to visualize the 

prototypes. There were several CAD designs printed throughout the project, each time we 

attempted to mount the sensors on the structure and found issues with field of view, we edited 

the design and printed again in order to get the most efficient design. 

Costs 

The following shows the cost of each component of our PCB. 

Line 

# Designator Quantity 

Manufacture

r 

Manufacturer 

Part Number Supplier 

Supplier 

Part 

Number Price/Unit Total Price 

1 

C1 1 
TDK 

Corporation 

C2012X7R1A

106K125AC 

Digi-

Key 

445-

6857-1-

ND 

0.33 0.33 

2 

J1, J2, J3, 

J4, J5 
5 

JST Sales 

America Inc. 

B9B-PH-K-

S(LF)(SN) 

Digi-

Key 

455-

1711-ND 
0.48 2.4 

3 J6 1 Amass XT30UPB-M   0.48 0.48 

4 
J7 1 

Amphenol 

ICC (FCI) 

69167-

103HLF 

Digi-

Key 

609-

2410-ND 
0.99 0.99 

5 

J8, J9, J10, 

J11, J12 
5 Samtec Inc. 

TMM-102-03-

G-S 

Digi-

Key 

SAM101

91-ND 
0.65 3.25 

6 

J13 1 

TE 

Connectivity 

AMP 

Connectors 

3-1761608-3 
Digi-

Key 

A107237

-ND 
11.62 11.62 

7 

R1, R2, R3, 

R4, R5, R6 
6 Panasonic 

ERA-

6AEB103V 

Digi-

Key 

P10KDA

CT-ND 
0.36 2.16 

8 
R7 1   

Digi-

Key 
 0.1 0.1 

9 
TP1 1 Keystone 5010 

Digi-

Key 

36-5010-

ND 
0.1 0.1 

10 
TP2 1 Keystone 5011 

Digi-

Key 

36-5011-

ND 
0.42 0.42 

11 
TP3, TP6 2 Keystone 5012 

Digi-

Key 

36-5012-

ND 
0.42 0.84 

12 
TP4 1 Keystone 5014 

Digi-

Key 

36-5014-

ND 
0.42 0.42 

13 
TP5 1 Keystone 5013 

Digi-

Key 

36-5013-

ND 
0.42 0.42 

14 

U1 1 
Texas 

Instruments 

TCA9548AP

WR 

Digi-

Key 

296-

34905-1-

ND 

2.09 2.09 
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Total 

Cost 
$ 25.62 

Table 5: PCB Parts and Costs 

The standard price to fabricate a 4-layer PCB with the number of holes, traces, pad, etc. that we 

utilized in our design is about $274.38. Thus, the total cost of one PCB is about $300.  

 

Part Cost for 1 Unit Cost for 10,000 Units 

Holybro X500 V2 ARF KIT $117.00 $1,170,000 

HRB 4S Lipo Battery 14.8V 

5000mAh 

$49.95 $499,500 

PM07 12s Power Module $42.00 $420,000 

Terabee TeraRanger Evo 15m $64.00 $640,000 

Parallax 360 Degree High Speed 

Continuous Rotation Servo 

$49.90 $499,000 

NVIDIA Jetson AGX Orin 

Developer Kit 

$1,999 $19,990,000 

PCB Costs $300 #3,000,000 

Total  $2,621.85 $26,218,500 

Table 6: Drone with Obstacle Avoidance Module Cost 

Future Work 

If a group were to expand upon our design, there are several concerns to account for in 

order to speed up implementation and avoid roadblocks. On the software side of the 

implementation, we had lingering issues with delays and timing for the intake and printing of 

sensor values. A way to avoid such setbacks would be to publish each sensor implementation as 

separate rostopics, rather than all being published to one rostopic. Also, in connection with the 

3D CAD design, we would recommend accounting for 3D implementation when making 

changes to software, as we ran into issues with making small tweaks to fit our software, printing 

several 3D designs, each taking at least 3 hours to complete. The 3D design was also affected by 

changes in hardware, as we would recommend accounting for where to feed wires, place new 

components (sensors and PCB), and encase parts as needed. Each change to hardware requires 

several tweaks to the 3D design.  
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When developing and updating the PCB, it would be good practice, and avoid many 

setbacks, to think about how and where wires from sensors will be connected to the PCB, for 

example, our first iteration of the PCB had difficulties connecting to sensors because headers 

were in weird locations. Our second iteration took into account location of headers and wires, 

leaving our design in a better position to expand upon. 

Finally, with our high budget, we ended up using many parts that are high quality but 

scarce in supply, making some difficult to order. Focusing on parts that are good quality and 

have a higher supply would help avoid issues with ordering and running into problems with 

replacing parts if some were to break. 
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